import os import json from typing import List from datasets import load_dataset label2id = { "B-corporation": 0, "B-creative_work": 1, "B-event": 2, "B-group": 3, "B-location": 4, "B-person": 5, "B-product": 6, "I-corporation": 7, "I-creative_work": 8, "I-event": 9, "I-group": 10, "I-location": 11, "I-person": 12, "I-product": 13, "O": 14 } id2label = {v: k for k, v in label2id.items()} def decode_ner_tags(tag_sequence: List, input_sequence: List): """ decode ner tag sequence """ def update_collection(_tmp_entity, _tmp_entity_type, _tmp_pos, _out): if len(_tmp_entity) != 0 and _tmp_entity_type is not None: _out.append({'type': _tmp_entity_type, 'entity': _tmp_entity, 'position': _tmp_pos}) _tmp_entity = [] _tmp_entity_type = None return _tmp_entity, _tmp_entity_type, _tmp_pos, _out assert len(tag_sequence) == len(input_sequence), str([len(tag_sequence), len(input_sequence)]) out = [] tmp_entity = [] tmp_pos = [] tmp_entity_type = None for n, (_l, _i) in enumerate(zip(tag_sequence, input_sequence)): _l = id2label[_l] if _l.startswith('B-'): _, _, _, out = update_collection(tmp_entity, tmp_entity_type, tmp_pos, out) tmp_entity_type = '-'.join(_l.split('-')[1:]) tmp_entity = [_i] tmp_pos = [n] elif _l.startswith('I-'): tmp_tmp_entity_type = '-'.join(_l.split('-')[1:]) if len(tmp_entity) == 0: # if 'I' not start with 'B', skip it tmp_entity, tmp_entity_type, tmp_pos, out = update_collection(tmp_entity, tmp_entity_type, tmp_pos, out) elif tmp_tmp_entity_type != tmp_entity_type: # if the type does not match with the B, skip tmp_entity, tmp_entity_type, tmp_pos, out = update_collection(tmp_entity, tmp_entity_type, tmp_pos, out) else: tmp_entity.append(_i) tmp_pos.append(n) elif _l == 'O': tmp_entity, tmp_entity_type, tmp_pos, out = update_collection(tmp_entity, tmp_entity_type, tmp_pos, out) else: raise ValueError('unknown tag: {}'.format(_l)) _, _, _, out = update_collection(tmp_entity, tmp_entity_type, tmp_pos, out) return out data = load_dataset("tner/tweetner7") def process(tmp): tmp = [i.to_dict() for _, i in tmp.iterrows()] for i in tmp: tokens = ["@" + t.replace("{@", "").replace("@}", "").replace(" ", "_") if t.startswith("{@") else t for t in i.pop('tokens')] entities = [] for e in decode_ner_tags(i.pop('tags').tolist(), tokens): entities.append(f'{" ".join(e["entity"])} ({e["type"]})') i['text'] = " ".join(tokens).replace("{{USERNAME}}", "@user").replace("{{URL}}", "{URL}") i['condition'] = f'Entities: {", ".join(entities)}' return tmp train = process(data["train_2020"].to_pandas()) train += process(data["train_2021"].to_pandas()) val = process(data["validation_2020"].to_pandas()) val += process(data["validation_2021"].to_pandas()) test = process(data["test_2021"].to_pandas()) os.makedirs("dataset/ner", exist_ok=True) with open("dataset/ner/train.jsonl", "w") as f: f.write("\n".join([json.dumps(i) for i in train])) with open("dataset/ner/validation.jsonl", "w") as f: f.write("\n".join([json.dumps(i) for i in val])) with open("dataset/ner/test.jsonl", "w") as f: f.write("\n".join([json.dumps(i) for i in test]))