# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Twitter Sentiment Analysis Training Corpus (Dataset)""" import json import os import datasets from datasets import load_dataset logger = datasets.logging.get_logger(__name__) _CITATION = """\ @InProceedings{thinknook:dataset, title = {Twitter Sentiment Analysis Training Corpus (Dataset)}, author={Ibrahim Naji}, year={2012} } """ _DESCRIPTION = """\ The Twitter Sentiment Analysis Dataset contains 1,578,627 classified tweets, each row is marked as 1 for positive sentiment and 0 for negative sentiment. The dataset is based on data from the following two sources: University of Michigan Sentiment Analysis competition on Kaggle Twitter Sentiment Corpus by Niek Sanders Finally, I randomly selected a subset of them, applied a cleaning process, and divided them between the test and train subsets, keeping a balance between the number of positive and negative tweets within each of these subsets. """ _URL = "https://raw.githubusercontent.com/cblancac/SentimentAnalysisBert/main/data/" _URLS = { "train": _URL + "train_150k.txt", "test": _URL + "test_62k.txt", } _HOMEPAGE = "https://raw.githubusercontent.com/cblancac/SentimentAnalysisBert/main" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) #_URLS = { # "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip", # "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip", #} def _define_columns(example): text_splited = example["text"].split('\t') return {"text": text_splited[1].strip(), "feeling": int(text_splited[0])} # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case class NewDataset(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "text": datasets.Value("string"), "feeling": datasets.Value("int32") } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir_files = dl_manager.download_and_extract(_URLS) data_dir = '/'.join(data_dir_files["train"].split('/')[:-1]) print("AAAAAAAAAAAAA: ", data_dir) data = load_dataset("text", data_files=data_dir_files) data = data.map(_define_columns) texts_dataset_clean = data["train"].train_test_split(train_size=0.8, seed=42) # Rename the default "test" split to "validation" texts_dataset_clean["validation"] = texts_dataset_clean.pop("test") # Add the "test" set to our `DatasetDict` texts_dataset_clean["test"] = data["test"] texts_dataset_clean for split, dataset in texts_dataset_clean.items(): dataset.to_json(data_dir + "/" + f"twitter-sentiment-analysis-{split}.jsonl") return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-train.jsonl")}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-validation.jsonl")}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-test.jsonl")}), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: for key, row in enumerate(f): data = json.loads(row) yield key, { "text": data["text"], "feeling": data["feeling"], }