"""Make CSVs for numerical data. Some data can be slow to process and it is better to write them into a CSV file before plotting, so that we don't need to wait for a long time during plotting. Data included: - Energy result from neural network and ED with different number of electrons in 1/3. - Ground state energy, quasiparticle/quasihole energy, electron population on the LLL, and overlap with the Laughlin wavefunction with different kappa in 1/3 filling. """ import os from pathlib import Path os.environ["JAX_PLATFORMS"] = "cpu" import numpy as np import pandas as pd from deephall.loss import iqr_clip_real from puwr import tauint from uncertainties import ufloat, umath DATA_PATH = Path(__file__).parent / "data" def correct_energy(kinetic, potential, N, Q, R, nu, q=0, kappa=1): # Remove background contribution potential -= kappa * (N**2 - q**2) / 2 / R # Density correction for potential energy energy_in_au = ( (kinetic - N / 2 * Q / R**2 + potential) * np.sqrt(2 * Q * nu / N) / N ) # Normalize potential in the unit of 1/ell energy_in_ell = energy_in_au * R / np.sqrt(Q) / kappa return energy_in_ell def ed_energy(ed_output, N, Q, R, nu, q=0): return correct_energy(N / 2, ed_output / 2, N, Q, R, nu, q) def energy_vs_n(): data = {"n": [6, 7, 8, 9, 10, 11, 12], "energy": [], "std": [], "ed": []} for n in data["n"]: flux = 3 * (n - 1) netobs_ckpt = DATA_PATH / f"n{n}l{flux}/k1/energy-100k/netobs_ckpt_001999.npz" with netobs_ckpt.open("rb") as f, np.load(f) as npf: energy = correct_energy( npf["values/kinetic"], npf["values/potential"], *(n, flux / 2, np.sqrt(flux / 2)), nu=1 / 3, ).real mean, std, *_ = tauint([[iqr_clip_real(energy, scale=3)]], 0) data["energy"].append(mean) data["std"].append(std) ed_n = [6, 7, 8, 9, 10, 11] ed_output = [ 7.7432698280425, 10.121045415564, 12.725298638045, 15.542042784237, 18.559733276244, 21.768350529899, ] data["ed"] = [ ed_energy(e, n, 3 * (n - 1) / 2, np.sqrt(3 * (n - 1) / 2), 1 / 3) for n, e in zip(ed_n, ed_output) ] + [np.nan] return pd.DataFrame(data) def llm_1_3(): data = { "kappa": [0.5, 1, 3, 10], "energy": [], "energy_std": [], "qp_energy": [], "qp_energy_std": [], "qh_energy": [], "qh_energy_std": [], "gap": [], "gap_std": [], "overlap": [], "overlap_std": [], "n_LLL": [], "n_LLL_std": [], } for kappa in data["kappa"]: netobs_ckpt = DATA_PATH / f"n6l14/k{kappa}/energy/netobs_ckpt_001999.npz" with netobs_ckpt.open("rb") as f, np.load(f) as npf: qp_energy = correct_energy( npf["values/kinetic"], npf["values/potential"], *(6, 14 / 2, np.sqrt(14 / 2)), nu=1 / 3, kappa=kappa, q=1 / 3, ).real qp_energy_mean, qp_energy_std, *_ = tauint([[iqr_clip_real(qp_energy)]], 0) data["qp_energy"].append(qp_energy_mean) data["qp_energy_std"].append(qp_energy_std) netobs_ckpt = DATA_PATH / f"n6l15/k{kappa}/energy/netobs_ckpt_001999.npz" with netobs_ckpt.open("rb") as f, np.load(f) as npf: energy = correct_energy( npf["values/kinetic"], npf["values/potential"], *(6, 15 / 2, np.sqrt(15 / 2)), nu=1 / 3, kappa=kappa, ).real energy_mean, energy_std, *_ = tauint([[iqr_clip_real(energy)]], 0) data["energy"].append(energy_mean) data["energy_std"].append(energy_std) netobs_ckpt = DATA_PATH / f"n6l16/k{kappa}/energy/netobs_ckpt_001999.npz" with netobs_ckpt.open("rb") as f, np.load(f) as npf: qh_energy = correct_energy( npf["values/kinetic"], npf["values/potential"], *(6, 16 / 2, np.sqrt(16 / 2)), nu=1 / 3, kappa=kappa, q=1 / 3, ).real qh_energy_mean, qh_energy_std, *_ = tauint([[iqr_clip_real(qh_energy)]], 0) data["qh_energy"].append(qh_energy_mean) data["qh_energy_std"].append(qh_energy_std) gap_mean, gap_std, *_ = tauint( [[6 * iqr_clip_real(qp_energy + qh_energy - 2 * energy)]], 0 ) data["gap"].append(gap_mean) data["gap_std"].append(gap_std) netobs_ckpt = DATA_PATH / f"n6l15/k{kappa}/overlap/netobs_ckpt_000199.npz" with netobs_ckpt.open("rb") as f, np.load(f) as npf: overlap_num_real, overlap_num_real_std, *_ = tauint( [[npf["values/ratio"].real]], 0 ) overlap_num_imag, overlap_num_imag_std, *_ = tauint( [[npf["values/ratio"].imag]], 0 ) overlap_den, overlap_den_std, *_ = tauint([[npf["values/ratio_square"]]], 0) overlap = umath.sqrt( ( ufloat(overlap_num_real, overlap_num_real_std) ** 2 + ufloat(overlap_num_imag, overlap_num_imag_std) ** 2 ) / ufloat(overlap_den, overlap_den_std) ) data["overlap"].append(overlap.n) data["overlap_std"].append(overlap.s) netobs_ckpt = DATA_PATH / f"n6l15/k{kappa}/1rdm/netobs_ckpt_019999.npz" with netobs_ckpt.open("rb") as f, np.load(f) as npf: trace = np.trace(npf["values/one_rdm"], axis1=1, axis2=2) mean, std, *_ = tauint([[trace.real]], 0) data["n_LLL"].append(mean) data["n_LLL_std"].append(std) return pd.DataFrame(data) if __name__ == "__main__": energy_vs_n().to_csv(open(DATA_PATH / "energy_vs_n.csv", "w"), index=False) llm_1_3().to_csv(open(DATA_PATH / "llm_1_3.csv", "w"), index=False)