import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set_theme() def read_results(filename): with open(filename, "r") as f: lines = f.readlines() preds_values = [] actual_values = [] mae_values = [] for line in lines: if line.startswith("Preds:"): preds = line.replace("[", "") preds = preds.replace("]", "") preds = preds.strip("Preds:") preds = preds.strip() preds = preds.split(",") preds = [p.strip() for p in preds] preds = np.asarray([float(p) for p in preds]) preds_values.append(preds) if line.startswith("Actual:"): actual = line.replace("[", "") actual = actual.replace("]", "") actual = actual.strip("Actual values:") actual = actual.strip() actual = actual.split(",") actual = [a.strip() for a in actual] actual = np.asarray([float(a) for a in actual]) actual_values.append(actual) if line.startswith("MAE"): mae = float(line.split()[-1]) mae_values.append(mae) return preds_values, actual_values, mae_values def plot_distribution(preds_values, actual_values, mae_values, model_name, threshold, oversampled): for i in range(2): if i == 0: input_type = "BoW" else: input_type = "TF-IDF" preds = preds_values[i] actual = actual_values[i] mae = mae_values[i] res = pd.DataFrame() res["Prediction"] = preds res["Actual"] = actual sns.displot(res, kind="kde") plt.xlabel("Home standard score") plt.title(f"Model: {model_name}, Input type: {input_type}, MAE: {mae}, Threshold:{threshold}", fontsize = 10) plt.ylim(-0.03, 2.5) plt.tight_layout() plt.savefig(f"figs/{model_name}_{input_type}_{threshold[0]}_{threshold[1]}_{oversampled}.png") plt.close() if __name__ == "__main__": preds_values, actual_values, mae_values = read_results("linear_models/lasso_0.01_0.99.txt") plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.01, 0.99], False) preds_values, actual_values, mae_values = read_results("linear_models/lin_reg_0.01_0.99.txt") plot_distribution(preds_values, actual_values, mae_values, "Linear regression", [0.01, 0.99], False) preds_values, actual_values, mae_values = read_results("linear_models/sgd_reg_0.01_0.99.txt") plot_distribution(preds_values, actual_values, mae_values, "SGD Regressor", [0.01, 0.99], False) preds_values, actual_values, mae_values = read_results("oversampled_False_catboost_reg_0.01_0.99.txt") plot_distribution(preds_values, actual_values, mae_values, "CatBoostRegressor", [0.01, 0.99], False) preds_values, actual_values, mae_values = read_results("linear_models/lasso_0.2_0.8.txt") plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.2, 0.8], False) preds_values, actual_values, mae_values = read_results("linear_models/oversampled_lin_reg_0.01_0.99.txt") plot_distribution(preds_values, actual_values, mae_values, "Linear regression", [0.01, 0.99], True) preds_values, actual_values, mae_values = read_results("linear_models/oversampled_lasso_0.01_0.99.txt") plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.01, 0.99], True) preds_values, actual_values, mae_values = read_results("linear_models/oversampled_sgd_reg_0.01_0.99.txt") plot_distribution(preds_values, actual_values, mae_values, "SGD Regressor", [0.01, 0.99], True) preds_values, actual_values, mae_values = read_results("oversampled_True_catboost_reg_0.01_0.99.txt") plot_distribution(preds_values, actual_values, mae_values, "CatBoostRegressor", [0.01, 0.99], True) preds_values, actual_values, mae_values = read_results("linear_models/oversampled_lasso_0.15_0.85.txt") plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.15, 0.85], True)