import json from collections import defaultdict from enum import Enum from types import SimpleNamespace from dataclasses import dataclass import datasets from licenses import License from licenses import Licenses BigBioValues = SimpleNamespace(NULL="") @dataclass class BigBioConfig(datasets.BuilderConfig): """BuilderConfig for BigBio.""" name: str = None version: datasets.Version = None description: str = None schema: str = None subset_id: str = None # shamelessly compied from: # https://github.com/huggingface/datasets/blob/master/src/datasets/utils/metadata.py langs_json = json.load(open("languages.json", "r")) langs_dict = {k.replace("-", "_").upper(): v for k, v in langs_json.items()} Lang = Enum("Lang", langs_dict) METADATA: dict = { "_LOCAL": bool, "_LANGUAGES": Lang, "_PUBMED": bool, "_LICENSE": License, "_DISPLAYNAME": str, } class Tasks(Enum): NAMED_ENTITY_RECOGNITION = "NER" NAMED_ENTITY_DISAMBIGUATION = "NED" EVENT_EXTRACTION = "EE" RELATION_EXTRACTION = "RE" COREFERENCE_RESOLUTION = "COREF" QUESTION_ANSWERING = "QA" TEXTUAL_ENTAILMENT = "TE" SEMANTIC_SIMILARITY = "STS" TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS" PARAPHRASING = "PARA" TRANSLATION = "TRANSL" SUMMARIZATION = "SUM" TEXT_CLASSIFICATION = "TXTCLASS" TASK_TO_SCHEMA = { Tasks.NAMED_ENTITY_RECOGNITION: "KB", Tasks.NAMED_ENTITY_DISAMBIGUATION: "KB", Tasks.EVENT_EXTRACTION: "KB", Tasks.RELATION_EXTRACTION: "KB", Tasks.COREFERENCE_RESOLUTION: "KB", Tasks.QUESTION_ANSWERING: "QA", Tasks.TEXTUAL_ENTAILMENT: "TE", Tasks.SEMANTIC_SIMILARITY: "PAIRS", Tasks.TEXT_PAIRS_CLASSIFICATION: "PAIRS", Tasks.PARAPHRASING: "T2T", Tasks.TRANSLATION: "T2T", Tasks.SUMMARIZATION: "T2T", Tasks.TEXT_CLASSIFICATION: "TEXT", } SCHEMA_TO_TASKS = defaultdict(set) for task, schema in TASK_TO_SCHEMA.items(): SCHEMA_TO_TASKS[schema].add(task) SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS) VALID_TASKS = set(TASK_TO_SCHEMA.keys()) VALID_SCHEMAS = set(TASK_TO_SCHEMA.values()) entailment_features = datasets.Features( { "id": datasets.Value("string"), "premise": datasets.Value("string"), "hypothesis": datasets.Value("string"), "label": datasets.Value("string"), } ) pairs_features = datasets.Features( { "id": datasets.Value("string"), "document_id": datasets.Value("string"), "text_1": datasets.Value("string"), "text_2": datasets.Value("string"), "label": datasets.Value("string"), } ) qa_features = datasets.Features( { "id": datasets.Value("string"), "question_id": datasets.Value("string"), "document_id": datasets.Value("string"), "question": datasets.Value("string"), "type": datasets.Value("string"), "choices": [datasets.Value("string")], "context": datasets.Value("string"), "answer": datasets.Sequence(datasets.Value("string")), } ) text_features = datasets.Features( { "id": datasets.Value("string"), "document_id": datasets.Value("string"), "text": datasets.Value("string"), "labels": [datasets.Value("string")], } ) text2text_features = datasets.Features( { "id": datasets.Value("string"), "document_id": datasets.Value("string"), "text_1": datasets.Value("string"), "text_2": datasets.Value("string"), "text_1_name": datasets.Value("string"), "text_2_name": datasets.Value("string"), } ) kb_features = datasets.Features( { "id": datasets.Value("string"), "document_id": datasets.Value("string"), "passages": [ { "id": datasets.Value("string"), "type": datasets.Value("string"), "text": datasets.Sequence(datasets.Value("string")), "offsets": datasets.Sequence([datasets.Value("int32")]), } ], "entities": [ { "id": datasets.Value("string"), "type": datasets.Value("string"), "text": datasets.Sequence(datasets.Value("string")), "offsets": datasets.Sequence([datasets.Value("int32")]), "normalized": [ { "db_name": datasets.Value("string"), "db_id": datasets.Value("string"), } ], } ], "events": [ { "id": datasets.Value("string"), "type": datasets.Value("string"), # refers to the text_bound_annotation of the trigger "trigger": { "text": datasets.Sequence(datasets.Value("string")), "offsets": datasets.Sequence([datasets.Value("int32")]), }, "arguments": [ { "role": datasets.Value("string"), "ref_id": datasets.Value("string"), } ], } ], "coreferences": [ { "id": datasets.Value("string"), "entity_ids": datasets.Sequence(datasets.Value("string")), } ], "relations": [ { "id": datasets.Value("string"), "type": datasets.Value("string"), "arg1_id": datasets.Value("string"), "arg2_id": datasets.Value("string"), "normalized": [ { "db_name": datasets.Value("string"), "db_id": datasets.Value("string"), } ], } ], } ) SCHEMA_TO_FEATURES = { "KB": kb_features, "QA": qa_features, "TE": entailment_features, "T2T": text2text_features, "TEXT": text_features, "PAIRS": pairs_features, }