--- configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* dataset_info: features: - name: label dtype: class_label: names: '0': negative '1': positive - name: title dtype: string - name: content dtype: string splits: - name: train num_bytes: 163359702 num_examples: 360000 - name: test num_bytes: 18182813 num_examples: 40000 download_size: 120691417 dataset_size: 181542515 --- # Amazon Polarity 10pct This is a direct subset of the original [Amazon Polarity](https://huggingface.co/datasets/amazon_polarity) dataset, downsampled 10pct with a random shuffle ### Dataset Summary For quicker testing on Amazon Polarity. See https://huggingface.co/datasets/amazon_polarity for details and attributions ### Source Data ```python from datasets import ClassLabel, Dataset, DatasetDict, load_dataset ds_full = load_dataset("amazon_polarity", streaming=True) ds_train_10_pct = Dataset.from_list(list(ds_full["train"].shuffle(seed=42).take(360_000))) ds_test_10_pct = Dataset.from_list(list(ds_full["test"].shuffle(seed=42).take(40_000))) ds_10_pct = DatasetDict({"train": ds_train_10_pct, "test": ds_test_10_pct}) # Need to recreate the class labels class_label = ClassLabel(num_classes=2, names=["negative", "positive"]) ds_10_pct = ds_10_pct.map(lambda row: {"title": row["title"], "content": row["content"], "label": "negative" if not row["label"] else "positive"}) ds_10_pct = ds_10_pct.cast_column("label", class_label) ```