import os import torch import datasets from pycocotools.coco import COCO _DESCRIPTION = """\ Watermark Dataset """ _VERSION = datasets.Version("1.0.0") _REPO = "data"# "https://huggingface.co/datasets/bastienp/visible-watermark-pita/raw/main/data" _URLS = {"train": f"{_REPO}/train.zip", "valid": f"{_REPO}/valid.zip"} _CATEGORIES = ["watermark"] class WatermarkPita(datasets.GeneratorBasedBuilder): """Watermark Dataset""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "image": datasets.Image(), "objects": datasets.Sequence({ "label": datasets.ClassLabel(names=_CATEGORIES), "bbox": datasets.Sequence(datasets.Value("int32"), length=4) }), } ), description=_DESCRIPTION, ) def _split_generators(self, dl_manager): return def _generate_examples(self, images, metadata_path):