# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph.""" import json import os import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ @article{DBLP-QuAD, title={DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph}, author={Banerjee, Debayan and Awale, Sushil and Usbeck, Ricardo and Biemann, Chris}, year={2023} """ _DESCRIPTION = """\ DBLP-QuAD is a scholarly knowledge graph question answering dataset with \ 10,000 question - SPARQL query pairs targeting the DBLP knowledge graph. \ The dataset is split into 7,000 training, 1,000 validation and 2,000 test \ questions. """ _URL = "https://zenodo.org/record/7554379/files/DBLP-QuAD.zip" class DBLPQuAD(datasets.GeneratorBasedBuilder): """ DBLP-QuAD: A Question Answering Dataset over the DBLP Scholarly Knowledge Graph. Version 1.0.0 """ VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "id": datasets.Value("string"), "query_type": datasets.Value("string"), "question": datasets.dataset_dict.DatasetDict({ "string": datasets.Value("string") }), "paraphrased_question": datasets.dataset_dict.DatasetDict({ "string": datasets.Value("string") }), "query": datasets.dataset_dict.DatasetDict({ "sparql": datasets.Value("string") }), "template_id": datasets.Value("string"), "entities": datasets.features.Sequence(datasets.Value("string")), "relations": datasets.features.Sequence(datasets.Value("string")), "temporal": datasets.Value("bool"), "held_out": datasets.Value("bool") } ), supervised_keys=None, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_dir = dl_manager.download_and_extract(_URL) dl_dir = os.path.join(dl_dir, "DBLP-QuAD") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_dir, "train", "questions.json")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(dl_dir, "valid", "questions.json")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(dl_dir, "test", "questions.json")}, ), ] def _generate_examples(self, filepath): """Yields examples.""" with open(filepath, encoding="utf-8") as f: data = json.load(f)["questions"] for id_, row in enumerate(data): yield id_, { "id": row["id"], "query_type": row["query_type"], "question": row["question"], "paraphrased_question": row["paraphrased_question"], "query": row["query"], "template_id": row["template_id"], "entities": row["entities"], "relations": row["relations"], "temporal": row["temporal"], "held_out": row["held_out"] }