Datasets:
File size: 5,244 Bytes
f3bad19 dcb71db f3bad19 8b477b5 77c5518 546be88 804df9b 47b0aa0 c193ec6 47b0aa0 c193ec6 47b0aa0 c193ec6 47b0aa0 c193ec6 47b0aa0 c193ec6 d23c839 546be88 d23c839 5767e79 43e58a9 5767e79 ba4f51d 9f06ac5 962c210 dcb71db 546be88 d23c839 d205970 8bfdf6b 8b477b5 3848b3b c85dae1 8b477b5 f78bf44 47b0aa0 f78bf44 1282903 122ef43 b0df395 47b0aa0 8b477b5 265a800 8b477b5 265a800 8b477b5 265a800 8b477b5 265a800 7a0ea2b 265a800 7a0ea2b 3c97952 265a800 ba23be3 265a800 47b0aa0 265a800 7a0ea2b 2a620a4 e681512 2a620a4 1b71b3f e681512 2a620a4 e681512 1b71b3f e681512 1b71b3f e681512 2a620a4 47b0aa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
task_categories:
- automatic-speech-recognition
multilinguality:
- multilingual
language:
- en
- fr
- de
- es
tags:
- music
- lyrics
- evaluation
- benchmark
- transcription
- pnc
pretty_name: 'Jam-ALT: A Readability-Aware Lyrics Transcription Benchmark'
paperswithcode_id: jam-alt
configs:
- config_name: all
data_files:
- split: test
path:
- metadata.jsonl
- subsets/*/audio/*.mp3
default: true
- config_name: de
data_files:
- split: test
path:
- subsets/de/metadata.jsonl
- subsets/de/audio/*.mp3
- config_name: en
data_files:
- split: test
path:
- subsets/en/metadata.jsonl
- subsets/en/audio/*.mp3
- config_name: es
data_files:
- split: test
path:
- subsets/es/metadata.jsonl
- subsets/es/audio/*.mp3
- config_name: fr
data_files:
- split: test
path:
- subsets/fr/metadata.jsonl
- subsets/fr/audio/*.mp3
---
# Jam-ALT: A Readability-Aware Lyrics Transcription Benchmark
## Dataset description
* **Project page:** https://audioshake.github.io/jam-alt/
* **Source code:** https://github.com/audioshake/alt-eval
* **Paper (ISMIR 2024):** https://doi.org/10.5281/zenodo.14877443
* **Paper (arXiv):** https://arxiv.org/abs/2408.06370
* **Extended abstract (ISMIR 2023 LBD):** https://arxiv.org/abs/2311.13987
Jam-ALT is a revision of the [**JamendoLyrics**](https://github.com/f90/jamendolyrics) dataset (80 songs in 4 languages), adapted for use as an **automatic lyrics transcription** (**ALT**) benchmark.
The lyrics have been revised according to the newly compiled [annotation guidelines](GUIDELINES.md), which include rules about spelling and formatting, as well as punctuation and capitalization (PnC).
The audio is identical to the JamendoLyrics dataset.
**Note:** The dataset is not time-aligned as it does not easily map to the timestamps from JamendoLyrics. To evaluate **automatic lyrics alignment** (**ALA**), please use [JamendoLyrics](https://github.com/f90/jamendolyrics) directly.
See the [project website](https://audioshake.github.io/jam-alt/) for details.
## Loading the data
```python
from datasets import load_dataset
dataset = load_dataset("audioshake/jam-alt", split="test")
```
A subset is defined for each language (`en`, `fr`, `de`, `es`);
for example, use `load_dataset("audioshake/jam-alt", "es")` to load only the Spanish songs.
To control how the audio is decoded, cast the `audio` column using `dataset.cast_column("audio", datasets.Audio(...))`.
Useful arguments to `datasets.Audio()` are:
- `sampling_rate` and `mono=True` to control the sampling rate and number of channels.
- `decode=False` to skip decoding the audio and just get the MP3 file paths and contents.
The `load_dataset` function also accepts a `columns` parameter, which can be useful for example if you want to skip downloading the audio (see the example below).
## Running the benchmark
The evaluation is implemented in our [`alt-eval` package](https://github.com/audioshake/alt-eval):
```python
from datasets import load_dataset
from alt_eval import compute_metrics
dataset = load_dataset("audioshake/jam-alt", revision="v1.2.0", split="test")
# transcriptions: list[str]
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
```
For example, the following code can be used to evaluate Whisper:
```python
dataset = load_dataset("audioshake/jam-alt", revision="v1.2.0", split="test")
dataset = dataset.cast_column("audio", datasets.Audio(decode=False)) # Get the raw audio file, let Whisper decode it
model = whisper.load_model("tiny")
transcriptions = [
"\n".join(s["text"].strip() for s in model.transcribe(a["path"])["segments"])
for a in dataset["audio"]
]
compute_metrics(dataset["text"], transcriptions, languages=dataset["language"])
```
Alternatively, if you already have transcriptions, you might prefer to skip loading the `audio` column:
```python
dataset = load_dataset("audioshake/jam-alt", revision="v1.2.0", split="test", columns=["name", "text", "language", "license_type"])
```
## Citation
When using the benchmark, please cite [our paper](https://doi.org/10.5281/zenodo.14877443) as well as the original [JamendoLyrics paper](https://arxiv.org/abs/2306.07744):
```bibtex
@misc{cifka-2024-jam-alt,
author = {Ondrej C{\'{\i}}fka and
Hendrik Schreiber and
Luke Miner and
Fabian{-}Robert St{\"{o}}ter},
title = {Lyrics Transcription for Humans: {A} Readability-Aware Benchmark},
booktitle = {Proceedings of the 25th International Society for
Music Information Retrieval Conference},
pages = {737--744},
year = 2024,
publisher = {ISMIR},
doi = {10.5281/ZENODO.14877443},
url = {https://doi.org/10.5281/zenodo.14877443}
}
@inproceedings{durand-2023-contrastive,
author={Durand, Simon and Stoller, Daniel and Ewert, Sebastian},
booktitle={2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={Contrastive Learning-Based Audio to Lyrics Alignment for Multiple Languages},
year={2023},
pages={1-5},
address={Rhodes Island, Greece},
doi={10.1109/ICASSP49357.2023.10096725}
}
```
|