import datasets _TAR_FILES=[ "part0.tar.gz", "part1.tar.gz", "part2.tar.gz", "part3.tar.gz", "part4.tar.gz", "part5.tar.gz", "part6.tar.gz", ] _TAR_FILES_DICT={ "1024.512": "1024-512-merged1.tar.gz", "1152.512": "1152-512-merged1.tar.gz", "384.1152": "384-1152-merged1.tar.gz", "512.1024": "512-1024-merged1.tar.gz", "512.1152": "512-1152-merged1.tar.gz", "512.896": "512-896-merged1.tar.gz", "640.640": "640-640-merged1.tar.gz", "640.768": "640-768-merged1.tar.gz", "640.896": "640-896-merged1.tar.gz", "768.640": "768-640-merged1.tar.gz", "768.768": "768-768-merged1.tar.gz", "896.512": "896-512-merged1.tar.gz", "896.640": "896-640-merged1.tar.gz", "1152.384": "1152-384-merged1.tar.gz", } class Food101(datasets.GeneratorBasedBuilder): """Food-101 Images dataset.""" def _info(self): return datasets.DatasetInfo( description="TMP description", homepage="google it", citation="lmao", license="dunno, tbh, assume the worst, k thx." ) def _split_generators(self, dl_manager): l=[] for k in _TAR_FILES_DICT.keys(): archive_path = dl_manager.download(_TAR_FILES_DICT[k]) l.append( datasets.SplitGenerator( name=k, gen_kwargs={ "images": dl_manager.iter_archive(archive_path), },) ) return l def _generate_examples(self, images): """Generate images and labels for splits.""" for file_path, file_obj in images: yield file_path, { "image": {"path": file_path, "bytes": file_obj.read()}, } #https://huggingface.co/datasets/oscar-corpus/OSCAR-2201/blob/main/OSCAR-2201.py #https://huggingface.co/datasets/food101