"""Multi domain document classification dataset used in [https://arxiv.org/pdf/2004.10964.pdf](https://arxiv.org/pdf/2004.10964.pdf)""" import json from itertools import chain import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """Multi domain document classification dataset used in [https://arxiv.org/pdf/2004.10964.pdf](https://arxiv.org/pdf/2004.10964.pdf)""" _NAME = "multi_domain_document_classification" _VERSION = "0.2.3" _CITATION = """ @inproceedings{dontstoppretraining2020, author = {Suchin Gururangan and Ana Marasović and Swabha Swayamdipta and Kyle Lo and Iz Beltagy and Doug Downey and Noah A. Smith}, title = {Don't Stop Pretraining: Adapt Language Models to Domains and Tasks}, year = {2020}, booktitle = {Proceedings of ACL}, } """ _HOME_PAGE = "https://github.com/asahi417/m3" _URL = f'https://huggingface.co/datasets/asahi417/{_NAME}/raw/main/dataset' _DATA_TYPE = ["chemprot", "citation_intent", "hyperpartisan_news", "rct_sample", "sciie", "amcd", "yelp_review", "tweet_eval_irony", "tweet_eval_hate", "tweet_eval_emotion"] _URLS = { k: { str(datasets.Split.TEST): [f'{_URL}/{k}/test.jsonl'], str(datasets.Split.TRAIN): [f'{_URL}/{k}/train.jsonl'], str(datasets.Split.VALIDATION): [f'{_URL}/{k}/dev.jsonl'] } for k in _DATA_TYPE } _LABELS = { "chemprot": {"ACTIVATOR": 0, "AGONIST": 1, "AGONIST-ACTIVATOR": 2, "AGONIST-INHIBITOR": 3, "ANTAGONIST": 4, "DOWNREGULATOR": 5, "INDIRECT-DOWNREGULATOR": 6, "INDIRECT-UPREGULATOR": 7, "INHIBITOR": 8, "PRODUCT-OF": 9, "SUBSTRATE": 10, "SUBSTRATE_PRODUCT-OF": 11, "UPREGULATOR": 12}, "citation_intent": {"Background": 0, "CompareOrContrast": 1, "Extends": 2, "Future": 3, "Motivation": 4, "Uses": 5}, "hyperpartisan_news": {"false": 0, "true": 1}, "rct_sample": {"BACKGROUND": 0, "CONCLUSIONS": 1, "METHODS": 2, "OBJECTIVE": 3, "RESULTS": 4}, "sciie": {"COMPARE": 0, "CONJUNCTION": 1, "EVALUATE-FOR": 2, "FEATURE-OF": 3, "HYPONYM-OF": 4, "PART-OF": 5, "USED-FOR": 6}, "amcd": {"false": 0, "true": 1}, "yelp_review": {"5 star": 4, "4 star": 3, "3 star": 2, "2 star": 1, "1 star": 0}, "tweet_eval_irony": {"non_irony":0, "irony": 1}, "tweet_eval_hate": {"non_hate": 0, "hate": 1}, "tweet_eval_emotion": {"anger": 0, "joy": 1, "optimism": 2, "sadness": 3} } class MultiDomainDocumentClassificationConfig(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(MultiDomainDocumentClassificationConfig, self).__init__(**kwargs) class MultiDomainDocumentClassification(datasets.GeneratorBasedBuilder): """Dataset.""" BUILDER_CONFIGS = [ MultiDomainDocumentClassificationConfig( name=k, version=datasets.Version(_VERSION), description=_DESCRIPTION ) for k in _DATA_TYPE ] def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name]) return [ datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]}) for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST] ] def _generate_examples(self, filepaths): _key = 0 for filepath in filepaths: logger.info(f"generating examples from = {filepath}") with open(filepath, encoding="utf-8") as f: _list = [i for i in f.read().split('\n') if len(i) > 0] for i in _list: data = json.loads(i) yield _key, data _key += 1 def _info(self): label2id = sorted(_LABELS[self.config.name].items(), key=lambda x: x[1]) label = [i[0] for i in label2id] return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=label), } ), supervised_keys=None, homepage=_HOME_PAGE, citation=_CITATION, )