init
Browse files
multi_domain_document_classification.py
CHANGED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Multi domain document classification dataset used in [https://arxiv.org/pdf/2004.10964.pdf](https://arxiv.org/pdf/2004.10964.pdf)"""
|
2 |
+
import json
|
3 |
+
from itertools import chain
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
logger = datasets.logging.get_logger(__name__)
|
7 |
+
_DESCRIPTION = """Multi domain document classification dataset used in [https://arxiv.org/pdf/2004.10964.pdf](https://arxiv.org/pdf/2004.10964.pdf)"""
|
8 |
+
_NAME = "multi_domain_document_classification"
|
9 |
+
_VERSION = "0.0.0"
|
10 |
+
_CITATION = """
|
11 |
+
@inproceedings{dontstoppretraining2020,
|
12 |
+
author = {Suchin Gururangan and Ana Marasović and Swabha Swayamdipta and Kyle Lo and Iz Beltagy and Doug Downey and Noah A. Smith},
|
13 |
+
title = {Don't Stop Pretraining: Adapt Language Models to Domains and Tasks},
|
14 |
+
year = {2020},
|
15 |
+
booktitle = {Proceedings of ACL},
|
16 |
+
}
|
17 |
+
"""
|
18 |
+
|
19 |
+
_HOME_PAGE = "https://github.com/asahi417/m3"
|
20 |
+
_URL = f'https://huggingface.co/datasets/asahi417/{_NAME}/raw/main/dataset'
|
21 |
+
_DATA_TYPE = ["chemprot", "citation_intent", "hyperpartisan_news", "rct-sample", "sciie"]
|
22 |
+
_URLS = {
|
23 |
+
k:
|
24 |
+
{
|
25 |
+
str(datasets.Split.TEST): [f'{_URL}/{k}/test.jsonl'],
|
26 |
+
str(datasets.Split.TRAIN): [f'{_URL}/{k}/train.jsonl'],
|
27 |
+
str(datasets.Split.VALIDATION): [f'{_URL}/{k}/valid.jsonl']
|
28 |
+
}
|
29 |
+
for k in _DATA_TYPE
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
class MultiDomainDocumentClassificationConfig(datasets.BuilderConfig):
|
34 |
+
"""BuilderConfig"""
|
35 |
+
|
36 |
+
def __init__(self, **kwargs):
|
37 |
+
"""BuilderConfig.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
**kwargs: keyword arguments forwarded to super.
|
41 |
+
"""
|
42 |
+
super(MultiDomainDocumentClassificationConfig, self).__init__(**kwargs)
|
43 |
+
|
44 |
+
|
45 |
+
class MultiDomainDocumentClassification(datasets.GeneratorBasedBuilder):
|
46 |
+
"""Dataset."""
|
47 |
+
|
48 |
+
BUILDER_CONFIGS = [
|
49 |
+
MultiDomainDocumentClassificationConfig(
|
50 |
+
name=k, version=datasets.Version(_VERSION), description=_DESCRIPTION
|
51 |
+
) for k in _DATA_TYPE
|
52 |
+
]
|
53 |
+
|
54 |
+
def _split_generators(self, dl_manager):
|
55 |
+
downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name])
|
56 |
+
return [
|
57 |
+
datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
|
58 |
+
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
|
59 |
+
]
|
60 |
+
|
61 |
+
def _generate_examples(self, filepaths):
|
62 |
+
_key = 0
|
63 |
+
for filepath in filepaths:
|
64 |
+
logger.info(f"generating examples from = {filepath}")
|
65 |
+
with open(filepath, encoding="utf-8") as f:
|
66 |
+
_list = [i for i in f.read().split('\n') if len(i) > 0]
|
67 |
+
for i in _list:
|
68 |
+
data = json.loads(i)
|
69 |
+
yield _key, data
|
70 |
+
_key += 1
|
71 |
+
|
72 |
+
def _info(self):
|
73 |
+
return datasets.DatasetInfo(
|
74 |
+
description=_DESCRIPTION,
|
75 |
+
features=datasets.Features(
|
76 |
+
{
|
77 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
78 |
+
"tags": datasets.Sequence(datasets.Value("int32")),
|
79 |
+
}
|
80 |
+
),
|
81 |
+
supervised_keys=None,
|
82 |
+
homepage=_HOME_PAGE,
|
83 |
+
citation=_CITATION,
|
84 |
+
)
|