import json import os import time from os.path import join as p_join from tqdm import tqdm from typing import Dict from glob import glob from soundfile import LibsndfileError from datasets import Dataset, Audio, DatasetDict # dataset config direction = os.getenv("DIRECTION", "enA-jaA") sides = {i: n for n, i in enumerate(sorted(direction.split("-")), 1)} sides_rev = {v: k for k, v in sides.items()} cache_dir_audio = p_join("download", "audio", direction) cache_dir_feature = p_join("download", "feature", direction) os.makedirs(cache_dir_audio, exist_ok=True) os.makedirs(cache_dir_feature, exist_ok=True) line_no_start = int(os.getenv("LINE_NO_START", 0)) line_no_end = int(os.getenv("LINE_NO_END", 10000)) dataset_id = int(os.getenv("DATASET_ID", 0)) hf_org = "kotoba-tech" hf_dataset = f"seamless-align-{direction}-{dataset_id}" def loader(feature: str) -> Dict: with open(feature) as f: return json.load(f) # create a dataset instance files = { int(os.path.basename(i).replace(".json", "")): i for i in glob(p_join(cache_dir_feature, "*.json")) } file_ids = [i for i in range(line_no_start, line_no_end) if i in files] features = [loader(files[i]) for i in file_ids] print(f"features: {len(features)}") features = [i for i in features if os.path.exists(i[f"{sides_rev[1]}.path"]) and os.path.exists(i[f"{sides_rev[2]}.path"])] print(f"features (filtered): {len(features)}") data_dict = { f"{sides_rev[1]}.audio": [i.pop(f"{sides_rev[1]}.path") for i in features], f"{sides_rev[2]}.audio": [i.pop(f"{sides_rev[2]}.path") for i in features] } keys = features[0].keys() data_dict.update( {k: [i[k] for i in features] for k in keys} ) audio_dataset = Dataset.from_dict(data_dict) audio_dataset = audio_dataset.cast_column(f"{sides_rev[1]}.audio", Audio()) audio_dataset = audio_dataset.cast_column(f"{sides_rev[2]}.audio", Audio()) # remove instances with broken audio files broken_files = [] for i in tqdm(range(len(audio_dataset))): try: a = audio_dataset[i] flag = True for side_id in sides_rev.keys(): start = a[f"{sides_rev[side_id]}.duration_start"] end = a[f"{sides_rev[side_id]}.duration_end"] array = a[f"{sides_rev[side_id]}.audio"]["array"] flag = 0 < start < end < len(array) if not flag: broken_files.append(i) except LibsndfileError: broken_files.append(i) continue print(f"features (removed broken audio): {len(audio_dataset) - len(broken_files)}") if len(broken_files) > 0: print(f"found {len(broken_files)} broken files:") flag = input("delete the broken files? (y/n): ") if flag == "y": # remove broken files for i in broken_files: if os.path.exists(files[file_ids[i]]): os.remove(files[file_ids[i]]) for side_id in sides_rev.keys(): if os.path.exists(data_dict[f"{sides_rev[side_id]}.audio"][i]): os.remove(data_dict[f"{sides_rev[side_id]}.audio"][i]) valid_data_id = [i for i in range(len(audio_dataset)) if i not in broken_files] audio_dataset_valid = audio_dataset.select(valid_data_id) # trim the audio according to the duration def clip_audio(batch): for side_id in sides_rev.keys(): start = batch[f"{sides_rev[side_id]}.duration_start"] end = batch[f"{sides_rev[side_id]}.duration_end"] audio = batch[f"{sides_rev[side_id]}.audio"] batch[f"{sides_rev[side_id]}.audio"] = [ {"array": a["array"][s:e], "sampling_rate": a["sampling_rate"]} for a, s, e in zip(audio, start, end) ] return batch audio_dataset_valid = audio_dataset_valid.map( function=clip_audio, batched=True, batch_size=128, num_proc=1, desc="clipping audio based on the duration:" ) dataset_to_push = DatasetDict({"train": audio_dataset_valid}) repo_name = f"{hf_org}/{hf_dataset}" while True: try: dataset_to_push.push_to_hub(repo_name) break except Exception: print(f"FAILED: push_to_hub on {repo_name} failed. wait 60 sec and retry soon...") time.sleep(60)