import json import os import tarfile import zipfile import gzip import subprocess from os.path import join as p_join from tqdm import tqdm from multiprocessing import Pool from typing import Optional import pandas as pd # dataset config url_metadata_dict = { "enA-jaA": "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-jaA.tsv.gz", "enA-jpn": "https://dl.fbaipublicfiles.com/seamless/data/seamless.dataset.metadata.public.enA-jpn.withduration.tsv.gz" } direction = os.getenv("DIRECTION", "enA-jaA") sides = set(direction.split("-")) cache_dir_audio = p_join("download", "audio", direction) cache_dir_feature = p_join("download", "feature", direction) os.makedirs(cache_dir_audio, exist_ok=True) os.makedirs(cache_dir_feature, exist_ok=True) # processor config n_pool = int(os.getenv("N_POOL", 8)) wget_max_retry = os.getenv("MAX_RETRY", "1") wget_timeout = os.getenv("TIMEOUT", "20") line_no_start = int(os.getenv("LINE_NO_START", 0)) line_no_end = int(os.getenv("LINE_NO_END", 10000)) def wget(url: str, output_file: Optional[str] = None): os.makedirs(os.path.dirname(output_file), exist_ok=True) subprocess.run(["wget", url, "-O", output_file, "--tries", wget_max_retry, "--timeout", wget_timeout]) if not os.path.exists(output_file): return False if output_file.endswith('.tar.gz') or output_file.endswith('.tgz') or output_file.endswith('.tar'): if output_file.endswith('.tar'): tar = tarfile.open(output_file) else: tar = tarfile.open(output_file, "r:gz") tar.extractall(os.path.dirname(output_file)) tar.close() os.remove(output_file) elif output_file.endswith('.gz'): with gzip.open(output_file, 'rb') as f: with open(output_file.replace('.gz', ''), 'wb') as f_write: f_write.write(f.read()) os.remove(output_file) elif output_file.endswith('.zip'): with zipfile.ZipFile(output_file, 'r') as zip_ref: zip_ref.extractall() os.remove(output_file) return True def get_metadata(): url_metadata = url_metadata_dict[direction] meta_data_filename = os.path.basename(url_metadata) meta_data_path = p_join("download", "meta", meta_data_filename) if not os.path.exists(meta_data_path.replace(".gz", "")): assert wget(url_metadata, output_file=meta_data_path) df = pd.read_csv(meta_data_path.replace(".gz", ""), sep=r'[\t\s]', header=None) df = df[[0, 2, 3, 4, 9, 10, 11, 12]] df.columns = ["id", "url", "duration_start", "duration_end", "laser_score", "direction", "side", "line_no"] if direction == "enA-jpn": df = df[df["side"] == "enA"] assert len(df["direction"].unique()) == 1 df.pop("direction") return df.sort_values(by=["line_no", "side"]) def to_json_serializable(val): if "float" in str(type(val)): return float(val) if "int" in str(type(val)): return int(val) return str(val) def get_audio(dataframe: pd.DataFrame): features = {"line_no": int(dataframe.pop('line_no').values[0])} for side, df in dataframe.groupby("side"): df.pop("side") features.update({f"{side}.{k}": to_json_serializable(v) for k, v in df.iloc[0].to_dict().items()}) identifier = os.path.basename(features[f"{side}.url"]).split(".")[-1] features[f"{side}.path"] = str(p_join(cache_dir_audio, side, f"{features['line_no']}.{identifier}")) if not os.path.exists(features[f"{side}.path"]): flag = wget(features[f"{side}.url"], output_file=features[f"{side}.path"]) if not flag: return False with open(p_join(cache_dir_feature, f'{features["line_no"]}.json'), "w") as f: json.dump(features, f) return True def process_dataset(): df_metadata = get_metadata() print(f"metadata: {len(df_metadata)}, {line_no_start} --> {line_no_end}") inputs = [ g for line_no, g in df_metadata.groupby("line_no") if line_no_start <= line_no < line_no_end and not os.path.exists( p_join(cache_dir_feature, f'{int(line_no)}.json') ) ] print(f"filtered unique lines: {len(inputs)}") if direction == "enA-jaA": inputs = [g for g in inputs if len(g["side"].unique()) == 2 and set(g["side"].unique()) == sides] print(f"removed side != 2: {len(inputs)}") if n_pool == 1: for g in tqdm(inputs, total=len(inputs)): flag = get_audio(g) if not flag: print(f"failed:\n{g['url']}") else: with Pool(n_pool) as pool: pool.map(get_audio, tqdm(inputs, total=len(inputs))) if __name__ == '__main__': process_dataset()