import os from os.path import join as p_join import pandas as pd from tqdm import tqdm from util import wget url_metadata_s2s = "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-jaA.tsv.gz" url_metadata_s2t = "https://dl.fbaipublicfiles.com/seamless/data/seamless.dataset.metadata.public.enA-jpn.withduration.tsv.gz" cache_dir_root = "./download" def get_metadata(url: str): cache_dir = p_join(cache_dir_root, "meta") filename = os.path.basename(url).replace(".gz", "") if not os.path.exists(filename): assert wget(url, cache_dir=cache_dir) df = pd.read_csv(p_join(cache_dir, filename), sep=r'[\t\s]', header=None)[[0, 2, 6, 9, 10, 11, 12]] df.columns = ["id", "url", "text_lid_score", "laser_score", "direction", "side", "line_no"] print(f"load metadata: {filename}, ({len(df)} rows)") return df def get_audio(url: str, filename: str): cache_dir = p_join(cache_dir_root, "audio") if not os.path.exists(p_join(cache_dir, filename)): return wget(url, filename=filename, cache_dir=cache_dir) return False def process_dataset(url_metadata): df_metadata = get_metadata(url_metadata) num_missing_files = 0 for _, row in tqdm(df_metadata.iterrows(), total=len(df_metadata)): filename = f"{row['direction']}.{row['side']}.{os.path.basename(row['url'])}" num_missing_files += not get_audio(row['url'], filename) print(f"missing files: {num_missing_files}/{len(df_metadata)}") if __name__ == '__main__': process_dataset(url_metadata_s2s) process_dataset(url_metadata_s2t)