pcbm_survey / scripts /generate.py
Anon
Anonimize
83c227c
import argparse
import shutil
import pickle
import logging
from omegaconf import OmegaConf
import re
import random
import tarfile
from pydantic import BaseModel
from pathlib import Path
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def setup_parser():
parser = argparse.ArgumentParser(description="Generate a domain shift dataset")
parser.add_argument("--config", type=str, required=True, help="Path to config file")
parser.add_argument(
"--full_candidate_subsets_path",
type=str,
required=True,
help="Path to full-candidate-subsets.pkl",
)
parser.add_argument(
"--visual_genome_images_dir",
type=str,
required=True,
help="Path to VisualGenome images directory allImages/images",
)
parser.add_argument(
"--save_images",
action=argparse.BooleanOptionalAction,
required=True,
help="Save images to output directory",
)
return parser
def get_ms_domain_name(obj: str, context: str) -> str:
return f"{obj}({context})"
class DataSplits(BaseModel):
train: dict[str, list[str]]
test: dict[str, list[str]]
class MetashiftData(BaseModel):
selected_classes: list[str]
spurious_class: str
train_context: str
test_context: str
data_splits: DataSplits
class MetashiftFactory(object):
object_context_to_id: dict[str, list[int]]
visual_genome_images_dir: str
def __init__(
self,
full_candidate_subsets_path: str,
visual_genome_images_dir: str,
):
"""
full_candidate_subsets_path: Path to `full-candidate-subsets.pkl`
visual_genome_images_dir: Path to VisualGenome images directory `allImages/images`
"""
with open(full_candidate_subsets_path, "rb") as f:
self.object_context_to_id = pickle.load(f)
self.visual_genome_images_dir = visual_genome_images_dir
def _get_all_domains_with_object(self, obj: str) -> set[str]:
"""Get all domains with given object and any context.
Example:
- _get_all_domains_with_object(table) => [table(dog), table(cat), ...]
"""
return {
key
for key in self.object_context_to_id.keys()
if re.match(f"^{obj}\\(.*\\)$", key)
}
def _get_all_image_ids_with_object(self, obj: str) -> set[str]:
"""Get all image ids with given object and any context.
Example:
- get_all_image_ids_with_object(table) => [id~table(dog), id~table(cat), ...]
- where id~domain, means an image sampled from the given domain.
"""
domains = self._get_all_domains_with_object(obj)
return {_id for domain in domains for _id in self.object_context_to_id[domain]}
def _get_image_ids(
self, obj: str, context: str | None, exclude_context: str | None = None
) -> set[str]:
"""Get image ids for the domain `obj(context)`, optionally excluding a specific context."""
if exclude_context is not None:
all_ids = self._get_all_image_ids_with_object(obj)
exclude_ids = self.object_context_to_id[
get_ms_domain_name(obj, exclude_context)
]
return all_ids - exclude_ids
elif context is not None:
return self.object_context_to_id[get_ms_domain_name(obj, context)]
else:
return self._get_all_image_ids_with_object(obj)
def _get_class_domains(
self, domains_specification: dict[str, tuple[str, str | None]]
) -> dict[str, tuple[list[str], list[str]]]:
"""Get train and test image ids for the given domains specification."""
domain_ids = dict()
for cls, (train_context, test_context) in domains_specification.items():
if train_context == test_context:
# try alternative to remove the need of double context entries
train_ids = self._get_image_ids(cls, context=train_context)
test_ids = self._get_image_ids(
cls, context=None, exclude_context=test_context
)
domain_ids[cls] = [train_ids, test_ids]
logger.info(
f"{get_ms_domain_name(cls, train_context or '*')}: {len(train_ids)}"
" -> "
f"{get_ms_domain_name(cls, test_context or '*')}: {len(test_ids)}"
)
else:
train_ids = self._get_image_ids(cls, train_context)
test_ids = self._get_image_ids(cls, test_context)
domain_ids[cls] = [train_ids, test_ids]
logger.info(
f"{get_ms_domain_name(cls, train_context or '*')}: {len(train_ids)}"
" -> "
f"{get_ms_domain_name(cls, test_context or '*')}: {len(test_ids)}"
)
return domain_ids
def _sample_from_domains(
self,
seed: int,
domains: dict[str, tuple[list[str], list[str]]],
num_train_images_per_class: int,
num_test_images_per_class: int,
) -> dict[str, tuple[list[str], list[str]]]:
"""Return sampled domain data from the given full domains."""
# TODO: Do we have to ensure that there's no overlap between classes?
# For example, we could have repeated files in training for different classes.
sampled_domains = dict()
for cls, (train_ids, test_ids) in domains.items():
try:
sampled_train_ids = random.Random(seed).sample(
sorted(list(train_ids)), num_train_images_per_class
)
test_ids = test_ids - set(sampled_train_ids)
sampled_test_ids = random.Random(seed).sample(
sorted(list(test_ids)), num_test_images_per_class
)
except ValueError:
logger.error(
f"{cls}: {len(train_ids)} train images, {len(test_ids)} test images"
)
raise Exception("Not enough images for this class")
sampled_domains[cls] = (sampled_train_ids, sampled_test_ids)
return sampled_domains
def create(
self,
seed: int,
selected_classes: list[str],
spurious_class: str,
train_spurious_context: str,
test_spurious_context: str,
num_train_images_per_class: int,
num_test_images_per_class: int,
) -> MetashiftData:
"""Return (metadata, data) splits for the given data shift."""
domains_specification = {
**{cls: (None, None) for cls in selected_classes},
spurious_class: (
train_spurious_context,
test_spurious_context,
), # overwrite spurious_class
}
domains = self._get_class_domains(domains_specification)
sampled_domains = self._sample_from_domains(
seed=seed,
domains=domains,
num_train_images_per_class=num_train_images_per_class,
num_test_images_per_class=num_test_images_per_class,
)
data_splits = {"train": dict(), "test": dict()}
for cls, (train_ids, test_ids) in sampled_domains.items():
data_splits["train"][cls] = train_ids
data_splits["test"][cls] = test_ids
return MetashiftData(
selected_classes=selected_classes,
spurious_class=spurious_class,
train_context=train_spurious_context,
test_context=test_spurious_context,
data_splits=DataSplits(
train=data_splits["train"],
test=data_splits["test"],
),
)
def _get_unique_ids_from_info(self, info: dict[str, MetashiftData]):
"""Get unique ids from info struct."""
unique_ids = set()
for data in info.values():
for ids in data.data_splits.train.values():
unique_ids.update(ids)
for ids in data.data_splits.test.values():
unique_ids.update(ids)
return unique_ids
def _replace_ids_with_paths(
self, info: dict[str, MetashiftData], data_path: Path, out_path: Path
) -> MetashiftData:
"""Replace ids with paths."""
new_data = dict()
for dataset_name, data in info.items():
for cls, ids in data.data_splits.train.items():
data.data_splits.train[cls] = [
str(data_path / f"{_id}.jpg") for _id in ids
]
for cls, ids in data.data_splits.test.items():
data.data_splits.test[cls] = [
str(data_path / f"{_id}.jpg") for _id in ids
]
new_data[dataset_name] = data
return new_data
def save_all(self, info: dict[str, MetashiftData], save_images: bool):
"""Save all datasets to the given directory."""
out_path = Path(".")
data_path = out_path / "data"
data_path.mkdir(parents=True, exist_ok=True)
scenarios_path = out_path / "scenarios"
scenarios_path.mkdir(parents=True, exist_ok=True)
unique_ids = self._get_unique_ids_from_info(info)
data = self._replace_ids_with_paths(info, data_path, out_path)
for dataset_name, data in info.items():
with open(scenarios_path / f"{dataset_name}.json", "w") as f:
f.write(data.model_dump_json(indent=2))
if save_images:
with tarfile.open(data_path / "images.tar.gz", "w:gz") as tar:
for _id in unique_ids:
tar.add(
Path(self.visual_genome_images_dir) / f"{_id}.jpg",
)
def get_dataset_name(task_name: str, experiment_name: str) -> str:
return f"{task_name}_{experiment_name}"
def main():
parser = setup_parser()
args = parser.parse_args()
config = OmegaConf.load(args.config)
metashift_factory = MetashiftFactory(
full_candidate_subsets_path=args.full_candidate_subsets_path,
visual_genome_images_dir=args.visual_genome_images_dir,
)
info: dict[str, MetashiftData] = dict()
for task_config in config.tasks:
for experiment_config in task_config.experiments:
data = metashift_factory.create(
seed=task_config.seed,
selected_classes=task_config.selected_classes,
spurious_class=experiment_config.spurious_class,
train_spurious_context=experiment_config.train_context,
test_spurious_context=experiment_config.test_context,
num_test_images_per_class=task_config.num_images_per_class_test,
num_train_images_per_class=task_config.num_images_per_class_train,
)
dataset_name = get_dataset_name(task_config.name, experiment_config.name)
assert dataset_name not in info
info[dataset_name] = data
metashift_factory.save_all(info, save_images=args.save_images)
if __name__ == "__main__":
main()