import json import os import datasets import ast _DESCRIPTION = """\ The M-QALM Dataset Repository contains Multiple-Choice and Abstractive Questions for evaluating the performance of LLMs in the clinical and biomedical domain. """ _HOMEPAGE = "https://huggingface.co/datasets/anand-s/m_qalm" _LICENSE = "Apache License 2.0" # Define URLs for different parts of the dataset if applicable _URLS = { "train_normal_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/train_normal_mcqa.zip", "val_normal_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/val_normal_mcqa.zip", "test_normal_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/test_normal_mcqa.zip", "train_context_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/train_context_mcqa.zip", "val_context_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/val_context_mcqa.zip", "test_context_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/test_context_mcqa.zip", "train_aqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/train_aqa.zip", "val_aqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/val_aqa.zip", "test_aqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/test_aqa.zip", } class MQalm(datasets.GeneratorBasedBuilder): """Dataset for multiple choice questions from Test Repo.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="train_normal_mcqa", version=VERSION, description="Train set MCQA"), datasets.BuilderConfig(name="val_normal_mcqa", version=VERSION, description="Val set MCQA"), datasets.BuilderConfig(name="test_normal_mcqa", version=VERSION, description="Test set MCQA"), datasets.BuilderConfig(name="train_context_mcqa", version=VERSION, description="Train set context MCQA"), datasets.BuilderConfig(name="val_context_mcqa", version=VERSION, description="Val set context MCQA"), datasets.BuilderConfig(name="test_context_mcqa", version=VERSION, description="Test set context MCQA"), datasets.BuilderConfig(name="train_aqa", version=VERSION, description="Train set AQA"), datasets.BuilderConfig(name="val_aqa", version=VERSION, description="Val set AQA"), datasets.BuilderConfig(name="test_aqa", version=VERSION, description="Test set AQA"), ] def _info(self): features_dict = { "train_normal_mcqa": datasets.Features({ "prompt": datasets.Value("string"), "question": datasets.Value("string"), "options": datasets.Sequence(datasets.Value("string")), "answer": datasets.Value("string"), "num_options": datasets.Value("string"), "question_type": datasets.Value("string"), "dataset_name": datasets.Value("string"), }), "val_normal_mcqa": datasets.Features({ "prompt": datasets.Value("string"), "question": datasets.Value("string"), "options": datasets.Sequence(datasets.Value("string")), "answer": datasets.Value("string"), "num_options": datasets.Value("string"), "question_type": datasets.Value("string"), "dataset_name": datasets.Value("string"), "few_shot_prompt": datasets.Sequence(datasets.Features({ "question": datasets.Value("string"), "answer": datasets.Value("string"), "options": datasets.Sequence(datasets.Value("string")), })), }), "test_normal_mcqa": datasets.Features({ "prompt": datasets.Value("string"), "question": datasets.Value("string"), "options": datasets.Sequence(datasets.Value("string")), "answer": datasets.Value("string"), "num_options": datasets.Value("string"), "question_type": datasets.Value("string"), "dataset_name": datasets.Value("string"), "few_shot_prompt": datasets.Sequence(datasets.Features({ "question": datasets.Value("string"), "answer": datasets.Value("string"), "options": datasets.Sequence(datasets.Value("string")), })), }), "train_context_mcqa": datasets.Features({ "prompt": datasets.Value("string"), "question": datasets.Value("string"), "options": datasets.Sequence(datasets.Value("string")), "answer": datasets.Value("string"), "num_options": datasets.Value("string"), "question_type": datasets.Value("string"), "dataset_name": datasets.Value("string"), "context": datasets.Sequence(datasets.Value("string")) }), "val_context_mcqa": datasets.Features({ "prompt": datasets.Value("string"), "question": datasets.Value("string"), "options": datasets.Sequence(datasets.Value("string")), "answer": datasets.Value("string"), "num_options": datasets.Value("string"), "question_type": datasets.Value("string"), "dataset_name": datasets.Value("string"), "context": datasets.Sequence(datasets.Value("string")), "few_shot_prompt": [{ "question": datasets.Value("string"), "answer": datasets.Value("string"), "options": datasets.Sequence(datasets.Value("string")), "context": datasets.Sequence(datasets.Value("string")), }], }), "test_context_mcqa": datasets.Features({ "prompt": datasets.Value("string"), "question": datasets.Value("string"), "options": datasets.Sequence(datasets.Value("string")), "answer": datasets.Value("string"), "num_options": datasets.Value("string"), "question_type": datasets.Value("string"), "dataset_name": datasets.Value("string"), "context": datasets.Sequence(datasets.Value("string")), "few_shot_prompt": datasets.Sequence(datasets.Features({ "question": datasets.Value("string"), "answer": datasets.Value("string"), "options": datasets.Sequence(datasets.Value("string")), "context": datasets.Sequence(datasets.Value("string")), })), }), "train_aqa": datasets.Features({ "question": datasets.Value("string"), "answer": datasets.Value("string"), "prompt": datasets.Value("string"), "dataset_name": datasets.Value("string"), }), "val_aqa": datasets.Features({ "question": datasets.Value("string"), "answer": datasets.Sequence(datasets.Value("string")), "prompt": datasets.Value("string"), "dataset_name": datasets.Value("string"), }), "test_aqa": datasets.Features({ "question": datasets.Value("string"), "answer": datasets.Sequence(datasets.Value("string")), "prompt": datasets.Value("string"), "dataset_name": datasets.Value("string"), }), } return datasets.DatasetInfo( description=_DESCRIPTION, features=features_dict[self.config.name], homepage=_HOMEPAGE, license=_LICENSE ) def _split_generators(self, dl_manager): # Download and extract all the files in the directory data_dir = dl_manager.download_and_extract(_URLS[self.config.name]) return [ datasets.SplitGenerator( name=self.config.name, gen_kwargs={"directory": data_dir, "split": self.config.name}, ) ] def _generate_examples(self, directory, split): # Iterate over each file in the directory key_idx = 0 for filename in os.listdir(directory): filepath = os.path.join(directory, filename) if filepath.endswith(".jsonl"): with open(filepath, encoding="utf-8") as f: for key, row in enumerate(f): data = json.loads(row) if split == "train_normal_mcqa": yield key_idx, { "prompt": data["prompt"], "question": data["question"], "options": data["options"], "answer": data["answer"], "num_options": data["num_options"], "question_type": data["question_type"], "dataset_name": os.path.split(filepath)[-1].replace(".jsonl","") } key_idx +=1 elif split in ["val_normal_mcqa", "test_normal_mcqa"]: yield key_idx, { "prompt": data["prompt"], "question": data["question"], "options": data["options"], "answer": data["answer"], "num_options": data["num_options"], "question_type": data["question_type"], "dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""), "few_shot_prompt": [{ "question": item["question"], "answer": item["answer"], "options": item["options"], } for item in data["few_shot_prompt"]] } key_idx +=1 elif split == "train_context_mcqa": yield key_idx, { "prompt": data["prompt"], "question": data["question"], "options": data["options"], "answer": data["answer"], "num_options": data["num_options"], "context": data["context"], "question_type": data["question_type"], "dataset_name": os.path.split(filepath)[-1].replace(".jsonl","") } key_idx +=1 elif split in ["val_context_mcqa", "test_context_mcqa"]: yield key_idx, { "prompt": data["prompt"], "question": data["question"], "options": data["options"], "answer": data["answer"], "num_options": data["num_options"], "context": data["context"], "question_type": data["question_type"], "dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""), "few_shot_prompt": data["few_shot_prompt"]} key_idx +=1 elif split in ["train_aqa", "val_aqa", "test_aqa"]: yield key_idx, { "prompt": data["prompt"], "question": data["question"], "answer": data["answer"], "dataset_name": os.path.split(filepath)[-1].replace(".jsonl","") } key_idx +=1