# Copyright 2023 Natural Synthetics Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append("/") import os import argparse import torch from hotshot_xl.pipelines.hotshot_xl_pipeline import HotshotXLPipeline from hotshot_xl.pipelines.hotshot_xl_controlnet_pipeline import HotshotXLControlNetPipeline from hotshot_xl.models.unet import UNet3DConditionModel import torchvision.transforms as transforms from einops import rearrange from hotshot_xl.utils import save_as_gif, extract_gif_frames_from_midpoint, scale_aspect_fill from torch import autocast from diffusers import ControlNetModel from contextlib import contextmanager from diffusers.schedulers.scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler SCHEDULERS = { 'EulerAncestralDiscreteScheduler': EulerAncestralDiscreteScheduler, 'EulerDiscreteScheduler': EulerDiscreteScheduler, 'default': None, # add more here } def parse_args(): parser = argparse.ArgumentParser(description="Hotshot-XL inference") parser.add_argument("--pretrained_path", type=str, default="hotshotco/Hotshot-XL") parser.add_argument("--xformers", action="store_true") parser.add_argument("--spatial_unet_base", type=str) parser.add_argument("--lora", type=str) parser.add_argument("--output", type=str, required=True) parser.add_argument("--steps", type=int, default=30) parser.add_argument("--prompt", type=str, default="a bulldog in the captains chair of a spaceship, hd, high quality") parser.add_argument("--negative_prompt", type=str, default="blurry") parser.add_argument("--seed", type=int, default=455) parser.add_argument("--width", type=int, default=672) parser.add_argument("--height", type=int, default=384) parser.add_argument("--target_width", type=int, default=512) parser.add_argument("--target_height", type=int, default=512) parser.add_argument("--og_width", type=int, default=1920) parser.add_argument("--og_height", type=int, default=1080) parser.add_argument("--video_length", type=int, default=8) parser.add_argument("--video_duration", type=int, default=1000) parser.add_argument('--scheduler', type=str, default='EulerAncestralDiscreteScheduler', help='Name of the scheduler to use') parser.add_argument("--control_type", type=str, default=None, choices=["depth", "canny"]) parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.7) parser.add_argument("--control_guidance_start", type=float, default=0.0) parser.add_argument("--control_guidance_end", type=float, default=1.0) parser.add_argument("--gif", type=str, default=None) parser.add_argument("--precision", type=str, default='f16', choices=[ 'f16', 'f32', 'bf16' ]) parser.add_argument("--autocast", type=str, default=None, choices=[ 'f16', 'bf16' ]) return parser.parse_args() to_pil = transforms.ToPILImage() def to_pil_images(video_frames: torch.Tensor, output_type='pil'): video_frames = rearrange(video_frames, "b c f w h -> b f c w h") bsz = video_frames.shape[0] images = [] for i in range(bsz): video = video_frames[i] for j in range(video.shape[0]): if output_type == "pil": images.append(to_pil(video[j])) else: images.append(video[j]) return images @contextmanager def maybe_auto_cast(data_type): if data_type: with autocast("cuda", dtype=data_type): yield else: yield def main(): args = parse_args() if args.control_type and not args.gif: raise ValueError("Controlnet specified but you didn't specify a gif!") if args.gif and not args.control_type: print("warning: gif was specified but no control type was specified. gif will be ignored.") output_dir = os.path.dirname(args.output) if output_dir: os.makedirs(output_dir, exist_ok=True) device = torch.device("cuda") control_net_model_pretrained_path = None if args.control_type: control_type_to_model_map = { "canny": "diffusers/controlnet-canny-sdxl-1.0", "depth": "diffusers/controlnet-depth-sdxl-1.0", } control_net_model_pretrained_path = control_type_to_model_map[args.control_type] data_type = torch.float32 if args.precision == 'f16': data_type = torch.half elif args.precision == 'f32': data_type = torch.float32 elif args.precision == 'bf16': data_type = torch.bfloat16 pipe_line_args = { "torch_dtype": data_type, "use_safetensors": True } PipelineClass = HotshotXLPipeline if control_net_model_pretrained_path: PipelineClass = HotshotXLControlNetPipeline pipe_line_args['controlnet'] = \ ControlNetModel.from_pretrained(control_net_model_pretrained_path, torch_dtype=data_type) if args.spatial_unet_base: unet_3d = UNet3DConditionModel.from_pretrained(args.pretrained_path, subfolder="unet").to(device) unet = UNet3DConditionModel.from_pretrained_spatial(args.spatial_unet_base).to(device) temporal_layers = {} unet_3d_sd = unet_3d.state_dict() for k, v in unet_3d_sd.items(): if 'temporal' in k: temporal_layers[k] = v unet.load_state_dict(temporal_layers, strict=False) pipe_line_args['unet'] = unet del unet_3d_sd del unet_3d del temporal_layers pipe = PipelineClass.from_pretrained(args.pretrained_path, **pipe_line_args).to(device) if args.lora: pipe.load_lora_weights(args.lora) SchedulerClass = SCHEDULERS[args.scheduler] if SchedulerClass is not None: pipe.scheduler = SchedulerClass.from_config(pipe.scheduler.config) if args.xformers: pipe.enable_xformers_memory_efficient_attention() generator = torch.Generator().manual_seed(args.seed) if args.seed else None autocast_type = None if args.autocast == 'f16': autocast_type = torch.half elif args.autocast == 'bf16': autocast_type = torch.bfloat16 kwargs = {} if args.gif and type(pipe) is HotshotXLControlNetPipeline: kwargs['control_images'] = [ scale_aspect_fill(img, args.width, args.height).convert("RGB") \ for img in extract_gif_frames_from_midpoint(args.gif, fps=args.video_length, target_duration=args.video_duration) ] kwargs['controlnet_conditioning_scale'] = args.controlnet_conditioning_scale kwargs['control_guidance_start'] = args.control_guidance_start kwargs['control_guidance_end'] = args.control_guidance_end with maybe_auto_cast(autocast_type): images = pipe(args.prompt, negative_prompt=args.negative_prompt, width=args.width, height=args.height, original_size=(args.og_width, args.og_height), target_size=(args.target_width, args.target_height), num_inference_steps=args.steps, video_length=args.video_length, generator=generator, output_type="tensor", **kwargs).videos images = to_pil_images(images, output_type="pil") if args.video_length > 1: save_as_gif(images, args.output, duration=args.video_duration // args.video_length) else: images[0].save(args.output, format='JPEG', quality=95) if __name__ == "__main__": main()