|
import math |
|
|
|
import torch |
|
from torch import autograd |
|
from torch.nn import functional as F |
|
import numpy as np |
|
|
|
from torch import distributed as dist |
|
|
|
from models.stylegan2.op2 import upfirdn2d |
|
|
|
def reduce_sum(tensor): |
|
if not dist.is_available(): |
|
return tensor |
|
|
|
if not dist.is_initialized(): |
|
return tensor |
|
|
|
tensor = tensor.clone() |
|
dist.all_reduce(tensor, op=dist.ReduceOp.SUM) |
|
|
|
return tensor |
|
|
|
|
|
class AdaptiveAugment: |
|
def __init__(self, ada_aug_target, ada_aug_len, update_every, device): |
|
self.ada_aug_target = ada_aug_target |
|
self.ada_aug_len = ada_aug_len |
|
self.update_every = update_every |
|
|
|
self.ada_update = 0 |
|
self.ada_aug_buf = torch.tensor([0.0, 0.0], device=device) |
|
self.r_t_stat = 0 |
|
self.ada_aug_p = 0 |
|
|
|
@torch.no_grad() |
|
def tune(self, real_pred): |
|
self.ada_aug_buf += torch.tensor( |
|
(torch.sign(real_pred).sum().item(), real_pred.shape[0]), |
|
device=real_pred.device, |
|
) |
|
self.ada_update += 1 |
|
|
|
if self.ada_update % self.update_every == 0: |
|
self.ada_aug_buf = reduce_sum(self.ada_aug_buf) |
|
pred_signs, n_pred = self.ada_aug_buf.tolist() |
|
|
|
self.r_t_stat = pred_signs / n_pred |
|
|
|
if self.r_t_stat > self.ada_aug_target: |
|
sign = 1 |
|
|
|
else: |
|
sign = -1 |
|
|
|
self.ada_aug_p += sign * n_pred / self.ada_aug_len |
|
self.ada_aug_p = min(1, max(0, self.ada_aug_p)) |
|
self.ada_aug_buf.mul_(0) |
|
self.ada_update = 0 |
|
|
|
return self.ada_aug_p |
|
|
|
|
|
SYM6 = ( |
|
0.015404109327027373, |
|
0.0034907120842174702, |
|
-0.11799011114819057, |
|
-0.048311742585633, |
|
0.4910559419267466, |
|
0.787641141030194, |
|
0.3379294217276218, |
|
-0.07263752278646252, |
|
-0.021060292512300564, |
|
0.04472490177066578, |
|
0.0017677118642428036, |
|
-0.007800708325034148, |
|
) |
|
|
|
|
|
def translate_mat(t_x, t_y, device="cpu"): |
|
batch = t_x.shape[0] |
|
|
|
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1) |
|
translate = torch.stack((t_x, t_y), 1) |
|
mat[:, :2, 2] = translate |
|
|
|
return mat |
|
|
|
|
|
def rotate_mat(theta, device="cpu"): |
|
batch = theta.shape[0] |
|
|
|
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1) |
|
sin_t = torch.sin(theta) |
|
cos_t = torch.cos(theta) |
|
rot = torch.stack((cos_t, -sin_t, sin_t, cos_t), 1).view(batch, 2, 2) |
|
mat[:, :2, :2] = rot |
|
|
|
return mat |
|
|
|
|
|
def scale_mat(s_x, s_y, device="cpu"): |
|
batch = s_x.shape[0] |
|
|
|
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1) |
|
mat[:, 0, 0] = s_x |
|
mat[:, 1, 1] = s_y |
|
|
|
return mat |
|
|
|
|
|
def translate3d_mat(t_x, t_y, t_z): |
|
batch = t_x.shape[0] |
|
|
|
mat = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1) |
|
translate = torch.stack((t_x, t_y, t_z), 1) |
|
mat[:, :3, 3] = translate |
|
|
|
return mat |
|
|
|
|
|
def rotate3d_mat(axis, theta): |
|
batch = theta.shape[0] |
|
|
|
u_x, u_y, u_z = axis |
|
|
|
eye = torch.eye(3).unsqueeze(0) |
|
cross = torch.tensor([(0, -u_z, u_y), (u_z, 0, -u_x), (-u_y, u_x, 0)]).unsqueeze(0) |
|
outer = torch.tensor(axis) |
|
outer = (outer.unsqueeze(1) * outer).unsqueeze(0) |
|
|
|
sin_t = torch.sin(theta).view(-1, 1, 1) |
|
cos_t = torch.cos(theta).view(-1, 1, 1) |
|
|
|
rot = cos_t * eye + sin_t * cross + (1 - cos_t) * outer |
|
|
|
eye_4 = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1) |
|
eye_4[:, :3, :3] = rot |
|
|
|
return eye_4 |
|
|
|
|
|
def scale3d_mat(s_x, s_y, s_z): |
|
batch = s_x.shape[0] |
|
|
|
mat = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1) |
|
mat[:, 0, 0] = s_x |
|
mat[:, 1, 1] = s_y |
|
mat[:, 2, 2] = s_z |
|
|
|
return mat |
|
|
|
|
|
def luma_flip_mat(axis, i): |
|
batch = i.shape[0] |
|
|
|
eye = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1) |
|
axis = torch.tensor(axis + (0,)) |
|
flip = 2 * torch.ger(axis, axis) * i.view(-1, 1, 1) |
|
|
|
return eye - flip |
|
|
|
|
|
def saturation_mat(axis, i): |
|
batch = i.shape[0] |
|
|
|
eye = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1) |
|
axis = torch.tensor(axis + (0,)) |
|
axis = torch.ger(axis, axis) |
|
saturate = axis + (eye - axis) * i.view(-1, 1, 1) |
|
|
|
return saturate |
|
|
|
|
|
def lognormal_sample(size, mean=0, std=1, device="cpu"): |
|
return torch.empty(size, device=device).log_normal_(mean=mean, std=std) |
|
|
|
|
|
def category_sample(size, categories, device="cpu"): |
|
category = torch.tensor(categories, device=device) |
|
sample = torch.randint(high=len(categories), size=(size,), device=device) |
|
|
|
return category[sample] |
|
|
|
|
|
def uniform_sample(size, low, high, device="cpu"): |
|
return torch.empty(size, device=device).uniform_(low, high) |
|
|
|
|
|
def normal_sample(size, mean=0, std=1, device="cpu"): |
|
return torch.empty(size, device=device).normal_(mean, std) |
|
|
|
|
|
def bernoulli_sample(size, p, device="cpu"): |
|
return torch.empty(size, device=device).bernoulli_(p) |
|
|
|
|
|
def random_mat_apply(p, transform, prev, eye, device="cpu"): |
|
size = transform.shape[0] |
|
select = bernoulli_sample(size, p, device=device).view(size, 1, 1) |
|
select_transform = select * transform + (1 - select) * eye |
|
|
|
return select_transform @ prev |
|
|
|
|
|
def sample_affine(p, size, height, width, device="cpu"): |
|
G = torch.eye(3, device=device).unsqueeze(0).repeat(size, 1, 1) |
|
eye = G |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
param = uniform_sample(size, -0.125, 0.125) |
|
param_height = torch.round(param * height) / height |
|
param_width = torch.round(param * width) / width |
|
Gc = translate_mat(param_width, param_height, device=device) |
|
G = random_mat_apply(p, Gc, G, eye, device=device) |
|
|
|
|
|
|
|
param = lognormal_sample(size, std=0.1 * math.log(2)) |
|
Gc = scale_mat(param, param, device=device) |
|
G = random_mat_apply(p, Gc, G, eye, device=device) |
|
|
|
|
|
p_rot = 1 - math.sqrt(1 - p) |
|
|
|
|
|
param = uniform_sample(size, -math.pi * 0.25, math.pi * 0.25) |
|
Gc = rotate_mat(-param, device=device) |
|
G = random_mat_apply(p_rot, Gc, G, eye, device=device) |
|
|
|
|
|
|
|
param = lognormal_sample(size, std=0.1 * math.log(2)) |
|
Gc = scale_mat(param, 1 / param, device=device) |
|
G = random_mat_apply(p, Gc, G, eye, device=device) |
|
|
|
|
|
|
|
param = uniform_sample(size, -math.pi * 0.25, math.pi * 0.25) |
|
Gc = rotate_mat(-param, device=device) |
|
G = random_mat_apply(p_rot, Gc, G, eye, device=device) |
|
|
|
|
|
|
|
param = normal_sample(size, std=0.125) |
|
Gc = translate_mat(param, param, device=device) |
|
G = random_mat_apply(p, Gc, G, eye, device=device) |
|
|
|
|
|
return G |
|
|
|
|
|
def sample_color(p, size): |
|
C = torch.eye(4).unsqueeze(0).repeat(size, 1, 1) |
|
eye = C |
|
axis_val = 1 / math.sqrt(3) |
|
axis = (axis_val, axis_val, axis_val) |
|
|
|
|
|
param = normal_sample(size, std=0.2) |
|
Cc = translate3d_mat(param, param, param) |
|
C = random_mat_apply(p, Cc, C, eye) |
|
|
|
|
|
param = lognormal_sample(size, std=0.5 * math.log(2)) |
|
Cc = scale3d_mat(param, param, param) |
|
C = random_mat_apply(p, Cc, C, eye) |
|
|
|
|
|
param = category_sample(size, (0, 1)) |
|
Cc = luma_flip_mat(axis, param) |
|
C = random_mat_apply(p, Cc, C, eye) |
|
|
|
|
|
param = uniform_sample(size, -math.pi, math.pi) |
|
Cc = rotate3d_mat(axis, param) |
|
C = random_mat_apply(p, Cc, C, eye) |
|
|
|
|
|
param = lognormal_sample(size, std=1 * math.log(2)) |
|
Cc = saturation_mat(axis, param) |
|
C = random_mat_apply(p, Cc, C, eye) |
|
|
|
return C |
|
|
|
|
|
def make_grid(shape, x0, x1, y0, y1, device): |
|
n, c, h, w = shape |
|
grid = torch.empty(n, h, w, 3, device=device) |
|
grid[:, :, :, 0] = torch.linspace(x0, x1, w, device=device) |
|
grid[:, :, :, 1] = torch.linspace(y0, y1, h, device=device).unsqueeze(-1) |
|
grid[:, :, :, 2] = 1 |
|
|
|
return grid |
|
|
|
|
|
def affine_grid(grid, mat): |
|
n, h, w, _ = grid.shape |
|
return (grid.view(n, h * w, 3) @ mat.transpose(1, 2)).view(n, h, w, 2) |
|
|
|
|
|
def get_padding(G, height, width, kernel_size): |
|
device = G.device |
|
|
|
cx = (width - 1) / 2 |
|
cy = (height - 1) / 2 |
|
cp = torch.tensor( |
|
[(-cx, -cy, 1), (cx, -cy, 1), (cx, cy, 1), (-cx, cy, 1)], device=device |
|
) |
|
cp = G @ cp.T |
|
|
|
pad_k = kernel_size // 4 |
|
|
|
pad = cp[:, :2, :].permute(1, 0, 2).flatten(1) |
|
pad = torch.cat((-pad, pad)).max(1).values |
|
pad = pad + torch.tensor([pad_k * 2 - cx, pad_k * 2 - cy] * 2, device=device) |
|
pad = pad.max(torch.tensor([0, 0] * 2, device=device)) |
|
pad = pad.min(torch.tensor([width - 1, height - 1] * 2, device=device)) |
|
|
|
pad_x1, pad_y1, pad_x2, pad_y2 = pad.ceil().to(torch.int32) |
|
|
|
return pad_x1, pad_x2, pad_y1, pad_y2 |
|
|
|
|
|
def try_sample_affine_and_pad(img, p, kernel_size, G=None): |
|
batch, _, height, width = img.shape |
|
|
|
G_try = G |
|
|
|
if G is None: |
|
G_try = torch.inverse(sample_affine(p, batch, height, width)) |
|
|
|
pad_x1, pad_x2, pad_y1, pad_y2 = get_padding(G_try, height, width, kernel_size) |
|
|
|
img_pad = F.pad(img, (pad_x1, pad_x2, pad_y1, pad_y2), mode="reflect") |
|
|
|
return img_pad, G_try, (pad_x1, pad_x2, pad_y1, pad_y2) |
|
|
|
|
|
class GridSampleForward(autograd.Function): |
|
@staticmethod |
|
def forward(ctx, input, grid): |
|
out = F.grid_sample( |
|
input, grid, mode="bilinear", padding_mode="zeros", align_corners=False |
|
) |
|
ctx.save_for_backward(input, grid) |
|
|
|
return out |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
input, grid = ctx.saved_tensors |
|
grad_input, grad_grid = GridSampleBackward.apply(grad_output, input, grid) |
|
|
|
return grad_input, grad_grid |
|
|
|
|
|
class GridSampleBackward(autograd.Function): |
|
@staticmethod |
|
def forward(ctx, grad_output, input, grid): |
|
op = torch._C._jit_get_operation("aten::grid_sampler_2d_backward") |
|
grad_input, grad_grid = op(grad_output, input, grid, 0, 0, False) |
|
ctx.save_for_backward(grid) |
|
|
|
return grad_input, grad_grid |
|
|
|
@staticmethod |
|
def backward(ctx, grad_grad_input, grad_grad_grid): |
|
grid, = ctx.saved_tensors |
|
grad_grad_output = None |
|
|
|
if ctx.needs_input_grad[0]: |
|
grad_grad_output = GridSampleForward.apply(grad_grad_input, grid) |
|
|
|
return grad_grad_output, None, None |
|
|
|
|
|
grid_sample = GridSampleForward.apply |
|
|
|
|
|
def scale_mat_single(s_x, s_y): |
|
return torch.tensor(((s_x, 0, 0), (0, s_y, 0), (0, 0, 1)), dtype=torch.float32) |
|
|
|
|
|
def translate_mat_single(t_x, t_y): |
|
return torch.tensor(((1, 0, t_x), (0, 1, t_y), (0, 0, 1)), dtype=torch.float32) |
|
|
|
|
|
def random_apply_affine(img, p, G=None, antialiasing_kernel=SYM6): |
|
kernel = antialiasing_kernel |
|
len_k = len(kernel) |
|
|
|
kernel = torch.as_tensor(kernel).to(img) |
|
|
|
kernel_flip = torch.flip(kernel, (0,)) |
|
|
|
img_pad, G, (pad_x1, pad_x2, pad_y1, pad_y2) = try_sample_affine_and_pad( |
|
img, p, len_k, G |
|
) |
|
|
|
G_inv = ( |
|
translate_mat_single((pad_x1 - pad_x2).item() / 2, (pad_y1 - pad_y2).item() / 2) |
|
@ G |
|
) |
|
up_pad = ( |
|
(len_k + 2 - 1) // 2, |
|
(len_k - 2) // 2, |
|
(len_k + 2 - 1) // 2, |
|
(len_k - 2) // 2, |
|
) |
|
img_2x = upfirdn2d(img_pad, kernel.unsqueeze(0), up=(2, 1), pad=(*up_pad[:2], 0, 0)) |
|
img_2x = upfirdn2d(img_2x, kernel.unsqueeze(1), up=(1, 2), pad=(0, 0, *up_pad[2:])) |
|
G_inv = scale_mat_single(2, 2) @ G_inv @ scale_mat_single(1 / 2, 1 / 2) |
|
G_inv = translate_mat_single(-0.5, -0.5) @ G_inv @ translate_mat_single(0.5, 0.5) |
|
batch_size, channel, height, width = img.shape |
|
pad_k = len_k // 4 |
|
shape = (batch_size, channel, (height + pad_k * 2) * 2, (width + pad_k * 2) * 2) |
|
G_inv = ( |
|
scale_mat_single(2 / img_2x.shape[3], 2 / img_2x.shape[2]) |
|
@ G_inv |
|
@ scale_mat_single(1 / (2 / shape[3]), 1 / (2 / shape[2])) |
|
) |
|
grid = F.affine_grid(G_inv[:, :2, :].to(img_2x), shape, align_corners=False) |
|
img_affine = grid_sample(img_2x, grid) |
|
d_p = -pad_k * 2 |
|
down_pad = ( |
|
d_p + (len_k - 2 + 1) // 2, |
|
d_p + (len_k - 2) // 2, |
|
d_p + (len_k - 2 + 1) // 2, |
|
d_p + (len_k - 2) // 2, |
|
) |
|
img_down = upfirdn2d( |
|
img_affine, kernel_flip.unsqueeze(0), down=(2, 1), pad=(*down_pad[:2], 0, 0) |
|
) |
|
img_down = upfirdn2d( |
|
img_down, kernel_flip.unsqueeze(1), down=(1, 2), pad=(0, 0, *down_pad[2:]) |
|
) |
|
|
|
return img_down, G |
|
|
|
|
|
def apply_color(img, mat): |
|
batch = img.shape[0] |
|
img = img.permute(0, 2, 3, 1) |
|
mat_mul = mat[:, :3, :3].transpose(1, 2).view(batch, 1, 3, 3) |
|
mat_add = mat[:, :3, 3].view(batch, 1, 1, 3) |
|
img = img @ mat_mul + mat_add |
|
img = img.permute(0, 3, 1, 2) |
|
|
|
return img |
|
|
|
|
|
def random_apply_color(img, p, C=None): |
|
if C is None: |
|
C = sample_color(p, img.shape[0]) |
|
|
|
img = apply_color(img, C.to(img)) |
|
|
|
return img, C |
|
|
|
|
|
def augment(img, p, transform_matrix=(None, None)): |
|
img, G = random_apply_affine(img, p, transform_matrix[0]) |
|
img, C = random_apply_color(img, p, transform_matrix[1]) |
|
|
|
return img, (G, C) |
|
|