system HF staff commited on
Commit
0e7df9b
·
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
break_data.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """TODO(break_data): Add a description here."""
2
+
3
+ from __future__ import absolute_import, division, print_function
4
+
5
+ import csv
6
+ import json
7
+ import os
8
+ import textwrap
9
+
10
+ import six
11
+
12
+ import datasets
13
+
14
+
15
+ # TODO(break): BibTeX citation
16
+ _CITATION = """\
17
+ @article{Wolfson2020Break,
18
+ title={Break It Down: A Question Understanding Benchmark},
19
+ author={Wolfson, Tomer and Geva, Mor and Gupta, Ankit and Gardner, Matt and Goldberg, Yoav and Deutch, Daniel and Berant, Jonathan},
20
+ journal={Transactions of the Association for Computational Linguistics},
21
+ year={2020},
22
+ }
23
+ """
24
+
25
+ # TODO(break):
26
+ _DESCRIPTION = """\
27
+ Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations
28
+ (QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases.
29
+ This repository contains the Break dataset along with information on the exact data format.
30
+ """
31
+ _URL = "https://github.com/allenai/Break/raw/master/break_dataset/Break-dataset.zip"
32
+
33
+
34
+ class BreakDataConfig(datasets.BuilderConfig):
35
+
36
+ """BuilderConfig for Break"""
37
+
38
+ def __init__(self, text_features, lexicon_tokens, **kwargs):
39
+ """
40
+
41
+ Args:
42
+ text_features: `dict[string, string]`, map from the name of the feature
43
+ dict for each text field to the name of the column in the tsv file
44
+ lexicon_tokens: to define if we want to load the lexicon_tokens files or not
45
+ **kwargs: keyword arguments forwarded to super.
46
+ """
47
+ super(BreakDataConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
48
+ self.text_features = text_features
49
+ self.lexicon_tokens = lexicon_tokens
50
+
51
+
52
+ class BreakData(datasets.GeneratorBasedBuilder):
53
+ """TODO(break_data): Short description of my dataset."""
54
+
55
+ # TODO(break_data): Set up version.
56
+ VERSION = datasets.Version("0.1.0")
57
+ BUILDER_CONFIGS = [
58
+ BreakDataConfig(
59
+ name="QDMR-high-level",
60
+ description=textwrap.dedent(
61
+ """
62
+ Contains questions annotated with the high-level variant of QDMR. These decomposition are exclusive to Reading
63
+ Comprehension tasks (Section 2). lexicon_tokens files are also provided."""
64
+ ),
65
+ text_features={
66
+ "question_id": "question_id",
67
+ "question_text": "question_text",
68
+ "decomposition": "decomposition",
69
+ "operators": "operators",
70
+ "split": "split",
71
+ },
72
+ lexicon_tokens=False,
73
+ ),
74
+ BreakDataConfig(
75
+ name="QDMR-high-level-lexicon",
76
+ description=textwrap.dedent(
77
+ """
78
+ Contains questions annotated with the high-level variant of QDMR. These decomposition are exclusive to Reading
79
+ Comprehension tasks (Section 2). lexicon_tokens files are also provided."""
80
+ ),
81
+ text_features={
82
+ "source": "source",
83
+ "allowed_tokens": "allowed_tokens",
84
+ },
85
+ lexicon_tokens=True,
86
+ ),
87
+ BreakDataConfig(
88
+ name="QDMR",
89
+ description=textwrap.dedent(
90
+ """
91
+ Contains questions over text, images and databases annotated with their Question Decomposition Meaning
92
+ Representation. In addition to the train, dev and (hidden) test sets we provide lexicon_tokens files. For
93
+ each question, the lexicon file contains the set of valid tokens that could potentially appear in its
94
+ decomposition """
95
+ ),
96
+ text_features={
97
+ "question_id": "question_id",
98
+ "question_text": "question_text",
99
+ "decomposition": "decomposition",
100
+ "operators": "operators",
101
+ "split": "split",
102
+ },
103
+ lexicon_tokens=False,
104
+ ),
105
+ BreakDataConfig(
106
+ name="QDMR-lexicon",
107
+ description=textwrap.dedent(
108
+ """
109
+ Contains questions over text, images and databases annotated with their Question Decomposition Meaning
110
+ Representation. In addition to the train, dev and (hidden) test sets we provide lexicon_tokens files. For
111
+ each question, the lexicon file contains the set of valid tokens that could potentially appear in its
112
+ decomposition """
113
+ ),
114
+ text_features={
115
+ "source": "source",
116
+ "allowed_tokens": "allowed_tokens",
117
+ },
118
+ lexicon_tokens=True,
119
+ ),
120
+ BreakDataConfig(
121
+ name="logical-forms",
122
+ description=textwrap.dedent(
123
+ """
124
+ Contains questions and QDMRs annotated with full logical-forms of QDMR operators + arguments. Full logical-forms
125
+ were inferred by the annotation-consistency algorithm described in """
126
+ ),
127
+ lexicon_tokens=False,
128
+ text_features={
129
+ "question_id": "question_id",
130
+ "question_text": "question_text",
131
+ "decomposition": "decomposition",
132
+ "operators": "operators",
133
+ "split": "split",
134
+ "program": "program",
135
+ },
136
+ ),
137
+ ]
138
+
139
+ def _info(self):
140
+ # TODO(break_data): Specifies the datasets.DatasetInfo object
141
+ features = {text_feature: datasets.Value("string") for text_feature in six.iterkeys(self.config.text_features)}
142
+ return datasets.DatasetInfo(
143
+ # This is the description that will appear on the datasets page.
144
+ description=_DESCRIPTION,
145
+ # datasets.features.FeatureConnectors
146
+ features=datasets.Features(
147
+ features
148
+ # These are the features of your dataset like images, labels ...
149
+ ),
150
+ # If there's a common (input, target) tuple from the features,
151
+ # specify them here. They'll be used if as_supervised=True in
152
+ # builder.as_dataset.
153
+ supervised_keys=None,
154
+ # Homepage of the dataset for documentation
155
+ homepage="https://github.com/allenai/Break",
156
+ citation=_CITATION,
157
+ )
158
+ # if
159
+
160
+ def _split_generators(self, dl_manager):
161
+ """Returns SplitGenerators."""
162
+ # TODO(break_data): Downloads the data and defines the splits
163
+ # dl_manager is a datasets.download.DownloadManager that can be used to
164
+ # download and extract URLs
165
+ dl_dir = dl_manager.download_and_extract(_URL)
166
+ data_dir = os.path.join(dl_dir, "Break-dataset")
167
+ qdmr_high_level = os.path.join(data_dir, "QDMR-high-level")
168
+ qdmr = os.path.join(data_dir, "QDMR")
169
+ logical = os.path.join(data_dir, "logical-forms")
170
+ if self.config.name == "QDMR" or self.config.name == "QDMR-lexicon":
171
+ return [
172
+ datasets.SplitGenerator(
173
+ name=datasets.Split.TRAIN,
174
+ # These kwargs will be passed to _generate_examples
175
+ gen_kwargs={
176
+ "filepath": os.path.join(qdmr, "train.csv")
177
+ if not self.config.lexicon_tokens
178
+ else os.path.join(qdmr, "train_lexicon_tokens.json")
179
+ },
180
+ ),
181
+ datasets.SplitGenerator(
182
+ name=datasets.Split.VALIDATION,
183
+ # These kwargs will be passed to _generate_examples
184
+ gen_kwargs={
185
+ "filepath": os.path.join(qdmr, "dev.csv")
186
+ if not self.config.lexicon_tokens
187
+ else os.path.join(qdmr, "dev_lexicon_tokens.json")
188
+ },
189
+ ),
190
+ datasets.SplitGenerator(
191
+ name=datasets.Split.TEST,
192
+ # These kwargs will be passed to _generate_examples
193
+ gen_kwargs={
194
+ "filepath": os.path.join(qdmr, "test.csv")
195
+ if not self.config.lexicon_tokens
196
+ else os.path.join(qdmr, "test_lexicon_tokens.json")
197
+ },
198
+ ),
199
+ ]
200
+ elif self.config.name == "QDMR-high-level" or self.config.name == "QDMR-high-level-lexicon":
201
+ return [
202
+ datasets.SplitGenerator(
203
+ name=datasets.Split.TRAIN,
204
+ # These kwargs will be passed to _generate_examples
205
+ gen_kwargs={
206
+ "filepath": os.path.join(qdmr_high_level, "train.csv")
207
+ if not self.config.lexicon_tokens
208
+ else os.path.join(qdmr_high_level, "train_lexicon_tokens.json")
209
+ },
210
+ ),
211
+ datasets.SplitGenerator(
212
+ name=datasets.Split.VALIDATION,
213
+ # These kwargs will be passed to _generate_examples
214
+ gen_kwargs={
215
+ "filepath": os.path.join(qdmr_high_level, "dev.csv")
216
+ if not self.config.lexicon_tokens
217
+ else os.path.join(qdmr_high_level, "dev_lexicon_tokens.json")
218
+ },
219
+ ),
220
+ datasets.SplitGenerator(
221
+ name=datasets.Split.TEST,
222
+ # These kwargs will be passed to _generate_examples
223
+ gen_kwargs={
224
+ "filepath": os.path.join(qdmr_high_level, "test.csv")
225
+ if not self.config.lexicon_tokens
226
+ else os.path.join(qdmr_high_level, "test_lexicon_tokens.json")
227
+ },
228
+ ),
229
+ ]
230
+ elif self.config.name == "logical-forms":
231
+ return [
232
+ datasets.SplitGenerator(
233
+ name=datasets.Split.TRAIN,
234
+ # These kwargs will be passed to _generate_examples
235
+ gen_kwargs={"filepath": os.path.join(logical, "train.csv")},
236
+ ),
237
+ datasets.SplitGenerator(
238
+ name=datasets.Split.VALIDATION,
239
+ # These kwargs will be passed to _generate_examples
240
+ gen_kwargs={"filepath": os.path.join(logical, "dev.csv")},
241
+ ),
242
+ datasets.SplitGenerator(
243
+ name=datasets.Split.TEST,
244
+ # These kwargs will be passed to _generate_examples
245
+ gen_kwargs={"filepath": os.path.join(logical, "test.csv")},
246
+ ),
247
+ ]
248
+
249
+ def _generate_examples(self, filepath):
250
+ """Yields examples."""
251
+ # TODO(break_data): Yields (key, example) tuples from the dataset
252
+ with open(filepath, encoding="utf-8") as f:
253
+ if (
254
+ self.config.name == "QDMR-high-level"
255
+ or self.config.name == "QDMR"
256
+ or self.config.name == "logical-forms"
257
+ ):
258
+ data = csv.DictReader(f)
259
+ for id_, row in enumerate(data):
260
+ yield id_, row
261
+ elif self.config.name == "QDMR-high-level-lexicon" or self.config.name == "QDMR-lexicon":
262
+ for id_, row in enumerate(f):
263
+ data = json.loads(row)
264
+ yield id_, data
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"QDMR-high-level": {"description": "Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations\n(QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases. \nThis repository contains the Break dataset along with information on the exact data format.\n", "citation": "@article{Wolfson2020Break,\n title={Break It Down: A Question Understanding Benchmark},\n author={Wolfson, Tomer and Geva, Mor and Gupta, Ankit and Gardner, Matt and Goldberg, Yoav and Deutch, Daniel and Berant, Jonathan},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n}\n", "homepage": "https://github.com/allenai/Break", "license": "", "features": {"question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_text": {"dtype": "string", "id": null, "_type": "Value"}, "decomposition": {"dtype": "string", "id": null, "_type": "Value"}, "operators": {"dtype": "string", "id": null, "_type": "Value"}, "split": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "break_data", "config_name": "QDMR-high-level", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 482339, "num_examples": 3195, "dataset_name": "break_data"}, "train": {"name": "train", "num_bytes": 5148086, "num_examples": 17503, "dataset_name": "break_data"}, "validation": {"name": "validation", "num_bytes": 914780, "num_examples": 3130, "dataset_name": "break_data"}}, "download_checksums": {"https://github.com/allenai/Break/raw/master/break_dataset/Break-dataset.zip": {"num_bytes": 15971078, "checksum": "37efea4fa1b7774d077ff0452e5e199cecba8216c12da76781010f189d1cf259"}}, "download_size": 15971078, "dataset_size": 6545205, "size_in_bytes": 22516283}, "QDMR-high-level-lexicon": {"description": "Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations\n(QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases. \nThis repository contains the Break dataset along with information on the exact data format.\n", "citation": "@article{Wolfson2020Break,\n title={Break It Down: A Question Understanding Benchmark},\n author={Wolfson, Tomer and Geva, Mor and Gupta, Ankit and Gardner, Matt and Goldberg, Yoav and Deutch, Daniel and Berant, Jonathan},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n}\n", "homepage": "https://github.com/allenai/Break", "license": "", "features": {"source": {"dtype": "string", "id": null, "_type": "Value"}, "allowed_tokens": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "break_data", "config_name": "QDMR-high-level-lexicon", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 4240755, "num_examples": 3195, "dataset_name": "break_data"}, "train": {"name": "train", "num_bytes": 23234518, "num_examples": 17503, "dataset_name": "break_data"}, "validation": {"name": "validation", "num_bytes": 4158679, "num_examples": 3130, "dataset_name": "break_data"}}, "download_checksums": {"https://github.com/allenai/Break/raw/master/break_dataset/Break-dataset.zip": {"num_bytes": 15971078, "checksum": "37efea4fa1b7774d077ff0452e5e199cecba8216c12da76781010f189d1cf259"}}, "download_size": 15971078, "dataset_size": 31633952, "size_in_bytes": 47605030}, "QDMR": {"description": "Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations\n(QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases. \nThis repository contains the Break dataset along with information on the exact data format.\n", "citation": "@article{Wolfson2020Break,\n title={Break It Down: A Question Understanding Benchmark},\n author={Wolfson, Tomer and Geva, Mor and Gupta, Ankit and Gardner, Matt and Goldberg, Yoav and Deutch, Daniel and Berant, Jonathan},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n}\n", "homepage": "https://github.com/allenai/Break", "license": "", "features": {"question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_text": {"dtype": "string", "id": null, "_type": "Value"}, "decomposition": {"dtype": "string", "id": null, "_type": "Value"}, "operators": {"dtype": "string", "id": null, "_type": "Value"}, "split": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "break_data", "config_name": "QDMR", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 900632, "num_examples": 8069, "dataset_name": "break_data"}, "train": {"name": "train", "num_bytes": 12790466, "num_examples": 44321, "dataset_name": "break_data"}, "validation": {"name": "validation", "num_bytes": 2237472, "num_examples": 7760, "dataset_name": "break_data"}}, "download_checksums": {"https://github.com/allenai/Break/raw/master/break_dataset/Break-dataset.zip": {"num_bytes": 15971078, "checksum": "37efea4fa1b7774d077ff0452e5e199cecba8216c12da76781010f189d1cf259"}}, "download_size": 15971078, "dataset_size": 15928570, "size_in_bytes": 31899648}, "QDMR-lexicon": {"description": "Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations\n(QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases. \nThis repository contains the Break dataset along with information on the exact data format.\n", "citation": "@article{Wolfson2020Break,\n title={Break It Down: A Question Understanding Benchmark},\n author={Wolfson, Tomer and Geva, Mor and Gupta, Ankit and Gardner, Matt and Goldberg, Yoav and Deutch, Daniel and Berant, Jonathan},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n}\n", "homepage": "https://github.com/allenai/Break", "license": "", "features": {"source": {"dtype": "string", "id": null, "_type": "Value"}, "allowed_tokens": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "break_data", "config_name": "QDMR-lexicon", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 10331822, "num_examples": 8069, "dataset_name": "break_data"}, "train": {"name": "train", "num_bytes": 56913064, "num_examples": 44321, "dataset_name": "break_data"}, "validation": {"name": "validation", "num_bytes": 9936933, "num_examples": 7760, "dataset_name": "break_data"}}, "download_checksums": {"https://github.com/allenai/Break/raw/master/break_dataset/Break-dataset.zip": {"num_bytes": 15971078, "checksum": "37efea4fa1b7774d077ff0452e5e199cecba8216c12da76781010f189d1cf259"}}, "download_size": 15971078, "dataset_size": 77181819, "size_in_bytes": 93152897}, "logical-forms": {"description": "Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations\n(QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases. \nThis repository contains the Break dataset along with information on the exact data format.\n", "citation": "@article{Wolfson2020Break,\n title={Break It Down: A Question Understanding Benchmark},\n author={Wolfson, Tomer and Geva, Mor and Gupta, Ankit and Gardner, Matt and Goldberg, Yoav and Deutch, Daniel and Berant, Jonathan},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n}\n", "homepage": "https://github.com/allenai/Break", "license": "", "features": {"question_id": {"dtype": "string", "id": null, "_type": "Value"}, "question_text": {"dtype": "string", "id": null, "_type": "Value"}, "decomposition": {"dtype": "string", "id": null, "_type": "Value"}, "operators": {"dtype": "string", "id": null, "_type": "Value"}, "split": {"dtype": "string", "id": null, "_type": "Value"}, "program": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "break_data", "config_name": "logical-forms", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 927038, "num_examples": 8006, "dataset_name": "break_data"}, "train": {"name": "train", "num_bytes": 19821676, "num_examples": 44098, "dataset_name": "break_data"}, "validation": {"name": "validation", "num_bytes": 3504893, "num_examples": 7719, "dataset_name": "break_data"}}, "download_checksums": {"https://github.com/allenai/Break/raw/master/break_dataset/Break-dataset.zip": {"num_bytes": 15971078, "checksum": "37efea4fa1b7774d077ff0452e5e199cecba8216c12da76781010f189d1cf259"}}, "download_size": 15971078, "dataset_size": 24253607, "size_in_bytes": 40224685}}
dummy/QDMR-high-level-lexicon/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e76ecbc0b26764bb8fd3672fc1a9b1b29b5f1f2288b5fdc8944b7c6b6d01af93
3
+ size 3333
dummy/QDMR-high-level/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:292bd95a179b813dcc77d8ca8a3ed47b18d927f8e0a570aabb53c98416bdd5f6
3
+ size 1873
dummy/QDMR-lexicon/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1977230ec1d2511e843b24e97d920118a1d8df1166265a9534a014422fedfa1
3
+ size 3245
dummy/QDMR/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2c808130f43b920356afbf6871d306ce5c8d96adce9f09e2fc8446b767b8751
3
+ size 4492
dummy/logical-forms/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21c0e6ffcf822bbabf13335a2bb267ce7feca3bd8e7a3de9e8eab85c2e88893f
3
+ size 1884