|
"""TODO(break_data): Add a description here.""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
import textwrap |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@article{Wolfson2020Break, |
|
title={Break It Down: A Question Understanding Benchmark}, |
|
author={Wolfson, Tomer and Geva, Mor and Gupta, Ankit and Gardner, Matt and Goldberg, Yoav and Deutch, Daniel and Berant, Jonathan}, |
|
journal={Transactions of the Association for Computational Linguistics}, |
|
year={2020}, |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations |
|
(QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases. |
|
This repository contains the Break dataset along with information on the exact data format. |
|
""" |
|
_URL = "https://github.com/allenai/Break/raw/master/break_dataset/Break-dataset.zip" |
|
|
|
|
|
class BreakDataConfig(datasets.BuilderConfig): |
|
|
|
"""BuilderConfig for Break""" |
|
|
|
def __init__(self, text_features, lexicon_tokens, **kwargs): |
|
""" |
|
|
|
Args: |
|
text_features: `dict[string, string]`, map from the name of the feature |
|
dict for each text field to the name of the column in the tsv file |
|
lexicon_tokens: to define if we want to load the lexicon_tokens files or not |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(BreakDataConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.text_features = text_features |
|
self.lexicon_tokens = lexicon_tokens |
|
|
|
|
|
class BreakData(datasets.GeneratorBasedBuilder): |
|
"""TODO(break_data): Short description of my dataset.""" |
|
|
|
|
|
VERSION = datasets.Version("0.1.0") |
|
BUILDER_CONFIGS = [ |
|
BreakDataConfig( |
|
name="QDMR-high-level", |
|
description=textwrap.dedent( |
|
""" |
|
Contains questions annotated with the high-level variant of QDMR. These decomposition are exclusive to Reading |
|
Comprehension tasks (Section 2). lexicon_tokens files are also provided.""" |
|
), |
|
text_features={ |
|
"question_id": "question_id", |
|
"question_text": "question_text", |
|
"decomposition": "decomposition", |
|
"operators": "operators", |
|
"split": "split", |
|
}, |
|
lexicon_tokens=False, |
|
), |
|
BreakDataConfig( |
|
name="QDMR-high-level-lexicon", |
|
description=textwrap.dedent( |
|
""" |
|
Contains questions annotated with the high-level variant of QDMR. These decomposition are exclusive to Reading |
|
Comprehension tasks (Section 2). lexicon_tokens files are also provided.""" |
|
), |
|
text_features={ |
|
"source": "source", |
|
"allowed_tokens": "allowed_tokens", |
|
}, |
|
lexicon_tokens=True, |
|
), |
|
BreakDataConfig( |
|
name="QDMR", |
|
description=textwrap.dedent( |
|
""" |
|
Contains questions over text, images and databases annotated with their Question Decomposition Meaning |
|
Representation. In addition to the train, dev and (hidden) test sets we provide lexicon_tokens files. For |
|
each question, the lexicon file contains the set of valid tokens that could potentially appear in its |
|
decomposition """ |
|
), |
|
text_features={ |
|
"question_id": "question_id", |
|
"question_text": "question_text", |
|
"decomposition": "decomposition", |
|
"operators": "operators", |
|
"split": "split", |
|
}, |
|
lexicon_tokens=False, |
|
), |
|
BreakDataConfig( |
|
name="QDMR-lexicon", |
|
description=textwrap.dedent( |
|
""" |
|
Contains questions over text, images and databases annotated with their Question Decomposition Meaning |
|
Representation. In addition to the train, dev and (hidden) test sets we provide lexicon_tokens files. For |
|
each question, the lexicon file contains the set of valid tokens that could potentially appear in its |
|
decomposition """ |
|
), |
|
text_features={ |
|
"source": "source", |
|
"allowed_tokens": "allowed_tokens", |
|
}, |
|
lexicon_tokens=True, |
|
), |
|
BreakDataConfig( |
|
name="logical-forms", |
|
description=textwrap.dedent( |
|
""" |
|
Contains questions and QDMRs annotated with full logical-forms of QDMR operators + arguments. Full logical-forms |
|
were inferred by the annotation-consistency algorithm described in """ |
|
), |
|
lexicon_tokens=False, |
|
text_features={ |
|
"question_id": "question_id", |
|
"question_text": "question_text", |
|
"decomposition": "decomposition", |
|
"operators": "operators", |
|
"split": "split", |
|
"program": "program", |
|
}, |
|
), |
|
] |
|
|
|
def _info(self): |
|
|
|
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()} |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
features |
|
|
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://github.com/allenai/Break", |
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
dl_dir = dl_manager.download_and_extract(_URL) |
|
data_dir = os.path.join(dl_dir, "Break-dataset") |
|
qdmr_high_level = os.path.join(data_dir, "QDMR-high-level") |
|
qdmr = os.path.join(data_dir, "QDMR") |
|
logical = os.path.join(data_dir, "logical-forms") |
|
if self.config.name == "QDMR" or self.config.name == "QDMR-lexicon": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(qdmr, "train.csv") |
|
if not self.config.lexicon_tokens |
|
else os.path.join(qdmr, "train_lexicon_tokens.json") |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(qdmr, "dev.csv") |
|
if not self.config.lexicon_tokens |
|
else os.path.join(qdmr, "dev_lexicon_tokens.json") |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(qdmr, "test.csv") |
|
if not self.config.lexicon_tokens |
|
else os.path.join(qdmr, "test_lexicon_tokens.json") |
|
}, |
|
), |
|
] |
|
elif self.config.name == "QDMR-high-level" or self.config.name == "QDMR-high-level-lexicon": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(qdmr_high_level, "train.csv") |
|
if not self.config.lexicon_tokens |
|
else os.path.join(qdmr_high_level, "train_lexicon_tokens.json") |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(qdmr_high_level, "dev.csv") |
|
if not self.config.lexicon_tokens |
|
else os.path.join(qdmr_high_level, "dev_lexicon_tokens.json") |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(qdmr_high_level, "test.csv") |
|
if not self.config.lexicon_tokens |
|
else os.path.join(qdmr_high_level, "test_lexicon_tokens.json") |
|
}, |
|
), |
|
] |
|
elif self.config.name == "logical-forms": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": os.path.join(logical, "train.csv")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": os.path.join(logical, "dev.csv")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": os.path.join(logical, "test.csv")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
if ( |
|
self.config.name == "QDMR-high-level" |
|
or self.config.name == "QDMR" |
|
or self.config.name == "logical-forms" |
|
): |
|
data = csv.DictReader(f) |
|
for id_, row in enumerate(data): |
|
yield id_, row |
|
elif self.config.name == "QDMR-high-level-lexicon" or self.config.name == "QDMR-lexicon": |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
yield id_, data |
|
|