--- dataset_info: features: - name: utterance_id dtype: string - name: speaker_gender dtype: string - name: sentence dtype: string - name: speaker_id dtype: string - name: audio dtype: audio: sampling_rate: 16000 splits: - name: train num_bytes: 209434570129.268 num_examples: 995677 - name: dev_balanced num_bytes: 579692770.829 num_examples: 2601 - name: dev_other num_bytes: 1725502342.095 num_examples: 7595 - name: test_balanced num_bytes: 1158740779.222 num_examples: 5534 - name: test_other num_bytes: 1254987645.527 num_examples: 5837 download_size: 101776974871 dataset_size: 214153493666.941 task_categories: - automatic-speech-recognition language: - da pretty_name: FT Speech size_categories: - 100K - **Point of Contact:** [Dan Saattrup Nielsen](mailto:dan.nielsen@alexandra.dk) - **Size of downloaded dataset files:** 101.78 GB - **Size of the generated dataset:** 214.15 GB - **Total amount of disk used:** 315.93 GB ### Dataset Summary This dataset is an upload of the [FT Speech dataset](https://ftspeech.github.io/). The training, validation and test splits are the original ones. ### Supported Tasks and Leaderboards Training automatic speech recognition is the intended task for this dataset. No leaderboard is active at this point. ### Languages The dataset is available in Danish (`da`). ## Dataset Structure ### Data Instances - **Size of downloaded dataset files:** 101.78 GB - **Size of the generated dataset:** 214.15 GB - **Total amount of disk used:** 315.93 GB An example from the dataset looks as follows. ``` { 'utterance_id': 'S001_20151_M012_P00034-2', 'speaker_gender': 'F', 'sentence': 'alle de fem tekniske justeringer der er en del af lovforslaget', 'speaker_id': 'S001', 'audio': { 'path': 'S001_20151_M012_P00034-2.wav', 'array': array([-3.75366211e-03, -5.27954102e-03, -3.87573242e-03, ..., 9.15527344e-05, -1.52587891e-04, 5.79833984e-04]), 'sampling_rate': 16000 } } ``` ### Data Fields The data fields are the same among all splits. - `utterance_id`: a `string` feature. - `speaker_gender`: a `string` feature. - `sentence`: a `string` feature. - `speaker_id`: a `string` feature. - `audio`: an `Audio` feature. ### Dataset Statistics #### Speakers There are 57 unique speakers in the training dataset and 25 unique speakers in the test dataset. All speakers in the test dataset appear in the training dataset. #### Gender Distribution ![ftspeech-gender-distribution.png](https://cdn-uploads.huggingface.co/production/uploads/60d368a613f774189902f555/0h_L7-riNfQbKFdYWgy01.png) #### Transcription Length Distribution ![ftspeech-length-distribution.png](https://cdn-uploads.huggingface.co/production/uploads/60d368a613f774189902f555/z1MqsvACrY_8XNXAx0UcD.png) ## Dataset Creation ### Curation Rationale There are not many large-scale ASR datasets in Danish. ### Source Data The data constitutes public recordings of sessions from the Danish Parliament, along with manual transcriptions. ## Additional Information ### Dataset Curators Andreas Kirkedal, Marija Stepanović and Barbara Plank curated the dataset as part of their FT Speech paper (see citation below). [Dan Saattrup Nielsen](https://saattrupdan.github.io/) from the [The Alexandra Institute](https://alexandra.dk/) reorganised the dataset and uploaded it to the Hugging Face Hub. ### Licensing Information The dataset is licensed under [this custom license](https://www.ft.dk/da/aktuelt/tv-fra-folketinget/deling-og-rettigheder). ### Citation ``` @inproceedings{ftspeech, author = {Kirkedal, Andreas and Stepanović, Marija and Plank, Barbara}, title = {{FT Speech: Danish Parliament Speech Corpus}}, booktitle = {Proc. Interspeech 2020}, year = {2020} } ```