triage_status
large_stringclasses 28
values | pmid
large_stringlengths 7
13
| abstract
large_stringlengths 49
3.69k
| citation
large_stringlengths 16
84
| token_count
int32 17
878
| label
int8 0
1
|
---|---|---|---|---|---|
Curatable | PMID:16861909 | Sister chromatid separation requires two steps of proteolysis. Securin, the chaperon and inhibitor of separase, is destructed in anaphase after polyubiquitination, and resulting activated separase cleaves the cohesin subunit Scc1/Rad21. Fission yeast securin/Cut2 and separase/Cut1 that form the complex are essential for viability and a number of temperature-sensitive (ts) mutants have been isolated. We here report that the stresses such as 1.2 M sorbitol, 0.6 M KCl and 0.1 M CaCl(2) in the medium suppress the ts phenotypes of all the cut1 mutants and two of the three cut2 mutants examined. This unexpected finding led us to study how the ts phenotypes of cut1 and cut2 mutants were rescued by the increased stresses. The stresses caused a temporal arrest in the cell number increase, and this arrest was dependent on Spc1/Sty1 but not Rad3 and Mad2. During the 2-3 hr arrested period that occurred prior to the restart of division cycle, the level of securin dramatically increased, apparently accompanying the increased complex formation with mutant separase protein. Securin bound to separase was hyperphosphorylated. The stresses could not rescue the indestructible Cut2 and Rad21 mutants. We postulate that the stresses produce the hyperchaperonic form of Cut2 that can rescue separase mutations. | Cell Cycle 2006 Aug;5(16):1831-9 | 309 | 1 |
Method or reagent | PMID:15576932 | An in situ technique for studying the chromatin binding of proteins in single fission yeast cells (Schizosaccharomyces pombe) is described. Cells are permeabilized by enzymatic digestion and extracted with a detergent-containing buffer. This procedure removes soluble proteins, but proteins that are bound to insoluble cell structures such as chromatin are retained, and overall cell morphology is maintained. Extraction of proteins is monitored by fluorescence microscopy, either using fluorescently tagged proteins or by indirect immunofluorescence. This method allows the chromatin association of proteins to be correlated with other cell cycle events without the need for cell synchronization. | Methods Mol Biol 2005;296:181-8 | 135 | 0 |
Curatable | PMID:22604726 | Cells promote polarized growth by activation of Rho-family protein Cdc42 at the cell membrane. We combined experiments and modeling to study bipolar growth initiation in fission yeast. Concentrations of a fluorescent marker for active Cdc42, Cdc42 protein, Cdc42-activator Scd1, and scaffold protein Scd2 exhibited anticorrelated fluctuations and oscillations with a 5-minute average period at polarized cell tips. These dynamics indicate competition for active Cdc42 or its regulators and the presence of positive and delayed negative feedbacks. Cdc42 oscillations and spatial distribution were sensitive to the amounts of Cdc42-activator Gef1 and to the activity of Cdc42-dependent kinase Pak1, a negative regulator. Feedbacks regulating Cdc42 oscillations and spatial self-organization appear to provide a flexible mechanism for fission yeast cells to explore polarization states and to control their morphology. | Science 2012 Jul 13;337(6091):239-43 | 192 | 1 |
Curatable | PMID:14637153 | Rho GTPases regulate fundamental processes including cell morphology and migration in various organisms. Guanine nucleotide exchange factor (GEF) has a crucial role in activating small GTPase by exchange GDP for GTP. In fission yeast Schizosaccharomyces pombe, six members of the Rho small GTPase family were identified and reported to be involved in cell morphology and polarized cell growth. We identified seven genes encoding Rho GEF domain from genome sequence and analyzed. Overexpressions of identified genes in cell lead to change of morphology, suggesting that all of them are involved in the regulation of cell morphology. Although all of null mutants were viable, two of seven null cells had morphology defects and five of seven displayed altered actin cytoskeleton arrangements. Most of the double mutants were viable and biochemical analysis revealed that each of GEFs bound to several small G proteins. These data suggest that identified Rho GEFs are involved in the regulation of cell morphology and share signals via small GTPase Rho family. | Biochem Biophys Res Commun 2003 Dec 12;312(2):414-20 | 214 | 1 |
Wrong organism | PMID:14595109 | Three meiosis-specific chromosomal components in budding yeast, Mek1, Red1, and Hop1, are required for recombination, proper segregation of homologs, and the meiotic recombination checkpoint. Mek1 is a protein kinase. Mutations that increase the size of the ATP binding pocket of Mek1 (mek1-as1) sensitize the kinase to specific small molecule inhibitors. Experiments using mek1-as1 demonstrate that the requirement for Mek1 kinase activity coincides with the formation of double strand breaks (DSBs) and that this activity is necessary after DSB formation to prevent repair by DMC1-independent pathways. Contrary to previous reports, Red1 is not a substrate for Mek1. Instead, RED1 is required for wild-type levels of Mek1 kinase activity. In addition, activation of Mek1 requires HOP1, the formation of Red1/Hop1 complexes and a functional Mek1 FHA domain. The requirement for RED1 to produce active kinase can be bypassed by a mek1 mutation that creates a constitutively active Mek1 kinase. We propose that Red1 is phosphorylated by a kinase other than MEK1 and that phosphothreonines on Red1 then interact with the Mek1 FHA domain to recruit the kinase to sites of DSBs where Mek1 is activated to prevent DMC1-independent DSB repair. | Mol Biol Cell 2004 Jan;15(1):11-23 | 296 | 0 |
Curatable | PMID:967158 | The assignment of the known ade genes to steps in purine biosynthesis in Schizosaccharomyces pombe has been completed with the demonstration that an ade3 mutants lacks FGAR amidotransferase, ade1A mutants lack GAR synthetase and ade1B mutants lack AIR synthetase. A comparison of enzyme activity with map position for ade1 mutants shows that (1) complementing ade1A mutants lack GAR synthetase but posses wild type amounts of AIR synthetase, (2) complementing ade1B mutants lack AIR synthetase but posses variable amounts of GAR synthetase, (3) non-complementing mutants lack both activities. In wild type strains the two activities fractionate together throughout a hundred-fold purification. Hence the ade1 gene appears to code for a bifunctional enzyme catalysing two distinct steps in purine biosynthesis. The two activities are catalysed by two different regions of the polypeptide chain which can be altered independently by mutation. Gel filtration studies on partially purified enzymes from wild type and various complementing mutant strains, indicate that the bifunctional enzyme is a multimer consisting of between four and six sub-units of 40,000 daltons each. GAR synthetase activity is associated with both the monomeric and multimeric forms but AIR synthetase is only associated with the multimer. A comparison of enzyme levels between diploids and their original complementing haploid strains suggests that complementation is due to hybrid enzyme formation. | Mol Gen Genet 1976 Sep 23;147(3):271-82 | 335 | 1 |
Curatable | PMID:16278445 | The stress-activated protein kinase (SAPK) pathway plays a central role in coordinating gene expression in response to diverse environmental stress stimuli. We examined the role of this pathway in the translational response to stress in Schizosaccharomyces pombe. Exposing wild-type cells to osmotic stress (KCl) resulted in a rapid but transient reduction in protein synthesis. Protein synthesis was further reduced in mutants disrupting the SAPK pathway, including the mitogen-activated protein kinase Wis1 or the mitogen-activated protein kinase Spc1/Sty1, suggesting a role for these stress response factors in this translational control. Further polysome analyses revealed a role for Spc1 in supporting translation initiation during osmotic stress, and additionally in facilitating translational adaptation. Exposure to oxidative stress (H2O2) resulted in a striking reduction in translation initiation in wild-type cells, which was further reduced in spc1- cells. Reduced translation initiation correlated with phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) in wild-type cells. Disruption of Wis1 or Spc1 kinase or the downstream bZip transcription factors Atf1 and Pap1 resulted in a marked increase in eIF2alpha phosphorylation which was dependent on the eIF2alpha kinases Hri2 and Gcn2. These findings suggest a role for the SAPK pathway in supporting translation initiation and facilitating adaptation to environmental stress in part through reducing eIF2alpha phosphorylation in fission yeast. | Eukaryot Cell 2005 Nov;4(11):1785-93 | 326 | 1 |
Wrong organism | PMID:11259593 | During the early stages of budding, cell wall remodeling and polarized secretion are concentrated at the bud tip (apical growth). The CBK1 gene, encoding a putative serine/threonine protein kinase, was identified in a screen designed to isolate mutations that affect apical growth. Analysis of cbk1Delta cells reveals that Cbk1p is required for efficient apical growth, proper mating projection morphology, bipolar bud site selection in diploid cells, and cell separation. Epitope-tagged Cbk1p localizes to both sides of the bud neck in late anaphase, just prior to cell separation. CBK1 and another gene, HYM1, were previously identified in a screen for genes involved in transcriptional repression and proposed to function in the same pathway. Deletion of HYM1 causes phenotypes similar to those observed in cbk1Delta cells and disrupts the bud neck localization of Cbk1p. Whole-genome transcriptional analysis of cbk1Delta suggests that the kinase regulates the expression of a number of genes with cell wall-related functions, including two genes required for efficient cell separation: the chitinase-encoding gene CTS1 and the glucanase-encoding gene SCW11. The Ace2p transcription factor is required for expression of CTS1 and has been shown to physically interact with Cbk1p. Analysis of ace2Delta cells reveals that Ace2p is required for cell separation but not for polarized growth. Our results suggest that Cbk1p and Hym1p function to regulate two distinct cell morphogenesis pathways: an ACE2-independent pathway that is required for efficient apical growth and mating projection formation and an ACE2-dependent pathway that is required for efficient cell separation following cytokinesis. Cbk1p is most closely related to the Neurospora crassa Cot-1; Schizosaccharomyces pombe Orb6; Caenorhabditis elegans, Drosophila, and human Ndr; and Drosophila and mammalian WARTS/LATS kinases. Many Cbk1-related kinases have been shown to regulate cellular morphology. | Mol Cell Biol 2001 Apr;21(7):2449-62 | 467 | 0 |
Transposon related | PMID:34791222 | Transposable elements (TEs) comprise a large proportion of the eukaryote genomes. Yet it remains poorly understood how TEs influence the fitness of the hosts carrying them. Here, we empirically test the impact of TEs on the host fitness in the fission yeast Schizosaccharomyces pombe. We find that two families of TEs (Tf1 and Tf2 elements), both of which belong to long terminal repeat retrotransposons, are highly polymorphic among individual S. pombe strains. Only 13 complete Tf2 elements are identified in S. pombe laboratory strain 972. These 13 Tf2 elements integrated into host genomes in very recent time and are segregating within the S. pombe population. Through knocking out each of the 13 Tf2 elements in S. pombe strain 972, we find Tf2 knockout does not affect the host fitness, and Tf2 elements do not alter the expression of nearby genes. Challenged by diverse forms of stress, the Tf2 knockout strains do not exhibit different growth rates from wild-type strain. Together, we conclude that segregating complete Tf2 elements insertions are largely neutral to host fitness in the fission yeast. Our study provides genome-wide empirical support for the selfish nature of TEs in fission yeast. | Genome Biol Evol 2021 11 05;13(11) | 281 | 0 |
Curatable | PMID:26205977 | It is generally believed that silent chromatin is condensed and transcriptionally active chromatin is decondensed. However, little is known about the relationship between the condensation levels and gene expression. Here we report the condensation levels of interphase chromatin in the fission yeast Schizosaccharomyces pombe examined by super-resolution fluorescence microscopy. Unexpectedly, silent chromatin is less condensed than the euchromatin. Furthermore, the telomeric silent regions are flanked by highly condensed chromatin bodies, or 'knobs'. Knob regions span ∼50 kb of sequence devoid of methylated histones. Knob condensation is independent of HP1 homologue Swi6 and other gene silencing factors. Disruption of methylation at lysine 36 of histone H3 (H3K36) eliminates knob formation and gene repression at the subtelomeric and adjacent knob regions. Thus, epigenetic marks at H3K36 play crucial roles in the formation of a unique chromatin structure and in gene regulation at those regions in S. pombe. | Nat Commun 2015 Jul 24;6:7753 | 230 | 1 |
Curatable | PMID:8367300 | DNA polymerases alpha and delta are essential enzymes believed to play critical roles in initiation and replication of chromosome DNA. In this study, we show that the genes for Schizosaccharomyces pombe (S.pombe) DNA polymerase alpha and delta (pol alpha+ and pol delta+) are essential for cell viability. Disruption of either the pol alpha+ or pol delta+ gene results in distinct terminal phenotypes. The S.pombe pol delta+ gene is able to complement the thermosensitive cdc2-2 allele of Saccharomyces cerevisiae (S.cerevisiae) at the restrictive temperature. By random mutagenesis in vitro, we generated three pol delta conditional lethal alleles. We replaced the wild type chromosomal copy of pol delta+ gene with the mutagenized sequence and characterized the thermosensitive alleles in vivo. All three thermosensitive mutants exhibit a typical cell division cycle (cdc) terminal phenotype similar to that of the disrupted pol delta+ gene. Flow cytometric analysis showed that at the nonpermissive temperature all three mutants were arrested in S phase of the cell cycle. The three S.pombe conditional pol delta alleles were recovered and sequenced. The mutations causing the thermosensitive phenotype are missense mutations. The altered amino acid residues are uniquely conserved among the known polymerase delta sequences. | Nucleic Acids Res 1993 Aug 11;21(16):3821-8 | 286 | 1 |
Review or comment | PMID:17851138 | In response to DNA damage, cells activate checkpoints to delay cell cycle progression and allow time for completion of DNA repair before commitment to S-phase or mitosis. During G2, many proteins collaborate to activate Chk1, an effector protein kinase that ensures the mitotic cyclin-dependent kinase remains in an inactive state. This checkpoint is ancient in origin and highly conserved from fission yeast to humans. Work from many groups has led to a detailed description of the spatiotemporal control of signaling events leading to Chk1 activation. However, to survive DNA damage in G2, the checkpoint must be inactivated to allow resumption of cell cycling and entry into mitosis. Though only beginning to be understood, here we review current data regarding checkpoint termination signals acting on Chk1 and its' upstream regulators. | DNA Repair (Amst) 2008 Feb 01;7(2):136-40 | 170 | 0 |
DNA recombination related | PMID:11983175 | The ade6-M26 allele of Schizosaccharomyces pombe creates a well-defined meiotic recombination hot spot that requires a specific sequence, 5'-ATGACGT-3', and the Atf1*Pcr1 transcription factor for activity. We find that M26 stimulates the formation of meiosis-specific double-strand DNA breaks at multiple sites surrounding M26. Like hot spot activity, breakage requires the M26 heptamer, Pcr1, and the general recombination factor Rec12. When the M26 heptamer is moved to new positions within ade6, new break sites are observed spanning approximately 0.5-2 kb around the moved heptamer. Break frequency is strongly correlated with recombination frequency for these alleles. The occurrence of breaks at M26 suggests mechanistic similarities to hot spots in the distantly related yeast Saccharomyces cerevisiae. | Mol Cell 2002 Apr;9(4):847-55 | 194 | 0 |
Curatable, low priority | PMID:762155 | Two different allele-specific suppressor mutants of the fission yeast Schizosaccharomyces pombe produce opal (UGA) suppressor tRNAs. This was shown by the use of a new in vitro assay for eukaryotic nonsense suppression: a wheat germ extract is programmed with rabbit globin mRNAs and the readthrough products are studied. alpha-Globin is elongated upon addition of ochre (UAA) suppressor tRNAs, whereas beta-globin yields a readthrough product with opal suppressor tRNAs. This simple and very sensitive assay allowed the purification of the opal suppressor tRNA from S. pombe strain sup3-e. The pure tRNA can be aminoacylated with serine; thus, we conclude that this suppressor tRNA inserts serine in response to the UGA termination codon of pure rabbit beta-globin mRNA. | J Biol Chem 1979 Mar 10;254(5):1546-51 | 195 | 1 |
Other | PMID:16314302 | Protein-nucleic acid interactions exhibit varying degrees of specificity. Relatively high affinity, sequence-specific interactions, can be studied with structure determination, but lower affinity, non-specific interactions are also of biological importance. We report simulations that predict the population of nucleic acid paths around protein surfaces, and give binding constant differences for changes in the protein scaffold. The method is applied to the non-specific component of interactions between eIF4Es and messenger RNAs that are bound tightly at the cap site. Adding a fragment of eIF4G to the system changes both the population of mRNA paths and the protein-mRNA binding affinity, suggesting a potential role for non-specific interactions in modulating translational properties. Generally, the free energy simulation technique could work in harness with characterized tethering points to extend analysis of nucleic acid conformation, and its modulation by protein scaffolds. | Nucleic Acids Res 2005;33(21):6694-9 | 183 | 0 |
Wrong organism | PMID:14500360 | Human and mouse paralogues of the evolutionarily conserved mammalian HRAD9 and Mrad9 cell cycle checkpoint control genes have been isolated and called HRAD9B and Mrad9B, respectively. HRAD9B encodes a protein that is 414 amino acids long and is 55% similar and 35% identical to the HRAD9 gene product. The Mrad9B protein is 398 amino acids long and is 50% similar and 35% identical to its paralogue. We demonstrate that the encoded human protein is nuclear and can physically interact with checkpoint proteins HRAD1, HRAD9, HHUS1, and HHUS1B, much like HRAD9. Northern blot analysis to detect tissue specificity indicates that the human and mouse genes are expressed predominantly in the testis. The abundance of HRAD9B RNA, as judged by quantitative reverse transcription-PCR, is very low in most testicular tumors, particularly those of germ cell origin, i.e., seminomas, relative to normal testis control, nonseminomas, or Leydig tumor cells. RNA levels corresponding to HRAD17, another checkpoint control gene, demonstrated a similar pattern, but in general, higher quantities of this message were detected in samples. Furthermore, normal/tumor tissue differences were not as dramatic or consistent from sample to sample, especially for the seminomas. Our results demonstrate for the first time that HRAD9 and Mrad9 are part of a gene family and reveal a new genetic element encoding a product that interacts with multiple, known cell cycle checkpoint control proteins. The findings also indicate that HRAD9B can serve as a biomarker in particular for testicular seminomas and might be causally related to the disease. | Cancer Res 2003 Sep 01;63(17):5291-8 | 355 | 0 |
Curatable | PMID:18978356 | Cells contain multiple formin isoforms that drive the assembly of profilin-actin for diverse processes. Given that many organisms also contain several profilin isoforms, specific formin/profilin pairs might be matched to optimally stimulate actin polymerization. We utilized a combination of bulk actin polymerization and single filament total internal reflection fluorescence microscopy assays to measure the effect of different profilin isoforms on the actin assembly properties of the cytokinesis formins from fission yeast (Cdc12p) and the nematode worm (CYK-1). We discovered that Cdc12p only effectively utilizes the single fission yeast profilin isoform SpPRF. Conversely, CYK-1 prefers the essential worm cytokinesis profilin CePFN-1 to the two non-essential worm profilin isoforms (SpPRF = CePFN-1 > CePFN-2 > CePFN-3). Chimeras containing the profilin-binding formin homology 1 (FH1) domain from one formin and the barbed-end associated FH2 domain from the other formin, revealed that both the FH1 and FH2 domains help confer profilin isoform specialization. Although the Cdc12p and CYK-1 FH1 domains cannot differentiate between profilin isoforms in the absence of actin, formin FH1 domains appear to preferentially select specific isoforms of profilin-actin. Surprisingly, analysis of profilin point mutants revealed that differences in highly conserved residues in both the poly-L-proline and actin binding regions of profilin do not explain their differential utilization by formin. Therefore, rapid formin-mediated elongation of profilin-actin depends upon favorable interactions of profilin-actin with the FH1 domain as well as the barbed-end associated FH2 domain. Specific formin FH1FH2 domains are tailored to optimally utilize actin bound to particular profilin isoforms. | J Biol Chem 2009 Jan 02;284(1):673-684 | 440 | 1 |
Wrong organism | PMID:23026052 | RecQ helicases are well conserved proteins from bacteria to human and function in various DNA metabolism for maintenance of genome stability. Five RecQ helicases are found in humans, whereas only one RecQ helicase has been described in lower eukaryotes. However, recent studies predicted the presence of a second RecQ helicase, Hrq1, in fungal genomes and verified it as a functional gene in fission yeast. Here we show that 3'-5' helicase activity is intrinsically associated with Hrq1 of Saccharomyces cerevisiae. We also determined several biochemical properties of Hrq1 helicase distinguishable from those of other RecQ helicase members. Hrq1 is able to unwind relatively long duplex DNA up to 120-bp and is significantly stimulated by a preexisting fork structure. Further, the most striking feature of Hrq1 is its absolute requirement for a long 3'-tail (⩾70-nt) for efficient unwinding of duplex DNA. We also found that Hrq1 has potent DNA strand annealing activity. Our results indicate that Hrq1 has vigorous helicase activity that deserves further characterization to expand our understanding of RecQ helicases. | Biochem Biophys Res Commun 2012 Oct 26;427(3):623-8 | 256 | 0 |
Curatable | PMID:9766521 | We have isolated a murine cDNA, Mrad9, that is orthologous to the fission yeast rad9+ and human HRAD9 genes. Mrad9 encodes a 389 amino acid long, 42,032 Dalton protein that is 27% identical and 56% similar to Rad9p, and 82% identical and 88% similar to HRAD9, at the amino acid level. Expression of the Mrad9 cDNA in Schizosaccharomyces pombe rad9::ura4+ cells restores nearly wild-type levels of hydroxyurea resistance and early S phase checkpoint control to mutant fission yeast cell populations. However, UV resistance is only minimally restored, and mutant cells remain sensitive to gamma radiation. Mrad9 genomic DNA was isolated from a mouse 129/SvEv library. The Mrad9 gene was local ized to a 15-kbp genomic DNA fragment, and contains 10 exons separated by 9 introns. Northern blot analysis indicates that the gene is expressed in many different tissues of the adult mouse, but the mRNA is most abundant in the heart and present at very low levels in the liver. These studies demonstrate the existence of a murine orthologue of the fission yeast rad9+ gene and underscore at least the partial evolutionary conservation of rad9+-dependent checkpoint control mechanisms. | J Cell Physiol 1998 Nov;177(2):241-7 | 277 | 1 |
Curatable | PMID:17868468 | DNA polymerase gamma(Pol-gamma) has been shown to be essential for maintenance of the mitochondrial genome (mtDNA) in the petite-positive budding yeast Saccharomyces cerevisiae. Budding yeast cells lacking mitochondria exhibit a slow-growing or petite-colony phenotype. Petite strains fail to grow on non-fermentable carbon sources. However, it is not clear whether the Pol-gamma is required for mtDNA maintenance in the petite-negative fission yeast Schizosaccharomyces pombe. We show that disruption of the nuclear gene pog1+ that encodes Pol-gamma is sufficient to deplete mtDNA in S. pombe. Cells bearing pog1Delta allele require substantial growth periods to form petite colonies. Mitotracker assays indicate that pog1Delta cells are defective in mitochondrial function and EM analyses suggest that pog1Delta cells lack normal mitochondrial structures. Depletion of mtDNA in pog1Delta cells is evident from quantitative real-time PCR assays. Genome-wide expression profiles of pog1Delta and other mtDNA-less cells reveal that many genes involved in response to stimulus, energy derivation by oxidation of organic compounds, cellular carbohydrate metabolism, and energy reserve metabolism are induced. Conversely, many genes encoding proteins involved in amino acid metabolism and oxidative phosphorylation are repressed. By showing that Pol-gamma is essential for mtDNA maintenance and disruption of pog1+ alters the genome-wide expression profiles, we demonstrated that cells lacking mtDNA exhibit adaptive nuclear gene expression responses in the petite-negative S. pombe. | BMC Genomics 2007 Sep 15;8:323 | 344 | 1 |
Method or reagent | PMID:25409521 | Analysis of accumulation of repair and checkpoint proteins at repair sites in yeast nuclei has conventionally used chemical agents, ionizing radiation or induction of endonucleases to inflict localized damage. In addition to these methods, similar studies in mammalian cells have used laser irradiation, which has the advantage that damage is inflicted at a specific nuclear region and at a precise time, and this allows accurate kinetic analysis of protein accumulation at DNA damage sites. We show here that it is feasible to use short pulses of near-infrared laser irradiation to inflict DNA damage in subnuclear regions of yeast nuclei by multiphoton absorption. In conjunction with use of fluorescently-tagged proteins, this allows quantitative analysis of protein accumulation at damage sites within seconds of damage induction. PCNA accumulated at damage sites rapidly, such that maximum accumulation was seen approximately 50 s after damage, then levels declined linearly over 200-1000 s after irradiation. RPA accumulated with slower kinetics such that hardly any accumulation was detected within 60 s of irradiation, and levels subsequently increased linearly over the next 900 s, after which levels were approximately constant (up to ca. 2700 s) at the damage site. This approach complements existing methodologies to allow analysis of key damage sensors and chromatin modification changes occurring within seconds of damage inception. | PLoS One 2014;9(11):e113325 | 268 | 0 |
Curatable | PMID:18523008 | Two functions are proposed for the conserved family of UCS proteins: helping to fold myosin motor proteins and stimulating the motor function of folded myosins. We examined both functions in yeast. The fission yeast UCS protein (Rng3p) concentrates in nodes containing myosin-II (Myo2) and other proteins that condense into the cytokinetic contractile ring. Both the N-terminal (central) and C-terminal (UCS) domains of Rng3p can concentrate independently in contractile rings, but only full-length Rng3p supports contractile ring function in vivo. The presence of Rng3p in ATPase assays doubles the apparent affinity (K(ATPase)) of both native Myo2 and recombinant heads of Myo2 for actin filaments. Rng3p promotes gliding of actin filaments by full-length Myo2 molecules, but not Myo2 heads alone. Myo2 isolated from mutant strains defective for Rng3p function is soluble and supports actin filament gliding. In budding yeast the single UCS protein (She4p) acts on both myosin-I isoforms (Myo3p and Myo5p) and one of two myosin-V isoforms (Myo4p). Myo5p turns over approximately 10 times faster in she4Delta cells than wild-type cells, reducing the level of Myo5p in cells 10-fold and in cortical actin patches approximately 4-fold. Nevertheless, Myo5p isolated from she4Delta cells has wild-type ATPase and motility activities. Thus, a fraction of this yeast myosin can fold de novo in the absence of UCS proteins, but UCS proteins promote myosin stability and interactions with actin. | Proc Natl Acad Sci U S A 2008 Jun 10;105(23):8014-9 | 382 | 1 |
Curatable | PMID:24818994 | SUMO is a small post-translational modifier, that is attached to lysine residues in target proteins. It acts by altering protein-protein interactions, protein localisation and protein activity. SUMO chains can also act as substrates for ubiquitination, resulting in proteasome-mediated degradation of the target protein. SUMO is removed from target proteins by one of a number of specific proteases. The processes of sumoylation and desumoylation have well documented roles in DNA metabolism and in the maintenance of chromatin structure. To further analyse the role of this modification, we have purified protein complexes containing the S. pombe SUMO protease, Ulp2. These complexes contain proteins required for ribosome biogenesis, RNA stability and protein synthesis. Here we have focussed on two translation initiation factors that we identified as co-purifying with Ulp2, eIF4G and eIF3h. We demonstrate that eIF4G, but not eIF3h, is sumoylated. This modification is increased under conditions that produce cytoplasmic stress granules. Consistent with this we observe partial co-localisation of eIF4G and SUMO in stressed cells. Using HeLa cells, we demonstrate that human eIF4GI is also sumoylated; in vitro studies indicate that human eIF4GI is modified on K1368 and K1588, that are located in the C-terminal eIF4A- and Mnk-binding sites respectively. | PLoS One 2014;9(5):e94182 | 318 | 1 |
Wrong organism | PMID:12657463 | Rab GTPases are key regulators of vesicular traffic in eukaryotic cells. Here we sought a global characterization and description of the Plasmodium falciparum family of Rab GTPases. We used a combination of bioinformatic analyses, experimental testing of predictions, structure modelling and phylogenetics. These analyses led to the identification of seven new parasite Rabs. Accordingly we estimate that the P. falciparum family is made up of 11 genes. We show that ten members of this family are transcribed in infected erythrocytes. Concerning the various members of the family, a series of specific as well as global conclusions can be drawn. Rabs predicted to be compartment-specific show different subcellular distributions. This is demonstrated for PfRab1A and PfRab11A, with the generation of specific antisera. The sequence analyses reveal several peculiarities, with possible functional implications. One of the transcribed genes, Pfrab5b, does not encode a classical C-terminus, suggestive of a novel regulatory role for this GTPase. Another, Pfrab5a, previously identified as a rab gene located on chromosome 2, possesses a 30-amino-acid insertion in its GTP-binding domain. Structural considerations suggest that this insertion could represent a novel interaction interface. We used conserved RabF and RabSF motifs to discriminate between specific parasite Rabs, and followed their predicted change in position on the structure of PfRab6, as GTP is hydrolysed to GDP. This allowed us to propose their involvement in potential interaction surfaces, that we extended to human Rab6 and the motifs known to mediate Rabkinesine-6 binding. Finally, we compared the P. falciparum Rab family to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe and found that parasite Rabs segregate into possible functional clads. Such grouping into clads may give clues to parasite Rab function, and may shed light on P. falciparum secretory/endocytic pathways. | Gene 2003 Mar 13;306:13-25 | 444 | 0 |
Curatable | PMID:29967291 | In Schizosaccharomyces pombe , transcripts derived from the pericentromeric dg and dh repeats promote heterochromatin formation via RNAi as well as an RNAi-independent mechanism involving the RNA polymerase II (RNAPII)-associated RNA-binding protein Seb1 and RNA processing activities. We show that Seb1 promotes long-lived RNAPII pauses at pericentromeric repeat regions and that their presence correlates with the heterochromatin-triggering activities of the corresponding dg and dh DNA fragments. Globally increasing RNAPII stalling by other means induces the formation of novel large ectopic heterochromatin domains. Such ectopic heterochromatin occurs even in cells lacking RNAi. These results uncover Seb1-mediated polymerase stalling as a signal necessary for heterochromatin nucleation. | Genes Dev 2018 07 01;32(13-14):953-964 | 185 | 1 |
Curatable | PMID:28667014 | Glycolysis and the pentose phosphate pathway both play a central role in the degradation of glucose in all domains of life. Another metabolic route that can facilitate glucose breakdown is the gluconate shunt. In this shunt glucose dehydrogenase and gluconate kinase catalyze the two-step conversion of glucose into the pentose phosphate pathway intermediate 6-phosphogluconate. Despite the presence of these enzymes in many organisms, their only established role is in the production of 6-phosphogluconate for the Entner-Doudoroff pathway. In this report we performed metabolic profiling on a strain of Schizosaccharomyces pombe lacking the zinc-responsive transcriptional repressor Loz1 with the goal of identifying metabolic pathways that were altered by cellular zinc status. This profiling revealed that loz1 Δ cells accumulate higher levels of gluconate. We show that the altered gluconate levels in loz1 Δ cells result from increased expression of gcd1 By analyzing the activity of recombinant Gcd1 in vitro and by measuring gluconate levels in strains lacking enzymes of the gluconate shunt we demonstrate that Gcd1 encodes a novel NADP + -dependent glucose dehydrogenase that acts in a pathway with the Idn1 gluconate kinase. We also find that cells lacking gcd1 and zwf1 , which encode the first enzyme in the pentose phosphate pathway, have a more severe growth phenotype than cells lacking zwf1 We propose that in S. pombe Gcd1 and Idn1 act together to shunt glucose into the pentose phosphate pathway, creating an alternative route for directing glucose into the pentose phosphate pathway that bypasses hexokinase and the rate-limiting enzyme glucose-6-phosphate dehydrogenase. | J Biol Chem 2017 08 18;292(33):13823-13832 | 401 | 1 |
Curatable | PMID:20833892 | Calmodulin in Schizosaccharomyces pombe is encoded by the cam1(+) gene, which is indispensable for both vegetative growth and sporulation. Here, we report how Cam1 functions in spore formation. We found that Cam1 preferentially localized to the spindle pole body (SPB) during meiosis and sporulation. Formation of the forespore membrane, a precursor of the plasma membrane in spores, was blocked in a missense cam1 mutant, which was viable but unable to sporulate. Three SPB proteins necessary for the onset of forespore membrane formation, Spo2, Spo13, and Spo15, were unable to localize to the SPB in the cam1 mutant although five core SPB components that were tested were present. Recruitment of Spo2 and Spo13 is known to require the presence of Spo15 in the SPB. Notably, Spo15 was unstable in the cam1 mutant, and as a result, SPB localization of Spo2 and Spo13 was lost. Overexpression of Spo15 partially alleviated the sporulation defect in the cam1 mutant. These results indicate that calmodulin plays an essential role in forespore membrane formation by stably maintaining Spo15, and thus Spo2 and Spo13, at the SPB in meiotic cells. | Eukaryot Cell 2010 Dec;9(12):1925-35 | 277 | 1 |
Curatable | PMID:11380623 | Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase distributed in eukaryotes from yeast to human, and plays pivotal roles in diverse cellular functions such as metabolism, cell cycle progression, gene expression and development. PP2A holoenzyme is a heterodimer of a catalytic subunit C and a regulatory subunit A, or a heterotrimer of C, A and a variable regulatory subunit consisting of three families; B, B', and PR72. Specific functions for each variable subunit are not well understood. Two fission yeast genes pbp1+ and pbp2+ homologous to the regulatory subunit B' were isolated. Physical in vivo interaction of the gene products with the catalytic subunit was demonstrated. A double disruption haploid mutant (Deltapbp1Deltapbp2) showed growth defect, cell shape and size abnormality, multiseptation and anucleated cell formation due to abnormality in septum positioning. These phenotypes were suppressed by human B' cDNA, indicating the striking conservation of the B' function from yeast to human. Over-expression of fission yeast B' led to growth defects, a loss of cell shape polarity, septal abnormality and anucleated cell formation. Deltapbp1Deltapbp2 and pbp1 null haploids were hypersensitive to calcineurin inhibitors, cyclosporin A and FK506, with which the mutants underwent arrest at post-anaphase and cell lysis. Double disruption of calcineurin and pbp1+, but not pbp2+, genes led to synthetic lethality. The fission yeast B' subunit of PP2A plays critical roles in cell shape control and septum formation, and shares essential functions with calcineurin for viability, possibly through their roles in cytokinesis and cell wall integrity. | Genes Cells 2001 May;6(5):455-73 | 405 | 1 |
Curatable | PMID:9046095 | The Schizosaccharomyces pombe gpil+ gene was cloned by complementation of the Saccharomyces cerevisiae gpil mutant, which has temperature-sensitive defects in growth and glycosyl phosphatidylinositol (GPI) membrane anchoring or protein, and which is defective in vitro in the first step in GPI anchor assembly, the formation of n-acetylglucosaminyl phosphatidylinositol (GlcNAc-PI). S. pombe gpil+ encodes a protein with 29% identity to amino acids 87-609 of the S. cerevisiae protein, and is the functional homolog of the S. cerevisiae Gpil protein, for it restores [3H]inositol-labelling of protein and in vitro GlcNAc-PI synthetic activity to both S. cerevisiae gpil and gpil::URA3 cells. Disruption of gpil+ is lethal. Haploid delta gpil+::his7+ spores germinate, but proceed through no more than three rounds of cell division, many cells ceasing growth as binucleate, septate cells with thickened septa. These results indicate that GPI synthesis is an essential function in fission yeast, and suggest that GPI anchoring is also required for completion of cytokinesis. | Yeast 1997 Feb;13(2):139-50 | 290 | 1 |
Wrong organism | PMID:10025943 | Protein kinase CK2 is a ubiquitous Ser/Thr kinase which phosphorylates a large number of proteins including several transcription factors. Recombinant Xenopus laevis CK2 phosphorylates both recombinant Saccharomyces cerevisiae and Schizosaccharomyces pombe TATA binding protein (TBP). The phosphorylation of TBP by CK2 reduces its binding activity to the TATA box. CK2 copurifies with the transcription factor IID (TFIID) complex from HeLa cell extracts and phosphorylates several of the TBP-associated factors within TFIID. Taken together these findings argue for a role of CK2 in the control of transcription by RNA polymerase II through the modulation of the binding activity of TBP to the TATA box. | FEBS Lett 1999 Jan 29;443(3):256-60 | 172 | 0 |
Wrong organism | PMID:14993234 | Assembly at the mother-bud neck of a filamentous collar containing five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) is necessary for proper morphogenesis and cytokinesis. We show that Cdc10 and Cdc12 possess GTPase activity and appropriate mutations in conserved nucleotide-binding residues abrogate GTP binding and/or hydrolysis in vitro. In vivo, mutants unable to bind GTP prevent septin collar formation, whereas mutants that block GTP hydrolysis do not. GTP binding-defective Cdc10 and Cdc12 form soluble heteromeric complexes with other septins both in yeast and in bacteria; yet, unlike wild-type, mutant complexes do not bind GTP and do not assemble into filaments in vitro. Absence of a p21-activated protein kinase (Cla4) perturbs septin collar formation. This defect is greatly exacerbated when combined with GTP binding-defective septins; conversely, the septin collar assembly defect of such mutants is suppressed efficiently by CLA4 overexpression. Cla4 interacts directly with and phosphorylates certain septins in vitro and in vivo. Thus, septin collar formation may correspond to septin filament assembly, and requires both GTP binding and Cla4-mediated phosphorylation of septins. | J Cell Biol 2004 Mar 01;164(5):701-15 | 292 | 0 |
Curatable | PMID:27723196 | Antisense RNA has emerged as a crucial regulator of opposite-strand protein-coding genes in the long noncoding RNA (lncRNA) category, but little is known about their dynamics and decay process in the context of a stress response. Antisense transcripts from the fission yeast fbp1 locus (fbp1-as) are expressed in glucose-rich conditions and anticorrelated with transcription of metabolic stress-induced lncRNA (mlonRNA) and mRNA on the sense strand during glucose starvation. Here, we investigate the localization and decay of antisense RNAs at fbp1 and other loci, and propose a model to explain the rapid switch between antisense and sense mlonRNA/mRNA transcription triggered by glucose starvation. We show that fbp1-as shares many features with mRNAs, such as a 5'-cap and poly(A)-tail, and that its decay partially depends upon Rrp6, a cofactor of the nuclear exosome complex involved in 3'-5' degradation of RNA. Fluorescence in situ hybridization and polysome fractionation show that the majority of remaining fbp1-as localizes to the cytoplasm and binds to polyribosomes in glucose-rich conditions. Furthermore, fbp1-as and antisense RNA at other stress-responsive loci are promptly degraded via the cotranslational nonsense-mediated decay (NMD) pathway. These results suggest NMD may potentiate the swift disappearance of antisense RNAs in response to cellular stress. | Genes Cells 2016 Dec;21(12):1276-1289 | 325 | 1 |
Curatable | PMID:1547790 | Conjugation in the fission yeast Schizosaccharomyces pombe is controlled by the action of mating pheromones. Here I describe the isolation and characterization of M-factor, the pheromone released by M-type cells. M-factor is a nanopeptide in which the carboxy-terminal cysteine residue is carboxy-methylated and S-alkylated, probably with a farnesyl residue: Tyr-Thr-Pro-Lys-Val-Pro-Tyr-Met-Cys(S-farnesyl)-OCH3. Evidence for this structure was obtained by amino acid analysis, mass spectrometry and tandem mass spectrometry of the native M-factor. Two genes encoding the M-factor were also identified and characterized. It appears that M-factor is synthesized as a larger precursor which is post-translationally cleaved and modified to yield the active pheromone. The proposed modifications are consistent with mechanisms known to exist in other yeast and higher eukaryotes. | EMBO J 1992 Mar;11(3):951-60 | 226 | 1 |
Cell composition or WT feature | PMID:34100714 | Intracellular density impacts the physical nature of the cytoplasm and can globally affect cellular processes, yet density regulation remains poorly understood. Here, using a new quantitative phase imaging method, we determined that dry-mass density in fission yeast is maintained in a narrow distribution and exhibits homeostatic behavior. However, density varied during the cell cycle, decreasing during G2, increasing in mitosis and cytokinesis, and dropping rapidly at cell birth. These density variations were explained by a constant rate of biomass synthesis, coupled to slowdown of volume growth during cell division and rapid expansion post-cytokinesis. Arrest at specific cell-cycle stages exacerbated density changes. Spatially heterogeneous patterns of density suggested links between density regulation, tip growth, and intracellular osmotic pressure. Our results demonstrate that systematic density variations during the cell cycle are predominantly due to modulation of volume expansion, and reveal functional consequences of density gradients and cell-cycle arrests. | Elife 2021 06 08;10 | 198 | 0 |
Method or reagent | PMID:27587785 | Schizosaccharomyces pombe cells are rod shaped, and they grow by tip elongation. Growth ceases during mitosis and cell division; therefore, the length of a septated cell is a direct measure of the timing of mitotic commitment, and the length of a wild-type cell is an indicator of its position in the cell cycle. A large number of documented stage-specific changes can be used as landmarks to characterize cell cycle progression under specific experimental conditions. Conditional mutations can permanently or transiently block the cell cycle at almost any stage. Large, synchronously dividing cell populations, essential for the biochemical analysis of cell cycle events, can be generated by induction synchrony (arrest-release of a cell cycle mutant) or selection synchrony (centrifugal elutriation or lactose-gradient centrifugation). Schizosaccharomyces pombe cell cycle studies routinely combine particular markers, mutants, and synchronization procedures to manipulate the cycle. We describe these techniques and list key landmarks in the fission yeast mitotic cell division cycle. | Cold Spring Harb Protoc 2016 09 01;2016(9) | 222 | 0 |
Curatable | PMID:25066056 | Dolichol is an obligate carrier of glycans for N-linked protein glycosylation, O-mannosylation, and GPI anchor biosynthesis. cis-prenyltransferase (cis-PTase) is the first enzyme committed to the synthesis of dolichol. However, the proteins responsible for mammalian cis-PTase activity have not been delineated. Here we show that Nogo-B receptor (NgBR) is a subunit required for dolichol synthesis in yeast, mice, and man. Moreover, we describe a family with a congenital disorder of glycosylation caused by a loss of function mutation in the conserved C terminus of NgBR-R290H and show that fibroblasts isolated from patients exhibit reduced dolichol profiles and enhanced accumulation of free cholesterol identically to fibroblasts from mice lacking NgBR. Mutation of NgBR-R290H in man and orthologs in yeast proves the importance of this evolutionarily conserved residue for mammalian cis-PTase activity and function. Thus, these data provide a genetic basis for the essential role of NgBR in dolichol synthesis and protein glycosylation. | Cell Metab 2014 Sep 02;20(3):448-57 | 256 | 1 |
Wrong organism | PMID:17575050 | Innate immunity against pathogen infection is an evolutionarily conserved process among multicellular organisms. Arabidopsis SNC1 encodes a Resistance protein that combines attributes of multiple mammalian pattern recognition receptors. Utilizing snc1 as an autoimmune model, we identified a discrete protein complex containing at least three members--MOS4 (Modifier Of snc1, 4), AtCDC5, and PRL1 (Pleiotropic Regulatory Locus 1)--that are all essential for plant innate immunity. AtCDC5 has DNA-binding activity, suggesting that this complex probably regulates defense responses through transcriptional control. Since the complex components along with their interactions are highly conserved from fission yeast to Arabidopsis and human, they may also have a yet-to-be-identified function in mammalian innate immunity. | Genes Dev 2007 Jun 15;21(12):1484-93 | 171 | 0 |
Wrong organism | PMID:9188863 | CDC25B2, a protein tyrosine phosphatase closely related to the putative CDC25B oncogene, was identified in a Burkitt lymphoma cDNA library. CDC25B2 differs from CDC25B by a 14 residue insertion and a 41 residue deletion, which are both located in the amino-terminal region of the protein, upstream of the catalytic domain. Examination of the genomic sequence revealed that CDC25B1 (formerly B) and CDC25B2 are splice variants of the same gene. A third variant, CDC25B3, that carries both the 14 and the 41 residue sequences was also identified in the same cDNA library. All three variants were detected in a panel of human primary culture and cell lines, although at different levels. In primary fibroblasts and in HeLa cells the CDC25B expression is cell cycle regulated, reaching a maximum in G2-phase. In vitro, CDC25B1 phosphatase is slightly more active than CDC25B2 and B3. However, episomal overexpression of the three CDC25B variants in fission yeast reveals that in vivo, CDC25B2 is largely more active than either B1 or B3 (B2>B3>B1) both to complement a thermosensitive S pombe CDC25 activity and to act as a mitotic inducer. Alternative splicing of CDC25B may therefore contribute to the control of cell proliferation. | Oncogene 1997 May 22;14(20):2485-95 | 303 | 0 |
Curatable | PMID:10233152 | Transcriptional induction of many stress-response genes is dependent on stress-induced nuclear accumulation of stress-activated protein kinases (SAPKs). In the fission yeast Schizosaccharomyces pombe, nuclear accumulation of the SAPK Spc1 (also known as StyI) requires activating phosphorylation catalyzed by the SAPK kinase Wis1; however, it is unknown whether the localization of Spc1 is regulated by nuclear transport factors. Herein are reported studies that show that Spc1 localization is regulated by active transport mechanisms during osmotic stress. Nuclear import of Spc1 requires Pim1, a homologue of the guanine nucleotide exchange factor RCC1 that is essential for nucleocytoplasmic shuttling of proteins. Nuclear export of Spc1 is regulated by the export factor Crm1. An Spc1-Crm1 complex forms as Spc1 is exported from the nucleus. Wis1 and the tyrosine phosphatases Pyp1 and Pyp2 that inactivate Spc1 are excluded from the nucleus by a Crm1-independent mechanism; hence the nuclear import of Spc1 leads to transient isolation from its regulatory proteins. Thus, active nucleocytoplasmic shuttling is required for both the function and regulation of Spc1 during the osmotic shock response. | Mol Biol Cell 1999 May;10(5):1395-407 | 288 | 1 |
Not physically mapped | PMID:24186545 | We have isolated 150 benomyl resistant mutants of the fission yeast Schizosaccharomyces pombe. Seven of these mutants were found to be cold sensitive for mitosis. These mutants were the subject of physiological, cytological and genetical characterisation. Growth and division of the seven mutants were similar to the wild type strain at 35 °C. After shift from the permissive (35 °C) to the restrictive temperature (20 °C) the mutants became blocked in mitosis whilst cellular growth continued. Consequently, elongate cells were formed. Six of the seven benomyl resistant mutants became blocked in mitosis at 20 °C with a single aberrant nucleus. In every case the benomyl resistant and cold sensitive phenotype was due to a mutation in a single nuclear gene. These mutants were found to comprise a single genetic linkage group (ben4) and were unlinked to existing TBZ/MBC resistant mutants of S. pombe. Whilst no cross resistance was found in our mutants to TBZ, six of the seven mutants were super sensitive to the spindle poison CIPC. We believe that the phenotype exhibited by these mutants is consistent with a defective tubulin subunit. | Curr Genet 1982 Dec;6(3):195-201 | 250 | 0 |
Wrong organism | PMID:15283699 | Spermidine/spermine-N1-acetyltransferase (SSAT1) is a short-lived polyamine catabolic enzyme inducible by polyamines and polyamine analogues. Induction of SSAT1 plays an important role in polyamine homoeostasis, since the N1-acetylated polyamines can be excreted or oxidized by acetylpolyamine oxidase. We have purified a recombinant human acetyltransferase (SSAT2) that shares 45% identity and 61% homology with human SSAT1, but is only distally related to other known members of the GNAT (GCN5-related N-acetyltransferase) family. Like SSAT1, SSAT2 is widely expressed, but did not turn over rapidly, and levels were unaffected by treatments with polyamine analogues. Despite similarity in sequence to SSAT1, polyamines were found to be poor substrates of purified SSAT2, having K(m) values in the low millimolar range and kcat values of <0.01 s(-1). The kcat/K(m) values for spermine and spermidine for SSAT2 were <0.0003% those of SSAT1. Expression of SSAT2 in NIH-3T3 cells was not detrimental to growth, and did not reduce polyamine content or increase acetylpolyamines. These results indicate that SSAT2 is not a polyamine catabolic enzyme, and that polyamines are unlikely to be its natural intracellular substrates. A promising candidate for the physiological substrate of SSAT2 is thialysine [S-(2-aminoethyl)-L-cysteine], which is acetylated predominantly at the epsilon-amino group with K(m) and kcat values of 290 muM and 5.2 s(-1). Thialysine is a naturally occurring modified amino acid that can undergo metabolism to form cyclic ketimine derivatives found in the brain and as urinary metabolites, which can undergo further reaction to form antioxidants. SSAT2 should be renamed 'thialysine N(epsilon)-acetyltransferase', and may regulate this pathway. | Biochem J 2004 Nov 15;384(Pt 1):139-48 | 466 | 0 |
Curatable | PMID:9802209 | We have cloned and sequenced the Schizosaccharomyces pombe ade10 gene encoding 5-phosphoribosyl-4-carboxamide 5-aminoimidazole transformylase inosine monophosphate cyclohydrolase. The sequence has an uninterrupted open reading frame of 1755 nucleotides corresponding to 585 amino acid residues. The deduced amino acid sequence shows a high degree of similarity to the purH gene product of many species, including Saccharomyces cerevisiae, human, chicken and Escherichia coli. Moreover our data indicate that intrachromosomal recombination in Schiz. pombe is enhanced if the ade10 gene product is defective. | Yeast 1998 Oct;14(14):1307-10 | 156 | 1 |
Curatable | PMID:19001497 | Cytoplasmic microtubule nucleation in the fission yeast Schizosaccharomyces pombe involves the interacting proteins Mto1 and Mto2, which are thought to recruit the gamma-tubulin complex (gamma-TuC) to prospective microtubule organizing centres. Mto1 contains a short amino-terminal region (CM1) that is conserved in higher eukaryotic proteins implicated in microtubule organization, centrosome function and/or brain development. Here we show that mutations in the Mto1 CM1 region generate mutant proteins that are functionally null for cytoplasmic microtubule nucleation and interaction with the gamma-TuC (phenocopying mto1Delta), even though the Mto1-mutant proteins localize normally in cells and can bind Mto2. Interestingly, the CM1 region is not sufficient for efficient interaction with the gamma-TuC. Mutation within a different region of Mto1, outside CM1, abrogates Mto2 binding and also impairs cytoplasmic microtubule nucleation and Mto1 association with the gamma-TuC. However, this mutation allows limited microtubule nucleation in vivo, phenocopying mto2Delta rather than mto1Delta. Further experiments suggest that Mto1 and Mto2 form a complex (Mto1/2 complex) independent of the gamma-TuC and that Mto1 and Mto2 can each associate with the gamma-TuC in the absence of the other, albeit extremely weakly compared to when both Mto1 and Mto2 are present. We propose that Mto2 acts cooperatively with Mto1 to promote association of the Mto1/2 complex with the gamma-TuC. | J Cell Sci 2008 Dec 01;121(Pt 23):3971-80 | 378 | 1 |
Curatable | PMID:11486016 | Cdc2 kinase is a master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. Our data indicate that Cdc2 phosphorylates replication factor Orp2, a subunit of the origin recognition complex (ORC). Cdc2 phosphorylation of Orp2 appears to be one of multiple mechanisms by which Cdc2 prevents DNA rereplication in a single cell cycle. Cdc2 phosphorylation of Orp2 is not required for Cdc2 to activate DNA replication initiation. Phosphorylation of Orp2 appears first in S phase and becomes maximal in G(2) and M when Cdc2 kinase activity is required to prevent reinitiation of DNA replication. A mutant lacking Cdc2 phosphorylation sites in Orp2 (orp2-T4A) allowed greater rereplication of DNA than congenic orp2 wild-type strains when the limiting replication initiation factor Cdc18 was deregulated. Thus, Cdc2 phosphorylation of Orp2 may be redundant with regulation of Cdc18 for preventing reinitiation of DNA synthesis. Since Cdc2 phosphorylation sites are present in Orp2 (also known as Orc2) from yeasts to metazoans, we propose that cell cycle-regulated phosphorylation of the ORC provides a safety net to prevent DNA rereplication and resulting genetic instability. | Mol Cell Biol 2001 Sep;21(17):5767-77 | 297 | 1 |
Curatable | PMID:16799560 | By sequence-specific binding to 3' UUU-OH, the La protein shields precursor (pre)-RNAs from 3' end digestion and is required to protect defective pre-transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM beta-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3' exonuclease component of pre-tRNA decay. 3' end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3' protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands. | Nat Struct Mol Biol 2006 Jul;13(7):611-8 | 222 | 1 |
Curatable | PMID:11683417 | Regular segregation of homologous chromosomes during meiotic divisions is essential for the generation of viable progeny. In recombination-proficient organisms, chromosome disjunction at meiosis I generally occurs by chiasma formation between the homologs (chiasmate meiosis). We have studied meiotic stages in living rec8 and rec7 mutant cells of fission yeast, with special attention to prophase and the first meiotic division. Both rec8 and rec7 are early recombination mutants, and in rec7 mutants, chromosome segregation at meiosis I occurs without any recombination (achiasmate meiosis). Both mutants showed distinct irregularities in nuclear prophase movements. Additionally, rec7 showed an extended first division of variable length and with single chromosomes changing back and forth between the cell poles. Two other early recombination deficient mutants (rec14 and rec15) showed very similar phenotypes to rec7 during the first meiotic division, and the fidelity of achiasmate chromosome segregation slightly exceeded the expected random level. We discuss possible regulatory mechanisms of fission yeast to deal with achiasmate chromosome segregation. | J Cell Sci 2001 Aug;114(Pt 15):2843-53 | 228 | 1 |
Curatable | PMID:28678660 | Despite its ubiquity in interphase eukaryotic nuclei, the functional significance of the RabI configuration, in which interphase centromeres are clustered at the nuclear envelope (NE) near the centrosome and telomeres localize at the opposite end of the nucleus, has remained mysterious. In a broad variety of organisms, including Schizosaccharomyces pombe, the RabI configuration is maintained throughout mitotic interphase. The fission yeast linker of nucleoskeleton and cytoskeleton (LINC) complex mediates this centromere association. The functional significance of centromere positioning during interphase has been recently revealed using a conditionally inactivated LINC allele that maintains LINC stability but releases interphase centromere-LINC contacts. Remarkably, this interphase release abolishes mitotic spindle formation. Here, we confirm these observations using an alternative strategy to explore the role of centromere-NE association without modifying the LINC complex. We analyze spindle dynamics in cells lacking Csi1, a stabilizer of centromere-LINC associations, and Lem2, a NE protein harboring lamin interacting domains. We recapitulate these observations and their implications for the functional significance of centromere positioning for cell cycle progression in fission yeast and most likely, a wide range of eukaryotes. | Cell Cycle 2017 Aug 03;16(15):1392-1396 | 284 | 1 |
Wrong organism | PMID:12628935 | The mammalian homolog of the Schizosaccharomyces pombe Rad9 is involved in checkpoint signaling and the induction of apoptosis. While the mechanisms responsible for the regulation of human Rad9 (hRad9) are not known, hRad9 is subject to hyperphosphorylation in the response of cells to DNA damage. The present results demonstrate that protein kinase Cdelta (PKCdelta) associates with Rad9 and that DNA damage induces this interaction. PKCdelta phosphorylates hRad9 in vitro and in cells exposed to genotoxic agents. The functional significance of the interaction between hRad9 and PKCdelta is supported by the finding that activation of PKCdelta is necessary for formation of the Rad9-Hus1-Rad1 complex. We also show that PKCdelta is required for binding of hRad9 to Bcl-2. In concert with these results, inhibition of PKCdelta attenuates Rad9-mediated apoptosis. These findings demonstrate that PKCdelta is responsible for the regulation of Rad9 in the Hus1-Rad1 complex and in the apoptotic response to DNA damage. | EMBO J 2003 Mar 17;22(6):1431-41 | 245 | 0 |
Curatable | PMID:16478984 | Stabilization and processing of stalled replication forks is critical for cell survival and genomic integrity. We characterize a novel DNA repair heterodimer of Nse5 and Nse6, which are nonessential nuclear proteins critical for chromosome segregation in fission yeast. The Nse5/6 dimer facilitates DNA repair as part of the Smc5-Smc6 holocomplex (Smc5/6), the basic architecture of which we define. Nse5-Nse6 [corrected] (Nse5 and Nse6) [corrected] mutants display a high level of spontaneous DNA damage and mitotic catastrophe in the absence of the master checkpoint regulator Rad3 (hATR). Nse5/6 mutants are required for the response to genotoxic agents that block the progression of replication forks, acting in a pathway that allows the tolerance of irreparable UV lesions. Interestingly, the UV sensitivity of Nse5/6 [corrected] is suppressed by concomitant deletion of the homologous recombination repair factor, Rhp51 (Rad51). Further, the viability of Nse5/6 mutants depends on Mus81 and Rqh1, factors that resolve or prevent the formation of Holliday junctions. Consistently, the UV sensitivity of cells lacking Nse5/6 can be partially suppressed by overexpressing the bacterial resolvase RusA. We propose a role for Nse5/6 mutants in suppressing recombination that results in Holliday junction formation or in Holliday junction resolution. | Mol Cell Biol 2006 Mar;26(5):1617-30 | 318 | 1 |
Curatable | PMID:22024164 | Cdc7/Hsk1 is a conserved kinase required for initiation of DNA replication that potentially regulates timing and locations of replication origin firing. Here, we show that viability of fission yeast hsk1Δ cells can be restored by loss of mrc1, which is required for maintenance of replication fork integrity, by cds1Δ, or by a checkpoint-deficient mutant of mrc1. In these mutants, normally inactive origins are activated in the presence of hydroxyurea and binding of Cdc45 to MCM is stimulated. mrc1Δ bypasses hsk1Δ more efficiently because of its checkpoint-independent inhibitory functions. Unexpectedly, hsk1Δ is viable at 37°C. More DNA is synthesized, and some dormant origins fire in the presence of hydroxyurea at 37°C. Furthermore, hsk1Δ bypass strains grow poorly at 25°C compared with higher temperatures. Our results show that Hsk1 functions for DNA replication can be bypassed by different genetic backgrounds as well as under varied physiological conditions, providing additional evidence for plasticity of the replication program in eukaryotes. | J Cell Biol 2011 Oct 31;195(3):387-401 | 244 | 1 |
Curatable | PMID:25825517 | Cell-cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure-the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. | J Cell Biol 2015 Mar 30;208(7):897-911 | 217 | 1 |
Curatable | PMID:11577719 | Conditions for extracellular production of vitamin B6 compounds (B6), especially pyridoxal 5'-phosphate (PLP) by Schizosaccharomyces pombe leul strain were examined. The productivity was dependent on concentration of L-leucine in the culture medium: 30 mg/l gave the highest concentrations of total B6 and PLP. The viable cells harvested at different growth phases showed different productivity: middle and late exponential phase cells showed the highest productivity of total B6 and PLP, respectively. D-Glucose (1%, w/v) among other sugars gave the best productivity. Supplementation of air and ammonium sulfate significantly increased extracellular production of PLP. Superoxide anion producers, menadione and plumbagin, and H202 increased the productivity of PLP. Cycloheximide inhibited the increase of PLP by the oxidative stress and, in contrast, increased pyridoxine. | Biosci Biotechnol Biochem 2001 Aug;65(8):1789-95 | 205 | 1 |
Wrong organism | PMID:12200439 | Scc1/Mcd1 is a component of the cohesin complex that plays an essential role in sister chromatid cohesion in eukaryote cells. Knockout experiments of this gene have been described in budding yeast, fission yeast, and chicken cells, but no study has been reported on human Scc1 thus far. In this study, we found that an N-terminally truncated human Scc1 shows a dominant-negative effect, and we examined the phenotypes of human cells defective in Scc1 function. Scc1 defects led to failure of sister chromatid cohesion in both interphase and mitotic cells. Interestingly, four chromatids derived from two homologues occupied four distinct territories in the nucleus in chromosome painting experiments. In mitotic Scc1-defective cells, chromatids were disjoined with normal condensation, and the spindle-assembly checkpoint was activated. We also found that, although the disjoined kinetochore (half-kinetochore) in Scc1-defective cells contains CENP-A, -B, -C, and -E normally, it apparently does not establish the kinetochore-microtubule association. These results indicate that Scc1 is essential for the association of kinetochores with microtubules. | J Biol Chem 2002 Nov 01;277(44):42306-14 | 275 | 0 |
Curatable | PMID:16024659 | Heterochromatin is critical for proper centromere and telomere function, and it plays a key role in the transcriptional silencing of specific genomic loci. In fission yeast, the Rik1 protein functions with the Clr4 histone methyltransferase at an early step in heterochromatin formation. Here, we use mass spectrometry and tandem affinity purification of a Rik1-TAP fusion protein to identify Rik1-associated proteins. These studies identify two novel proteins, Raf1 and Raf2, which we find are required for H3-K9 methylation and for transcriptional silencing within centromeric heterochromatin. We also find that subunits of a cullin-dependent E3 ubiquitin ligase are associated with Rik1 and Clr4, and Rik1-TAP preparations exhibit robust E3 ubiquitin ligase activity. Furthermore, expression of a dominant-negative allele of the Pcu4 cullin subunit disrupts regulation of K4 methylation within heterochromatin. These studies provide evidence for a novel Rik1-associated E3 ubiquitin ligase that is required for heterochromatin formation. | Genes Dev 2005 Jul 15;19(14):1705-14 | 247 | 1 |
Wrong organism | PMID:2209537 | Both genomic and full length cDNA clones of an Arabidopsis thaliana sugar carrier, STP1, have been obtained using a cDNA clone of the H+/hexose cotransporter from the green alga Chlorella kessleri as hybridization probe. The peptide predicted from these sequences in 522 amino acids long and has a molecular weight of 57,518 kd. This higher plant sugar carrier contains 12 putative transmembrane segments and is highly homologous to the H+/hexose cotransporter from Chlorella, with an overall identity in the amino acid sequence of 47.1%. It is also homologous to the human HepG2 glucose transporter (28.4%), and other sugar carriers from man, rat, yeast and Escherichia coli. The definite proof for the function of the STP1 protein as a hexose transporter and data on its substrate specificity were obtained by heterologous expression in the fission yeast Schizosaccharomyces pombe. Transformed yeast cells transport D-glucose with a 100-fold lower KM value than control cells. Moreover only the transformed cells were able to accumulate the non-metabolizable D-glucose analogue 3-O-methyl-D-glucose, indicating that the Arabidopsis carrier catalyses an energy dependent, active uptake of hexoses. Expression of STP1 mRNA is low in heterotrophic tissues like roots or flowers. High levels of expression are found in leaves. | EMBO J 1990 Oct;9(10):3045-50 | 318 | 0 |
Biotech | PMID:31494498 | Fifteen vitisin A-type pyranoanthocyanins (vAPs) were determined in bilberry wines fermented with Saccharomyces cerevisiae and Schizosaccharomyces pombe by HPLC-DAD and UPLC-DAD-ESI-MS/MS. The fermentation involving S. pombe enhanced the production of vAPs compared to the fermentation with pure S. cerevisiae. The formation of vAPs correlated significantly with the decrease in the content of monomeric anthocyanins and pyruvic acid during 12 months of aging. vAPs were more stable than their corresponding monomeric anthocyanins. Methylation in the B-ring and glycosylation with galactose and arabinose further improved the stability of vAPs. Aging for 12 months led to depletion of pyruvic acid and reduction of over 50% of monomeric anthocyanins. The content of vAPs increased by 26-54% during the first six months of aging, followed by a 2.2-10.2% reduction over the following six months. More residual pyruvic acid in S. pombe wines after fermentation consequently enhanced the generation of vAPs during aging. | Food Chem 2020 Feb 01;305:125438 | 269 | 0 |
Curatable | PMID:22024167 | We created two new mutants of fission yeast cofilin to investigate why cytokinesis in many organisms depends on this small actin-binding protein. These mutant cofilins bound actin monomers normally, but bound and severed ADP-actin filaments much slower than wild-type cofilin. Cells depending on mutant cofilins condensed nodes, precursors of the contractile ring, into clumps rather than rings. Starting from clumped nodes, mutant cells slowly assembled rings from diverse intermediate structures including spiral strands containing actin filaments and other contractile ring proteins. This process in mutant cells depended on α-actinin. These slowly assembled contractile rings constricted at a normal rate but with more variability, indicating ring constriction is not very sensitive to defects in severing by cofilin. Computer simulations of the search-capture-pull and release model of contractile ring formation predicted that nodes clump when the release step is slow, so cofilin severing of actin filament connections between nodes likely contributes to the release step. | J Cell Biol 2011 Oct 31;195(3):485-98 | 220 | 1 |
Curatable | PMID:8423799 | Schizosaccharomyces pombe is becoming an increasingly useful organism for the study of cellular processes, since in certain respects, such as the cell cycle and splicing, it is similar to metazoans. Previous biochemical studies have shown that the DNA binding ability of S. pombe heat shock factor (HSF) is fully induced only under stressed conditions, in a manner similar to that of Drosophila melanogaster and humans but differing from the constitutive binding by HSF in the budding yeasts. We report the isolation of the cDNA and gene for the HSF from S. pombe. S. pombe HSF has a domain structure that is more closely related to the structure of human and D. melanogaster HSFs than to the structure of the budding yeast HSFs, further arguing that regulation of HSF in S. pombe is likely to reflect regulation in metazoans. Surprisingly, the S. pombe HSF gene is required for growth at normal temperatures. We show that the S. pombe HSF gene can be replaced by the D. melanogaster HSF gene and that strains containing either of these genes behave similarly to transiently heat-shocked strains with respect to viability and the level of heat-induced transcripts from heat shock promoters. Strains containing the D. melanogaster HSF gene, however, have lower growth rates and show altered morphology at normal growth temperatures. These data demonstrate the functional conservation of domains of HSF that are required for response to heat shock. They further suggest a general role for HSF in growth of eukaryotic cells under normal (nonstressed) growth conditions. | Mol Cell Biol 1993 Feb;13(2):749-61 | 348 | 1 |
Wrong organism | PMID:14769857 | In the development of hyphal germ tubes of Candida albicans, a band of septin forms at the base of the germ tube (basal septin band). Later, a septin ring forms, which organizes the first septum within the germ tube (septin ring). We have investigated the role of the Nim1 kinases, Gin4 and Hsl1, in the formation of these septin structures. We show that during germ tube formation, Gin4 is required for the organization of the septin ring but not the basal septin band. Hsl1 is not required for the formation of either septin rings or basal bands. Unexpectedly, we found that both gin4Delta and hsl1Delta mutants form pseudohyphae constitutively, in a fashion that in the case of gin4Delta, is partly independent of Swe1. Gin4-depleted pseudohyphae are unable to form hyphae when challenged with serum, but this can be overcome by ectopic expression of Gin4 from the MET3 promoter. Thus, Gin4 may regulate the developmental switch from pseudohyphae to hyphae. | J Cell Biol 2004 Feb 16;164(4):581-91 | 242 | 0 |
Wrong organism | PMID:7916638 | We have isolated a cDNA clone from a Xenopus laevis tadpole cDNA library which probably codes for the large subunit of glutathione synthetase. The corresponding protein comprises 474 amino acids and shows a significant homology with the large subunit of glutathione synthetase of Schizosaccharomyces pombe. RNase protection experiments revealed that the gene is transcribed during oogenesis and that zygotic expression starts after midblastula transition. Transcripts are also detected in various adult tissues suggesting an ubiquitous distribution of the corresponding protein. | Biochim Biophys Acta 1993 Sep 23;1174(3):295-8 | 120 | 0 |
Curatable | PMID:22065639 | Cdk1 controls many aspects of mitotic chromosome behavior and spindle microtubule (MT) dynamics to ensure accurate chromosome segregation. In this paper, we characterize a new kinetochore substrate of fission yeast Cdk1, Nsk1, which promotes proper kinetochore-MT (k-MT) interactions and chromosome movements in a phosphoregulated manner. Cdk1 phosphorylation of Nsk1 antagonizes Nsk1 kinetochore and spindle localization during early mitosis. A nonphosphorylatable Nsk1 mutant binds prematurely to kinetochores and spindle, cementing improper k-MT attachments and leading to high rates of lagging chromosomes that missegregate. Accordingly, cells lacking nsk1 exhibit synthetic growth defects with mutations that disturb MT dynamics and/or kinetochore structure, and lack of proper phosphoregulation leads to even more severe defects. Intriguingly, Nsk1 is stabilized by binding directly to the dynein light chain Dlc1 independently of the dynein motor, and Nsk1-Dlc1 forms chainlike structures in vitro. Our findings establish new roles for Cdk1 and the Nsk1-Dlc1 complex in regulating the k-MT interface and chromosome segregation. | J Cell Biol 2011 Nov 14;195(4):583-93 | 268 | 1 |
Curatable | PMID:22992726 | Metabolic responses of unicellular organisms are mostly acute, transient, and cell-autonomous. Regulation of nutrient uptake in yeast is one such rapid response. High quality nitrogen sources such as NH(4)(+) inhibit uptake of poor nitrogen sources, such as amino acids. Both transcriptional and posttranscriptional mechanisms operate in nutrient uptake regulation; however, many components of this system remain uncharacterized in the fission yeast, Schizosaccharomyces pombe. Here, we demonstrate that the Spt-Ada-Gcn acetyltransferase (SAGA) complex modulates leucine uptake. Initially, we noticed that a branched-chain amino acid auxotroph exhibits a peculiar adaptive growth phenotype on solid minimal media containing certain nitrogen sources. In fact, the growth of many auxotrophic strains is inhibited by excess NH(4)Cl, possibly through nitrogen-mediated uptake inhibition of the corresponding nutrients. Surprisingly, DNA microarray analysis revealed that the transcriptional reprogramming during the adaptation of the branched-chain amino acid auxotroph was highly correlated with reprogramming observed in deletions of the SAGA histone acetyltransferase module genes. Deletion of gcn5(+) increased leucine uptake in the prototrophic background and rendered the leucine auxotroph resistant to NH(4)Cl. Deletion of tra1(+) caused the opposite phenotypes. The increase in leucine uptake in the gcn5Δ mutant was dependent on an amino acid permease gene, SPCC965.11c(+). The closest budding yeast homolog of this permease is a relatively nonspecific amino acid permease AGP3, which functions in poor nutrient conditions. Our analysis identified the regulation of nutrient uptake as a physiological function for the SAGA complex, providing a potential link between cellular metabolism and chromatin regulation. | J Biol Chem 2012 Nov 02;287(45):38158-67 | 396 | 1 |
Method or reagent | PMID:26305038 | Construction of multiply mutated strains for genetic interaction analysis and of strains carrying different epitope tags at multiple open reading frames for testing protein localization, abundance and protein-protein interactions is hampered by the availability of a sufficient number of different selectable markers. Moreover, strains with single gene deletions or tags often already exist in strain collections; for historical reasons these will mostly carry the ura4(+) gene or the G418-resistance kanMX as marker. Because it is rather cumbersome to produce multiply deleted or tagged strains using the same marker, or to completely reconstruct a particular strain with a different marker, single-step exchange protocols of markers are a time-saving alternative. In recent years, dominant drug resistance markers (DDRMs) against clonNAT, hygromycin B and bleomycin have been adapted and successfully used in Schizosaccharomyces pombe. The corresponding DDRM cassettes, natMX, hphMX and bleMX, carry the TEF promotor and terminator sequences from Ashbya gossypii as kanMX; this provides flanking homologies to enable single-step marker swapping by homologous gene targeting. To expand this very useful toolset for single-step marker exchange, I constructed MX cassettes containing the nutritional markers arg3(+), his3(+), leu1(+) and ura4(+). Furthermore, a set of constructs was created to enable single-step exchange of ura4(+) to kanMX6, natMX4 and hphMX4. The functionality of the cassettes is demonstrated by successful single-step marker swapping at several loci. These constructs allow straightforward and rapid remarking of existing ura4(+) - and MX-deleted and -tagged strains. | Yeast 2015 Dec;32(12):703-10 | 366 | 0 |
Curatable | PMID:7502077 | The origin recognition complex (ORC), a multisubunit protein identified in Saccharomyces cerevisiae, binds to chromosomal replicators and is required for the initiation of cellular DNA replication. Complementary DNAs (cDNAs) encoding proteins related to the two largest subunits of ORC were cloned from various eukaryotes. The cDNAs encoding proteins related to S. cerevisiae Orc1p were cloned from the budding yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and human cells. These proteins show similarity to regulators of the S and M phases of the cell cycle. Genetic analysis of orc1+ from S. pombe reveals that it is essential for cell viability. The cDNAs encoding proteins related to S. cerevisiae Orc2p were cloned from Arabidopsis thaliana, Caenorhabditis elegans, and human cells. The human ORC-related proteins interact in vivo to form a complex. These studies studies suggest that ORC subunits are conserved and that the role of ORC is a general feature of eukaryotic DNA replication. | Science 1995 Dec 08;270(5242):1667-71 | 249 | 1 |
Review or comment | PMID:32761854 | Research over the last two decades has identified a group of meiosis-specific proteins, consisting of budding yeast Spo13, fission yeast Moa1, mouse MEIKIN, and Drosophila Mtrm, with essential functions in meiotic chromosome segregation. These proteins, which we call meiosis I kinase regulators (MOKIRs), mediate two major adaptations to the meiotic cell cycle to allow the generation of haploid gametes from diploid mother cells. Firstly, they promote the segregation of homologous chromosomes in meiosis I (reductional division) by ensuring that sister kinetochores face towards the same pole (mono-orientation). Secondly, they safeguard the timely separation of sister chromatids in meiosis II (equational division) by counteracting the premature removal of pericentromeric cohesin, and thus prevent the formation of aneuploid gametes. Although MOKIRs bear no obvious sequence similarity, they appear to play functionally conserved roles in regulating meiotic kinases. Here, the known functions of MOKIRs are reviewed and their possible mechanisms of action are discussed. Also see the video abstract here https://youtu.be/tLE9KL89bwk. | Bioessays 2020 10;42(10):e2000018 | 261 | 0 |
Curatable | PMID:10490657 | We have previously shown that replication of fission yeast chromosomes is initiated in distinct regions. Analyses of autonomous replicating sequences have suggested that regions required for replication are very different from those in budding yeast. Here, we present evidence that fission yeast replication origins are specifically associated with proteins that participate in initiation of replication. Most Orp1p, a putative subunit of the fission yeast origin recognition complex (ORC), was found to be associated with chromatin-enriched insoluble components throughout the cell cycle. In contrast, the minichromosome maintenance (Mcm) proteins, SpMcm2p and SpMcm6p, encoded by the nda1(+)/cdc19(+) and mis5(+) genes, respectively, were associated with chromatin DNA only during the G(1) and S phases. Immunostaining of spread nuclei showed SpMcm6p to be localized at discrete foci on chromatin during the G(1) and S phases. A chromatin immunoprecipitation assay demonstrated that Orp1p was preferentially localized at the ars2004 and ars3002 origins of the chromosome throughout the cell cycle, while SpMcm6p was associated with these origins only in the G(1) and S phases. Both Orp1p and SpMcm6p were associated with a 1-kb region that contains elements required for autonomous replication of ars2004. The results suggest that the fission yeast ORC specifically interacts with chromosomal replication origins and that Mcm proteins are loaded onto the origins to play a role in initiation of replication. | Mol Cell Biol 1999 Oct;19(10):7228-36 | 336 | 1 |
Wrong organism | PMID:8804314 | The paired box transcription factor Pax-5 (B-cell-specific activator protein) is a key regulator of lineage-specific gene expression and differentiation in B-lymphocytes. We show that Pax-5 functions as a cell type-specific docking protein that facilitates binding of the early B-cell-specific mb-1 promoter by proteins of the Ets proto-oncogene family. Transcriptional activity of the mb-1 promoter in pre-B-cells is critically dependent on binding sites for Pax-5:Ets complexes. Ternary complex assembly requires only the Pax-5 paired box and ETS DNA-binding domains. Mutation of a single base pair in the ternary complex binding site allows for independent binding by Ets proteins but, conversely, inhibits the binding of Pax-5 by itself. Strikingly, the mutation reverses the pattern of complex assembly: Ets proteins recruit Pax-5 to bind the mutated sequence. Recruitment of Net and Elk-1, but not SAP1a, by Pax-5 defines a functional difference between closely related Ets proteins. Replacement of a valine (V68) in the ETS domain of SAP1a by aspartic acid (as found in c-Ets-1, Elk-1, and Net) enhanced ternary complex formation by more than 60-fold. Together, these observations define novel transcription factor interactions that regulate gene expression in B cells. | Genes Dev 1996 Sep 01;10(17):2198-211 | 303 | 0 |
Curatable | PMID:21873461 | The N(6)-(isopentenyl)adenosine (i(6)A) modification of some tRNAs at position A37 is found in all kingdoms and facilitates codon-specific mRNA decoding, but occurs in different subsets of tRNAs in different species. Here we examine yeasts' tRNA isopentenyltransferases (i.e., dimethylallyltransferase, DMATase, members of the Δ(2)-isopentenylpyrophosphate transferase, IPPT superfamily) encoded by tit1(+) in Schizosaccharomyces pombe and MOD5 in Saccharomyces cerevisiae, whose homologs are Escherichia coli miaA, the human tumor suppressor TRIT1, and the Caenorhabditis elegans life-span gene product GRO-1. A major determinant of miaA activity is known to be the single-stranded tRNA sequence, A36A37A38, in a stem-loop. tRNA(Trp)(CCA) from either yeast is a Tit1p substrate, but neither is a Mod5p substrate despite the presence of A36A37A38. We show that Tit1p accommodates a broader range of substrates than Mod5p. tRNA(Trp)(CCA) is distinct from Mod5p substrates, which we sort into two classes based on the presence of G at position 34 and other elements. A single substitution of C34 to G converts tRNA(Trp)(CCA) to a Mod5p substrate in vitro and in vivo, consistent with amino acid contacts to G34 in existing Mod5p-tRNA(Cys)(GCA) crystal structures. Mutation of Mod5p in its G34 recognition loop region debilitates it differentially for its G34 (class I) substrates. Multiple alignments reveal that the G34 recognition loop sequence of Mod5p differs significantly from Tit1p, which more resembles human TRIT1 and other DMATases. We show that TRIT1 can also modify tRNA(Trp)(CCA) consistent with broad recognition similar to Tit1p. This study illustrates previously unappreciated molecular plasticity and biological diversity of the tRNA-isopentenyltransferase system of eukaryotes. | RNA 2011 Oct;17(10):1846-57 | 500 | 1 |
Method or reagent | PMID:28733418 | Schizosaccharomyces pombe cells initiate a sexual differentiation program, which comprises meiosis and spore formation, on nitrogen starvation. This protocol describes a simple procedure to induce meiosis and sporulation semisynchronously in heterozygous diploid S. pombe cells. The procedure is appropriate for a variety of applications, including fluorescence-activated cell sorting (FACS) and northern and western blotting. Zygotic meiosis can also be induced by the same procedure, although less synchronously. | Cold Spring Harb Protoc 2017 Sep 01;2017(9):pdb.prot091785 | 114 | 0 |
Wrong organism | PMID:14617801 | Mus81 is a highly conserved endonuclease with homology to the XPF subunit of the XPF-ERCC1 complex. In yeast Mus81 associates with a second subunit, Eme1 or Mms4, which is essential for endonuclease activity in vitro and for in vivo function. Human Mus81 binds to a homolog of fission yeast Eme1 in vitro and in vivo. We show that recombinant Mus81-Eme1 cleaves replication forks, 3' flap substrates, and Holliday junctions in vitro. By use of differentially tagged versions of Mus81 and Eme1, we find that Mus81 associates with Mus81 and that Eme1 associates with Eme1. Thus, complexes containing two or more Mus81-Eme1 units could function to coordinate substrate cleavage in vivo. Down-regulation of Mus81 by RNA interference reduces mitotic recombination in human somatic cells. The recombination defect is rescued by expression of a bacterial Holliday junction resolvase. These data provide direct evidence for a role of Mus81-Eme1 in mitotic recombination in higher eukaryotes and support the hypothesis that Mus81-Eme1 resolves Holliday junctions in vivo. | Mol Biol Cell 2004 02;15(2):552-62 | 262 | 0 |
Curatable | PMID:18667531 | The Smc5-Smc6 holocomplex plays essential but largely enigmatic roles in chromosome segregation, and facilitates DNA repair. The Smc5-Smc6 complex contains six conserved non-SMC subunits. One of these, Nse1, contains a RING-like motif that often confers ubiquitin E3 ligase activity. We have functionally characterized the Nse1 RING-like motif, to determine its contribution to the chromosome segregation and DNA repair roles of Smc5-Smc6. Strikingly, whereas a full deletion of nse1 is lethal, the Nse1 RING-like motif is not essential for cellular viability. However, Nse1 RING mutant cells are hypersensitive to a broad spectrum of genotoxic stresses, indicating that the Nse1 RING motif promotes DNA repair functions of Smc5-Smc6. We tested the ability of both human and yeast Nse1 to mediate ubiquitin E3 ligase activity in vitro and found no detectable activity associated with full-length Nse1 or the isolated RING domains. Interestingly, however, the Nse1 RING-like domain is required for normal Nse1-Nse3-Nse4 trimer formation in vitro and for damage-induced recruitment of Nse4 and Smc5 to subnuclear foci in vivo. Thus, we propose that the Nse1 RING-like motif is a protein-protein interaction domain required for Smc5-Smc6 holocomplex integrity and recruitment to, or retention at, DNA lesions. | Mol Biol Cell 2008 Oct;19(10):4099-109 | 331 | 1 |
Review or comment | PMID:17207637 | Yeast are eukaryotic unicellular organisms that are easy to cultivate and offer a wide spectrum of genetic and cytological tools for research. Yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have successfully been used as models for human cell division cycle. Stress conditions, cellular ageing, failed mating, certain mutations or heterologous expression of proapoptotic genes induce yeast cell death with the characteristic markers of apoptosis. Several crucial regulators of apoptosis are conserved between metazoans and yeast. This simple model organism offers the possibility to identify conserved and new components of the apoptotic machinery and to elucidate the regulatory pathways beyond. | Semin Cancer Biol 2007 Apr;17(2):112-21 | 142 | 0 |
Curatable | PMID:34918022 | Circular chromosomes have frequently been observed in tumors of mesenchymal origin. In the fission yeast Schizosaccharomyces pombe, deletion of pot1+ results in rapid telomere loss, and the resulting survivors have circular chromosomes. Fission yeast has 2 bromodomain and extra-terminal (BET) proteins, Bdf1 and Bdf2; both are required for maintaining acetylated histones. Here, we found that bdf2, but not bdf1, was synthetically lethal with pot1. We also obtained a temperature-sensitive bdf2-ts mutant, which can grow at high temperatures but becomes camptothecin sensitive. This suggests that Bdf2 is defective at high temperatures. The cell cycle of the pot1 bdf2-ts mutant was delayed in the G2 and/or M phase at a semipermissive temperature. Furthermore, a temperature-sensitive mutant of mst1, which encodes histone acetyltransferase, showed a synthetic growth defect with a pot1 disruptant at a semipermissive temperature. Our results suggest that Bdf2 and Mst1 are required for the growth of cells with circular chromosomes. | Biosci Biotechnol Biochem 2022 Jan 24;86(2):224-230 | 251 | 1 |
Curatable | PMID:28338873 | A contractile ring (CR) is involved in cytokinesis in animal and yeast cells. Although several types of actin-bundling proteins associate with F-actin in the CR, their individual roles in the CR have not yet been elucidated in detail. Ain1 is the sole α-actinin homologue in the fission yeast Schizosaccharomyces pombe and specifically localizes to the CR with a high turnover rate. S. pombe cells lacking the ain1+ gene show defects in cytokinesis under stress conditions. We herein investigated the biochemical activity and cellular localization mechanisms of Ain1. Ain1 showed weaker affinity to F-actin in vitro than other actin-bundling proteins in S. pombe. We identified a mutation that presumably loosened the interaction between two calponin-homology domains constituting the single actin-binding domain (ABD) of Ain1, which strengthened the actin-binding activity of Ain1. This mutant protein induced a deformation in the ring shape of the CR. Neither a truncated protein consisting only of an N-terminal ABD nor a truncated protein lacking a C-terminal region containing an EF-hand motif localized to the CR, whereas the latter was involved in the bundling of F-actin in vitro. We herein propose detailed mechanisms for how each part of the molecule is involved in the proper cellular localization and function of Ain1. | J Biochem 2017 Aug 01;162(2):93-102 | 305 | 1 |
Curatable | PMID:24656819 | The firing of eukaryotic origins of DNA replication requires CDK and DDK kinase activities. DDK, in particular, is involved in setting the temporal program of origin activation, a conserved feature of eukaryotes. Rif1, originally identified as a telomeric protein, was recently implicated in specifying replication timing in yeast and mammals. We show that this function of Rif1 depends on its interaction with PP1 phosphatases. Mutations of two PP1 docking motifs in Rif1 lead to early replication of telomeres in budding yeast and misregulation of origin firing in fission yeast. Several lines of evidence indicate that Rif1/PP1 counteract DDK activity on the replicative MCM helicase. Our data suggest that the PP1/Rif1 interaction is downregulated by the phosphorylation of Rif1, most likely by CDK/DDK. These findings elucidate the mechanism of action of Rif1 in the control of DNA replication and demonstrate a role of PP1 phosphatases in the regulation of origin firing. | Cell Rep 2014 Apr 10;7(1):53-61 | 225 | 1 |
Method or reagent | PMID:390094 | Recent improvements in the optics and electronics of flow cytometry systems, as well as in staining techniques, permit the assay of such minute cellular constituents as the DNA and protein contents of micro-organisms. To assess the usefulness of this technique, DNA and protein content distributions were determined in Escherichia coli, Lactobacillus brevis, Lactobacillus casei, Chlorella kessleri 8k, Saccharomyces cerevisiae, Candida utilis, Schizosaccharomyces pombe and Euglena gracilis. Investigations of the DNA content distributions of polyploid strains of Saccharomyces cerevisiae indicated that the method can be used to determine ploidy. The rapidity of flow cytometry measurements allows accurate determinations in large populations. | J Gen Microbiol 1979 Aug;113(2):369-75 | 169 | 0 |
Cell composition or WT feature | PMID:23530189 | Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the synthesis of cholesterol via the mevalonate pathway. This pathway also produces coenzyme Q (a component of the respiratory chain), dolichols (important for protein glycosylation), and isoprenoids (lipid moieties responsible for the membrane association of small GTPases). We previously showed that the nematode Caenorhabditis elegans is useful to study the noncholesterol effects of statins because its mevalonate pathway lacks the sterol synthesis branch but retains all other branches. Here, from a screen of 150,000 mutagenized genomes, we isolated four C. elegans mutants resistant to statins by virtue of gain-of-function mutations within the first six amino acids of the protein ATFS-1, the key regulator of the mitochondrial unfolded protein response that includes activation of the chaperones HSP-6 and HSP-60. The atfs-1 gain-of-function mutants are also resistant to ibandronate, an inhibitor of an enzyme downstream of HMG-CoA reductase, and to gliotoxin, an inhibitor acting on a subbranch of the pathway important for protein prenylation, and showed improved mitochondrial function and protein prenylation in the presence of statins. Additionally, preinduction of the mitochondrial unfolded protein response in wild-type worms using ethidium bromide or paraquat triggered statin resistance, and similar observations were made in Schizosaccharomyces pombe and in a mammalian cell line. We conclude that statin resistance through maintenance of mitochondrial homeostasis is conserved across species, and that the cell-lethal effects of statins are caused primarily through impaired protein prenylation that results in mitochondria dysfunction. | Proc Natl Acad Sci U S A 2013 Apr 09;110(15):5981-6 | 409 | 0 |
DNA recombination related | PMID:7498729 | The M26 mutation in the ade6 gene of Schizosaccharomyces pombe creates a hot spot of meiotic recombination. A single base substitution, the M26 mutation is situated within the open reading frame, near the 5' end. It has previously been shown that the heptanucleotide sequence 5' ATGACGT 3', which includes the M26 mutation, is required for hot spot activity. The 510-bp ade6-delXB deletion encompasses the promoter and the first 23 bp of the open reading frame, ending 112 bp upstream of M26. Deletion of the promoter in cis to M26 abolishes hot spot activity, while deletion in trans to M26 has no effect. Homozygous deletion of the promoter also eliminates M26 hot spot activity, indicating that the heterology created through deletion of the promoter per se is not responsible for the loss of hot spot activity. Thus, DNA sequences other than the heptanucleotide 5' ATGACGT 3', which must be located at the 5' end of the ade6 gene, appear to be required for hot spot activity. While the M26 hotspot stimulates crossovers associated with M26 conversion, it does not affect the crossover frequency in the intervals adjacent to ade6. The flanking marker ura4-aim, a heterology created by insertion of the ura4+ gene upstream of ade6, turned out to be a hot spot itself. It shows disparity of conversion with preferential loss of the insertion. The frequency of conversion at ura4-aim is reduced when the M26 hot spot is active 15 kb away, indicating competition for recombination factors by hot spots in close proximity. | Genetics 1995 Jun;140(2):469-78 | 358 | 0 |
Curatable | PMID:18753627 | The minichromosome maintenance (MCM) helicase, composed of subunits Mcm2-7, is essential for the initiation and elongation phases of DNA replication. Even when DNA synthesis is blocked, MCM continues DNA unwinding to some extent for activation of the replication checkpoint and then stops. However, the mechanism of regulation of MCM-helicase activity remains unknown. Here, we show that truncation of the Mcm4 C-terminal domain (CTD) in fission yeast results in hypersensitivity to replication block caused by dNTP depletion. The truncation mcm4-c84 does not affect the activation of the replication checkpoint pathway but delays its attenuation during recovery from replication block. Two dimensional gel electrophoresis showed that mcm4-c84 delays the disappearance of replication intermediates, indicating that the Mcm4 CTD is required for efficient recovery of stalled replication forks. Remarkably, chromatin immunoprecipitation revealed that mcm4-c84 brings about an increase rather than a decrease in the association of the single-stranded DNA-binding protein RPA to stalled forks, and MCM and the accessory complex GINS are unaffected. These results suggest that the Mcm4 CTD is required to suspend MCM-helicase activity after the formation of single-stranded DNA sufficient for checkpoint activation. | Proc Natl Acad Sci U S A 2008 Sep 02;105(35):12973-8 | 285 | 1 |
Curatable | PMID:29416031 | Post-translational modifications of the transcription elongation complex provide mechanisms to fine-tune gene expression, yet their specific impacts on RNA polymerase II regulation remain difficult to ascertain. Here, in Schizosaccharomyces pombe, we examine the role of Cdk9, and related Mcs6/Cdk7 and Lsk1/Cdk12 kinases, on transcription at base-pair resolution with Precision Run-On sequencing (PRO-seq). Within a minute of Cdk9 inhibition, phosphorylation of Pol II-associated factor, Spt5 is undetectable. The effects of Cdk9 inhibition are more severe than inhibition of Cdk7 and Cdk12, resulting in a shift of Pol II toward the transcription start site (TSS). A time course of Cdk9 inhibition reveals that early transcribing Pol II can escape promoter-proximal regions, but with a severely reduced elongation rate of only ~400 bp/min. Our results in fission yeast suggest the existence of a conserved global regulatory checkpoint that requires Cdk9 kinase activity. | Nat Commun 2018 02 07;9(1):543 | 232 | 1 |
Curatable | PMID:24589736 | Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality. | Biochem Biophys Res Commun 2014 Mar 28;446(1):231-4 | 186 | 1 |
Curatable | PMID:1538784 | Several mitotic and meiotic gene products are related to the microtubule motor kinesin, providing insight into the molecular basis of the complex motile events responsible for spindle formation and function. Of these genes, three have been shown to affect spindle structure when mutated. The most severe phenotype is seen in Aspergillus nidulans bimC and Schizosaccharomyces pombe cut7 mutants. In both fungi the intranuclear spindle is bipolar, with microtubules that emanate from spindle pole bodies at either pole, interdigitating in a central overlap zone. In bimC and cut7 mutants, microtubule interdigitation does not appear to take place, instead two unconnected half spindles form and chromosome separation fails. Here we report that cut7 protein concentrates on or near the spindle pole bodies throughout mitotic and meiotic nuclear division and associates with mitotic spindle microtubules in a stage-specific manner, associating with the mid-anaphase B midzone. In cut7ts mutants, spindle pole bodies stain but mitotic microtubules do not. | Nature 1992 Mar 05;356(6364):74-6 | 239 | 1 |
Wrong organism | PMID:22264161 | Although many techniques can be used to generate multitype-induced pluripotent stem (iPS) cells from multitype seed cells, improving the efficiency and shortening the period of cell reprogramming remain troublesome issues. In this study, to generate iPS cells, CD34⁺ cells, isolated from human amniotic fluid cells (HuAFCs) by flow cytometry, were infected with retroviruses carrying only one reprogramming factor (Oct4) and cultured on human amniotic epithelial cell (HuAEC) feeder layers. Approximately 4 to 5 days after viral infection, some embryonic stem cell (ESC)-like colonies appeared among the feeder cells. These colonies were positive for alkaline phosphatase and expressed high levels of ESC pluripotent markers (Nanog, Sox2, Oct4, CD133, and Rex1). Moreover, these iPS cells exhibited high levels of telomerase activity and had normal karyotypes. Additionally, these cells could differentiate into cell types from all 3 germ layers in vivo and in teratomas. In summary, we report a novel way of iPS generation that uses CD34⁺ HuAFCs as seed cells. Using this method, we can generate human iPS cells with greater efficiency and safety (the oncogenic factors, c-Myc and Klf4, were not used), and using the minimum number of reprogramming factors (only one factor, Oct4). Besides, HuAECs were used as feeder layers to culture human iPS cells, which could not only avoid contamination with heterogeneous proteins, but also maintain iPS cells in a self-renewing and undifferentiated state for a long time. | Stem Cells Dev 2012 Aug 10;21(12):2322-32 | 359 | 0 |
Wrong organism | PMID:18682732 | In nature, yeasts are subject to predation by flies of the genus Drosophila. In response to nutritional starvation Saccharomyces cerevisiae differentiates into a dormant cell type, termed a spore, which is resistant to many types of environmental stress. The stress resistance of the spore is due primarily to a spore wall that is more elaborate than the vegetative cell wall. We report here that S. cerevisiae spores survive passage through the gut of Drosophila melanogaster. Constituents of the spore wall that distinguish it from the vegetative cell wall are necessary for this resistance. Ascospores of the distantly related yeast Schizosaccharomyces pombe also display resistance to digestion by D. melanogaster. These results suggest that the primary function of the yeast ascospore is as a cell type specialized for dispersion by insect vectors. | PLoS One 2008 Aug 06;3(8):e2873 | 187 | 0 |
Curatable | PMID:12604790 | Previous studies in Saccharomyces cerevisiae have defined an essential role for the Dbf4-Cdc7 kinase complex in the initiation of DNA replication presumably by phosphorylation of target proteins, such as the minichromosome maintenance (Mcm) complex. We have examined the phosphorylation of the Mcm complex by the Dfp1-Hsk1 kinase, the Schizosaccharomyces pombe homologue of Dbf4-Cdc7. In vitro, the purified Dfp1-Hsk1 kinase efficiently phosphorylated Mcm2p. In contrast, Mcm2p, present in the six-subunit Mcm complex, was a poor substrate of this kinase and required Cdc23p (homologue of Mcm10p) for efficient phosphorylation. In the presence of Cdc23p, Dfp1-Hsk1 phosphorylated the Mcm2p and Mcm4p subunits of the Mcm complex. Cdc23p interacted with both the Mcm complex and Dfp1-Hsk1 by selectively binding to the Mcm467 subunits and Dfp1p, respectively. The N terminus of Cdc23p was found to interact directly with Dfp1-Hsk1 and was essential for phosphorylation of the Mcm complex. Truncated derivatives of Cdc23p that complemented the temperature-sensitive phenotype of cdc23 mutant cells also stimulated the phosphorylation of Mcm complex, implying that this activity might be a critical role of Cdc23p in vivo. These results suggest that Cdc23p participates in the activation of prereplicative complex by recruiting the Dfp1-Hsk1 kinase and stimulating the phosphorylation of the Mcm complex. | Proc Natl Acad Sci U S A 2003 Mar 04;100(5):2334-9 | 377 | 1 |
Wrong organism | PMID:9482730 | Polo-like kinases (Plks), named after the Drosophila gene product polo, have been implicated in the regulation of multiple aspects of mitotic progression, including the activation of the Cdc25 phosphatase, bipolar spindle formation and cytokinesis. Genetic analyses performed in yeast and Drosophila suggest a function for Plks at late stages of mitosis, but biochemical data to support such a function in vertebrate organisms are lacking. Here we have taken advantage of Xenopus egg extracts for exploring the function of Plx1, a Xenopus Plk, during the cell cycle transition from M phase to interphase (I phase). We found that the addition of a catalytically inactive Plx1 mutant to M phase-arrested egg extracts blocked their Ca2+-induced release into interphase. Concomitantly, the proteolytic destruction of several targets of the anaphase-promoting complex and the inactivation of the Cdc2 protein kinase (Cdk1) were prevented. Moreover, the M to I phase transition could be abolished by immunodepletion of Plx1, but was restored upon the addition of recombinant Plx1. These results demonstrate that the exit of egg extracts from M phase arrest requires active Plx1, and they strongly suggest an important role for Plx1 in the activation of the proteolytic machinery that controls the exit from mitosis. | EMBO J 1998 Mar 02;17(5):1328-35 | 297 | 0 |
Transposon related | PMID:9774697 | The Tf2 retrotransposon, found in the fission yeast Schizosaccharomyces pombe, is nearly identical to its sister element, Tf1, in its reverse transcriptase-RNase H and integrase domains but is very divergent in the gag domain, the protease, the 5' untranslated region, and the U3 domain of the long terminal repeats. It has now been demonstrated that a neo-marked copy of Tf2 overexpressed from a heterologous promoter can mobilize into the S. pombe genome and produce true transposition events. However, the Tf2-neo mobilization frequency is 10- to 20-fold lower than that of Tf1-neo, and 70% of the Tf2-neo events are homologous recombination events generated independently of a functional Tf2 integrase. Thus, the Tf2 element is primarily dependent on homologous recombination with preexisting copies of Tf2 for its propagation. Finally, production of Tf2-neo proteins and cDNA was also analyzed; surprisingly, Tf2 was found to produce its reverse transcriptase as a single species in which it is fused to protease, unlike all other retroviruses and retrotransposons. | Mol Cell Biol 1998 Nov;18(11):6839-52 | 271 | 0 |
Curatable | PMID:15062096 | The halving of chromosome number that occurs during meiosis depends on three factors. First, homologs must pair and recombine. Second, sister centromeres must attach to microtubules that emanate from the same spindle pole, which ensures that homologous maternal and paternal pairs can be pulled in opposite directions (called homolog biorientation). Third, cohesion between sister centromeres must persist after the first meiotic division to enable their biorientation at the second. A screen performed in fission yeast to identify meiotic chromosome missegregation mutants has identified a conserved protein called Sgo1 that is required to maintain sister chromatid cohesion after the first meiotic division. We describe here an orthologous protein in the budding yeast S. cerevisiae (Sc), which has not only meiotic but also mitotic chromosome segregation functions. Deletion of Sc SGO1 not only causes frequent homolog nondisjunction at meiosis I but also random segregation of sister centromeres at meiosis II. Meiotic cohesion fails to persist at centromeres after the first meiotic division, and sister centromeres frequently separate precociously. Sgo1 is a kinetochore-associated protein whose abundance declines at anaphase I but, nevertheless, persists on chromatin until anaphase II. The finding that Sgo1 is localized to the centromere at the time of the first division suggests that it may play a direct role in preventing the removal of centromeric cohesin. The similarity in sequence composition, chromosomal location, and mutant phenotypes of sgo1 mutants in two distant yeasts with that of MEI-S332 in Drosophila suggests that these proteins define an orthologous family conserved in most eukaryotic lineages. | Curr Biol 2004 Apr 06;14(7):560-72 | 376 | 1 |
Wrong organism | PMID:9278511 | In response to DNA damage, mammalian cells prevent cell cycle progression through the control of critical cell cycle regulators. A human gene was identified that encodes the protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which is required for the DNA damage checkpoint. Human Chk1 protein was modified in response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-specificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue, serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function of the phosphatase. These results suggest a model whereby in response to DNA damage, Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin B complex and mitotic entry. | Science 1997 Sep 05;277(5331):1497-501 | 239 | 0 |
Wrong organism | PMID:10996242 | By using the rice EST database, we have isolated a 2.8 kb cDNA, termed Oryza sativa ORC1 (OsORC1), from rice (O. sativa) encoding a protein that shows homology with the eukaryotic ORC1 proteins. Alignment of the OsORC1 protein sequence with the sequence of ORC1 from human and yeasts S. cerevisiae and S. pombe showed a high degree of sequence homology (38.7, 32.9 and 35.0% identity, respectively), particularly around the C-terminal region containing the CDC-NTP domain. Interestingly, the OsORC1 protein had an A+T hook-like motif, which was not present in the human or yeast genes. Genomic analysis indicated that OsORC1 existed as a single copy per genome. OsORC1 transcripts were expressed strongly in root tips and weakly in young leaves containing root apical meristem and marginal meristem, respectively. No expression was detected in the mature leaves. The level of OsORC1 expression was significantly reduced when cell proliferation was temporarily halted by the removal of sucrose from the growth medium. When the growth-halted cells began to re-grow following addition of sucrose to the medium, OsORC1 was again expressed at high levels. These results suggested that OsORC1 is required for cell proliferation. The role of OsORC1 in plant DNA replication will be discussed. | Plant Sci 2000 Sep 08;158(1-2):33-39 | 311 | 0 |
Curatable | PMID:12181326 | Human damaged DNA-binding protein (DDB) is a heterodimer of p48/DDB2 and p127/DDB1 subunits. Mutations in DDB2 are responsible for Xeroderma Pigmentosum group E, but no mutants of mammalian DDB1 have been described. To study DDB1, the Schizosaccharomyces pombe DDB1 sequence homologue (ddb1(+)) was cloned, and a ddb1 deletion strain was constructed. The gene is not essential; however, mutant cells showed a 37% impairment in colony-forming ability, an elongated phenotype, and abnormal nuclei. The ddb1Delta strain was sensitive to UV irradiation, X-rays, methylmethane sulfonate, and thiabendazole, and these sensitivities were compared with those of the well characterized rad13Delta, rhp51Delta, and cds1Delta mutant strains. Ddb1p showed nuclear and nucleolar localization, and the aberrant nuclear structures observed in the ddb1Delta strain suggest a role for Ddb1p in chromosome segregation. | J Biol Chem 2002 Oct 25;277(43):41183-91 | 239 | 1 |
Database | PMID:10220000 | We have determined the complete nucleotide sequence of a 39,648 bp segment, contained in cosmid c32F12, derived from the right arm of chromosome II from the fission yeast Schizosaccharomyces pombe. Computer analysis of the sequence revealed the presence of 15 non-overlapping open reading-frames (ORFs) longer than 300 bp and one tRNA-Thr gene. Six ORFs correspond to the previously known rec14+, tug1+, rum1+, pch1+, gpd1+ and cyr1+ genes. Five ORFs code for putative proteins with significant homology to proteins from other organisms. SPBC32F12.01c shows considerable similarity to human neutral sphingomyelinase, whereas SPBC32F12.03c, SPBC32F12.10 and SPBC32F12.14 exhibit strong homology to glutathione peroxidase, phosphoglucomutase and ubiquitin protein ligase E-3 components from various organisms, respectively. The four remaining ORFs identified show weak or non-significant homology to previously sequenced genes. The nucleotide sequence has been submitted to the EMBL database under Accession Number AL023796. | Yeast 1999 Mar 30;15(5):419-26 | 259 | 0 |
Review or comment | PMID:34208016 | Long non-coding RNAs (lncRNAs) contribute to cell fate decisions by modulating genome expression and stability. In the fission yeast Schizosaccharomyces pombe , the transition from mitosis to meiosis results in a marked remodeling of gene expression profiles, which ultimately ensures gamete production and inheritance of genetic information to the offspring. This key developmental process involves a set of dedicated lncRNAs that shape cell cycle-dependent transcriptomes through a variety of mechanisms, including epigenetic modifications and the modulation of transcription, post-transcriptional and post-translational regulations, and that contribute to meiosis-specific chromosomal events. In this review, we summarize the biology of these lncRNAs, from their identification to mechanism of action, and discuss their regulatory role in the control of gametogenesis. | Noncoding RNA 2021 Jun 11;7(2) | 177 | 0 |
Curatable | PMID:14735354 | The vacuolar H+-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for acidification of intracellular compartments in eukaryotic cells. To investigate the functional roles of the V-ATPase in Schizosaccharomyces pombe, the gene vma1 encoding subunit A or vma3 encoding subunit c was disrupted. Both deletion mutants lost the capacity for vacuolar acidification in vivo, and showed sensitivity to neutral pH or high concentrations of divalent cations including Ca2+. The delivery of FM4-64 to the vacuolar membrane and accumulation of Lucifer Yellow CH were strongly inhibited in the vma1 and vma3 mutants. Moreover, deletion of the S. pombe vma1+ or vma3+ gene resulted in pleiotropic phenotypes consistent with lack of vacuolar acidification, including the missorting of vacuolar carboxypeptidase Y, abnormal vacuole morphology, and mating defects. These findings suggest that V-ATPase is essential for endocytosis, ion and pH homeostasis, and for intracellular targeting of vacuolar proteins and vacuolar biogenesis in S. pombe. | Mol Genet Genomics 2004 Mar;271(2):197-207 | 265 | 1 |
Other | PMID:29121868 | Identification of essential genes is not only useful for our understanding of the minimal gene set required for cellular life but also aids the identification of novel drug targets in pathogens. In this work, we present a simple and effective gene essentiality prediction method using information-theoretic features that are derived exclusively from the gene sequences. We developed a Random Forest classifier and performed an extensive model performance evaluation among and within 15 selected bacteria. In intra-organism predictions, where training and testing sets are taken from the same organism, AUC (Area Under the Curve) scores ranging from 0.73 to 0.90, 0.84 on average, were obtained. Cross-organism predictions using 5-fold cross-validation, pairwise, leave-one-species-out, leave-one-taxon-out, and cross-taxon yielded average AUC scores of 0.88, 0.75, 0.80, 0.82, and 0.78, respectively. To further show the applicability of our method in other domains of life, we predicted the essential genes of the yeast Schizosaccharomyces pombe and obtained a similar accuracy (AUC 0.84). The proposed method enables a simple and reliable identification of essential genes without searching in databases for orthologs and demanding further experimental data such as network topology and gene-expression. | BMC Bioinformatics 2017 Nov 09;18(1):473 | 282 | 0 |
Curatable | PMID:9447985 | In the fission yeast Schizosaccharomyces pombe, the onset of sexual development is controlled mainly by two external signals, nutrient starvation and mating pheromone availability. We have isolated a novel gene named rcd1+ as a key factor required for nitrogen starvation-induced sexual development. rcd1+ encodes a 283-amino-acid protein with no particular motifs. However, genes highly homologous to rcd1+ (encoding amino acids with >70% identity) are present at least in budding yeasts, plants, nematodes, and humans. Cells with rcd1+ deleted are sterile if sexual development is induced by nitrogen starvation but fertile if it is induced by glucose starvation. This results largely from a defect in nitrogen starvation-invoked induction of ste11+, a key transcriptional factor gene required for the onset of sexual development. The striking conservation of the gene throughout eukaryotes may suggest the presence of an evolutionarily conserved differentiation controlling system. | Mol Cell Biol 1998 Feb;18(2):887-95 | 209 | 1 |
Curatable | PMID:14711417 | The spindle orientation checkpoint (SOC) in fission yeast has been proposed to delay metaphase-to-anaphase transition when the spindle poles are misaligned with respect to the long axis of the cell. This checkpoint is activated in the absence of either an actomyosin division ring or astral microtubules. Although the SOC could be overridden in the absence of the transcription factor Atf1p, its mechanistic nature remained unclear. Here, we show that the SOC-triggered metaphase delay depends on a subset of the spindle assembly checkpoint (SAC) components Mph1p and Bub1p. Based on this finding and a detailed imaging of the spindle orientation process, we hypothesized that the spindle pole might contain proteins capable of sensing the achievement of spindle alignment. We identified the kendrin-like spindle pole body resident Pcp1p as a candidate molecule. A targeted mutation in its central domain specifically triggered the SOC in spite of the presence of oriented spindles, causing a metaphase delay that could be relieved in the absence of Mph1p, Bub1p, and Atf1p. Thus, Pcp1p might provide a link between the mechanical process of spindle alignment and the signal transduction that initiates anaphase. | Curr Biol 2004 Jan 06;14(1):69-74 | 271 | 1 |
Wrong organism | PMID:10211818 | The reoccurrence of water molecules in crystal structures of RNase T1 was investigated. Five waters were found to be invariant in RNase T1 as well as in six other related fungal RNases. The structural, dynamical, and functional characteristics of one of these conserved hydration sites (WAT1) were analyzed by protein engineering, X-ray crystallography, and (17)O and 2H nuclear magnetic relaxation dispersion (NMRD). The position of WAT1 and its surrounding hydrogen bond network are unaffected by deletions of two neighboring side chains. In the mutant Thr93Gln, the Gln93N epsilon2 nitrogen replaces WAT1 and participates in a similar hydrogen bond network involving Cys6, Asn9, Asp76, and Thr91. The ability of WAT1 to form four hydrogen bonds may explain why evolution has preserved a water molecule, rather than a side-chain atom, at the center of this intricate hydrogen bond network. Comparison of the (17)O NMRD profiles from wild-type and Thr93Gln RNase T1 yield a mean residence time of 7 ns at 27 degrees C and an orientational order parameter of 0.45. The effects of mutations around WAT1 on the kinetic parameters of RNase T1 are small but significant and probably relate to the dynamics of the active site. | Protein Sci 1999 Apr;8(4):722-30 | 286 | 0 |
Curatable | PMID:11279180 | The nascent pre-rRNA of eukaryotic ribosomes is fully transcribed and assembled into an 80-90 S nucleolar particle before being cleaved into mature ribosomal RNA. The interdependence of steps in the processing of this precursor RNA indicates that RNA processing, at least in part, acts as a quality control mechanism that helps ensure that only functional RNA is incorporated into mature ribosomes. In search of structural components that underlie this interdependence using the Schizosaccharomyces pombe internal transcribed spacer 1 (ITS) as a ligand for affinity chromatography of ITS1-specific proteins, we have isolated a large spliceosome-like protein complex, a ribosome assembly chaperone (RAC) of 20 or more polypeptides (Lalev, A. I., Abeyrathne, P. D., and Nazar, R. N. (2000) J. Mol. Biol. 302, 65-77). When the ITS2 spacer was used in the present study to isolate ITS2-specific proteins, the same proteins were identified consistent with a complex containing multiple specific binding sites. Subsequent competition binding studies indicated that the protein complex actually contains independent binding sites for all four of the transcribed spacers in the pre-rRNA. Because disruption of protein-binding sites in these spacer RNAs is known to severely affect rRNA processing, taken together these results suggest that the RAC complex is a chaperone for ribosome maturation acting as a "rack" on which critical structure is organized. | J Biol Chem 2001 May 18;276(20):16655-9 | 331 | 1 |
Wrong organism | PMID:7696344 | The polymerase chain reaction was used to amplify a cdc2 homologous sequence from Paramecium tetraurelia. The corresponding amino acid sequences exhibits about 50% similarity to the cdc2 proteins of other species. The Paramecium cdc2 encoded protein is 11 amino acids longer than S. pombe p34cdc2. There is one amino acid change in the conserved PSTAIRE region. Southern blot analysis indicates that Paramecium has multiple cdc2 genes. Northern blotting results shows that Paramecium cdc2 is much more expressed in actively dividing cells. It is almost undetectable in starved stationary cells. The mRNA level of cdc2 gene does not change during the vegetative cell cycle. | Biochim Biophys Acta 1995 Mar 16;1265(2-3):161-7 | 154 | 0 |