prompt
stringlengths 70
19.8k
| completion
stringlengths 8
1.03k
| api
stringlengths 23
93
|
---|---|---|
get_ipython().run_line_magic('pip', 'install llama-index-readers-web')
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
openai.api_key = os.getenv("OPENAI_API_KEY")
from pydantic import BaseModel, Field
from typing import List
class NodeMetadata(BaseModel):
"""Node metadata."""
entities: List[str] = Field(
..., description="Unique entities in this text chunk."
)
summary: str = Field(
..., description="A concise summary of this text chunk."
)
contains_number: bool = Field(
...,
description=(
"Whether the text chunk contains any numbers (ints, floats, etc.)"
),
)
from llama_index.program.openai import OpenAIPydanticProgram
from llama_index.core.extractors import PydanticProgramExtractor
EXTRACT_TEMPLATE_STR = """\
Here is the content of the section:
----------------
{context_str}
----------------
Given the contextual information, extract out a {class_name} object.\
"""
openai_program = OpenAIPydanticProgram.from_defaults(
output_cls=NodeMetadata,
prompt_template_str="{input}",
)
program_extractor = PydanticProgramExtractor(
program=openai_program, input_key="input", show_progress=True
)
from llama_index.readers.web import SimpleWebPageReader
from llama_index.core.node_parser import SentenceSplitter
reader = SimpleWebPageReader(html_to_text=True)
docs = reader.load_data(urls=["https://eugeneyan.com/writing/llm-patterns/"])
from llama_index.core.ingestion import IngestionPipeline
node_parser = | SentenceSplitter(chunk_size=1024) | llama_index.core.node_parser.SentenceSplitter |
get_ipython().run_line_magic('pip', 'install llama-index-llms-fireworks')
get_ipython().run_line_magic('pip', 'install llama-index')
from llama_index.llms.fireworks import Fireworks
resp = Fireworks().complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.fireworks import Fireworks
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = Fireworks().chat(messages)
print(resp)
from llama_index.llms.fireworks import Fireworks
llm = Fireworks()
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
print(r.delta, end="")
from llama_index.llms.fireworks import Fireworks
from llama_index.core.llms import ChatMessage
llm = Fireworks()
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = llm.stream_chat(messages)
for r in resp:
print(r.delta, end="")
from llama_index.llms.fireworks import Fireworks
llm = Fireworks(model="accounts/fireworks/models/firefunction-v1")
resp = llm.complete("Paul Graham is ")
print(resp)
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
| ChatMessage(role="user", content="What is your name") | llama_index.core.llms.ChatMessage |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import os
import getpass
import openai
openai.api_key = "sk-"
import chromadb
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.chroma import ChromaVectorStore
from IPython.display import Markdown, display
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text="The Shawshank Redemption",
metadata={
"author": "Stephen King",
"theme": "Friendship",
"year": 1994,
},
),
TextNode(
text="The Godfather",
metadata={
"director": "Francis Ford Coppola",
"theme": "Mafia",
"year": 1972,
},
),
TextNode(
text="Inception",
metadata={
"director": "Christopher Nolan",
"theme": "Fiction",
"year": 2010,
},
),
TextNode(
text="To Kill a Mockingbird",
metadata={
"author": "Harper Lee",
"theme": "Mafia",
"year": 1960,
},
),
TextNode(
text="1984",
metadata={
"author": "George Orwell",
"theme": "Totalitarianism",
"year": 1949,
},
),
TextNode(
text="The Great Gatsby",
metadata={
"author": "F. Scott Fitzgerald",
"theme": "The American Dream",
"year": 1925,
},
),
TextNode(
text="Harry Potter and the Sorcerer's Stone",
metadata={
"author": "J.K. Rowling",
"theme": "Fiction",
"year": 1997,
},
),
]
from llama_index.core import StorageContext
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = | VectorStoreIndex(nodes, storage_context=storage_context) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-llms-vllm')
import os
os.environ["HF_HOME"] = "model/"
from llama_index.llms.vllm import Vllm
llm = Vllm(
model="microsoft/Orca-2-7b",
tensor_parallel_size=4,
max_new_tokens=100,
vllm_kwargs={"swap_space": 1, "gpu_memory_utilization": 0.5},
)
llm.complete(
["[INST]You are a helpful assistant[/INST] What is a black hole ?"]
)
llm = Vllm(
model="codellama/CodeLlama-7b-hf",
dtype="float16",
tensor_parallel_size=4,
temperature=0,
max_new_tokens=100,
vllm_kwargs={
"swap_space": 1,
"gpu_memory_utilization": 0.5,
"max_model_len": 4096,
},
)
llm.complete(["import socket\n\ndef ping_exponential_backoff(host: str):"])
llm = Vllm(
model="mistralai/Mistral-7B-Instruct-v0.1",
dtype="float16",
tensor_parallel_size=4,
temperature=0,
max_new_tokens=100,
vllm_kwargs={
"swap_space": 1,
"gpu_memory_utilization": 0.5,
"max_model_len": 4096,
},
)
llm.complete([" What is a black hole ?"])
from llama_index.core.llms.vllm import VllmServer
llm = VllmServer(
api_url="http://localhost:8000/generate", max_new_tokens=100, temperature=0
)
llm.complete("what is a black hole ?")
list(llm.stream_complete("what is a black hole"))[-1]
from llama_index.core.llms.vllm import VllmServer
from llama_index.core.llms import ChatMessage
llm = VllmServer(
api_url="http://localhost:8000/generate", max_new_tokens=100, temperature=0
)
llm.complete("what is a black hole ?")
message = [ChatMessage(content="hello", author="user")]
llm.chat(message)
list(llm.stream_complete("what is a black hole"))[-1]
message = [ | ChatMessage(content="what is a black hole", author="user") | llama_index.core.llms.ChatMessage |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
get_ipython().system('pip install "llama_index>=0.9.7"')
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.extractors import TitleExtractor, SummaryExtractor
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import MetadataMode
def build_pipeline():
llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.1)
transformations = [
SentenceSplitter(chunk_size=1024, chunk_overlap=20),
TitleExtractor(
llm=llm, metadata_mode=MetadataMode.EMBED, num_workers=8
),
SummaryExtractor(
llm=llm, metadata_mode=MetadataMode.EMBED, num_workers=8
),
OpenAIEmbedding(),
]
return | IngestionPipeline(transformations=transformations) | llama_index.core.ingestion.IngestionPipeline |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-cross-encoders')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install datasets --quiet')
get_ipython().system('pip install sentence-transformers --quiet')
get_ipython().system('pip install openai --quiet')
from datasets import load_dataset
import random
dataset = load_dataset("allenai/qasper")
train_dataset = dataset["train"]
validation_dataset = dataset["validation"]
test_dataset = dataset["test"]
random.seed(42) # Set a random seed for reproducibility
train_sampled_indices = random.sample(range(len(train_dataset)), 800)
train_samples = [train_dataset[i] for i in train_sampled_indices]
test_sampled_indices = random.sample(range(len(test_dataset)), 80)
test_samples = [test_dataset[i] for i in test_sampled_indices]
from typing import List
def get_full_text(sample: dict) -> str:
"""
:param dict sample: the row sample from QASPER
"""
title = sample["title"]
abstract = sample["abstract"]
sections_list = sample["full_text"]["section_name"]
paragraph_list = sample["full_text"]["paragraphs"]
combined_sections_with_paras = ""
if len(sections_list) == len(paragraph_list):
combined_sections_with_paras += title + "\t"
combined_sections_with_paras += abstract + "\t"
for index in range(0, len(sections_list)):
combined_sections_with_paras += str(sections_list[index]) + "\t"
combined_sections_with_paras += "".join(paragraph_list[index])
return combined_sections_with_paras
else:
print("Not the same number of sections as paragraphs list")
def get_questions(sample: dict) -> List[str]:
"""
:param dict sample: the row sample from QASPER
"""
questions_list = sample["qas"]["question"]
return questions_list
doc_qa_dict_list = []
for train_sample in train_samples:
full_text = get_full_text(train_sample)
questions_list = get_questions(train_sample)
local_dict = {"paper": full_text, "questions": questions_list}
doc_qa_dict_list.append(local_dict)
len(doc_qa_dict_list)
import pandas as pd
df_train = pd.DataFrame(doc_qa_dict_list)
df_train.to_csv("train.csv")
"""
The Answers field in the dataset follow the below format:-
Unanswerable answers have "unanswerable" set to true.
The remaining answers have exactly one of the following fields being non-empty.
"extractive_spans" are spans in the paper which serve as the answer.
"free_form_answer" is a written out answer.
"yes_no" is true iff the answer is Yes, and false iff the answer is No.
We accept only free-form answers and for all the other kind of answers we set their value to 'Unacceptable',
to better evaluate the performance of the query engine using pairwise comparision evaluator as it uses GPT-4 which is biased towards preferring long answers more.
https://www.anyscale.com/blog/a-comprehensive-guide-for-building-rag-based-llm-applications-part-1
So in the case of 'yes_no' answers it can favour Query Engine answers more than reference answers.
Also in the case of extracted spans it can favour reference answers more than Query engine generated answers.
"""
eval_doc_qa_answer_list = []
def get_answers(sample: dict) -> List[str]:
"""
:param dict sample: the row sample from the train split of QASPER
"""
final_answers_list = []
answers = sample["qas"]["answers"]
for answer in answers:
local_answer = ""
types_of_answers = answer["answer"][0]
if types_of_answers["unanswerable"] == False:
if types_of_answers["free_form_answer"] != "":
local_answer = types_of_answers["free_form_answer"]
else:
local_answer = "Unacceptable"
else:
local_answer = "Unacceptable"
final_answers_list.append(local_answer)
return final_answers_list
for test_sample in test_samples:
full_text = get_full_text(test_sample)
questions_list = get_questions(test_sample)
answers_list = get_answers(test_sample)
local_dict = {
"paper": full_text,
"questions": questions_list,
"answers": answers_list,
}
eval_doc_qa_answer_list.append(local_dict)
len(eval_doc_qa_answer_list)
import pandas as pd
df_test = pd.DataFrame(eval_doc_qa_answer_list)
df_test.to_csv("test.csv")
get_ipython().system('pip install llama-index --quiet')
import os
from llama_index.core import SimpleDirectoryReader
import openai
from llama_index.finetuning.cross_encoders.dataset_gen import (
generate_ce_fine_tuning_dataset,
generate_synthetic_queries_over_documents,
)
from llama_index.finetuning.cross_encoders import CrossEncoderFinetuneEngine
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
from llama_index.core import Document
final_finetuning_data_list = []
for paper in doc_qa_dict_list:
questions_list = paper["questions"]
documents = [Document(text=paper["paper"])]
local_finetuning_dataset = generate_ce_fine_tuning_dataset(
documents=documents,
questions_list=questions_list,
max_chunk_length=256,
top_k=5,
)
final_finetuning_data_list.extend(local_finetuning_dataset)
len(final_finetuning_data_list)
import pandas as pd
df_finetuning_dataset = pd.DataFrame(final_finetuning_data_list)
df_finetuning_dataset.to_csv("fine_tuning.csv")
finetuning_dataset = final_finetuning_data_list
finetuning_dataset[0]
get_ipython().system('wget -O test.csv https://www.dropbox.com/scl/fi/3lmzn6714oy358mq0vawm/test.csv?rlkey=yz16080te4van7fvnksi9kaed&dl=0')
import pandas as pd
import ast # Used to safely evaluate the string as a list
df_test = pd.read_csv("/content/test.csv", index_col=0)
df_test["questions"] = df_test["questions"].apply(ast.literal_eval)
df_test["answers"] = df_test["answers"].apply(ast.literal_eval)
print(f"Number of papers in the test sample:- {len(df_test)}")
from llama_index.core import Document
final_eval_data_list = []
for index, row in df_test.iterrows():
documents = [Document(text=row["paper"])]
query_list = row["questions"]
local_eval_dataset = generate_ce_fine_tuning_dataset(
documents=documents,
questions_list=query_list,
max_chunk_length=256,
top_k=5,
)
relevant_query_list = []
relevant_context_list = []
for item in local_eval_dataset:
if item.score == 1:
relevant_query_list.append(item.query)
relevant_context_list.append(item.context)
if len(relevant_query_list) > 0:
final_eval_data_list.append(
{
"paper": row["paper"],
"questions": relevant_query_list,
"context": relevant_context_list,
}
)
len(final_eval_data_list)
import pandas as pd
df_finetuning_dataset = pd.DataFrame(final_eval_data_list)
df_finetuning_dataset.to_csv("reranking_test.csv")
get_ipython().system('pip install huggingface_hub --quiet')
from huggingface_hub import notebook_login
notebook_login()
from sentence_transformers import SentenceTransformer
finetuning_engine = CrossEncoderFinetuneEngine(
dataset=finetuning_dataset, epochs=2, batch_size=8
)
finetuning_engine.finetune()
finetuning_engine.push_to_hub(
repo_id="bpHigh/Cross-Encoder-LLamaIndex-Demo-v2"
)
get_ipython().system('pip install nest-asyncio --quiet')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('wget -O reranking_test.csv https://www.dropbox.com/scl/fi/mruo5rm46k1acm1xnecev/reranking_test.csv?rlkey=hkniwowq0xrc3m0ywjhb2gf26&dl=0')
import pandas as pd
import ast
df_reranking = pd.read_csv("/content/reranking_test.csv", index_col=0)
df_reranking["questions"] = df_reranking["questions"].apply(ast.literal_eval)
df_reranking["context"] = df_reranking["context"].apply(ast.literal_eval)
print(f"Number of papers in the reranking eval dataset:- {len(df_reranking)}")
df_reranking.head(1)
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
from llama_index.core import Settings
import os
import openai
import pandas as pd
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
Settings.chunk_size = 256
rerank_base = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-12-v2", top_n=3
)
rerank_finetuned = SentenceTransformerRerank(
model="bpHigh/Cross-Encoder-LLamaIndex-Demo-v2", top_n=3
)
without_reranker_hits = 0
base_reranker_hits = 0
finetuned_reranker_hits = 0
total_number_of_context = 0
for index, row in df_reranking.iterrows():
documents = [Document(text=row["paper"])]
query_list = row["questions"]
context_list = row["context"]
assert len(query_list) == len(context_list)
vector_index = VectorStoreIndex.from_documents(documents)
retriever_without_reranker = vector_index.as_query_engine(
similarity_top_k=3, response_mode="no_text"
)
retriever_with_base_reranker = vector_index.as_query_engine(
similarity_top_k=8,
response_mode="no_text",
node_postprocessors=[rerank_base],
)
retriever_with_finetuned_reranker = vector_index.as_query_engine(
similarity_top_k=8,
response_mode="no_text",
node_postprocessors=[rerank_finetuned],
)
for index in range(0, len(query_list)):
query = query_list[index]
context = context_list[index]
total_number_of_context += 1
response_without_reranker = retriever_without_reranker.query(query)
without_reranker_nodes = response_without_reranker.source_nodes
for node in without_reranker_nodes:
if context in node.node.text or node.node.text in context:
without_reranker_hits += 1
response_with_base_reranker = retriever_with_base_reranker.query(query)
with_base_reranker_nodes = response_with_base_reranker.source_nodes
for node in with_base_reranker_nodes:
if context in node.node.text or node.node.text in context:
base_reranker_hits += 1
response_with_finetuned_reranker = (
retriever_with_finetuned_reranker.query(query)
)
with_finetuned_reranker_nodes = (
response_with_finetuned_reranker.source_nodes
)
for node in with_finetuned_reranker_nodes:
if context in node.node.text or node.node.text in context:
finetuned_reranker_hits += 1
assert (
len(with_finetuned_reranker_nodes)
== len(with_base_reranker_nodes)
== len(without_reranker_nodes)
== 3
)
without_reranker_scores = [without_reranker_hits]
base_reranker_scores = [base_reranker_hits]
finetuned_reranker_scores = [finetuned_reranker_hits]
reranker_eval_dict = {
"Metric": "Hits",
"OpenAI_Embeddings": without_reranker_scores,
"Base_cross_encoder": base_reranker_scores,
"Finetuned_cross_encoder": finetuned_reranker_hits,
"Total Relevant Context": total_number_of_context,
}
df_reranker_eval_results = pd.DataFrame(reranker_eval_dict)
display(df_reranker_eval_results)
get_ipython().system('wget -O test.csv https://www.dropbox.com/scl/fi/3lmzn6714oy358mq0vawm/test.csv?rlkey=yz16080te4van7fvnksi9kaed&dl=0')
import pandas as pd
import ast # Used to safely evaluate the string as a list
df_test = pd.read_csv("/content/test.csv", index_col=0)
df_test["questions"] = df_test["questions"].apply(ast.literal_eval)
df_test["answers"] = df_test["answers"].apply(ast.literal_eval)
print(f"Number of papers in the test sample:- {len(df_test)}")
df_test.head(1)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
from llama_index.core.evaluation import PairwiseComparisonEvaluator
from llama_index.core.evaluation.eval_utils import (
get_responses,
get_results_df,
)
import os
import openai
import pandas as pd
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
gpt4 = OpenAI(temperature=0, model="gpt-4")
evaluator_gpt4_pairwise = PairwiseComparisonEvaluator(llm=gpt4)
pairwise_scores_list = []
no_reranker_dict_list = []
for index, row in df_test.iterrows():
documents = [Document(text=row["paper"])]
query_list = row["questions"]
reference_answers_list = row["answers"]
number_of_accepted_queries = 0
vector_index = VectorStoreIndex.from_documents(documents)
query_engine = vector_index.as_query_engine(similarity_top_k=3)
assert len(query_list) == len(reference_answers_list)
pairwise_local_score = 0
for index in range(0, len(query_list)):
query = query_list[index]
reference = reference_answers_list[index]
if reference != "Unacceptable":
number_of_accepted_queries += 1
response = str(query_engine.query(query))
no_reranker_dict = {
"query": query,
"response": response,
"reference": reference,
}
no_reranker_dict_list.append(no_reranker_dict)
pairwise_eval_result = await evaluator_gpt4_pairwise.aevaluate(
query, response=response, reference=reference
)
pairwise_score = pairwise_eval_result.score
pairwise_local_score += pairwise_score
else:
pass
if number_of_accepted_queries > 0:
avg_pairwise_local_score = (
pairwise_local_score / number_of_accepted_queries
)
pairwise_scores_list.append(avg_pairwise_local_score)
overal_pairwise_average_score = sum(pairwise_scores_list) / len(
pairwise_scores_list
)
df_responses = pd.DataFrame(no_reranker_dict_list)
df_responses.to_csv("No_Reranker_Responses.csv")
results_dict = {
"name": ["Without Reranker"],
"pairwise score": [overal_pairwise_average_score],
}
results_df = pd.DataFrame(results_dict)
display(results_df)
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
from llama_index.core.evaluation import PairwiseComparisonEvaluator
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
rerank = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-12-v2", top_n=3
)
gpt4 = OpenAI(temperature=0, model="gpt-4")
evaluator_gpt4_pairwise = PairwiseComparisonEvaluator(llm=gpt4)
pairwise_scores_list = []
base_reranker_dict_list = []
for index, row in df_test.iterrows():
documents = [Document(text=row["paper"])]
query_list = row["questions"]
reference_answers_list = row["answers"]
number_of_accepted_queries = 0
vector_index = VectorStoreIndex.from_documents(documents)
query_engine = vector_index.as_query_engine(
similarity_top_k=8, node_postprocessors=[rerank]
)
assert len(query_list) == len(reference_answers_list)
pairwise_local_score = 0
for index in range(0, len(query_list)):
query = query_list[index]
reference = reference_answers_list[index]
if reference != "Unacceptable":
number_of_accepted_queries += 1
response = str(query_engine.query(query))
base_reranker_dict = {
"query": query,
"response": response,
"reference": reference,
}
base_reranker_dict_list.append(base_reranker_dict)
pairwise_eval_result = await evaluator_gpt4_pairwise.aevaluate(
query=query, response=response, reference=reference
)
pairwise_score = pairwise_eval_result.score
pairwise_local_score += pairwise_score
else:
pass
if number_of_accepted_queries > 0:
avg_pairwise_local_score = (
pairwise_local_score / number_of_accepted_queries
)
pairwise_scores_list.append(avg_pairwise_local_score)
overal_pairwise_average_score = sum(pairwise_scores_list) / len(
pairwise_scores_list
)
df_responses = pd.DataFrame(base_reranker_dict_list)
df_responses.to_csv("Base_Reranker_Responses.csv")
results_dict = {
"name": ["With base cross-encoder/ms-marco-MiniLM-L-12-v2 as Reranker"],
"pairwise score": [overal_pairwise_average_score],
}
results_df = pd.DataFrame(results_dict)
display(results_df)
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
from llama_index.core.evaluation import PairwiseComparisonEvaluator
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
rerank = SentenceTransformerRerank(
model="bpHigh/Cross-Encoder-LLamaIndex-Demo-v2", top_n=3
)
gpt4 = | OpenAI(temperature=0, model="gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-.."
openai.api_key = os.environ["OPENAI_API_KEY"]
from IPython.display import Markdown, display
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
)
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
metadata_obj.create_all(engine)
from llama_index.core import SQLDatabase
from llama_index.llms.openai import OpenAI
llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo")
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{
"city_name": "Chicago",
"population": 2679000,
"country": "United States",
},
{"city_name": "Seoul", "population": 9776000, "country": "South Korea"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
stmt = select(
city_stats_table.c.city_name,
city_stats_table.c.population,
city_stats_table.c.country,
).select_from(city_stats_table)
with engine.connect() as connection:
results = connection.execute(stmt).fetchall()
print(results)
from sqlalchemy import text
with engine.connect() as con:
rows = con.execute(text("SELECT city_name from city_stats"))
for row in rows:
print(row)
from llama_index.core.query_engine import NLSQLTableQueryEngine
query_engine = NLSQLTableQueryEngine(
sql_database=sql_database, tables=["city_stats"], llm=llm
)
query_str = "Which city has the highest population?"
response = query_engine.query(query_str)
display(Markdown(f"<b>{response}</b>"))
from llama_index.core.indices.struct_store.sql_query import (
SQLTableRetrieverQueryEngine,
)
from llama_index.core.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index.core import VectorStoreIndex
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
(SQLTableSchema(table_name="city_stats"))
] # add a SQLTableSchema for each table
obj_index = ObjectIndex.from_objects(
table_schema_objs,
table_node_mapping,
VectorStoreIndex,
)
query_engine = SQLTableRetrieverQueryEngine(
sql_database, obj_index.as_retriever(similarity_top_k=1)
)
response = query_engine.query("Which city has the highest population?")
display(Markdown(f"<b>{response}</b>"))
response.metadata["result"]
city_stats_text = (
"This table gives information regarding the population and country of a"
" given city.\nThe user will query with codewords, where 'foo' corresponds"
" to population and 'bar'corresponds to city."
)
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
(SQLTableSchema(table_name="city_stats", context_str=city_stats_text))
]
from llama_index.core.retrievers import NLSQLRetriever
nl_sql_retriever = NLSQLRetriever(
sql_database, tables=["city_stats"], return_raw=True
)
results = nl_sql_retriever.retrieve(
"Return the top 5 cities (along with their populations) with the highest population."
)
from llama_index.core.response.notebook_utils import display_source_node
for n in results:
display_source_node(n)
nl_sql_retriever = NLSQLRetriever(
sql_database, tables=["city_stats"], return_raw=False
)
results = nl_sql_retriever.retrieve(
"Return the top 5 cities (along with their populations) with the highest population."
)
for n in results:
| display_source_node(n, show_source_metadata=True) | llama_index.core.response.notebook_utils.display_source_node |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.core import SummaryIndex
Settings.llm = OpenAI()
Settings.chunk_size = 1024
nodes = Settings.node_parser.get_nodes_from_documents(documents)
storage_context = | StorageContext.from_defaults() | llama_index.core.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import phoenix as px
px.launch_app()
import llama_index.core
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader("../data/paul_graham")
docs = reader.load_data()
import os
from llama_index.core import (
StorageContext,
VectorStoreIndex,
load_index_from_storage,
)
if not os.path.exists("storage"):
index = VectorStoreIndex.from_documents(docs)
index.set_index_id("vector_index")
index.storage_context.persist("./storage")
else:
storage_context = StorageContext.from_defaults(persist_dir="storage")
index = load_index_from_storage(storage_context, index_id="vector_index")
from llama_index.core.query_pipeline import QueryPipeline
from llama_index.core import PromptTemplate
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = | PromptTemplate(prompt_str) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
from llama_index.core.evaluation import CorrectnessEvaluator
from llama_index.llms.openai import OpenAI
llm = | OpenAI("gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-llama-cpp')
get_ipython().system('pip install llama-index lm-format-enforcer llama-cpp-python')
import lmformatenforcer
import re
from llama_index.core.prompts.lmformatenforcer_utils import (
activate_lm_format_enforcer,
build_lm_format_enforcer_function,
)
regex = r'"Hello, my name is (?P<name>[a-zA-Z]*)\. I was born in (?P<hometown>[a-zA-Z]*). Nice to meet you!"'
from llama_index.llms.llama_cpp import LlamaCPP
llm = LlamaCPP()
regex_parser = lmformatenforcer.RegexParser(regex)
lm_format_enforcer_fn = build_lm_format_enforcer_function(llm, regex_parser)
with | activate_lm_format_enforcer(llm, lm_format_enforcer_fn) | llama_index.core.prompts.lmformatenforcer_utils.activate_lm_format_enforcer |
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-you')
from llama_index.retrievers.you import YouRetriever
you_api_key = "" or os.environ["YOU_API_KEY"]
retriever = | YouRetriever(api_key=you_api_key) | llama_index.retrievers.you.YouRetriever |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-supabase')
get_ipython().system('pip install llama-index')
import logging
import sys
from llama_index.core import SimpleDirectoryReader, Document, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.supabase import SupabaseVectorStore
import textwrap
import os
os.environ["OPENAI_API_KEY"] = "[your_openai_api_key]"
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(
"Document ID:",
documents[0].doc_id,
"Document Hash:",
documents[0].doc_hash,
)
vector_store = SupabaseVectorStore(
postgres_connection_string=(
"postgresql://<user>:<password>@<host>:<port>/<db_name>"
),
collection_name="base_demo",
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("Who is the author?")
print(textwrap.fill(str(response), 100))
response = query_engine.query("What did the author do growing up?")
print(textwrap.fill(str(response), 100))
from llama_index.core.schema import TextNode
nodes = [
TextNode(
**{
"text": "The Shawshank Redemption",
"metadata": {
"author": "Stephen King",
"theme": "Friendship",
},
}
),
TextNode(
**{
"text": "The Godfather",
"metadata": {
"director": "Francis Ford Coppola",
"theme": "Mafia",
},
}
),
TextNode(
**{
"text": "Inception",
"metadata": {
"director": "Christopher Nolan",
},
}
),
]
vector_store = SupabaseVectorStore(
postgres_connection_string=(
"postgresql://<user>:<password>@<host>:<port>/<db_name>"
),
collection_name="metadata_filters_demo",
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = | VectorStoreIndex(nodes, storage_context=storage_context) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
import nest_asyncio
nest_asyncio.apply()
from llama_index.embeddings.huggingface import (
HuggingFaceEmbedding,
HuggingFaceInferenceAPIEmbedding,
)
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
model_name = "jinaai/jina-embeddings-v2-small-en"
embed_model = HuggingFaceEmbedding(
model_name=model_name, trust_remote_code=True
)
Settings.embed_model = embed_model
Settings.chunk_size = 1024
embed_model_base = OpenAIEmbedding()
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
reader = | SimpleDirectoryReader("../data/paul_graham") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("wget 'https://raw.githubusercontent.com/jerryjliu/llama_index/main/examples/gatsby/gatsby_full.txt' -O 'gatsby_full.txt'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader(
input_files=["./gatsby_full.txt"]
).load_data()
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = | OpenAI(model="gpt-3.5-turbo") | llama_index.llms.openai.OpenAI |
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.core import SummaryIndex
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
from llama_index.core import Settings
Settings.chunk_size = 1024
nodes = Settings.node_parser.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.tools import QueryEngineTool
list_query_engine = summary_index.as_query_engine(
response_mode="tree_summarize", use_async=True
)
vector_query_engine = vector_index.as_query_engine(
response_mode="tree_summarize", use_async=True
)
list_tool = QueryEngineTool.from_defaults(
query_engine=list_query_engine,
description="Useful for questions asking for a biography of the author.",
)
vector_tool = QueryEngineTool.from_defaults(
query_engine=vector_query_engine,
description=(
"Useful for retrieving specific snippets from the author's life, like"
" his time in college, his time in YC, or more."
),
)
from llama_index.core import VectorStoreIndex
from llama_index.core.objects import ObjectIndex, SimpleToolNodeMapping
tool_mapping = | SimpleToolNodeMapping.from_objects([list_tool, vector_tool]) | llama_index.core.objects.SimpleToolNodeMapping.from_objects |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.core import SummaryIndex
Settings.llm = OpenAI()
Settings.chunk_size = 1024
nodes = Settings.node_parser.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
summary_query_engine = summary_index.as_query_engine(
response_mode="tree_summarize",
use_async=True,
)
vector_query_engine = vector_index.as_query_engine()
from llama_index.core.tools import QueryEngineTool
summary_tool = QueryEngineTool.from_defaults(
query_engine=summary_query_engine,
name="summary_tool",
description=(
"Useful for summarization questions related to the author's life"
),
)
vector_tool = QueryEngineTool.from_defaults(
query_engine=vector_query_engine,
name="vector_tool",
description=(
"Useful for retrieving specific context to answer specific questions about the author's life"
),
)
from llama_index.agent.openai import OpenAIAssistantAgent
agent = OpenAIAssistantAgent.from_new(
name="QA bot",
instructions="You are a bot designed to answer questions about the author",
openai_tools=[],
tools=[summary_tool, vector_tool],
verbose=True,
run_retrieve_sleep_time=1.0,
)
response = agent.chat("Can you give me a summary about the author's life?")
print(str(response))
response = agent.query("What did the author do after RICS?")
print(str(response))
import pinecone
import os
api_key = os.environ["PINECONE_API_KEY"]
pinecone.init(api_key=api_key, environment="us-west1-gcp")
try:
pinecone.create_index(
"quickstart", dimension=1536, metric="euclidean", pod_type="p1"
)
except Exception:
pass
pinecone_index = pinecone.Index("quickstart")
pinecone_index.delete(deleteAll=True, namespace="test")
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
},
),
]
vector_store = PineconeVectorStore(
pinecone_index=pinecone_index, namespace="test"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.tools import FunctionTool
from llama_index.core.vector_stores import (
VectorStoreInfo,
MetadataInfo,
ExactMatchFilter,
MetadataFilters,
)
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from typing import List, Tuple, Any
from pydantic import BaseModel, Field
top_k = 3
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports, Entertainment,"
" Business, Music]"
),
),
MetadataInfo(
name="country",
type="str",
description=(
"Country of the celebrity, one of [United States, Barbados,"
" Portugal]"
),
),
],
)
class AutoRetrieveModel(BaseModel):
query: str = Field(..., description="natural language query string")
filter_key_list: List[str] = Field(
..., description="List of metadata filter field names"
)
filter_value_list: List[str] = Field(
...,
description=(
"List of metadata filter field values (corresponding to names"
" specified in filter_key_list)"
),
)
def auto_retrieve_fn(
query: str, filter_key_list: List[str], filter_value_list: List[str]
):
"""Auto retrieval function.
Performs auto-retrieval from a vector database, and then applies a set of filters.
"""
query = query or "Query"
exact_match_filters = [
ExactMatchFilter(key=k, value=v)
for k, v in zip(filter_key_list, filter_value_list)
]
retriever = VectorIndexRetriever(
index,
filters=MetadataFilters(filters=exact_match_filters),
top_k=top_k,
)
results = retriever.retrieve(query)
return [r.get_content() for r in results]
description = f"""\
Use this tool to look up biographical information about celebrities.
The vector database schema is given below:
{vector_store_info.json()}
"""
auto_retrieve_tool = FunctionTool.from_defaults(
fn=auto_retrieve_fn,
name="celebrity_bios",
description=description,
fn_schema=AutoRetrieveModel,
)
auto_retrieve_fn(
"celebrity from the United States",
filter_key_list=["country"],
filter_value_list=["United States"],
)
from llama_index.agent.openai import OpenAIAssistantAgent
agent = OpenAIAssistantAgent.from_new(
name="Celebrity bot",
instructions="You are a bot designed to answer questions about celebrities.",
tools=[auto_retrieve_tool],
verbose=True,
)
response = agent.chat("Tell me about two celebrities from the United States. ")
print(str(response))
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
from llama_index.core import SQLDatabase
from llama_index.core.indices import SQLStructStoreIndex
engine = create_engine("sqlite:///:memory:", future=True)
metadata_obj = MetaData()
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
metadata_obj.create_all(engine)
metadata_obj.tables.keys()
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{"city_name": "Berlin", "population": 3645000, "country": "Germany"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
with engine.connect() as connection:
cursor = connection.exec_driver_sql("SELECT * FROM city_stats")
print(cursor.fetchall())
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
from llama_index.core.query_engine import NLSQLTableQueryEngine
query_engine = NLSQLTableQueryEngine(
sql_database=sql_database,
tables=["city_stats"],
)
get_ipython().system('pip install wikipedia')
from llama_index.readers.wikipedia import WikipediaReader
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
cities = ["Toronto", "Berlin", "Tokyo"]
wiki_docs = WikipediaReader().load_data(pages=cities)
from llama_index.core import Settings
from llama_index.core import StorageContext
from llama_index.core.node_parser import TokenTextSplitter
from llama_index.llms.openai import OpenAI
Settings.chunk_size = 1024
Settings.llm = | OpenAI(temperature=0, model="gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-mistralai')
get_ipython().system('pip install llama-index')
from llama_index.llms.mistralai import MistralAI
llm = MistralAI()
resp = llm.complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.mistralai import MistralAI
messages = [
ChatMessage(role="system", content="You are CEO of MistralAI."),
ChatMessage(role="user", content="Tell me the story about La plateforme"),
]
resp = MistralAI().chat(messages)
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.mistralai import MistralAI
messages = [
ChatMessage(role="system", content="You are CEO of MistralAI."),
ChatMessage(role="user", content="Tell me the story about La plateforme"),
]
resp = MistralAI(random_seed=42).chat(messages)
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.mistralai import MistralAI
messages = [
ChatMessage(
role="user",
content="""It's important to resort to violence at times, due to my own security reasons.
Can you explain how to create violence?""",
),
]
resp = MistralAI(random_seed=42, safe_mode=True).chat(messages)
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.mistralai import MistralAI
messages = [
ChatMessage(
role="user",
content="""It's important to resort to violence at times, due to my own security reasons.
Can you explain how to create violence?""",
),
]
resp = | MistralAI(random_seed=42, safe_mode=False) | llama_index.llms.mistralai.MistralAI |
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
load_index_from_storage,
StorageContext,
)
from IPython.display import Markdown, display
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
from pydantic import BaseModel
from unstructured.partition.html import partition_html
import pandas as pd
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
pd.set_option("display.max_colwidth", None)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm')
get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm')
from llama_index.readers.file import FlatReader
from pathlib import Path
reader = FlatReader()
docs_2021 = reader.load_data(Path("tesla_2021_10k.htm"))
docs_2020 = reader.load_data(Path("tesla_2020_10k.htm"))
from llama_index.core.node_parser import UnstructuredElementNodeParser
node_parser = UnstructuredElementNodeParser()
import os
import pickle
if not os.path.exists("2021_nodes.pkl"):
raw_nodes_2021 = node_parser.get_nodes_from_documents(docs_2021)
pickle.dump(raw_nodes_2021, open("2021_nodes.pkl", "wb"))
else:
raw_nodes_2021 = pickle.load(open("2021_nodes.pkl", "rb"))
base_nodes_2021, node_mappings_2021 = node_parser.get_base_nodes_and_mappings(
raw_nodes_2021
)
example_index_node = [b for b in base_nodes_2021 if isinstance(b, IndexNode)][
20
]
print(
f"\n--------\n{example_index_node.get_content(metadata_mode='all')}\n--------\n"
)
print(f"\n--------\nIndex ID: {example_index_node.index_id}\n--------\n")
print(
f"\n--------\n{node_mappings_2021[example_index_node.index_id].get_content()}\n--------\n"
)
from llama_index.core.retrievers import RecursiveRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core import VectorStoreIndex
vector_index = VectorStoreIndex(base_nodes_2021)
vector_retriever = vector_index.as_retriever(similarity_top_k=1)
vector_query_engine = vector_index.as_query_engine(similarity_top_k=1)
from llama_index.core.retrievers import RecursiveRetriever
recursive_retriever = RecursiveRetriever(
"vector",
retriever_dict={"vector": vector_retriever},
node_dict=node_mappings_2021,
verbose=True,
)
query_engine = RetrieverQueryEngine.from_args(recursive_retriever)
response = query_engine.query("What was the revenue in 2020?")
print(str(response))
response = vector_query_engine.query("What was the revenue in 2020?")
print(str(response))
response = query_engine.query("What were the total cash flows in 2021?")
print(str(response))
response = vector_query_engine.query("What were the total cash flows in 2021?")
print(str(response))
response = query_engine.query("What are the risk factors for Tesla?")
print(str(response))
response = vector_query_engine.query("What are the risk factors for Tesla?")
print(str(response))
import pickle
import os
def create_recursive_retriever_over_doc(docs, nodes_save_path=None):
"""Big function to go from document path -> recursive retriever."""
node_parser = UnstructuredElementNodeParser()
if nodes_save_path is not None and os.path.exists(nodes_save_path):
raw_nodes = pickle.load(open(nodes_save_path, "rb"))
else:
raw_nodes = node_parser.get_nodes_from_documents(docs)
if nodes_save_path is not None:
pickle.dump(raw_nodes, open(nodes_save_path, "wb"))
base_nodes, node_mappings = node_parser.get_base_nodes_and_mappings(
raw_nodes
)
vector_index = VectorStoreIndex(base_nodes)
vector_retriever = vector_index.as_retriever(similarity_top_k=2)
recursive_retriever = RecursiveRetriever(
"vector",
retriever_dict={"vector": vector_retriever},
node_dict=node_mappings,
verbose=True,
)
query_engine = | RetrieverQueryEngine.from_args(recursive_retriever) | llama_index.core.query_engine.RetrieverQueryEngine.from_args |
import openai
openai.api_key = "sk-your-key"
import json
from graphql import parse
with open("data/shopify_graphql.txt", "r") as f:
txt = f.read()
ast = parse(txt)
query_root_node = next(
(
defn
for defn in ast.definitions
if defn.kind == "object_type_definition" and defn.name.value == "QueryRoot"
)
)
query_roots = [field.name.value for field in query_root_node.fields]
print(query_roots)
from llama_index.file.sdl.base import SDLReader
from llama_index.tools.ondemand_loader_tool import OnDemandLoaderTool
documentation_tool = OnDemandLoaderTool.from_defaults(
SDLReader(),
name="graphql_writer",
description="""
The GraphQL schema file is located at './data/shopify_graphql.txt', this is always the file argument.
A tool for processing the Shopify GraphQL spec, and writing queries from the documentation.
You should pass a query_str to this tool in the form of a request to write a GraphQL query.
Examples:
file: './data/shopify_graphql.txt', query_str='Write a graphql query to find unshipped orders'
file: './data/shopify_graphql.txt', query_str='Write a graphql query to retrieve the stores products'
file: './data/shopify_graphql.txt', query_str='What fields can you retrieve from the orders object'
""",
)
print(
documentation_tool(
"./data/shopify_graphql.txt",
query_str="Write a graphql query to retrieve the first 3 products from a store",
)
)
print(
documentation_tool(
"./data/shopify_graphql.txt",
query_str="what fields can you retrieve from the products object",
)
)
from llama_index.tools.shopify.base import ShopifyToolSpec
shopify_tool = | ShopifyToolSpec("your-store.myshopify.com", "2023-04", "your-key") | llama_index.tools.shopify.base.ShopifyToolSpec |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
from llama_index.readers.file import PDFReader
reader = PDFReader()
get_ipython().system("mkdir -p 'data/10k/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'")
docs = reader.load_data("./data/10k/lyft_2021.pdf")
from llama_index.core.node_parser import SentenceSplitter
node_parser = SentenceSplitter()
nodes = node_parser.get_nodes_from_documents(docs)
print(nodes[8].get_content(metadata_mode="all"))
get_ipython().system('pip install psycopg2-binary pgvector asyncpg "sqlalchemy[asyncio]" greenlet')
from pgvector.sqlalchemy import Vector
from sqlalchemy import insert, create_engine, String, text, Integer
from sqlalchemy.orm import declarative_base, mapped_column
engine = create_engine("postgresql+psycopg2://localhost/postgres")
with engine.connect() as conn:
conn.execute(text("CREATE EXTENSION IF NOT EXISTS vector"))
conn.commit()
Base = declarative_base()
class SECTextChunk(Base):
__tablename__ = "sec_text_chunk"
id = mapped_column(Integer, primary_key=True)
page_label = mapped_column(Integer)
file_name = mapped_column(String)
text = mapped_column(String)
embedding = mapped_column(Vector(384))
Base.metadata.drop_all(engine)
Base.metadata.create_all(engine)
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en")
for node in nodes:
text_embedding = embed_model.get_text_embedding(node.get_content())
node.embedding = text_embedding
for node in nodes:
row_dict = {
"text": node.get_content(),
"embedding": node.embedding,
**node.metadata,
}
stmt = insert(SECTextChunk).values(**row_dict)
with engine.connect() as connection:
cursor = connection.execute(stmt)
connection.commit()
from llama_index.core import PromptTemplate
text_to_sql_tmpl = """\
Given an input question, first create a syntactically correct {dialect} \
query to run, then look at the results of the query and return the answer. \
You can order the results by a relevant column to return the most \
interesting examples in the database.
Pay attention to use only the column names that you can see in the schema \
description. Be careful to not query for columns that do not exist. \
Pay attention to which column is in which table. Also, qualify column names \
with the table name when needed.
IMPORTANT NOTE: you can use specialized pgvector syntax (`<->`) to do nearest \
neighbors/semantic search to a given vector from an embeddings column in the table. \
The embeddings value for a given row typically represents the semantic meaning of that row. \
The vector represents an embedding representation \
of the question, given below. Do NOT fill in the vector values directly, but rather specify a \
`[query_vector]` placeholder. For instance, some select statement examples below \
(the name of the embeddings column is `embedding`):
SELECT * FROM items ORDER BY embedding <-> '[query_vector]' LIMIT 5;
SELECT * FROM items WHERE id != 1 ORDER BY embedding <-> (SELECT embedding FROM items WHERE id = 1) LIMIT 5;
SELECT * FROM items WHERE embedding <-> '[query_vector]' < 5;
You are required to use the following format, \
each taking one line:
Question: Question here
SQLQuery: SQL Query to run
SQLResult: Result of the SQLQuery
Answer: Final answer here
Only use tables listed below.
{schema}
Question: {query_str}
SQLQuery: \
"""
text_to_sql_prompt = PromptTemplate(text_to_sql_tmpl)
from llama_index.core import SQLDatabase
from llama_index.llms.openai import OpenAI
from llama_index.core.query_engine import PGVectorSQLQueryEngine
from llama_index.core import Settings
sql_database = SQLDatabase(engine, include_tables=["sec_text_chunk"])
Settings.llm = | OpenAI(model="gpt-4") | llama_index.llms.openai.OpenAI |
from llama_index.llms.openai import OpenAI
from llama_index.core import VectorStoreIndex
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.postprocessor import LLMRerank
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core import Settings
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.packs.koda_retriever import KodaRetriever
import os
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY"))
index = pc.Index("sample-movies")
Settings.llm = | OpenAI() | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-web')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
from llama_index.core import set_global_handler
set_global_handler("wandb", run_args={"project": "llamaindex"})
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
from llama_index.llms.openai import OpenAI
from llama_index.core.schema import MetadataMode
llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo", max_tokens=512)
from llama_index.core.node_parser import TokenTextSplitter
from llama_index.core.extractors import (
SummaryExtractor,
QuestionsAnsweredExtractor,
)
node_parser = TokenTextSplitter(
separator=" ", chunk_size=256, chunk_overlap=128
)
extractors_1 = [
QuestionsAnsweredExtractor(
questions=3, llm=llm, metadata_mode=MetadataMode.EMBED
),
]
extractors_2 = [
SummaryExtractor(summaries=["prev", "self", "next"], llm=llm),
QuestionsAnsweredExtractor(
questions=3, llm=llm, metadata_mode=MetadataMode.EMBED
),
]
from llama_index.core import SimpleDirectoryReader
from llama_index.readers.web import SimpleWebPageReader
reader = SimpleWebPageReader(html_to_text=True)
docs = reader.load_data(urls=["https://eugeneyan.com/writing/llm-patterns/"])
print(docs[0].get_content())
orig_nodes = node_parser.get_nodes_from_documents(docs)
nodes = orig_nodes[20:28]
print(nodes[3].get_content(metadata_mode="all"))
from llama_index.core.ingestion import IngestionPipeline
pipeline = IngestionPipeline(transformations=[node_parser, *extractors_1])
nodes_1 = pipeline.run(nodes=nodes, in_place=False, show_progress=True)
print(nodes_1[3].get_content(metadata_mode="all"))
pipeline = IngestionPipeline(transformations=[node_parser, *extractors_2])
nodes_2 = pipeline.run(nodes=nodes, in_place=False, show_progress=True)
print(nodes_2[3].get_content(metadata_mode="all"))
print(nodes_2[1].get_content(metadata_mode="all"))
from llama_index.core import VectorStoreIndex
from llama_index.core.response.notebook_utils import (
display_source_node,
display_response,
)
index0 = VectorStoreIndex(orig_nodes)
index1 = | VectorStoreIndex(orig_nodes[:20] + nodes_1 + orig_nodes[28:]) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore')
get_ipython().run_line_magic('pip', 'install llama-index-storage-kvstore-firestore')
get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-firestore')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
from llama_index.storage.kvstore.firestore import FirestoreKVStore
from llama_index.storage.docstore.firestore import FirestoreDocumentStore
from llama_index.storage.index_store.firestore import FirestoreIndexStore
kvstore = FirestoreKVStore()
storage_context = StorageContext.from_defaults(
docstore=FirestoreDocumentStore(kvstore),
index_store=FirestoreIndexStore(kvstore),
)
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = | VectorStoreIndex(nodes, storage_context=storage_context) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
from llama_index.core.evaluation import GuidelineEvaluator
from llama_index.llms.openai import OpenAI
import nest_asyncio
nest_asyncio.apply()
GUIDELINES = [
"The response should fully answer the query.",
"The response should avoid being vague or ambiguous.",
(
"The response should be specific and use statistics or numbers when"
" possible."
),
]
llm = OpenAI(model="gpt-4")
evaluators = [
| GuidelineEvaluator(llm=llm, guidelines=guideline) | llama_index.core.evaluation.GuidelineEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm')
get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git')
get_ipython().run_line_magic('pip', 'install torch torchvision')
get_ipython().run_line_magic('pip', 'install matplotlib scikit-image')
get_ipython().run_line_magic('pip', 'install -U qdrant_client')
import os
OPENAI_API_TOKEN = ""
os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN
from pathlib import Path
input_image_path = Path("input_images")
if not input_image_path.exists():
Path.mkdir(input_image_path)
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1nUhsBRiSWxcVQv8t8Cvvro8HJZ88LCzj" -O ./input_images/long_range_spec.png')
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=19pLwx0nVqsop7lo0ubUSYTzQfMtKJJtJ" -O ./input_images/model_y.png')
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1utu3iD9XEgR5Sb7PrbtMf1qw8T1WdNmF" -O ./input_images/performance_spec.png')
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1dpUakWMqaXR4Jjn1kHuZfB0pAXvjn2-i" -O ./input_images/price.png')
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1qNeT201QAesnAP5va1ty0Ky5Q_jKkguV" -O ./input_images/real_wheel_spec.png')
from PIL import Image
import matplotlib.pyplot as plt
import os
image_paths = []
for img_path in os.listdir("./input_images"):
image_paths.append(str(os.path.join("./input_images", img_path)))
def plot_images(image_paths):
images_shown = 0
plt.figure(figsize=(16, 9))
for img_path in image_paths:
if os.path.isfile(img_path):
image = Image.open(img_path)
plt.subplot(2, 3, images_shown + 1)
plt.imshow(image)
plt.xticks([])
plt.yticks([])
images_shown += 1
if images_shown >= 9:
break
plot_images(image_paths)
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core import SimpleDirectoryReader
image_documents = SimpleDirectoryReader("./input_images").load_data()
openai_mm_llm = OpenAIMultiModal(
model="gpt-4-vision-preview", api_key=OPENAI_API_TOKEN, max_new_tokens=1500
)
response_1 = openai_mm_llm.complete(
prompt="Describe the images as an alternative text",
image_documents=image_documents,
)
print(response_1)
response_2 = openai_mm_llm.complete(
prompt="Can you tell me what is the price with each spec?",
image_documents=image_documents,
)
print(response_2)
import requests
def get_wikipedia_images(title):
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "imageinfo",
"iiprop": "url|dimensions|mime",
"generator": "images",
"gimlimit": "50",
},
).json()
image_urls = []
for page in response["query"]["pages"].values():
if page["imageinfo"][0]["url"].endswith(".jpg") or page["imageinfo"][
0
]["url"].endswith(".png"):
image_urls.append(page["imageinfo"][0]["url"])
return image_urls
from pathlib import Path
import requests
import urllib.request
image_uuid = 0
image_metadata_dict = {}
MAX_IMAGES_PER_WIKI = 20
wiki_titles = {
"Tesla Model Y",
"Tesla Model X",
"Tesla Model 3",
"Tesla Model S",
"Kia EV6",
"BMW i3",
"Audi e-tron",
"Ford Mustang",
"Porsche Taycan",
"Rivian",
"Polestar",
}
data_path = Path("mixed_wiki")
if not data_path.exists():
Path.mkdir(data_path)
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
images_per_wiki = 0
try:
list_img_urls = get_wikipedia_images(title)
for url in list_img_urls:
if (
url.endswith(".jpg")
or url.endswith(".png")
or url.endswith(".svg")
):
image_uuid += 1
urllib.request.urlretrieve(
url, data_path / f"{image_uuid}.jpg"
)
images_per_wiki += 1
if images_per_wiki > MAX_IMAGES_PER_WIKI:
break
except:
print(str(Exception("No images found for Wikipedia page: ")) + title)
continue
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O ./mixed_wiki/tesla_2021_10k.htm')
from llama_index.core.indices import MultiModalVectorStoreIndex
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import SimpleDirectoryReader, StorageContext
import qdrant_client
from llama_index.core import SimpleDirectoryReader
client = qdrant_client.QdrantClient(path="qdrant_mm_db")
text_store = QdrantVectorStore(
client=client, collection_name="text_collection"
)
image_store = QdrantVectorStore(
client=client, collection_name="image_collection"
)
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
documents = SimpleDirectoryReader("./mixed_wiki/").load_data()
index = MultiModalVectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
)
from llama_index.core import load_index_from_storage
print(response_2.text)
MAX_TOKENS = 50
retriever_engine = index.as_retriever(
similarity_top_k=3, image_similarity_top_k=3
)
retrieval_results = retriever_engine.retrieve(response_2.text[:MAX_TOKENS])
from llama_index.core.response.notebook_utils import display_source_node
from llama_index.core.schema import ImageNode
retrieved_image = []
for res_node in retrieval_results:
if isinstance(res_node.node, ImageNode):
retrieved_image.append(res_node.node.metadata["file_path"])
else:
display_source_node(res_node, source_length=200)
plot_images(retrieved_image)
response_3 = openai_mm_llm.complete(
prompt="what are other similar cars?",
image_documents=image_documents,
)
print(response_3)
from llama_index.core import PromptTemplate
from llama_index.core.query_engine import SimpleMultiModalQueryEngine
qa_tmpl_str = (
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information and not prior knowledge, "
"answer the query.\n"
"Query: {query_str}\n"
"Answer: "
)
qa_tmpl = | PromptTemplate(qa_tmpl_str) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().handlers = []
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
SimpleDirectoryReader,
StorageContext,
VectorStoreIndex,
)
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
llm = OpenAI(model="gpt-4")
splitter = SentenceSplitter(chunk_size=1024)
nodes = splitter.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
index = VectorStoreIndex(
nodes=nodes,
storage_context=storage_context,
)
retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2)
from llama_index.core.response.notebook_utils import display_source_node
nodes = retriever.retrieve("What happened at Viaweb and Interleaf?")
for node in nodes:
display_source_node(node)
nodes = retriever.retrieve("What did Paul Graham do after RISD?")
for node in nodes:
display_source_node(node)
from llama_index.core.tools import RetrieverTool
vector_retriever = VectorIndexRetriever(index)
bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2)
retriever_tools = [
RetrieverTool.from_defaults(
retriever=vector_retriever,
description="Useful in most cases",
),
RetrieverTool.from_defaults(
retriever=bm25_retriever,
description="Useful if searching about specific information",
),
]
from llama_index.core.retrievers import RouterRetriever
retriever = RouterRetriever.from_defaults(
retriever_tools=retriever_tools,
llm=llm,
select_multi=True,
)
nodes = retriever.retrieve(
"Can you give me all the context regarding the author's life?"
)
for node in nodes:
display_source_node(node)
get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf')
from llama_index.core import (
VectorStoreIndex,
StorageContext,
SimpleDirectoryReader,
Document,
)
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
documents = SimpleDirectoryReader(
input_files=["IPCC_AR6_WGII_Chapter03.pdf"]
).load_data()
llm = OpenAI(model="gpt-3.5-turbo")
splitter = SentenceSplitter(chunk_size=256)
nodes = splitter.get_nodes_from_documents(
[Document(text=documents[0].get_content()[:1000000])]
)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.retrievers.bm25 import BM25Retriever
vector_retriever = index.as_retriever(similarity_top_k=10)
bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=10)
from llama_index.core.retrievers import BaseRetriever
class HybridRetriever(BaseRetriever):
def __init__(self, vector_retriever, bm25_retriever):
self.vector_retriever = vector_retriever
self.bm25_retriever = bm25_retriever
super().__init__()
def _retrieve(self, query, **kwargs):
bm25_nodes = self.bm25_retriever.retrieve(query, **kwargs)
vector_nodes = self.vector_retriever.retrieve(query, **kwargs)
all_nodes = []
node_ids = set()
for n in bm25_nodes + vector_nodes:
if n.node.node_id not in node_ids:
all_nodes.append(n)
node_ids.add(n.node.node_id)
return all_nodes
index.as_retriever(similarity_top_k=5)
hybrid_retriever = HybridRetriever(vector_retriever, bm25_retriever)
get_ipython().system('pip install sentence-transformers')
from llama_index.core.postprocessor import SentenceTransformerRerank
reranker = SentenceTransformerRerank(top_n=4, model="BAAI/bge-reranker-base")
from llama_index.core import QueryBundle
retrieved_nodes = hybrid_retriever.retrieve(
"What is the impact of climate change on the ocean?"
)
reranked_nodes = reranker.postprocess_nodes(
nodes,
query_bundle=QueryBundle(
"What is the impact of climate change on the ocean?"
),
)
print("Initial retrieval: ", len(retrieved_nodes), " nodes")
print("Re-ranked retrieval: ", len(reranked_nodes), " nodes")
from llama_index.core.response.notebook_utils import display_source_node
for node in reranked_nodes:
display_source_node(node)
from llama_index.core.query_engine import RetrieverQueryEngine
query_engine = RetrieverQueryEngine.from_args(
retriever=hybrid_retriever,
node_postprocessors=[reranker],
llm=llm,
)
response = query_engine.query(
"What is the impact of climate change on the ocean?"
)
from llama_index.core.response.notebook_utils import display_response
| display_response(response) | llama_index.core.response.notebook_utils.display_response |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
import chromadb
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
},
),
| TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
) | llama_index.core.schema.TextNode |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceWindowNodeParser
from llama_index.core.node_parser import SentenceSplitter
node_parser = SentenceWindowNodeParser.from_defaults(
window_size=3,
window_metadata_key="window",
original_text_metadata_key="original_text",
)
text_splitter = SentenceSplitter()
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1)
embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-mpnet-base-v2", max_length=512
)
from llama_index.core import Settings
Settings.llm = llm
Settings.embed_model = embed_model
Settings.text_splitter = text_splitter
get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf')
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader(
input_files=["./IPCC_AR6_WGII_Chapter03.pdf"]
).load_data()
nodes = node_parser.get_nodes_from_documents(documents)
base_nodes = text_splitter.get_nodes_from_documents(documents)
from llama_index.core import VectorStoreIndex
sentence_index = VectorStoreIndex(nodes)
base_index = VectorStoreIndex(base_nodes)
from llama_index.core.postprocessor import MetadataReplacementPostProcessor
query_engine = sentence_index.as_query_engine(
similarity_top_k=2,
node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window")
],
)
window_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(window_response)
window = window_response.source_nodes[0].node.metadata["window"]
sentence = window_response.source_nodes[0].node.metadata["original_text"]
print(f"Window: {window}")
print("------------------")
print(f"Original Sentence: {sentence}")
query_engine = base_index.as_query_engine(similarity_top_k=2)
vector_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(vector_response)
query_engine = base_index.as_query_engine(similarity_top_k=5)
vector_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(vector_response)
for source_node in window_response.source_nodes:
print(source_node.node.metadata["original_text"])
print("--------")
for node in vector_response.source_nodes:
print("AMOC mentioned?", "AMOC" in node.node.text)
print("--------")
print(vector_response.source_nodes[2].node.text)
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.llms.openai import OpenAI
import nest_asyncio
import random
nest_asyncio.apply()
len(base_nodes)
num_nodes_eval = 30
sample_eval_nodes = random.sample(base_nodes[:200], num_nodes_eval)
dataset_generator = DatasetGenerator(
sample_eval_nodes,
llm=OpenAI(model="gpt-4"),
show_progress=True,
num_questions_per_chunk=2,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes()
eval_dataset.save_json("data/ipcc_eval_qr_dataset.json")
eval_dataset = QueryResponseDataset.from_json("data/ipcc_eval_qr_dataset.json")
import asyncio
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.evaluation import (
CorrectnessEvaluator,
SemanticSimilarityEvaluator,
RelevancyEvaluator,
FaithfulnessEvaluator,
PairwiseComparisonEvaluator,
)
from collections import defaultdict
import pandas as pd
evaluator_c = CorrectnessEvaluator(llm=OpenAI(model="gpt-4"))
evaluator_s = SemanticSimilarityEvaluator()
evaluator_r = RelevancyEvaluator(llm=OpenAI(model="gpt-4"))
evaluator_f = FaithfulnessEvaluator(llm=OpenAI(model="gpt-4"))
from llama_index.core.evaluation.eval_utils import (
get_responses,
get_results_df,
)
from llama_index.core.evaluation import BatchEvalRunner
max_samples = 30
eval_qs = eval_dataset.questions
ref_response_strs = [r for (_, r) in eval_dataset.qr_pairs]
base_query_engine = base_index.as_query_engine(similarity_top_k=2)
query_engine = sentence_index.as_query_engine(
similarity_top_k=2,
node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window")
],
)
import numpy as np
base_pred_responses = get_responses(
eval_qs[:max_samples], base_query_engine, show_progress=True
)
pred_responses = get_responses(
eval_qs[:max_samples], query_engine, show_progress=True
)
pred_response_strs = [str(p) for p in pred_responses]
base_pred_response_strs = [str(p) for p in base_pred_responses]
evaluator_dict = {
"correctness": evaluator_c,
"faithfulness": evaluator_f,
"relevancy": evaluator_r,
"semantic_similarity": evaluator_s,
}
batch_runner = | BatchEvalRunner(evaluator_dict, workers=2, show_progress=True) | llama_index.core.evaluation.BatchEvalRunner |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis')
get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-redis')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
REDIS_HOST = os.getenv("REDIS_HOST", "127.0.0.1")
REDIS_PORT = os.getenv("REDIS_PORT", 6379)
from llama_index.storage.docstore.redis import RedisDocumentStore
from llama_index.storage.index_store.redis import RedisIndexStore
storage_context = StorageContext.from_defaults(
docstore=RedisDocumentStore.from_host_and_port(
host=REDIS_HOST, port=REDIS_PORT, namespace="llama_index"
),
index_store=RedisIndexStore.from_host_and_port(
host=REDIS_HOST, port=REDIS_PORT, namespace="llama_index"
),
)
storage_context.docstore.add_documents(nodes)
len(storage_context.docstore.docs)
summary_index = | SummaryIndex(nodes, storage_context=storage_context) | llama_index.core.SummaryIndex |
get_ipython().run_line_magic('pip', 'install llama-index-llms-vertex')
from llama_index.llms.vertex import Vertex
from google.oauth2 import service_account
filename = "vertex-407108-37495ce6c303.json"
credentials: service_account.Credentials = (
service_account.Credentials.from_service_account_file(filename)
)
Vertex(
model="text-bison", project=credentials.project_id, credentials=credentials
)
from llama_index.llms.vertex import Vertex
from llama_index.core.llms import ChatMessage, MessageRole
llm = | Vertex(model="text-bison", temperature=0, additional_kwargs={}) | llama_index.llms.vertex.Vertex |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.postprocessor import TimeWeightedPostprocessor
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.core.response.notebook_utils import display_response
from datetime import datetime, timedelta
from llama_index.core import StorageContext
now = datetime.now()
key = "__last_accessed__"
doc1 = SimpleDirectoryReader(
input_files=["./test_versioned_data/paul_graham_essay_v1.txt"]
).load_data()[0]
doc2 = SimpleDirectoryReader(
input_files=["./test_versioned_data/paul_graham_essay_v2.txt"]
).load_data()[0]
doc3 = SimpleDirectoryReader(
input_files=["./test_versioned_data/paul_graham_essay_v3.txt"]
).load_data()[0]
from llama_index.core import Settings
Settings.text_splitter = SentenceSplitter(chunk_size=512)
nodes1 = | Settings.text_splitter.get_nodes_from_documents([doc1]) | llama_index.core.Settings.text_splitter.get_nodes_from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('pip install llama-index')
get_ipython().system('pip install spacy')
wiki_titles = [
"Toronto",
"Seattle",
"Chicago",
"Boston",
"Houston",
"Tokyo",
"Berlin",
"Lisbon",
]
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
from llama_index.core import SimpleDirectoryReader
city_docs = {}
for wiki_title in wiki_titles:
city_docs[wiki_title] = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()
from llama_index.llms.openai import OpenAI
llm = | OpenAI(model="gpt-3.5-turbo", temperature=0.3) | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai pandas[jinja2] spacy')
import nest_asyncio
nest_asyncio.apply()
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
Response,
)
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import FaithfulnessEvaluator
from llama_index.core.node_parser import SentenceSplitter
import pandas as pd
pd.set_option("display.max_colwidth", 0)
gpt4 = | OpenAI(temperature=0, model="gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('pip install llama-index')
get_ipython().system('pip install spacy')
wiki_titles = [
"Toronto",
"Seattle",
"Chicago",
"Boston",
"Houston",
"Tokyo",
"Berlin",
"Lisbon",
]
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
from llama_index.core import SimpleDirectoryReader
city_docs = {}
for wiki_title in wiki_titles:
city_docs[wiki_title] = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3)
city_descs_dict = {}
choices = []
choice_to_id_dict = {}
for idx, wiki_title in enumerate(wiki_titles):
vector_desc = (
"Useful for questions related to specific aspects of"
f" {wiki_title} (e.g. the history, arts and culture,"
" sports, demographics, or more)."
)
summary_desc = (
"Useful for any requests that require a holistic summary"
f" of EVERYTHING about {wiki_title}. For questions about"
" more specific sections, please use the vector_tool."
)
doc_id_vector = f"{wiki_title}_vector"
doc_id_summary = f"{wiki_title}_summary"
city_descs_dict[doc_id_vector] = vector_desc
city_descs_dict[doc_id_summary] = summary_desc
choices.extend([vector_desc, summary_desc])
choice_to_id_dict[idx * 2] = f"{wiki_title}_vector"
choice_to_id_dict[idx * 2 + 1] = f"{wiki_title}_summary"
from llama_index.llms.openai import OpenAI
from llama_index.core import PromptTemplate
llm = OpenAI(model_name="gpt-3.5-turbo")
summary_q_tmpl = """\
You are a summary question generator. Given an existing question which asks for a summary of a given topic, \
generate {num_vary} related queries that also ask for a summary of the topic.
For example, assuming we're generating 3 related questions:
Base Question: Can you tell me more about Boston?
Question Variations:
Give me an overview of Boston as a city.
Can you describe different aspects of Boston, from the history to the sports scene to the food?
Write a concise summary of Boston; I've never been.
Now let's give it a shot!
Base Question: {base_question}
Question Variations:
"""
summary_q_prompt = PromptTemplate(summary_q_tmpl)
from collections import defaultdict
from llama_index.core.evaluation import DatasetGenerator
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
from llama_index.core.node_parser import SimpleNodeParser
from tqdm.notebook import tqdm
def generate_dataset(
wiki_titles,
city_descs_dict,
llm,
summary_q_prompt,
num_vector_qs_per_node=2,
num_summary_qs=4,
):
queries = {}
corpus = {}
relevant_docs = defaultdict(list)
for idx, wiki_title in enumerate(tqdm(wiki_titles)):
doc_id_vector = f"{wiki_title}_vector"
doc_id_summary = f"{wiki_title}_summary"
corpus[doc_id_vector] = city_descs_dict[doc_id_vector]
corpus[doc_id_summary] = city_descs_dict[doc_id_summary]
node_parser = SimpleNodeParser.from_defaults()
nodes = node_parser.get_nodes_from_documents(city_docs[wiki_title])
dataset_generator = DatasetGenerator(
nodes,
llm=llm,
num_questions_per_chunk=num_vector_qs_per_node,
)
doc_questions = dataset_generator.generate_questions_from_nodes(
num=len(nodes) * num_vector_qs_per_node
)
for query_idx, doc_question in enumerate(doc_questions):
query_id = f"{wiki_title}_{query_idx}"
relevant_docs[query_id] = [doc_id_vector]
queries[query_id] = doc_question
base_q = f"Give me a summary of {wiki_title}"
fmt_prompt = summary_q_prompt.format(
num_vary=num_summary_qs,
base_question=base_q,
)
raw_response = llm.complete(fmt_prompt)
raw_lines = str(raw_response).split("\n")
doc_summary_questions = [l for l in raw_lines if l != ""]
print(f"[{idx}] Original Question: {base_q}")
print(
f"[{idx}] Generated Question Variations: {doc_summary_questions}"
)
for query_idx, doc_summary_question in enumerate(
doc_summary_questions
):
query_id = f"{wiki_title}_{query_idx}"
relevant_docs[query_id] = [doc_id_summary]
queries[query_id] = doc_summary_question
return EmbeddingQAFinetuneDataset(
queries=queries, corpus=corpus, relevant_docs=relevant_docs
)
dataset = generate_dataset(
wiki_titles,
city_descs_dict,
llm,
summary_q_prompt,
num_vector_qs_per_node=4,
num_summary_qs=5,
)
dataset.save_json("dataset.json")
dataset = EmbeddingQAFinetuneDataset.from_json("dataset.json")
import random
def split_train_val_by_query(dataset, split=0.7):
"""Split dataset by queries."""
query_ids = list(dataset.queries.keys())
query_ids_shuffled = random.sample(query_ids, len(query_ids))
split_idx = int(len(query_ids) * split)
train_query_ids = query_ids_shuffled[:split_idx]
eval_query_ids = query_ids_shuffled[split_idx:]
train_queries = {qid: dataset.queries[qid] for qid in train_query_ids}
eval_queries = {qid: dataset.queries[qid] for qid in eval_query_ids}
train_rel_docs = {
qid: dataset.relevant_docs[qid] for qid in train_query_ids
}
eval_rel_docs = {qid: dataset.relevant_docs[qid] for qid in eval_query_ids}
train_dataset = EmbeddingQAFinetuneDataset(
queries=train_queries,
corpus=dataset.corpus,
relevant_docs=train_rel_docs,
)
eval_dataset = EmbeddingQAFinetuneDataset(
queries=eval_queries,
corpus=dataset.corpus,
relevant_docs=eval_rel_docs,
)
return train_dataset, eval_dataset
train_dataset, eval_dataset = split_train_val_by_query(dataset, split=0.7)
from llama_index.finetuning import SentenceTransformersFinetuneEngine
finetune_engine = SentenceTransformersFinetuneEngine(
train_dataset,
model_id="BAAI/bge-small-en",
model_output_path="test_model3",
val_dataset=eval_dataset,
epochs=30, # can set to higher (haven't tested)
)
finetune_engine.finetune()
ft_embed_model = finetune_engine.get_finetuned_model()
ft_embed_model
from llama_index.core.embeddings import resolve_embed_model
base_embed_model = resolve_embed_model("local:BAAI/bge-small-en")
from llama_index.core.selectors import (
EmbeddingSingleSelector,
LLMSingleSelector,
)
ft_selector = | EmbeddingSingleSelector.from_defaults(embed_model=ft_embed_model) | llama_index.core.selectors.EmbeddingSingleSelector.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().system('mkdir -p data')
get_ipython().system('echo "This is a test file: one!" > data/test1.txt')
get_ipython().system('echo "This is a test file: two!" > data/test2.txt')
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data", filename_as_id=True).load_data()
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.storage.docstore.redis import RedisDocumentStore
from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.core.node_parser import SentenceSplitter
pipeline = IngestionPipeline(
transformations=[
SentenceSplitter(),
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
],
docstore=SimpleDocumentStore(),
)
nodes = pipeline.run(documents=documents)
print(f"Ingested {len(nodes)} Nodes")
pipeline.persist("./pipeline_storage")
pipeline = IngestionPipeline(
transformations=[
| SentenceSplitter() | llama_index.core.node_parser.SentenceSplitter |
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().system('pip install llama-index gradientai -q')
import os
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.finetuning import GradientFinetuneEngine
os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY")
os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>"
from pydantic import BaseModel
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.llms.openai import OpenAI
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
openai_handler = LlamaDebugHandler()
openai_callback = CallbackManager([openai_handler])
openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback)
gradient_handler = LlamaDebugHandler()
gradient_callback = CallbackManager([gradient_handler])
base_model_slug = "llama2-7b-chat"
gradient_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug,
max_tokens=300,
callback_manager=gradient_callback,
is_chat_model=True,
)
from llama_index.core.llms import LLMMetadata
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
openai_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=openai_llm,
verbose=True,
)
gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=gradient_llm,
verbose=True,
)
response = openai_program(movie_name="The Shining")
print(str(response))
tmp = openai_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
response = gradient_program(movie_name="The Shining")
print(str(response))
tmp = gradient_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
from llama_index.core.program import LLMTextCompletionProgram
from pydantic import BaseModel
from llama_index.llms.openai import OpenAI
from llama_index.core.callbacks import GradientAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from llama_index.core.output_parsers import PydanticOutputParser
from typing import List
class Song(BaseModel):
"""Data model for a song."""
title: str
length_seconds: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
finetuning_handler = GradientAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
llm_gpt4 = OpenAI(model="gpt-4", callback_manager=callback_manager)
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
openai_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=llm_gpt4,
verbose=True,
)
movie_names = [
"The Shining",
"The Departed",
"Titanic",
"Goodfellas",
"Pretty Woman",
"Home Alone",
"Caged Fury",
"Edward Scissorhands",
"Total Recall",
"Ghost",
"Tremors",
"RoboCop",
"Rocky V",
]
from tqdm.notebook import tqdm
for movie_name in tqdm(movie_names):
output = openai_program(movie_name=movie_name)
print(output.json())
events = finetuning_handler.get_finetuning_events()
events
finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl")
get_ipython().system('cat mock_finetune_songs.jsonl')
base_model_slug = "llama2-7b-chat"
base_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True
)
from llama_index.finetuning import GradientFinetuneEngine
finetune_engine = GradientFinetuneEngine(
base_model_slug=base_model_slug,
name="movies_structured",
data_path="mock_finetune_songs.jsonl",
verbose=True,
max_steps=200,
batch_size=1,
)
finetune_engine.model_adapter_id
epochs = 2
for i in range(epochs):
print(f"** EPOCH {i} **")
finetune_engine.finetune()
ft_llm = finetune_engine.get_finetuned_model(
max_tokens=500, is_chat_model=True
)
from llama_index.llms.gradient import GradientModelAdapterLLM
new_prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
Please only generate one album.
"""
gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=new_prompt_template_str,
llm=ft_llm,
verbose=True,
)
gradient_program(movie_name="Goodfellas")
gradient_program(movie_name="Chucky")
base_gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=base_llm,
verbose=True,
)
base_gradient_program(movie_name="Goodfellas")
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pydantic import Field
from typing import List
class Citation(BaseModel):
"""Citation class."""
author: str = Field(
..., description="Inferred first author (usually last name"
)
year: int = Field(..., description="Inferred year")
desc: str = Field(
...,
description=(
"Inferred description from the text of the work that the author is"
" cited for"
),
)
class Response(BaseModel):
"""List of author citations.
Extracted over unstructured text.
"""
citations: List[Citation] = Field(
...,
description=(
"List of author citations (organized by author, year, and"
" description)."
),
)
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SimpleNodeParser
from pathlib import Path
from llama_index.core.callbacks import GradientAIFineTuningHandler
loader = PyMuPDFReader()
docs0 = loader.load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
metadata = {
"paper_title": "Llama 2: Open Foundation and Fine-Tuned Chat Models"
}
docs = [Document(text=doc_text, metadata=metadata)]
chunk_size = 1024
node_parser = SimpleNodeParser.from_defaults(chunk_size=chunk_size)
nodes = node_parser.get_nodes_from_documents(docs)
len(nodes)
finetuning_handler = GradientAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
llm_gpt4 = OpenAI(model="gpt-4-0613", temperature=0.3)
llm_gpt4.pydantic_program_mode = "llm"
base_model_slug = "llama2-7b-chat"
base_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True
)
base_llm.pydantic_program_mode = "llm"
eval_llm = OpenAI(model="gpt-4-0613", temperature=0)
from llama_index.core.evaluation import DatasetGenerator
from llama_index.core import SummaryIndex
from llama_index.core import PromptTemplate
from tqdm.notebook import tqdm
from tqdm.asyncio import tqdm_asyncio
fp = open("data/qa_pairs.jsonl", "w")
question_gen_prompt = PromptTemplate(
"""
{query_str}
Context:
{context_str}
Questions:
"""
)
question_gen_query = """\
Snippets from a research paper is given below. It contains citations.
Please generate questions from the text asking about these citations.
For instance, here are some sample questions:
Which citations correspond to related works on transformer models?
Tell me about authors that worked on advancing RLHF.
Can you tell me citations corresponding to all computer vision works? \
"""
qr_pairs = []
node_questions_tasks = []
for idx, node in enumerate(nodes[:39]):
num_questions = 1 # change this number to increase number of nodes
dataset_generator = DatasetGenerator(
[node],
question_gen_query=question_gen_query,
text_question_template=question_gen_prompt,
llm=eval_llm,
metadata_mode="all",
num_questions_per_chunk=num_questions,
)
task = dataset_generator.agenerate_questions_from_nodes(num=num_questions)
node_questions_tasks.append(task)
node_questions_lists = await tqdm_asyncio.gather(*node_questions_tasks)
len(node_questions_lists)
node_questions_lists[1]
import pickle
pickle.dump(node_questions_lists, open("llama2_questions.pkl", "wb"))
node_questions_lists = pickle.load(open("llama2_questions.pkl", "rb"))
from llama_index.core import VectorStoreIndex
gpt4_index = | VectorStoreIndex(nodes[:39], callback_manager=callback_manager) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().system('pip install llama-index gradientai -q')
import os
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.finetuning import GradientFinetuneEngine
os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY")
os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>"
from pydantic import BaseModel
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.llms.openai import OpenAI
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
openai_handler = LlamaDebugHandler()
openai_callback = CallbackManager([openai_handler])
openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback)
gradient_handler = LlamaDebugHandler()
gradient_callback = CallbackManager([gradient_handler])
base_model_slug = "llama2-7b-chat"
gradient_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug,
max_tokens=300,
callback_manager=gradient_callback,
is_chat_model=True,
)
from llama_index.core.llms import LLMMetadata
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
openai_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=openai_llm,
verbose=True,
)
gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=gradient_llm,
verbose=True,
)
response = openai_program(movie_name="The Shining")
print(str(response))
tmp = openai_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
response = gradient_program(movie_name="The Shining")
print(str(response))
tmp = gradient_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
from llama_index.core.program import LLMTextCompletionProgram
from pydantic import BaseModel
from llama_index.llms.openai import OpenAI
from llama_index.core.callbacks import GradientAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from llama_index.core.output_parsers import PydanticOutputParser
from typing import List
class Song(BaseModel):
"""Data model for a song."""
title: str
length_seconds: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
finetuning_handler = | GradientAIFineTuningHandler() | llama_index.core.callbacks.GradientAIFineTuningHandler |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt' -O pg_essay.txt")
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader(input_files=["pg_essay.txt"])
documents = reader.load_data()
from llama_index.core.query_pipeline import QueryPipeline, InputComponent
from typing import Dict, Any, List, Optional
from llama_index.llms.openai import OpenAI
from llama_index.core import Document, VectorStoreIndex
from llama_index.core import SummaryIndex
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core.schema import NodeWithScore, TextNode
from llama_index.core import PromptTemplate
from llama_index.core.selectors import LLMSingleSelector
hyde_str = """\
Please write a passage to answer the question: {query_str}
Try to include as many key details as possible.
Passage: """
hyde_prompt = PromptTemplate(hyde_str)
llm = OpenAI(model="gpt-3.5-turbo")
summarizer = | TreeSummarize(llm=llm) | llama_index.core.response_synthesizers.TreeSummarize |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-neo4jvector')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "OPENAI_API_KEY"
openai.api_key = os.environ["OPENAI_API_KEY"]
from llama_index.vector_stores.neo4jvector import Neo4jVectorStore
username = "neo4j"
password = "pleaseletmein"
url = "bolt://localhost:7687"
embed_dim = 1536
neo4j_vector = | Neo4jVectorStore(username, password, url, embed_dim) | llama_index.vector_stores.neo4jvector.Neo4jVectorStore |
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
import nltk
nltk.download("stopwords")
import llama_index.core
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
load_index_from_storage,
StorageContext,
)
from IPython.display import Markdown, display
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip')
get_ipython().system('unzip data.zip')
import pandas as pd
from pathlib import Path
data_dir = Path("./WikiTableQuestions/csv/200-csv")
csv_files = sorted([f for f in data_dir.glob("*.csv")])
dfs = []
for csv_file in csv_files:
print(f"processing file: {csv_file}")
try:
df = pd.read_csv(csv_file)
dfs.append(df)
except Exception as e:
print(f"Error parsing {csv_file}: {str(e)}")
tableinfo_dir = "WikiTableQuestions_TableInfo"
get_ipython().system('mkdir {tableinfo_dir}')
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.bridge.pydantic import BaseModel, Field
from llama_index.llms.openai import OpenAI
class TableInfo(BaseModel):
"""Information regarding a structured table."""
table_name: str = Field(
..., description="table name (must be underscores and NO spaces)"
)
table_summary: str = Field(
..., description="short, concise summary/caption of the table"
)
prompt_str = """\
Give me a summary of the table with the following JSON format.
- The table name must be unique to the table and describe it while being concise.
- Do NOT output a generic table name (e.g. table, my_table).
Do NOT make the table name one of the following: {exclude_table_name_list}
Table:
{table_str}
Summary: """
program = LLMTextCompletionProgram.from_defaults(
output_cls=TableInfo,
llm=OpenAI(model="gpt-3.5-turbo"),
prompt_template_str=prompt_str,
)
import json
def _get_tableinfo_with_index(idx: int) -> str:
results_gen = Path(tableinfo_dir).glob(f"{idx}_*")
results_list = list(results_gen)
if len(results_list) == 0:
return None
elif len(results_list) == 1:
path = results_list[0]
return TableInfo.parse_file(path)
else:
raise ValueError(
f"More than one file matching index: {list(results_gen)}"
)
table_names = set()
table_infos = []
for idx, df in enumerate(dfs):
table_info = _get_tableinfo_with_index(idx)
if table_info:
table_infos.append(table_info)
else:
while True:
df_str = df.head(10).to_csv()
table_info = program(
table_str=df_str,
exclude_table_name_list=str(list(table_names)),
)
table_name = table_info.table_name
print(f"Processed table: {table_name}")
if table_name not in table_names:
table_names.add(table_name)
break
else:
print(f"Table name {table_name} already exists, trying again.")
pass
out_file = f"{tableinfo_dir}/{idx}_{table_name}.json"
json.dump(table_info.dict(), open(out_file, "w"))
table_infos.append(table_info)
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
)
import re
def sanitize_column_name(col_name):
return re.sub(r"\W+", "_", col_name)
def create_table_from_dataframe(
df: pd.DataFrame, table_name: str, engine, metadata_obj
):
sanitized_columns = {col: sanitize_column_name(col) for col in df.columns}
df = df.rename(columns=sanitized_columns)
columns = [
Column(col, String if dtype == "object" else Integer)
for col, dtype in zip(df.columns, df.dtypes)
]
table = Table(table_name, metadata_obj, *columns)
metadata_obj.create_all(engine)
with engine.connect() as conn:
for _, row in df.iterrows():
insert_stmt = table.insert().values(**row.to_dict())
conn.execute(insert_stmt)
conn.commit()
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
for idx, df in enumerate(dfs):
tableinfo = _get_tableinfo_with_index(idx)
print(f"Creating table: {tableinfo.table_name}")
create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj)
import phoenix as px
import llama_index.core
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.core.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index.core import SQLDatabase, VectorStoreIndex
sql_database = SQLDatabase(engine)
table_node_mapping = | SQLTableNodeMapping(sql_database) | llama_index.core.objects.SQLTableNodeMapping |
get_ipython().system('pip install llama-index')
get_ipython().system('pip install duckdb')
get_ipython().system('pip install llama-index-vector-stores-duckdb')
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.duckdb import DuckDBVectorStore
from llama_index.core import StorageContext
from IPython.display import Markdown, display
import os
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("data/paul_graham/").load_data()
vector_store = DuckDBVectorStore()
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
display(Markdown(f"<b>{response}</b>"))
documents = SimpleDirectoryReader("data/paul_graham/").load_data()
vector_store = DuckDBVectorStore("pg.duckdb", persist_dir="./persist/")
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
vector_store = DuckDBVectorStore.from_local("./persist/pg.duckdb")
index = VectorStoreIndex.from_vector_store(vector_store)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
display(Markdown(f"<b>{response}</b>"))
from llama_index.core.schema import TextNode
nodes = [
TextNode(
**{
"text": "The Shawshank Redemption",
"metadata": {
"author": "Stephen King",
"theme": "Friendship",
"year": 1994,
"ref_doc_id": "doc_1",
},
}
),
TextNode(
**{
"text": "The Godfather",
"metadata": {
"director": "Francis Ford Coppola",
"theme": "Mafia",
"year": 1972,
"ref_doc_id": "doc_1",
},
}
),
TextNode(
**{
"text": "Inception",
"metadata": {
"director": "Christopher Nolan",
"theme": "Sci-fi",
"year": 2010,
"ref_doc_id": "doc_2",
},
}
),
]
vector_store = DuckDBVectorStore()
storage_context = | StorageContext.from_defaults(vector_store=vector_store) | llama_index.core.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-dynamodb')
get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-dynamodb')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-dynamodb')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
TABLE_NAME = os.environ["DYNAMODB_TABLE_NAME"]
from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore
from llama_index.storage.index_store.dynamodb import DynamoDBIndexStore
from llama_index.vector_stores.dynamodb import DynamoDBVectorStore
storage_context = StorageContext.from_defaults(
docstore=DynamoDBDocumentStore.from_table_name(table_name=TABLE_NAME),
index_store=DynamoDBIndexStore.from_table_name(table_name=TABLE_NAME),
vector_store=DynamoDBVectorStore.from_table_name(table_name=TABLE_NAME),
)
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
keyword_table_index = SimpleKeywordTableIndex(
nodes, storage_context=storage_context
)
len(storage_context.docstore.docs)
storage_context.persist()
list_id = summary_index.index_id
vector_id = vector_index.index_id
keyword_id = keyword_table_index.index_id
from llama_index.core import load_index_from_storage
storage_context = StorageContext.from_defaults(
docstore=DynamoDBDocumentStore.from_table_name(table_name=TABLE_NAME),
index_store=DynamoDBIndexStore.from_table_name(table_name=TABLE_NAME),
vector_store=DynamoDBVectorStore.from_table_name(table_name=TABLE_NAME),
)
summary_index = load_index_from_storage(
storage_context=storage_context, index_id=list_id
)
keyword_table_index = load_index_from_storage(
storage_context=storage_context, index_id=keyword_id
)
vector_index = load_index_from_storage(
storage_context=storage_context, index_id=vector_id
)
chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.llm = chatgpt
Settings.chunk_size = 1024
query_engine = summary_index.as_query_engine()
list_response = query_engine.query("What is a summary of this document?")
display_response(list_response)
query_engine = vector_index.as_query_engine()
vector_response = query_engine.query("What did the author do growing up?")
| display_response(vector_response) | llama_index.core.response.notebook_utils.display_response |
get_ipython().run_line_magic('pip', 'install llama-index-readers-elasticsearch')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-opensearch')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-ollama')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from os import getenv
from llama_index.core import SimpleDirectoryReader
from llama_index.vector_stores.opensearch import (
OpensearchVectorStore,
OpensearchVectorClient,
)
from llama_index.core import VectorStoreIndex, StorageContext
endpoint = getenv("OPENSEARCH_ENDPOINT", "http://localhost:9200")
idx = getenv("OPENSEARCH_INDEX", "gpt-index-demo")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
text_field = "content"
embedding_field = "embedding"
client = OpensearchVectorClient(
endpoint, idx, 1536, embedding_field=embedding_field, text_field=text_field
)
vector_store = OpensearchVectorStore(client)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents=documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
res = query_engine.query("What did the author do growing up?")
res.response
from llama_index.core import Document
from llama_index.core.vector_stores import MetadataFilters, ExactMatchFilter
import regex as re
text_chunks = documents[0].text.split("\n\n")
footnotes = [
Document(
text=chunk,
id=documents[0].doc_id,
metadata={"is_footnote": bool(re.search(r"^\s*\[\d+\]\s*", chunk))},
)
for chunk in text_chunks
if bool(re.search(r"^\s*\[\d+\]\s*", chunk))
]
for f in footnotes:
index.insert(f)
footnote_query_engine = index.as_query_engine(
filters=MetadataFilters(
filters=[
ExactMatchFilter(
key="term", value='{"metadata.is_footnote": "true"}'
),
ExactMatchFilter(
key="query_string",
value='{"query": "content: space AND content: lisp"}',
),
]
)
)
res = footnote_query_engine.query(
"What did the author about space aliens and lisp?"
)
res.response
from llama_index.readers.elasticsearch import ElasticsearchReader
rdr = ElasticsearchReader(endpoint, idx)
docs = rdr.load_data(text_field, embedding_field=embedding_field)
print("embedding dimension:", len(docs[0].embedding))
print("all fields in index:", docs[0].metadata.keys())
print("total number of chunks created:", len(docs))
docs = rdr.load_data(text_field, {"query": {"match": {text_field: "Lisp"}}})
print("chunks that mention Lisp:", len(docs))
docs = rdr.load_data(text_field, {"query": {"match": {text_field: "Yahoo"}}})
print("chunks that mention Yahoo:", len(docs))
from os import getenv
from llama_index.vector_stores.opensearch import (
OpensearchVectorStore,
OpensearchVectorClient,
)
endpoint = getenv("OPENSEARCH_ENDPOINT", "http://localhost:9200")
idx = getenv("OPENSEARCH_INDEX", "auto_retriever_movies")
text_field = "content"
embedding_field = "embedding"
client = OpensearchVectorClient(
endpoint,
idx,
4096,
embedding_field=embedding_field,
text_field=text_field,
search_pipeline="hybrid-search-pipeline",
)
from llama_index.embeddings.ollama import OllamaEmbedding
embed_model = | OllamaEmbedding(model_name="llama2") | llama_index.embeddings.ollama.OllamaEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().system('pip install llama-index')
import time
import nest_asyncio
nest_asyncio.apply()
import os
os.environ["OPENAI_API_KEY"] = "[YOUR_API_KEY]"
from llama_index.core import VectorStoreIndex, download_loader
from llama_index.readers.wikipedia import WikipediaReader
loader = | WikipediaReader() | llama_index.readers.wikipedia.WikipediaReader |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = PyMuPDFReader()
documents = loader.load(file_path="./data/llama2.pdf")
from llama_index.core.node_parser import SentenceSplitter
node_parser = SentenceSplitter(chunk_size=256)
nodes = node_parser.get_nodes_from_documents(documents)
from llama_index.embeddings.openai import OpenAIEmbedding
embed_model = OpenAIEmbedding()
for node in nodes:
node_embedding = embed_model.get_text_embedding(
node.get_content(metadata_mode="all")
)
node.embedding = node_embedding
from llama_index.core.vector_stores.types import VectorStore
from llama_index.core.vector_stores import (
VectorStoreQuery,
VectorStoreQueryResult,
)
from typing import List, Any, Optional, Dict
from llama_index.core.schema import TextNode, BaseNode
import os
class BaseVectorStore(VectorStore):
"""Simple custom Vector Store.
Stores documents in a simple in-memory dict.
"""
stores_text: bool = True
def get(self, text_id: str) -> List[float]:
"""Get embedding."""
pass
def add(
self,
nodes: List[BaseNode],
) -> List[str]:
"""Add nodes to index."""
pass
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
"""
Delete nodes using with ref_doc_id.
Args:
ref_doc_id (str): The doc_id of the document to delete.
"""
pass
def query(
self,
query: VectorStoreQuery,
**kwargs: Any,
) -> VectorStoreQueryResult:
"""Get nodes for response."""
pass
def persist(self, persist_path, fs=None) -> None:
"""Persist the SimpleVectorStore to a directory.
NOTE: we are not implementing this for now.
"""
pass
from dataclasses import fields
{f.name: f.type for f in fields(VectorStoreQuery)}
{f.name: f.type for f in fields(VectorStoreQueryResult)}
class VectorStore2(BaseVectorStore):
"""VectorStore2 (add/get/delete implemented)."""
stores_text: bool = True
def __init__(self) -> None:
"""Init params."""
self.node_dict: Dict[str, BaseNode] = {}
def get(self, text_id: str) -> List[float]:
"""Get embedding."""
return self.node_dict[text_id]
def add(
self,
nodes: List[BaseNode],
) -> List[str]:
"""Add nodes to index."""
for node in nodes:
self.node_dict[node.node_id] = node
def delete(self, node_id: str, **delete_kwargs: Any) -> None:
"""
Delete nodes using with node_id.
Args:
node_id: str
"""
del self.node_dict[node_id]
test_node = TextNode(id_="id1", text="hello world")
test_node2 = | TextNode(id_="id2", text="foo bar") | llama_index.core.schema.TextNode |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().system('pip install llama-index')
import pinecone
import os
api_key = os.environ["PINECONE_API_KEY"]
pinecone.init(api_key=api_key, environment="us-west4-gcp-free")
import os
import getpass
import openai
openai.api_key = "sk-<your-key>"
try:
pinecone.create_index(
"quickstart-index", dimension=1536, metric="euclidean", pod_type="p1"
)
except Exception:
pass
pinecone_index = pinecone.Index("quickstart-index")
pinecone_index.delete(deleteAll=True, namespace="test")
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
"gender": "male",
"born": 1963,
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
"gender": "female",
"born": 1975,
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
"gender": "male",
"born": 1971,
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
"gender": "female",
"born": 1988,
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
"gender": "male",
"born": 1985,
},
),
]
vector_store = PineconeVectorStore(
pinecone_index=pinecone_index, namespace="test"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.tools import FunctionTool
from llama_index.core.vector_stores import (
VectorStoreInfo,
MetadataInfo,
MetadataFilter,
MetadataFilters,
FilterCondition,
FilterOperator,
)
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from typing import List, Tuple, Any
from pydantic import BaseModel, Field
top_k = 3
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports, Entertainment,"
" Business, Music]"
),
),
MetadataInfo(
name="country",
type="str",
description=(
"Country of the celebrity, one of [United States, Barbados,"
" Portugal]"
),
),
MetadataInfo(
name="gender",
type="str",
description=("Gender of the celebrity, one of [male, female]"),
),
MetadataInfo(
name="born",
type="int",
description=("Born year of the celebrity, could be any integer"),
),
],
)
class AutoRetrieveModel(BaseModel):
query: str = Field(..., description="natural language query string")
filter_key_list: List[str] = Field(
..., description="List of metadata filter field names"
)
filter_value_list: List[Any] = Field(
...,
description=(
"List of metadata filter field values (corresponding to names"
" specified in filter_key_list)"
),
)
filter_operator_list: List[str] = Field(
...,
description=(
"Metadata filters conditions (could be one of <, <=, >, >=, ==, !=)"
),
)
filter_condition: str = Field(
...,
description=("Metadata filters condition values (could be AND or OR)"),
)
description = f"""\
Use this tool to look up biographical information about celebrities.
The vector database schema is given below:
{vector_store_info.json()}
"""
def auto_retrieve_fn(
query: str,
filter_key_list: List[str],
filter_value_list: List[any],
filter_operator_list: List[str],
filter_condition: str,
):
"""Auto retrieval function.
Performs auto-retrieval from a vector database, and then applies a set of filters.
"""
query = query or "Query"
metadata_filters = [
MetadataFilter(key=k, value=v, operator=op)
for k, v, op in zip(
filter_key_list, filter_value_list, filter_operator_list
)
]
retriever = VectorIndexRetriever(
index,
filters=MetadataFilters(
filters=metadata_filters, condition=filter_condition
),
top_k=top_k,
)
query_engine = | RetrieverQueryEngine.from_args(retriever) | llama_index.core.query_engine.RetrieverQueryEngine.from_args |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
from llama_index.program.openai import OpenAIPydanticProgram
from pydantic import BaseModel
from llama_index.llms.openai import OpenAI
from llama_index.finetuning.callbacks import OpenAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from typing import List
class Song(BaseModel):
"""Data model for a song."""
title: str
length_seconds: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
finetuning_handler = OpenAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
llm = OpenAI(model="gpt-4", callback_manager=callback_manager)
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
program = OpenAIPydanticProgram.from_defaults(
output_cls=Album,
prompt_template_str=prompt_template_str,
llm=llm,
verbose=False,
)
movie_names = [
"The Shining",
"The Departed",
"Titanic",
"Goodfellas",
"Pretty Woman",
"Home Alone",
"Caged Fury",
"Edward Scissorhands",
"Total Recall",
"Ghost",
"Tremors",
"RoboCop",
"Rocky V",
]
from tqdm.notebook import tqdm
for movie_name in tqdm(movie_names):
output = program(movie_name=movie_name)
print(output.json())
finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl")
get_ipython().system('cat mock_finetune_songs.jsonl')
from llama_index.finetuning import OpenAIFinetuneEngine
finetune_engine = OpenAIFinetuneEngine(
"gpt-3.5-turbo",
"mock_finetune_songs.jsonl",
validate_json=False, # openai validate json code doesn't support function calling yet
)
finetune_engine.finetune()
finetune_engine.get_current_job()
ft_llm = finetune_engine.get_finetuned_model(temperature=0.3)
ft_program = OpenAIPydanticProgram.from_defaults(
output_cls=Album,
prompt_template_str=prompt_template_str,
llm=ft_llm,
verbose=False,
)
ft_program(movie_name="Goodfellas")
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pydantic import Field
from typing import List
class Citation(BaseModel):
"""Citation class."""
author: str = Field(
..., description="Inferred first author (usually last name"
)
year: int = Field(..., description="Inferred year")
desc: str = Field(
...,
description=(
"Inferred description from the text of the work that the author is"
" cited for"
),
)
class Response(BaseModel):
"""List of author citations.
Extracted over unstructured text.
"""
citations: List[Citation] = Field(
...,
description=(
"List of author citations (organized by author, year, and"
" description)."
),
)
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SentenceSplitter
from pathlib import Path
loader = PyMuPDFReader()
docs0 = loader.load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
metadata = {
"paper_title": "Llama 2: Open Foundation and Fine-Tuned Chat Models"
}
docs = [Document(text=doc_text, metadata=metadata)]
chunk_size = 1024
node_parser = SentenceSplitter(chunk_size=chunk_size)
nodes = node_parser.get_nodes_from_documents(docs)
len(nodes)
from llama_index.core import Settings
finetuning_handler = OpenAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
Settings.chunk_size = chunk_size
gpt_4_llm = OpenAI(
model="gpt-4-0613", temperature=0.3, callback_manager=callback_manager
)
gpt_35_llm = OpenAI(
model="gpt-3.5-turbo-0613",
temperature=0.3,
callback_manager=callback_manager,
)
eval_llm = | OpenAI(model="gpt-4-0613", temperature=0) | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip')
get_ipython().system('unzip data.zip')
import pandas as pd
from pathlib import Path
data_dir = Path("./WikiTableQuestions/csv/200-csv")
csv_files = sorted([f for f in data_dir.glob("*.csv")])
dfs = []
for csv_file in csv_files:
print(f"processing file: {csv_file}")
try:
df = pd.read_csv(csv_file)
dfs.append(df)
except Exception as e:
print(f"Error parsing {csv_file}: {str(e)}")
tableinfo_dir = "WikiTableQuestions_TableInfo"
get_ipython().system('mkdir {tableinfo_dir}')
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.bridge.pydantic import BaseModel, Field
from llama_index.llms.openai import OpenAI
class TableInfo(BaseModel):
"""Information regarding a structured table."""
table_name: str = Field(
..., description="table name (must be underscores and NO spaces)"
)
table_summary: str = Field(
..., description="short, concise summary/caption of the table"
)
prompt_str = """\
Give me a summary of the table with the following JSON format.
- The table name must be unique to the table and describe it while being concise.
- Do NOT output a generic table name (e.g. table, my_table).
Do NOT make the table name one of the following: {exclude_table_name_list}
Table:
{table_str}
Summary: """
program = LLMTextCompletionProgram.from_defaults(
output_cls=TableInfo,
llm=OpenAI(model="gpt-3.5-turbo"),
prompt_template_str=prompt_str,
)
import json
def _get_tableinfo_with_index(idx: int) -> str:
results_gen = Path(tableinfo_dir).glob(f"{idx}_*")
results_list = list(results_gen)
if len(results_list) == 0:
return None
elif len(results_list) == 1:
path = results_list[0]
return TableInfo.parse_file(path)
else:
raise ValueError(
f"More than one file matching index: {list(results_gen)}"
)
table_names = set()
table_infos = []
for idx, df in enumerate(dfs):
table_info = _get_tableinfo_with_index(idx)
if table_info:
table_infos.append(table_info)
else:
while True:
df_str = df.head(10).to_csv()
table_info = program(
table_str=df_str,
exclude_table_name_list=str(list(table_names)),
)
table_name = table_info.table_name
print(f"Processed table: {table_name}")
if table_name not in table_names:
table_names.add(table_name)
break
else:
print(f"Table name {table_name} already exists, trying again.")
pass
out_file = f"{tableinfo_dir}/{idx}_{table_name}.json"
json.dump(table_info.dict(), open(out_file, "w"))
table_infos.append(table_info)
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
)
import re
def sanitize_column_name(col_name):
return re.sub(r"\W+", "_", col_name)
def create_table_from_dataframe(
df: pd.DataFrame, table_name: str, engine, metadata_obj
):
sanitized_columns = {col: sanitize_column_name(col) for col in df.columns}
df = df.rename(columns=sanitized_columns)
columns = [
Column(col, String if dtype == "object" else Integer)
for col, dtype in zip(df.columns, df.dtypes)
]
table = Table(table_name, metadata_obj, *columns)
metadata_obj.create_all(engine)
with engine.connect() as conn:
for _, row in df.iterrows():
insert_stmt = table.insert().values(**row.to_dict())
conn.execute(insert_stmt)
conn.commit()
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
for idx, df in enumerate(dfs):
tableinfo = _get_tableinfo_with_index(idx)
print(f"Creating table: {tableinfo.table_name}")
create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj)
import phoenix as px
import llama_index.core
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.core.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index.core import SQLDatabase, VectorStoreIndex
sql_database = SQLDatabase(engine)
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
SQLTableSchema(table_name=t.table_name, context_str=t.table_summary)
for t in table_infos
] # add a SQLTableSchema for each table
obj_index = ObjectIndex.from_objects(
table_schema_objs,
table_node_mapping,
VectorStoreIndex,
)
obj_retriever = obj_index.as_retriever(similarity_top_k=3)
from llama_index.core.retrievers import SQLRetriever
from typing import List
from llama_index.core.query_pipeline import FnComponent
sql_retriever = SQLRetriever(sql_database)
def get_table_context_str(table_schema_objs: List[SQLTableSchema]):
"""Get table context string."""
context_strs = []
for table_schema_obj in table_schema_objs:
table_info = sql_database.get_single_table_info(
table_schema_obj.table_name
)
if table_schema_obj.context_str:
table_opt_context = " The table description is: "
table_opt_context += table_schema_obj.context_str
table_info += table_opt_context
context_strs.append(table_info)
return "\n\n".join(context_strs)
table_parser_component = FnComponent(fn=get_table_context_str)
from llama_index.core.prompts.default_prompts import DEFAULT_TEXT_TO_SQL_PROMPT
from llama_index.core import PromptTemplate
from llama_index.core.query_pipeline import FnComponent
from llama_index.core.llms import ChatResponse
def parse_response_to_sql(response: ChatResponse) -> str:
"""Parse response to SQL."""
response = response.message.content
sql_query_start = response.find("SQLQuery:")
if sql_query_start != -1:
response = response[sql_query_start:]
if response.startswith("SQLQuery:"):
response = response[len("SQLQuery:") :]
sql_result_start = response.find("SQLResult:")
if sql_result_start != -1:
response = response[:sql_result_start]
return response.strip().strip("```").strip()
sql_parser_component = FnComponent(fn=parse_response_to_sql)
text2sql_prompt = DEFAULT_TEXT_TO_SQL_PROMPT.partial_format(
dialect=engine.dialect.name
)
print(text2sql_prompt.template)
response_synthesis_prompt_str = (
"Given an input question, synthesize a response from the query results.\n"
"Query: {query_str}\n"
"SQL: {sql_query}\n"
"SQL Response: {context_str}\n"
"Response: "
)
response_synthesis_prompt = PromptTemplate(
response_synthesis_prompt_str,
)
llm = OpenAI(model="gpt-3.5-turbo")
from llama_index.core.query_pipeline import (
QueryPipeline as QP,
Link,
InputComponent,
CustomQueryComponent,
)
qp = QP(
modules={
"input": | InputComponent() | llama_index.core.query_pipeline.InputComponent |
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks')
get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface')
import nest_asyncio
nest_asyncio.apply()
import os
HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
get_ipython().system('pip install wikipedia -q')
from llama_index.readers.wikipedia import WikipediaReader
cities = [
"San Francisco",
"Toronto",
"New York",
"Vancouver",
"Montreal",
"Tokyo",
"Singapore",
"Paris",
]
documents = WikipediaReader().load_data(
pages=[f"History of {x}" for x in cities]
)
QUESTION_GEN_PROMPT = (
"You are a Teacher/ Professor. Your task is to setup "
"a quiz/examination. Using the provided context, formulate "
"a single question that captures an important fact from the "
"context. Restrict the question to the context information provided."
)
from llama_index.core.evaluation import DatasetGenerator
from llama_index.llms.openai import OpenAI
gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3)
dataset_generator = DatasetGenerator.from_documents(
documents,
question_gen_query=QUESTION_GEN_PROMPT,
llm=gpt_35_llm,
num_questions_per_chunk=25,
)
qrd = dataset_generator.generate_dataset_from_nodes(num=350)
from llama_index.core import VectorStoreIndex
from llama_index.core.retrievers import VectorIndexRetriever
the_index = VectorStoreIndex.from_documents(documents=documents)
the_retriever = VectorIndexRetriever(
index=the_index,
similarity_top_k=2,
)
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Llama-2-7b-chat-hf",
context_window=2048, # to use refine
token=HUGGING_FACE_TOKEN,
)
query_engine = RetrieverQueryEngine.from_args(retriever=the_retriever, llm=llm)
import tqdm
train_dataset = []
num_train_questions = int(0.65 * len(qrd.qr_pairs))
for q, a in tqdm.tqdm(qrd.qr_pairs[:num_train_questions]):
data_entry = {"question": q, "reference": a}
response = query_engine.query(q)
response_struct = {}
response_struct["model"] = "llama-2"
response_struct["text"] = str(response)
response_struct["context"] = (
response.source_nodes[0].node.text[:1000] + "..."
)
data_entry["response_data"] = response_struct
train_dataset.append(data_entry)
from llama_index.llms.openai import OpenAI
from llama_index.finetuning.callbacks import OpenAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from llama_index.core.evaluation import CorrectnessEvaluator
finetuning_handler = OpenAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
gpt_4_llm = OpenAI(
temperature=0, model="gpt-4", callback_manager=callback_manager
)
gpt4_judge = CorrectnessEvaluator(llm=gpt_4_llm)
import tqdm
for data_entry in tqdm.tqdm(train_dataset):
eval_result = await gpt4_judge.aevaluate(
query=data_entry["question"],
response=data_entry["response_data"]["text"],
context=data_entry["response_data"]["context"],
reference=data_entry["reference"],
)
judgement = {}
judgement["llm"] = "gpt_4"
judgement["score"] = eval_result.score
judgement["text"] = eval_result.response
data_entry["evaluations"] = [judgement]
finetuning_handler.save_finetuning_events("correction_finetuning_events.jsonl")
from llama_index.finetuning import OpenAIFinetuneEngine
finetune_engine = OpenAIFinetuneEngine(
"gpt-3.5-turbo",
"correction_finetuning_events.jsonl",
)
finetune_engine.finetune()
finetune_engine.get_current_job()
test_dataset = []
for q, a in tqdm.tqdm(qrd.qr_pairs[num_train_questions:]):
data_entry = {"question": q, "reference": a}
response = query_engine.query(q)
response_struct = {}
response_struct["model"] = "llama-2"
response_struct["text"] = str(response)
response_struct["context"] = (
response.source_nodes[0].node.text[:1000] + "..."
)
data_entry["response_data"] = response_struct
test_dataset.append(data_entry)
for data_entry in tqdm.tqdm(test_dataset):
eval_result = await gpt4_judge.aevaluate(
query=data_entry["question"],
response=data_entry["response_data"]["text"],
context=data_entry["response_data"]["context"],
reference=data_entry["reference"],
)
judgement = {}
judgement["llm"] = "gpt_4"
judgement["score"] = eval_result.score
judgement["text"] = eval_result.response
data_entry["evaluations"] = [judgement]
from llama_index.core.evaluation import EvaluationResult
ft_llm = finetune_engine.get_finetuned_model()
ft_gpt_3p5_judge = CorrectnessEvaluator(llm=ft_llm)
for data_entry in tqdm.tqdm(test_dataset):
eval_result = await ft_gpt_3p5_judge.aevaluate(
query=data_entry["question"],
response=data_entry["response_data"]["text"],
context=data_entry["response_data"]["context"],
reference=data_entry["reference"],
)
judgement = {}
judgement["llm"] = "ft_gpt_3p5"
judgement["score"] = eval_result.score
judgement["text"] = eval_result.response
data_entry["evaluations"] += [judgement]
gpt_3p5_llm = OpenAI(model="gpt-3.5-turbo")
gpt_3p5_judge = | CorrectnessEvaluator(llm=gpt_3p5_llm) | llama_index.core.evaluation.CorrectnessEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
get_ipython().system('pip -q install python-dotenv pinecone-client llama-index pymupdf')
dotenv_path = (
"env" # Google Colabs will not let you open a .env, but you can set
)
with open(dotenv_path, "w") as f:
f.write('PINECONE_API_KEY="<your api key>"\n')
f.write('PINECONE_ENVIRONMENT="gcp-starter"\n')
f.write('OPENAI_API_KEY="<your api key>"\n')
import os
from dotenv import load_dotenv
load_dotenv(dotenv_path=dotenv_path)
import pinecone
api_key = os.environ["PINECONE_API_KEY"]
environment = os.environ["PINECONE_ENVIRONMENT"]
pinecone.init(api_key=api_key, environment=environment)
index_name = "llamaindex-rag-fs"
pinecone.create_index(
index_name, dimension=1536, metric="euclidean", pod_type="p1"
)
pinecone_index = pinecone.Index(index_name)
pinecone_index.delete(deleteAll=True)
from llama_index.vector_stores.pinecone import PineconeVectorStore
vector_store = | PineconeVectorStore(pinecone_index=pinecone_index) | llama_index.vector_stores.pinecone.PineconeVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-rankgpt-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-packs-infer-retrieve-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import datasets
dataset = datasets.load_dataset("BioDEX/BioDEX-ICSR")
dataset
from llama_index.core import get_tokenizer
import re
from typing import Set, List
tokenizer = get_tokenizer()
sample_size = 5
def get_reactions_row(raw_target: str) -> List[str]:
"""Get reactions from a single row."""
reaction_pattern = re.compile(r"reactions:\s*(.*)")
reaction_match = reaction_pattern.search(raw_target)
if reaction_match:
reactions = reaction_match.group(1).split(",")
reactions = [r.strip().lower() for r in reactions]
else:
reactions = []
return reactions
def get_reactions_set(dataset) -> Set[str]:
"""Get set of all reactions."""
reactions = set()
for data in dataset["train"]:
reactions.update(set(get_reactions_row(data["target"])))
return reactions
def get_samples(dataset, sample_size: int = 5):
"""Get processed sample.
Contains source text and also the reaction label.
Parse reaction text to specifically extract reactions.
"""
samples = []
for idx, data in enumerate(dataset["train"]):
if idx >= sample_size:
break
text = data["fulltext_processed"]
raw_target = data["target"]
reactions = get_reactions_row(raw_target)
samples.append({"text": text, "reactions": reactions})
return samples
from llama_index.packs.infer_retrieve_rerank import InferRetrieveRerankPack
from llama_index.core.llama_pack import download_llama_pack
InferRetrieveRerankPack = download_llama_pack(
"InferRetrieveRerankPack",
"./irr_pack",
)
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo-16k")
pred_context = """\
The output predictins should be a list of comma-separated adverse \
drug reactions. \
"""
reranker_top_n = 10
pack = InferRetrieveRerankPack(
get_reactions_set(dataset),
llm=llm,
pred_context=pred_context,
reranker_top_n=reranker_top_n,
verbose=True,
)
samples = get_samples(dataset, sample_size=5)
pred_reactions = pack.run(inputs=[s["text"] for s in samples])
gt_reactions = [s["reactions"] for s in samples]
pred_reactions[2]
gt_reactions[2]
from llama_index.core.retrievers import BaseRetriever
from llama_index.core.llms import LLM
from llama_index.llms.openai import OpenAI
from llama_index.core import PromptTemplate
from llama_index.core.query_pipeline import QueryPipeline
from llama_index.core.postprocessor.types import BaseNodePostprocessor
from llama_index.postprocessor.rankgpt_rerank import RankGPTRerank
from llama_index.core.output_parsers import ChainableOutputParser
from typing import List
import random
all_reactions = get_reactions_set(dataset)
random.sample(all_reactions, 5)
from llama_index.core.schema import TextNode
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core import VectorStoreIndex
reaction_nodes = [TextNode(text=r) for r in all_reactions]
pipeline = IngestionPipeline(transformations=[OpenAIEmbedding()])
reaction_nodes = await pipeline.arun(documents=reaction_nodes)
index = VectorStoreIndex(reaction_nodes)
reaction_nodes[0].embedding
reaction_retriever = index.as_retriever(similarity_top_k=2)
nodes = reaction_retriever.retrieve("abdominal")
print([n.get_content() for n in nodes])
infer_prompt_str = """\
Your job is to output a list of predictions given context from a given piece of text. The text context,
and information regarding the set of valid predictions is given below.
Return the predictions as a comma-separated list of strings.
Text Context:
{doc_context}
Prediction Info:
{pred_context}
Predictions: """
infer_prompt = | PromptTemplate(infer_prompt_str) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-question-gen-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
from IPython.display import Markdown, display
def display_prompt_dict(prompts_dict):
for k, p in prompts_dict.items():
text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>"
display(Markdown(text_md))
print(p.get_template())
display(Markdown("<br><br>"))
from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector
from llama_index.core.selectors import (
PydanticMultiSelector,
PydanticSingleSelector,
)
selector = LLMMultiSelector.from_defaults()
from llama_index.core.tools import ToolMetadata
tool_choices = [
ToolMetadata(
name="covid_nyt",
description=("This tool contains a NYT news article about COVID-19"),
),
ToolMetadata(
name="covid_wiki",
description=("This tool contains the Wikipedia page about COVID-19"),
),
ToolMetadata(
name="covid_tesla",
description=("This tool contains the Wikipedia page about apples"),
),
]
display_prompt_dict(selector.get_prompts())
selector_result = selector.select(
tool_choices, query="Tell me more about COVID-19"
)
selector_result.selections
from llama_index.core import PromptTemplate
from llama_index.llms.openai import OpenAI
query_gen_str = """\
You are a helpful assistant that generates multiple search queries based on a \
single input query. Generate {num_queries} search queries, one on each line, \
related to the following input query:
Query: {query}
Queries:
"""
query_gen_prompt = PromptTemplate(query_gen_str)
llm = OpenAI(model="gpt-3.5-turbo")
def generate_queries(query: str, llm, num_queries: int = 4):
response = llm.predict(
query_gen_prompt, num_queries=num_queries, query=query
)
queries = response.split("\n")
queries_str = "\n".join(queries)
print(f"Generated queries:\n{queries_str}")
return queries
queries = generate_queries("What happened at Interleaf and Viaweb?", llm)
queries
from llama_index.core.indices.query.query_transform import HyDEQueryTransform
from llama_index.llms.openai import OpenAI
hyde = HyDEQueryTransform(include_original=True)
llm = OpenAI(model="gpt-3.5-turbo")
query_bundle = hyde.run("What is Bel?")
new_query.custom_embedding_strs
from llama_index.core.question_gen import LLMQuestionGenerator
from llama_index.question_gen.openai import OpenAIQuestionGenerator
from llama_index.llms.openai import OpenAI
llm = | OpenAI() | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.core import SummaryIndex
Settings.llm = OpenAI()
Settings.chunk_size = 1024
nodes = Settings.node_parser.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
summary_query_engine = summary_index.as_query_engine(
response_mode="tree_summarize",
use_async=True,
)
vector_query_engine = vector_index.as_query_engine()
from llama_index.core.tools import QueryEngineTool
summary_tool = QueryEngineTool.from_defaults(
query_engine=summary_query_engine,
name="summary_tool",
description=(
"Useful for summarization questions related to the author's life"
),
)
vector_tool = QueryEngineTool.from_defaults(
query_engine=vector_query_engine,
name="vector_tool",
description=(
"Useful for retrieving specific context to answer specific questions about the author's life"
),
)
from llama_index.agent.openai import OpenAIAssistantAgent
agent = OpenAIAssistantAgent.from_new(
name="QA bot",
instructions="You are a bot designed to answer questions about the author",
openai_tools=[],
tools=[summary_tool, vector_tool],
verbose=True,
run_retrieve_sleep_time=1.0,
)
response = agent.chat("Can you give me a summary about the author's life?")
print(str(response))
response = agent.query("What did the author do after RICS?")
print(str(response))
import pinecone
import os
api_key = os.environ["PINECONE_API_KEY"]
pinecone.init(api_key=api_key, environment="us-west1-gcp")
try:
pinecone.create_index(
"quickstart", dimension=1536, metric="euclidean", pod_type="p1"
)
except Exception:
pass
pinecone_index = pinecone.Index("quickstart")
pinecone_index.delete(deleteAll=True, namespace="test")
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
},
),
]
vector_store = PineconeVectorStore(
pinecone_index=pinecone_index, namespace="test"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = | VectorStoreIndex(nodes, storage_context=storage_context) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-postgres')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-llms-llama-cpp')
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en")
get_ipython().system('pip install llama-cpp-python')
from llama_index.llms.llama_cpp import LlamaCPP
model_url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q4_0.gguf"
llm = LlamaCPP(
model_url=model_url,
model_path=None,
temperature=0.1,
max_new_tokens=256,
context_window=3900,
generate_kwargs={},
model_kwargs={"n_gpu_layers": 1},
verbose=True,
)
get_ipython().system('pip install psycopg2-binary pgvector asyncpg "sqlalchemy[asyncio]" greenlet')
import psycopg2
db_name = "vector_db"
host = "localhost"
password = "password"
port = "5432"
user = "jerry"
conn = psycopg2.connect(
dbname="postgres",
host=host,
password=password,
port=port,
user=user,
)
conn.autocommit = True
with conn.cursor() as c:
c.execute(f"DROP DATABASE IF EXISTS {db_name}")
c.execute(f"CREATE DATABASE {db_name}")
from sqlalchemy import make_url
from llama_index.vector_stores.postgres import PGVectorStore
vector_store = PGVectorStore.from_params(
database=db_name,
host=host,
password=password,
port=port,
user=user,
table_name="llama2_paper",
embed_dim=384, # openai embedding dimension
)
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = PyMuPDFReader()
documents = loader.load(file_path="./data/llama2.pdf")
from llama_index.core.node_parser import SentenceSplitter
text_parser = SentenceSplitter(
chunk_size=1024,
)
text_chunks = []
doc_idxs = []
for doc_idx, doc in enumerate(documents):
cur_text_chunks = text_parser.split_text(doc.text)
text_chunks.extend(cur_text_chunks)
doc_idxs.extend([doc_idx] * len(cur_text_chunks))
from llama_index.core.schema import TextNode
nodes = []
for idx, text_chunk in enumerate(text_chunks):
node = TextNode(
text=text_chunk,
)
src_doc = documents[doc_idxs[idx]]
node.metadata = src_doc.metadata
nodes.append(node)
for node in nodes:
node_embedding = embed_model.get_text_embedding(
node.get_content(metadata_mode="all")
)
node.embedding = node_embedding
vector_store.add(nodes)
query_str = "Can you tell me about the key concepts for safety finetuning"
query_embedding = embed_model.get_query_embedding(query_str)
from llama_index.core.vector_stores import VectorStoreQuery
query_mode = "default"
vector_store_query = VectorStoreQuery(
query_embedding=query_embedding, similarity_top_k=2, mode=query_mode
)
query_result = vector_store.query(vector_store_query)
print(query_result.nodes[0].get_content())
from llama_index.core.schema import NodeWithScore
from typing import Optional
nodes_with_scores = []
for index, node in enumerate(query_result.nodes):
score: Optional[float] = None
if query_result.similarities is not None:
score = query_result.similarities[index]
nodes_with_scores.append( | NodeWithScore(node=node, score=score) | llama_index.core.schema.NodeWithScore |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-tair')
get_ipython().system('pip install llama-index')
import os
import sys
import logging
import textwrap
import warnings
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from llama_index.core import (
GPTVectorStoreIndex,
SimpleDirectoryReader,
Document,
)
from llama_index.vector_stores.tair import TairVectorStore
from IPython.display import Markdown, display
import os
os.environ["OPENAI_API_KEY"] = "sk-<your key here>"
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
from llama_index.core import SimpleDirectoryReader
from llama_index.core import SummaryIndex
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
wiki_titles = ["Michael Jordan", "Elon Musk", "Richard Branson", "Rihanna"]
wiki_metadatas = {
"Michael Jordan": {
"category": "Sports",
"country": "United States",
},
"Elon Musk": {
"category": "Business",
"country": "United States",
},
"Richard Branson": {
"category": "Business",
"country": "UK",
},
"Rihanna": {
"category": "Music",
"country": "Barbados",
},
}
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
docs_dict = {}
for wiki_title in wiki_titles:
doc = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()[0]
doc.metadata.update(wiki_metadatas[wiki_title])
docs_dict[wiki_title] = doc
from llama_index.llms.openai import OpenAI
from llama_index.core.callbacks import LlamaDebugHandler, CallbackManager
from llama_index.core.node_parser import SentenceSplitter
llm = OpenAI("gpt-4")
callback_manager = CallbackManager([LlamaDebugHandler()])
splitter = | SentenceSplitter(chunk_size=256) | llama_index.core.node_parser.SentenceSplitter |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/'")
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.core import Document, VectorStoreIndex
from llama_index.readers.file import PyMuPDFReader
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.llms.openai import OpenAI
loader = PyMuPDFReader()
docs0 = loader.load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
node_parser = SimpleNodeParser.from_defaults()
nodes = node_parser.get_nodes_from_documents(docs)
len(nodes)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json')
from llama_index.core.evaluation import QueryResponseDataset
eval_dataset = QueryResponseDataset.from_json(
"data/llama2_eval_qr_dataset.json"
)
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4-1106-preview")
dataset_generator = DatasetGenerator(
nodes[:20],
llm=llm,
show_progress=True,
num_questions_per_chunk=3,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=60)
eval_dataset.save_json("data/llama2_eval_qr_dataset.json")
eval_dataset = QueryResponseDataset.from_json(
"data/llama2_eval_qr_dataset.json"
)
from llama_index.core.evaluation.eval_utils import (
get_responses,
get_results_df,
)
from llama_index.core.evaluation import (
CorrectnessEvaluator,
SemanticSimilarityEvaluator,
BatchEvalRunner,
)
from llama_index.llms.openai import OpenAI
eval_llm = OpenAI(model="gpt-4-1106-preview")
evaluator_c = CorrectnessEvaluator(llm=eval_llm)
evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm)
evaluator_dict = {
"correctness": evaluator_c,
"semantic_similarity": evaluator_s,
}
batch_runner = | BatchEvalRunner(evaluator_dict, workers=2, show_progress=True) | llama_index.core.evaluation.BatchEvalRunner |
get_ipython().system('pip install llama-index')
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
from llama_index.core import Settings
nodes = Settings.get_nodes_from_documents(documents)
from llama_index.core import StorageContext
storage_context = | StorageContext.from_defaults() | llama_index.core.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().handlers = []
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
SimpleDirectoryReader,
StorageContext,
VectorStoreIndex,
)
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
llm = OpenAI(model="gpt-4")
splitter = SentenceSplitter(chunk_size=1024)
nodes = splitter.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
index = VectorStoreIndex(
nodes=nodes,
storage_context=storage_context,
)
retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2)
from llama_index.core.response.notebook_utils import display_source_node
nodes = retriever.retrieve("What happened at Viaweb and Interleaf?")
for node in nodes:
display_source_node(node)
nodes = retriever.retrieve("What did Paul Graham do after RISD?")
for node in nodes:
display_source_node(node)
from llama_index.core.tools import RetrieverTool
vector_retriever = VectorIndexRetriever(index)
bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2)
retriever_tools = [
RetrieverTool.from_defaults(
retriever=vector_retriever,
description="Useful in most cases",
),
RetrieverTool.from_defaults(
retriever=bm25_retriever,
description="Useful if searching about specific information",
),
]
from llama_index.core.retrievers import RouterRetriever
retriever = RouterRetriever.from_defaults(
retriever_tools=retriever_tools,
llm=llm,
select_multi=True,
)
nodes = retriever.retrieve(
"Can you give me all the context regarding the author's life?"
)
for node in nodes:
display_source_node(node)
get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf')
from llama_index.core import (
VectorStoreIndex,
StorageContext,
SimpleDirectoryReader,
Document,
)
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
documents = SimpleDirectoryReader(
input_files=["IPCC_AR6_WGII_Chapter03.pdf"]
).load_data()
llm = | OpenAI(model="gpt-3.5-turbo") | llama_index.llms.openai.OpenAI |
get_ipython().system('pip install llama-index')
from llama_index.core.chat_engine import SimpleChatEngine
chat_engine = SimpleChatEngine.from_defaults()
response = chat_engine.chat(
"Say something profound and romantic about fourth of July"
)
print(response)
from llama_index.core.chat_engine import SimpleChatEngine
from llama_index.core.prompts.system import SHAKESPEARE_WRITING_ASSISTANT
chat_engine = SimpleChatEngine.from_defaults(
system_prompt=SHAKESPEARE_WRITING_ASSISTANT
)
response = chat_engine.chat(
"Say something profound and romantic about fourth of July"
)
print(response)
from llama_index.core.chat_engine import SimpleChatEngine
from llama_index.core.prompts.system import MARKETING_WRITING_ASSISTANT
chat_engine = SimpleChatEngine.from_defaults(
system_prompt=MARKETING_WRITING_ASSISTANT
)
response = chat_engine.chat(
"Say something profound and romantic about fourth of July"
)
print(response)
from llama_index.core.chat_engine import SimpleChatEngine
from llama_index.core.prompts.system import IRS_TAX_CHATBOT
chat_engine = | SimpleChatEngine.from_defaults(system_prompt=IRS_TAX_CHATBOT) | llama_index.core.chat_engine.SimpleChatEngine.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks')
get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface')
import nest_asyncio
nest_asyncio.apply()
import os
HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
get_ipython().system('pip install wikipedia -q')
from llama_index.readers.wikipedia import WikipediaReader
cities = [
"San Francisco",
"Toronto",
"New York",
"Vancouver",
"Montreal",
"Tokyo",
"Singapore",
"Paris",
]
documents = | WikipediaReader() | llama_index.readers.wikipedia.WikipediaReader |
get_ipython().system('pip install -q llama-index llama-index-vector-stores-mongodb llama-index-embeddings-fireworks==0.1.2 llama-index-llms-fireworks')
get_ipython().system('pip install -q pymongo datasets pandas')
import os
import getpass
fw_api_key = getpass.getpass("Fireworks API Key:")
os.environ["FIREWORKS_API_KEY"] = fw_api_key
from datasets import load_dataset
import pandas as pd
dataset = load_dataset("AIatMongoDB/whatscooking.restaurants")
dataset_df = pd.DataFrame(dataset["train"])
dataset_df.head(5)
from llama_index.core.settings import Settings
from llama_index.llms.fireworks import Fireworks
from llama_index.embeddings.fireworks import FireworksEmbedding
embed_model = FireworksEmbedding(
embed_batch_size=512,
model_name="nomic-ai/nomic-embed-text-v1.5",
api_key=fw_api_key,
)
llm = Fireworks(
temperature=0,
model="accounts/fireworks/models/mixtral-8x7b-instruct",
api_key=fw_api_key,
)
Settings.llm = llm
Settings.embed_model = embed_model
import json
from llama_index.core import Document
from llama_index.core.schema import MetadataMode
documents_json = dataset_df.to_json(orient="records")
documents_list = json.loads(documents_json)
llama_documents = []
for document in documents_list:
document["name"] = json.dumps(document["name"])
document["cuisine"] = json.dumps(document["cuisine"])
document["attributes"] = json.dumps(document["attributes"])
document["menu"] = json.dumps(document["menu"])
document["borough"] = json.dumps(document["borough"])
document["address"] = json.dumps(document["address"])
document["PriceRange"] = json.dumps(document["PriceRange"])
document["HappyHour"] = json.dumps(document["HappyHour"])
document["review_count"] = json.dumps(document["review_count"])
document["TakeOut"] = json.dumps(document["TakeOut"])
del document["embedding"]
del document["location"]
llama_document = Document(
text=json.dumps(document),
metadata=document,
metadata_template="{key}=>{value}",
text_template="Metadata: {metadata_str}\n-----\nContent: {content}",
)
llama_documents.append(llama_document)
print(
"\nThe LLM sees this: \n",
llama_documents[0].get_content(metadata_mode=MetadataMode.LLM),
)
print(
"\nThe Embedding model sees this: \n",
llama_documents[0].get_content(metadata_mode=MetadataMode.EMBED),
)
llama_documents[0]
from llama_index.core.node_parser import SentenceSplitter
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(llama_documents)
new_nodes = nodes[:2500]
node_embeddings = embed_model(new_nodes)
for idx, n in enumerate(new_nodes):
n.embedding = node_embeddings[idx].embedding
if "_id" in n.metadata:
del n.metadata["_id"]
import pymongo
def get_mongo_client(mongo_uri):
"""Establish connection to the MongoDB."""
try:
client = pymongo.MongoClient(mongo_uri)
print("Connection to MongoDB successful")
return client
except pymongo.errors.ConnectionFailure as e:
print(f"Connection failed: {e}")
return None
import os
import getpass
mongo_uri = getpass.getpass("MONGO_URI:")
if not mongo_uri:
print("MONGO_URI not set")
mongo_client = get_mongo_client(mongo_uri)
DB_NAME = "whatscooking"
COLLECTION_NAME = "restaurants"
db = mongo_client[DB_NAME]
collection = db[COLLECTION_NAME]
collection.delete_many({})
from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch
vector_store = MongoDBAtlasVectorSearch(
mongo_client,
db_name=DB_NAME,
collection_name=COLLECTION_NAME,
index_name="vector_index",
)
vector_store.add(new_nodes)
from llama_index.core import VectorStoreIndex, StorageContext
index = VectorStoreIndex.from_vector_store(vector_store)
get_ipython().run_line_magic('pip', 'install -q matplotlib')
import pprint
from llama_index.core.response.notebook_utils import display_response
query_engine = index.as_query_engine()
query = "search query: Anything that doesn't have alcohol in it"
response = query_engine.query(query)
| display_response(response) | llama_index.core.response.notebook_utils.display_response |
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
load_index_from_storage,
StorageContext,
)
from IPython.display import Markdown, display
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine(response_mode="tree_summarize")
def display_prompt_dict(prompts_dict):
for k, p in prompts_dict.items():
text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>"
display(Markdown(text_md))
print(p.get_template())
display(Markdown("<br><br>"))
prompts_dict = query_engine.get_prompts()
display_prompt_dict(prompts_dict)
prompts_dict = query_engine.response_synthesizer.get_prompts()
display_prompt_dict(prompts_dict)
query_engine = index.as_query_engine(response_mode="compact")
prompts_dict = query_engine.get_prompts()
display_prompt_dict(prompts_dict)
response = query_engine.query("What did the author do growing up?")
print(str(response))
from llama_index.core import PromptTemplate
query_engine = index.as_query_engine(response_mode="tree_summarize")
new_summary_tmpl_str = (
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information and not prior knowledge, "
"answer the query in the style of a Shakespeare play.\n"
"Query: {query_str}\n"
"Answer: "
)
new_summary_tmpl = PromptTemplate(new_summary_tmpl_str)
query_engine.update_prompts(
{"response_synthesizer:summary_template": new_summary_tmpl}
)
prompts_dict = query_engine.get_prompts()
display_prompt_dict(prompts_dict)
response = query_engine.query("What did the author do growing up?")
print(str(response))
from llama_index.core.query_engine import (
RouterQueryEngine,
FLAREInstructQueryEngine,
)
from llama_index.core.selectors import LLMMultiSelector
from llama_index.core.evaluation import FaithfulnessEvaluator, DatasetGenerator
from llama_index.core.postprocessor import LLMRerank
from llama_index.core.tools import QueryEngineTool
query_tool = QueryEngineTool.from_defaults(
query_engine=query_engine, description="test description"
)
router_query_engine = RouterQueryEngine.from_defaults([query_tool])
prompts_dict = router_query_engine.get_prompts()
display_prompt_dict(prompts_dict)
flare_query_engine = FLAREInstructQueryEngine(query_engine)
prompts_dict = flare_query_engine.get_prompts()
display_prompt_dict(prompts_dict)
from llama_index.core.selectors import LLMSingleSelector
selector = LLMSingleSelector.from_defaults()
prompts_dict = selector.get_prompts()
display_prompt_dict(prompts_dict)
evaluator = FaithfulnessEvaluator()
prompts_dict = evaluator.get_prompts()
display_prompt_dict(prompts_dict)
dataset_generator = DatasetGenerator.from_documents(documents)
prompts_dict = dataset_generator.get_prompts()
display_prompt_dict(prompts_dict)
llm_rerank = | LLMRerank() | llama_index.core.postprocessor.LLMRerank |
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.core import SummaryIndex
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-question-gen-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
from IPython.display import Markdown, display
def display_prompt_dict(prompts_dict):
for k, p in prompts_dict.items():
text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>"
display(Markdown(text_md))
print(p.get_template())
display(Markdown("<br><br>"))
from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector
from llama_index.core.selectors import (
PydanticMultiSelector,
PydanticSingleSelector,
)
selector = LLMMultiSelector.from_defaults()
from llama_index.core.tools import ToolMetadata
tool_choices = [
ToolMetadata(
name="covid_nyt",
description=("This tool contains a NYT news article about COVID-19"),
),
ToolMetadata(
name="covid_wiki",
description=("This tool contains the Wikipedia page about COVID-19"),
),
ToolMetadata(
name="covid_tesla",
description=("This tool contains the Wikipedia page about apples"),
),
]
display_prompt_dict(selector.get_prompts())
selector_result = selector.select(
tool_choices, query="Tell me more about COVID-19"
)
selector_result.selections
from llama_index.core import PromptTemplate
from llama_index.llms.openai import OpenAI
query_gen_str = """\
You are a helpful assistant that generates multiple search queries based on a \
single input query. Generate {num_queries} search queries, one on each line, \
related to the following input query:
Query: {query}
Queries:
"""
query_gen_prompt = PromptTemplate(query_gen_str)
llm = | OpenAI(model="gpt-3.5-turbo") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-colbert')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-gemini')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google')
get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google')
get_ipython().run_line_magic('pip', 'install llama-index')
get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"')
get_ipython().run_line_magic('pip', 'install torch sentence-transformers')
get_ipython().run_line_magic('pip', 'install google-auth-oauthlib')
from google.oauth2 import service_account
from llama_index.indices.managed.google import GoogleIndex
from llama_index.vector_stores.google import set_google_config
credentials = service_account.Credentials.from_service_account_file(
"service_account_key.json",
scopes=[
"https://www.googleapis.com/auth/cloud-platform",
"https://www.googleapis.com/auth/generative-language.retriever",
],
)
set_google_config(auth_credentials=credentials)
project_name = "TODO-your-project-name" # @param {type:"string"}
email = "[email protected]" # @param {type:"string"}
client_file_name = "client_secret.json"
get_ipython().system('gcloud config set project $project_name')
get_ipython().system('gcloud config set account $email')
get_ipython().system('gcloud auth application-default login --no-browser --client-id-file=$client_file_name --scopes="https://www.googleapis.com/auth/generative-language.retriever,https://www.googleapis.com/auth/cloud-platform"')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import os
GOOGLE_API_KEY = "" # add your GOOGLE API key here
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
from llama_index.core import SimpleDirectoryReader
from llama_index.indices.managed.google import GoogleIndex
google_index = GoogleIndex.create_corpus(display_name="My first corpus!")
print(f"Newly created corpus ID is {google_index.corpus_id}.")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
google_index.insert_documents(documents)
google_index = GoogleIndex.from_corpus(corpus_id="")
query_engine = google_index.as_query_engine()
response = query_engine.query("which program did this author attend?")
print(response)
from llama_index.core.response.notebook_utils import display_source_node
for r in response.source_nodes:
display_source_node(r, source_length=1000)
from google.ai.generativelanguage import (
GenerateAnswerRequest,
)
query_engine = google_index.as_query_engine(
temperature=0.3,
answer_style=GenerateAnswerRequest.AnswerStyle.VERBOSE,
)
response = query_engine.query("Which program did this author attend?")
print(response)
from llama_index.core.response.notebook_utils import display_source_node
for r in response.source_nodes:
display_source_node(r, source_length=1000)
from google.ai.generativelanguage import (
GenerateAnswerRequest,
)
query_engine = google_index.as_query_engine(
temperature=0.3,
answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE,
)
response = query_engine.query("Which program did this author attend?")
print(response)
from llama_index.core.response.notebook_utils import display_source_node
for r in response.source_nodes:
display_source_node(r, source_length=1000)
from google.ai.generativelanguage import (
GenerateAnswerRequest,
)
query_engine = google_index.as_query_engine(
temperature=0.3,
answer_style=GenerateAnswerRequest.AnswerStyle.EXTRACTIVE,
)
response = query_engine.query("Which program did this author attend?")
print(response)
from llama_index.core.response.notebook_utils import display_source_node
for r in response.source_nodes:
display_source_node(r, source_length=1000)
from llama_index.response_synthesizers.google import GoogleTextSynthesizer
from llama_index.vector_stores.google import GoogleVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.llms.gemini import Gemini
from llama_index.core.postprocessor import LLMRerank
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.embeddings.gemini import GeminiEmbedding
response_synthesizer = GoogleTextSynthesizer.from_defaults(
temperature=0.7, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE
)
reranker = LLMRerank(
top_n=5,
llm=Gemini(api_key=GOOGLE_API_KEY),
)
retriever = google_index.as_retriever(similarity_top_k=5)
query_engine = RetrieverQueryEngine.from_args(
retriever=retriever,
response_synthesizer=response_synthesizer,
node_postprocessors=[reranker],
)
response = query_engine.query("Which program did this author attend?")
print(response.response)
from llama_index.core.postprocessor import SentenceTransformerRerank
sbert_rerank = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5
)
from llama_index.response_synthesizers.google import GoogleTextSynthesizer
from llama_index.vector_stores.google import GoogleVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.llms.gemini import Gemini
from llama_index.core.postprocessor import LLMRerank
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.embeddings.gemini import GeminiEmbedding
response_synthesizer = GoogleTextSynthesizer.from_defaults(
temperature=0.1, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE
)
retriever = google_index.as_retriever(similarity_top_k=5)
query_engine = RetrieverQueryEngine.from_args(
retriever=retriever,
response_synthesizer=response_synthesizer,
node_postprocessors=[sbert_rerank],
)
response = query_engine.query("Which program did this author attend?")
print(response.response)
import os
OPENAI_API_TOKEN = "sk-"
os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import Settings
import qdrant_client
Settings.chunk_size = 256
client = qdrant_client.QdrantClient(path="qdrant_retrieval_2")
vector_store = | QdrantVectorStore(client=client, collection_name="collection") | llama_index.vector_stores.qdrant.QdrantVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
import nest_asyncio
nest_asyncio.apply()
from llama_index.embeddings.huggingface import (
HuggingFaceEmbedding,
HuggingFaceInferenceAPIEmbedding,
)
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
model_name = "jinaai/jina-embeddings-v2-small-en"
embed_model = HuggingFaceEmbedding(
model_name=model_name, trust_remote_code=True
)
Settings.embed_model = embed_model
Settings.chunk_size = 1024
embed_model_base = | OpenAIEmbedding() | llama_index.embeddings.openai.OpenAIEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().system('pip install llama-index')
import pinecone
import os
api_key = os.environ["PINECONE_API_KEY"]
pinecone.init(api_key=api_key, environment="us-west4-gcp-free")
import os
import getpass
import openai
openai.api_key = "sk-<your-key>"
try:
pinecone.create_index(
"quickstart-index", dimension=1536, metric="euclidean", pod_type="p1"
)
except Exception:
pass
pinecone_index = pinecone.Index("quickstart-index")
pinecone_index.delete(deleteAll=True, namespace="test")
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
"gender": "male",
"born": 1963,
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
"gender": "female",
"born": 1975,
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
"gender": "male",
"born": 1971,
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
"gender": "female",
"born": 1988,
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
"gender": "male",
"born": 1985,
},
),
]
vector_store = PineconeVectorStore(
pinecone_index=pinecone_index, namespace="test"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.tools import FunctionTool
from llama_index.core.vector_stores import (
VectorStoreInfo,
MetadataInfo,
MetadataFilter,
MetadataFilters,
FilterCondition,
FilterOperator,
)
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from typing import List, Tuple, Any
from pydantic import BaseModel, Field
top_k = 3
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports, Entertainment,"
" Business, Music]"
),
),
MetadataInfo(
name="country",
type="str",
description=(
"Country of the celebrity, one of [United States, Barbados,"
" Portugal]"
),
),
MetadataInfo(
name="gender",
type="str",
description=("Gender of the celebrity, one of [male, female]"),
),
MetadataInfo(
name="born",
type="int",
description=("Born year of the celebrity, could be any integer"),
),
],
)
class AutoRetrieveModel(BaseModel):
query: str = Field(..., description="natural language query string")
filter_key_list: List[str] = Field(
..., description="List of metadata filter field names"
)
filter_value_list: List[Any] = Field(
...,
description=(
"List of metadata filter field values (corresponding to names"
" specified in filter_key_list)"
),
)
filter_operator_list: List[str] = Field(
...,
description=(
"Metadata filters conditions (could be one of <, <=, >, >=, ==, !=)"
),
)
filter_condition: str = Field(
...,
description=("Metadata filters condition values (could be AND or OR)"),
)
description = f"""\
Use this tool to look up biographical information about celebrities.
The vector database schema is given below:
{vector_store_info.json()}
"""
def auto_retrieve_fn(
query: str,
filter_key_list: List[str],
filter_value_list: List[any],
filter_operator_list: List[str],
filter_condition: str,
):
"""Auto retrieval function.
Performs auto-retrieval from a vector database, and then applies a set of filters.
"""
query = query or "Query"
metadata_filters = [
| MetadataFilter(key=k, value=v, operator=op) | llama_index.core.vector_stores.MetadataFilter |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.core import SummaryIndex
Settings.llm = OpenAI()
Settings.chunk_size = 1024
nodes = Settings.node_parser.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
summary_query_engine = summary_index.as_query_engine(
response_mode="tree_summarize",
use_async=True,
)
vector_query_engine = vector_index.as_query_engine()
from llama_index.core.tools import QueryEngineTool
summary_tool = QueryEngineTool.from_defaults(
query_engine=summary_query_engine,
name="summary_tool",
description=(
"Useful for summarization questions related to the author's life"
),
)
vector_tool = QueryEngineTool.from_defaults(
query_engine=vector_query_engine,
name="vector_tool",
description=(
"Useful for retrieving specific context to answer specific questions about the author's life"
),
)
from llama_index.agent.openai import OpenAIAssistantAgent
agent = OpenAIAssistantAgent.from_new(
name="QA bot",
instructions="You are a bot designed to answer questions about the author",
openai_tools=[],
tools=[summary_tool, vector_tool],
verbose=True,
run_retrieve_sleep_time=1.0,
)
response = agent.chat("Can you give me a summary about the author's life?")
print(str(response))
response = agent.query("What did the author do after RICS?")
print(str(response))
import pinecone
import os
api_key = os.environ["PINECONE_API_KEY"]
pinecone.init(api_key=api_key, environment="us-west1-gcp")
try:
pinecone.create_index(
"quickstart", dimension=1536, metric="euclidean", pod_type="p1"
)
except Exception:
pass
pinecone_index = pinecone.Index("quickstart")
pinecone_index.delete(deleteAll=True, namespace="test")
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
},
),
]
vector_store = PineconeVectorStore(
pinecone_index=pinecone_index, namespace="test"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.tools import FunctionTool
from llama_index.core.vector_stores import (
VectorStoreInfo,
MetadataInfo,
ExactMatchFilter,
MetadataFilters,
)
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from typing import List, Tuple, Any
from pydantic import BaseModel, Field
top_k = 3
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports, Entertainment,"
" Business, Music]"
),
),
MetadataInfo(
name="country",
type="str",
description=(
"Country of the celebrity, one of [United States, Barbados,"
" Portugal]"
),
),
],
)
class AutoRetrieveModel(BaseModel):
query: str = Field(..., description="natural language query string")
filter_key_list: List[str] = Field(
..., description="List of metadata filter field names"
)
filter_value_list: List[str] = Field(
...,
description=(
"List of metadata filter field values (corresponding to names"
" specified in filter_key_list)"
),
)
def auto_retrieve_fn(
query: str, filter_key_list: List[str], filter_value_list: List[str]
):
"""Auto retrieval function.
Performs auto-retrieval from a vector database, and then applies a set of filters.
"""
query = query or "Query"
exact_match_filters = [
ExactMatchFilter(key=k, value=v)
for k, v in zip(filter_key_list, filter_value_list)
]
retriever = VectorIndexRetriever(
index,
filters=MetadataFilters(filters=exact_match_filters),
top_k=top_k,
)
results = retriever.retrieve(query)
return [r.get_content() for r in results]
description = f"""\
Use this tool to look up biographical information about celebrities.
The vector database schema is given below:
{vector_store_info.json()}
"""
auto_retrieve_tool = FunctionTool.from_defaults(
fn=auto_retrieve_fn,
name="celebrity_bios",
description=description,
fn_schema=AutoRetrieveModel,
)
auto_retrieve_fn(
"celebrity from the United States",
filter_key_list=["country"],
filter_value_list=["United States"],
)
from llama_index.agent.openai import OpenAIAssistantAgent
agent = OpenAIAssistantAgent.from_new(
name="Celebrity bot",
instructions="You are a bot designed to answer questions about celebrities.",
tools=[auto_retrieve_tool],
verbose=True,
)
response = agent.chat("Tell me about two celebrities from the United States. ")
print(str(response))
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
from llama_index.core import SQLDatabase
from llama_index.core.indices import SQLStructStoreIndex
engine = create_engine("sqlite:///:memory:", future=True)
metadata_obj = MetaData()
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
metadata_obj.create_all(engine)
metadata_obj.tables.keys()
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{"city_name": "Berlin", "population": 3645000, "country": "Germany"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
with engine.connect() as connection:
cursor = connection.exec_driver_sql("SELECT * FROM city_stats")
print(cursor.fetchall())
sql_database = | SQLDatabase(engine, include_tables=["city_stats"]) | llama_index.core.SQLDatabase |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
get_ipython().system('pip install llama_hub')
from pathlib import Path
from llama_index.readers.file import PDFReader
from llama_index.readers.file import UnstructuredReader
from llama_index.readers.file import PyMuPDFReader
loader = PDFReader()
docs0 = loader.load_data(file=Path("./data/llama2.pdf"))
from llama_index.core import Document
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import IndexNode
node_parser = SentenceSplitter(chunk_size=1024)
base_nodes = node_parser.get_nodes_from_documents(docs)
from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = | OpenAI(model="gpt-3.5-turbo") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = PyMuPDFReader()
documents = loader.load(file_path="./data/llama2.pdf")
from llama_index.core import VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4")
node_parser = SentenceSplitter(chunk_size=1024)
nodes = node_parser.get_nodes_from_documents(documents)
index = VectorStoreIndex(nodes)
query_engine = index.as_query_engine(llm=llm)
from llama_index.core.schema import BaseNode
from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core import ChatPromptTemplate, PromptTemplate
from typing import Tuple, List
import re
llm = OpenAI(model="gpt-4")
QA_PROMPT = PromptTemplate(
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information and not prior knowledge, "
"answer the query.\n"
"Query: {query_str}\n"
"Answer: "
)
def generate_answers_for_questions(
questions: List[str], context: str, llm: OpenAI
) -> str:
"""Generate answers for questions given context."""
answers = []
for question in questions:
fmt_qa_prompt = QA_PROMPT.format(
context_str=context, query_str=question
)
response_obj = llm.complete(fmt_qa_prompt)
answers.append(str(response_obj))
return answers
QUESTION_GEN_USER_TMPL = (
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information and not prior knowledge, "
"generate the relevant questions. "
)
QUESTION_GEN_SYS_TMPL = """\
You are a Teacher/ Professor. Your task is to setup \
{num_questions_per_chunk} questions for an upcoming \
quiz/examination. The questions should be diverse in nature \
across the document. Restrict the questions to the \
context information provided.\
"""
question_gen_template = ChatPromptTemplate(
message_templates=[
ChatMessage(role=MessageRole.SYSTEM, content=QUESTION_GEN_SYS_TMPL),
ChatMessage(role=MessageRole.USER, content=QUESTION_GEN_USER_TMPL),
]
)
def generate_qa_pairs(
nodes: List[BaseNode], llm: OpenAI, num_questions_per_chunk: int = 10
) -> List[Tuple[str, str]]:
"""Generate questions."""
qa_pairs = []
for idx, node in enumerate(nodes):
print(f"Node {idx}/{len(nodes)}")
context_str = node.get_content(metadata_mode="all")
fmt_messages = question_gen_template.format_messages(
num_questions_per_chunk=10,
context_str=context_str,
)
chat_response = llm.chat(fmt_messages)
raw_output = chat_response.message.content
result_list = str(raw_output).strip().split("\n")
cleaned_questions = [
re.sub(r"^\d+[\).\s]", "", question).strip()
for question in result_list
]
answers = generate_answers_for_questions(
cleaned_questions, context_str, llm
)
cur_qa_pairs = list(zip(cleaned_questions, answers))
qa_pairs.extend(cur_qa_pairs)
return qa_pairs
qa_pairs
qa_pairs = generate_qa_pairs(
nodes,
llm,
num_questions_per_chunk=10,
)
import pickle
pickle.dump(qa_pairs, open("eval_dataset.pkl", "wb"))
import pickle
qa_pairs = pickle.load(open("eval_dataset.pkl", "rb"))
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core import ChatPromptTemplate, PromptTemplate
from typing import Dict
CORRECTNESS_SYS_TMPL = """
You are an expert evaluation system for a question answering chatbot.
You are given the following information:
- a user query,
- a reference answer, and
- a generated answer.
Your job is to judge the relevance and correctness of the generated answer.
Output a single score that represents a holistic evaluation.
You must return your response in a line with only the score.
Do not return answers in any other format.
On a separate line provide your reasoning for the score as well.
Follow these guidelines for scoring:
- Your score has to be between 1 and 5, where 1 is the worst and 5 is the best.
- If the generated answer is not relevant to the user query, \
you should give a score of 1.
- If the generated answer is relevant but contains mistakes, \
you should give a score between 2 and 3.
- If the generated answer is relevant and fully correct, \
you should give a score between 4 and 5.
"""
CORRECTNESS_USER_TMPL = """
{query}
{reference_answer}
{generated_answer}
"""
eval_chat_template = ChatPromptTemplate(
message_templates=[
ChatMessage(role=MessageRole.SYSTEM, content=CORRECTNESS_SYS_TMPL),
ChatMessage(role=MessageRole.USER, content=CORRECTNESS_USER_TMPL),
]
)
from llama_index.llms.openai import OpenAI
def run_correctness_eval(
query_str: str,
reference_answer: str,
generated_answer: str,
llm: OpenAI,
threshold: float = 4.0,
) -> Dict:
"""Run correctness eval."""
fmt_messages = eval_chat_template.format_messages(
llm=llm,
query=query_str,
reference_answer=reference_answer,
generated_answer=generated_answer,
)
chat_response = llm.chat(fmt_messages)
raw_output = chat_response.message.content
score_str, reasoning_str = raw_output.split("\n", 1)
score = float(score_str)
reasoning = reasoning_str.lstrip("\n")
return {"passing": score >= threshold, "score": score, "reason": reasoning}
llm = OpenAI(model="gpt-4")
query_str = (
"What is the specific name given to the fine-tuned LLMs optimized for"
" dialogue use cases?"
)
reference_answer = (
"The specific name given to the fine-tuned LLMs optimized for dialogue use"
" cases is Llama 2-Chat."
)
generated_answer = str(query_engine.query(query_str))
print(str(generated_answer))
eval_results = run_correctness_eval(
query_str, reference_answer, generated_answer, llm=llm, threshold=4.0
)
display(eval_results)
EVAL_TEMPLATE = | PromptTemplate(
"Please tell if a given piece of information "
"is supported by the context.\n"
"You need to answer with either YES or NO.\n"
"Answer YES if any of the context supports the information, even "
"if most of the context is unrelated. "
"Some examples are provided below. \n\n"
"Information: Apple pie is generally double-crusted.\n"
"Context: An apple pie is a fruit pie in which the principal filling "
"ingredient is apples. \n"
"Apple pie is often served with whipped cream, ice cream "
"('apple pie à la mode'), custard or cheddar cheese.\n"
"It is generally double-crusted, with pastry both above "
"and below the filling; the upper crust may be solid or "
"latticed (woven of crosswise strips).\n"
"Answer: YES\n"
"Information: Apple pies tastes bad.\n"
"Context: An apple pie is a fruit pie in which the principal filling "
"ingredient is apples. \n"
"Apple pie is often served with whipped cream, ice cream "
"('apple pie à la mode') | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
get_ipython().system('pip install llama_hub')
from pathlib import Path
from llama_index.readers.file import PDFReader
from llama_index.readers.file import UnstructuredReader
from llama_index.readers.file import PyMuPDFReader
loader = PDFReader()
docs0 = loader.load_data(file=Path("./data/llama2.pdf"))
from llama_index.core import Document
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import IndexNode
node_parser = SentenceSplitter(chunk_size=1024)
base_nodes = node_parser.get_nodes_from_documents(docs)
from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
index = VectorStoreIndex(base_nodes)
query_engine = index.as_query_engine(similarity_top_k=2)
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.core.node_parser import SimpleNodeParser
dataset_generator = DatasetGenerator(
base_nodes[:20],
llm=OpenAI(model="gpt-4"),
show_progress=True,
num_questions_per_chunk=3,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=60)
eval_dataset.save_json("data/llama2_eval_qr_dataset.json")
eval_dataset = QueryResponseDataset.from_json(
"data/llama2_eval_qr_dataset.json"
)
import random
full_qr_pairs = eval_dataset.qr_pairs
num_exemplars = 2
num_eval = 40
exemplar_qr_pairs = random.sample(full_qr_pairs, num_exemplars)
eval_qr_pairs = random.sample(full_qr_pairs, num_eval)
len(exemplar_qr_pairs)
from llama_index.core.evaluation.eval_utils import get_responses
from llama_index.core.evaluation import CorrectnessEvaluator, BatchEvalRunner
evaluator_c = CorrectnessEvaluator(llm=OpenAI(model="gpt-3.5-turbo"))
evaluator_dict = {
"correctness": evaluator_c,
}
batch_runner = BatchEvalRunner(evaluator_dict, workers=2, show_progress=True)
async def get_correctness(query_engine, eval_qa_pairs, batch_runner):
eval_qs = [q for q, _ in eval_qa_pairs]
eval_answers = [a for _, a in eval_qa_pairs]
pred_responses = get_responses(eval_qs, query_engine, show_progress=True)
eval_results = await batch_runner.aevaluate_responses(
eval_qs, responses=pred_responses, reference=eval_answers
)
avg_correctness = np.array(
[r.score for r in eval_results["correctness"]]
).mean()
return avg_correctness
QA_PROMPT_KEY = "response_synthesizer:text_qa_template"
from llama_index.llms.openai import OpenAI
from llama_index.core import PromptTemplate
llm = OpenAI(model="gpt-3.5-turbo")
qa_tmpl_str = (
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Query: {query_str}\n"
"Answer: "
)
qa_tmpl = | PromptTemplate(qa_tmpl_str) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-llms-together')
get_ipython().system('pip install llama-index')
from llama_index.llms.together import TogetherLLM
llm = TogetherLLM(
model="mistralai/Mixtral-8x7B-Instruct-v0.1", api_key="your_api_key"
)
resp = llm.complete("Who is Paul Graham?")
print(resp)
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = llm.chat(messages)
print(resp)
response = llm.stream_complete("Who is Paul Graham?")
for r in response:
print(r.delta, end="")
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
| ChatMessage(role="user", content="What is your name") | llama_index.core.llms.ChatMessage |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.2)
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine(vector_store_query_mode="mmr")
response = query_engine.query("What did the author do growing up?")
print(response)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = | VectorStoreIndex.from_documents(documents) | llama_index.core.VectorStoreIndex.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
import nest_asyncio
nest_asyncio.apply()
from llama_index.embeddings.huggingface import (
HuggingFaceEmbedding,
HuggingFaceInferenceAPIEmbedding,
)
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
model_name = "jinaai/jina-embeddings-v2-small-en"
embed_model = HuggingFaceEmbedding(
model_name=model_name, trust_remote_code=True
)
Settings.embed_model = embed_model
Settings.chunk_size = 1024
embed_model_base = OpenAIEmbedding()
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
reader = SimpleDirectoryReader("../data/paul_graham")
docs = reader.load_data()
index_jina = VectorStoreIndex.from_documents(docs, embed_model=embed_model)
index_base = VectorStoreIndex.from_documents(
docs, embed_model=embed_model_base
)
from llama_index.core.response.notebook_utils import display_source_node
retriever_jina = index_jina.as_retriever(similarity_top_k=1)
retriever_base = index_base.as_retriever(similarity_top_k=1)
retrieved_nodes = retriever_jina.retrieve(
"What did the author do in art school?"
)
for n in retrieved_nodes:
display_source_node(n, source_length=2000)
retrieved_nodes = retriever_base.retrieve("What did the author do in school?")
for n in retrieved_nodes:
| display_source_node(n, source_length=2000) | llama_index.core.response.notebook_utils.display_source_node |
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-cohere')
get_ipython().system('pip install llama-index cohere pypdf')
openai_api_key = "YOUR OPENAI API KEY"
cohere_api_key = "YOUR COHEREAI API KEY"
import os
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ["COHERE_API_KEY"] = cohere_api_key
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.cohere import CohereEmbedding
from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever
from llama_index.core import QueryBundle
from llama_index.core.indices.query.schema import QueryType
from llama_index.core.schema import NodeWithScore
from llama_index.postprocessor.cohere_rerank import CohereRerank
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
from llama_index.finetuning import generate_cohere_reranker_finetuning_dataset
from llama_index.core.evaluation import generate_question_context_pairs
from llama_index.core.evaluation import RetrieverEvaluator
from llama_index.finetuning import CohereRerankerFinetuneEngine
from typing import List
import pandas as pd
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/10k/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'")
lyft_docs = SimpleDirectoryReader(
input_files=["./data/10k/lyft_2021.pdf"]
).load_data()
uber_docs = SimpleDirectoryReader(
input_files=["./data/10k/uber_2021.pdf"]
).load_data()
node_parser = SimpleNodeParser.from_defaults(chunk_size=400)
lyft_nodes = node_parser.get_nodes_from_documents(lyft_docs)
uber_nodes = node_parser.get_nodes_from_documents(uber_docs)
llm = | OpenAI(temperature=0, model="gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt' -O pg_essay.txt")
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader(input_files=["pg_essay.txt"])
documents = reader.load_data()
from llama_index.core.query_pipeline import QueryPipeline, InputComponent
from typing import Dict, Any, List, Optional
from llama_index.llms.openai import OpenAI
from llama_index.core import Document, VectorStoreIndex
from llama_index.core import SummaryIndex
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core.schema import NodeWithScore, TextNode
from llama_index.core import PromptTemplate
from llama_index.core.selectors import LLMSingleSelector
hyde_str = """\
Please write a passage to answer the question: {query_str}
Try to include as many key details as possible.
Passage: """
hyde_prompt = | PromptTemplate(hyde_str) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import openai
import os
os.environ["OPENAI_API_KEY"] = "API_KEY_HERE"
openai.api_key = os.environ["OPENAI_API_KEY"]
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
data = | SimpleDirectoryReader(input_dir="./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
MONGO_URI = os.environ["MONGO_URI"]
from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.storage.index_store.mongodb import MongoIndexStore
storage_context = StorageContext.from_defaults(
docstore=MongoDocumentStore.from_uri(uri=MONGO_URI),
index_store=MongoIndexStore.from_uri(uri=MONGO_URI),
)
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
keyword_table_index = SimpleKeywordTableIndex(
nodes, storage_context=storage_context
)
len(storage_context.docstore.docs)
storage_context.persist()
list_id = summary_index.index_id
vector_id = vector_index.index_id
keyword_id = keyword_table_index.index_id
from llama_index.core import load_index_from_storage
storage_context = StorageContext.from_defaults(
docstore=MongoDocumentStore.from_uri(uri=MONGO_URI),
index_store=MongoIndexStore.from_uri(uri=MONGO_URI),
)
summary_index = load_index_from_storage(
storage_context=storage_context, index_id=list_id
)
vector_index = load_index_from_storage(
storage_context=storage_context, vector_id=vector_id
)
keyword_table_index = load_index_from_storage(
storage_context=storage_context, keyword_id=keyword_id
)
chatgpt = | OpenAI(temperature=0, model="gpt-3.5-turbo") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt' -O pg_essay.txt")
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader(input_files=["pg_essay.txt"])
documents = reader.load_data()
from llama_index.core.query_pipeline import (
QueryPipeline,
InputComponent,
ArgPackComponent,
)
from typing import Dict, Any, List, Optional
from llama_index.core.llama_pack import BaseLlamaPack
from llama_index.core.llms import LLM
from llama_index.llms.openai import OpenAI
from llama_index.core import Document, VectorStoreIndex
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core.schema import NodeWithScore, TextNode
from llama_index.core.node_parser import SentenceSplitter
llm = OpenAI(model="gpt-3.5-turbo")
chunk_sizes = [128, 256, 512, 1024]
query_engines = {}
for chunk_size in chunk_sizes:
splitter = | SentenceSplitter(chunk_size=chunk_size, chunk_overlap=0) | llama_index.core.node_parser.SentenceSplitter |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().system('pip install llama-index')
from llama_index.core.node_parser import SimpleFileNodeParser
from llama_index.readers.file import FlatReader
from pathlib import Path
reader = FlatReader()
html_file = reader.load_data(Path("./stack-overflow.html"))
md_file = reader.load_data(Path("./README.md"))
print(html_file[0].metadata)
print(html_file[0])
print("----")
print(md_file[0].metadata)
print(md_file[0])
parser = SimpleFileNodeParser()
md_nodes = parser.get_nodes_from_documents(md_file)
html_nodes = parser.get_nodes_from_documents(html_file)
print(md_nodes[0].metadata)
print(md_nodes[0].text)
print(md_nodes[1].metadata)
print(md_nodes[1].text)
print("----")
print(html_nodes[0].metadata)
print(html_nodes[0].text)
from llama_index.core.node_parser import SentenceSplitter
splitting_parser = SentenceSplitter(chunk_size=200, chunk_overlap=0)
html_chunked_nodes = splitting_parser(html_nodes)
md_chunked_nodes = splitting_parser(md_nodes)
print(f"\n\nHTML parsed nodes: {len(html_nodes)}")
print(html_nodes[0].text)
print(f"\n\nHTML chunked nodes: {len(html_chunked_nodes)}")
print(html_chunked_nodes[0].text)
print(f"\n\nMD parsed nodes: {len(md_nodes)}")
print(md_nodes[0].text)
print(f"\n\nMD chunked nodes: {len(md_chunked_nodes)}")
print(md_chunked_nodes[0].text)
from llama_index.core.ingestion import IngestionPipeline
pipeline = IngestionPipeline(
documents=reader.load_data(Path("./README.md")),
transformations=[
SimpleFileNodeParser(),
| SentenceSplitter(chunk_size=200, chunk_overlap=0) | llama_index.core.node_parser.SentenceSplitter |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-tables-chain-of-table-base')
get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip')
get_ipython().system('unzip data.zip')
import pandas as pd
df = pd.read_csv("./WikiTableQuestions/csv/200-csv/3.csv")
df
from llama_index.packs.tables.chain_of_table.base import (
ChainOfTableQueryEngine,
serialize_table,
)
from llama_index.core.llama_pack import download_llama_pack
download_llama_pack(
"ChainOfTablePack",
"./chain_of_table_pack",
skip_load=True,
)
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4-1106-preview")
import phoenix as px
import llama_index.core
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
import pandas as pd
df = pd.read_csv("~/Downloads/WikiTableQuestions/csv/200-csv/11.csv")
df
query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True)
response = query_engine.query("Who won best Director in the 1972 Academy Awards?")
str(response.response)
import pandas as pd
df = pd.read_csv("./WikiTableQuestions/csv/200-csv/42.csv")
df
query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True)
response = query_engine.query("What was the precipitation in inches during June?")
str(response)
from llama_index.core import PromptTemplate
from llama_index.core.query_pipeline import QueryPipeline
prompt_str = """\
Here's a serialized table.
{serialized_table}
Given this table please answer the question: {question}
Answer: """
prompt = PromptTemplate(prompt_str)
prompt_c = prompt.as_query_component(partial={"serialized_table": serialize_table(df)})
qp = QueryPipeline(chain=[prompt_c, llm])
response = qp.run("What was the precipitation in inches during June?")
print(str(response))
import pandas as pd
df = pd.read_csv("./WikiTableQuestions/csv/203-csv/114.csv")
df
query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True)
response = query_engine.query("Which televised ABC game had the greatest attendance?")
print(str(response))
from llama_index.core import PromptTemplate
from llama_index.core.query_pipeline import QueryPipeline
prompt_str = """\
Here's a serialized table.
{serialized_table}
Given this table please answer the question: {question}
Answer: """
prompt = PromptTemplate(prompt_str)
prompt_c = prompt.as_query_component(partial={"serialized_table": | serialize_table(df) | llama_index.packs.tables.chain_of_table.base.serialize_table |
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().system('pip install llama-index')
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
pprint_response,
)
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(documents=documents)
import os
from llama_index.postprocessor.cohere_rerank import CohereRerank
api_key = os.environ["COHERE_API_KEY"]
cohere_rerank = CohereRerank(api_key=api_key, top_n=2)
query_engine = index.as_query_engine(
similarity_top_k=10,
node_postprocessors=[cohere_rerank],
)
response = query_engine.query(
"What did Sam Altman do in this essay?",
)
pprint_response(response)
query_engine = index.as_query_engine(
similarity_top_k=2,
)
response = query_engine.query(
"What did Sam Altman do in this essay?",
)
| pprint_response(response) | llama_index.core.pprint_response |
get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic')
get_ipython().system('pip install llama-index')
from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings
tokenizer = Anthropic().tokenizer
Settings.tokenizer = tokenizer
import os
os.environ["ANTHROPIC_API_KEY"] = "YOUR ANTHROPIC API KEY"
from llama_index.llms.anthropic import Anthropic
llm = Anthropic(model="claude-3-opus-20240229")
resp = llm.complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.anthropic import Anthropic
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="Tell me a story"),
]
resp = | Anthropic(model="claude-3-opus-20240229") | llama_index.llms.anthropic.Anthropic |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-typesense')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from IPython.display import Markdown, display
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
from llama_index.vector_stores.typesense import TypesenseVectorStore
from typesense import Client
typesense_client = Client(
{
"api_key": "xyz",
"nodes": [{"host": "localhost", "port": "8108", "protocol": "http"}],
"connection_timeout_seconds": 2,
}
)
typesense_vector_store = TypesenseVectorStore(typesense_client)
storage_context = StorageContext.from_defaults(
vector_store=typesense_vector_store
)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
from llama_index.core import QueryBundle
from llama_index.embeddings.openai import OpenAIEmbedding
query_str = "What did the author do growing up?"
embed_model = OpenAIEmbedding()
from llama_index.core import Settings
query_embedding = embed_model.get_agg_embedding_from_queries(query_str)
query_bundle = QueryBundle(query_str, embedding=query_embedding)
response = index.as_query_engine().query(query_bundle)
display(Markdown(f"<b>{response}</b>"))
from llama_index.core.vector_stores.types import VectorStoreQueryMode
query_bundle = | QueryBundle(query_str=query_str) | llama_index.core.QueryBundle |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
from llama_index.core.evaluation.benchmarks import HotpotQAEvaluator
from llama_index.core import VectorStoreIndex
from llama_index.core import Document
from llama_index.llms.openai import OpenAI
from llama_index.core.embeddings import resolve_embed_model
llm = OpenAI(model="gpt-3.5-turbo")
embed_model = resolve_embed_model(
"local:sentence-transformers/all-MiniLM-L6-v2"
)
index = VectorStoreIndex.from_documents(
[Document.example()], embed_model=embed_model, show_progress=True
)
engine = index.as_query_engine(llm=llm)
HotpotQAEvaluator().run(engine, queries=5, show_result=True)
from llama_index.core.postprocessor import SentenceTransformerRerank
rerank = SentenceTransformerRerank(top_n=3)
engine = index.as_query_engine(
llm=llm,
node_postprocessors=[rerank],
)
| HotpotQAEvaluator() | llama_index.core.evaluation.benchmarks.HotpotQAEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().system('pip install llama-index qdrant_client pyMuPDF tools frontend git+https://github.com/openai/CLIP.git easyocr')
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.patches import Patch
import io
from PIL import Image, ImageDraw
import numpy as np
import csv
import pandas as pd
from torchvision import transforms
from transformers import AutoModelForObjectDetection
import torch
import openai
import os
import fitz
device = "cuda" if torch.cuda.is_available() else "cpu"
OPENAI_API_TOKEN = "sk-<your-openai-api-token>"
openai.api_key = OPENAI_API_TOKEN
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "llama2.pdf"')
pdf_file = "llama2.pdf"
output_directory_path, _ = os.path.splitext(pdf_file)
if not os.path.exists(output_directory_path):
os.makedirs(output_directory_path)
pdf_document = fitz.open(pdf_file)
for page_number in range(pdf_document.page_count):
page = pdf_document[page_number]
pix = page.get_pixmap()
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
image.save(f"./{output_directory_path}/page_{page_number + 1}.png")
pdf_document.close()
from PIL import Image
import matplotlib.pyplot as plt
import os
image_paths = []
for img_path in os.listdir("./llama2"):
image_paths.append(str(os.path.join("./llama2", img_path)))
def plot_images(image_paths):
images_shown = 0
plt.figure(figsize=(16, 9))
for img_path in image_paths:
if os.path.isfile(img_path):
image = Image.open(img_path)
plt.subplot(3, 3, images_shown + 1)
plt.imshow(image)
plt.xticks([])
plt.yticks([])
images_shown += 1
if images_shown >= 9:
break
plot_images(image_paths[9:12])
import qdrant_client
from llama_index.core import SimpleDirectoryReader
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.core.indices import MultiModalVectorStoreIndex
from llama_index.core.schema import ImageDocument
from llama_index.core.response.notebook_utils import display_source_node
from llama_index.core.schema import ImageNode
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
openai_mm_llm = OpenAIMultiModal(
model="gpt-4-vision-preview", api_key=OPENAI_API_TOKEN, max_new_tokens=1500
)
documents_images = SimpleDirectoryReader("./llama2/").load_data()
client = qdrant_client.QdrantClient(path="qdrant_index")
text_store = QdrantVectorStore(
client=client, collection_name="text_collection"
)
image_store = QdrantVectorStore(
client=client, collection_name="image_collection"
)
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
index = MultiModalVectorStoreIndex.from_documents(
documents_images,
storage_context=storage_context,
)
retriever_engine = index.as_retriever(image_similarity_top_k=2)
from llama_index.core.indices.multi_modal.retriever import (
MultiModalVectorIndexRetriever,
)
query = "Compare llama2 with llama1?"
assert isinstance(retriever_engine, MultiModalVectorIndexRetriever)
retrieval_results = retriever_engine.text_to_image_retrieve(query)
retrieved_images = []
for res_node in retrieval_results:
if isinstance(res_node.node, ImageNode):
retrieved_images.append(res_node.node.metadata["file_path"])
else:
display_source_node(res_node, source_length=200)
plot_images(retrieved_images)
retrieved_images
image_documents = [
ImageDocument(image_path=image_path) for image_path in retrieved_images
]
response = openai_mm_llm.complete(
prompt="Compare llama2 with llama1?",
image_documents=image_documents,
)
print(response)
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core import SimpleDirectoryReader
documents_images_v2 = SimpleDirectoryReader("./llama2/").load_data()
image = Image.open(documents_images_v2[15].image_path).convert("RGB")
plt.figure(figsize=(16, 9))
plt.imshow(image)
openai_mm_llm = OpenAIMultiModal(
model="gpt-4-vision-preview", api_key=OPENAI_API_TOKEN, max_new_tokens=1500
)
image_prompt = """
Please load the table data and output in the json format from the image.
Please try your best to extract the table data from the image.
If you can't extract the table data, please summarize image and return the summary.
"""
response = openai_mm_llm.complete(
prompt=image_prompt,
image_documents=[documents_images_v2[15]],
)
print(response)
image_results = {}
for img_doc in documents_images_v2:
try:
image_table_result = openai_mm_llm.complete(
prompt=image_prompt,
image_documents=[img_doc],
)
except Exception as e:
print(
f"Error understanding for image {img_doc.image_path} from GPT4V API"
)
continue
image_results[img_doc.image_path] = image_table_result
from llama_index.core import Document
text_docs = [
Document(
text=str(image_results[image_path]),
metadata={"image_path": image_path},
)
for image_path in image_results
]
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import SimpleDirectoryReader, StorageContext
import qdrant_client
from llama_index.core import SimpleDirectoryReader
client = qdrant_client.QdrantClient(path="qdrant_mm_db_llama_v3")
llama_text_store = QdrantVectorStore(
client=client, collection_name="text_collection"
)
storage_context = StorageContext.from_defaults(vector_store=llama_text_store)
index = VectorStoreIndex.from_documents(
text_docs,
storage_context=storage_context,
)
MAX_TOKENS = 50
retriever_engine = index.as_retriever(
similarity_top_k=3,
)
retrieval_results = retriever_engine.retrieve("Compare llama2 with llama1?")
from llama_index.core.response.notebook_utils import display_source_node
retrieved_image = []
for res_node in retrieval_results:
| display_source_node(res_node, source_length=1000) | llama_index.core.response.notebook_utils.display_source_node |
get_ipython().run_line_magic('pip', 'install llama-index-llms-portkey')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install -U llama_index')
get_ipython().system('pip install -U portkey-ai')
from llama_index.llms.portkey import Portkey
from llama_index.core.llms import ChatMessage
import portkey as pk
import os
os.environ["PORTKEY_API_KEY"] = "PORTKEY_API_KEY"
openai_virtual_key_a = ""
openai_virtual_key_b = ""
anthropic_virtual_key_a = ""
anthropic_virtual_key_b = ""
cohere_virtual_key_a = ""
cohere_virtual_key_b = ""
os.environ["OPENAI_API_KEY"] = ""
os.environ["ANTHROPIC_API_KEY"] = ""
portkey_client = Portkey(
mode="single",
)
openai_llm = pk.LLMOptions(
provider="openai",
model="gpt-4",
virtual_key=openai_virtual_key_a,
)
portkey_client.add_llms(openai_llm)
messages = [
ChatMessage(role="system", content="You are a helpful assistant"),
ChatMessage(role="user", content="What can you do?"),
]
print("Testing Portkey Llamaindex integration:")
response = portkey_client.chat(messages)
print(response)
prompt = "Why is the sky blue?"
print("\nTesting Stream Complete:\n")
response = portkey_client.stream_complete(prompt)
for i in response:
print(i.delta, end="", flush=True)
messages = [
ChatMessage(role="system", content="You are a helpful assistant"),
ChatMessage(role="user", content="What can you do?"),
]
print("\nTesting Stream Chat:\n")
response = portkey_client.stream_chat(messages)
for i in response:
print(i.delta, end="", flush=True)
portkey_client = Portkey(mode="fallback")
messages = [
ChatMessage(role="system", content="You are a helpful assistant"),
ChatMessage(role="user", content="What can you do?"),
]
llm1 = pk.LLMOptions(
provider="openai",
model="gpt-4",
retry_settings={"on_status_codes": [429, 500], "attempts": 2},
virtual_key=openai_virtual_key_a,
)
llm2 = pk.LLMOptions(
provider="openai",
model="gpt-3.5-turbo",
virtual_key=openai_virtual_key_b,
)
portkey_client.add_llms(llm_params=[llm1, llm2])
print("Testing Fallback & Retry functionality:")
response = portkey_client.chat(messages)
print(response)
portkey_client = Portkey(mode="ab_test")
messages = [
ChatMessage(role="system", content="You are a helpful assistant"),
ChatMessage(role="user", content="What can you do?"),
]
llm1 = pk.LLMOptions(
provider="openai",
model="gpt-4",
virtual_key=openai_virtual_key_a,
weight=0.2,
)
llm2 = pk.LLMOptions(
provider="openai",
model="gpt-3.5-turbo",
virtual_key=openai_virtual_key_a,
weight=0.8,
)
portkey_client.add_llms(llm_params=[llm1, llm2])
print("Testing Loadbalance functionality:")
response = portkey_client.chat(messages)
print(response)
import time
portkey_client = Portkey(mode="single")
openai_llm = pk.LLMOptions(
provider="openai",
model="gpt-3.5-turbo",
virtual_key=openai_virtual_key_a,
cache_status="semantic",
)
portkey_client.add_llms(openai_llm)
current_messages = [
ChatMessage(role="system", content="You are a helpful assistant"),
ChatMessage(role="user", content="What are the ingredients of a pizza?"),
]
print("Testing Portkey Semantic Cache:")
start = time.time()
response = portkey_client.chat(current_messages)
end = time.time() - start
print(response)
print(f"{'-'*50}\nServed in {end} seconds.\n{'-'*50}")
new_messages = [
ChatMessage(role="system", content="You are a helpful assistant"),
ChatMessage(role="user", content="Ingredients of pizza"),
]
print("Testing Portkey Semantic Cache:")
start = time.time()
response = portkey_client.chat(new_messages)
end = time.time() - start
print(response)
print(f"{'-'*50}\nServed in {end} seconds.\n{'-'*50}")
openai_llm = pk.LLMOptions(
provider="openai",
model="gpt-3.5-turbo",
virtual_key=openai_virtual_key_a,
cache_force_refresh=True,
cache_age=60,
)
metadata = {
"_environment": "production",
"_prompt": "test",
"_user": "user",
"_organisation": "acme",
}
trace_id = "llamaindex_portkey"
portkey_client = | Portkey(mode="single") | llama_index.llms.portkey.Portkey |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceWindowNodeParser
from llama_index.core.node_parser import SentenceSplitter
node_parser = SentenceWindowNodeParser.from_defaults(
window_size=3,
window_metadata_key="window",
original_text_metadata_key="original_text",
)
text_splitter = SentenceSplitter()
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1)
embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-mpnet-base-v2", max_length=512
)
from llama_index.core import Settings
Settings.llm = llm
Settings.embed_model = embed_model
Settings.text_splitter = text_splitter
get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf')
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader(
input_files=["./IPCC_AR6_WGII_Chapter03.pdf"]
).load_data()
nodes = node_parser.get_nodes_from_documents(documents)
base_nodes = text_splitter.get_nodes_from_documents(documents)
from llama_index.core import VectorStoreIndex
sentence_index = VectorStoreIndex(nodes)
base_index = VectorStoreIndex(base_nodes)
from llama_index.core.postprocessor import MetadataReplacementPostProcessor
query_engine = sentence_index.as_query_engine(
similarity_top_k=2,
node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window")
],
)
window_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(window_response)
window = window_response.source_nodes[0].node.metadata["window"]
sentence = window_response.source_nodes[0].node.metadata["original_text"]
print(f"Window: {window}")
print("------------------")
print(f"Original Sentence: {sentence}")
query_engine = base_index.as_query_engine(similarity_top_k=2)
vector_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(vector_response)
query_engine = base_index.as_query_engine(similarity_top_k=5)
vector_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(vector_response)
for source_node in window_response.source_nodes:
print(source_node.node.metadata["original_text"])
print("--------")
for node in vector_response.source_nodes:
print("AMOC mentioned?", "AMOC" in node.node.text)
print("--------")
print(vector_response.source_nodes[2].node.text)
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.llms.openai import OpenAI
import nest_asyncio
import random
nest_asyncio.apply()
len(base_nodes)
num_nodes_eval = 30
sample_eval_nodes = random.sample(base_nodes[:200], num_nodes_eval)
dataset_generator = DatasetGenerator(
sample_eval_nodes,
llm=OpenAI(model="gpt-4"),
show_progress=True,
num_questions_per_chunk=2,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes()
eval_dataset.save_json("data/ipcc_eval_qr_dataset.json")
eval_dataset = QueryResponseDataset.from_json("data/ipcc_eval_qr_dataset.json")
import asyncio
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.evaluation import (
CorrectnessEvaluator,
SemanticSimilarityEvaluator,
RelevancyEvaluator,
FaithfulnessEvaluator,
PairwiseComparisonEvaluator,
)
from collections import defaultdict
import pandas as pd
evaluator_c = CorrectnessEvaluator(llm=OpenAI(model="gpt-4"))
evaluator_s = | SemanticSimilarityEvaluator() | llama_index.core.evaluation.SemanticSimilarityEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import phoenix as px
px.launch_app()
import llama_index.core
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader("../data/paul_graham")
docs = reader.load_data()
import os
from llama_index.core import (
StorageContext,
VectorStoreIndex,
load_index_from_storage,
)
if not os.path.exists("storage"):
index = VectorStoreIndex.from_documents(docs)
index.set_index_id("vector_index")
index.storage_context.persist("./storage")
else:
storage_context = StorageContext.from_defaults(persist_dir="storage")
index = load_index_from_storage(storage_context, index_id="vector_index")
from llama_index.core.query_pipeline import QueryPipeline
from llama_index.core import PromptTemplate
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = PromptTemplate(prompt_str)
llm = OpenAI(model="gpt-3.5-turbo")
p = QueryPipeline(chain=[prompt_tmpl, llm], verbose=True)
output = p.run(movie_name="The Departed")
print(str(output))
from typing import List
from pydantic import BaseModel, Field
from llama_index.core.output_parsers import PydanticOutputParser
class Movie(BaseModel):
"""Object representing a single movie."""
name: str = Field(..., description="Name of the movie.")
year: int = Field(..., description="Year of the movie.")
class Movies(BaseModel):
"""Object representing a list of movies."""
movies: List[Movie] = Field(..., description="List of movies.")
llm = OpenAI(model="gpt-3.5-turbo")
output_parser = PydanticOutputParser(Movies)
json_prompt_str = """\
Please generate related movies to {movie_name}. Output with the following JSON format:
"""
json_prompt_str = output_parser.format(json_prompt_str)
json_prompt_tmpl = PromptTemplate(json_prompt_str)
p = QueryPipeline(chain=[json_prompt_tmpl, llm, output_parser], verbose=True)
output = p.run(movie_name="Toy Story")
output
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = PromptTemplate(prompt_str)
prompt_str2 = """\
Here's some text:
{text}
Can you rewrite this with a summary of each movie?
"""
prompt_tmpl2 = PromptTemplate(prompt_str2)
llm = OpenAI(model="gpt-3.5-turbo")
llm_c = llm.as_query_component(streaming=True)
p = QueryPipeline(
chain=[prompt_tmpl, llm_c, prompt_tmpl2, llm_c], verbose=True
)
output = p.run(movie_name="The Dark Knight")
for o in output:
print(o.delta, end="")
p = QueryPipeline(
chain=[
json_prompt_tmpl,
llm.as_query_component(streaming=True),
output_parser,
],
verbose=True,
)
output = p.run(movie_name="Toy Story")
print(output)
from llama_index.postprocessor.cohere_rerank import CohereRerank
prompt_str1 = "Please generate a concise question about Paul Graham's life regarding the following topic {topic}"
prompt_tmpl1 = PromptTemplate(prompt_str1)
prompt_str2 = (
"Please write a passage to answer the question\n"
"Try to include as many key details as possible.\n"
"\n"
"\n"
"{query_str}\n"
"\n"
"\n"
'Passage:"""\n'
)
prompt_tmpl2 = PromptTemplate(prompt_str2)
llm = OpenAI(model="gpt-3.5-turbo")
retriever = index.as_retriever(similarity_top_k=5)
p = QueryPipeline(
chain=[prompt_tmpl1, llm, prompt_tmpl2, llm, retriever], verbose=True
)
nodes = p.run(topic="college")
len(nodes)
from llama_index.postprocessor.cohere_rerank import CohereRerank
from llama_index.core.response_synthesizers import TreeSummarize
prompt_str = "Please generate a question about Paul Graham's life regarding the following topic {topic}"
prompt_tmpl = PromptTemplate(prompt_str)
llm = OpenAI(model="gpt-3.5-turbo")
retriever = index.as_retriever(similarity_top_k=3)
reranker = CohereRerank()
summarizer = TreeSummarize(llm=llm)
p = QueryPipeline(verbose=True)
p.add_modules(
{
"llm": llm,
"prompt_tmpl": prompt_tmpl,
"retriever": retriever,
"summarizer": summarizer,
"reranker": reranker,
}
)
p.add_link("prompt_tmpl", "llm")
p.add_link("llm", "retriever")
p.add_link("retriever", "reranker", dest_key="nodes")
p.add_link("llm", "reranker", dest_key="query_str")
p.add_link("reranker", "summarizer", dest_key="nodes")
p.add_link("llm", "summarizer", dest_key="query_str")
print(summarizer.as_query_component().input_keys)
from pyvis.network import Network
net = Network(notebook=True, cdn_resources="in_line", directed=True)
net.from_nx(p.dag)
net.show("rag_dag.html")
response = p.run(topic="YC")
print(str(response))
response = await p.arun(topic="YC")
print(str(response))
from llama_index.postprocessor.cohere_rerank import CohereRerank
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core.query_pipeline import InputComponent
retriever = index.as_retriever(similarity_top_k=5)
summarizer = TreeSummarize(llm=OpenAI(model="gpt-3.5-turbo"))
reranker = CohereRerank()
p = QueryPipeline(verbose=True)
p.add_modules(
{
"input": InputComponent(),
"retriever": retriever,
"summarizer": summarizer,
}
)
p.add_link("input", "retriever")
p.add_link("input", "summarizer", dest_key="query_str")
p.add_link("retriever", "summarizer", dest_key="nodes")
output = p.run(input="what did the author do in YC")
print(str(output))
from llama_index.core.query_pipeline import (
CustomQueryComponent,
InputKeys,
OutputKeys,
)
from typing import Dict, Any
from llama_index.core.llms.llm import LLM
from pydantic import Field
class RelatedMovieComponent(CustomQueryComponent):
"""Related movie component."""
llm: LLM = Field(..., description="OpenAI LLM")
def _validate_component_inputs(
self, input: Dict[str, Any]
) -> Dict[str, Any]:
"""Validate component inputs during run_component."""
return input
@property
def _input_keys(self) -> set:
"""Input keys dict."""
return {"movie"}
@property
def _output_keys(self) -> set:
return {"output"}
def _run_component(self, **kwargs) -> Dict[str, Any]:
"""Run the component."""
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = PromptTemplate(prompt_str)
p = QueryPipeline(chain=[prompt_tmpl, llm])
return {"output": p.run(movie_name=kwargs["movie"])}
llm = OpenAI(model="gpt-3.5-turbo")
component = RelatedMovieComponent(llm=llm)
prompt_str = """\
Here's some text:
{text}
Can you rewrite this in the voice of Shakespeare?
"""
prompt_tmpl = | PromptTemplate(prompt_str) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('pip install llama-index')
get_ipython().system('pip install spacy')
wiki_titles = [
"Toronto",
"Seattle",
"Chicago",
"Boston",
"Houston",
"Tokyo",
"Berlin",
"Lisbon",
]
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
from llama_index.core import SimpleDirectoryReader
city_docs = {}
for wiki_title in wiki_titles:
city_docs[wiki_title] = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3)
city_descs_dict = {}
choices = []
choice_to_id_dict = {}
for idx, wiki_title in enumerate(wiki_titles):
vector_desc = (
"Useful for questions related to specific aspects of"
f" {wiki_title} (e.g. the history, arts and culture,"
" sports, demographics, or more)."
)
summary_desc = (
"Useful for any requests that require a holistic summary"
f" of EVERYTHING about {wiki_title}. For questions about"
" more specific sections, please use the vector_tool."
)
doc_id_vector = f"{wiki_title}_vector"
doc_id_summary = f"{wiki_title}_summary"
city_descs_dict[doc_id_vector] = vector_desc
city_descs_dict[doc_id_summary] = summary_desc
choices.extend([vector_desc, summary_desc])
choice_to_id_dict[idx * 2] = f"{wiki_title}_vector"
choice_to_id_dict[idx * 2 + 1] = f"{wiki_title}_summary"
from llama_index.llms.openai import OpenAI
from llama_index.core import PromptTemplate
llm = OpenAI(model_name="gpt-3.5-turbo")
summary_q_tmpl = """\
You are a summary question generator. Given an existing question which asks for a summary of a given topic, \
generate {num_vary} related queries that also ask for a summary of the topic.
For example, assuming we're generating 3 related questions:
Base Question: Can you tell me more about Boston?
Question Variations:
Give me an overview of Boston as a city.
Can you describe different aspects of Boston, from the history to the sports scene to the food?
Write a concise summary of Boston; I've never been.
Now let's give it a shot!
Base Question: {base_question}
Question Variations:
"""
summary_q_prompt = PromptTemplate(summary_q_tmpl)
from collections import defaultdict
from llama_index.core.evaluation import DatasetGenerator
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
from llama_index.core.node_parser import SimpleNodeParser
from tqdm.notebook import tqdm
def generate_dataset(
wiki_titles,
city_descs_dict,
llm,
summary_q_prompt,
num_vector_qs_per_node=2,
num_summary_qs=4,
):
queries = {}
corpus = {}
relevant_docs = defaultdict(list)
for idx, wiki_title in enumerate(tqdm(wiki_titles)):
doc_id_vector = f"{wiki_title}_vector"
doc_id_summary = f"{wiki_title}_summary"
corpus[doc_id_vector] = city_descs_dict[doc_id_vector]
corpus[doc_id_summary] = city_descs_dict[doc_id_summary]
node_parser = SimpleNodeParser.from_defaults()
nodes = node_parser.get_nodes_from_documents(city_docs[wiki_title])
dataset_generator = DatasetGenerator(
nodes,
llm=llm,
num_questions_per_chunk=num_vector_qs_per_node,
)
doc_questions = dataset_generator.generate_questions_from_nodes(
num=len(nodes) * num_vector_qs_per_node
)
for query_idx, doc_question in enumerate(doc_questions):
query_id = f"{wiki_title}_{query_idx}"
relevant_docs[query_id] = [doc_id_vector]
queries[query_id] = doc_question
base_q = f"Give me a summary of {wiki_title}"
fmt_prompt = summary_q_prompt.format(
num_vary=num_summary_qs,
base_question=base_q,
)
raw_response = llm.complete(fmt_prompt)
raw_lines = str(raw_response).split("\n")
doc_summary_questions = [l for l in raw_lines if l != ""]
print(f"[{idx}] Original Question: {base_q}")
print(
f"[{idx}] Generated Question Variations: {doc_summary_questions}"
)
for query_idx, doc_summary_question in enumerate(
doc_summary_questions
):
query_id = f"{wiki_title}_{query_idx}"
relevant_docs[query_id] = [doc_id_summary]
queries[query_id] = doc_summary_question
return EmbeddingQAFinetuneDataset(
queries=queries, corpus=corpus, relevant_docs=relevant_docs
)
dataset = generate_dataset(
wiki_titles,
city_descs_dict,
llm,
summary_q_prompt,
num_vector_qs_per_node=4,
num_summary_qs=5,
)
dataset.save_json("dataset.json")
dataset = EmbeddingQAFinetuneDataset.from_json("dataset.json")
import random
def split_train_val_by_query(dataset, split=0.7):
"""Split dataset by queries."""
query_ids = list(dataset.queries.keys())
query_ids_shuffled = random.sample(query_ids, len(query_ids))
split_idx = int(len(query_ids) * split)
train_query_ids = query_ids_shuffled[:split_idx]
eval_query_ids = query_ids_shuffled[split_idx:]
train_queries = {qid: dataset.queries[qid] for qid in train_query_ids}
eval_queries = {qid: dataset.queries[qid] for qid in eval_query_ids}
train_rel_docs = {
qid: dataset.relevant_docs[qid] for qid in train_query_ids
}
eval_rel_docs = {qid: dataset.relevant_docs[qid] for qid in eval_query_ids}
train_dataset = EmbeddingQAFinetuneDataset(
queries=train_queries,
corpus=dataset.corpus,
relevant_docs=train_rel_docs,
)
eval_dataset = EmbeddingQAFinetuneDataset(
queries=eval_queries,
corpus=dataset.corpus,
relevant_docs=eval_rel_docs,
)
return train_dataset, eval_dataset
train_dataset, eval_dataset = split_train_val_by_query(dataset, split=0.7)
from llama_index.finetuning import SentenceTransformersFinetuneEngine
finetune_engine = SentenceTransformersFinetuneEngine(
train_dataset,
model_id="BAAI/bge-small-en",
model_output_path="test_model3",
val_dataset=eval_dataset,
epochs=30, # can set to higher (haven't tested)
)
finetune_engine.finetune()
ft_embed_model = finetune_engine.get_finetuned_model()
ft_embed_model
from llama_index.core.embeddings import resolve_embed_model
base_embed_model = resolve_embed_model("local:BAAI/bge-small-en")
from llama_index.core.selectors import (
EmbeddingSingleSelector,
LLMSingleSelector,
)
ft_selector = EmbeddingSingleSelector.from_defaults(embed_model=ft_embed_model)
base_selector = EmbeddingSingleSelector.from_defaults(
embed_model=base_embed_model
)
import numpy as np
def run_evals(eval_dataset, selector, choices, choice_to_id_dict):
eval_pairs = eval_dataset.query_docid_pairs
matches = []
for query, relevant_doc_ids in tqdm(eval_pairs):
result = selector.select(choices, query)
pred_doc_id = choice_to_id_dict[result.inds[0]]
gt_doc_id = relevant_doc_ids[0]
matches.append(gt_doc_id == pred_doc_id)
return np.array(matches)
ft_matches = run_evals(eval_dataset, ft_selector, choices, choice_to_id_dict)
np.mean(ft_matches)
base_matches = run_evals(
eval_dataset, base_selector, choices, choice_to_id_dict
)
np.mean(base_matches)
from llama_index.llms.openai import OpenAI
eval_llm = OpenAI(model="gpt-3.5-turbo")
llm_selector = LLMSingleSelector.from_defaults(
llm=eval_llm,
)
llm_matches = run_evals(eval_dataset, llm_selector, choices, choice_to_id_dict)
np.mean(llm_matches)
import pandas as pd
eval_df = pd.DataFrame(
{
"Base embedding model": np.mean(base_matches),
"GPT-3.5": np.mean(llm_matches),
"Fine-tuned embedding model": np.mean(ft_matches),
},
index=["Match Rate"],
)
display(eval_df)
from llama_index.core.query_engine import RouterQueryEngine
from llama_index.core import SummaryIndex
from llama_index.core import VectorStoreIndex
from llama_index.core.tools import QueryEngineTool
tools = []
for idx, wiki_title in enumerate(tqdm(wiki_titles)):
doc_id_vector = f"{wiki_title}_vector"
doc_id_summary = f"{wiki_title}_summary"
vector_index = VectorStoreIndex.from_documents(city_docs[wiki_title])
summary_index = | SummaryIndex.from_documents(city_docs[wiki_title]) | llama_index.core.SummaryIndex.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-llms-watsonx')
from llama_index.llms.watsonx import WatsonX
credentials = {
"url": "https://enter.your-ibm.url",
"apikey": "insert_your_api_key",
}
project_id = "insert_your_project_id"
resp = WatsonX(credentials=credentials, project_id=project_id).complete(
"Paul Graham is"
)
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.watsonx import WatsonX
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
| ChatMessage(role="user", content="Tell me a story") | llama_index.core.llms.ChatMessage |
get_ipython().run_line_magic('pip', 'install llama-index-llms-fireworks')
get_ipython().run_line_magic('pip', 'install llama-index')
from llama_index.llms.fireworks import Fireworks
resp = Fireworks().complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.fireworks import Fireworks
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = Fireworks().chat(messages)
print(resp)
from llama_index.llms.fireworks import Fireworks
llm = Fireworks()
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
print(r.delta, end="")
from llama_index.llms.fireworks import Fireworks
from llama_index.core.llms import ChatMessage
llm = | Fireworks() | llama_index.llms.fireworks.Fireworks |
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().system('pip install llama-index gradientai -q')
import os
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.finetuning import GradientFinetuneEngine
os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY")
os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>"
from pydantic import BaseModel
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.llms.openai import OpenAI
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
openai_handler = LlamaDebugHandler()
openai_callback = CallbackManager([openai_handler])
openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback)
gradient_handler = LlamaDebugHandler()
gradient_callback = CallbackManager([gradient_handler])
base_model_slug = "llama2-7b-chat"
gradient_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug,
max_tokens=300,
callback_manager=gradient_callback,
is_chat_model=True,
)
from llama_index.core.llms import LLMMetadata
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
openai_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=openai_llm,
verbose=True,
)
gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=gradient_llm,
verbose=True,
)
response = openai_program(movie_name="The Shining")
print(str(response))
tmp = openai_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
response = gradient_program(movie_name="The Shining")
print(str(response))
tmp = gradient_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
from llama_index.core.program import LLMTextCompletionProgram
from pydantic import BaseModel
from llama_index.llms.openai import OpenAI
from llama_index.core.callbacks import GradientAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from llama_index.core.output_parsers import PydanticOutputParser
from typing import List
class Song(BaseModel):
"""Data model for a song."""
title: str
length_seconds: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
finetuning_handler = GradientAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
llm_gpt4 = OpenAI(model="gpt-4", callback_manager=callback_manager)
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
openai_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=llm_gpt4,
verbose=True,
)
movie_names = [
"The Shining",
"The Departed",
"Titanic",
"Goodfellas",
"Pretty Woman",
"Home Alone",
"Caged Fury",
"Edward Scissorhands",
"Total Recall",
"Ghost",
"Tremors",
"RoboCop",
"Rocky V",
]
from tqdm.notebook import tqdm
for movie_name in tqdm(movie_names):
output = openai_program(movie_name=movie_name)
print(output.json())
events = finetuning_handler.get_finetuning_events()
events
finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl")
get_ipython().system('cat mock_finetune_songs.jsonl')
base_model_slug = "llama2-7b-chat"
base_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True
)
from llama_index.finetuning import GradientFinetuneEngine
finetune_engine = GradientFinetuneEngine(
base_model_slug=base_model_slug,
name="movies_structured",
data_path="mock_finetune_songs.jsonl",
verbose=True,
max_steps=200,
batch_size=1,
)
finetune_engine.model_adapter_id
epochs = 2
for i in range(epochs):
print(f"** EPOCH {i} **")
finetune_engine.finetune()
ft_llm = finetune_engine.get_finetuned_model(
max_tokens=500, is_chat_model=True
)
from llama_index.llms.gradient import GradientModelAdapterLLM
new_prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
Please only generate one album.
"""
gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=new_prompt_template_str,
llm=ft_llm,
verbose=True,
)
gradient_program(movie_name="Goodfellas")
gradient_program(movie_name="Chucky")
base_gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=base_llm,
verbose=True,
)
base_gradient_program(movie_name="Goodfellas")
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pydantic import Field
from typing import List
class Citation(BaseModel):
"""Citation class."""
author: str = Field(
..., description="Inferred first author (usually last name"
)
year: int = Field(..., description="Inferred year")
desc: str = Field(
...,
description=(
"Inferred description from the text of the work that the author is"
" cited for"
),
)
class Response(BaseModel):
"""List of author citations.
Extracted over unstructured text.
"""
citations: List[Citation] = Field(
...,
description=(
"List of author citations (organized by author, year, and"
" description)."
),
)
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SimpleNodeParser
from pathlib import Path
from llama_index.core.callbacks import GradientAIFineTuningHandler
loader = PyMuPDFReader()
docs0 = loader.load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
metadata = {
"paper_title": "Llama 2: Open Foundation and Fine-Tuned Chat Models"
}
docs = [Document(text=doc_text, metadata=metadata)]
chunk_size = 1024
node_parser = SimpleNodeParser.from_defaults(chunk_size=chunk_size)
nodes = node_parser.get_nodes_from_documents(docs)
len(nodes)
finetuning_handler = GradientAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
llm_gpt4 = OpenAI(model="gpt-4-0613", temperature=0.3)
llm_gpt4.pydantic_program_mode = "llm"
base_model_slug = "llama2-7b-chat"
base_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True
)
base_llm.pydantic_program_mode = "llm"
eval_llm = | OpenAI(model="gpt-4-0613", temperature=0) | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().system('pip install llama-index')
import weaviate
client = weaviate.Client("https://test-cluster-bbn8vqsn.weaviate.network")
try:
client.schema.delete_class("Book")
except:
pass
schema = {
"classes": [
{
"class": "Book",
"properties": [
{"name": "title", "dataType": ["text"]},
{"name": "author", "dataType": ["text"]},
{"name": "content", "dataType": ["text"]},
{"name": "year", "dataType": ["int"]},
],
},
]
}
if not client.schema.contains(schema):
client.schema.create(schema)
books = [
{
"title": "To Kill a Mockingbird",
"author": "Harper Lee",
"content": (
"To Kill a Mockingbird is a novel by Harper Lee published in"
" 1960..."
),
"year": 1960,
},
{
"title": "1984",
"author": "George Orwell",
"content": (
"1984 is a dystopian novel by George Orwell published in 1949..."
),
"year": 1949,
},
{
"title": "The Great Gatsby",
"author": "F. Scott Fitzgerald",
"content": (
"The Great Gatsby is a novel by F. Scott Fitzgerald published in"
" 1925..."
),
"year": 1925,
},
{
"title": "Pride and Prejudice",
"author": "Jane Austen",
"content": (
"Pride and Prejudice is a novel by Jane Austen published in"
" 1813..."
),
"year": 1813,
},
]
from llama_index.embeddings.openai import OpenAIEmbedding
embed_model = OpenAIEmbedding()
with client.batch as batch:
for book in books:
vector = embed_model.get_text_embedding(book["content"])
batch.add_data_object(
data_object=book, class_name="Book", vector=vector
)
from llama_index.vector_stores.weaviate import WeaviateVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.core.response.pprint_utils import pprint_source_node
vector_store = WeaviateVectorStore(
weaviate_client=client, index_name="Book", text_key="content"
)
retriever = | VectorStoreIndex.from_vector_store(vector_store) | llama_index.core.VectorStoreIndex.from_vector_store |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
get_ipython().run_line_magic('pip', 'install llama-index')
from pydantic import BaseModel
from typing import List
from llama_index.program.openai import OpenAIPydanticProgram
class Song(BaseModel):
title: str
length_seconds: int
class Album(BaseModel):
name: str
artist: str
songs: List[Song]
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
program = OpenAIPydanticProgram.from_defaults(
output_cls=Album, prompt_template_str=prompt_template_str, verbose=True
)
output = program(
movie_name="The Shining", description="Data model for an album."
)
class Song(BaseModel):
"""Data model for a song."""
title: str
length_seconds: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
program = OpenAIPydanticProgram.from_defaults(
output_cls=Album, prompt_template_str=prompt_template_str, verbose=True
)
output = program(movie_name="The Shining")
output
from llama_index.llms.openai import OpenAI
prompt_template_str = """\
Generate 4 albums about spring, summer, fall, and winter.
"""
program = OpenAIPydanticProgram.from_defaults(
output_cls=Album,
llm= | OpenAI(model="gpt-3.5-turbo-1106") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-dynamodb')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "./llama2.pdf"')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/1706.03762.pdf" -O "./attention.pdf"')
from llama_index.core import download_loader
from llama_index.readers.file import PyMuPDFReader
llama2_docs = PyMuPDFReader().load_data(
file_path="./llama2.pdf", metadata=True
)
attention_docs = PyMuPDFReader().load_data(
file_path="./attention.pdf", metadata=True
)
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.core.node_parser import TokenTextSplitter
nodes = TokenTextSplitter(
chunk_size=1024, chunk_overlap=128
).get_nodes_from_documents(llama2_docs + attention_docs)
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.storage.docstore.redis import RedisDocumentStore
from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.storage.docstore.firestore import FirestoreDocumentStore
from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore
docstore = SimpleDocumentStore()
docstore.add_documents(nodes)
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.vector_stores.qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
client = QdrantClient(path="./qdrant_data")
vector_store = QdrantVectorStore("composable", client=client)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes=nodes)
vector_retriever = index.as_retriever(similarity_top_k=2)
bm25_retriever = BM25Retriever.from_defaults(
docstore=docstore, similarity_top_k=2
)
from llama_index.core.schema import IndexNode
vector_obj = IndexNode(
index_id="vector", obj=vector_retriever, text="Vector Retriever"
)
bm25_obj = IndexNode(
index_id="bm25", obj=bm25_retriever, text="BM25 Retriever"
)
from llama_index.core import SummaryIndex
summary_index = SummaryIndex(objects=[vector_obj, bm25_obj])
query_engine = summary_index.as_query_engine(
response_mode="tree_summarize", verbose=True
)
response = await query_engine.aquery(
"How does attention work in transformers?"
)
print(str(response))
response = await query_engine.aquery(
"What is the architecture of Llama2 based on?"
)
print(str(response))
response = await query_engine.aquery(
"What was used before attention in transformers?"
)
print(str(response))
docstore.persist("./docstore.json")
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.vector_stores.qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
docstore = SimpleDocumentStore.from_persist_path("./docstore.json")
client = QdrantClient(path="./qdrant_data")
vector_store = | QdrantVectorStore("composable", client=client) | llama_index.vector_stores.qdrant.QdrantVectorStore |