prompt
stringlengths 70
19.8k
| completion
stringlengths 8
303
| api
stringlengths 23
93
|
---|---|---|
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai pandas[jinja2] spacy')
import nest_asyncio
nest_asyncio.apply()
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
Response,
)
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import FaithfulnessEvaluator
from llama_index.core.node_parser import SentenceSplitter
import pandas as pd
pd.set_option("display.max_colwidth", 0)
gpt4 = OpenAI(temperature=0, model="gpt-4")
evaluator_gpt4 = FaithfulnessEvaluator(llm=gpt4)
documents = SimpleDirectoryReader("./test_wiki_data/").load_data()
splitter = SentenceSplitter(chunk_size=512)
vector_index = VectorStoreIndex.from_documents(
documents, transformations=[splitter]
)
from llama_index.core.evaluation import EvaluationResult
def display_eval_df(response: Response, eval_result: EvaluationResult) -> None:
if response.source_nodes == []:
print("no response!")
return
eval_df = pd.DataFrame(
{
"Response": str(response),
"Source": response.source_nodes[0].node.text[:1000] + "...",
"Evaluation Result": "Pass" if eval_result.passing else "Fail",
"Reasoning": eval_result.feedback,
},
index=[0],
)
eval_df = eval_df.style.set_properties(
**{
"inline-size": "600px",
"overflow-wrap": "break-word",
},
subset=["Response", "Source"]
)
display(eval_df)
query_engine = vector_index.as_query_engine()
response_vector = query_engine.query("How did New York City get its name?")
eval_result = evaluator_gpt4.evaluate_response(response=response_vector)
display_eval_df(response_vector, eval_result)
from llama_index.core.evaluation import DatasetGenerator
question_generator = | DatasetGenerator.from_documents(documents) | llama_index.core.evaluation.DatasetGenerator.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai')
get_ipython().system('pip install openai matplotlib')
import os
OPENAI_API_TOKEN = "sk-" # Your OpenAI API token here
os.environ["OPENAI_API_TOKEN"] = OPENAI_API_TOKEN
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.multi_modal_llms.generic_utils import load_image_urls
image_urls = [
"https://res.cloudinary.com/hello-tickets/image/upload/c_limit,f_auto,q_auto,w_1920/v1640835927/o3pfl41q7m5bj8jardk0.jpg",
]
image_documents = | load_image_urls(image_urls) | llama_index.core.multi_modal_llms.generic_utils.load_image_urls |
get_ipython().run_line_magic('pip', 'install llama-index-llms-litellm')
get_ipython().system('pip install llama-index')
import os
from llama_index.llms.litellm import LiteLLM
from llama_index.core.llms import ChatMessage
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["COHERE_API_KEY"] = "your-api-key"
message = ChatMessage(role="user", content="Hey! how's it going?")
llm = LiteLLM("gpt-3.5-turbo")
chat_response = llm.chat([message])
llm = LiteLLM("command-nightly")
chat_response = llm.chat([message])
from llama_index.core.llms import ChatMessage
from llama_index.llms.litellm import LiteLLM
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="Tell me a story"),
]
resp = | LiteLLM("gpt-3.5-turbo") | llama_index.llms.litellm.LiteLLM |
get_ipython().run_line_magic('pip', 'install llama-index-llms-replicate')
get_ipython().system('pip install llama-index')
import os
os.environ["REPLICATE_API_TOKEN"] = "<your API key>"
from llama_index.llms.replicate import Replicate
llm = | Replicate(
model="a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5"
) | llama_index.llms.replicate.Replicate |
get_ipython().run_line_magic('pip', 'install llama-index-readers-github')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
import os
os.environ["GITHUB_TOKEN"] = "<your github token>"
import os
from llama_index.readers.github import (
GitHubRepositoryIssuesReader,
GitHubIssuesClient,
)
github_client = GitHubIssuesClient()
loader = GitHubRepositoryIssuesReader(
github_client,
owner="jerryjliu",
repo="llama_index",
verbose=True,
)
docs = loader.load_data()
docs[10].text
docs[10].metadata
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
from pydantic import BaseModel
from typing import List
from tqdm.asyncio import asyncio
from llama_index.program.openai import OpenAIPydanticProgram
from llama_index.llms.openai import OpenAI
from llama_index.core.async_utils import batch_gather
prompt_template_str = """\
Here is a Github Issue ticket.
{ticket}
Please extract central themes and output a list of tags.\
"""
class TagList(BaseModel):
"""A list of tags corresponding to central themes of an issue."""
tags: List[str]
program = OpenAIPydanticProgram.from_defaults(
prompt_template_str=prompt_template_str,
output_cls=TagList,
)
tasks = [program.acall(ticket=doc) for doc in docs]
output = await | batch_gather(tasks, batch_size=10, verbose=True) | llama_index.core.async_utils.batch_gather |
import openai
openai.api_key = "sk-your-api-key"
from llama_index.agent import OpenAIAgent
import requests
import yaml
f = requests.get(
"https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/openai.com/1.2.0/openapi.yaml"
).text
open_api_spec = yaml.safe_load(f)
from llama_index.tools.openapi.base import OpenAPIToolSpec
from llama_index.tools.requests.base import RequestsToolSpec
from llama_index.tools.tool_spec.load_and_search.base import LoadAndSearchToolSpec
open_spec = | OpenAPIToolSpec(open_api_spec) | llama_index.tools.openapi.base.OpenAPIToolSpec |
get_ipython().run_line_magic('pip', 'install llama-index-callbacks-aim')
get_ipython().system('pip install llama-index')
from llama_index.core.callbacks import CallbackManager
from llama_index.callbacks.aim import AimCallback
from llama_index.core import SummaryIndex
from llama_index.core import SimpleDirectoryReader
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
docs = SimpleDirectoryReader("./data/paul_graham").load_data()
aim_callback = | AimCallback(repo="./") | llama_index.callbacks.aim.AimCallback |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import PairwiseComparisonEvaluator
from llama_index.core.node_parser import SentenceSplitter
import pandas as pd
pd.set_option("display.max_colwidth", 0)
gpt4 = OpenAI(temperature=0, model="gpt-4")
evaluator_gpt4 = | PairwiseComparisonEvaluator(llm=gpt4) | llama_index.core.evaluation.PairwiseComparisonEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('pip install llama-index')
get_ipython().system('pip install spacy')
wiki_titles = [
"Toronto",
"Seattle",
"Chicago",
"Boston",
"Houston",
"Tokyo",
"Berlin",
"Lisbon",
]
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
from llama_index.core import SimpleDirectoryReader
city_docs = {}
for wiki_title in wiki_titles:
city_docs[wiki_title] = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3)
city_descs_dict = {}
choices = []
choice_to_id_dict = {}
for idx, wiki_title in enumerate(wiki_titles):
vector_desc = (
"Useful for questions related to specific aspects of"
f" {wiki_title} (e.g. the history, arts and culture,"
" sports, demographics, or more)."
)
summary_desc = (
"Useful for any requests that require a holistic summary"
f" of EVERYTHING about {wiki_title}. For questions about"
" more specific sections, please use the vector_tool."
)
doc_id_vector = f"{wiki_title}_vector"
doc_id_summary = f"{wiki_title}_summary"
city_descs_dict[doc_id_vector] = vector_desc
city_descs_dict[doc_id_summary] = summary_desc
choices.extend([vector_desc, summary_desc])
choice_to_id_dict[idx * 2] = f"{wiki_title}_vector"
choice_to_id_dict[idx * 2 + 1] = f"{wiki_title}_summary"
from llama_index.llms.openai import OpenAI
from llama_index.core import PromptTemplate
llm = OpenAI(model_name="gpt-3.5-turbo")
summary_q_tmpl = """\
You are a summary question generator. Given an existing question which asks for a summary of a given topic, \
generate {num_vary} related queries that also ask for a summary of the topic.
For example, assuming we're generating 3 related questions:
Base Question: Can you tell me more about Boston?
Question Variations:
Give me an overview of Boston as a city.
Can you describe different aspects of Boston, from the history to the sports scene to the food?
Write a concise summary of Boston; I've never been.
Now let's give it a shot!
Base Question: {base_question}
Question Variations:
"""
summary_q_prompt = PromptTemplate(summary_q_tmpl)
from collections import defaultdict
from llama_index.core.evaluation import DatasetGenerator
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
from llama_index.core.node_parser import SimpleNodeParser
from tqdm.notebook import tqdm
def generate_dataset(
wiki_titles,
city_descs_dict,
llm,
summary_q_prompt,
num_vector_qs_per_node=2,
num_summary_qs=4,
):
queries = {}
corpus = {}
relevant_docs = defaultdict(list)
for idx, wiki_title in enumerate(tqdm(wiki_titles)):
doc_id_vector = f"{wiki_title}_vector"
doc_id_summary = f"{wiki_title}_summary"
corpus[doc_id_vector] = city_descs_dict[doc_id_vector]
corpus[doc_id_summary] = city_descs_dict[doc_id_summary]
node_parser = SimpleNodeParser.from_defaults()
nodes = node_parser.get_nodes_from_documents(city_docs[wiki_title])
dataset_generator = DatasetGenerator(
nodes,
llm=llm,
num_questions_per_chunk=num_vector_qs_per_node,
)
doc_questions = dataset_generator.generate_questions_from_nodes(
num=len(nodes) * num_vector_qs_per_node
)
for query_idx, doc_question in enumerate(doc_questions):
query_id = f"{wiki_title}_{query_idx}"
relevant_docs[query_id] = [doc_id_vector]
queries[query_id] = doc_question
base_q = f"Give me a summary of {wiki_title}"
fmt_prompt = summary_q_prompt.format(
num_vary=num_summary_qs,
base_question=base_q,
)
raw_response = llm.complete(fmt_prompt)
raw_lines = str(raw_response).split("\n")
doc_summary_questions = [l for l in raw_lines if l != ""]
print(f"[{idx}] Original Question: {base_q}")
print(
f"[{idx}] Generated Question Variations: {doc_summary_questions}"
)
for query_idx, doc_summary_question in enumerate(
doc_summary_questions
):
query_id = f"{wiki_title}_{query_idx}"
relevant_docs[query_id] = [doc_id_summary]
queries[query_id] = doc_summary_question
return EmbeddingQAFinetuneDataset(
queries=queries, corpus=corpus, relevant_docs=relevant_docs
)
dataset = generate_dataset(
wiki_titles,
city_descs_dict,
llm,
summary_q_prompt,
num_vector_qs_per_node=4,
num_summary_qs=5,
)
dataset.save_json("dataset.json")
dataset = EmbeddingQAFinetuneDataset.from_json("dataset.json")
import random
def split_train_val_by_query(dataset, split=0.7):
"""Split dataset by queries."""
query_ids = list(dataset.queries.keys())
query_ids_shuffled = random.sample(query_ids, len(query_ids))
split_idx = int(len(query_ids) * split)
train_query_ids = query_ids_shuffled[:split_idx]
eval_query_ids = query_ids_shuffled[split_idx:]
train_queries = {qid: dataset.queries[qid] for qid in train_query_ids}
eval_queries = {qid: dataset.queries[qid] for qid in eval_query_ids}
train_rel_docs = {
qid: dataset.relevant_docs[qid] for qid in train_query_ids
}
eval_rel_docs = {qid: dataset.relevant_docs[qid] for qid in eval_query_ids}
train_dataset = EmbeddingQAFinetuneDataset(
queries=train_queries,
corpus=dataset.corpus,
relevant_docs=train_rel_docs,
)
eval_dataset = EmbeddingQAFinetuneDataset(
queries=eval_queries,
corpus=dataset.corpus,
relevant_docs=eval_rel_docs,
)
return train_dataset, eval_dataset
train_dataset, eval_dataset = split_train_val_by_query(dataset, split=0.7)
from llama_index.finetuning import SentenceTransformersFinetuneEngine
finetune_engine = SentenceTransformersFinetuneEngine(
train_dataset,
model_id="BAAI/bge-small-en",
model_output_path="test_model3",
val_dataset=eval_dataset,
epochs=30, # can set to higher (haven't tested)
)
finetune_engine.finetune()
ft_embed_model = finetune_engine.get_finetuned_model()
ft_embed_model
from llama_index.core.embeddings import resolve_embed_model
base_embed_model = | resolve_embed_model("local:BAAI/bge-small-en") | llama_index.core.embeddings.resolve_embed_model |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
MONGO_URI = os.environ["MONGO_URI"]
from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.storage.index_store.mongodb import MongoIndexStore
storage_context = StorageContext.from_defaults(
docstore=MongoDocumentStore.from_uri(uri=MONGO_URI),
index_store=MongoIndexStore.from_uri(uri=MONGO_URI),
)
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
keyword_table_index = SimpleKeywordTableIndex(
nodes, storage_context=storage_context
)
len(storage_context.docstore.docs)
storage_context.persist()
list_id = summary_index.index_id
vector_id = vector_index.index_id
keyword_id = keyword_table_index.index_id
from llama_index.core import load_index_from_storage
storage_context = StorageContext.from_defaults(
docstore=MongoDocumentStore.from_uri(uri=MONGO_URI),
index_store=MongoIndexStore.from_uri(uri=MONGO_URI),
)
summary_index = load_index_from_storage(
storage_context=storage_context, index_id=list_id
)
vector_index = load_index_from_storage(
storage_context=storage_context, vector_id=vector_id
)
keyword_table_index = load_index_from_storage(
storage_context=storage_context, keyword_id=keyword_id
)
chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.llm = chatgpt
Settings.chunk_size = 1024
query_engine = summary_index.as_query_engine()
list_response = query_engine.query("What is a summary of this document?")
display_response(list_response)
query_engine = vector_index.as_query_engine()
vector_response = query_engine.query("What did the author do growing up?")
| display_response(vector_response) | llama_index.core.response.notebook_utils.display_response |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY_HERE"
openai.api_key = os.environ["OPENAI_API_KEY"]
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import weaviate
resource_owner_config = weaviate.AuthClientPassword(
username="<username>",
password="<password>",
)
client = weaviate.Client(
"https://llama-test-ezjahb4m.weaviate.network",
auth_client_secret=resource_owner_config,
)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.weaviate import WeaviateVectorStore
from IPython.display import Markdown, display
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
from llama_index.core import StorageContext
vector_store = WeaviateVectorStore(
weaviate_client=client, index_name="LlamaIndex"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
display(Markdown(f"<b>{response}</b>"))
resource_owner_config = weaviate.AuthClientPassword(
username="<username>",
password="<password>",
)
client = weaviate.Client(
"https://llama-test-ezjahb4m.weaviate.network",
auth_client_secret=resource_owner_config,
)
vector_store = WeaviateVectorStore(
weaviate_client=client, index_name="LlamaIndex"
)
loaded_index = VectorStoreIndex.from_vector_store(vector_store)
query_engine = loaded_index.as_query_engine()
response = query_engine.query("What happened at interleaf?")
display(Markdown(f"<b>{response}</b>"))
from llama_index.core import Document
doc = | Document.example() | llama_index.core.Document.example |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-web')
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-tools-metaphor')
get_ipython().system('wget "https://images.openai.com/blob/a2e49de2-ba5b-4869-9c2d-db3b4b5dcc19/new-models-and-developer-products-announced-at-devday.jpg?width=2000" -O other_images/openai/dev_day.png')
get_ipython().system('wget "https://drive.google.com/uc\\?id\\=1B4f5ZSIKN0zTTPPRlZ915Ceb3_uF9Zlq\\&export\\=download" -O other_images/adidas.png')
from llama_index.readers.web import SimpleWebPageReader
url = "https://openai.com/blog/new-models-and-developer-products-announced-at-devday"
reader = SimpleWebPageReader(html_to_text=True)
documents = reader.load_data(urls=[url])
from llama_index.llms.openai import OpenAI
from llama_index.core import VectorStoreIndex
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core import Settings
Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
vector_index = VectorStoreIndex.from_documents(
documents,
)
query_tool = QueryEngineTool(
query_engine=vector_index.as_query_engine(),
metadata=ToolMetadata(
name=f"vector_tool",
description=(
"Useful to lookup new features announced by OpenAI"
),
),
)
from llama_index.core.agent.react_multimodal.step import (
MultimodalReActAgentWorker,
)
from llama_index.core.agent import AgentRunner
from llama_index.core.multi_modal_llms import MultiModalLLM
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.agent import Task
mm_llm = OpenAIMultiModal(model="gpt-4-vision-preview", max_new_tokens=1000)
react_step_engine = MultimodalReActAgentWorker.from_tools(
[query_tool],
multi_modal_llm=mm_llm,
verbose=True,
)
agent = AgentRunner(react_step_engine)
query_str = (
"The photo shows some new features released by OpenAI. "
"Can you pinpoint the features in the photo and give more details using relevant tools?"
)
from llama_index.core.schema import ImageDocument
image_document = | ImageDocument(image_path="other_images/openai/dev_day.png") | llama_index.core.schema.ImageDocument |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
from llama_index.core import PromptTemplate
choices = [
"Useful for questions related to apples",
"Useful for questions related to oranges",
]
def get_choice_str(choices):
choices_str = "\n\n".join(
[f"{idx+1}. {c}" for idx, c in enumerate(choices)]
)
return choices_str
choices_str = get_choice_str(choices)
router_prompt0 = PromptTemplate(
"Some choices are given below. It is provided in a numbered list (1 to"
" {num_choices}), where each item in the list corresponds to a"
" summary.\n---------------------\n{context_list}\n---------------------\nUsing"
" only the choices above and not prior knowledge, return the top choices"
" (no more than {max_outputs}, but only select what is needed) that are"
" most relevant to the question: '{query_str}'\n"
)
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo")
def get_formatted_prompt(query_str):
fmt_prompt = router_prompt0.format(
num_choices=len(choices),
max_outputs=2,
context_list=choices_str,
query_str=query_str,
)
return fmt_prompt
query_str = "Can you tell me more about the amount of Vitamin C in apples"
fmt_prompt = get_formatted_prompt(query_str)
response = llm.complete(fmt_prompt)
print(str(response))
query_str = "What are the health benefits of eating orange peels?"
fmt_prompt = get_formatted_prompt(query_str)
response = llm.complete(fmt_prompt)
print(str(response))
query_str = (
"Can you tell me more about the amount of Vitamin C in apples and oranges."
)
fmt_prompt = get_formatted_prompt(query_str)
response = llm.complete(fmt_prompt)
print(str(response))
from dataclasses import fields
from pydantic import BaseModel
import json
class Answer(BaseModel):
choice: int
reason: str
print(json.dumps(Answer.schema(), indent=2))
from llama_index.core.types import BaseOutputParser
FORMAT_STR = """The output should be formatted as a JSON instance that conforms to
the JSON schema below.
Here is the output schema:
{
"type": "array",
"items": {
"type": "object",
"properties": {
"choice": {
"type": "integer"
},
"reason": {
"type": "string"
}
},
"required": [
"choice",
"reason"
],
"additionalProperties": false
}
}
"""
def _escape_curly_braces(input_string: str) -> str:
escaped_string = input_string.replace("{", "{{").replace("}", "}}")
return escaped_string
def _marshal_output_to_json(output: str) -> str:
output = output.strip()
left = output.find("[")
right = output.find("]")
output = output[left : right + 1]
return output
from typing import List
class RouterOutputParser(BaseOutputParser):
def parse(self, output: str) -> List[Answer]:
"""Parse string."""
json_output = _marshal_output_to_json(output)
json_dicts = json.loads(json_output)
answers = [Answer.from_dict(json_dict) for json_dict in json_dicts]
return answers
def format(self, prompt_template: str) -> str:
return prompt_template + "\n\n" + _escape_curly_braces(FORMAT_STR)
output_parser = RouterOutputParser()
from typing import List
def route_query(
query_str: str, choices: List[str], output_parser: RouterOutputParser
):
choices_str
fmt_base_prompt = router_prompt0.format(
num_choices=len(choices),
max_outputs=len(choices),
context_list=choices_str,
query_str=query_str,
)
fmt_json_prompt = output_parser.format(fmt_base_prompt)
raw_output = llm.complete(fmt_json_prompt)
parsed = output_parser.parse(str(raw_output))
return parsed
from pydantic import Field
class Answer(BaseModel):
"Represents a single choice with a reason."
choice: int
reason: str
class Answers(BaseModel):
"""Represents a list of answers."""
answers: List[Answer]
Answers.schema()
from llama_index.program.openai import OpenAIPydanticProgram
router_prompt1 = router_prompt0.partial_format(
num_choices=len(choices),
max_outputs=len(choices),
)
program = OpenAIPydanticProgram.from_defaults(
output_cls=Answers,
prompt=router_prompt1,
verbose=True,
)
query_str = "What are the health benefits of eating orange peels?"
output = program(context_list=choices_str, query_str=query_str)
output
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = | PyMuPDFReader() | llama_index.readers.file.PyMuPDFReader |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import phoenix as px
px.launch_app()
import llama_index.core
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader("../data/paul_graham")
docs = reader.load_data()
import os
from llama_index.core import (
StorageContext,
VectorStoreIndex,
load_index_from_storage,
)
if not os.path.exists("storage"):
index = VectorStoreIndex.from_documents(docs)
index.set_index_id("vector_index")
index.storage_context.persist("./storage")
else:
storage_context = StorageContext.from_defaults(persist_dir="storage")
index = load_index_from_storage(storage_context, index_id="vector_index")
from llama_index.core.query_pipeline import QueryPipeline
from llama_index.core import PromptTemplate
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = | PromptTemplate(prompt_str) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().system('pip install llama-index>=0.9.31 pinecone-client>=3.0.0')
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from pinecone import Pinecone, ServerlessSpec
os.environ[
"PINECONE_API_KEY"
] = "<Your Pinecone API key, from app.pinecone.io>"
os.environ["OPENAI_API_KEY"] = "sk-..."
api_key = os.environ["PINECONE_API_KEY"]
pc = Pinecone(api_key=api_key)
pc.create_index(
name="quickstart",
dimension=1536,
metric="euclidean",
spec=ServerlessSpec(cloud="aws", region="us-west-2"),
)
pinecone_index = pc.Index("quickstart")
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.pinecone import PineconeVectorStore
from IPython.display import Markdown, display
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
from llama_index.core import StorageContext
if "OPENAI_API_KEY" not in os.environ:
raise EnvironmentError(f"Environment variable OPENAI_API_KEY is not set")
vector_store = | PineconeVectorStore(pinecone_index=pinecone_index) | llama_index.vector_stores.pinecone.PineconeVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis')
get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-redis')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
REDIS_HOST = os.getenv("REDIS_HOST", "127.0.0.1")
REDIS_PORT = os.getenv("REDIS_PORT", 6379)
from llama_index.storage.docstore.redis import RedisDocumentStore
from llama_index.storage.index_store.redis import RedisIndexStore
storage_context = StorageContext.from_defaults(
docstore=RedisDocumentStore.from_host_and_port(
host=REDIS_HOST, port=REDIS_PORT, namespace="llama_index"
),
index_store=RedisIndexStore.from_host_and_port(
host=REDIS_HOST, port=REDIS_PORT, namespace="llama_index"
),
)
storage_context.docstore.add_documents(nodes)
len(storage_context.docstore.docs)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
keyword_table_index = SimpleKeywordTableIndex(
nodes, storage_context=storage_context
)
len(storage_context.docstore.docs)
storage_context.persist(persist_dir="./storage")
list_id = summary_index.index_id
vector_id = vector_index.index_id
keyword_id = keyword_table_index.index_id
from llama_index.core import load_index_from_storage
storage_context = StorageContext.from_defaults(
docstore=RedisDocumentStore.from_host_and_port(
host=REDIS_HOST, port=REDIS_PORT, namespace="llama_index"
),
index_store=RedisIndexStore.from_host_and_port(
host=REDIS_HOST, port=REDIS_PORT, namespace="llama_index"
),
)
summary_index = load_index_from_storage(
storage_context=storage_context, index_id=list_id
)
vector_index = load_index_from_storage(
storage_context=storage_context, index_id=vector_id
)
keyword_table_index = load_index_from_storage(
storage_context=storage_context, index_id=keyword_id
)
chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.llm = chatgpt
Settings.chunk_size = 1024
query_engine = summary_index.as_query_engine()
list_response = query_engine.query("What is a summary of this document?")
display_response(list_response)
query_engine = vector_index.as_query_engine()
vector_response = query_engine.query("What did the author do growing up?")
| display_response(vector_response) | llama_index.core.response.notebook_utils.display_response |
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install duckdb duckdb-engine')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SQLDatabase, SimpleDirectoryReader, Document
from llama_index.readers.wikipedia import WikipediaReader
from llama_index.core.query_engine import NLSQLTableQueryEngine
from llama_index.core.indices.struct_store import SQLTableRetrieverQueryEngine
from IPython.display import Markdown, display
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
engine = create_engine("duckdb:///:memory:")
metadata_obj = MetaData()
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
metadata_obj.create_all(engine)
metadata_obj.tables.keys()
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{
"city_name": "Chicago",
"population": 2679000,
"country": "United States",
},
{"city_name": "Seoul", "population": 9776000, "country": "South Korea"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
with engine.connect() as connection:
cursor = connection.exec_driver_sql("SELECT * FROM city_stats")
print(cursor.fetchall())
from llama_index.core import SQLDatabase
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
query_engine = NLSQLTableQueryEngine(sql_database)
response = query_engine.query("Which city has the highest population?")
str(response)
response.metadata
engine = create_engine("duckdb:///:memory:")
metadata_obj = MetaData()
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
all_table_names = ["city_stats"]
n = 100
for i in range(n):
tmp_table_name = f"tmp_table_{i}"
tmp_table = Table(
tmp_table_name,
metadata_obj,
Column(f"tmp_field_{i}_1", String(16), primary_key=True),
Column(f"tmp_field_{i}_2", Integer),
Column(f"tmp_field_{i}_3", String(16), nullable=False),
)
all_table_names.append(f"tmp_table_{i}")
metadata_obj.create_all(engine)
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{
"city_name": "Chicago",
"population": 2679000,
"country": "United States",
},
{"city_name": "Seoul", "population": 9776000, "country": "South Korea"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
from llama_index.core.indices.struct_store import SQLTableRetrieverQueryEngine
from llama_index.core.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index.core import VectorStoreIndex
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = []
for table_name in all_table_names:
table_schema_objs.append( | SQLTableSchema(table_name=table_name) | llama_index.core.objects.SQLTableSchema |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().handlers = []
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
SimpleDirectoryReader,
StorageContext,
VectorStoreIndex,
)
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
llm = OpenAI(model="gpt-4")
splitter = | SentenceSplitter(chunk_size=1024) | llama_index.core.node_parser.SentenceSplitter |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().run_line_magic('env', 'OPENAI_API_KEY=YOUR_OPENAI_KEY')
get_ipython().system('pip install llama-index pypdf')
get_ipython().system("mkdir -p 'data/'")
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PDFReader
from llama_index.core.response.notebook_utils import display_source_node
from llama_index.core.retrievers import RecursiveRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
import json
loader = PDFReader()
docs0 = loader.load_data(file=Path("./data/llama2.pdf"))
from llama_index.core import Document
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import IndexNode
node_parser = SentenceSplitter(chunk_size=1024)
base_nodes = node_parser.get_nodes_from_documents(docs)
for idx, node in enumerate(base_nodes):
node.id_ = f"node-{idx}"
from llama_index.core.embeddings import resolve_embed_model
embed_model = resolve_embed_model("local:BAAI/bge-small-en")
llm = OpenAI(model="gpt-3.5-turbo")
base_index = VectorStoreIndex(base_nodes, embed_model=embed_model)
base_retriever = base_index.as_retriever(similarity_top_k=2)
retrievals = base_retriever.retrieve(
"Can you tell me about the key concepts for safety finetuning"
)
for n in retrievals:
display_source_node(n, source_length=1500)
query_engine_base = RetrieverQueryEngine.from_args(base_retriever, llm=llm)
response = query_engine_base.query(
"Can you tell me about the key concepts for safety finetuning"
)
print(str(response))
sub_chunk_sizes = [128, 256, 512]
sub_node_parsers = [
SentenceSplitter(chunk_size=c, chunk_overlap=20) for c in sub_chunk_sizes
]
all_nodes = []
for base_node in base_nodes:
for n in sub_node_parsers:
sub_nodes = n.get_nodes_from_documents([base_node])
sub_inodes = [
IndexNode.from_text_node(sn, base_node.node_id) for sn in sub_nodes
]
all_nodes.extend(sub_inodes)
original_node = IndexNode.from_text_node(base_node, base_node.node_id)
all_nodes.append(original_node)
all_nodes_dict = {n.node_id: n for n in all_nodes}
vector_index_chunk = VectorStoreIndex(all_nodes, embed_model=embed_model)
vector_retriever_chunk = vector_index_chunk.as_retriever(similarity_top_k=2)
retriever_chunk = RecursiveRetriever(
"vector",
retriever_dict={"vector": vector_retriever_chunk},
node_dict=all_nodes_dict,
verbose=True,
)
nodes = retriever_chunk.retrieve(
"Can you tell me about the key concepts for safety finetuning"
)
for node in nodes:
display_source_node(node, source_length=2000)
query_engine_chunk = RetrieverQueryEngine.from_args(retriever_chunk, llm=llm)
response = query_engine_chunk.query(
"Can you tell me about the key concepts for safety finetuning"
)
print(str(response))
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import IndexNode
from llama_index.core.extractors import (
SummaryExtractor,
QuestionsAnsweredExtractor,
)
extractors = [
SummaryExtractor(summaries=["self"], show_progress=True),
| QuestionsAnsweredExtractor(questions=5, show_progress=True) | llama_index.core.extractors.QuestionsAnsweredExtractor |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-cross-encoders')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install datasets --quiet')
get_ipython().system('pip install sentence-transformers --quiet')
get_ipython().system('pip install openai --quiet')
from datasets import load_dataset
import random
dataset = load_dataset("allenai/qasper")
train_dataset = dataset["train"]
validation_dataset = dataset["validation"]
test_dataset = dataset["test"]
random.seed(42) # Set a random seed for reproducibility
train_sampled_indices = random.sample(range(len(train_dataset)), 800)
train_samples = [train_dataset[i] for i in train_sampled_indices]
test_sampled_indices = random.sample(range(len(test_dataset)), 80)
test_samples = [test_dataset[i] for i in test_sampled_indices]
from typing import List
def get_full_text(sample: dict) -> str:
"""
:param dict sample: the row sample from QASPER
"""
title = sample["title"]
abstract = sample["abstract"]
sections_list = sample["full_text"]["section_name"]
paragraph_list = sample["full_text"]["paragraphs"]
combined_sections_with_paras = ""
if len(sections_list) == len(paragraph_list):
combined_sections_with_paras += title + "\t"
combined_sections_with_paras += abstract + "\t"
for index in range(0, len(sections_list)):
combined_sections_with_paras += str(sections_list[index]) + "\t"
combined_sections_with_paras += "".join(paragraph_list[index])
return combined_sections_with_paras
else:
print("Not the same number of sections as paragraphs list")
def get_questions(sample: dict) -> List[str]:
"""
:param dict sample: the row sample from QASPER
"""
questions_list = sample["qas"]["question"]
return questions_list
doc_qa_dict_list = []
for train_sample in train_samples:
full_text = get_full_text(train_sample)
questions_list = get_questions(train_sample)
local_dict = {"paper": full_text, "questions": questions_list}
doc_qa_dict_list.append(local_dict)
len(doc_qa_dict_list)
import pandas as pd
df_train = pd.DataFrame(doc_qa_dict_list)
df_train.to_csv("train.csv")
"""
The Answers field in the dataset follow the below format:-
Unanswerable answers have "unanswerable" set to true.
The remaining answers have exactly one of the following fields being non-empty.
"extractive_spans" are spans in the paper which serve as the answer.
"free_form_answer" is a written out answer.
"yes_no" is true iff the answer is Yes, and false iff the answer is No.
We accept only free-form answers and for all the other kind of answers we set their value to 'Unacceptable',
to better evaluate the performance of the query engine using pairwise comparision evaluator as it uses GPT-4 which is biased towards preferring long answers more.
https://www.anyscale.com/blog/a-comprehensive-guide-for-building-rag-based-llm-applications-part-1
So in the case of 'yes_no' answers it can favour Query Engine answers more than reference answers.
Also in the case of extracted spans it can favour reference answers more than Query engine generated answers.
"""
eval_doc_qa_answer_list = []
def get_answers(sample: dict) -> List[str]:
"""
:param dict sample: the row sample from the train split of QASPER
"""
final_answers_list = []
answers = sample["qas"]["answers"]
for answer in answers:
local_answer = ""
types_of_answers = answer["answer"][0]
if types_of_answers["unanswerable"] == False:
if types_of_answers["free_form_answer"] != "":
local_answer = types_of_answers["free_form_answer"]
else:
local_answer = "Unacceptable"
else:
local_answer = "Unacceptable"
final_answers_list.append(local_answer)
return final_answers_list
for test_sample in test_samples:
full_text = get_full_text(test_sample)
questions_list = get_questions(test_sample)
answers_list = get_answers(test_sample)
local_dict = {
"paper": full_text,
"questions": questions_list,
"answers": answers_list,
}
eval_doc_qa_answer_list.append(local_dict)
len(eval_doc_qa_answer_list)
import pandas as pd
df_test = pd.DataFrame(eval_doc_qa_answer_list)
df_test.to_csv("test.csv")
get_ipython().system('pip install llama-index --quiet')
import os
from llama_index.core import SimpleDirectoryReader
import openai
from llama_index.finetuning.cross_encoders.dataset_gen import (
generate_ce_fine_tuning_dataset,
generate_synthetic_queries_over_documents,
)
from llama_index.finetuning.cross_encoders import CrossEncoderFinetuneEngine
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
from llama_index.core import Document
final_finetuning_data_list = []
for paper in doc_qa_dict_list:
questions_list = paper["questions"]
documents = [Document(text=paper["paper"])]
local_finetuning_dataset = generate_ce_fine_tuning_dataset(
documents=documents,
questions_list=questions_list,
max_chunk_length=256,
top_k=5,
)
final_finetuning_data_list.extend(local_finetuning_dataset)
len(final_finetuning_data_list)
import pandas as pd
df_finetuning_dataset = pd.DataFrame(final_finetuning_data_list)
df_finetuning_dataset.to_csv("fine_tuning.csv")
finetuning_dataset = final_finetuning_data_list
finetuning_dataset[0]
get_ipython().system('wget -O test.csv https://www.dropbox.com/scl/fi/3lmzn6714oy358mq0vawm/test.csv?rlkey=yz16080te4van7fvnksi9kaed&dl=0')
import pandas as pd
import ast # Used to safely evaluate the string as a list
df_test = pd.read_csv("/content/test.csv", index_col=0)
df_test["questions"] = df_test["questions"].apply(ast.literal_eval)
df_test["answers"] = df_test["answers"].apply(ast.literal_eval)
print(f"Number of papers in the test sample:- {len(df_test)}")
from llama_index.core import Document
final_eval_data_list = []
for index, row in df_test.iterrows():
documents = [Document(text=row["paper"])]
query_list = row["questions"]
local_eval_dataset = generate_ce_fine_tuning_dataset(
documents=documents,
questions_list=query_list,
max_chunk_length=256,
top_k=5,
)
relevant_query_list = []
relevant_context_list = []
for item in local_eval_dataset:
if item.score == 1:
relevant_query_list.append(item.query)
relevant_context_list.append(item.context)
if len(relevant_query_list) > 0:
final_eval_data_list.append(
{
"paper": row["paper"],
"questions": relevant_query_list,
"context": relevant_context_list,
}
)
len(final_eval_data_list)
import pandas as pd
df_finetuning_dataset = pd.DataFrame(final_eval_data_list)
df_finetuning_dataset.to_csv("reranking_test.csv")
get_ipython().system('pip install huggingface_hub --quiet')
from huggingface_hub import notebook_login
notebook_login()
from sentence_transformers import SentenceTransformer
finetuning_engine = CrossEncoderFinetuneEngine(
dataset=finetuning_dataset, epochs=2, batch_size=8
)
finetuning_engine.finetune()
finetuning_engine.push_to_hub(
repo_id="bpHigh/Cross-Encoder-LLamaIndex-Demo-v2"
)
get_ipython().system('pip install nest-asyncio --quiet')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('wget -O reranking_test.csv https://www.dropbox.com/scl/fi/mruo5rm46k1acm1xnecev/reranking_test.csv?rlkey=hkniwowq0xrc3m0ywjhb2gf26&dl=0')
import pandas as pd
import ast
df_reranking = pd.read_csv("/content/reranking_test.csv", index_col=0)
df_reranking["questions"] = df_reranking["questions"].apply(ast.literal_eval)
df_reranking["context"] = df_reranking["context"].apply(ast.literal_eval)
print(f"Number of papers in the reranking eval dataset:- {len(df_reranking)}")
df_reranking.head(1)
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
from llama_index.core import Settings
import os
import openai
import pandas as pd
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
Settings.chunk_size = 256
rerank_base = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-12-v2", top_n=3
)
rerank_finetuned = SentenceTransformerRerank(
model="bpHigh/Cross-Encoder-LLamaIndex-Demo-v2", top_n=3
)
without_reranker_hits = 0
base_reranker_hits = 0
finetuned_reranker_hits = 0
total_number_of_context = 0
for index, row in df_reranking.iterrows():
documents = [Document(text=row["paper"])]
query_list = row["questions"]
context_list = row["context"]
assert len(query_list) == len(context_list)
vector_index = VectorStoreIndex.from_documents(documents)
retriever_without_reranker = vector_index.as_query_engine(
similarity_top_k=3, response_mode="no_text"
)
retriever_with_base_reranker = vector_index.as_query_engine(
similarity_top_k=8,
response_mode="no_text",
node_postprocessors=[rerank_base],
)
retriever_with_finetuned_reranker = vector_index.as_query_engine(
similarity_top_k=8,
response_mode="no_text",
node_postprocessors=[rerank_finetuned],
)
for index in range(0, len(query_list)):
query = query_list[index]
context = context_list[index]
total_number_of_context += 1
response_without_reranker = retriever_without_reranker.query(query)
without_reranker_nodes = response_without_reranker.source_nodes
for node in without_reranker_nodes:
if context in node.node.text or node.node.text in context:
without_reranker_hits += 1
response_with_base_reranker = retriever_with_base_reranker.query(query)
with_base_reranker_nodes = response_with_base_reranker.source_nodes
for node in with_base_reranker_nodes:
if context in node.node.text or node.node.text in context:
base_reranker_hits += 1
response_with_finetuned_reranker = (
retriever_with_finetuned_reranker.query(query)
)
with_finetuned_reranker_nodes = (
response_with_finetuned_reranker.source_nodes
)
for node in with_finetuned_reranker_nodes:
if context in node.node.text or node.node.text in context:
finetuned_reranker_hits += 1
assert (
len(with_finetuned_reranker_nodes)
== len(with_base_reranker_nodes)
== len(without_reranker_nodes)
== 3
)
without_reranker_scores = [without_reranker_hits]
base_reranker_scores = [base_reranker_hits]
finetuned_reranker_scores = [finetuned_reranker_hits]
reranker_eval_dict = {
"Metric": "Hits",
"OpenAI_Embeddings": without_reranker_scores,
"Base_cross_encoder": base_reranker_scores,
"Finetuned_cross_encoder": finetuned_reranker_hits,
"Total Relevant Context": total_number_of_context,
}
df_reranker_eval_results = pd.DataFrame(reranker_eval_dict)
display(df_reranker_eval_results)
get_ipython().system('wget -O test.csv https://www.dropbox.com/scl/fi/3lmzn6714oy358mq0vawm/test.csv?rlkey=yz16080te4van7fvnksi9kaed&dl=0')
import pandas as pd
import ast # Used to safely evaluate the string as a list
df_test = pd.read_csv("/content/test.csv", index_col=0)
df_test["questions"] = df_test["questions"].apply(ast.literal_eval)
df_test["answers"] = df_test["answers"].apply(ast.literal_eval)
print(f"Number of papers in the test sample:- {len(df_test)}")
df_test.head(1)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
from llama_index.core.evaluation import PairwiseComparisonEvaluator
from llama_index.core.evaluation.eval_utils import (
get_responses,
get_results_df,
)
import os
import openai
import pandas as pd
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
gpt4 = OpenAI(temperature=0, model="gpt-4")
evaluator_gpt4_pairwise = PairwiseComparisonEvaluator(llm=gpt4)
pairwise_scores_list = []
no_reranker_dict_list = []
for index, row in df_test.iterrows():
documents = [Document(text=row["paper"])]
query_list = row["questions"]
reference_answers_list = row["answers"]
number_of_accepted_queries = 0
vector_index = VectorStoreIndex.from_documents(documents)
query_engine = vector_index.as_query_engine(similarity_top_k=3)
assert len(query_list) == len(reference_answers_list)
pairwise_local_score = 0
for index in range(0, len(query_list)):
query = query_list[index]
reference = reference_answers_list[index]
if reference != "Unacceptable":
number_of_accepted_queries += 1
response = str(query_engine.query(query))
no_reranker_dict = {
"query": query,
"response": response,
"reference": reference,
}
no_reranker_dict_list.append(no_reranker_dict)
pairwise_eval_result = await evaluator_gpt4_pairwise.aevaluate(
query, response=response, reference=reference
)
pairwise_score = pairwise_eval_result.score
pairwise_local_score += pairwise_score
else:
pass
if number_of_accepted_queries > 0:
avg_pairwise_local_score = (
pairwise_local_score / number_of_accepted_queries
)
pairwise_scores_list.append(avg_pairwise_local_score)
overal_pairwise_average_score = sum(pairwise_scores_list) / len(
pairwise_scores_list
)
df_responses = pd.DataFrame(no_reranker_dict_list)
df_responses.to_csv("No_Reranker_Responses.csv")
results_dict = {
"name": ["Without Reranker"],
"pairwise score": [overal_pairwise_average_score],
}
results_df = pd.DataFrame(results_dict)
display(results_df)
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
from llama_index.core.evaluation import PairwiseComparisonEvaluator
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
rerank = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-12-v2", top_n=3
)
gpt4 = OpenAI(temperature=0, model="gpt-4")
evaluator_gpt4_pairwise = | PairwiseComparisonEvaluator(llm=gpt4) | llama_index.core.evaluation.PairwiseComparisonEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-together')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
domain = "docs.llamaindex.ai"
docs_url = "https://docs.llamaindex.ai/en/latest/"
get_ipython().system('wget -e robots=off --recursive --no-clobber --page-requisites --html-extension --convert-links --restrict-file-names=windows --domains {domain} --no-parent {docs_url}')
from llama_index.readers.file import UnstructuredReader
from pathlib import Path
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
reader = UnstructuredReader()
all_html_files = [
"docs.llamaindex.ai/en/latest/index.html",
"docs.llamaindex.ai/en/latest/contributing/contributing.html",
"docs.llamaindex.ai/en/latest/understanding/understanding.html",
"docs.llamaindex.ai/en/latest/understanding/using_llms/using_llms.html",
"docs.llamaindex.ai/en/latest/understanding/using_llms/privacy.html",
"docs.llamaindex.ai/en/latest/understanding/loading/llamahub.html",
"docs.llamaindex.ai/en/latest/optimizing/production_rag.html",
"docs.llamaindex.ai/en/latest/module_guides/models/llms.html",
]
doc_limit = 10
docs = []
for idx, f in enumerate(all_html_files):
if idx > doc_limit:
break
print(f"Idx {idx}/{len(all_html_files)}")
loaded_docs = reader.load_data(file=f, split_documents=True)
start_idx = 64
loaded_doc = Document(
id_=str(f),
text="\n\n".join([d.get_content() for d in loaded_docs[start_idx:]]),
metadata={"path": str(f)},
)
print(str(f))
docs.append(loaded_doc)
from llama_index.embeddings.together import TogetherEmbedding
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
api_key = "<api_key>"
embed_model = TogetherEmbedding(
model_name="togethercomputer/m2-bert-80M-32k-retrieval", api_key=api_key
)
llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
from llama_index.core.storage.docstore import SimpleDocumentStore
for doc in docs:
embedding = embed_model.get_text_embedding(doc.get_content())
doc.embedding = embedding
docstore = | SimpleDocumentStore() | llama_index.core.storage.docstore.SimpleDocumentStore |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip')
get_ipython().system('unzip data.zip')
import pandas as pd
from pathlib import Path
data_dir = Path("./WikiTableQuestions/csv/200-csv")
csv_files = sorted([f for f in data_dir.glob("*.csv")])
dfs = []
for csv_file in csv_files:
print(f"processing file: {csv_file}")
try:
df = pd.read_csv(csv_file)
dfs.append(df)
except Exception as e:
print(f"Error parsing {csv_file}: {str(e)}")
tableinfo_dir = "WikiTableQuestions_TableInfo"
get_ipython().system('mkdir {tableinfo_dir}')
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.bridge.pydantic import BaseModel, Field
from llama_index.llms.openai import OpenAI
class TableInfo(BaseModel):
"""Information regarding a structured table."""
table_name: str = Field(
..., description="table name (must be underscores and NO spaces)"
)
table_summary: str = Field(
..., description="short, concise summary/caption of the table"
)
prompt_str = """\
Give me a summary of the table with the following JSON format.
- The table name must be unique to the table and describe it while being concise.
- Do NOT output a generic table name (e.g. table, my_table).
Do NOT make the table name one of the following: {exclude_table_name_list}
Table:
{table_str}
Summary: """
program = LLMTextCompletionProgram.from_defaults(
output_cls=TableInfo,
llm=OpenAI(model="gpt-3.5-turbo"),
prompt_template_str=prompt_str,
)
import json
def _get_tableinfo_with_index(idx: int) -> str:
results_gen = Path(tableinfo_dir).glob(f"{idx}_*")
results_list = list(results_gen)
if len(results_list) == 0:
return None
elif len(results_list) == 1:
path = results_list[0]
return TableInfo.parse_file(path)
else:
raise ValueError(
f"More than one file matching index: {list(results_gen)}"
)
table_names = set()
table_infos = []
for idx, df in enumerate(dfs):
table_info = _get_tableinfo_with_index(idx)
if table_info:
table_infos.append(table_info)
else:
while True:
df_str = df.head(10).to_csv()
table_info = program(
table_str=df_str,
exclude_table_name_list=str(list(table_names)),
)
table_name = table_info.table_name
print(f"Processed table: {table_name}")
if table_name not in table_names:
table_names.add(table_name)
break
else:
print(f"Table name {table_name} already exists, trying again.")
pass
out_file = f"{tableinfo_dir}/{idx}_{table_name}.json"
json.dump(table_info.dict(), open(out_file, "w"))
table_infos.append(table_info)
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
)
import re
def sanitize_column_name(col_name):
return re.sub(r"\W+", "_", col_name)
def create_table_from_dataframe(
df: pd.DataFrame, table_name: str, engine, metadata_obj
):
sanitized_columns = {col: sanitize_column_name(col) for col in df.columns}
df = df.rename(columns=sanitized_columns)
columns = [
Column(col, String if dtype == "object" else Integer)
for col, dtype in zip(df.columns, df.dtypes)
]
table = Table(table_name, metadata_obj, *columns)
metadata_obj.create_all(engine)
with engine.connect() as conn:
for _, row in df.iterrows():
insert_stmt = table.insert().values(**row.to_dict())
conn.execute(insert_stmt)
conn.commit()
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
for idx, df in enumerate(dfs):
tableinfo = _get_tableinfo_with_index(idx)
print(f"Creating table: {tableinfo.table_name}")
create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj)
import phoenix as px
import llama_index.core
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.core.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index.core import SQLDatabase, VectorStoreIndex
sql_database = SQLDatabase(engine)
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
SQLTableSchema(table_name=t.table_name, context_str=t.table_summary)
for t in table_infos
] # add a SQLTableSchema for each table
obj_index = ObjectIndex.from_objects(
table_schema_objs,
table_node_mapping,
VectorStoreIndex,
)
obj_retriever = obj_index.as_retriever(similarity_top_k=3)
from llama_index.core.retrievers import SQLRetriever
from typing import List
from llama_index.core.query_pipeline import FnComponent
sql_retriever = SQLRetriever(sql_database)
def get_table_context_str(table_schema_objs: List[SQLTableSchema]):
"""Get table context string."""
context_strs = []
for table_schema_obj in table_schema_objs:
table_info = sql_database.get_single_table_info(
table_schema_obj.table_name
)
if table_schema_obj.context_str:
table_opt_context = " The table description is: "
table_opt_context += table_schema_obj.context_str
table_info += table_opt_context
context_strs.append(table_info)
return "\n\n".join(context_strs)
table_parser_component = FnComponent(fn=get_table_context_str)
from llama_index.core.prompts.default_prompts import DEFAULT_TEXT_TO_SQL_PROMPT
from llama_index.core import PromptTemplate
from llama_index.core.query_pipeline import FnComponent
from llama_index.core.llms import ChatResponse
def parse_response_to_sql(response: ChatResponse) -> str:
"""Parse response to SQL."""
response = response.message.content
sql_query_start = response.find("SQLQuery:")
if sql_query_start != -1:
response = response[sql_query_start:]
if response.startswith("SQLQuery:"):
response = response[len("SQLQuery:") :]
sql_result_start = response.find("SQLResult:")
if sql_result_start != -1:
response = response[:sql_result_start]
return response.strip().strip("```").strip()
sql_parser_component = | FnComponent(fn=parse_response_to_sql) | llama_index.core.query_pipeline.FnComponent |
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().system('pip install llama-index llama-hub')
from llama_index.readers.wikipedia import WikipediaReader
loader = | WikipediaReader() | llama_index.readers.wikipedia.WikipediaReader |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().system('pip install llama-index')
import pandas as pd
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
pd.set_option("display.max_colwidth", None)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm')
get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm')
from llama_index.readers.file import FlatReader
from pathlib import Path
reader = FlatReader()
docs = reader.load_data(Path("./tesla_2020_10k.htm"))
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.readers.file import FlatReader
from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter
from llama_index.core.ingestion import IngestionPipeline
from pathlib import Path
import nest_asyncio
nest_asyncio.apply()
reader = FlatReader()
docs = reader.load_data(Path("./tesla_2020_10k.htm"))
pipeline = IngestionPipeline(
documents=docs,
transformations=[
HTMLNodeParser.from_defaults(),
SentenceSplitter(chunk_size=1024, chunk_overlap=200),
OpenAIEmbedding(),
],
)
eval_nodes = pipeline.run(documents=docs)
eval_llm = OpenAI(model="gpt-3.5-turbo")
dataset_generator = DatasetGenerator(
eval_nodes[:100],
llm=eval_llm,
show_progress=True,
num_questions_per_chunk=3,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=100)
len(eval_dataset.qr_pairs)
eval_dataset.save_json("data/tesla10k_eval_dataset.json")
eval_dataset = QueryResponseDataset.from_json(
"data/tesla10k_eval_dataset.json"
)
eval_qs = eval_dataset.questions
qr_pairs = eval_dataset.qr_pairs
ref_response_strs = [r for (_, r) in qr_pairs]
from llama_index.core.evaluation import (
CorrectnessEvaluator,
SemanticSimilarityEvaluator,
)
from llama_index.core.evaluation.eval_utils import (
get_responses,
get_results_df,
)
from llama_index.core.evaluation import BatchEvalRunner
evaluator_c = CorrectnessEvaluator(llm=eval_llm)
evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm)
evaluator_dict = {
"correctness": evaluator_c,
"semantic_similarity": evaluator_s,
}
batch_eval_runner = BatchEvalRunner(
evaluator_dict, workers=2, show_progress=True
)
from llama_index.core import VectorStoreIndex
async def run_evals(
pipeline, batch_eval_runner, docs, eval_qs, eval_responses_ref
):
nodes = pipeline.run(documents=docs)
vector_index = VectorStoreIndex(nodes)
query_engine = vector_index.as_query_engine()
pred_responses = get_responses(eval_qs, query_engine, show_progress=True)
eval_results = await batch_eval_runner.aevaluate_responses(
eval_qs, responses=pred_responses, reference=eval_responses_ref
)
return eval_results
from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter
sent_parser_o0 = SentenceSplitter(chunk_size=1024, chunk_overlap=0)
sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200)
sent_parser_o500 = SentenceSplitter(chunk_size=1024, chunk_overlap=600)
html_parser = HTMLNodeParser.from_defaults()
parser_dict = {
"sent_parser_o0": sent_parser_o0,
"sent_parser_o200": sent_parser_o200,
"sent_parser_o500": sent_parser_o500,
}
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.ingestion import IngestionPipeline
pipeline_dict = {}
for k, parser in parser_dict.items():
pipeline = IngestionPipeline(
documents=docs,
transformations=[
html_parser,
parser,
OpenAIEmbedding(),
],
)
pipeline_dict[k] = pipeline
eval_results_dict = {}
for k, pipeline in pipeline_dict.items():
eval_results = await run_evals(
pipeline, batch_eval_runner, docs, eval_qs, ref_response_strs
)
eval_results_dict[k] = eval_results
import pickle
pickle.dump(eval_results_dict, open("eval_results_1.pkl", "wb"))
eval_results_list = list(eval_results_dict.items())
results_df = get_results_df(
[v for _, v in eval_results_list],
[k for k, _ in eval_results_list],
["correctness", "semantic_similarity"],
)
display(results_df)
for k, pipeline in pipeline_dict.items():
pipeline.cache.persist(f"./cache/{k}.json")
from llama_index.core.extractors import (
TitleExtractor,
QuestionsAnsweredExtractor,
SummaryExtractor,
)
from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter
extractor_dict = {
"summary": | SummaryExtractor(in_place=False) | llama_index.core.extractors.SummaryExtractor |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().handlers = []
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.core import SummaryIndex
from llama_index.core.response.notebook_utils import display_response
from llama_index.llms.openai import OpenAI
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.core import Document
from llama_index.readers.file import PyMuPDFReader
loader = PyMuPDFReader()
docs0 = loader.load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
llm = OpenAI(model="gpt-4")
chunk_sizes = [128, 256, 512, 1024]
nodes_list = []
vector_indices = []
for chunk_size in chunk_sizes:
print(f"Chunk Size: {chunk_size}")
splitter = SentenceSplitter(chunk_size=chunk_size)
nodes = splitter.get_nodes_from_documents(docs)
for node in nodes:
node.metadata["chunk_size"] = chunk_size
node.excluded_embed_metadata_keys = ["chunk_size"]
node.excluded_llm_metadata_keys = ["chunk_size"]
nodes_list.append(nodes)
vector_index = VectorStoreIndex(nodes)
vector_indices.append(vector_index)
from llama_index.core.tools import RetrieverTool
from llama_index.core.schema import IndexNode
retriever_dict = {}
retriever_nodes = []
for chunk_size, vector_index in zip(chunk_sizes, vector_indices):
node_id = f"chunk_{chunk_size}"
node = IndexNode(
text=(
"Retrieves relevant context from the Llama 2 paper (chunk size"
f" {chunk_size})"
),
index_id=node_id,
)
retriever_nodes.append(node)
retriever_dict[node_id] = vector_index.as_retriever()
from llama_index.core.selectors import PydanticMultiSelector
from llama_index.core.retrievers import RouterRetriever
from llama_index.core.retrievers import RecursiveRetriever
from llama_index.core import SummaryIndex
summary_index = SummaryIndex(retriever_nodes)
retriever = RecursiveRetriever(
root_id="root",
retriever_dict={"root": summary_index.as_retriever(), **retriever_dict},
)
nodes = await retriever.aretrieve(
"Tell me about the main aspects of safety fine-tuning"
)
print(f"Number of nodes: {len(nodes)}")
for node in nodes:
print(node.node.metadata["chunk_size"])
print(node.node.get_text())
from llama_index.core.postprocessor import LLMRerank, SentenceTransformerRerank
from llama_index.postprocessor.cohere_rerank import CohereRerank
reranker = CohereRerank(top_n=10)
from llama_index.core.query_engine import RetrieverQueryEngine
query_engine = RetrieverQueryEngine(retriever, node_postprocessors=[reranker])
response = query_engine.query(
"Tell me about the main aspects of safety fine-tuning"
)
display_response(
response, show_source=True, source_length=500, show_source_metadata=True
)
from collections import defaultdict
import pandas as pd
def mrr_all(metadata_values, metadata_key, source_nodes):
value_to_mrr_dict = {}
for metadata_value in metadata_values:
mrr = 0
for idx, source_node in enumerate(source_nodes):
if source_node.node.metadata[metadata_key] == metadata_value:
mrr = 1 / (idx + 1)
break
else:
continue
value_to_mrr_dict[metadata_value] = mrr
df = pd.DataFrame(value_to_mrr_dict, index=["MRR"])
df.style.set_caption("Mean Reciprocal Rank")
return df
print("Mean Reciprocal Rank for each Chunk Size")
mrr_all(chunk_sizes, "chunk_size", response.source_nodes)
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.llms.openai import OpenAI
import nest_asyncio
nest_asyncio.apply()
eval_llm = OpenAI(model="gpt-4")
dataset_generator = DatasetGenerator(
nodes_list[-1],
llm=eval_llm,
show_progress=True,
num_questions_per_chunk=2,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=60)
eval_dataset.save_json("data/llama2_eval_qr_dataset.json")
eval_dataset = QueryResponseDataset.from_json(
"data/llama2_eval_qr_dataset.json"
)
import asyncio
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.evaluation import (
CorrectnessEvaluator,
SemanticSimilarityEvaluator,
RelevancyEvaluator,
FaithfulnessEvaluator,
PairwiseComparisonEvaluator,
)
evaluator_c = CorrectnessEvaluator(llm=eval_llm)
evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm)
evaluator_r = RelevancyEvaluator(llm=eval_llm)
evaluator_f = FaithfulnessEvaluator(llm=eval_llm)
pairwise_evaluator = PairwiseComparisonEvaluator(llm=eval_llm)
from llama_index.core.evaluation.eval_utils import (
get_responses,
get_results_df,
)
from llama_index.core.evaluation import BatchEvalRunner
max_samples = 60
eval_qs = eval_dataset.questions
qr_pairs = eval_dataset.qr_pairs
ref_response_strs = [r for (_, r) in qr_pairs]
base_query_engine = vector_indices[-1].as_query_engine(similarity_top_k=2)
reranker = CohereRerank(top_n=4)
query_engine = | RetrieverQueryEngine(retriever, node_postprocessors=[reranker]) | llama_index.core.query_engine.RetrieverQueryEngine |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-cohere')
get_ipython().system('pip install llama-index')
from llama_index.llms.cohere import Cohere
api_key = "Your api key"
resp = | Cohere(api_key=api_key) | llama_index.llms.cohere.Cohere |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-tencentvectordb')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install tcvectordb')
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.vector_stores.tencentvectordb import TencentVectorDB
from llama_index.core.vector_stores.tencentvectordb import (
CollectionParams,
FilterField,
)
import tcvectordb
tcvectordb.debug.DebugEnable = False
import openai
OPENAI_API_KEY = getpass.getpass("OpenAI API Key:")
openai.api_key = OPENAI_API_KEY
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
print(f"Total documents: {len(documents)}")
print(f"First document, id: {documents[0].doc_id}")
print(f"First document, hash: {documents[0].hash}")
print(
f"First document, text ({len(documents[0].text)} characters):\n{'='*20}\n{documents[0].text[:360]} ..."
)
vector_store = TencentVectorDB(
url="http://10.0.X.X",
key="eC4bLRy2va******************************",
collection_params= | CollectionParams(dimension=1536, drop_exists=True) | llama_index.core.vector_stores.tencentvectordb.CollectionParams |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-4")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.core import SimpleDirectoryReader
wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"]
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
city_docs = {}
for wiki_title in wiki_titles:
city_docs[wiki_title] = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()
from llama_index.core import VectorStoreIndex
from llama_index.agent.openai import OpenAIAgent
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core import VectorStoreIndex
tool_dict = {}
for wiki_title in wiki_titles:
vector_index = VectorStoreIndex.from_documents(
city_docs[wiki_title],
)
vector_query_engine = vector_index.as_query_engine(llm=llm)
vector_tool = QueryEngineTool(
query_engine=vector_query_engine,
metadata=ToolMetadata(
name=wiki_title,
description=("Useful for questions related to" f" {wiki_title}"),
),
)
tool_dict[wiki_title] = vector_tool
from llama_index.core import VectorStoreIndex
from llama_index.core.objects import ObjectIndex, SimpleToolNodeMapping
tool_mapping = SimpleToolNodeMapping.from_objects(list(tool_dict.values()))
tool_index = ObjectIndex.from_objects(
list(tool_dict.values()),
tool_mapping,
VectorStoreIndex,
)
tool_retriever = tool_index.as_retriever(similarity_top_k=1)
from llama_index.core.llms import ChatMessage
from llama_index.core import ChatPromptTemplate
from typing import List
GEN_SYS_PROMPT_STR = """\
Task information is given below.
Given the task, please generate a system prompt for an OpenAI-powered bot to solve this task:
{task} \
"""
gen_sys_prompt_messages = [
ChatMessage(
role="system",
content="You are helping to build a system prompt for another bot.",
),
ChatMessage(role="user", content=GEN_SYS_PROMPT_STR),
]
GEN_SYS_PROMPT_TMPL = | ChatPromptTemplate(gen_sys_prompt_messages) | llama_index.core.ChatPromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import json
from typing import Sequence, List
from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage
from llama_index.core.tools import BaseTool, FunctionTool
from llama_index.agent.openai import OpenAIAgent
def add(a: int, b: int) -> int:
"""Add two integers and returns the result integer"""
return a + b
add_tool = FunctionTool.from_defaults(fn=add)
def useless_tool() -> int:
"""This is a uselss tool."""
return "This is a uselss output."
useless_tool = FunctionTool.from_defaults(fn=useless_tool)
llm = OpenAI(model="gpt-3.5-turbo-0613")
agent = | OpenAIAgent.from_tools([useless_tool, add_tool], llm=llm, verbose=True) | llama_index.agent.openai.OpenAIAgent.from_tools |
get_ipython().run_line_magic('pip', 'install llama-index llama-index-vector-stores-qdrant -q')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('mkdir data')
get_ipython().system('wget "https://arxiv.org/pdf/2402.09353.pdf" -O "./data/dorav1.pdf"')
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4")
response = llm.complete("What is DoRA?")
print(response.text)
"""Load the data.
With llama-index, before any transformations are applied,
data is loaded in the `Document` abstraction, which is
a container that holds the text of the document.
"""
from llama_index.core import SimpleDirectoryReader
loader = SimpleDirectoryReader(input_dir="./data")
documents = loader.load_data()
"""Chunk, Encode, and Store into a Vector Store.
To streamline the process, we can make use of the IngestionPipeline
class that will apply your specified transformations to the
Document's.
"""
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.vector_stores.qdrant import QdrantVectorStore
import qdrant_client
client = qdrant_client.QdrantClient(location=":memory:")
vector_store = QdrantVectorStore(client=client, collection_name="test_store")
pipeline = IngestionPipeline(
transformations=[
SentenceSplitter(),
| OpenAIEmbedding() | llama_index.embeddings.openai.OpenAIEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-replicate')
get_ipython().run_line_magic('pip', 'install unstructured replicate')
get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm')
get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git')
get_ipython().run_line_magic('pip', 'install torch torchvision')
get_ipython().run_line_magic('pip', 'install matplotlib scikit-image')
get_ipython().run_line_magic('pip', 'install -U qdrant_client')
import os
REPLICATE_API_TOKEN = "..." # Your Relicate API token here
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm')
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1UU0xc3uLXs-WG0aDQSXjGacUkp142rLS" -O texas.jpg')
from llama_index.readers.file import FlatReader
from pathlib import Path
from llama_index.core.node_parser import UnstructuredElementNodeParser
reader = | FlatReader() | llama_index.readers.file.FlatReader |
get_ipython().system('pip install llama-index-multi-modal-llms-anthropic')
get_ipython().system('pip install llama-index-vector-stores-qdrant')
get_ipython().system('pip install matplotlib')
import os
os.environ["ANTHROPIC_API_KEY"] = "" # Your ANTHROPIC API key here
from PIL import Image
import matplotlib.pyplot as plt
img = Image.open("../data/images/prometheus_paper_card.png")
plt.imshow(img)
from llama_index.core import SimpleDirectoryReader
from llama_index.multi_modal_llms.anthropic import AnthropicMultiModal
image_documents = SimpleDirectoryReader(
input_files=["../data/images/prometheus_paper_card.png"]
).load_data()
anthropic_mm_llm = AnthropicMultiModal(max_tokens=300)
response = anthropic_mm_llm.complete(
prompt="Describe the images as an alternative text",
image_documents=image_documents,
)
print(response)
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt
from llama_index.core.multi_modal_llms.generic_utils import load_image_urls
image_urls = [
"https://venturebeat.com/wp-content/uploads/2024/03/Screenshot-2024-03-04-at-12.49.41%E2%80%AFAM.png",
]
img_response = requests.get(image_urls[0])
img = Image.open(BytesIO(img_response.content))
plt.imshow(img)
image_url_documents = | load_image_urls(image_urls) | llama_index.core.multi_modal_llms.generic_utils.load_image_urls |
from IPython.display import Image
Image(filename="img/airbyte_1.png")
Image(filename="img/github_1.png")
Image(filename="img/github_2.png")
Image(filename="img/snowflake_1.png")
Image(filename="img/snowflake_2.png")
Image(filename="img/airbyte_7.png")
Image(filename="img/github_3.png")
Image(filename="img/airbyte_9.png")
Image(filename="img/airbyte_8.png")
def snowflake_sqlalchemy_20_monkey_patches():
import sqlalchemy.util.compat
sqlalchemy.util.compat.string_types = (str,)
sqlalchemy.types.String.RETURNS_UNICODE = True
import snowflake.sqlalchemy.snowdialect
snowflake.sqlalchemy.snowdialect.SnowflakeDialect.returns_unicode_strings = (
True
)
import snowflake.sqlalchemy.snowdialect
def has_table(self, connection, table_name, schema=None, info_cache=None):
"""
Checks if the table exists
"""
return self._has_object(connection, "TABLE", table_name, schema)
snowflake.sqlalchemy.snowdialect.SnowflakeDialect.has_table = has_table
try:
snowflake_sqlalchemy_20_monkey_patches()
except Exception as e:
raise ValueError("Please run `pip install snowflake-sqlalchemy`")
snowflake_uri = "snowflake://<user_login_name>:<password>@<account_identifier>/<database_name>/<schema_name>?warehouse=<warehouse_name>&role=<role_name>"
from sqlalchemy import select, create_engine, MetaData, Table
engine = create_engine(snowflake_uri)
metadata = MetaData(bind=None)
table = Table("ZENDESK_TICKETS", metadata, autoload=True, autoload_with=engine)
stmt = select(table.columns)
with engine.connect() as connection:
results = connection.execute(stmt).fetchone()
print(results)
print(results.keys())
from llama_index import SQLDatabase
sql_database = SQLDatabase(engine)
from llama_index.indices.struct_store.sql_query import NLSQLTableQueryEngine
from IPython.display import Markdown, display
query_engine = NLSQLTableQueryEngine(
sql_database=sql_database,
tables=["github_issues", "github_comments", "github_users"],
)
query_str = "Which issues have the most comments? Give the top 10 and use a join on url."
response = query_engine.query(query_str)
display(Markdown(f"<b>{response}</b>"))
query_engine = NLSQLTableQueryEngine(
sql_database=sql_database,
synthesize_response=False,
tables=["github_issues", "github_comments", "github_users"],
)
response = query_engine.query(query_str)
display(Markdown(f"<b>{response}</b>"))
sql_query = response.metadata["sql_query"]
display(Markdown(f"<b>{sql_query}</b>"))
from llama_index.indices.struct_store.sql_query import (
SQLTableRetrieverQueryEngine,
)
from llama_index.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index import VectorStoreIndex
table_node_mapping = SQLTableNodeMapping(sql_database)
all_table_names = sql_database.get_usable_table_names()
table_schema_objs = []
for table_name in all_table_names:
table_schema_objs.append( | SQLTableSchema(table_name=table_name) | llama_index.objects.SQLTableSchema |
from llama_hub.semanticscholar.base import SemanticScholarReader
import os
import openai
from llama_index.llms import OpenAI
from llama_index.query_engine import CitationQueryEngine
from llama_index import (
VectorStoreIndex,
StorageContext,
load_index_from_storage,
ServiceContext,
)
from llama_index.response.notebook_utils import display_response
s2reader = SemanticScholarReader()
openai.api_key = os.environ["OPENAI_API_KEY"]
service_context = ServiceContext.from_defaults(
llm=OpenAI(model="gpt-3.5-turbo", temperature=0)
)
query_space = "large language models"
full_text = True
total_papers = 50
persist_dir = (
"./citation_" + query_space + "_" + str(total_papers) + "_" + str(full_text)
)
if not os.path.exists(persist_dir):
documents = s2reader.load_data(query_space, total_papers, full_text=full_text)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
index.storage_context.persist(persist_dir=persist_dir)
else:
index = load_index_from_storage(
StorageContext.from_defaults(persist_dir=persist_dir),
service_context=service_context,
)
query_engine = CitationQueryEngine.from_args(
index,
similarity_top_k=3,
citation_chunk_size=512,
)
query_string = "limitations of using large language models"
response = query_engine.query(query_string)
display_response(
response, show_source=True, source_length=100, show_source_metadata=True
)
query_space = "covid 19 vaccine"
query_string = "List the efficacy numbers of the covid 19 vaccines"
full_text = True
total_papers = 50
persist_dir = (
"./citation_" + query_space + "_" + str(total_papers) + "_" + str(full_text)
)
if not os.path.exists(persist_dir):
documents = s2reader.load_data(query_space, total_papers, full_text=full_text)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
index.storage_context.persist(persist_dir=persist_dir)
else:
index = load_index_from_storage(
| StorageContext.from_defaults(persist_dir=persist_dir) | llama_index.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-extractors-entity')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY_HERE"
from llama_index.llms.openai import OpenAI
from llama_index.core.schema import MetadataMode
llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo", max_tokens=512)
from llama_index.core.extractors import (
SummaryExtractor,
QuestionsAnsweredExtractor,
TitleExtractor,
KeywordExtractor,
BaseExtractor,
)
from llama_index.extractors.entity import EntityExtractor
from llama_index.core.node_parser import TokenTextSplitter
text_splitter = TokenTextSplitter(
separator=" ", chunk_size=512, chunk_overlap=128
)
class CustomExtractor(BaseExtractor):
def extract(self, nodes):
metadata_list = [
{
"custom": (
node.metadata["document_title"]
+ "\n"
+ node.metadata["excerpt_keywords"]
)
}
for node in nodes
]
return metadata_list
extractors = [
TitleExtractor(nodes=5, llm=llm),
QuestionsAnsweredExtractor(questions=3, llm=llm),
]
transformations = [text_splitter] + extractors
from llama_index.core import SimpleDirectoryReader
get_ipython().system('mkdir -p data')
get_ipython().system('wget -O "data/10k-132.pdf" "https://www.dropbox.com/scl/fi/6dlqdk6e2k1mjhi8dee5j/uber.pdf?rlkey=2jyoe49bg2vwdlz30l76czq6g&dl=1"')
get_ipython().system('wget -O "data/10k-vFinal.pdf" "https://www.dropbox.com/scl/fi/qn7g3vrk5mqb18ko4e5in/lyft.pdf?rlkey=j6jxtjwo8zbstdo4wz3ns8zoj&dl=1"')
uber_docs = SimpleDirectoryReader(input_files=["data/10k-132.pdf"]).load_data()
uber_front_pages = uber_docs[0:3]
uber_content = uber_docs[63:69]
uber_docs = uber_front_pages + uber_content
from llama_index.core.ingestion import IngestionPipeline
pipeline = IngestionPipeline(transformations=transformations)
uber_nodes = pipeline.run(documents=uber_docs)
uber_nodes[1].metadata
lyft_docs = SimpleDirectoryReader(
input_files=["data/10k-vFinal.pdf"]
).load_data()
lyft_front_pages = lyft_docs[0:3]
lyft_content = lyft_docs[68:73]
lyft_docs = lyft_front_pages + lyft_content
from llama_index.core.ingestion import IngestionPipeline
pipeline = | IngestionPipeline(transformations=transformations) | llama_index.core.ingestion.IngestionPipeline |
get_ipython().system('pip install llama-index')
from llama_index.core import VectorStoreIndex
from llama_index.core import SimpleDirectoryReader
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(documents)
query = "What did the author do growing up?"
base_query_engine = index.as_query_engine()
response = base_query_engine.query(query)
print(response)
from llama_index.core.query_engine import RetryQueryEngine
from llama_index.core.evaluation import RelevancyEvaluator
query_response_evaluator = RelevancyEvaluator()
retry_query_engine = RetryQueryEngine(
base_query_engine, query_response_evaluator
)
retry_response = retry_query_engine.query(query)
print(retry_response)
from llama_index.core.query_engine import RetrySourceQueryEngine
retry_source_query_engine = RetrySourceQueryEngine(
base_query_engine, query_response_evaluator
)
retry_source_response = retry_source_query_engine.query(query)
print(retry_source_response)
from llama_index.core.evaluation import GuidelineEvaluator
from llama_index.core.evaluation.guideline import DEFAULT_GUIDELINES
from llama_index.core import Response
from llama_index.core.indices.query.query_transform.feedback_transform import (
FeedbackQueryTransformation,
)
from llama_index.core.query_engine import RetryGuidelineQueryEngine
guideline_eval = GuidelineEvaluator(
guidelines=DEFAULT_GUIDELINES
+ "\nThe response should not be overly long.\n"
"The response should try to summarize where possible.\n"
) # just for example
typed_response = (
response if isinstance(response, Response) else response.get_response()
)
eval = guideline_eval.evaluate_response(query, typed_response)
print(f"Guideline eval evaluation result: {eval.feedback}")
feedback_query_transform = | FeedbackQueryTransformation(resynthesize_query=True) | llama_index.core.indices.query.query_transform.feedback_transform.FeedbackQueryTransformation |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
MONGO_URI = os.environ["MONGO_URI"]
from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.storage.index_store.mongodb import MongoIndexStore
storage_context = StorageContext.from_defaults(
docstore=MongoDocumentStore.from_uri(uri=MONGO_URI),
index_store= | MongoIndexStore.from_uri(uri=MONGO_URI) | llama_index.storage.index_store.mongodb.MongoIndexStore.from_uri |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
from llama_index.core.chat_engine import SimpleChatEngine
chat_engine = SimpleChatEngine.from_defaults()
chat_engine.chat_repl()
from llama_index.llms.openai import OpenAI
llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo")
from llama_index.core.chat_engine import SimpleChatEngine
chat_engine = SimpleChatEngine.from_defaults(llm=llm)
chat_engine.chat_repl()
from llama_index.llms.openai import OpenAI
llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo-0613")
from llama_index.core.chat_engine import SimpleChatEngine
chat_engine = | SimpleChatEngine.from_defaults(llm=llm) | llama_index.core.chat_engine.SimpleChatEngine.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google')
get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google')
get_ipython().run_line_magic('pip', 'install llama-index')
get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"')
get_ipython().run_line_magic('pip', 'install google-auth-oauthlib')
from google.oauth2 import service_account
from llama_index.vector_stores.google import set_google_config
credentials = service_account.Credentials.from_service_account_file(
"service_account_key.json",
scopes=[
"https://www.googleapis.com/auth/generative-language.retriever",
],
)
set_google_config(auth_credentials=credentials)
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import llama_index.core.vector_stores.google.generativeai.genai_extension as genaix
from typing import Iterable
from random import randrange
LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX = f"llama-index-colab"
SESSION_CORPUS_ID_PREFIX = (
f"{LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX}-{randrange(1000000)}"
)
def corpus_id(num_id: int) -> str:
return f"{SESSION_CORPUS_ID_PREFIX}-{num_id}"
SESSION_CORPUS_ID = corpus_id(1)
def list_corpora() -> Iterable[genaix.Corpus]:
client = genaix.build_semantic_retriever()
yield from genaix.list_corpora(client=client)
def delete_corpus(*, corpus_id: str) -> None:
client = genaix.build_semantic_retriever()
genaix.delete_corpus(corpus_id=corpus_id, client=client)
def cleanup_colab_corpora():
for corpus in list_corpora():
if corpus.corpus_id.startswith(LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX):
try:
delete_corpus(corpus_id=corpus.corpus_id)
print(f"Deleted corpus {corpus.corpus_id}.")
except Exception:
pass
cleanup_colab_corpora()
from llama_index.core import SimpleDirectoryReader
from llama_index.indices.managed.google import GoogleIndex
from llama_index.core import Response
import time
index = GoogleIndex.create_corpus(
corpus_id=SESSION_CORPUS_ID, display_name="My first corpus!"
)
print(f"Newly created corpus ID is {index.corpus_id}.")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index.insert_documents(documents)
for corpus in list_corpora():
print(corpus)
query_engine = index.as_query_engine()
response = query_engine.query("What did Paul Graham do growing up?")
assert isinstance(response, Response)
print(f"Response is {response.response}")
for cited_text in [node.text for node in response.source_nodes]:
print(f"Cited text: {cited_text}")
if response.metadata:
print(
f"Answerability: {response.metadata.get('answerable_probability', 0)}"
)
index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID)
query_engine = index.as_query_engine()
response = query_engine.query("Which company did Paul Graham build?")
assert isinstance(response, Response)
print(f"Response is {response.response}")
from llama_index.core.schema import NodeRelationship, RelatedNodeInfo, TextNode
index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID)
index.insert_nodes(
[
TextNode(
text="It was the best of times.",
relationships={
NodeRelationship.SOURCE: RelatedNodeInfo(
node_id="123",
metadata={"file_name": "Tale of Two Cities"},
)
},
),
TextNode(
text="It was the worst of times.",
relationships={
NodeRelationship.SOURCE: RelatedNodeInfo(
node_id="123",
metadata={"file_name": "Tale of Two Cities"},
)
},
),
TextNode(
text="Bugs Bunny: Wassup doc?",
relationships={
NodeRelationship.SOURCE: RelatedNodeInfo(
node_id="456",
metadata={"file_name": "Bugs Bunny Adventure"},
)
},
),
]
)
from google.ai.generativelanguage import (
GenerateAnswerRequest,
HarmCategory,
SafetySetting,
)
index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID)
query_engine = index.as_query_engine(
temperature=0.2,
answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE,
safety_setting=[
SafetySetting(
category=HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
),
SafetySetting(
category=HarmCategory.HARM_CATEGORY_VIOLENCE,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_ONLY_HIGH,
),
],
)
response = query_engine.query("What was Bugs Bunny's favorite saying?")
print(response)
from llama_index.core import Response
response = query_engine.query("What were Paul Graham's achievements?")
assert isinstance(response, Response)
print(f"Response is {response.response}")
for cited_text in [node.text for node in response.source_nodes]:
print(f"Cited text: {cited_text}")
if response.metadata:
print(
f"Answerability: {response.metadata.get('answerable_probability', 0)}"
)
from llama_index.llms.gemini import Gemini
GEMINI_API_KEY = "" # @param {type:"string"}
gemini = Gemini(api_key=GEMINI_API_KEY)
from llama_index.response_synthesizers.google import GoogleTextSynthesizer
from llama_index.vector_stores.google import GoogleVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.core.postprocessor import LLMRerank
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import VectorIndexRetriever
store = | GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID) | llama_index.vector_stores.google.GoogleVectorStore.from_corpus |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
MONGO_URI = os.environ["MONGO_URI"]
from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.storage.index_store.mongodb import MongoIndexStore
storage_context = StorageContext.from_defaults(
docstore=MongoDocumentStore.from_uri(uri=MONGO_URI),
index_store=MongoIndexStore.from_uri(uri=MONGO_URI),
)
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
keyword_table_index = SimpleKeywordTableIndex(
nodes, storage_context=storage_context
)
len(storage_context.docstore.docs)
storage_context.persist()
list_id = summary_index.index_id
vector_id = vector_index.index_id
keyword_id = keyword_table_index.index_id
from llama_index.core import load_index_from_storage
storage_context = StorageContext.from_defaults(
docstore= | MongoDocumentStore.from_uri(uri=MONGO_URI) | llama_index.storage.docstore.mongodb.MongoDocumentStore.from_uri |
get_ipython().run_line_magic('pip', 'install llama-index-llms-litellm')
get_ipython().system('pip install llama-index')
import os
from llama_index.llms.litellm import LiteLLM
from llama_index.core.llms import ChatMessage
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["COHERE_API_KEY"] = "your-api-key"
message = ChatMessage(role="user", content="Hey! how's it going?")
llm = LiteLLM("gpt-3.5-turbo")
chat_response = llm.chat([message])
llm = LiteLLM("command-nightly")
chat_response = llm.chat([message])
from llama_index.core.llms import ChatMessage
from llama_index.llms.litellm import LiteLLM
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="Tell me a story"),
]
resp = LiteLLM("gpt-3.5-turbo").chat(messages)
print(resp)
from llama_index.llms.litellm import LiteLLM
llm = | LiteLLM("gpt-3.5-turbo") | llama_index.llms.litellm.LiteLLM |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install llama-index chromadb --quiet')
get_ipython().system('pip install chromadb==0.4.17')
get_ipython().system('pip install sentence-transformers')
get_ipython().system('pip install pydantic==1.10.11')
get_ipython().system('pip install open-clip-torch')
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from IPython.display import Markdown, display
import chromadb
import os
import openai
OPENAI_API_KEY = ""
openai.api_key = OPENAI_API_KEY
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
import requests
def get_wikipedia_images(title):
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "imageinfo",
"iiprop": "url|dimensions|mime",
"generator": "images",
"gimlimit": "50",
},
).json()
image_urls = []
for page in response["query"]["pages"].values():
if page["imageinfo"][0]["url"].endswith(".jpg") or page["imageinfo"][
0
]["url"].endswith(".png"):
image_urls.append(page["imageinfo"][0]["url"])
return image_urls
from pathlib import Path
import urllib.request
image_uuid = 0
MAX_IMAGES_PER_WIKI = 20
wiki_titles = {
"Tesla Model X",
"Pablo Picasso",
"Rivian",
"The Lord of the Rings",
"The Matrix",
"The Simpsons",
}
data_path = Path("mixed_wiki")
if not data_path.exists():
Path.mkdir(data_path)
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
images_per_wiki = 0
try:
list_img_urls = get_wikipedia_images(title)
for url in list_img_urls:
if url.endswith(".jpg") or url.endswith(".png"):
image_uuid += 1
urllib.request.urlretrieve(
url, data_path / f"{image_uuid}.jpg"
)
images_per_wiki += 1
if images_per_wiki > MAX_IMAGES_PER_WIKI:
break
except:
print(str(Exception("No images found for Wikipedia page: ")) + title)
continue
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
embedding_function = OpenCLIPEmbeddingFunction()
from llama_index.core.indices import MultiModalVectorStoreIndex
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import SimpleDirectoryReader, StorageContext
from chromadb.utils.data_loaders import ImageLoader
image_loader = ImageLoader()
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection(
"multimodal_collection",
embedding_function=embedding_function,
data_loader=image_loader,
)
documents = SimpleDirectoryReader("./mixed_wiki/").load_data()
vector_store = | ChromaVectorStore(chroma_collection=chroma_collection) | llama_index.vector_stores.chroma.ChromaVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().system('pip install llama-index')
get_ipython().run_cell_magic('bash', '', 'wget -e robots=off --no-clobber --page-requisites \\\n --html-extension --convert-links --restrict-file-names=windows \\\n --domains docs.ray.io --no-parent --accept=html \\\n -P data/ https://docs.ray.io/en/master/ray-overview/installation.html\n')
from llama_index.readers.file import HTMLTagReader
reader = | HTMLTagReader(tag="section", ignore_no_id=True) | llama_index.readers.file.HTMLTagReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().handlers = []
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
SimpleKeywordTableIndex,
)
from llama_index.core import SummaryIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
llm = OpenAI(model="gpt-4")
splitter = SentenceSplitter(chunk_size=1024)
nodes = splitter.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context)
list_retriever = summary_index.as_retriever()
vector_retriever = vector_index.as_retriever()
keyword_retriever = keyword_index.as_retriever()
from llama_index.core.tools import RetrieverTool
list_tool = RetrieverTool.from_defaults(
retriever=list_retriever,
description=(
"Will retrieve all context from Paul Graham's essay on What I Worked"
" On. Don't use if the question only requires more specific context."
),
)
vector_tool = RetrieverTool.from_defaults(
retriever=vector_retriever,
description=(
"Useful for retrieving specific context from Paul Graham essay on What"
" I Worked On."
),
)
keyword_tool = RetrieverTool.from_defaults(
retriever=keyword_retriever,
description=(
"Useful for retrieving specific context from Paul Graham essay on What"
" I Worked On (using entities mentioned in query)"
),
)
from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector
from llama_index.core.selectors import (
PydanticMultiSelector,
PydanticSingleSelector,
)
from llama_index.core.retrievers import RouterRetriever
from llama_index.core.response.notebook_utils import display_source_node
retriever = RouterRetriever(
selector= | PydanticSingleSelector.from_defaults(llm=llm) | llama_index.core.selectors.PydanticSingleSelector.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-docarray')
get_ipython().system('pip install llama-index')
import os
import sys
import logging
import textwrap
import warnings
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from llama_index.core import (
GPTVectorStoreIndex,
SimpleDirectoryReader,
Document,
)
from llama_index.vector_stores.docarray import DocArrayInMemoryVectorStore
from IPython.display import Markdown, display
import os
os.environ["OPENAI_API_KEY"] = "<your openai key>"
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(
"Document ID:",
documents[0].doc_id,
"Document Hash:",
documents[0].doc_hash,
)
from llama_index.core import StorageContext
vector_store = DocArrayInMemoryVectorStore()
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = GPTVectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(textwrap.fill(str(response), 100))
response = query_engine.query("What was a hard moment for the author?")
print(textwrap.fill(str(response), 100))
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text="The Shawshank Redemption",
metadata={
"author": "Stephen King",
"theme": "Friendship",
},
),
TextNode(
text="The Godfather",
metadata={
"director": "Francis Ford Coppola",
"theme": "Mafia",
},
),
TextNode(
text="Inception",
metadata={
"director": "Christopher Nolan",
},
),
]
from llama_index.core import StorageContext
vector_store = | DocArrayInMemoryVectorStore() | llama_index.vector_stores.docarray.DocArrayInMemoryVectorStore |
from llama_index.llms.openai import OpenAI
from llama_index.core import VectorStoreIndex
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.postprocessor import LLMRerank
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core import Settings
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.packs.koda_retriever import KodaRetriever
import os
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY"))
index = pc.Index("sample-movies")
Settings.llm = OpenAI()
Settings.embed_model = OpenAIEmbedding()
vector_store = PineconeVectorStore(pinecone_index=index, text_key="summary")
vector_index = VectorStoreIndex.from_vector_store(
vector_store=vector_store, embed_model=Settings.embed_model
)
reranker = LLMRerank(llm=Settings.llm) # optional
categories = { # key, #alpha, description [and examples]
"concept seeking query": {
"alpha": 0.2,
"description": "Abstract questions, usually on a specific topic, that require multiple sentences to answer",
"examples": [
"What is the dual-encoder architecture used in recent works on dense retrievers?",
"Why should I use semantic search to rank results?",
],
},
"fact seeking query": {
"alpha": 0.6,
"description": "Queries with a single, clear answer",
"examples": [
"What is the total number of propositions the English Wikipedia dump is segmented into in FACTOID WIKI?",
"How many documents are semantically ranked?",
],
},
"queries with misspellings": {
"alpha": 1,
"description": "Queries with typos, transpositions and common misspellings introduced",
"examples": [
"What is the advntage of prposition retrieval over sentnce or passage retrieval?",
"Ho w mny documents are samantically r4nked",
],
},
}
retriever = KodaRetriever(
index=vector_index,
llm=Settings.llm,
matrix=categories, # koda now knows to use these categories
reranker=reranker, # optional
verbose=True,
)
query = "Can you explain the Jurassic Park as a business as it was supposed to operate inside the movie's lore or timeline?"
results = retriever.retrieve(query)
results
query_engine = | RetrieverQueryEngine.from_args(retriever=retriever) | llama_index.core.query_engine.RetrieverQueryEngine.from_args |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import os
import getpass
import openai
openai.api_key = "sk-"
import chromadb
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.chroma import ChromaVectorStore
from IPython.display import Markdown, display
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text="The Shawshank Redemption",
metadata={
"author": "Stephen King",
"theme": "Friendship",
"year": 1994,
},
),
TextNode(
text="The Godfather",
metadata={
"director": "Francis Ford Coppola",
"theme": "Mafia",
"year": 1972,
},
),
TextNode(
text="Inception",
metadata={
"director": "Christopher Nolan",
"theme": "Fiction",
"year": 2010,
},
),
TextNode(
text="To Kill a Mockingbird",
metadata={
"author": "Harper Lee",
"theme": "Mafia",
"year": 1960,
},
),
TextNode(
text="1984",
metadata={
"author": "George Orwell",
"theme": "Totalitarianism",
"year": 1949,
},
),
TextNode(
text="The Great Gatsby",
metadata={
"author": "F. Scott Fitzgerald",
"theme": "The American Dream",
"year": 1925,
},
),
TextNode(
text="Harry Potter and the Sorcerer's Stone",
metadata={
"author": "J.K. Rowling",
"theme": "Fiction",
"year": 1997,
},
),
]
from llama_index.core import StorageContext
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.vector_stores import (
MetadataFilter,
MetadataFilters,
FilterOperator,
)
filters = MetadataFilters(
filters=[
MetadataFilter(key="theme", operator=FilterOperator.EQ, value="Mafia"),
]
)
retriever = index.as_retriever(filters=filters)
retriever.retrieve("What is inception about?")
from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters
filters = MetadataFilters(
filters=[
MetadataFilter(key="theme", value="Mafia"),
MetadataFilter(key="year", value=1972),
]
)
retriever = index.as_retriever(filters=filters)
retriever.retrieve("What is inception about?")
from llama_index.core.vector_stores import FilterOperator, FilterCondition
filters = MetadataFilters(
filters=[
MetadataFilter(key="theme", value="Fiction"),
MetadataFilter(key="year", value=1997, operator=FilterOperator.GT),
],
condition=FilterCondition.AND,
)
retriever = index.as_retriever(filters=filters)
retriever.retrieve("Harry Potter?")
from llama_index.core.vector_stores import FilterOperator, FilterCondition
filters = MetadataFilters(
filters=[
| MetadataFilter(key="theme", value="Fiction") | llama_index.core.vector_stores.MetadataFilter |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-llm-rails')
get_ipython().system('pip install llama-index')
from llama_index.embeddings.llm_rails import LLMRailsEmbedding
import os
api_key = os.environ.get("API_KEY", "your-api-key")
model_id = os.environ.get("MODEL_ID", "your-model-id")
embed_model = | LLMRailsEmbedding(model_id=model_id, api_key=api_key) | llama_index.embeddings.llm_rails.LLMRailsEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import phoenix as px
px.launch_app()
import llama_index.core
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader("../data/paul_graham")
docs = reader.load_data()
import os
from llama_index.core import (
StorageContext,
VectorStoreIndex,
load_index_from_storage,
)
if not os.path.exists("storage"):
index = VectorStoreIndex.from_documents(docs)
index.set_index_id("vector_index")
index.storage_context.persist("./storage")
else:
storage_context = StorageContext.from_defaults(persist_dir="storage")
index = load_index_from_storage(storage_context, index_id="vector_index")
from llama_index.core.query_pipeline import QueryPipeline
from llama_index.core import PromptTemplate
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = PromptTemplate(prompt_str)
llm = OpenAI(model="gpt-3.5-turbo")
p = QueryPipeline(chain=[prompt_tmpl, llm], verbose=True)
output = p.run(movie_name="The Departed")
print(str(output))
from typing import List
from pydantic import BaseModel, Field
from llama_index.core.output_parsers import PydanticOutputParser
class Movie(BaseModel):
"""Object representing a single movie."""
name: str = Field(..., description="Name of the movie.")
year: int = Field(..., description="Year of the movie.")
class Movies(BaseModel):
"""Object representing a list of movies."""
movies: List[Movie] = Field(..., description="List of movies.")
llm = OpenAI(model="gpt-3.5-turbo")
output_parser = PydanticOutputParser(Movies)
json_prompt_str = """\
Please generate related movies to {movie_name}. Output with the following JSON format:
"""
json_prompt_str = output_parser.format(json_prompt_str)
json_prompt_tmpl = PromptTemplate(json_prompt_str)
p = QueryPipeline(chain=[json_prompt_tmpl, llm, output_parser], verbose=True)
output = p.run(movie_name="Toy Story")
output
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = PromptTemplate(prompt_str)
prompt_str2 = """\
Here's some text:
{text}
Can you rewrite this with a summary of each movie?
"""
prompt_tmpl2 = PromptTemplate(prompt_str2)
llm = OpenAI(model="gpt-3.5-turbo")
llm_c = llm.as_query_component(streaming=True)
p = QueryPipeline(
chain=[prompt_tmpl, llm_c, prompt_tmpl2, llm_c], verbose=True
)
output = p.run(movie_name="The Dark Knight")
for o in output:
print(o.delta, end="")
p = QueryPipeline(
chain=[
json_prompt_tmpl,
llm.as_query_component(streaming=True),
output_parser,
],
verbose=True,
)
output = p.run(movie_name="Toy Story")
print(output)
from llama_index.postprocessor.cohere_rerank import CohereRerank
prompt_str1 = "Please generate a concise question about Paul Graham's life regarding the following topic {topic}"
prompt_tmpl1 = PromptTemplate(prompt_str1)
prompt_str2 = (
"Please write a passage to answer the question\n"
"Try to include as many key details as possible.\n"
"\n"
"\n"
"{query_str}\n"
"\n"
"\n"
'Passage:"""\n'
)
prompt_tmpl2 = PromptTemplate(prompt_str2)
llm = OpenAI(model="gpt-3.5-turbo")
retriever = index.as_retriever(similarity_top_k=5)
p = QueryPipeline(
chain=[prompt_tmpl1, llm, prompt_tmpl2, llm, retriever], verbose=True
)
nodes = p.run(topic="college")
len(nodes)
from llama_index.postprocessor.cohere_rerank import CohereRerank
from llama_index.core.response_synthesizers import TreeSummarize
prompt_str = "Please generate a question about Paul Graham's life regarding the following topic {topic}"
prompt_tmpl = PromptTemplate(prompt_str)
llm = OpenAI(model="gpt-3.5-turbo")
retriever = index.as_retriever(similarity_top_k=3)
reranker = CohereRerank()
summarizer = TreeSummarize(llm=llm)
p = QueryPipeline(verbose=True)
p.add_modules(
{
"llm": llm,
"prompt_tmpl": prompt_tmpl,
"retriever": retriever,
"summarizer": summarizer,
"reranker": reranker,
}
)
p.add_link("prompt_tmpl", "llm")
p.add_link("llm", "retriever")
p.add_link("retriever", "reranker", dest_key="nodes")
p.add_link("llm", "reranker", dest_key="query_str")
p.add_link("reranker", "summarizer", dest_key="nodes")
p.add_link("llm", "summarizer", dest_key="query_str")
print(summarizer.as_query_component().input_keys)
from pyvis.network import Network
net = Network(notebook=True, cdn_resources="in_line", directed=True)
net.from_nx(p.dag)
net.show("rag_dag.html")
response = p.run(topic="YC")
print(str(response))
response = await p.arun(topic="YC")
print(str(response))
from llama_index.postprocessor.cohere_rerank import CohereRerank
from llama_index.core.response_synthesizers import TreeSummarize
from llama_index.core.query_pipeline import InputComponent
retriever = index.as_retriever(similarity_top_k=5)
summarizer = TreeSummarize(llm=OpenAI(model="gpt-3.5-turbo"))
reranker = CohereRerank()
p = | QueryPipeline(verbose=True) | llama_index.core.query_pipeline.QueryPipeline |
get_ipython().system('pip install llama-index-multi-modal-llms-ollama')
get_ipython().system('pip install llama-index-readers-file')
get_ipython().system('pip install unstructured')
get_ipython().system('pip install llama-index-embeddings-huggingface')
get_ipython().system('pip install llama-index-vector-stores-qdrant')
get_ipython().system('pip install llama-index-embeddings-clip')
from llama_index.multi_modal_llms.ollama import OllamaMultiModal
mm_model = OllamaMultiModal(model="llava:13b")
from pathlib import Path
from llama_index.core import SimpleDirectoryReader
from PIL import Image
import matplotlib.pyplot as plt
input_image_path = Path("restaurant_images")
if not input_image_path.exists():
Path.mkdir(input_image_path)
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1GlqcNJhGGbwLKjJK1QJ_nyswCTQ2K2Fq" -O ./restaurant_images/fried_chicken.png')
image_documents = SimpleDirectoryReader("./restaurant_images").load_data()
imageUrl = "./restaurant_images/fried_chicken.png"
image = Image.open(imageUrl).convert("RGB")
plt.figure(figsize=(16, 5))
plt.imshow(image)
from pydantic import BaseModel
class Restaurant(BaseModel):
"""Data model for an restaurant."""
restaurant: str
food: str
discount: str
price: str
rating: str
review: str
from llama_index.core.program import MultiModalLLMCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
prompt_template_str = """\
{query_str}
Return the answer as a Pydantic object. The Pydantic schema is given below:
"""
mm_program = MultiModalLLMCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Restaurant),
image_documents=image_documents,
prompt_template_str=prompt_template_str,
multi_modal_llm=mm_model,
verbose=True,
)
response = mm_program(query_str="Can you summarize what is in the image?")
for res in response:
print(res)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm')
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1THe1qqM61lretr9N3BmINc_NWDvuthYf" -O shanghai.jpg')
from pathlib import Path
from llama_index.readers.file import UnstructuredReader
from llama_index.core.schema import ImageDocument
loader = UnstructuredReader()
documents = loader.load_data(file=Path("tesla_2021_10k.htm"))
image_doc = ImageDocument(image_path="./shanghai.jpg")
from llama_index.core import VectorStoreIndex
from llama_index.core.embeddings import resolve_embed_model
embed_model = resolve_embed_model("local:BAAI/bge-m3")
vector_index = VectorStoreIndex.from_documents(
documents, embed_model=embed_model
)
query_engine = vector_index.as_query_engine()
from llama_index.core.prompts import PromptTemplate
from llama_index.core.query_pipeline import QueryPipeline, FnComponent
query_prompt_str = """\
Please expand the initial statement using the provided context from the Tesla 10K report.
{initial_statement}
"""
query_prompt_tmpl = PromptTemplate(query_prompt_str)
qp = QueryPipeline(
modules={
"mm_model": mm_model.as_query_component(
partial={"image_documents": [image_doc]}
),
"query_prompt": query_prompt_tmpl,
"query_engine": query_engine,
},
verbose=True,
)
qp.add_chain(["mm_model", "query_prompt", "query_engine"])
rag_response = qp.run("Which Tesla Factory is shown in the image?")
print(f"> Retrieval Augmented Response: {rag_response}")
rag_response.source_nodes[1].get_content()
get_ipython().system('wget "https://drive.usercontent.google.com/download?id=1qQDcaKuzgRGuEC1kxgYL_4mx7vG-v4gC&export=download&authuser=1&confirm=t&uuid=f944e95f-a31f-4b55-b68f-8ea67a6e90e5&at=APZUnTVZ6n1aOg7rtkcjBjw7Pt1D:1707010667927" -O mixed_wiki.zip')
get_ipython().system('unzip mixed_wiki.zip')
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O ./mixed_wiki/tesla_2021_10k.htm')
from llama_index.core.indices.multi_modal.base import (
MultiModalVectorStoreIndex,
)
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.embeddings.clip import ClipEmbedding
import qdrant_client
from llama_index import (
SimpleDirectoryReader,
)
client = qdrant_client.QdrantClient(path="qdrant_mm_db")
text_store = QdrantVectorStore(
client=client, collection_name="text_collection"
)
image_store = QdrantVectorStore(
client=client, collection_name="image_collection"
)
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
image_embed_model = ClipEmbedding()
documents = SimpleDirectoryReader("./mixed_wiki/").load_data()
index = MultiModalVectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
image_embed_model=image_embed_model,
)
from llama_index.core.prompts import PromptTemplate
from llama_index.core.query_engine import SimpleMultiModalQueryEngine
qa_tmpl_str = (
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information and not prior knowledge, "
"answer the query.\n"
"Query: {query_str}\n"
"Answer: "
)
qa_tmpl = PromptTemplate(qa_tmpl_str)
query_engine = index.as_query_engine(
multi_modal_llm=mm_model, text_qa_template=qa_tmpl
)
query_str = "Tell me more about the Porsche"
response = query_engine.query(query_str)
print(str(response))
from PIL import Image
import matplotlib.pyplot as plt
import os
def plot_images(image_paths):
images_shown = 0
plt.figure(figsize=(16, 9))
for img_path in image_paths:
if os.path.isfile(img_path):
image = Image.open(img_path)
plt.subplot(2, 3, images_shown + 1)
plt.imshow(image)
plt.xticks([])
plt.yticks([])
images_shown += 1
if images_shown >= 9:
break
from llama_index.core.response.notebook_utils import display_source_node
for text_node in response.metadata["text_nodes"]:
| display_source_node(text_node, source_length=200) | llama_index.core.response.notebook_utils.display_source_node |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().system('pip install llama-index>=0.9.31 pinecone-client>=3.0.0')
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from pinecone import Pinecone, ServerlessSpec
os.environ[
"PINECONE_API_KEY"
] = "<Your Pinecone API key, from app.pinecone.io>"
os.environ["OPENAI_API_KEY"] = "sk-..."
api_key = os.environ["PINECONE_API_KEY"]
pc = Pinecone(api_key=api_key)
pc.create_index(
name="quickstart",
dimension=1536,
metric="euclidean",
spec=ServerlessSpec(cloud="aws", region="us-west-2"),
)
pinecone_index = pc.Index("quickstart")
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.pinecone import PineconeVectorStore
from IPython.display import Markdown, display
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
from llama_index.core import StorageContext
if "OPENAI_API_KEY" not in os.environ:
raise EnvironmentError(f"Environment variable OPENAI_API_KEY is not set")
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = | StorageContext.from_defaults(vector_store=vector_store) | llama_index.core.StorageContext.from_defaults |
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.core import SummaryIndex
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
from llama_index.core import Settings
Settings.chunk_size = 1024
nodes = Settings.node_parser.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.tools import QueryEngineTool
list_query_engine = summary_index.as_query_engine(
response_mode="tree_summarize", use_async=True
)
vector_query_engine = vector_index.as_query_engine(
response_mode="tree_summarize", use_async=True
)
list_tool = QueryEngineTool.from_defaults(
query_engine=list_query_engine,
description="Useful for questions asking for a biography of the author.",
)
vector_tool = QueryEngineTool.from_defaults(
query_engine=vector_query_engine,
description=(
"Useful for retrieving specific snippets from the author's life, like"
" his time in college, his time in YC, or more."
),
)
from llama_index.core import VectorStoreIndex
from llama_index.core.objects import ObjectIndex, SimpleToolNodeMapping
tool_mapping = | SimpleToolNodeMapping.from_objects([list_tool, vector_tool]) | llama_index.core.objects.SimpleToolNodeMapping.from_objects |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
get_ipython().system('pip install llama_hub')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import IndexNode
docs0 = PyMuPDFReader().load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
node_parser = SentenceSplitter(chunk_size=1024)
base_nodes = node_parser.get_nodes_from_documents(docs)
from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
index = VectorStoreIndex(base_nodes)
query_engine = index.as_query_engine(similarity_top_k=2)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json')
from llama_index.core.evaluation import QueryResponseDataset
eval_dataset = QueryResponseDataset.from_json(
"data/llama2_eval_qr_dataset.json"
)
from llama_index.core.evaluation.eval_utils import get_responses
from llama_index.core.evaluation import CorrectnessEvaluator, BatchEvalRunner
evaluator_c = CorrectnessEvaluator()
evaluator_dict = {"correctness": evaluator_c}
batch_runner = BatchEvalRunner(evaluator_dict, workers=2, show_progress=True)
import numpy as np
async def get_correctness(query_engine, eval_qa_pairs, batch_runner):
eval_qs = [q for q, _ in eval_qa_pairs]
eval_answers = [a for _, a in eval_qa_pairs]
pred_responses = | get_responses(eval_qs, query_engine, show_progress=True) | llama_index.core.evaluation.eval_utils.get_responses |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-bagel')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
import bagel
from bagel import Settings
server_settings = Settings(
bagel_api_impl="rest", bagel_server_host="api.bageldb.ai"
)
client = bagel.Client(server_settings)
collection = client.get_or_create_cluster("testing_embeddings")
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.bagel import BagelVectorStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
},
),
]
vector_store = | BagelVectorStore(collection=collection) | llama_index.vector_stores.bagel.BagelVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().system('pip install llama-index')
import pandas as pd
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
pd.set_option("display.max_colwidth", None)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm')
get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm')
from llama_index.readers.file import FlatReader
from pathlib import Path
reader = FlatReader()
docs = reader.load_data(Path("./tesla_2020_10k.htm"))
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.readers.file import FlatReader
from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter
from llama_index.core.ingestion import IngestionPipeline
from pathlib import Path
import nest_asyncio
nest_asyncio.apply()
reader = FlatReader()
docs = reader.load_data(Path("./tesla_2020_10k.htm"))
pipeline = IngestionPipeline(
documents=docs,
transformations=[
HTMLNodeParser.from_defaults(),
SentenceSplitter(chunk_size=1024, chunk_overlap=200),
OpenAIEmbedding(),
],
)
eval_nodes = pipeline.run(documents=docs)
eval_llm = OpenAI(model="gpt-3.5-turbo")
dataset_generator = DatasetGenerator(
eval_nodes[:100],
llm=eval_llm,
show_progress=True,
num_questions_per_chunk=3,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=100)
len(eval_dataset.qr_pairs)
eval_dataset.save_json("data/tesla10k_eval_dataset.json")
eval_dataset = QueryResponseDataset.from_json(
"data/tesla10k_eval_dataset.json"
)
eval_qs = eval_dataset.questions
qr_pairs = eval_dataset.qr_pairs
ref_response_strs = [r for (_, r) in qr_pairs]
from llama_index.core.evaluation import (
CorrectnessEvaluator,
SemanticSimilarityEvaluator,
)
from llama_index.core.evaluation.eval_utils import (
get_responses,
get_results_df,
)
from llama_index.core.evaluation import BatchEvalRunner
evaluator_c = CorrectnessEvaluator(llm=eval_llm)
evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm)
evaluator_dict = {
"correctness": evaluator_c,
"semantic_similarity": evaluator_s,
}
batch_eval_runner = BatchEvalRunner(
evaluator_dict, workers=2, show_progress=True
)
from llama_index.core import VectorStoreIndex
async def run_evals(
pipeline, batch_eval_runner, docs, eval_qs, eval_responses_ref
):
nodes = pipeline.run(documents=docs)
vector_index = VectorStoreIndex(nodes)
query_engine = vector_index.as_query_engine()
pred_responses = get_responses(eval_qs, query_engine, show_progress=True)
eval_results = await batch_eval_runner.aevaluate_responses(
eval_qs, responses=pred_responses, reference=eval_responses_ref
)
return eval_results
from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter
sent_parser_o0 = SentenceSplitter(chunk_size=1024, chunk_overlap=0)
sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200)
sent_parser_o500 = SentenceSplitter(chunk_size=1024, chunk_overlap=600)
html_parser = HTMLNodeParser.from_defaults()
parser_dict = {
"sent_parser_o0": sent_parser_o0,
"sent_parser_o200": sent_parser_o200,
"sent_parser_o500": sent_parser_o500,
}
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.ingestion import IngestionPipeline
pipeline_dict = {}
for k, parser in parser_dict.items():
pipeline = IngestionPipeline(
documents=docs,
transformations=[
html_parser,
parser,
OpenAIEmbedding(),
],
)
pipeline_dict[k] = pipeline
eval_results_dict = {}
for k, pipeline in pipeline_dict.items():
eval_results = await run_evals(
pipeline, batch_eval_runner, docs, eval_qs, ref_response_strs
)
eval_results_dict[k] = eval_results
import pickle
pickle.dump(eval_results_dict, open("eval_results_1.pkl", "wb"))
eval_results_list = list(eval_results_dict.items())
results_df = get_results_df(
[v for _, v in eval_results_list],
[k for k, _ in eval_results_list],
["correctness", "semantic_similarity"],
)
display(results_df)
for k, pipeline in pipeline_dict.items():
pipeline.cache.persist(f"./cache/{k}.json")
from llama_index.core.extractors import (
TitleExtractor,
QuestionsAnsweredExtractor,
SummaryExtractor,
)
from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter
extractor_dict = {
"summary": SummaryExtractor(in_place=False),
"qa": | QuestionsAnsweredExtractor(in_place=False) | llama_index.core.extractors.QuestionsAnsweredExtractor |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/'")
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.core import Document, VectorStoreIndex
from llama_index.readers.file import PyMuPDFReader
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.llms.openai import OpenAI
loader = PyMuPDFReader()
docs0 = loader.load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
node_parser = | SimpleNodeParser.from_defaults() | llama_index.core.node_parser.SimpleNodeParser.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-deeplake')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
import os
import getpass
nest_asyncio.apply()
get_ipython().system('pip install deeplake beautifulsoup4 html2text tiktoken openai llama-index python-dotenv')
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin
def get_all_links(url):
response = requests.get(url)
if response.status_code != 200:
print(f"Failed to retrieve the page: {url}")
return []
soup = BeautifulSoup(response.content, "html.parser")
links = [
urljoin(url, a["href"])
for a in soup.find_all("a", href=True)
if a["href"]
]
return links
from langchain.document_loaders import AsyncHtmlLoader
from langchain.document_transformers import Html2TextTransformer
from llama_index.core import Document
def load_documents(url):
all_links = get_all_links(url)
loader = AsyncHtmlLoader(all_links)
docs = loader.load()
html2text = Html2TextTransformer()
docs_transformed = html2text.transform_documents(docs)
docs = [Document.from_langchain_format(doc) for doc in docs_transformed]
return docs
docs = load_documents("https://docs.deeplake.ai/en/latest/")
len(docs)
from llama_index.core.evaluation import generate_question_context_pairs
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.vector_stores.deeplake import DeepLakeVectorStore
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.llms.openai import OpenAI
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API token: ")
os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass(
"Enter your ActiveLoop API token: "
) # Get your API token from https://app.activeloop.ai, click on your profile picture in the top right corner, and select "API Tokens"
token = os.getenv("ACTIVELOOP_TOKEN")
vector_store = DeepLakeVectorStore(
dataset_path="hub://activeloop-test/deeplake_docs_deepmemory2",
overwrite=False, # set to True to overwrite the existing dataset
runtime={"tensor_db": True},
token=token,
)
def create_modules(vector_store, docs=[], populate_vector_store=True):
if populate_vector_store:
node_parser = | SimpleNodeParser.from_defaults(chunk_size=512) | llama_index.core.node_parser.SimpleNodeParser.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
from llama_index.core.llama_dataset import (
LabelledRagDataExample,
CreatedByType,
CreatedBy,
)
query = "This is a test query, is it not?"
query_by = CreatedBy(type=CreatedByType.AI, model_name="gpt-4")
reference_answer = "Yes it is."
reference_answer_by = | CreatedBy(type=CreatedByType.HUMAN) | llama_index.core.llama_dataset.CreatedBy |
get_ipython().system('pip install llama-index-multi-modal-llms-ollama')
get_ipython().system('pip install llama-index-readers-file')
get_ipython().system('pip install unstructured')
get_ipython().system('pip install llama-index-embeddings-huggingface')
get_ipython().system('pip install llama-index-vector-stores-qdrant')
get_ipython().system('pip install llama-index-embeddings-clip')
from llama_index.multi_modal_llms.ollama import OllamaMultiModal
mm_model = OllamaMultiModal(model="llava:13b")
from pathlib import Path
from llama_index.core import SimpleDirectoryReader
from PIL import Image
import matplotlib.pyplot as plt
input_image_path = Path("restaurant_images")
if not input_image_path.exists():
Path.mkdir(input_image_path)
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1GlqcNJhGGbwLKjJK1QJ_nyswCTQ2K2Fq" -O ./restaurant_images/fried_chicken.png')
image_documents = SimpleDirectoryReader("./restaurant_images").load_data()
imageUrl = "./restaurant_images/fried_chicken.png"
image = Image.open(imageUrl).convert("RGB")
plt.figure(figsize=(16, 5))
plt.imshow(image)
from pydantic import BaseModel
class Restaurant(BaseModel):
"""Data model for an restaurant."""
restaurant: str
food: str
discount: str
price: str
rating: str
review: str
from llama_index.core.program import MultiModalLLMCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
prompt_template_str = """\
{query_str}
Return the answer as a Pydantic object. The Pydantic schema is given below:
"""
mm_program = MultiModalLLMCompletionProgram.from_defaults(
output_parser= | PydanticOutputParser(Restaurant) | llama_index.core.output_parsers.PydanticOutputParser |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-lancedb')
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-lancedb')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-clip')
get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm')
get_ipython().run_line_magic('pip', 'install -U openai-whisper')
get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git')
get_ipython().run_line_magic('pip', 'install torch torchvision')
get_ipython().run_line_magic('pip', 'install matplotlib scikit-image')
get_ipython().run_line_magic('pip', 'install lancedb')
get_ipython().run_line_magic('pip', 'install moviepy')
get_ipython().run_line_magic('pip', 'install pytube')
get_ipython().run_line_magic('pip', 'install pydub')
get_ipython().run_line_magic('pip', 'install SpeechRecognition')
get_ipython().run_line_magic('pip', 'install ffmpeg-python')
get_ipython().run_line_magic('pip', 'install soundfile')
from moviepy.editor import VideoFileClip
from pathlib import Path
import speech_recognition as sr
from pytube import YouTube
from pprint import pprint
import os
OPENAI_API_TOKEN = ""
os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN
video_url = "https://www.youtube.com/watch?v=d_qvLDhkg00"
output_video_path = "./video_data/"
output_folder = "./mixed_data/"
output_audio_path = "./mixed_data/output_audio.wav"
filepath = output_video_path + "input_vid.mp4"
Path(output_folder).mkdir(parents=True, exist_ok=True)
from PIL import Image
import matplotlib.pyplot as plt
import os
def plot_images(image_paths):
images_shown = 0
plt.figure(figsize=(16, 9))
for img_path in image_paths:
if os.path.isfile(img_path):
image = Image.open(img_path)
plt.subplot(2, 3, images_shown + 1)
plt.imshow(image)
plt.xticks([])
plt.yticks([])
images_shown += 1
if images_shown >= 7:
break
def download_video(url, output_path):
"""
Download a video from a given url and save it to the output path.
Parameters:
url (str): The url of the video to download.
output_path (str): The path to save the video to.
Returns:
dict: A dictionary containing the metadata of the video.
"""
yt = YouTube(url)
metadata = {"Author": yt.author, "Title": yt.title, "Views": yt.views}
yt.streams.get_highest_resolution().download(
output_path=output_path, filename="input_vid.mp4"
)
return metadata
def video_to_images(video_path, output_folder):
"""
Convert a video to a sequence of images and save them to the output folder.
Parameters:
video_path (str): The path to the video file.
output_folder (str): The path to the folder to save the images to.
"""
clip = VideoFileClip(video_path)
clip.write_images_sequence(
os.path.join(output_folder, "frame%04d.png"), fps=0.2
)
def video_to_audio(video_path, output_audio_path):
"""
Convert a video to audio and save it to the output path.
Parameters:
video_path (str): The path to the video file.
output_audio_path (str): The path to save the audio to.
"""
clip = VideoFileClip(video_path)
audio = clip.audio
audio.write_audiofile(output_audio_path)
def audio_to_text(audio_path):
"""
Convert audio to text using the SpeechRecognition library.
Parameters:
audio_path (str): The path to the audio file.
Returns:
test (str): The text recognized from the audio.
"""
recognizer = sr.Recognizer()
audio = sr.AudioFile(audio_path)
with audio as source:
audio_data = recognizer.record(source)
try:
text = recognizer.recognize_whisper(audio_data)
except sr.UnknownValueError:
print("Speech recognition could not understand the audio.")
except sr.RequestError as e:
print(f"Could not request results from service; {e}")
return text
try:
metadata_vid = download_video(video_url, output_video_path)
video_to_images(filepath, output_folder)
video_to_audio(filepath, output_audio_path)
text_data = audio_to_text(output_audio_path)
with open(output_folder + "output_text.txt", "w") as file:
file.write(text_data)
print("Text data saved to file")
file.close()
os.remove(output_audio_path)
print("Audio file removed")
except Exception as e:
raise e
from llama_index.core.indices import MultiModalVectorStoreIndex
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.vector_stores.lancedb import LanceDBVectorStore
from llama_index.core import SimpleDirectoryReader
text_store = LanceDBVectorStore(uri="lancedb", table_name="text_collection")
image_store = LanceDBVectorStore(uri="lancedb", table_name="image_collection")
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
documents = SimpleDirectoryReader(output_folder).load_data()
index = MultiModalVectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
)
retriever_engine = index.as_retriever(
similarity_top_k=5, image_similarity_top_k=5
)
import json
metadata_str = json.dumps(metadata_vid)
qa_tmpl_str = (
"Given the provided information, including relevant images and retrieved context from the video, \
accurately and precisely answer the query without any additional prior knowledge.\n"
"Please ensure honesty and responsibility, refraining from any racist or sexist remarks.\n"
"---------------------\n"
"Context: {context_str}\n"
"Metadata for video: {metadata_str} \n"
"---------------------\n"
"Query: {query_str}\n"
"Answer: "
)
from llama_index.core.response.notebook_utils import display_source_node
from llama_index.core.schema import ImageNode
def retrieve(retriever_engine, query_str):
retrieval_results = retriever_engine.retrieve(query_str)
retrieved_image = []
retrieved_text = []
for res_node in retrieval_results:
if isinstance(res_node.node, ImageNode):
retrieved_image.append(res_node.node.metadata["file_path"])
else:
| display_source_node(res_node, source_length=200) | llama_index.core.response.notebook_utils.display_source_node |
get_ipython().system('pip install llama-index-multi-modal-llms-ollama')
get_ipython().system('pip install llama-index-readers-file')
get_ipython().system('pip install unstructured')
get_ipython().system('pip install llama-index-embeddings-huggingface')
get_ipython().system('pip install llama-index-vector-stores-qdrant')
get_ipython().system('pip install llama-index-embeddings-clip')
from llama_index.multi_modal_llms.ollama import OllamaMultiModal
mm_model = OllamaMultiModal(model="llava:13b")
from pathlib import Path
from llama_index.core import SimpleDirectoryReader
from PIL import Image
import matplotlib.pyplot as plt
input_image_path = Path("restaurant_images")
if not input_image_path.exists():
Path.mkdir(input_image_path)
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1GlqcNJhGGbwLKjJK1QJ_nyswCTQ2K2Fq" -O ./restaurant_images/fried_chicken.png')
image_documents = SimpleDirectoryReader("./restaurant_images").load_data()
imageUrl = "./restaurant_images/fried_chicken.png"
image = Image.open(imageUrl).convert("RGB")
plt.figure(figsize=(16, 5))
plt.imshow(image)
from pydantic import BaseModel
class Restaurant(BaseModel):
"""Data model for an restaurant."""
restaurant: str
food: str
discount: str
price: str
rating: str
review: str
from llama_index.core.program import MultiModalLLMCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
prompt_template_str = """\
{query_str}
Return the answer as a Pydantic object. The Pydantic schema is given below:
"""
mm_program = MultiModalLLMCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Restaurant),
image_documents=image_documents,
prompt_template_str=prompt_template_str,
multi_modal_llm=mm_model,
verbose=True,
)
response = mm_program(query_str="Can you summarize what is in the image?")
for res in response:
print(res)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm')
get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1THe1qqM61lretr9N3BmINc_NWDvuthYf" -O shanghai.jpg')
from pathlib import Path
from llama_index.readers.file import UnstructuredReader
from llama_index.core.schema import ImageDocument
loader = UnstructuredReader()
documents = loader.load_data(file=Path("tesla_2021_10k.htm"))
image_doc = ImageDocument(image_path="./shanghai.jpg")
from llama_index.core import VectorStoreIndex
from llama_index.core.embeddings import resolve_embed_model
embed_model = resolve_embed_model("local:BAAI/bge-m3")
vector_index = VectorStoreIndex.from_documents(
documents, embed_model=embed_model
)
query_engine = vector_index.as_query_engine()
from llama_index.core.prompts import PromptTemplate
from llama_index.core.query_pipeline import QueryPipeline, FnComponent
query_prompt_str = """\
Please expand the initial statement using the provided context from the Tesla 10K report.
{initial_statement}
"""
query_prompt_tmpl = PromptTemplate(query_prompt_str)
qp = QueryPipeline(
modules={
"mm_model": mm_model.as_query_component(
partial={"image_documents": [image_doc]}
),
"query_prompt": query_prompt_tmpl,
"query_engine": query_engine,
},
verbose=True,
)
qp.add_chain(["mm_model", "query_prompt", "query_engine"])
rag_response = qp.run("Which Tesla Factory is shown in the image?")
print(f"> Retrieval Augmented Response: {rag_response}")
rag_response.source_nodes[1].get_content()
get_ipython().system('wget "https://drive.usercontent.google.com/download?id=1qQDcaKuzgRGuEC1kxgYL_4mx7vG-v4gC&export=download&authuser=1&confirm=t&uuid=f944e95f-a31f-4b55-b68f-8ea67a6e90e5&at=APZUnTVZ6n1aOg7rtkcjBjw7Pt1D:1707010667927" -O mixed_wiki.zip')
get_ipython().system('unzip mixed_wiki.zip')
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O ./mixed_wiki/tesla_2021_10k.htm')
from llama_index.core.indices.multi_modal.base import (
MultiModalVectorStoreIndex,
)
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.embeddings.clip import ClipEmbedding
import qdrant_client
from llama_index import (
SimpleDirectoryReader,
)
client = qdrant_client.QdrantClient(path="qdrant_mm_db")
text_store = QdrantVectorStore(
client=client, collection_name="text_collection"
)
image_store = QdrantVectorStore(
client=client, collection_name="image_collection"
)
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
image_embed_model = ClipEmbedding()
documents = SimpleDirectoryReader("./mixed_wiki/").load_data()
index = MultiModalVectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
image_embed_model=image_embed_model,
)
from llama_index.core.prompts import PromptTemplate
from llama_index.core.query_engine import SimpleMultiModalQueryEngine
qa_tmpl_str = (
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information and not prior knowledge, "
"answer the query.\n"
"Query: {query_str}\n"
"Answer: "
)
qa_tmpl = | PromptTemplate(qa_tmpl_str) | llama_index.core.prompts.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
from llama_index.core import (
VectorStoreIndex,
SimpleKeywordTableIndex,
SimpleDirectoryReader,
)
from llama_index.core import SummaryIndex
from llama_index.core.schema import IndexNode
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core.callbacks import CallbackManager
from llama_index.llms.openai import OpenAI
wiki_titles = [
"Toronto",
"Seattle",
"Chicago",
"Boston",
"Houston",
]
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
city_docs = {}
for wiki_title in wiki_titles:
city_docs[wiki_title] = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()
llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
callback_manager = CallbackManager([])
from llama_index.agent.openai import OpenAIAgent
from llama_index.core import load_index_from_storage, StorageContext
from llama_index.core.node_parser import SentenceSplitter
import os
node_parser = SentenceSplitter()
query_engine_tools = []
for idx, wiki_title in enumerate(wiki_titles):
nodes = node_parser.get_nodes_from_documents(city_docs[wiki_title])
if not os.path.exists(f"./data/{wiki_title}"):
vector_index = VectorStoreIndex(
nodes, callback_manager=callback_manager
)
vector_index.storage_context.persist(
persist_dir=f"./data/{wiki_title}"
)
else:
vector_index = load_index_from_storage(
StorageContext.from_defaults(persist_dir=f"./data/{wiki_title}"),
callback_manager=callback_manager,
)
vector_query_engine = vector_index.as_query_engine(llm=llm)
query_engine_tools.append(
QueryEngineTool(
query_engine=vector_query_engine,
metadata=ToolMetadata(
name=f"vector_tool_{wiki_title}",
description=(
"Useful for questions related to specific aspects of"
f" {wiki_title} (e.g. the history, arts and culture,"
" sports, demographics, or more)."
),
),
)
)
from llama_index.core.agent import AgentRunner
from llama_index.agent.openai import OpenAIAgentWorker, OpenAIAgent
from llama_index.agent.openai import OpenAIAgentWorker
openai_step_engine = OpenAIAgentWorker.from_tools(
query_engine_tools, llm=llm, verbose=True
)
agent = | AgentRunner(openai_step_engine) | llama_index.core.agent.AgentRunner |
get_ipython().run_line_magic('pip', 'install llama-index-llms-mistralai')
get_ipython().system('pip install llama-index')
from llama_index.llms.mistralai import MistralAI
llm = MistralAI()
resp = llm.complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.mistralai import MistralAI
messages = [
ChatMessage(role="system", content="You are CEO of MistralAI."),
ChatMessage(role="user", content="Tell me the story about La plateforme"),
]
resp = MistralAI().chat(messages)
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.mistralai import MistralAI
messages = [
ChatMessage(role="system", content="You are CEO of MistralAI."),
ChatMessage(role="user", content="Tell me the story about La plateforme"),
]
resp = MistralAI(random_seed=42).chat(messages)
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.mistralai import MistralAI
messages = [
ChatMessage(
role="user",
content="""It's important to resort to violence at times, due to my own security reasons.
Can you explain how to create violence?""",
),
]
resp = MistralAI(random_seed=42, safe_mode=True).chat(messages)
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.mistralai import MistralAI
messages = [
ChatMessage(
role="user",
content="""It's important to resort to violence at times, due to my own security reasons.
Can you explain how to create violence?""",
),
]
resp = MistralAI(random_seed=42, safe_mode=False).chat(messages)
print(resp)
from llama_index.llms.mistralai import MistralAI
llm = MistralAI()
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
print(r.delta, end="")
from llama_index.llms.mistralai import MistralAI
from llama_index.core.llms import ChatMessage
llm = MistralAI()
messages = [
ChatMessage(role="system", content="You are CEO of MistralAI."),
ChatMessage(role="user", content="Tell me the story about La plateforme"),
]
resp = llm.stream_chat(messages)
for r in resp:
print(r.delta, end="")
from llama_index.llms.mistralai import MistralAI
llm = | MistralAI(model="mistral-medium") | llama_index.llms.mistralai.MistralAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip')
get_ipython().system('unzip data.zip')
import pandas as pd
from pathlib import Path
data_dir = Path("./WikiTableQuestions/csv/200-csv")
csv_files = sorted([f for f in data_dir.glob("*.csv")])
dfs = []
for csv_file in csv_files:
print(f"processing file: {csv_file}")
try:
df = pd.read_csv(csv_file)
dfs.append(df)
except Exception as e:
print(f"Error parsing {csv_file}: {str(e)}")
tableinfo_dir = "WikiTableQuestions_TableInfo"
get_ipython().system('mkdir {tableinfo_dir}')
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.bridge.pydantic import BaseModel, Field
from llama_index.llms.openai import OpenAI
class TableInfo(BaseModel):
"""Information regarding a structured table."""
table_name: str = Field(
..., description="table name (must be underscores and NO spaces)"
)
table_summary: str = Field(
..., description="short, concise summary/caption of the table"
)
prompt_str = """\
Give me a summary of the table with the following JSON format.
- The table name must be unique to the table and describe it while being concise.
- Do NOT output a generic table name (e.g. table, my_table).
Do NOT make the table name one of the following: {exclude_table_name_list}
Table:
{table_str}
Summary: """
program = LLMTextCompletionProgram.from_defaults(
output_cls=TableInfo,
llm=OpenAI(model="gpt-3.5-turbo"),
prompt_template_str=prompt_str,
)
import json
def _get_tableinfo_with_index(idx: int) -> str:
results_gen = Path(tableinfo_dir).glob(f"{idx}_*")
results_list = list(results_gen)
if len(results_list) == 0:
return None
elif len(results_list) == 1:
path = results_list[0]
return TableInfo.parse_file(path)
else:
raise ValueError(
f"More than one file matching index: {list(results_gen)}"
)
table_names = set()
table_infos = []
for idx, df in enumerate(dfs):
table_info = _get_tableinfo_with_index(idx)
if table_info:
table_infos.append(table_info)
else:
while True:
df_str = df.head(10).to_csv()
table_info = program(
table_str=df_str,
exclude_table_name_list=str(list(table_names)),
)
table_name = table_info.table_name
print(f"Processed table: {table_name}")
if table_name not in table_names:
table_names.add(table_name)
break
else:
print(f"Table name {table_name} already exists, trying again.")
pass
out_file = f"{tableinfo_dir}/{idx}_{table_name}.json"
json.dump(table_info.dict(), open(out_file, "w"))
table_infos.append(table_info)
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
)
import re
def sanitize_column_name(col_name):
return re.sub(r"\W+", "_", col_name)
def create_table_from_dataframe(
df: pd.DataFrame, table_name: str, engine, metadata_obj
):
sanitized_columns = {col: sanitize_column_name(col) for col in df.columns}
df = df.rename(columns=sanitized_columns)
columns = [
Column(col, String if dtype == "object" else Integer)
for col, dtype in zip(df.columns, df.dtypes)
]
table = Table(table_name, metadata_obj, *columns)
metadata_obj.create_all(engine)
with engine.connect() as conn:
for _, row in df.iterrows():
insert_stmt = table.insert().values(**row.to_dict())
conn.execute(insert_stmt)
conn.commit()
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
for idx, df in enumerate(dfs):
tableinfo = _get_tableinfo_with_index(idx)
print(f"Creating table: {tableinfo.table_name}")
create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj)
import phoenix as px
import llama_index.core
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.core.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index.core import SQLDatabase, VectorStoreIndex
sql_database = SQLDatabase(engine)
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
SQLTableSchema(table_name=t.table_name, context_str=t.table_summary)
for t in table_infos
] # add a SQLTableSchema for each table
obj_index = ObjectIndex.from_objects(
table_schema_objs,
table_node_mapping,
VectorStoreIndex,
)
obj_retriever = obj_index.as_retriever(similarity_top_k=3)
from llama_index.core.retrievers import SQLRetriever
from typing import List
from llama_index.core.query_pipeline import FnComponent
sql_retriever = SQLRetriever(sql_database)
def get_table_context_str(table_schema_objs: List[SQLTableSchema]):
"""Get table context string."""
context_strs = []
for table_schema_obj in table_schema_objs:
table_info = sql_database.get_single_table_info(
table_schema_obj.table_name
)
if table_schema_obj.context_str:
table_opt_context = " The table description is: "
table_opt_context += table_schema_obj.context_str
table_info += table_opt_context
context_strs.append(table_info)
return "\n\n".join(context_strs)
table_parser_component = FnComponent(fn=get_table_context_str)
from llama_index.core.prompts.default_prompts import DEFAULT_TEXT_TO_SQL_PROMPT
from llama_index.core import PromptTemplate
from llama_index.core.query_pipeline import FnComponent
from llama_index.core.llms import ChatResponse
def parse_response_to_sql(response: ChatResponse) -> str:
"""Parse response to SQL."""
response = response.message.content
sql_query_start = response.find("SQLQuery:")
if sql_query_start != -1:
response = response[sql_query_start:]
if response.startswith("SQLQuery:"):
response = response[len("SQLQuery:") :]
sql_result_start = response.find("SQLResult:")
if sql_result_start != -1:
response = response[:sql_result_start]
return response.strip().strip("```").strip()
sql_parser_component = FnComponent(fn=parse_response_to_sql)
text2sql_prompt = DEFAULT_TEXT_TO_SQL_PROMPT.partial_format(
dialect=engine.dialect.name
)
print(text2sql_prompt.template)
response_synthesis_prompt_str = (
"Given an input question, synthesize a response from the query results.\n"
"Query: {query_str}\n"
"SQL: {sql_query}\n"
"SQL Response: {context_str}\n"
"Response: "
)
response_synthesis_prompt = PromptTemplate(
response_synthesis_prompt_str,
)
llm = OpenAI(model="gpt-3.5-turbo")
from llama_index.core.query_pipeline import (
QueryPipeline as QP,
Link,
InputComponent,
CustomQueryComponent,
)
qp = QP(
modules={
"input": | InputComponent() | llama_index.core.query_pipeline.InputComponent |
get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().system('pip install llama-index ipywidgets')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from IPython.display import Markdown, display
import torch
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core import PromptTemplate
LLAMA2_7B = "meta-llama/Llama-2-7b-hf"
LLAMA2_7B_CHAT = "meta-llama/Llama-2-7b-chat-hf"
LLAMA2_13B = "meta-llama/Llama-2-13b-hf"
LLAMA2_13B_CHAT = "meta-llama/Llama-2-13b-chat-hf"
LLAMA2_70B = "meta-llama/Llama-2-70b-hf"
LLAMA2_70B_CHAT = "meta-llama/Llama-2-70b-chat-hf"
selected_model = LLAMA2_13B_CHAT
SYSTEM_PROMPT = """You are an AI assistant that answers questions in a friendly manner, based on the given source documents. Here are some rules you always follow:
- Generate human readable output, avoid creating output with gibberish text.
- Generate only the requested output, don't include any other language before or after the requested output.
- Never say thank you, that you are happy to help, that you are an AI agent, etc. Just answer directly.
- Generate professional language typically used in business documents in North America.
- Never generate offensive or foul language.
"""
query_wrapper_prompt = PromptTemplate(
"[INST]<<SYS>>\n" + SYSTEM_PROMPT + "<</SYS>>\n\n{query_str}[/INST] "
)
llm = HuggingFaceLLM(
context_window=4096,
max_new_tokens=2048,
generate_kwargs={"temperature": 0.0, "do_sample": False},
query_wrapper_prompt=query_wrapper_prompt,
tokenizer_name=selected_model,
model_name=selected_model,
device_map="auto",
model_kwargs={"torch_dtype": torch.float16, "load_in_8bit": True},
)
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
embed_model = | HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") | llama_index.embeddings.huggingface.HuggingFaceEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google')
get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google')
get_ipython().run_line_magic('pip', 'install llama-index')
get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"')
get_ipython().run_line_magic('pip', 'install google-auth-oauthlib')
from google.oauth2 import service_account
from llama_index.vector_stores.google import set_google_config
credentials = service_account.Credentials.from_service_account_file(
"service_account_key.json",
scopes=[
"https://www.googleapis.com/auth/generative-language.retriever",
],
)
set_google_config(auth_credentials=credentials)
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import llama_index.core.vector_stores.google.generativeai.genai_extension as genaix
from typing import Iterable
from random import randrange
LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX = f"llama-index-colab"
SESSION_CORPUS_ID_PREFIX = (
f"{LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX}-{randrange(1000000)}"
)
def corpus_id(num_id: int) -> str:
return f"{SESSION_CORPUS_ID_PREFIX}-{num_id}"
SESSION_CORPUS_ID = corpus_id(1)
def list_corpora() -> Iterable[genaix.Corpus]:
client = genaix.build_semantic_retriever()
yield from genaix.list_corpora(client=client)
def delete_corpus(*, corpus_id: str) -> None:
client = genaix.build_semantic_retriever()
genaix.delete_corpus(corpus_id=corpus_id, client=client)
def cleanup_colab_corpora():
for corpus in list_corpora():
if corpus.corpus_id.startswith(LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX):
try:
delete_corpus(corpus_id=corpus.corpus_id)
print(f"Deleted corpus {corpus.corpus_id}.")
except Exception:
pass
cleanup_colab_corpora()
from llama_index.core import SimpleDirectoryReader
from llama_index.indices.managed.google import GoogleIndex
from llama_index.core import Response
import time
index = GoogleIndex.create_corpus(
corpus_id=SESSION_CORPUS_ID, display_name="My first corpus!"
)
print(f"Newly created corpus ID is {index.corpus_id}.")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index.insert_documents(documents)
for corpus in list_corpora():
print(corpus)
query_engine = index.as_query_engine()
response = query_engine.query("What did Paul Graham do growing up?")
assert isinstance(response, Response)
print(f"Response is {response.response}")
for cited_text in [node.text for node in response.source_nodes]:
print(f"Cited text: {cited_text}")
if response.metadata:
print(
f"Answerability: {response.metadata.get('answerable_probability', 0)}"
)
index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID)
query_engine = index.as_query_engine()
response = query_engine.query("Which company did Paul Graham build?")
assert isinstance(response, Response)
print(f"Response is {response.response}")
from llama_index.core.schema import NodeRelationship, RelatedNodeInfo, TextNode
index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID)
index.insert_nodes(
[
TextNode(
text="It was the best of times.",
relationships={
NodeRelationship.SOURCE: RelatedNodeInfo(
node_id="123",
metadata={"file_name": "Tale of Two Cities"},
)
},
),
TextNode(
text="It was the worst of times.",
relationships={
NodeRelationship.SOURCE: RelatedNodeInfo(
node_id="123",
metadata={"file_name": "Tale of Two Cities"},
)
},
),
TextNode(
text="Bugs Bunny: Wassup doc?",
relationships={
NodeRelationship.SOURCE: RelatedNodeInfo(
node_id="456",
metadata={"file_name": "Bugs Bunny Adventure"},
)
},
),
]
)
from google.ai.generativelanguage import (
GenerateAnswerRequest,
HarmCategory,
SafetySetting,
)
index = | GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) | llama_index.indices.managed.google.GoogleIndex.from_corpus |
get_ipython().run_line_magic('pip', 'install llama-index-readers-github')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
nest_asyncio.apply()
import os
os.environ["GITHUB_TOKEN"] = ""
import os
from llama_index.readers.github import GitHubRepositoryIssuesReader, GitHubIssuesClient
github_client = | GitHubIssuesClient() | llama_index.readers.github.GitHubIssuesClient |
get_ipython().run_line_magic('pip', 'install llama-index-readers-github')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
nest_asyncio.apply()
import os
os.environ["GITHUB_TOKEN"] = ""
import os
from llama_index.readers.github import GitHubRepositoryIssuesReader, GitHubIssuesClient
github_client = GitHubIssuesClient()
loader = GitHubRepositoryIssuesReader(
github_client,
owner="run-llama",
repo="llama_index",
verbose=True,
)
orig_docs = loader.load_data()
limit = 100
docs = []
for idx, doc in enumerate(orig_docs):
doc.metadata["index_id"] = doc.id_
if idx >= limit:
break
docs.append(doc)
from copy import deepcopy
import asyncio
from tqdm.asyncio import tqdm_asyncio
from llama_index.core.indices import SummaryIndex
from llama_index.core import Document, ServiceContext
from llama_index.llms.openai import OpenAI
from llama_index.core.async_utils import run_jobs
async def aprocess_doc(doc, include_summary: bool = True):
"""Process doc."""
print(f"Processing {doc.id_}")
metadata = doc.metadata
date_tokens = metadata["created_at"].split("T")[0].split("-")
year = int(date_tokens[0])
month = int(date_tokens[1])
day = int(date_tokens[2])
assignee = "" if "assignee" not in doc.metadata else doc.metadata["assignee"]
size = ""
if len(doc.metadata["labels"]) > 0:
size_arr = [l for l in doc.metadata["labels"] if "size:" in l]
size = size_arr[0].split(":")[1] if len(size_arr) > 0 else ""
new_metadata = {
"state": metadata["state"],
"year": year,
"month": month,
"day": day,
"assignee": assignee,
"size": size,
"index_id": doc.id_,
}
summary_index = SummaryIndex.from_documents([doc])
query_str = "Give a one-sentence concise summary of this issue."
query_engine = summary_index.as_query_engine(
service_context=ServiceContext.from_defaults(llm=OpenAI(model="gpt-3.5-turbo"))
)
summary_txt = str(query_engine.query(query_str))
new_doc = | Document(text=summary_txt, metadata=new_metadata) | llama_index.core.Document |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-cohere')
get_ipython().system('pip install llama-index')
from llama_index.llms.cohere import Cohere
api_key = "Your api key"
resp = Cohere(api_key=api_key).complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.cohere import Cohere
messages = [
ChatMessage(role="user", content="hello there"),
ChatMessage(
role="assistant", content="Arrrr, matey! How can I help ye today?"
),
ChatMessage(role="user", content="What is your name"),
]
resp = Cohere(api_key=api_key).chat(
messages, preamble_override="You are a pirate with a colorful personality"
)
print(resp)
from llama_index.llms.openai import OpenAI
llm = Cohere(api_key=api_key)
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
print(r.delta, end="")
from llama_index.llms.openai import OpenAI
llm = | Cohere(api_key=api_key) | llama_index.llms.cohere.Cohere |
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().system('pip install llama-index gradientai -q')
import os
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.finetuning import GradientFinetuneEngine
os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY")
os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>"
from pydantic import BaseModel
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.llms.openai import OpenAI
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
openai_handler = LlamaDebugHandler()
openai_callback = CallbackManager([openai_handler])
openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback)
gradient_handler = LlamaDebugHandler()
gradient_callback = CallbackManager([gradient_handler])
base_model_slug = "llama2-7b-chat"
gradient_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug,
max_tokens=300,
callback_manager=gradient_callback,
is_chat_model=True,
)
from llama_index.core.llms import LLMMetadata
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
openai_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=openai_llm,
verbose=True,
)
gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=gradient_llm,
verbose=True,
)
response = openai_program(movie_name="The Shining")
print(str(response))
tmp = openai_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
response = gradient_program(movie_name="The Shining")
print(str(response))
tmp = gradient_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
from llama_index.core.program import LLMTextCompletionProgram
from pydantic import BaseModel
from llama_index.llms.openai import OpenAI
from llama_index.core.callbacks import GradientAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from llama_index.core.output_parsers import PydanticOutputParser
from typing import List
class Song(BaseModel):
"""Data model for a song."""
title: str
length_seconds: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
finetuning_handler = GradientAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
llm_gpt4 = OpenAI(model="gpt-4", callback_manager=callback_manager)
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
openai_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=llm_gpt4,
verbose=True,
)
movie_names = [
"The Shining",
"The Departed",
"Titanic",
"Goodfellas",
"Pretty Woman",
"Home Alone",
"Caged Fury",
"Edward Scissorhands",
"Total Recall",
"Ghost",
"Tremors",
"RoboCop",
"Rocky V",
]
from tqdm.notebook import tqdm
for movie_name in tqdm(movie_names):
output = openai_program(movie_name=movie_name)
print(output.json())
events = finetuning_handler.get_finetuning_events()
events
finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl")
get_ipython().system('cat mock_finetune_songs.jsonl')
base_model_slug = "llama2-7b-chat"
base_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True
)
from llama_index.finetuning import GradientFinetuneEngine
finetune_engine = GradientFinetuneEngine(
base_model_slug=base_model_slug,
name="movies_structured",
data_path="mock_finetune_songs.jsonl",
verbose=True,
max_steps=200,
batch_size=1,
)
finetune_engine.model_adapter_id
epochs = 2
for i in range(epochs):
print(f"** EPOCH {i} **")
finetune_engine.finetune()
ft_llm = finetune_engine.get_finetuned_model(
max_tokens=500, is_chat_model=True
)
from llama_index.llms.gradient import GradientModelAdapterLLM
new_prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
Please only generate one album.
"""
gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=new_prompt_template_str,
llm=ft_llm,
verbose=True,
)
gradient_program(movie_name="Goodfellas")
gradient_program(movie_name="Chucky")
base_gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=base_llm,
verbose=True,
)
base_gradient_program(movie_name="Goodfellas")
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pydantic import Field
from typing import List
class Citation(BaseModel):
"""Citation class."""
author: str = Field(
..., description="Inferred first author (usually last name"
)
year: int = Field(..., description="Inferred year")
desc: str = Field(
...,
description=(
"Inferred description from the text of the work that the author is"
" cited for"
),
)
class Response(BaseModel):
"""List of author citations.
Extracted over unstructured text.
"""
citations: List[Citation] = Field(
...,
description=(
"List of author citations (organized by author, year, and"
" description)."
),
)
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SimpleNodeParser
from pathlib import Path
from llama_index.core.callbacks import GradientAIFineTuningHandler
loader = PyMuPDFReader()
docs0 = loader.load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
metadata = {
"paper_title": "Llama 2: Open Foundation and Fine-Tuned Chat Models"
}
docs = [Document(text=doc_text, metadata=metadata)]
chunk_size = 1024
node_parser = SimpleNodeParser.from_defaults(chunk_size=chunk_size)
nodes = node_parser.get_nodes_from_documents(docs)
len(nodes)
finetuning_handler = | GradientAIFineTuningHandler() | llama_index.core.callbacks.GradientAIFineTuningHandler |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip')
get_ipython().system('unzip data.zip')
import pandas as pd
from pathlib import Path
data_dir = Path("./WikiTableQuestions/csv/200-csv")
csv_files = sorted([f for f in data_dir.glob("*.csv")])
dfs = []
for csv_file in csv_files:
print(f"processing file: {csv_file}")
try:
df = pd.read_csv(csv_file)
dfs.append(df)
except Exception as e:
print(f"Error parsing {csv_file}: {str(e)}")
tableinfo_dir = "WikiTableQuestions_TableInfo"
get_ipython().system('mkdir {tableinfo_dir}')
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.bridge.pydantic import BaseModel, Field
from llama_index.llms.openai import OpenAI
class TableInfo(BaseModel):
"""Information regarding a structured table."""
table_name: str = Field(
..., description="table name (must be underscores and NO spaces)"
)
table_summary: str = Field(
..., description="short, concise summary/caption of the table"
)
prompt_str = """\
Give me a summary of the table with the following JSON format.
- The table name must be unique to the table and describe it while being concise.
- Do NOT output a generic table name (e.g. table, my_table).
Do NOT make the table name one of the following: {exclude_table_name_list}
Table:
{table_str}
Summary: """
program = LLMTextCompletionProgram.from_defaults(
output_cls=TableInfo,
llm=OpenAI(model="gpt-3.5-turbo"),
prompt_template_str=prompt_str,
)
import json
def _get_tableinfo_with_index(idx: int) -> str:
results_gen = Path(tableinfo_dir).glob(f"{idx}_*")
results_list = list(results_gen)
if len(results_list) == 0:
return None
elif len(results_list) == 1:
path = results_list[0]
return TableInfo.parse_file(path)
else:
raise ValueError(
f"More than one file matching index: {list(results_gen)}"
)
table_names = set()
table_infos = []
for idx, df in enumerate(dfs):
table_info = _get_tableinfo_with_index(idx)
if table_info:
table_infos.append(table_info)
else:
while True:
df_str = df.head(10).to_csv()
table_info = program(
table_str=df_str,
exclude_table_name_list=str(list(table_names)),
)
table_name = table_info.table_name
print(f"Processed table: {table_name}")
if table_name not in table_names:
table_names.add(table_name)
break
else:
print(f"Table name {table_name} already exists, trying again.")
pass
out_file = f"{tableinfo_dir}/{idx}_{table_name}.json"
json.dump(table_info.dict(), open(out_file, "w"))
table_infos.append(table_info)
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
)
import re
def sanitize_column_name(col_name):
return re.sub(r"\W+", "_", col_name)
def create_table_from_dataframe(
df: pd.DataFrame, table_name: str, engine, metadata_obj
):
sanitized_columns = {col: sanitize_column_name(col) for col in df.columns}
df = df.rename(columns=sanitized_columns)
columns = [
Column(col, String if dtype == "object" else Integer)
for col, dtype in zip(df.columns, df.dtypes)
]
table = Table(table_name, metadata_obj, *columns)
metadata_obj.create_all(engine)
with engine.connect() as conn:
for _, row in df.iterrows():
insert_stmt = table.insert().values(**row.to_dict())
conn.execute(insert_stmt)
conn.commit()
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
for idx, df in enumerate(dfs):
tableinfo = _get_tableinfo_with_index(idx)
print(f"Creating table: {tableinfo.table_name}")
create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj)
import phoenix as px
import llama_index.core
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.core.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index.core import SQLDatabase, VectorStoreIndex
sql_database = SQLDatabase(engine)
table_node_mapping = | SQLTableNodeMapping(sql_database) | llama_index.core.objects.SQLTableNodeMapping |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceWindowNodeParser
from llama_index.core.node_parser import SentenceSplitter
node_parser = SentenceWindowNodeParser.from_defaults(
window_size=3,
window_metadata_key="window",
original_text_metadata_key="original_text",
)
text_splitter = SentenceSplitter()
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1)
embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-mpnet-base-v2", max_length=512
)
from llama_index.core import Settings
Settings.llm = llm
Settings.embed_model = embed_model
Settings.text_splitter = text_splitter
get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf')
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader(
input_files=["./IPCC_AR6_WGII_Chapter03.pdf"]
).load_data()
nodes = node_parser.get_nodes_from_documents(documents)
base_nodes = text_splitter.get_nodes_from_documents(documents)
from llama_index.core import VectorStoreIndex
sentence_index = VectorStoreIndex(nodes)
base_index = VectorStoreIndex(base_nodes)
from llama_index.core.postprocessor import MetadataReplacementPostProcessor
query_engine = sentence_index.as_query_engine(
similarity_top_k=2,
node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window")
],
)
window_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(window_response)
window = window_response.source_nodes[0].node.metadata["window"]
sentence = window_response.source_nodes[0].node.metadata["original_text"]
print(f"Window: {window}")
print("------------------")
print(f"Original Sentence: {sentence}")
query_engine = base_index.as_query_engine(similarity_top_k=2)
vector_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(vector_response)
query_engine = base_index.as_query_engine(similarity_top_k=5)
vector_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(vector_response)
for source_node in window_response.source_nodes:
print(source_node.node.metadata["original_text"])
print("--------")
for node in vector_response.source_nodes:
print("AMOC mentioned?", "AMOC" in node.node.text)
print("--------")
print(vector_response.source_nodes[2].node.text)
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.llms.openai import OpenAI
import nest_asyncio
import random
nest_asyncio.apply()
len(base_nodes)
num_nodes_eval = 30
sample_eval_nodes = random.sample(base_nodes[:200], num_nodes_eval)
dataset_generator = DatasetGenerator(
sample_eval_nodes,
llm=OpenAI(model="gpt-4"),
show_progress=True,
num_questions_per_chunk=2,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes()
eval_dataset.save_json("data/ipcc_eval_qr_dataset.json")
eval_dataset = QueryResponseDataset.from_json("data/ipcc_eval_qr_dataset.json")
import asyncio
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.evaluation import (
CorrectnessEvaluator,
SemanticSimilarityEvaluator,
RelevancyEvaluator,
FaithfulnessEvaluator,
PairwiseComparisonEvaluator,
)
from collections import defaultdict
import pandas as pd
evaluator_c = CorrectnessEvaluator(llm=OpenAI(model="gpt-4"))
evaluator_s = SemanticSimilarityEvaluator()
evaluator_r = RelevancyEvaluator(llm=OpenAI(model="gpt-4"))
evaluator_f = FaithfulnessEvaluator(llm=OpenAI(model="gpt-4"))
from llama_index.core.evaluation.eval_utils import (
get_responses,
get_results_df,
)
from llama_index.core.evaluation import BatchEvalRunner
max_samples = 30
eval_qs = eval_dataset.questions
ref_response_strs = [r for (_, r) in eval_dataset.qr_pairs]
base_query_engine = base_index.as_query_engine(similarity_top_k=2)
query_engine = sentence_index.as_query_engine(
similarity_top_k=2,
node_postprocessors=[
| MetadataReplacementPostProcessor(target_metadata_key="window") | llama_index.core.postprocessor.MetadataReplacementPostProcessor |
get_ipython().system('pip install -U llama-index-multi-modal-llms-dashscope')
get_ipython().run_line_magic('env', 'DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY')
from llama_index.multi_modal_llms.dashscope import (
DashScopeMultiModal,
DashScopeMultiModalModels,
)
from llama_index.core.multi_modal_llms.generic_utils import load_image_urls
image_urls = [
"https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg",
]
image_documents = load_image_urls(image_urls)
dashscope_multi_modal_llm = DashScopeMultiModal(
model_name=DashScopeMultiModalModels.QWEN_VL_MAX,
)
complete_response = dashscope_multi_modal_llm.complete(
prompt="What's in the image?",
image_documents=image_documents,
)
print(complete_response)
multi_image_urls = [
"https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg",
"https://dashscope.oss-cn-beijing.aliyuncs.com/images/panda.jpeg",
]
multi_image_documents = | load_image_urls(multi_image_urls) | llama_index.core.multi_modal_llms.generic_utils.load_image_urls |
get_ipython().run_line_magic('pip', 'install llama-index-readers-notion')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
get_ipython().system('pip install llama-index')
from llama_index.core import SummaryIndex
from llama_index.readers.notion import NotionPageReader
from IPython.display import Markdown, display
import os
integration_token = os.getenv("NOTION_INTEGRATION_TOKEN")
page_ids = ["<page_id>"]
documents = NotionPageReader(integration_token=integration_token).load_data(
page_ids=page_ids
)
index = SummaryIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("<query_text>")
display(Markdown(f"<b>{response}</b>"))
database_id = "<database-id>"
documents = | NotionPageReader(integration_token=integration_token) | llama_index.readers.notion.NotionPageReader |
get_ipython().system('pip install llama-index')
from pydantic import BaseModel
from typing import List
from llama_index.core.program import LLMTextCompletionProgram
class Song(BaseModel):
"""Data model for a song."""
title: str
length_seconds: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
from llama_index.core.program import LLMTextCompletionProgram
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
program = LLMTextCompletionProgram.from_defaults(
output_cls=Album,
prompt_template_str=prompt_template_str,
verbose=True,
)
output = program(movie_name="The Shining")
output
from llama_index.core.output_parsers import PydanticOutputParser
program = LLMTextCompletionProgram.from_defaults(
output_parser= | PydanticOutputParser(output_cls=Album) | llama_index.core.output_parsers.PydanticOutputParser |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-pathway')
get_ipython().system('pip install pathway')
get_ipython().system('pip install llama-index')
get_ipython().system("mkdir -p 'data/'")
get_ipython().system("wget 'https://gist.githubusercontent.com/janchorowski/dd22a293f3d99d1b726eedc7d46d2fc0/raw/pathway_readme.md' -O 'data/pathway_readme.md'")
import getpass
import os
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.ERROR)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import pathway as pw
data_sources = []
data_sources.append(
pw.io.fs.read(
"./data",
format="binary",
mode="streaming",
with_metadata=True,
) # This creates a `pathway` connector that tracks
)
from llama_index.core.retrievers import PathwayVectorServer
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.node_parser import TokenTextSplitter
embed_model = OpenAIEmbedding(embed_batch_size=10)
transformations_example = [
TokenTextSplitter(
chunk_size=150,
chunk_overlap=10,
separator=" ",
),
embed_model,
]
processing_pipeline = PathwayVectorServer(
*data_sources,
transformations=transformations_example,
)
PATHWAY_HOST = "127.0.0.1"
PATHWAY_PORT = 8754
processing_pipeline.run_server(
host=PATHWAY_HOST, port=PATHWAY_PORT, with_cache=False, threaded=True
)
from llama_index.retrievers.pathway import PathwayRetriever
retriever = | PathwayRetriever(host=PATHWAY_HOST, port=PATHWAY_PORT) | llama_index.retrievers.pathway.PathwayRetriever |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceWindowNodeParser
from llama_index.core.node_parser import SentenceSplitter
node_parser = SentenceWindowNodeParser.from_defaults(
window_size=3,
window_metadata_key="window",
original_text_metadata_key="original_text",
)
text_splitter = SentenceSplitter()
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1)
embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-mpnet-base-v2", max_length=512
)
from llama_index.core import Settings
Settings.llm = llm
Settings.embed_model = embed_model
Settings.text_splitter = text_splitter
get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf')
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader(
input_files=["./IPCC_AR6_WGII_Chapter03.pdf"]
).load_data()
nodes = node_parser.get_nodes_from_documents(documents)
base_nodes = text_splitter.get_nodes_from_documents(documents)
from llama_index.core import VectorStoreIndex
sentence_index = VectorStoreIndex(nodes)
base_index = VectorStoreIndex(base_nodes)
from llama_index.core.postprocessor import MetadataReplacementPostProcessor
query_engine = sentence_index.as_query_engine(
similarity_top_k=2,
node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window")
],
)
window_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(window_response)
window = window_response.source_nodes[0].node.metadata["window"]
sentence = window_response.source_nodes[0].node.metadata["original_text"]
print(f"Window: {window}")
print("------------------")
print(f"Original Sentence: {sentence}")
query_engine = base_index.as_query_engine(similarity_top_k=2)
vector_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(vector_response)
query_engine = base_index.as_query_engine(similarity_top_k=5)
vector_response = query_engine.query(
"What are the concerns surrounding the AMOC?"
)
print(vector_response)
for source_node in window_response.source_nodes:
print(source_node.node.metadata["original_text"])
print("--------")
for node in vector_response.source_nodes:
print("AMOC mentioned?", "AMOC" in node.node.text)
print("--------")
print(vector_response.source_nodes[2].node.text)
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.llms.openai import OpenAI
import nest_asyncio
import random
nest_asyncio.apply()
len(base_nodes)
num_nodes_eval = 30
sample_eval_nodes = random.sample(base_nodes[:200], num_nodes_eval)
dataset_generator = DatasetGenerator(
sample_eval_nodes,
llm=OpenAI(model="gpt-4"),
show_progress=True,
num_questions_per_chunk=2,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes()
eval_dataset.save_json("data/ipcc_eval_qr_dataset.json")
eval_dataset = QueryResponseDataset.from_json("data/ipcc_eval_qr_dataset.json")
import asyncio
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.evaluation import (
CorrectnessEvaluator,
SemanticSimilarityEvaluator,
RelevancyEvaluator,
FaithfulnessEvaluator,
PairwiseComparisonEvaluator,
)
from collections import defaultdict
import pandas as pd
evaluator_c = CorrectnessEvaluator(llm=OpenAI(model="gpt-4"))
evaluator_s = | SemanticSimilarityEvaluator() | llama_index.core.evaluation.SemanticSimilarityEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
get_ipython().system('pip -q install python-dotenv pinecone-client llama-index pymupdf')
dotenv_path = (
"env" # Google Colabs will not let you open a .env, but you can set
)
with open(dotenv_path, "w") as f:
f.write('PINECONE_API_KEY="<your api key>"\n')
f.write('PINECONE_ENVIRONMENT="gcp-starter"\n')
f.write('OPENAI_API_KEY="<your api key>"\n')
import os
from dotenv import load_dotenv
load_dotenv(dotenv_path=dotenv_path)
import pinecone
api_key = os.environ["PINECONE_API_KEY"]
environment = os.environ["PINECONE_ENVIRONMENT"]
pinecone.init(api_key=api_key, environment=environment)
index_name = "llamaindex-rag-fs"
pinecone.create_index(
index_name, dimension=1536, metric="euclidean", pod_type="p1"
)
pinecone_index = pinecone.Index(index_name)
pinecone_index.delete(deleteAll=True)
from llama_index.vector_stores.pinecone import PineconeVectorStore
vector_store = | PineconeVectorStore(pinecone_index=pinecone_index) | llama_index.vector_stores.pinecone.PineconeVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-cohere')
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini')
get_ipython().system('pip install "google-generativeai" -q')
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.llama_dataset import download_llama_dataset
pairwise_evaluator_dataset, _ = download_llama_dataset(
"MtBenchHumanJudgementDataset", "./mt_bench_data"
)
pairwise_evaluator_dataset.to_pandas()[:5]
from llama_index.core.evaluation import PairwiseComparisonEvaluator
from llama_index.llms.openai import OpenAI
from llama_index.llms.gemini import Gemini
from llama_index.llms.cohere import Cohere
llm_gpt4 = OpenAI(temperature=0, model="gpt-4")
llm_gpt35 = OpenAI(temperature=0, model="gpt-3.5-turbo")
llm_gemini = Gemini(model="models/gemini-pro", temperature=0)
evaluators = {
"gpt-4": PairwiseComparisonEvaluator(llm=llm_gpt4),
"gpt-3.5": PairwiseComparisonEvaluator(llm=llm_gpt35),
"gemini-pro": | PairwiseComparisonEvaluator(llm=llm_gemini) | llama_index.core.evaluation.PairwiseComparisonEvaluator |
get_ipython().system('pip install llama-index')
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.postprocessor import (
PrevNextNodePostprocessor,
AutoPrevNextNodePostprocessor,
)
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.storage.docstore import SimpleDocumentStore
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import StorageContext
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
from llama_index.core import Settings
Settings.chunk_size = 512
nodes = Settings.node_parser.get_nodes_from_documents(documents)
docstore = | SimpleDocumentStore() | llama_index.core.storage.docstore.SimpleDocumentStore |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-cross-encoders')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install datasets --quiet')
get_ipython().system('pip install sentence-transformers --quiet')
get_ipython().system('pip install openai --quiet')
from datasets import load_dataset
import random
dataset = load_dataset("allenai/qasper")
train_dataset = dataset["train"]
validation_dataset = dataset["validation"]
test_dataset = dataset["test"]
random.seed(42) # Set a random seed for reproducibility
train_sampled_indices = random.sample(range(len(train_dataset)), 800)
train_samples = [train_dataset[i] for i in train_sampled_indices]
test_sampled_indices = random.sample(range(len(test_dataset)), 80)
test_samples = [test_dataset[i] for i in test_sampled_indices]
from typing import List
def get_full_text(sample: dict) -> str:
"""
:param dict sample: the row sample from QASPER
"""
title = sample["title"]
abstract = sample["abstract"]
sections_list = sample["full_text"]["section_name"]
paragraph_list = sample["full_text"]["paragraphs"]
combined_sections_with_paras = ""
if len(sections_list) == len(paragraph_list):
combined_sections_with_paras += title + "\t"
combined_sections_with_paras += abstract + "\t"
for index in range(0, len(sections_list)):
combined_sections_with_paras += str(sections_list[index]) + "\t"
combined_sections_with_paras += "".join(paragraph_list[index])
return combined_sections_with_paras
else:
print("Not the same number of sections as paragraphs list")
def get_questions(sample: dict) -> List[str]:
"""
:param dict sample: the row sample from QASPER
"""
questions_list = sample["qas"]["question"]
return questions_list
doc_qa_dict_list = []
for train_sample in train_samples:
full_text = get_full_text(train_sample)
questions_list = get_questions(train_sample)
local_dict = {"paper": full_text, "questions": questions_list}
doc_qa_dict_list.append(local_dict)
len(doc_qa_dict_list)
import pandas as pd
df_train = pd.DataFrame(doc_qa_dict_list)
df_train.to_csv("train.csv")
"""
The Answers field in the dataset follow the below format:-
Unanswerable answers have "unanswerable" set to true.
The remaining answers have exactly one of the following fields being non-empty.
"extractive_spans" are spans in the paper which serve as the answer.
"free_form_answer" is a written out answer.
"yes_no" is true iff the answer is Yes, and false iff the answer is No.
We accept only free-form answers and for all the other kind of answers we set their value to 'Unacceptable',
to better evaluate the performance of the query engine using pairwise comparision evaluator as it uses GPT-4 which is biased towards preferring long answers more.
https://www.anyscale.com/blog/a-comprehensive-guide-for-building-rag-based-llm-applications-part-1
So in the case of 'yes_no' answers it can favour Query Engine answers more than reference answers.
Also in the case of extracted spans it can favour reference answers more than Query engine generated answers.
"""
eval_doc_qa_answer_list = []
def get_answers(sample: dict) -> List[str]:
"""
:param dict sample: the row sample from the train split of QASPER
"""
final_answers_list = []
answers = sample["qas"]["answers"]
for answer in answers:
local_answer = ""
types_of_answers = answer["answer"][0]
if types_of_answers["unanswerable"] == False:
if types_of_answers["free_form_answer"] != "":
local_answer = types_of_answers["free_form_answer"]
else:
local_answer = "Unacceptable"
else:
local_answer = "Unacceptable"
final_answers_list.append(local_answer)
return final_answers_list
for test_sample in test_samples:
full_text = get_full_text(test_sample)
questions_list = get_questions(test_sample)
answers_list = get_answers(test_sample)
local_dict = {
"paper": full_text,
"questions": questions_list,
"answers": answers_list,
}
eval_doc_qa_answer_list.append(local_dict)
len(eval_doc_qa_answer_list)
import pandas as pd
df_test = pd.DataFrame(eval_doc_qa_answer_list)
df_test.to_csv("test.csv")
get_ipython().system('pip install llama-index --quiet')
import os
from llama_index.core import SimpleDirectoryReader
import openai
from llama_index.finetuning.cross_encoders.dataset_gen import (
generate_ce_fine_tuning_dataset,
generate_synthetic_queries_over_documents,
)
from llama_index.finetuning.cross_encoders import CrossEncoderFinetuneEngine
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
from llama_index.core import Document
final_finetuning_data_list = []
for paper in doc_qa_dict_list:
questions_list = paper["questions"]
documents = [Document(text=paper["paper"])]
local_finetuning_dataset = generate_ce_fine_tuning_dataset(
documents=documents,
questions_list=questions_list,
max_chunk_length=256,
top_k=5,
)
final_finetuning_data_list.extend(local_finetuning_dataset)
len(final_finetuning_data_list)
import pandas as pd
df_finetuning_dataset = pd.DataFrame(final_finetuning_data_list)
df_finetuning_dataset.to_csv("fine_tuning.csv")
finetuning_dataset = final_finetuning_data_list
finetuning_dataset[0]
get_ipython().system('wget -O test.csv https://www.dropbox.com/scl/fi/3lmzn6714oy358mq0vawm/test.csv?rlkey=yz16080te4van7fvnksi9kaed&dl=0')
import pandas as pd
import ast # Used to safely evaluate the string as a list
df_test = pd.read_csv("/content/test.csv", index_col=0)
df_test["questions"] = df_test["questions"].apply(ast.literal_eval)
df_test["answers"] = df_test["answers"].apply(ast.literal_eval)
print(f"Number of papers in the test sample:- {len(df_test)}")
from llama_index.core import Document
final_eval_data_list = []
for index, row in df_test.iterrows():
documents = [Document(text=row["paper"])]
query_list = row["questions"]
local_eval_dataset = generate_ce_fine_tuning_dataset(
documents=documents,
questions_list=query_list,
max_chunk_length=256,
top_k=5,
)
relevant_query_list = []
relevant_context_list = []
for item in local_eval_dataset:
if item.score == 1:
relevant_query_list.append(item.query)
relevant_context_list.append(item.context)
if len(relevant_query_list) > 0:
final_eval_data_list.append(
{
"paper": row["paper"],
"questions": relevant_query_list,
"context": relevant_context_list,
}
)
len(final_eval_data_list)
import pandas as pd
df_finetuning_dataset = pd.DataFrame(final_eval_data_list)
df_finetuning_dataset.to_csv("reranking_test.csv")
get_ipython().system('pip install huggingface_hub --quiet')
from huggingface_hub import notebook_login
notebook_login()
from sentence_transformers import SentenceTransformer
finetuning_engine = CrossEncoderFinetuneEngine(
dataset=finetuning_dataset, epochs=2, batch_size=8
)
finetuning_engine.finetune()
finetuning_engine.push_to_hub(
repo_id="bpHigh/Cross-Encoder-LLamaIndex-Demo-v2"
)
get_ipython().system('pip install nest-asyncio --quiet')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('wget -O reranking_test.csv https://www.dropbox.com/scl/fi/mruo5rm46k1acm1xnecev/reranking_test.csv?rlkey=hkniwowq0xrc3m0ywjhb2gf26&dl=0')
import pandas as pd
import ast
df_reranking = pd.read_csv("/content/reranking_test.csv", index_col=0)
df_reranking["questions"] = df_reranking["questions"].apply(ast.literal_eval)
df_reranking["context"] = df_reranking["context"].apply(ast.literal_eval)
print(f"Number of papers in the reranking eval dataset:- {len(df_reranking)}")
df_reranking.head(1)
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
from llama_index.core import Settings
import os
import openai
import pandas as pd
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
Settings.chunk_size = 256
rerank_base = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-12-v2", top_n=3
)
rerank_finetuned = SentenceTransformerRerank(
model="bpHigh/Cross-Encoder-LLamaIndex-Demo-v2", top_n=3
)
without_reranker_hits = 0
base_reranker_hits = 0
finetuned_reranker_hits = 0
total_number_of_context = 0
for index, row in df_reranking.iterrows():
documents = [Document(text=row["paper"])]
query_list = row["questions"]
context_list = row["context"]
assert len(query_list) == len(context_list)
vector_index = VectorStoreIndex.from_documents(documents)
retriever_without_reranker = vector_index.as_query_engine(
similarity_top_k=3, response_mode="no_text"
)
retriever_with_base_reranker = vector_index.as_query_engine(
similarity_top_k=8,
response_mode="no_text",
node_postprocessors=[rerank_base],
)
retriever_with_finetuned_reranker = vector_index.as_query_engine(
similarity_top_k=8,
response_mode="no_text",
node_postprocessors=[rerank_finetuned],
)
for index in range(0, len(query_list)):
query = query_list[index]
context = context_list[index]
total_number_of_context += 1
response_without_reranker = retriever_without_reranker.query(query)
without_reranker_nodes = response_without_reranker.source_nodes
for node in without_reranker_nodes:
if context in node.node.text or node.node.text in context:
without_reranker_hits += 1
response_with_base_reranker = retriever_with_base_reranker.query(query)
with_base_reranker_nodes = response_with_base_reranker.source_nodes
for node in with_base_reranker_nodes:
if context in node.node.text or node.node.text in context:
base_reranker_hits += 1
response_with_finetuned_reranker = (
retriever_with_finetuned_reranker.query(query)
)
with_finetuned_reranker_nodes = (
response_with_finetuned_reranker.source_nodes
)
for node in with_finetuned_reranker_nodes:
if context in node.node.text or node.node.text in context:
finetuned_reranker_hits += 1
assert (
len(with_finetuned_reranker_nodes)
== len(with_base_reranker_nodes)
== len(without_reranker_nodes)
== 3
)
without_reranker_scores = [without_reranker_hits]
base_reranker_scores = [base_reranker_hits]
finetuned_reranker_scores = [finetuned_reranker_hits]
reranker_eval_dict = {
"Metric": "Hits",
"OpenAI_Embeddings": without_reranker_scores,
"Base_cross_encoder": base_reranker_scores,
"Finetuned_cross_encoder": finetuned_reranker_hits,
"Total Relevant Context": total_number_of_context,
}
df_reranker_eval_results = pd.DataFrame(reranker_eval_dict)
display(df_reranker_eval_results)
get_ipython().system('wget -O test.csv https://www.dropbox.com/scl/fi/3lmzn6714oy358mq0vawm/test.csv?rlkey=yz16080te4van7fvnksi9kaed&dl=0')
import pandas as pd
import ast # Used to safely evaluate the string as a list
df_test = pd.read_csv("/content/test.csv", index_col=0)
df_test["questions"] = df_test["questions"].apply(ast.literal_eval)
df_test["answers"] = df_test["answers"].apply(ast.literal_eval)
print(f"Number of papers in the test sample:- {len(df_test)}")
df_test.head(1)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
from llama_index.core.evaluation import PairwiseComparisonEvaluator
from llama_index.core.evaluation.eval_utils import (
get_responses,
get_results_df,
)
import os
import openai
import pandas as pd
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
gpt4 = OpenAI(temperature=0, model="gpt-4")
evaluator_gpt4_pairwise = PairwiseComparisonEvaluator(llm=gpt4)
pairwise_scores_list = []
no_reranker_dict_list = []
for index, row in df_test.iterrows():
documents = [Document(text=row["paper"])]
query_list = row["questions"]
reference_answers_list = row["answers"]
number_of_accepted_queries = 0
vector_index = VectorStoreIndex.from_documents(documents)
query_engine = vector_index.as_query_engine(similarity_top_k=3)
assert len(query_list) == len(reference_answers_list)
pairwise_local_score = 0
for index in range(0, len(query_list)):
query = query_list[index]
reference = reference_answers_list[index]
if reference != "Unacceptable":
number_of_accepted_queries += 1
response = str(query_engine.query(query))
no_reranker_dict = {
"query": query,
"response": response,
"reference": reference,
}
no_reranker_dict_list.append(no_reranker_dict)
pairwise_eval_result = await evaluator_gpt4_pairwise.aevaluate(
query, response=response, reference=reference
)
pairwise_score = pairwise_eval_result.score
pairwise_local_score += pairwise_score
else:
pass
if number_of_accepted_queries > 0:
avg_pairwise_local_score = (
pairwise_local_score / number_of_accepted_queries
)
pairwise_scores_list.append(avg_pairwise_local_score)
overal_pairwise_average_score = sum(pairwise_scores_list) / len(
pairwise_scores_list
)
df_responses = pd.DataFrame(no_reranker_dict_list)
df_responses.to_csv("No_Reranker_Responses.csv")
results_dict = {
"name": ["Without Reranker"],
"pairwise score": [overal_pairwise_average_score],
}
results_df = pd.DataFrame(results_dict)
display(results_df)
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
from llama_index.core.evaluation import PairwiseComparisonEvaluator
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
rerank = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-12-v2", top_n=3
)
gpt4 = OpenAI(temperature=0, model="gpt-4")
evaluator_gpt4_pairwise = PairwiseComparisonEvaluator(llm=gpt4)
pairwise_scores_list = []
base_reranker_dict_list = []
for index, row in df_test.iterrows():
documents = [Document(text=row["paper"])]
query_list = row["questions"]
reference_answers_list = row["answers"]
number_of_accepted_queries = 0
vector_index = VectorStoreIndex.from_documents(documents)
query_engine = vector_index.as_query_engine(
similarity_top_k=8, node_postprocessors=[rerank]
)
assert len(query_list) == len(reference_answers_list)
pairwise_local_score = 0
for index in range(0, len(query_list)):
query = query_list[index]
reference = reference_answers_list[index]
if reference != "Unacceptable":
number_of_accepted_queries += 1
response = str(query_engine.query(query))
base_reranker_dict = {
"query": query,
"response": response,
"reference": reference,
}
base_reranker_dict_list.append(base_reranker_dict)
pairwise_eval_result = await evaluator_gpt4_pairwise.aevaluate(
query=query, response=response, reference=reference
)
pairwise_score = pairwise_eval_result.score
pairwise_local_score += pairwise_score
else:
pass
if number_of_accepted_queries > 0:
avg_pairwise_local_score = (
pairwise_local_score / number_of_accepted_queries
)
pairwise_scores_list.append(avg_pairwise_local_score)
overal_pairwise_average_score = sum(pairwise_scores_list) / len(
pairwise_scores_list
)
df_responses = pd.DataFrame(base_reranker_dict_list)
df_responses.to_csv("Base_Reranker_Responses.csv")
results_dict = {
"name": ["With base cross-encoder/ms-marco-MiniLM-L-12-v2 as Reranker"],
"pairwise score": [overal_pairwise_average_score],
}
results_df = pd.DataFrame(results_dict)
display(results_df)
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response
from llama_index.llms.openai import OpenAI
from llama_index.core import Document
from llama_index.core.evaluation import PairwiseComparisonEvaluator
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-"
openai.api_key = os.environ["OPENAI_API_KEY"]
rerank = SentenceTransformerRerank(
model="bpHigh/Cross-Encoder-LLamaIndex-Demo-v2", top_n=3
)
gpt4 = OpenAI(temperature=0, model="gpt-4")
evaluator_gpt4_pairwise = | PairwiseComparisonEvaluator(llm=gpt4) | llama_index.core.evaluation.PairwiseComparisonEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-experimental-param-tuner')
get_ipython().system('pip install llama-index llama-hub')
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
import nest_asyncio
nest_asyncio.apply()
from pathlib import Path
from llama_index.readers.file import PDFReader
from llama_index.readers.file import UnstructuredReader
from llama_index.readers.file import PyMuPDFReader
loader = PDFReader()
docs0 = loader.load_data(file=Path("./data/llama2.pdf"))
from llama_index.core import Document
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.core.schema import IndexNode
get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json')
from llama_index.core.evaluation import QueryResponseDataset
eval_dataset = QueryResponseDataset.from_json(
"data/llama2_eval_qr_dataset.json"
)
eval_qs = eval_dataset.questions
ref_response_strs = [r for (_, r) in eval_dataset.qr_pairs]
from llama_index.core import (
VectorStoreIndex,
load_index_from_storage,
StorageContext,
)
from llama_index.experimental.param_tuner import ParamTuner
from llama_index.core.param_tuner.base import TunedResult, RunResult
from llama_index.core.evaluation.eval_utils import (
get_responses,
aget_responses,
)
from llama_index.core.evaluation import (
SemanticSimilarityEvaluator,
BatchEvalRunner,
)
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
import os
import numpy as np
from pathlib import Path
def _build_index(chunk_size, docs):
index_out_path = f"./storage_{chunk_size}"
if not os.path.exists(index_out_path):
Path(index_out_path).mkdir(parents=True, exist_ok=True)
node_parser = SimpleNodeParser.from_defaults(chunk_size=chunk_size)
base_nodes = node_parser.get_nodes_from_documents(docs)
index = VectorStoreIndex(base_nodes)
index.storage_context.persist(index_out_path)
else:
storage_context = StorageContext.from_defaults(
persist_dir=index_out_path
)
index = load_index_from_storage(
storage_context,
)
return index
def _get_eval_batch_runner():
evaluator_s = SemanticSimilarityEvaluator(embed_model=OpenAIEmbedding())
eval_batch_runner = BatchEvalRunner(
{"semantic_similarity": evaluator_s}, workers=2, show_progress=True
)
return eval_batch_runner
def objective_function(params_dict):
chunk_size = params_dict["chunk_size"]
docs = params_dict["docs"]
top_k = params_dict["top_k"]
eval_qs = params_dict["eval_qs"]
ref_response_strs = params_dict["ref_response_strs"]
index = _build_index(chunk_size, docs)
query_engine = index.as_query_engine(similarity_top_k=top_k)
pred_response_objs = get_responses(
eval_qs, query_engine, show_progress=True
)
eval_batch_runner = _get_eval_batch_runner()
eval_results = eval_batch_runner.evaluate_responses(
eval_qs, responses=pred_response_objs, reference=ref_response_strs
)
mean_score = np.array(
[r.score for r in eval_results["semantic_similarity"]]
).mean()
return | RunResult(score=mean_score, params=params_dict) | llama_index.core.param_tuner.base.RunResult |
get_ipython().run_line_magic('pip', 'install llama-index-llms-fireworks')
get_ipython().run_line_magic('pip', 'install llama-index')
from llama_index.llms.fireworks import Fireworks
resp = | Fireworks() | llama_index.llms.fireworks.Fireworks |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-extractors-entity')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY_HERE"
from llama_index.llms.openai import OpenAI
from llama_index.core.schema import MetadataMode
llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo", max_tokens=512)
from llama_index.core.extractors import (
SummaryExtractor,
QuestionsAnsweredExtractor,
TitleExtractor,
KeywordExtractor,
BaseExtractor,
)
from llama_index.extractors.entity import EntityExtractor
from llama_index.core.node_parser import TokenTextSplitter
text_splitter = TokenTextSplitter(
separator=" ", chunk_size=512, chunk_overlap=128
)
class CustomExtractor(BaseExtractor):
def extract(self, nodes):
metadata_list = [
{
"custom": (
node.metadata["document_title"]
+ "\n"
+ node.metadata["excerpt_keywords"]
)
}
for node in nodes
]
return metadata_list
extractors = [
TitleExtractor(nodes=5, llm=llm),
| QuestionsAnsweredExtractor(questions=3, llm=llm) | llama_index.core.extractors.QuestionsAnsweredExtractor |
from llama_index.llms.openai import OpenAI
from llama_index.core import VectorStoreIndex
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.postprocessor import LLMRerank
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core import Settings
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.packs.koda_retriever import KodaRetriever
import os
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY"))
index = pc.Index("sample-movies")
Settings.llm = | OpenAI() | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import phoenix as px
px.launch_app()
import llama_index.core
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader("../data/paul_graham")
docs = reader.load_data()
import os
from llama_index.core import (
StorageContext,
VectorStoreIndex,
load_index_from_storage,
)
if not os.path.exists("storage"):
index = VectorStoreIndex.from_documents(docs)
index.set_index_id("vector_index")
index.storage_context.persist("./storage")
else:
storage_context = StorageContext.from_defaults(persist_dir="storage")
index = load_index_from_storage(storage_context, index_id="vector_index")
from llama_index.core.query_pipeline import QueryPipeline
from llama_index.core import PromptTemplate
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = PromptTemplate(prompt_str)
llm = OpenAI(model="gpt-3.5-turbo")
p = QueryPipeline(chain=[prompt_tmpl, llm], verbose=True)
output = p.run(movie_name="The Departed")
print(str(output))
from typing import List
from pydantic import BaseModel, Field
from llama_index.core.output_parsers import PydanticOutputParser
class Movie(BaseModel):
"""Object representing a single movie."""
name: str = Field(..., description="Name of the movie.")
year: int = Field(..., description="Year of the movie.")
class Movies(BaseModel):
"""Object representing a list of movies."""
movies: List[Movie] = Field(..., description="List of movies.")
llm = OpenAI(model="gpt-3.5-turbo")
output_parser = PydanticOutputParser(Movies)
json_prompt_str = """\
Please generate related movies to {movie_name}. Output with the following JSON format:
"""
json_prompt_str = output_parser.format(json_prompt_str)
json_prompt_tmpl = PromptTemplate(json_prompt_str)
p = | QueryPipeline(chain=[json_prompt_tmpl, llm, output_parser], verbose=True) | llama_index.core.query_pipeline.QueryPipeline |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader(
input_files=["./data/paul_graham/paul_graham_essay.txt"]
)
docs = reader.load_data()
text = docs[0].text
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo")
from llama_index.core.response_synthesizers import Refine
summarizer = | Refine(llm=llm, verbose=True) | llama_index.core.response_synthesizers.Refine |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-typesense')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from IPython.display import Markdown, display
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
from llama_index.vector_stores.typesense import TypesenseVectorStore
from typesense import Client
typesense_client = Client(
{
"api_key": "xyz",
"nodes": [{"host": "localhost", "port": "8108", "protocol": "http"}],
"connection_timeout_seconds": 2,
}
)
typesense_vector_store = TypesenseVectorStore(typesense_client)
storage_context = StorageContext.from_defaults(
vector_store=typesense_vector_store
)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
from llama_index.core import QueryBundle
from llama_index.embeddings.openai import OpenAIEmbedding
query_str = "What did the author do growing up?"
embed_model = OpenAIEmbedding()
from llama_index.core import Settings
query_embedding = embed_model.get_agg_embedding_from_queries(query_str)
query_bundle = | QueryBundle(query_str, embedding=query_embedding) | llama_index.core.QueryBundle |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().handlers = []
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
SimpleDirectoryReader,
StorageContext,
VectorStoreIndex,
)
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
llm = OpenAI(model="gpt-4")
splitter = SentenceSplitter(chunk_size=1024)
nodes = splitter.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
index = VectorStoreIndex(
nodes=nodes,
storage_context=storage_context,
)
retriever = | BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2) | llama_index.retrievers.bm25.BM25Retriever.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().run_line_magic('env', 'OPENAI_API_KEY=YOUR_OPENAI_KEY')
get_ipython().system('pip install llama-index pypdf')
get_ipython().system("mkdir -p 'data/'")
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PDFReader
from llama_index.core.response.notebook_utils import display_source_node
from llama_index.core.retrievers import RecursiveRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
import json
loader = | PDFReader() | llama_index.readers.file.PDFReader |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import phoenix as px
px.launch_app()
import llama_index.core
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
from llama_index.core import SimpleDirectoryReader
reader = SimpleDirectoryReader("../data/paul_graham")
docs = reader.load_data()
import os
from llama_index.core import (
StorageContext,
VectorStoreIndex,
load_index_from_storage,
)
if not os.path.exists("storage"):
index = VectorStoreIndex.from_documents(docs)
index.set_index_id("vector_index")
index.storage_context.persist("./storage")
else:
storage_context = StorageContext.from_defaults(persist_dir="storage")
index = load_index_from_storage(storage_context, index_id="vector_index")
from llama_index.core.query_pipeline import QueryPipeline
from llama_index.core import PromptTemplate
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = PromptTemplate(prompt_str)
llm = OpenAI(model="gpt-3.5-turbo")
p = | QueryPipeline(chain=[prompt_tmpl, llm], verbose=True) | llama_index.core.query_pipeline.QueryPipeline |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai llama-index-tools-tavily-research llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-packs-corrective-rag')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
import os
os.environ["OPENAI_API_KEY"] = "YOUR OPENAI API KEY"
tavily_ai_api_key = "<tavily_ai_api_key>"
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/'")
get_ipython().system("curl 'https://arxiv.org/pdf/2307.09288.pdf' -o 'data/llama2.pdf'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("data").load_data()
from llama_index.packs.corrective_rag import CorrectiveRAGPack
corrective_rag_pack = | CorrectiveRAGPack(documents, tavily_ai_apikey=tavily_ai_api_key) | llama_index.packs.corrective_rag.CorrectiveRAGPack |
from llama_index.core import SQLDatabase
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
engine = create_engine("sqlite:///chinook.db")
sql_database = SQLDatabase(engine)
from llama_index.core.query_pipeline import QueryPipeline
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip')
get_ipython().system('unzip ./chinook.zip')
from llama_index.core.settings import Settings
from llama_index.core.callbacks import CallbackManager
callback_manager = CallbackManager()
Settings.callback_manager = callback_manager
import phoenix as px
import llama_index.core
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.core.query_engine import NLSQLTableQueryEngine
from llama_index.core.tools import QueryEngineTool
sql_query_engine = NLSQLTableQueryEngine(
sql_database=sql_database,
tables=["albums", "tracks", "artists"],
verbose=True,
)
sql_tool = QueryEngineTool.from_defaults(
query_engine=sql_query_engine,
name="sql_tool",
description=(
"Useful for translating a natural language query into a SQL query"
),
)
from llama_index.core.query_pipeline import QueryPipeline as QP
qp = QP(verbose=True)
from llama_index.core.agent.react.types import (
ActionReasoningStep,
ObservationReasoningStep,
ResponseReasoningStep,
)
from llama_index.core.agent import Task, AgentChatResponse
from llama_index.core.query_pipeline import (
AgentInputComponent,
AgentFnComponent,
CustomAgentComponent,
QueryComponent,
ToolRunnerComponent,
)
from llama_index.core.llms import MessageRole
from typing import Dict, Any, Optional, Tuple, List, cast
def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict[str, Any]:
"""Agent input function.
Returns:
A Dictionary of output keys and values. If you are specifying
src_key when defining links between this component and other
components, make sure the src_key matches the specified output_key.
"""
if "current_reasoning" not in state:
state["current_reasoning"] = []
reasoning_step = ObservationReasoningStep(observation=task.input)
state["current_reasoning"].append(reasoning_step)
return {"input": task.input}
agent_input_component = AgentInputComponent(fn=agent_input_fn)
from llama_index.core.agent import ReActChatFormatter
from llama_index.core.query_pipeline import InputComponent, Link
from llama_index.core.llms import ChatMessage
from llama_index.core.tools import BaseTool
def react_prompt_fn(
task: Task, state: Dict[str, Any], input: str, tools: List[BaseTool]
) -> List[ChatMessage]:
chat_formatter = ReActChatFormatter()
return chat_formatter.format(
tools,
chat_history=task.memory.get() + state["memory"].get_all(),
current_reasoning=state["current_reasoning"],
)
react_prompt_component = AgentFnComponent(
fn=react_prompt_fn, partial_dict={"tools": [sql_tool]}
)
from typing import Set, Optional
from llama_index.core.agent.react.output_parser import ReActOutputParser
from llama_index.core.llms import ChatResponse
from llama_index.core.agent.types import Task
def parse_react_output_fn(
task: Task, state: Dict[str, Any], chat_response: ChatResponse
):
"""Parse ReAct output into a reasoning step."""
output_parser = ReActOutputParser()
reasoning_step = output_parser.parse(chat_response.message.content)
return {"done": reasoning_step.is_done, "reasoning_step": reasoning_step}
parse_react_output = AgentFnComponent(fn=parse_react_output_fn)
def run_tool_fn(
task: Task, state: Dict[str, Any], reasoning_step: ActionReasoningStep
):
"""Run tool and process tool output."""
tool_runner_component = ToolRunnerComponent(
[sql_tool], callback_manager=task.callback_manager
)
tool_output = tool_runner_component.run_component(
tool_name=reasoning_step.action,
tool_input=reasoning_step.action_input,
)
observation_step = ObservationReasoningStep(observation=str(tool_output))
state["current_reasoning"].append(observation_step)
return {"response_str": observation_step.get_content(), "is_done": False}
run_tool = AgentFnComponent(fn=run_tool_fn)
def process_response_fn(
task: Task, state: Dict[str, Any], response_step: ResponseReasoningStep
):
"""Process response."""
state["current_reasoning"].append(response_step)
response_str = response_step.response
state["memory"].put(ChatMessage(content=task.input, role=MessageRole.USER))
state["memory"].put(
ChatMessage(content=response_str, role=MessageRole.ASSISTANT)
)
return {"response_str": response_str, "is_done": True}
process_response = AgentFnComponent(fn=process_response_fn)
def process_agent_response_fn(
task: Task, state: Dict[str, Any], response_dict: dict
):
"""Process agent response."""
return (
| AgentChatResponse(response_dict["response_str"]) | llama_index.core.agent.AgentChatResponse |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-cohere')
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini')
get_ipython().system('pip install "google-generativeai" -q')
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.llama_dataset import download_llama_dataset
pairwise_evaluator_dataset, _ = download_llama_dataset(
"MtBenchHumanJudgementDataset", "./mt_bench_data"
)
pairwise_evaluator_dataset.to_pandas()[:5]
from llama_index.core.evaluation import PairwiseComparisonEvaluator
from llama_index.llms.openai import OpenAI
from llama_index.llms.gemini import Gemini
from llama_index.llms.cohere import Cohere
llm_gpt4 = OpenAI(temperature=0, model="gpt-4")
llm_gpt35 = OpenAI(temperature=0, model="gpt-3.5-turbo")
llm_gemini = | Gemini(model="models/gemini-pro", temperature=0) | llama_index.llms.gemini.Gemini |
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini')
get_ipython().system('pip install -q llama-index google-generativeai')
get_ipython().run_line_magic('env', 'GOOGLE_API_KEY=...')
import os
GOOGLE_API_KEY = "" # add your GOOGLE API key here
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
from llama_index.llms.gemini import Gemini
resp = Gemini().complete("Write a poem about a magic backpack")
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.gemini import Gemini
messages = [
ChatMessage(role="user", content="Hello friend!"),
ChatMessage(role="assistant", content="Yarr what is shakin' matey?"),
ChatMessage(
role="user", content="Help me decide what to have for dinner."
),
]
resp = | Gemini() | llama_index.llms.gemini.Gemini |
get_ipython().system('pip install llama-index llama-hub rank-bm25')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('wget "https://www.dropbox.com/s/f6bmb19xdg0xedm/paul_graham_essay.txt?dl=1" -O paul_graham_essay.txt')
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SimpleNodeParser
reader = SimpleDirectoryReader(input_files=["paul_graham_essay.txt"])
documents = reader.load_data()
node_parser = | SimpleNodeParser.from_defaults() | llama_index.core.node_parser.SimpleNodeParser.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-epsilla')
get_ipython().system('pip/pip3 install pyepsilla')
get_ipython().system('pip install llama-index')
import logging
import sys
from llama_index.core import SimpleDirectoryReader, Document, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.epsilla import EpsillaVectorStore
import textwrap
import openai
import getpass
OPENAI_API_KEY = getpass.getpass("OpenAI API Key:")
openai.api_key = OPENAI_API_KEY
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(f"Total documents: {len(documents)}")
print(f"First document, id: {documents[0].doc_id}")
print(f"First document, hash: {documents[0].hash}")
from pyepsilla import vectordb
client = vectordb.Client()
vector_store = EpsillaVectorStore(client=client, db_path="/tmp/llamastore")
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("Who is the author?")
print(textwrap.fill(str(response), 100))
response = query_engine.query("How did the author learn about AI?")
print(textwrap.fill(str(response), 100))
vector_store = | EpsillaVectorStore(client=client, overwrite=True) | llama_index.vector_stores.epsilla.EpsillaVectorStore |
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham") | llama_index.core.SimpleDirectoryReader |
from llama_index.core import SQLDatabase
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
engine = create_engine("sqlite:///chinook.db")
sql_database = | SQLDatabase(engine) | llama_index.core.SQLDatabase |
get_ipython().run_line_magic('pip', 'install llama-index-llms-friendli')
get_ipython().system('pip install llama-index')
get_ipython().run_line_magic('env', 'FRIENDLI_TOKEN=...')
from llama_index.llms.friendli import Friendli
llm = | Friendli() | llama_index.llms.friendli.Friendli |