prompt
stringlengths 70
19.8k
| completion
stringlengths 8
303
| api
stringlengths 23
93
|
---|---|---|
get_ipython().run_line_magic('pip', 'install llama-index-readers-pinecone')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
api_key = "<api_key>"
get_ipython().system('pip install llama-index')
from llama_index.readers.pinecone import PineconeReader
reader = | PineconeReader(api_key=api_key, environment="us-west1-gcp") | llama_index.readers.pinecone.PineconeReader |
import openai
openai.api_key = "sk-your-key"
from llama_index.agent import OpenAIAgent
from llama_index.tools.gmail.base import GmailToolSpec
tool_spec = | GmailToolSpec() | llama_index.tools.gmail.base.GmailToolSpec |
get_ipython().run_line_magic('pip', 'install llama-index-question-gen-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
from IPython.display import Markdown, display
def display_prompt_dict(prompts_dict):
for k, p in prompts_dict.items():
text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>"
display(Markdown(text_md))
print(p.get_template())
display(Markdown("<br><br>"))
from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector
from llama_index.core.selectors import (
PydanticMultiSelector,
PydanticSingleSelector,
)
selector = LLMMultiSelector.from_defaults()
from llama_index.core.tools import ToolMetadata
tool_choices = [
ToolMetadata(
name="covid_nyt",
description=("This tool contains a NYT news article about COVID-19"),
),
ToolMetadata(
name="covid_wiki",
description=("This tool contains the Wikipedia page about COVID-19"),
),
ToolMetadata(
name="covid_tesla",
description=("This tool contains the Wikipedia page about apples"),
),
]
display_prompt_dict(selector.get_prompts())
selector_result = selector.select(
tool_choices, query="Tell me more about COVID-19"
)
selector_result.selections
from llama_index.core import PromptTemplate
from llama_index.llms.openai import OpenAI
query_gen_str = """\
You are a helpful assistant that generates multiple search queries based on a \
single input query. Generate {num_queries} search queries, one on each line, \
related to the following input query:
Query: {query}
Queries:
"""
query_gen_prompt = PromptTemplate(query_gen_str)
llm = OpenAI(model="gpt-3.5-turbo")
def generate_queries(query: str, llm, num_queries: int = 4):
response = llm.predict(
query_gen_prompt, num_queries=num_queries, query=query
)
queries = response.split("\n")
queries_str = "\n".join(queries)
print(f"Generated queries:\n{queries_str}")
return queries
queries = generate_queries("What happened at Interleaf and Viaweb?", llm)
queries
from llama_index.core.indices.query.query_transform import HyDEQueryTransform
from llama_index.llms.openai import OpenAI
hyde = HyDEQueryTransform(include_original=True)
llm = OpenAI(model="gpt-3.5-turbo")
query_bundle = hyde.run("What is Bel?")
new_query.custom_embedding_strs
from llama_index.core.question_gen import LLMQuestionGenerator
from llama_index.question_gen.openai import OpenAIQuestionGenerator
from llama_index.llms.openai import OpenAI
llm = OpenAI()
question_gen = OpenAIQuestionGenerator.from_defaults(llm=llm)
display_prompt_dict(question_gen.get_prompts())
from llama_index.core.tools import ToolMetadata
tool_choices = [
ToolMetadata(
name="uber_2021_10k",
description=(
"Provides information about Uber financials for year 2021"
),
),
ToolMetadata(
name="lyft_2021_10k",
description=(
"Provides information about Lyft financials for year 2021"
),
),
]
from llama_index.core import QueryBundle
query_str = "Compare and contrast Uber and Lyft"
choices = question_gen.generate(tool_choices, | QueryBundle(query_str=query_str) | llama_index.core.QueryBundle |
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm')
get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git')
get_ipython().run_line_magic('pip', 'install torch torchvision')
get_ipython().run_line_magic('pip', 'install matplotlib scikit-image')
get_ipython().run_line_magic('pip', 'install -U qdrant_client')
import os
OPENAI_API_TOKEN = "sk-"
os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN
import wikipedia
import urllib.request
from pathlib import Path
image_path = Path("mixed_wiki")
image_uuid = 0
image_metadata_dict = {}
MAX_IMAGES_PER_WIKI = 30
wiki_titles = [
"Vincent van Gogh",
"San Francisco",
"Batman",
"iPhone",
"Tesla Model S",
"BTS band",
]
if not image_path.exists():
Path.mkdir(image_path)
for title in wiki_titles:
images_per_wiki = 0
print(title)
try:
page_py = wikipedia.page(title)
list_img_urls = page_py.images
for url in list_img_urls:
if url.endswith(".jpg") or url.endswith(".png"):
image_uuid += 1
image_file_name = title + "_" + url.split("/")[-1]
image_metadata_dict[image_uuid] = {
"filename": image_file_name,
"img_path": "./" + str(image_path / f"{image_uuid}.jpg"),
}
urllib.request.urlretrieve(
url, image_path / f"{image_uuid}.jpg"
)
images_per_wiki += 1
if images_per_wiki > MAX_IMAGES_PER_WIKI:
break
except:
print(str(Exception("No images found for Wikipedia page: ")) + title)
continue
from PIL import Image
import matplotlib.pyplot as plt
import os
image_paths = []
for img_path in os.listdir("./mixed_wiki"):
image_paths.append(str(os.path.join("./mixed_wiki", img_path)))
def plot_images(image_paths):
images_shown = 0
plt.figure(figsize=(16, 9))
for img_path in image_paths:
if os.path.isfile(img_path):
image = Image.open(img_path)
plt.subplot(3, 3, images_shown + 1)
plt.imshow(image)
plt.xticks([])
plt.yticks([])
images_shown += 1
if images_shown >= 9:
break
plot_images(image_paths)
from llama_index.core.indices import MultiModalVectorStoreIndex
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import SimpleDirectoryReader, StorageContext
import qdrant_client
from llama_index.core import SimpleDirectoryReader
client = qdrant_client.QdrantClient(path="qdrant_img_db")
text_store = QdrantVectorStore(
client=client, collection_name="text_collection"
)
image_store = QdrantVectorStore(
client=client, collection_name="image_collection"
)
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
documents = SimpleDirectoryReader("./mixed_wiki/").load_data()
index = MultiModalVectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
)
input_image = "./mixed_wiki/2.jpg"
plot_images([input_image])
retriever_engine = index.as_retriever(image_similarity_top_k=4)
retrieval_results = retriever_engine.image_to_image_retrieve(
"./mixed_wiki/2.jpg"
)
retrieved_images = []
for res in retrieval_results:
retrieved_images.append(res.node.metadata["file_path"])
plot_images(retrieved_images[1:])
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core import SimpleDirectoryReader
from llama_index.core.schema import ImageDocument
image_documents = [ImageDocument(image_path=input_image)]
for res_img in retrieved_images[1:]:
image_documents.append(ImageDocument(image_path=res_img))
openai_mm_llm = OpenAIMultiModal(
model="gpt-4-vision-preview", api_key=OPENAI_API_TOKEN, max_new_tokens=1500
)
response = openai_mm_llm.complete(
prompt="Given the first image as the base image, what the other images correspond to?",
image_documents=image_documents,
)
print(response)
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core import PromptTemplate
qa_tmpl_str = (
"Given the images provided, "
"answer the query.\n"
"Query: {query_str}\n"
"Answer: "
)
qa_tmpl = | PromptTemplate(qa_tmpl_str) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-llama-api')
get_ipython().system('pip install llama-index')
from llama_index.llms.llama_api import LlamaAPI
api_key = "LL-your-key"
llm = LlamaAPI(api_key=api_key)
resp = llm.complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = llm.chat(messages)
print(resp)
from pydantic import BaseModel
from llama_index.core.llms.openai_utils import to_openai_function
class Song(BaseModel):
"""A song with name and artist"""
name: str
artist: str
song_fn = to_openai_function(Song)
llm = | LlamaAPI(api_key=api_key) | llama_index.llms.llama_api.LlamaAPI |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-docarray')
get_ipython().system('pip install llama-index')
import os
import sys
import logging
import textwrap
import warnings
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from llama_index.core import (
GPTVectorStoreIndex,
SimpleDirectoryReader,
Document,
)
from llama_index.vector_stores.docarray import DocArrayHnswVectorStore
from IPython.display import Markdown, display
import os
os.environ["OPENAI_API_KEY"] = "<your openai key>"
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(
"Document ID:",
documents[0].doc_id,
"Document Hash:",
documents[0].doc_hash,
)
from llama_index.core import StorageContext
vector_store = | DocArrayHnswVectorStore(work_dir="hnsw_index") | llama_index.vector_stores.docarray.DocArrayHnswVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-tencentvectordb')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install tcvectordb')
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.vector_stores.tencentvectordb import TencentVectorDB
from llama_index.core.vector_stores.tencentvectordb import (
CollectionParams,
FilterField,
)
import tcvectordb
tcvectordb.debug.DebugEnable = False
import openai
OPENAI_API_KEY = getpass.getpass("OpenAI API Key:")
openai.api_key = OPENAI_API_KEY
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
print(f"Total documents: {len(documents)}")
print(f"First document, id: {documents[0].doc_id}")
print(f"First document, hash: {documents[0].hash}")
print(
f"First document, text ({len(documents[0].text)} characters):\n{'='*20}\n{documents[0].text[:360]} ..."
)
vector_store = TencentVectorDB(
url="http://10.0.X.X",
key="eC4bLRy2va******************************",
collection_params=CollectionParams(dimension=1536, drop_exists=True),
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("Why did the author choose to work on AI?")
print(response)
query_engine = index.as_query_engine(vector_store_query_mode="mmr")
response = query_engine.query("Why did the author choose to work on AI?")
print(response)
new_vector_store = TencentVectorDB(
url="http://10.0.X.X",
key="eC4bLRy2va******************************",
collection_params= | CollectionParams(dimension=1536, drop_exists=False) | llama_index.core.vector_stores.tencentvectordb.CollectionParams |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core.postprocessor import (
PIINodePostprocessor,
NERPIINodePostprocessor,
)
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core import Document, VectorStoreIndex
from llama_index.core.schema import TextNode
text = """
Hello Paulo Santos. The latest statement for your credit card account \
1111-0000-1111-0000 was mailed to 123 Any Street, Seattle, WA 98109.
"""
node = TextNode(text=text)
processor = NERPIINodePostprocessor()
from llama_index.core.schema import NodeWithScore
new_nodes = processor.postprocess_nodes([NodeWithScore(node=node)])
new_nodes[0].node.get_text()
new_nodes[0].node.metadata["__pii_node_info__"]
from llama_index.llms.openai import OpenAI
processor = PIINodePostprocessor(llm=OpenAI())
from llama_index.core.schema import NodeWithScore
new_nodes = processor.postprocess_nodes([NodeWithScore(node=node)])
new_nodes[0].node.get_text()
new_nodes[0].node.metadata["__pii_node_info__"]
text = """
Hello Paulo Santos. The latest statement for your credit card account \
4095-2609-9393-4932 was mailed to Seattle, WA 98109. \
IBAN GB90YNTU67299444055881 and social security number is 474-49-7577 were verified on the system. \
Further communications will be sent to [email protected]
"""
presidio_node = TextNode(text=text)
from llama_index.postprocessor.presidio import PresidioPIINodePostprocessor
processor = | PresidioPIINodePostprocessor() | llama_index.postprocessor.presidio.PresidioPIINodePostprocessor |
import os
from getpass import getpass
if os.getenv("OPENAI_API_KEY") is None:
os.environ["OPENAI_API_KEY"] = getpass(
"Paste your OpenAI key from:"
" https://platform.openai.com/account/api-keys\n"
)
assert os.getenv("OPENAI_API_KEY", "").startswith(
"sk-"
), "This doesn't look like a valid OpenAI API key"
print("OpenAI API key configured")
get_ipython().run_line_magic('pip', 'install -q html2text llama-index pandas pyarrow tqdm')
get_ipython().run_line_magic('pip', 'install -q llama-index-readers-web')
get_ipython().run_line_magic('pip', 'install -q llama-index-callbacks-openinference')
import hashlib
import json
from pathlib import Path
import os
import textwrap
from typing import List, Union
import llama_index.core
from llama_index.readers.web import SimpleWebPageReader
from llama_index.core import VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.callbacks import CallbackManager
from llama_index.callbacks.openinference import OpenInferenceCallbackHandler
from llama_index.callbacks.openinference.base import (
as_dataframe,
QueryData,
NodeData,
)
from llama_index.core.node_parser import SimpleNodeParser
import pandas as pd
from tqdm import tqdm
documents = SimpleWebPageReader().load_data(
[
"https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt"
]
)
print(documents[0].text)
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(documents)
print(nodes[0].text)
callback_handler = OpenInferenceCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llama_index.core.Settings.callback_manager = callback_manager
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
max_characters_per_line = 80
queries = [
"What did Paul Graham do growing up?",
"When and how did Paul Graham's mother die?",
"What, in Paul Graham's opinion, is the most distinctive thing about YC?",
"When and how did Paul Graham meet Jessica Livingston?",
"What is Bel, and when and where was it written?",
]
for query in queries:
response = query_engine.query(query)
print("Query")
print("=====")
print(textwrap.fill(query, max_characters_per_line))
print()
print("Response")
print("========")
print(textwrap.fill(str(response), max_characters_per_line))
print()
query_data_buffer = callback_handler.flush_query_data_buffer()
query_dataframe = as_dataframe(query_data_buffer)
query_dataframe
class ParquetCallback:
def __init__(
self, data_path: Union[str, Path], max_buffer_length: int = 1000
):
self._data_path = Path(data_path)
self._data_path.mkdir(parents=True, exist_ok=False)
self._max_buffer_length = max_buffer_length
self._batch_index = 0
def __call__(
self,
query_data_buffer: List[QueryData],
node_data_buffer: List[NodeData],
) -> None:
if len(query_data_buffer) >= self._max_buffer_length:
query_dataframe = as_dataframe(query_data_buffer)
file_path = self._data_path / f"log-{self._batch_index}.parquet"
query_dataframe.to_parquet(file_path)
self._batch_index += 1
query_data_buffer.clear() # 鈿狅笍 clear the buffer or it will keep growing forever!
node_data_buffer.clear() # didn't log node_data_buffer, but still need to clear it
data_path = "data"
parquet_writer = ParquetCallback(
data_path=data_path,
max_buffer_length=1,
)
callback_handler = | OpenInferenceCallbackHandler(callback=parquet_writer) | llama_index.callbacks.openinference.OpenInferenceCallbackHandler |
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
load_index_from_storage,
StorageContext,
)
from IPython.display import Markdown, display
import dotenv
import s3fs
import os
dotenv.load_dotenv("../../../.env")
AWS_KEY = os.environ["AWS_ACCESS_KEY_ID"]
AWS_SECRET = os.environ["AWS_SECRET_ACCESS_KEY"]
R2_ACCOUNT_ID = os.environ["R2_ACCOUNT_ID"]
assert AWS_KEY is not None and AWS_KEY != ""
s3 = s3fs.S3FileSystem(
key=AWS_KEY,
secret=AWS_SECRET,
endpoint_url=f"https://{R2_ACCOUNT_ID}.r2.cloudflarestorage.com",
s3_additional_kwargs={"ACL": "public-read"},
)
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(len(documents))
index = VectorStoreIndex.from_documents(documents, fs=s3)
index.set_index_id("vector_index")
index.storage_context.persist("llama-index/storage_demo", fs=s3)
s3.listdir("llama-index/storage_demo")
sc = StorageContext.from_defaults(
persist_dir="llama-index/storage_demo", fs=s3
)
index2 = | load_index_from_storage(sc, "vector_index") | llama_index.core.load_index_from_storage |
get_ipython().run_line_magic('pip', 'install llama-index-callbacks-wandb')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import os
from getpass import getpass
if os.getenv("OPENAI_API_KEY") is None:
os.environ["OPENAI_API_KEY"] = getpass(
"Paste your OpenAI key from:"
" https://platform.openai.com/account/api-keys\n"
)
assert os.getenv("OPENAI_API_KEY", "").startswith(
"sk-"
), "This doesn't look like a valid OpenAI API key"
print("OpenAI API key configured")
from llama_index.core.callbacks import CallbackManager
from llama_index.core.callbacks import LlamaDebugHandler
from llama_index.callbacks.wandb import WandbCallbackHandler
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
SimpleKeywordTableIndex,
StorageContext,
)
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-4", temperature=0)
import llama_index.core
from llama_index.core import set_global_handler
| set_global_handler("wandb", run_args={"project": "llamaindex"}) | llama_index.core.set_global_handler |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-deeplake')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install deeplake')
import os
import textwrap
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document
from llama_index.vector_stores.deeplake import DeepLakeVectorStore
os.environ["OPENAI_API_KEY"] = "sk-********************************"
os.environ["ACTIVELOOP_TOKEN"] = "********************************"
import urllib.request
urllib.request.urlretrieve(
"https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt",
"data/paul_graham/paul_graham_essay.txt",
)
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(
"Document ID:",
documents[0].doc_id,
"Document Hash:",
documents[0].hash,
)
from llama_index.core import StorageContext
dataset_path = "./dataset/paul_graham"
vector_store = | DeepLakeVectorStore(dataset_path=dataset_path, overwrite=True) | llama_index.vector_stores.deeplake.DeepLakeVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-evaluation-tonic-validate')
import json
import pandas as pd
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.evaluation.tonic_validate import (
AnswerConsistencyEvaluator,
AnswerSimilarityEvaluator,
AugmentationAccuracyEvaluator,
AugmentationPrecisionEvaluator,
RetrievalPrecisionEvaluator,
TonicValidateEvaluator,
)
question = "What makes Sam Altman a good founder?"
reference_answer = "He is smart and has a great force of will."
llm_answer = "He is a good founder because he is smart."
retrieved_context_list = [
"Sam Altman is a good founder. He is very smart.",
"What makes Sam Altman such a good founder is his great force of will.",
]
answer_similarity_evaluator = AnswerSimilarityEvaluator()
score = await answer_similarity_evaluator.aevaluate(
question,
llm_answer,
retrieved_context_list,
reference_response=reference_answer,
)
score
answer_consistency_evaluator = AnswerConsistencyEvaluator()
score = await answer_consistency_evaluator.aevaluate(
question, llm_answer, retrieved_context_list
)
score
augmentation_accuracy_evaluator = | AugmentationAccuracyEvaluator() | llama_index.evaluation.tonic_validate.AugmentationAccuracyEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-program-evaporate')
get_ipython().system('pip install llama-index')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"]
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
from llama_index.core import SimpleDirectoryReader
city_docs = {}
for wiki_title in wiki_titles:
city_docs[wiki_title] = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.chunk_size = 512
city_nodes = {}
for wiki_title in wiki_titles:
docs = city_docs[wiki_title]
nodes = | Settings.node_parser.get_nodes_from_documents(docs) | llama_index.core.Settings.node_parser.get_nodes_from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-llms-bedrock')
get_ipython().system('pip install llama-index')
from llama_index.llms.bedrock import Bedrock
profile_name = "Your aws profile name"
resp = Bedrock(
model="amazon.titan-text-express-v1", profile_name=profile_name
).complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.bedrock import Bedrock
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="Tell me a story"),
]
resp = Bedrock(
model="amazon.titan-text-express-v1", profile_name=profile_name
).chat(messages)
print(resp)
from llama_index.llms.bedrock import Bedrock
llm = Bedrock(model="amazon.titan-text-express-v1", profile_name=profile_name)
resp = llm.stream_complete("Paul Graham is ")
for r in resp:
print(r.delta, end="")
from llama_index.llms.bedrock import Bedrock
llm = Bedrock(model="amazon.titan-text-express-v1", profile_name=profile_name)
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="Tell me a story"),
]
resp = llm.stream_chat(messages)
for r in resp:
print(r.delta, end="")
from llama_index.llms.bedrock import Bedrock
llm = | Bedrock(model="amazon.titan-text-express-v1", profile_name=profile_name) | llama_index.llms.bedrock.Bedrock |
get_ipython().run_line_magic('pip', 'install llama-index-llms-watsonx')
from llama_index.llms.watsonx import WatsonX
credentials = {
"url": "https://enter.your-ibm.url",
"apikey": "insert_your_api_key",
}
project_id = "insert_your_project_id"
resp = WatsonX(credentials=credentials, project_id=project_id).complete(
"Paul Graham is"
)
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.watsonx import WatsonX
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="Tell me a story"),
]
resp = WatsonX(
model_id="meta-llama/llama-2-70b-chat",
credentials=credentials,
project_id=project_id,
).chat(messages)
print(resp)
from llama_index.llms.watsonx import WatsonX
llm = | WatsonX(credentials=credentials, project_id=project_id) | llama_index.llms.watsonx.WatsonX |