prompt
stringlengths 51
10k
| completion
stringlengths 8
362
| api
stringlengths 18
90
|
---|---|---|
get_ipython().system('pip install pettingzoo pygame rlcard')
import collections
import inspect
import tenacity
from langchain.output_parsers import RegexParser
from langchain.schema import (
HumanMessage,
SystemMessage,
)
from langchain_openai import ChatOpenAI
class GymnasiumAgent:
@classmethod
def get_docs(cls, env):
return env.unwrapped.__doc__
def __init__(self, model, env):
self.model = model
self.env = env
self.docs = self.get_docs(env)
self.instructions = """
Your goal is to maximize your return, i.e. the sum of the rewards you receive.
I will give you an observation, reward, terminiation flag, truncation flag, and the return so far, formatted as:
Observation: <observation>
Reward: <reward>
Termination: <termination>
Truncation: <truncation>
Return: <sum_of_rewards>
You will respond with an action, formatted as:
Action: <action>
where you replace <action> with your actual action.
Do nothing else but return the action.
"""
self.action_parser = | RegexParser(
regex=r"Action: (.*) | langchain.output_parsers.RegexParser |
from langchain.chains import LLMMathChain
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
llm_math = | LLMMathChain.from_llm(llm, verbose=True) | langchain.chains.LLMMathChain.from_llm |
get_ipython().system('pip install --upgrade langchain langchain-google-vertexai')
project: str = "PUT_YOUR_PROJECT_ID_HERE" # @param {type:"string"}
endpoint_id: str = "PUT_YOUR_ENDPOINT_ID_HERE" # @param {type:"string"}
location: str = "PUT_YOUR_ENDPOINT_LOCAtION_HERE" # @param {type:"string"}
from langchain_google_vertexai import (
GemmaChatVertexAIModelGarden,
GemmaVertexAIModelGarden,
)
llm = GemmaVertexAIModelGarden(
endpoint_id=endpoint_id,
project=project,
location=location,
)
output = llm.invoke("What is the meaning of life?")
print(output)
from langchain_core.messages import HumanMessage
llm = GemmaChatVertexAIModelGarden(
endpoint_id=endpoint_id,
project=project,
location=location,
)
message1 = HumanMessage(content="How much is 2+2?")
answer1 = llm.invoke([message1])
print(answer1)
message2 = HumanMessage(content="How much is 3+3?")
answer2 = llm.invoke([message1, answer1, message2])
print(answer2)
answer1 = llm.invoke([message1], parse_response=True)
print(answer1)
answer2 = llm.invoke([message1, answer1, message2], parse_response=True)
print(answer2)
get_ipython().system('mkdir -p ~/.kaggle && cp kaggle.json ~/.kaggle/kaggle.json')
get_ipython().system('pip install keras>=3 keras_nlp')
from langchain_google_vertexai import GemmaLocalKaggle
keras_backend: str = "jax" # @param {type:"string"}
model_name: str = "gemma_2b_en" # @param {type:"string"}
llm = | GemmaLocalKaggle(model_name=model_name, keras_backend=keras_backend) | langchain_google_vertexai.GemmaLocalKaggle |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet feedparser newspaper3k listparser')
from langchain_community.document_loaders import RSSFeedLoader
urls = ["https://news.ycombinator.com/rss"]
loader = | RSSFeedLoader(urls=urls) | langchain_community.document_loaders.RSSFeedLoader |
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings.sentence_transformer import (
SentenceTransformerEmbeddings,
)
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = | Chroma.from_documents(docs, embedding_function) | langchain_community.vectorstores.Chroma.from_documents |
import os
os.environ["SEARCHAPI_API_KEY"] = ""
from langchain_community.utilities import SearchApiAPIWrapper
search = SearchApiAPIWrapper()
search.run("Obama's first name?")
os.environ["OPENAI_API_KEY"] = ""
from langchain.agents import AgentType, Tool, initialize_agent
from langchain_community.utilities import SearchApiAPIWrapper
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
search = | SearchApiAPIWrapper() | langchain_community.utilities.SearchApiAPIWrapper |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-robocorp')
from langchain.agents import AgentExecutor, OpenAIFunctionsAgent
from langchain_core.messages import SystemMessage
from langchain_openai import ChatOpenAI
from langchain_robocorp import ActionServerToolkit
llm = ChatOpenAI(model="gpt-4", temperature=0)
toolkit = ActionServerToolkit(url="http://localhost:8080", report_trace=True)
tools = toolkit.get_tools()
system_message = SystemMessage(content="You are a helpful assistant")
prompt = | OpenAIFunctionsAgent.create_prompt(system_message) | langchain.agents.OpenAIFunctionsAgent.create_prompt |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3 nltk')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain_experimental')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain pydantic')
import os
import boto3
comprehend_client = boto3.client("comprehend", region_name="us-east-1")
from langchain_experimental.comprehend_moderation import AmazonComprehendModerationChain
comprehend_moderation = AmazonComprehendModerationChain(
client=comprehend_client,
verbose=True, # optional
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
ModerationPiiError,
)
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comprehend_moderation
| {"input": (lambda x: x["output"]) | llm}
| comprehend_moderation
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-22-3345. Can you give me some more samples?"
}
)
except ModerationPiiError as e:
print(str(e))
else:
print(response["output"])
from langchain_experimental.comprehend_moderation import (
BaseModerationConfig,
ModerationPiiConfig,
ModerationPromptSafetyConfig,
ModerationToxicityConfig,
)
pii_config = | ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X") | langchain_experimental.comprehend_moderation.ModerationPiiConfig |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-core langchain langchain-openai')
from langchain.utils.math import cosine_similarity
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
physics_template = """You are a very smart physics professor. \
You are great at answering questions about physics in a concise and easy to understand manner. \
When you don't know the answer to a question you admit that you don't know.
Here is a question:
{query}"""
math_template = """You are a very good mathematician. You are great at answering math questions. \
You are so good because you are able to break down hard problems into their component parts, \
answer the component parts, and then put them together to answer the broader question.
Here is a question:
{query}"""
embeddings = OpenAIEmbeddings()
prompt_templates = [physics_template, math_template]
prompt_embeddings = embeddings.embed_documents(prompt_templates)
def prompt_router(input):
query_embedding = embeddings.embed_query(input["query"])
similarity = cosine_similarity([query_embedding], prompt_embeddings)[0]
most_similar = prompt_templates[similarity.argmax()]
print("Using MATH" if most_similar == math_template else "Using PHYSICS")
return | PromptTemplate.from_template(most_similar) | langchain_core.prompts.PromptTemplate.from_template |
get_ipython().run_line_magic('reload_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
from datetime import datetime
from langchain.agents import AgentType, initialize_agent
from langchain_community.agent_toolkits.clickup.toolkit import ClickupToolkit
from langchain_community.utilities.clickup import ClickupAPIWrapper
from langchain_openai import OpenAI
oauth_client_id = "ABC..."
oauth_client_secret = "123..."
redirect_uri = "https://google.com"
print("Click this link, select your workspace, click `Connect Workspace`")
print(ClickupAPIWrapper.get_access_code_url(oauth_client_id, redirect_uri))
code = "THISISMYCODERIGHTHERE"
access_token = ClickupAPIWrapper.get_access_token(
oauth_client_id, oauth_client_secret, code
)
clickup_api_wrapper = | ClickupAPIWrapper(access_token=access_token) | langchain_community.utilities.clickup.ClickupAPIWrapper |
meals = [
"Beef Enchiladas with Feta cheese. Mexican-Greek fusion",
"Chicken Flatbreads with red sauce. Italian-Mexican fusion",
"Veggie sweet potato quesadillas with vegan cheese",
"One-Pan Tortelonni bake with peppers and onions",
]
from langchain_openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo-instruct")
from langchain.prompts import PromptTemplate
PROMPT_TEMPLATE = """Here is the description of a meal: "{meal}".
Embed the meal into the given text: "{text_to_personalize}".
Prepend a personalized message including the user's name "{user}"
and their preference "{preference}".
Make it sound good.
"""
PROMPT = PromptTemplate(
input_variables=["meal", "text_to_personalize", "user", "preference"],
template=PROMPT_TEMPLATE,
)
import langchain_experimental.rl_chain as rl_chain
chain = rl_chain.PickBest.from_llm(llm=llm, prompt=PROMPT)
response = chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Tom"),
preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]),
text_to_personalize="This is the weeks specialty dish, our master chefs \
believe you will love it!",
)
print(response["response"])
for _ in range(5):
try:
response = chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Tom"),
preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]),
text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!",
)
except Exception as e:
print(e)
print(response["response"])
print()
scoring_criteria_template = (
"Given {preference} rank how good or bad this selection is {meal}"
)
chain = rl_chain.PickBest.from_llm(
llm=llm,
prompt=PROMPT,
selection_scorer=rl_chain.AutoSelectionScorer(
llm=llm, scoring_criteria_template_str=scoring_criteria_template
),
)
response = chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Tom"),
preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]),
text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!",
)
print(response["response"])
selection_metadata = response["selection_metadata"]
print(
f"selected index: {selection_metadata.selected.index}, score: {selection_metadata.selected.score}"
)
class CustomSelectionScorer(rl_chain.SelectionScorer):
def score_response(
self, inputs, llm_response: str, event: rl_chain.PickBestEvent
) -> float:
print(event.based_on)
print(event.to_select_from)
selected_meal = event.to_select_from["meal"][event.selected.index]
print(f"selected meal: {selected_meal}")
if "Tom" in event.based_on["user"]:
if "Vegetarian" in event.based_on["preference"]:
if "Chicken" in selected_meal or "Beef" in selected_meal:
return 0.0
else:
return 1.0
else:
if "Chicken" in selected_meal or "Beef" in selected_meal:
return 1.0
else:
return 0.0
else:
raise NotImplementedError("I don't know how to score this user")
chain = rl_chain.PickBest.from_llm(
llm=llm,
prompt=PROMPT,
selection_scorer=CustomSelectionScorer(),
)
response = chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Tom"),
preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]),
text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!",
)
class CustomSelectionScorer(rl_chain.SelectionScorer):
def score_preference(self, preference, selected_meal):
if "Vegetarian" in preference:
if "Chicken" in selected_meal or "Beef" in selected_meal:
return 0.0
else:
return 1.0
else:
if "Chicken" in selected_meal or "Beef" in selected_meal:
return 1.0
else:
return 0.0
def score_response(
self, inputs, llm_response: str, event: rl_chain.PickBestEvent
) -> float:
selected_meal = event.to_select_from["meal"][event.selected.index]
if "Tom" in event.based_on["user"]:
return self.score_preference(event.based_on["preference"], selected_meal)
elif "Anna" in event.based_on["user"]:
return self.score_preference(event.based_on["preference"], selected_meal)
else:
raise NotImplementedError("I don't know how to score this user")
chain = rl_chain.PickBest.from_llm(
llm=llm,
prompt=PROMPT,
selection_scorer=CustomSelectionScorer(),
metrics_step=5,
metrics_window_size=5, # rolling window average
)
random_chain = rl_chain.PickBest.from_llm(
llm=llm,
prompt=PROMPT,
selection_scorer=CustomSelectionScorer(),
metrics_step=5,
metrics_window_size=5, # rolling window average
policy=rl_chain.PickBestRandomPolicy, # set the random policy instead of default
)
for _ in range(20):
try:
chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Tom"),
preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]),
text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!",
)
random_chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Tom"),
preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]),
text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!",
)
chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Anna"),
preference=rl_chain.BasedOn(["Loves meat", "especially beef"]),
text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!",
)
random_chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Anna"),
preference=rl_chain.BasedOn(["Loves meat", "especially beef"]),
text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!",
)
except Exception as e:
print(e)
from matplotlib import pyplot as plt
chain.metrics.to_pandas()["score"].plot(label="default learning policy")
random_chain.metrics.to_pandas()["score"].plot(label="random selection policy")
plt.legend()
print(
f"The final average score for the default policy, calculated over a rolling window, is: {chain.metrics.to_pandas()['score'].iloc[-1]}"
)
print(
f"The final average score for the random policy, calculated over a rolling window, is: {random_chain.metrics.to_pandas()['score'].iloc[-1]}"
)
from langchain.globals import set_debug
from langchain.prompts.prompt import PromptTemplate
set_debug(True)
REWARD_PROMPT_TEMPLATE = """
Given {preference} rank how good or bad this selection is {meal}
IMPORTANT: you MUST return a single number between -1 and 1, -1 being bad, 1 being good
"""
REWARD_PROMPT = PromptTemplate(
input_variables=["preference", "meal"],
template=REWARD_PROMPT_TEMPLATE,
)
chain = rl_chain.PickBest.from_llm(
llm=llm,
prompt=PROMPT,
selection_scorer= | rl_chain.AutoSelectionScorer(llm=llm, prompt=REWARD_PROMPT) | langchain_experimental.rl_chain.AutoSelectionScorer |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet unstructured')
from langchain_community.document_loaders import UnstructuredEmailLoader
loader = UnstructuredEmailLoader("example_data/fake-email.eml")
data = loader.load()
data
loader = UnstructuredEmailLoader("example_data/fake-email.eml", mode="elements")
data = loader.load()
data[0]
loader = UnstructuredEmailLoader(
"example_data/fake-email.eml",
mode="elements",
process_attachments=True,
)
data = loader.load()
data[0]
get_ipython().run_line_magic('pip', 'install --upgrade --quiet extract_msg')
from langchain_community.document_loaders import OutlookMessageLoader
loader = | OutlookMessageLoader("example_data/fake-email.msg") | langchain_community.document_loaders.OutlookMessageLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-nvidia-ai-endpoints')
import getpass
import os
if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"):
nvapi_key = getpass.getpass("Enter your NVIDIA API key: ")
assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key"
os.environ["NVIDIA_API_KEY"] = nvapi_key
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="mixtral_8x7b")
result = llm.invoke("Write a ballad about LangChain.")
print(result.content)
print(llm.batch(["What's 2*3?", "What's 2*6?"]))
for chunk in llm.stream("How far can a seagull fly in one day?"):
print(chunk.content, end="|")
async for chunk in llm.astream(
"How long does it take for monarch butterflies to migrate?"
):
print(chunk.content, end="|")
ChatNVIDIA.get_available_models()
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_nvidia_ai_endpoints import ChatNVIDIA
prompt = ChatPromptTemplate.from_messages(
[("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")]
)
chain = prompt | ChatNVIDIA(model="llama2_13b") | StrOutputParser()
for txt in chain.stream({"input": "What's your name?"}):
print(txt, end="")
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an expert coding AI. Respond only in valid python; no narration whatsoever.",
),
("user", "{input}"),
]
)
chain = prompt | ChatNVIDIA(model="llama2_code_70b") | StrOutputParser()
for txt in chain.stream({"input": "How do I solve this fizz buzz problem?"}):
print(txt, end="")
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="nemotron_steerlm_8b")
complex_result = llm.invoke(
"What's a PB&J?", labels={"creativity": 0, "complexity": 3, "verbosity": 0}
)
print("Un-creative\n")
print(complex_result.content)
print("\n\nCreative\n")
creative_result = llm.invoke(
"What's a PB&J?", labels={"creativity": 9, "complexity": 3, "verbosity": 9}
)
print(creative_result.content)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_nvidia_ai_endpoints import ChatNVIDIA
prompt = ChatPromptTemplate.from_messages(
[("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")]
)
chain = (
prompt
| ChatNVIDIA(model="nemotron_steerlm_8b").bind(
labels={"creativity": 9, "complexity": 0, "verbosity": 9}
)
| StrOutputParser()
)
for txt in chain.stream({"input": "Why is a PB&J?"}):
print(txt, end="")
import IPython
import requests
image_url = "https://www.nvidia.com/content/dam/en-zz/Solutions/research/ai-playground/[email protected]" ## Large Image
image_content = requests.get(image_url).content
IPython.display.Image(image_content)
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="playground_neva_22b")
from langchain_core.messages import HumanMessage
llm.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "Describe this image:"},
{"type": "image_url", "image_url": {"url": image_url}},
]
)
]
)
from langchain_core.messages import HumanMessage
llm.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "Describe this image:"},
{"type": "image_url", "image_url": {"url": image_url}},
]
)
],
labels={"creativity": 0, "quality": 9, "complexity": 0, "verbosity": 0},
)
import IPython
import requests
image_url = "https://picsum.photos/seed/kitten/300/200"
image_content = requests.get(image_url).content
IPython.display.Image(image_content)
import base64
from langchain_core.messages import HumanMessage
b64_string = base64.b64encode(image_content).decode("utf-8")
llm.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "Describe this image:"},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{b64_string}"},
},
]
)
]
)
base64_with_mime_type = f"data:image/png;base64,{b64_string}"
llm.invoke(f'What\'s in this image?\n<img src="{base64_with_mime_type}" />')
from langchain_nvidia_ai_endpoints import ChatNVIDIA
kosmos = ChatNVIDIA(model="kosmos_2")
from langchain_core.messages import HumanMessage
def drop_streaming_key(d):
"""Takes in payload dictionary, outputs new payload dictionary"""
if "stream" in d:
d.pop("stream")
return d
kosmos = ChatNVIDIA(model="kosmos_2")
kosmos.client.payload_fn = drop_streaming_key
kosmos.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "Describe this image:"},
{"type": "image_url", "image_url": {"url": image_url}},
]
)
]
)
import base64
from io import BytesIO
from PIL import Image
img_gen = ChatNVIDIA(model="sdxl_turbo")
def to_sdxl_payload(d):
if d:
d = {"prompt": d.get("messages", [{}])[0].get("content")}
d["inference_steps"] = 4 ## why not add another argument?
return d
img_gen.client.payload_fn = to_sdxl_payload
def to_pil_img(d):
return Image.open(BytesIO(base64.b64decode(d)))
(img_gen | StrOutputParser() | to_pil_img).invoke("white cat playing")
from langchain_core.messages import ChatMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_nvidia_ai_endpoints import ChatNVIDIA
prompt = ChatPromptTemplate.from_messages(
[
ChatMessage(
role="context", content="Parrots and Cats have signed the peace accord."
),
("user", "{input}"),
]
)
llm = ChatNVIDIA(model="nemotron_qa_8b")
chain = prompt | llm | StrOutputParser()
chain.invoke({"input": "What was signed?"})
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain')
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
chat = | ChatNVIDIA(model="mixtral_8x7b", temperature=0.1, max_tokens=100, top_p=1.0) | langchain_nvidia_ai_endpoints.ChatNVIDIA |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet alibabacloud_ha3engine_vector')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain_community.vectorstores import (
AlibabaCloudOpenSearch,
AlibabaCloudOpenSearchSettings,
)
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
loader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
settings = AlibabaCloudOpenSearchSettings(
endpoint=" The endpoint of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch.",
instance_id="The identify of opensearch instance, You can find it from the console of Alibaba Cloud OpenSearch.",
protocol="Communication Protocol between SDK and Server, default is http.",
username="The username specified when purchasing the instance.",
password="The password specified when purchasing the instance.",
namespace="The instance data will be partitioned based on the namespace field. If the namespace is enabled, you need to specify the namespace field name during initialization. Otherwise, the queries cannot be executed correctly.",
tablename="The table name specified during instance configuration.",
embedding_field_separator="Delimiter specified for writing vector field data, default is comma.",
output_fields="Specify the field list returned when invoking OpenSearch, by default it is the value list of the field mapping field.",
field_name_mapping={
"id": "id", # The id field name mapping of index document.
"document": "document", # The text field name mapping of index document.
"embedding": "embedding", # The embedding field name mapping of index document.
"name_of_the_metadata_specified_during_search": "opensearch_metadata_field_name,=",
},
)
opensearch = AlibabaCloudOpenSearch.from_texts(
texts=docs, embedding=embeddings, config=settings
)
opensearch = | AlibabaCloudOpenSearch(embedding=embeddings, config=settings) | langchain_community.vectorstores.AlibabaCloudOpenSearch |
from typing import List
from langchain.output_parsers import PydanticOutputParser
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI
class Actor(BaseModel):
name: str = Field(description="name of an actor")
film_names: List[str] = Field(description="list of names of films they starred in")
actor_query = "Generate the filmography for a random actor."
parser = | PydanticOutputParser(pydantic_object=Actor) | langchain.output_parsers.PydanticOutputParser |
get_ipython().system("python3 -m pip install --upgrade langchain 'deeplake[enterprise]' openai tiktoken")
import getpass
import os
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import DeepLake
from langchain_openai import OpenAI, OpenAIEmbeddings
from langchain_text_splitters import (
CharacterTextSplitter,
RecursiveCharacterTextSplitter,
)
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
activeloop_token = getpass.getpass("Activeloop Token:")
os.environ["ACTIVELOOP_TOKEN"] = activeloop_token
os.environ["ACTIVELOOP_ORG"] = getpass.getpass("Activeloop Org:")
org_id = os.environ["ACTIVELOOP_ORG"]
embeddings = OpenAIEmbeddings()
dataset_path = "hub://" + org_id + "/data"
with open("messages.txt") as f:
state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
pages = text_splitter.split_text(state_of_the_union)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.create_documents(pages)
print(texts)
dataset_path = "hub://" + org_id + "/data"
embeddings = OpenAIEmbeddings()
db = DeepLake.from_documents(
texts, embeddings, dataset_path=dataset_path, overwrite=True
)
db = | DeepLake(dataset_path=dataset_path, read_only=True, embedding=embeddings) | langchain_community.vectorstores.DeepLake |
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory
from langchain.prompts import PromptTemplate
from langchain_community.utilities import GoogleSearchAPIWrapper
from langchain_openai import OpenAI
template = """This is a conversation between a human and a bot:
{chat_history}
Write a summary of the conversation for {input}:
"""
prompt = PromptTemplate(input_variables=["input", "chat_history"], template=template)
memory = ConversationBufferMemory(memory_key="chat_history")
readonlymemory = ReadOnlySharedMemory(memory=memory)
summary_chain = LLMChain(
llm=OpenAI(),
prompt=prompt,
verbose=True,
memory=readonlymemory, # use the read-only memory to prevent the tool from modifying the memory
)
search = GoogleSearchAPIWrapper()
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events",
),
Tool(
name="Summary",
func=summary_chain.run,
description="useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.",
),
]
prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:"""
suffix = """Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"],
)
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True, memory=memory
)
agent_chain.run(input="What is ChatGPT?")
agent_chain.run(input="Who developed it?")
agent_chain.run(
input="Thanks. Summarize the conversation, for my daughter 5 years old."
)
print(agent_chain.memory.buffer)
template = """This is a conversation between a human and a bot:
{chat_history}
Write a summary of the conversation for {input}:
"""
prompt = | PromptTemplate(input_variables=["input", "chat_history"], template=template) | langchain.prompts.PromptTemplate |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-core databricks-vectorsearch langchain-openai tiktoken')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain_community.document_loaders import TextLoader
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
emb_dim = len(embeddings.embed_query("hello"))
from databricks.vector_search.client import VectorSearchClient
vsc = VectorSearchClient()
vsc.create_endpoint(name="vector_search_demo_endpoint", endpoint_type="STANDARD")
vector_search_endpoint_name = "vector_search_demo_endpoint"
index_name = "ml.llm.demo_index"
index = vsc.create_direct_access_index(
endpoint_name=vector_search_endpoint_name,
index_name=index_name,
primary_key="id",
embedding_dimension=emb_dim,
embedding_vector_column="text_vector",
schema={
"id": "string",
"text": "string",
"text_vector": "array<float>",
"source": "string",
},
)
index.describe()
from langchain_community.vectorstores import DatabricksVectorSearch
dvs = DatabricksVectorSearch(
index, text_column="text", embedding=embeddings, columns=["source"]
)
dvs.add_documents(docs)
query = "What did the president say about Ketanji Brown Jackson"
dvs.similarity_search(query)
print(docs[0].page_content)
dvs_delta_sync = | DatabricksVectorSearch("catalog_name.schema_name.delta_sync_index") | langchain_community.vectorstores.DatabricksVectorSearch |
get_ipython().run_line_magic('reload_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
from datetime import datetime
from langchain.agents import AgentType, initialize_agent
from langchain_community.agent_toolkits.clickup.toolkit import ClickupToolkit
from langchain_community.utilities.clickup import ClickupAPIWrapper
from langchain_openai import OpenAI
oauth_client_id = "ABC..."
oauth_client_secret = "123..."
redirect_uri = "https://google.com"
print("Click this link, select your workspace, click `Connect Workspace`")
print( | ClickupAPIWrapper.get_access_code_url(oauth_client_id, redirect_uri) | langchain_community.utilities.clickup.ClickupAPIWrapper.get_access_code_url |
meals = [
"Beef Enchiladas with Feta cheese. Mexican-Greek fusion",
"Chicken Flatbreads with red sauce. Italian-Mexican fusion",
"Veggie sweet potato quesadillas with vegan cheese",
"One-Pan Tortelonni bake with peppers and onions",
]
from langchain_openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo-instruct")
from langchain.prompts import PromptTemplate
PROMPT_TEMPLATE = """Here is the description of a meal: "{meal}".
Embed the meal into the given text: "{text_to_personalize}".
Prepend a personalized message including the user's name "{user}"
and their preference "{preference}".
Make it sound good.
"""
PROMPT = PromptTemplate(
input_variables=["meal", "text_to_personalize", "user", "preference"],
template=PROMPT_TEMPLATE,
)
import langchain_experimental.rl_chain as rl_chain
chain = rl_chain.PickBest.from_llm(llm=llm, prompt=PROMPT)
response = chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Tom"),
preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]),
text_to_personalize="This is the weeks specialty dish, our master chefs \
believe you will love it!",
)
print(response["response"])
for _ in range(5):
try:
response = chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Tom"),
preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]),
text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!",
)
except Exception as e:
print(e)
print(response["response"])
print()
scoring_criteria_template = (
"Given {preference} rank how good or bad this selection is {meal}"
)
chain = rl_chain.PickBest.from_llm(
llm=llm,
prompt=PROMPT,
selection_scorer=rl_chain.AutoSelectionScorer(
llm=llm, scoring_criteria_template_str=scoring_criteria_template
),
)
response = chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Tom"),
preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]),
text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!",
)
print(response["response"])
selection_metadata = response["selection_metadata"]
print(
f"selected index: {selection_metadata.selected.index}, score: {selection_metadata.selected.score}"
)
class CustomSelectionScorer(rl_chain.SelectionScorer):
def score_response(
self, inputs, llm_response: str, event: rl_chain.PickBestEvent
) -> float:
print(event.based_on)
print(event.to_select_from)
selected_meal = event.to_select_from["meal"][event.selected.index]
print(f"selected meal: {selected_meal}")
if "Tom" in event.based_on["user"]:
if "Vegetarian" in event.based_on["preference"]:
if "Chicken" in selected_meal or "Beef" in selected_meal:
return 0.0
else:
return 1.0
else:
if "Chicken" in selected_meal or "Beef" in selected_meal:
return 1.0
else:
return 0.0
else:
raise NotImplementedError("I don't know how to score this user")
chain = rl_chain.PickBest.from_llm(
llm=llm,
prompt=PROMPT,
selection_scorer=CustomSelectionScorer(),
)
response = chain.run(
meal=rl_chain.ToSelectFrom(meals),
user= | rl_chain.BasedOn("Tom") | langchain_experimental.rl_chain.BasedOn |
from langchain_community.graphs import NeptuneGraph
host = "<neptune-host>"
port = 8182
use_https = True
graph = | NeptuneGraph(host=host, port=port, use_https=use_https) | langchain_community.graphs.NeptuneGraph |
get_ipython().system('pip3 install cerebrium')
import os
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.llms import CerebriumAI
os.environ["CEREBRIUMAI_API_KEY"] = "YOUR_KEY_HERE"
llm = | CerebriumAI(endpoint_url="YOUR ENDPOINT URL HERE") | langchain_community.llms.CerebriumAI |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3 langchain-openai tiktoken python-dotenv')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet "amazon-textract-caller>=0.2.0"')
from langchain_community.document_loaders import AmazonTextractPDFLoader
loader = AmazonTextractPDFLoader("example_data/alejandro_rosalez_sample-small.jpeg")
documents = loader.load()
documents
from langchain_community.document_loaders import AmazonTextractPDFLoader
loader = | AmazonTextractPDFLoader(
"https://amazon-textract-public-content.s3.us-east-2.amazonaws.com/langchain/alejandro_rosalez_sample_1.jpg"
) | langchain_community.document_loaders.AmazonTextractPDFLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet trubrics')
import os
os.environ["TRUBRICS_EMAIL"] = "***@***"
os.environ["TRUBRICS_PASSWORD"] = "***"
os.environ["OPENAI_API_KEY"] = "sk-***"
from langchain.callbacks import TrubricsCallbackHandler
from langchain_openai import OpenAI
llm = OpenAI(callbacks=[TrubricsCallbackHandler()])
res = llm.generate(["Tell me a joke", "Write me a poem"])
print("--> GPT's joke: ", res.generations[0][0].text)
print()
print("--> GPT's poem: ", res.generations[1][0].text)
from langchain.callbacks import TrubricsCallbackHandler
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
chat_llm = ChatOpenAI(
callbacks=[
TrubricsCallbackHandler(
project="default",
tags=["chat model"],
user_id="user-id-1234",
some_metadata={"hello": [1, 2]},
)
]
)
chat_res = chat_llm(
[
| SystemMessage(content="Every answer of yours must be about OpenAI.") | langchain_core.messages.SystemMessage |
import os
from langchain_community.utilities import OpenWeatherMapAPIWrapper
os.environ["OPENWEATHERMAP_API_KEY"] = ""
weather = | OpenWeatherMapAPIWrapper() | langchain_community.utilities.OpenWeatherMapAPIWrapper |
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.prompts import PromptTemplate
from langchain_community.llms import TitanTakeoffPro
llm = TitanTakeoffPro()
output = llm("What is the weather in London in August?")
print(output)
llm = TitanTakeoffPro(
base_url="http://localhost:3000",
min_new_tokens=128,
max_new_tokens=512,
no_repeat_ngram_size=2,
sampling_topk=1,
sampling_topp=1.0,
sampling_temperature=1.0,
repetition_penalty=1.0,
regex_string="",
)
output = llm("What is the largest rainforest in the world?")
print(output)
llm = | TitanTakeoffPro() | langchain_community.llms.TitanTakeoffPro |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet azureml-fsspec, azure-ai-generative')
from azure.ai.resources.client import AIClient
from azure.identity import DefaultAzureCredential
from langchain_community.document_loaders import AzureAIDataLoader
client = AIClient(
credential=DefaultAzureCredential(),
subscription_id="<subscription_id>",
resource_group_name="<resource_group_name>",
project_name="<project_name>",
)
data_asset = client.data.get(name="<data_asset_name>", label="latest")
loader = | AzureAIDataLoader(url=data_asset.path) | langchain_community.document_loaders.AzureAIDataLoader |
get_ipython().run_line_magic('pip', 'install -qU langchain langchain-community')
get_ipython().run_line_magic('pip', 'install --pre --upgrade bigdl-llm[all]')
from langchain.chains import LLMChain
from langchain_community.llms.bigdl import BigdlLLM
from langchain_core.prompts import PromptTemplate
template = "USER: {question}\nASSISTANT:"
prompt = | PromptTemplate(template=template, input_variables=["question"]) | langchain_core.prompts.PromptTemplate |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pyvespa')
from vespa.package import ApplicationPackage, Field, RankProfile
app_package = ApplicationPackage(name="testapp")
app_package.schema.add_fields(
Field(
name="text", type="string", indexing=["index", "summary"], index="enable-bm25"
),
Field(
name="embedding",
type="tensor<float>(x[384])",
indexing=["attribute", "summary"],
attribute=["distance-metric: angular"],
),
)
app_package.schema.add_rank_profile(
RankProfile(
name="default",
first_phase="closeness(field, embedding)",
inputs=[("query(query_embedding)", "tensor<float>(x[384])")],
)
)
from vespa.deployment import VespaDocker
vespa_docker = VespaDocker()
vespa_app = vespa_docker.deploy(application_package=app_package)
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
from langchain_community.embeddings.sentence_transformer import (
SentenceTransformerEmbeddings,
)
embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
vespa_config = dict(
page_content_field="text",
embedding_field="embedding",
input_field="query_embedding",
)
from langchain_community.vectorstores import VespaStore
db = VespaStore.from_documents(docs, embedding_function, app=vespa_app, **vespa_config)
query = "What did the president say about Ketanji Brown Jackson"
results = db.similarity_search(query)
print(results[0].page_content)
query = "What did the president say about Ketanji Brown Jackson"
results = db.similarity_search(query)
result = results[0]
result.page_content = "UPDATED: " + result.page_content
db.add_texts([result.page_content], [result.metadata], result.metadata["id"])
results = db.similarity_search(query)
print(results[0].page_content)
result = db.similarity_search(query)
db.delete(["32"])
result = db.similarity_search(query)
results = db.similarity_search_with_score(query)
result = results[0]
db = VespaStore.from_documents(docs, embedding_function, app=vespa_app, **vespa_config)
retriever = db.as_retriever()
query = "What did the president say about Ketanji Brown Jackson"
results = retriever.get_relevant_documents(query)
app_package.schema.add_fields(
Field(name="date", type="string", indexing=["attribute", "summary"]),
Field(name="rating", type="int", indexing=["attribute", "summary"]),
Field(name="author", type="string", indexing=["attribute", "summary"]),
)
vespa_app = vespa_docker.deploy(application_package=app_package)
for i, doc in enumerate(docs):
doc.metadata["date"] = f"2023-{(i % 12)+1}-{(i % 28)+1}"
doc.metadata["rating"] = range(1, 6)[i % 5]
doc.metadata["author"] = ["Joe Biden", "Unknown"][min(i, 1)]
vespa_config.update(dict(metadata_fields=["date", "rating", "author"]))
db = VespaStore.from_documents(docs, embedding_function, app=vespa_app, **vespa_config)
query = "What did the president say about Ketanji Brown Jackson"
results = db.similarity_search(query, filter="rating > 3")
from vespa.package import FieldSet
app_package.schema.add_field_set(FieldSet(name="default", fields=["text"]))
app_package.schema.add_rank_profile(RankProfile(name="bm25", first_phase="bm25(text)"))
vespa_app = vespa_docker.deploy(application_package=app_package)
db = | VespaStore.from_documents(docs, embedding_function, app=vespa_app, **vespa_config) | langchain_community.vectorstores.VespaStore.from_documents |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet networkx')
from langchain.indexes import GraphIndexCreator
from langchain_openai import OpenAI
index_creator = GraphIndexCreator(llm=OpenAI(temperature=0))
with open("../../../modules/state_of_the_union.txt") as f:
all_text = f.read()
text = "\n".join(all_text.split("\n\n")[105:108])
text
graph = index_creator.from_text(text)
graph.get_triples()
from langchain.chains import GraphQAChain
chain = GraphQAChain.from_llm( | OpenAI(temperature=0) | langchain_openai.OpenAI |
from langchain.agents import load_tools
requests_tools = load_tools(["requests_all"])
requests_tools
requests_tools[0].requests_wrapper
from langchain_community.utilities import TextRequestsWrapper
requests = TextRequestsWrapper()
requests.get("https://www.google.com")
from langchain_community.utilities.requests import JsonRequestsWrapper
requests = | JsonRequestsWrapper() | langchain_community.utilities.requests.JsonRequestsWrapper |
import os
os.environ["SERPER_API_KEY"] = ""
os.environ["OPENAI_API_KEY"] = ""
from typing import Any, List
from langchain.callbacks.manager import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain_community.utilities import GoogleSerperAPIWrapper
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain_openai import ChatOpenAI, OpenAI
class SerperSearchRetriever(BaseRetriever):
search: GoogleSerperAPIWrapper = None
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any
) -> List[Document]:
return [Document(page_content=self.search.run(query))]
async def _aget_relevant_documents(
self,
query: str,
*,
run_manager: AsyncCallbackManagerForRetrieverRun,
**kwargs: Any,
) -> List[Document]:
raise NotImplementedError()
retriever = SerperSearchRetriever(search=GoogleSerperAPIWrapper())
from langchain.globals import set_verbose
| set_verbose(True) | langchain.globals.set_verbose |
model_url = "http://localhost:5000"
from langchain.chains import LLMChain
from langchain.globals import set_debug
from langchain.prompts import PromptTemplate
from langchain_community.llms import TextGen
| set_debug(True) | langchain.globals.set_debug |
from langchain.agents import Tool
from langchain_community.tools.file_management.read import ReadFileTool
from langchain_community.tools.file_management.write import WriteFileTool
from langchain_community.utilities import SerpAPIWrapper
search = SerpAPIWrapper()
tools = [
Tool(
name="search",
func=search.run,
description="useful for when you need to answer questions about current events. You should ask targeted questions",
),
WriteFileTool(),
ReadFileTool(),
]
from langchain.docstore import InMemoryDocstore
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
embeddings_model = OpenAIEmbeddings()
import faiss
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
vectorstore = FAISS(embeddings_model.embed_query, index, | InMemoryDocstore({}) | langchain.docstore.InMemoryDocstore |
from langchain.prompts.pipeline import PipelinePromptTemplate
from langchain.prompts.prompt import PromptTemplate
full_template = """{introduction}
{example}
{start}"""
full_prompt = PromptTemplate.from_template(full_template)
introduction_template = """You are impersonating {person}."""
introduction_prompt = | PromptTemplate.from_template(introduction_template) | langchain.prompts.prompt.PromptTemplate.from_template |
get_ipython().system(' pip install langchain unstructured[all-docs] pydantic lxml')
path = "/Users/rlm/Desktop/Papers/LLaVA/"
from typing import Any
from pydantic import BaseModel
from unstructured.partition.pdf import partition_pdf
raw_pdf_elements = partition_pdf(
filename=path + "LLaVA.pdf",
extract_images_in_pdf=True,
infer_table_structure=True,
chunking_strategy="by_title",
max_characters=4000,
new_after_n_chars=3800,
combine_text_under_n_chars=2000,
image_output_dir_path=path,
)
category_counts = {}
for element in raw_pdf_elements:
category = str(type(element))
if category in category_counts:
category_counts[category] += 1
else:
category_counts[category] = 1
unique_categories = set(category_counts.keys())
category_counts
class Element(BaseModel):
type: str
text: Any
categorized_elements = []
for element in raw_pdf_elements:
if "unstructured.documents.elements.Table" in str(type(element)):
categorized_elements.append(Element(type="table", text=str(element)))
elif "unstructured.documents.elements.CompositeElement" in str(type(element)):
categorized_elements.append(Element(type="text", text=str(element)))
table_elements = [e for e in categorized_elements if e.type == "table"]
print(len(table_elements))
text_elements = [e for e in categorized_elements if e.type == "text"]
print(len(text_elements))
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
prompt_text = """You are an assistant tasked with summarizing tables and text. \
Give a concise summary of the table or text. Table or text chunk: {element} """
prompt = ChatPromptTemplate.from_template(prompt_text)
model = ChatOpenAI(temperature=0, model="gpt-4")
summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser()
texts = [i.text for i in text_elements]
text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5})
tables = [i.text for i in table_elements]
table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5})
get_ipython().run_cell_magic('bash', '', '\n# Define the directory containing the images\nIMG_DIR=~/Desktop/Papers/LLaVA/\n\n# Loop through each image in the directory\nfor img in "${IMG_DIR}"*.jpg; do\n # Extract the base name of the image without extension\n base_name=$(basename "$img" .jpg)\n\n # Define the output file name based on the image name\n output_file="${IMG_DIR}${base_name}.txt"\n\n # Execute the command and save the output to the defined output file\n /Users/rlm/Desktop/Code/llama.cpp/bin/llava -m ../models/llava-7b/ggml-model-q5_k.gguf --mmproj ../models/llava-7b/mmproj-model-f16.gguf --temp 0.1 -p "Describe the image in detail. Be specific about graphs, such as bar plots." --image "$img" > "$output_file"\n\ndone\n')
import glob
import os
file_paths = glob.glob(os.path.expanduser(os.path.join(path, "*.txt")))
img_summaries = []
for file_path in file_paths:
with open(file_path, "r") as file:
img_summaries.append(file.read())
logging_header = "clip_model_load: total allocated memory: 201.27 MB\n\n"
cleaned_img_summary = [s.split(logging_header, 1)[1].strip() for s in img_summaries]
import uuid
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryStore
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
vectorstore = Chroma(collection_name="summaries", embedding_function=OpenAIEmbeddings())
store = InMemoryStore()
id_key = "doc_id"
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
docstore=store,
id_key=id_key,
)
doc_ids = [str(uuid.uuid4()) for _ in texts]
summary_texts = [
Document(page_content=s, metadata={id_key: doc_ids[i]})
for i, s in enumerate(text_summaries)
]
retriever.vectorstore.add_documents(summary_texts)
retriever.docstore.mset(list(zip(doc_ids, texts)))
table_ids = [str(uuid.uuid4()) for _ in tables]
summary_tables = [
Document(page_content=s, metadata={id_key: table_ids[i]})
for i, s in enumerate(table_summaries)
]
retriever.vectorstore.add_documents(summary_tables)
retriever.docstore.mset(list(zip(table_ids, tables)))
img_ids = [str(uuid.uuid4()) for _ in cleaned_img_summary]
summary_img = [
Document(page_content=s, metadata={id_key: img_ids[i]})
for i, s in enumerate(cleaned_img_summary)
]
retriever.vectorstore.add_documents(summary_img)
retriever.docstore.mset(list(zip(img_ids, cleaned_img_summary)))
img_ids = [str(uuid.uuid4()) for _ in cleaned_img_summary]
summary_img = [
Document(page_content=s, metadata={id_key: img_ids[i]})
for i, s in enumerate(cleaned_img_summary)
]
retriever.vectorstore.add_documents(summary_img)
retriever.docstore.mset(
list(
zip(
img_ids,
)
)
)
tables[2]
table_summaries[2]
retriever.get_relevant_documents(
"What are results for LLaMA across across domains / subjects?"
)[1]
retriever.get_relevant_documents("Images / figures with playful and creative examples")[
1
]
from langchain_core.runnables import RunnablePassthrough
template = """Answer the question based only on the following context, which can include text and tables:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI(temperature=0, model="gpt-4")
chain = (
{"context": retriever, "question": | RunnablePassthrough() | langchain_core.runnables.RunnablePassthrough |
from langchain.prompts import (
ChatPromptTemplate,
FewShotChatMessagePromptTemplate,
)
examples = [
{"input": "2+2", "output": "4"},
{"input": "2+3", "output": "5"},
]
example_prompt = | ChatPromptTemplate.from_messages(
[
("human", "{input}") | langchain.prompts.ChatPromptTemplate.from_messages |
get_ipython().system(' pip install langchain replicate')
from langchain_community.chat_models import ChatOllama
llama2_chat = | ChatOllama(model="llama2:13b-chat") | langchain_community.chat_models.ChatOllama |
from langchain.memory import ConversationKGMemory
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
memory = ConversationKGMemory(llm=llm)
memory.save_context({"input": "say hi to sam"}, {"output": "who is sam"})
memory.save_context({"input": "sam is a friend"}, {"output": "okay"})
memory.load_memory_variables({"input": "who is sam"})
memory = | ConversationKGMemory(llm=llm, return_messages=True) | langchain.memory.ConversationKGMemory |
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain_community.chat_models import JinaChat
from langchain_core.messages import HumanMessage, SystemMessage
chat = JinaChat(temperature=0)
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(
content="Translate this sentence from English to French. I love programming."
),
]
chat(messages)
template = (
"You are a helpful assistant that translates {input_language} to {output_language}."
)
system_message_prompt = | SystemMessagePromptTemplate.from_template(template) | langchain.prompts.chat.SystemMessagePromptTemplate.from_template |
from langchain.indexes import SQLRecordManager, index
from langchain_core.documents import Document
from langchain_elasticsearch import ElasticsearchStore
from langchain_openai import OpenAIEmbeddings
collection_name = "test_index"
embedding = OpenAIEmbeddings()
vectorstore = ElasticsearchStore(
es_url="http://localhost:9200", index_name="test_index", embedding=embedding
)
namespace = f"elasticsearch/{collection_name}"
record_manager = SQLRecordManager(
namespace, db_url="sqlite:///record_manager_cache.sql"
)
record_manager.create_schema()
doc1 = Document(page_content="kitty", metadata={"source": "kitty.txt"})
doc2 = Document(page_content="doggy", metadata={"source": "doggy.txt"})
def _clear():
"""Hacky helper method to clear content. See the `full` mode section to to understand why it works."""
index([], record_manager, vectorstore, cleanup="full", source_id_key="source")
_clear()
index(
[doc1, doc1, doc1, doc1, doc1],
record_manager,
vectorstore,
cleanup=None,
source_id_key="source",
)
_clear()
| index([doc1, doc2], record_manager, vectorstore, cleanup=None, source_id_key="source") | langchain.indexes.index |
from langchain.agents import AgentExecutor, BaseMultiActionAgent, Tool
from langchain_community.utilities import SerpAPIWrapper
def random_word(query: str) -> str:
print("\nNow I'm doing this!")
return "foo"
search = SerpAPIWrapper()
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events",
),
Tool(
name="RandomWord",
func=random_word,
description="call this to get a random word.",
),
]
from typing import Any, List, Tuple, Union
from langchain_core.agents import AgentAction, AgentFinish
class FakeAgent(BaseMultiActionAgent):
"""Fake Custom Agent."""
@property
def input_keys(self):
return ["input"]
def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
if len(intermediate_steps) == 0:
return [
AgentAction(tool="Search", tool_input=kwargs["input"], log=""),
AgentAction(tool="RandomWord", tool_input=kwargs["input"], log=""),
]
else:
return AgentFinish(return_values={"output": "bar"}, log="")
async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
if len(intermediate_steps) == 0:
return [
AgentAction(tool="Search", tool_input=kwargs["input"], log=""),
AgentAction(tool="RandomWord", tool_input=kwargs["input"], log=""),
]
else:
return | AgentFinish(return_values={"output": "bar"}, log="") | langchain_core.agents.AgentFinish |
import warnings
warnings.filterwarnings("ignore")
import os
from langchain.agents.agent_toolkits import create_conversational_retrieval_agent
from langchain_community.agent_toolkits import CogniswitchToolkit
from langchain_openai import ChatOpenAI
cs_token = "Your CogniSwitch token"
OAI_token = "Your OpenAI API token"
oauth_token = "Your CogniSwitch authentication token"
os.environ["OPENAI_API_KEY"] = OAI_token
cogniswitch_toolkit = CogniswitchToolkit(
cs_token=cs_token, OAI_token=OAI_token, apiKey=oauth_token
)
tool_lst = cogniswitch_toolkit.get_tools()
llm = ChatOpenAI(
temperature=0,
openai_api_key=OAI_token,
max_tokens=1500,
model_name="gpt-3.5-turbo-0613",
)
agent_executor = | create_conversational_retrieval_agent(llm, tool_lst, verbose=False) | langchain.agents.agent_toolkits.create_conversational_retrieval_agent |
get_ipython().run_line_magic('pip', 'install -qU langchain-anthropic defusedxml')
from langchain_anthropic.experimental import ChatAnthropicTools
from langchain_core.pydantic_v1 import BaseModel
class Person(BaseModel):
name: str
age: int
model = | ChatAnthropicTools(model="claude-3-opus-20240229") | langchain_anthropic.experimental.ChatAnthropicTools |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3 nltk')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain_experimental')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain pydantic')
import os
import boto3
comprehend_client = boto3.client("comprehend", region_name="us-east-1")
from langchain_experimental.comprehend_moderation import AmazonComprehendModerationChain
comprehend_moderation = AmazonComprehendModerationChain(
client=comprehend_client,
verbose=True, # optional
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
ModerationPiiError,
)
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comprehend_moderation
| {"input": (lambda x: x["output"]) | llm}
| comprehend_moderation
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-22-3345. Can you give me some more samples?"
}
)
except ModerationPiiError as e:
print(str(e))
else:
print(response["output"])
from langchain_experimental.comprehend_moderation import (
BaseModerationConfig,
ModerationPiiConfig,
ModerationPromptSafetyConfig,
ModerationToxicityConfig,
)
pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X")
toxicity_config = ModerationToxicityConfig(threshold=0.5)
prompt_safety_config = ModerationPromptSafetyConfig(threshold=0.5)
moderation_config = BaseModerationConfig(
filters=[pii_config, toxicity_config, prompt_safety_config]
)
comp_moderation_with_config = AmazonComprehendModerationChain(
moderation_config=moderation_config, # specify the configuration
client=comprehend_client, # optionally pass the Boto3 Client
verbose=True,
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comp_moderation_with_config
| {"input": (lambda x: x["output"]) | llm}
| comp_moderation_with_config
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-45-7890. Can you give me some more samples?"
}
)
except Exception as e:
print(str(e))
else:
print(response["output"])
from langchain_experimental.comprehend_moderation import BaseModerationCallbackHandler
class MyModCallback(BaseModerationCallbackHandler):
async def on_after_pii(self, output_beacon, unique_id):
import json
moderation_type = output_beacon["moderation_type"]
chain_id = output_beacon["moderation_chain_id"]
with open(f"output-{moderation_type}-{chain_id}.json", "w") as file:
data = {"beacon_data": output_beacon, "unique_id": unique_id}
json.dump(data, file)
"""
async def on_after_toxicity(self, output_beacon, unique_id):
pass
async def on_after_prompt_safety(self, output_beacon, unique_id):
pass
"""
my_callback = MyModCallback()
pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X")
toxicity_config = ModerationToxicityConfig(threshold=0.5)
moderation_config = BaseModerationConfig(filters=[pii_config, toxicity_config])
comp_moderation_with_config = AmazonComprehendModerationChain(
moderation_config=moderation_config, # specify the configuration
client=comprehend_client, # optionally pass the Boto3 Client
unique_id="[email protected]", # A unique ID
moderation_callback=my_callback, # BaseModerationCallbackHandler
verbose=True,
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comp_moderation_with_config
| {"input": (lambda x: x["output"]) | llm}
| comp_moderation_with_config
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"
}
)
except Exception as e:
print(str(e))
else:
print(response["output"])
get_ipython().run_line_magic('pip', 'install --upgrade --quiet huggingface_hub')
import os
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "<YOUR HF TOKEN HERE>"
repo_id = "google/flan-t5-xxl"
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFaceHub
template = """{question}"""
prompt = PromptTemplate.from_template(template)
llm = HuggingFaceHub(
repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 256}
)
pii_config = ModerationPiiConfig(
labels=["SSN", "CREDIT_DEBIT_NUMBER"], redact=True, mask_character="X"
)
toxicity_config = | ModerationToxicityConfig(threshold=0.5) | langchain_experimental.comprehend_moderation.ModerationToxicityConfig |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet amadeus > /dev/null')
import os
os.environ["AMADEUS_CLIENT_ID"] = "CLIENT_ID"
os.environ["AMADEUS_CLIENT_SECRET"] = "CLIENT_SECRET"
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"
from langchain_community.agent_toolkits.amadeus.toolkit import AmadeusToolkit
toolkit = AmadeusToolkit()
tools = toolkit.get_tools()
from langchain_community.llms import HuggingFaceHub
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "YOUR_HF_API_TOKEN"
llm = HuggingFaceHub(
repo_id="tiiuae/falcon-7b-instruct",
model_kwargs={"temperature": 0.5, "max_length": 64},
)
toolkit_hf = | AmadeusToolkit(llm=llm) | langchain_community.agent_toolkits.amadeus.toolkit.AmadeusToolkit |
SOURCE = "test" # @param {type:"Query"|"CollectionGroup"|"DocumentReference"|"string"}
get_ipython().run_line_magic('pip', 'install -upgrade --quiet langchain-google-firestore')
PROJECT_ID = "my-project-id" # @param {type:"string"}
get_ipython().system('gcloud config set project {PROJECT_ID}')
from google.colab import auth
auth.authenticate_user()
get_ipython().system('gcloud services enable firestore.googleapis.com')
from langchain_core.documents.base import Document
from langchain_google_firestore import FirestoreSaver
saver = FirestoreSaver()
data = [Document(page_content="Hello, World!")]
saver.upsert_documents(data)
saver = FirestoreSaver("Collection")
saver.upsert_documents(data)
doc_ids = ["AnotherCollection/doc_id", "foo/bar"]
saver = FirestoreSaver()
saver.upsert_documents(documents=data, document_ids=doc_ids)
from langchain_google_firestore import FirestoreLoader
loader_collection = FirestoreLoader("Collection")
loader_subcollection = FirestoreLoader("Collection/doc/SubCollection")
data_collection = loader_collection.load()
data_subcollection = loader_subcollection.load()
from google.cloud import firestore
client = firestore.Client()
doc_ref = client.collection("foo").document("bar")
loader_document = FirestoreLoader(doc_ref)
data = loader_document.load()
from google.cloud.firestore import CollectionGroup, FieldFilter, Query
col_ref = client.collection("col_group")
collection_group = CollectionGroup(col_ref)
loader_group = | FirestoreLoader(collection_group) | langchain_google_firestore.FirestoreLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet spacy')
from langchain_community.embeddings.spacy_embeddings import SpacyEmbeddings
embedder = | SpacyEmbeddings(model_name="en_core_web_sm") | langchain_community.embeddings.spacy_embeddings.SpacyEmbeddings |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet apify-client langchain-openai langchain chromadb tiktoken')
from langchain.indexes import VectorstoreIndexCreator
from langchain_community.document_loaders.base import Document
from langchain_community.utilities import ApifyWrapper
import os
os.environ["OPENAI_API_KEY"] = "Your OpenAI API key"
os.environ["APIFY_API_TOKEN"] = "Your Apify API token"
apify = | ApifyWrapper() | langchain_community.utilities.ApifyWrapper |
REGION = "us-central1" # @param {type:"string"}
INSTANCE = "test-instance" # @param {type:"string"}
DB_USER = "sqlserver" # @param {type:"string"}
DB_PASS = "password" # @param {type:"string"}
DATABASE = "test" # @param {type:"string"}
TABLE_NAME = "test-default" # @param {type:"string"}
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-google-cloud-sql-mssql')
from google.colab import auth
auth.authenticate_user()
PROJECT_ID = "my-project-id" # @param {type:"string"}
get_ipython().system('gcloud config set project {PROJECT_ID}')
get_ipython().system('gcloud services enable sqladmin.googleapis.com')
from langchain_google_cloud_sql_mssql import MSSQLEngine
engine = MSSQLEngine.from_instance(
project_id=PROJECT_ID,
region=REGION,
instance=INSTANCE,
database=DATABASE,
user=DB_USER,
password=DB_PASS,
)
engine.init_document_table(TABLE_NAME, overwrite_existing=True)
from langchain_core.documents import Document
from langchain_google_cloud_sql_mssql import MSSQLDocumentSaver
test_docs = [
Document(
page_content="Apple Granny Smith 150 0.99 1",
metadata={"fruit_id": 1},
),
Document(
page_content="Banana Cavendish 200 0.59 0",
metadata={"fruit_id": 2},
),
Document(
page_content="Orange Navel 80 1.29 1",
metadata={"fruit_id": 3},
),
]
saver = MSSQLDocumentSaver(engine=engine, table_name=TABLE_NAME)
saver.add_documents(test_docs)
from langchain_google_cloud_sql_mssql import MSSQLLoader
loader = | MSSQLLoader(engine=engine, table_name=TABLE_NAME) | langchain_google_cloud_sql_mssql.MSSQLLoader |
from langchain.chains import ConversationChain
from langchain.memory import (
CombinedMemory,
ConversationBufferMemory,
ConversationSummaryMemory,
)
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAI
conv_memory = ConversationBufferMemory(
memory_key="chat_history_lines", input_key="input"
)
summary_memory = ConversationSummaryMemory(llm=OpenAI(), input_key="input")
memory = CombinedMemory(memories=[conv_memory, summary_memory])
_DEFAULT_TEMPLATE = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Summary of conversation:
{history}
Current conversation:
{chat_history_lines}
Human: {input}
AI:"""
PROMPT = PromptTemplate(
input_variables=["history", "input", "chat_history_lines"],
template=_DEFAULT_TEMPLATE,
)
llm = OpenAI(temperature=0)
conversation = | ConversationChain(llm=llm, verbose=True, memory=memory, prompt=PROMPT) | langchain.chains.ConversationChain |
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../state_of_the_union.txt", encoding="utf-8")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
for i, text in enumerate(texts):
text.metadata["source"] = f"{i}-pl"
embeddings = OpenAIEmbeddings()
docsearch = | Chroma.from_documents(texts, embeddings) | langchain_community.vectorstores.Chroma.from_documents |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet opaqueprompts langchain')
import os
os.environ["OPAQUEPROMPTS_API_KEY"] = "<OPAQUEPROMPTS_API_KEY>"
os.environ["OPENAI_API_KEY"] = "<OPENAI_API_KEY>"
from langchain.callbacks.stdout import StdOutCallbackHandler
from langchain.chains import LLMChain
from langchain.globals import set_debug, set_verbose
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate
from langchain_community.llms import OpaquePrompts
from langchain_openai import OpenAI
set_debug(True)
set_verbose(True)
prompt_template = """
As an AI assistant, you will answer questions according to given context.
Sensitive personal information in the question is masked for privacy.
For instance, if the original text says "Giana is good," it will be changed
to "PERSON_998 is good."
Here's how to handle these changes:
* Consider these masked phrases just as placeholders, but still refer to
them in a relevant way when answering.
* It's possible that different masked terms might mean the same thing.
Stick with the given term and don't modify it.
* All masked terms follow the "TYPE_ID" pattern.
* Please don't invent new masked terms. For instance, if you see "PERSON_998,"
don't come up with "PERSON_997" or "PERSON_999" unless they're already in the question.
Conversation History: ```{history}```
Context : ```During our recent meeting on February 23, 2023, at 10:30 AM,
John Doe provided me with his personal details. His email is [email protected]
and his contact number is 650-456-7890. He lives in New York City, USA, and
belongs to the American nationality with Christian beliefs and a leaning towards
the Democratic party. He mentioned that he recently made a transaction using his
credit card 4111 1111 1111 1111 and transferred bitcoins to the wallet address
1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa. While discussing his European travels, he noted
down his IBAN as GB29 NWBK 6016 1331 9268 19. Additionally, he provided his website
as https://johndoeportfolio.com. John also discussed some of his US-specific details.
He said his bank account number is 1234567890123456 and his drivers license is Y12345678.
His ITIN is 987-65-4321, and he recently renewed his passport, the number for which is
123456789. He emphasized not to share his SSN, which is 123-45-6789. Furthermore, he
mentioned that he accesses his work files remotely through the IP 192.168.1.1 and has
a medical license number MED-123456. ```
Question: ```{question}```
"""
chain = LLMChain(
prompt=PromptTemplate.from_template(prompt_template),
llm=OpaquePrompts(base_llm=OpenAI()),
memory=ConversationBufferWindowMemory(k=2),
verbose=True,
)
print(
chain.run(
{
"question": """Write a message to remind John to do password reset for his website to stay secure."""
},
callbacks=[ | StdOutCallbackHandler() | langchain.callbacks.stdout.StdOutCallbackHandler |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3 nltk')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain_experimental')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain pydantic')
import os
import boto3
comprehend_client = boto3.client("comprehend", region_name="us-east-1")
from langchain_experimental.comprehend_moderation import AmazonComprehendModerationChain
comprehend_moderation = AmazonComprehendModerationChain(
client=comprehend_client,
verbose=True, # optional
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
ModerationPiiError,
)
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comprehend_moderation
| {"input": (lambda x: x["output"]) | llm}
| comprehend_moderation
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-22-3345. Can you give me some more samples?"
}
)
except ModerationPiiError as e:
print(str(e))
else:
print(response["output"])
from langchain_experimental.comprehend_moderation import (
BaseModerationConfig,
ModerationPiiConfig,
ModerationPromptSafetyConfig,
ModerationToxicityConfig,
)
pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X")
toxicity_config = ModerationToxicityConfig(threshold=0.5)
prompt_safety_config = ModerationPromptSafetyConfig(threshold=0.5)
moderation_config = BaseModerationConfig(
filters=[pii_config, toxicity_config, prompt_safety_config]
)
comp_moderation_with_config = AmazonComprehendModerationChain(
moderation_config=moderation_config, # specify the configuration
client=comprehend_client, # optionally pass the Boto3 Client
verbose=True,
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comp_moderation_with_config
| {"input": (lambda x: x["output"]) | llm}
| comp_moderation_with_config
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-45-7890. Can you give me some more samples?"
}
)
except Exception as e:
print(str(e))
else:
print(response["output"])
from langchain_experimental.comprehend_moderation import BaseModerationCallbackHandler
class MyModCallback(BaseModerationCallbackHandler):
async def on_after_pii(self, output_beacon, unique_id):
import json
moderation_type = output_beacon["moderation_type"]
chain_id = output_beacon["moderation_chain_id"]
with open(f"output-{moderation_type}-{chain_id}.json", "w") as file:
data = {"beacon_data": output_beacon, "unique_id": unique_id}
json.dump(data, file)
"""
async def on_after_toxicity(self, output_beacon, unique_id):
pass
async def on_after_prompt_safety(self, output_beacon, unique_id):
pass
"""
my_callback = MyModCallback()
pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X")
toxicity_config = ModerationToxicityConfig(threshold=0.5)
moderation_config = BaseModerationConfig(filters=[pii_config, toxicity_config])
comp_moderation_with_config = AmazonComprehendModerationChain(
moderation_config=moderation_config, # specify the configuration
client=comprehend_client, # optionally pass the Boto3 Client
unique_id="[email protected]", # A unique ID
moderation_callback=my_callback, # BaseModerationCallbackHandler
verbose=True,
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comp_moderation_with_config
| {"input": (lambda x: x["output"]) | llm}
| comp_moderation_with_config
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"
}
)
except Exception as e:
print(str(e))
else:
print(response["output"])
get_ipython().run_line_magic('pip', 'install --upgrade --quiet huggingface_hub')
import os
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "<YOUR HF TOKEN HERE>"
repo_id = "google/flan-t5-xxl"
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFaceHub
template = """{question}"""
prompt = PromptTemplate.from_template(template)
llm = HuggingFaceHub(
repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 256}
)
pii_config = ModerationPiiConfig(
labels=["SSN", "CREDIT_DEBIT_NUMBER"], redact=True, mask_character="X"
)
toxicity_config = ModerationToxicityConfig(threshold=0.5)
prompt_safety_config = ModerationPromptSafetyConfig(threshold=0.8)
moderation_config_1 = BaseModerationConfig(
filters=[pii_config, toxicity_config, prompt_safety_config]
)
moderation_config_2 = BaseModerationConfig(filters=[pii_config])
amazon_comp_moderation = AmazonComprehendModerationChain(
moderation_config=moderation_config_1,
client=comprehend_client,
moderation_callback=my_callback,
verbose=True,
)
amazon_comp_moderation_out = AmazonComprehendModerationChain(
moderation_config=moderation_config_2, client=comprehend_client, verbose=True
)
chain = (
prompt
| amazon_comp_moderation
| {"input": (lambda x: x["output"]) | llm}
| amazon_comp_moderation_out
)
try:
response = chain.invoke(
{
"question": """What is John Doe's address, phone number and SSN from the following text?
John Doe, a resident of 1234 Elm Street in Springfield, recently celebrated his birthday on January 1st. Turning 43 this year, John reflected on the years gone by. He often shares memories of his younger days with his close friends through calls on his phone, (555) 123-4567. Meanwhile, during a casual evening, he received an email at [email protected] reminding him of an old acquaintance's reunion. As he navigated through some old documents, he stumbled upon a paper that listed his SSN as 123-45-6789, reminding him to store it in a safer place.
"""
}
)
except Exception as e:
print(str(e))
else:
print(response["output"])
endpoint_name = "<SAGEMAKER_ENDPOINT_NAME>" # replace with your SageMaker Endpoint name
region = "<REGION>" # replace with your SageMaker Endpoint region
import json
from langchain.prompts import PromptTemplate
from langchain_community.llms import SagemakerEndpoint
from langchain_community.llms.sagemaker_endpoint import LLMContentHandler
class ContentHandler(LLMContentHandler):
content_type = "application/json"
accepts = "application/json"
def transform_input(self, prompt: str, model_kwargs: dict) -> bytes:
input_str = json.dumps({"text_inputs": prompt, **model_kwargs})
return input_str.encode("utf-8")
def transform_output(self, output: bytes) -> str:
response_json = json.loads(output.read().decode("utf-8"))
return response_json["generated_texts"][0]
content_handler = ContentHandler()
template = """From the following 'Document', precisely answer the 'Question'. Do not add any spurious information in your answer.
Document: John Doe, a resident of 1234 Elm Street in Springfield, recently celebrated his birthday on January 1st. Turning 43 this year, John reflected on the years gone by. He often shares memories of his younger days with his close friends through calls on his phone, (555) 123-4567. Meanwhile, during a casual evening, he received an email at [email protected] reminding him of an old acquaintance's reunion. As he navigated through some old documents, he stumbled upon a paper that listed his SSN as 123-45-6789, reminding him to store it in a safer place.
Question: {question}
Answer:
"""
llm_prompt = PromptTemplate.from_template(template)
llm = SagemakerEndpoint(
endpoint_name=endpoint_name,
region_name=region,
model_kwargs={
"temperature": 0.95,
"max_length": 200,
"num_return_sequences": 3,
"top_k": 50,
"top_p": 0.95,
"do_sample": True,
},
content_handler=content_handler,
)
pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X")
toxicity_config = ModerationToxicityConfig(threshold=0.5)
moderation_config_1 = BaseModerationConfig(filters=[pii_config, toxicity_config])
moderation_config_2 = | BaseModerationConfig(filters=[pii_config]) | langchain_experimental.comprehend_moderation.BaseModerationConfig |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet promptlayer --upgrade')
import promptlayer # Don't forget this 🍰
from langchain.callbacks import PromptLayerCallbackHandler
from langchain.schema import (
HumanMessage,
)
from langchain_openai import ChatOpenAI
chat_llm = ChatOpenAI(
temperature=0,
callbacks=[PromptLayerCallbackHandler(pl_tags=["chatopenai"])],
)
llm_results = chat_llm(
[
HumanMessage(content="What comes after 1,2,3 ?"),
HumanMessage(content="Tell me another joke?"),
]
)
print(llm_results)
import promptlayer # Don't forget this 🍰
from langchain.callbacks import PromptLayerCallbackHandler
from langchain_community.llms import GPT4All
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8)
response = model(
"Once upon a time, ",
callbacks=[ | PromptLayerCallbackHandler(pl_tags=["langchain", "gpt4all"]) | langchain.callbacks.PromptLayerCallbackHandler |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet dashvector dashscope')
import getpass
import os
os.environ["DASHVECTOR_API_KEY"] = getpass.getpass("DashVector API Key:")
os.environ["DASHSCOPE_API_KEY"] = getpass.getpass("DashScope API Key:")
from langchain_community.embeddings.dashscope import DashScopeEmbeddings
from langchain_community.vectorstores import DashVector
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = | DashScopeEmbeddings() | langchain_community.embeddings.dashscope.DashScopeEmbeddings |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3')
from langchain.retrievers import AmazonKendraRetriever
retriever = | AmazonKendraRetriever(index_id="c0806df7-e76b-4bce-9b5c-d5582f6b1a03") | langchain.retrievers.AmazonKendraRetriever |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet annoy')
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Annoy
embeddings_func = HuggingFaceEmbeddings()
texts = ["pizza is great", "I love salad", "my car", "a dog"]
vector_store = Annoy.from_texts(texts, embeddings_func)
vector_store_v2 = Annoy.from_texts(
texts, embeddings_func, metric="dot", n_trees=100, n_jobs=1
)
vector_store.similarity_search("food", k=3)
vector_store.similarity_search_with_score("food", k=3)
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txtn.txtn.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
docs[:5]
vector_store_from_docs = | Annoy.from_documents(docs, embeddings_func) | langchain_community.vectorstores.Annoy.from_documents |
from langchain_community.document_loaders import GutenbergLoader
loader = | GutenbergLoader("https://www.gutenberg.org/cache/epub/69972/pg69972.txt") | langchain_community.document_loaders.GutenbergLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-community langchainhub langchain-openai faiss-cpu')
from langchain_community.document_loaders import TextLoader
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
db = | FAISS.from_documents(texts, embeddings) | langchain_community.vectorstores.FAISS.from_documents |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet hdbcli')
import os
from hdbcli import dbapi
connection = dbapi.connect(
address=os.environ.get("HANA_DB_ADDRESS"),
port=os.environ.get("HANA_DB_PORT"),
user=os.environ.get("HANA_DB_USER"),
password=os.environ.get("HANA_DB_PASSWORD"),
autocommit=True,
sslValidateCertificate=False,
)
from langchain.docstore.document import Document
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.hanavector import HanaDB
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
text_documents = TextLoader("../../modules/state_of_the_union.txt").load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
text_chunks = text_splitter.split_documents(text_documents)
print(f"Number of document chunks: {len(text_chunks)}")
embeddings = OpenAIEmbeddings()
db = HanaDB(
embedding=embeddings, connection=connection, table_name="STATE_OF_THE_UNION"
)
db.delete(filter={})
db.add_documents(text_chunks)
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query, k=2)
for doc in docs:
print("-" * 80)
print(doc.page_content)
from langchain_community.vectorstores.utils import DistanceStrategy
db = HanaDB(
embedding=embeddings,
connection=connection,
distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE,
table_name="STATE_OF_THE_UNION",
)
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query, k=2)
for doc in docs:
print("-" * 80)
print(doc.page_content)
docs = db.max_marginal_relevance_search(query, k=2, fetch_k=20)
for doc in docs:
print("-" * 80)
print(doc.page_content)
db = HanaDB(
connection=connection, embedding=embeddings, table_name="LANGCHAIN_DEMO_BASIC"
)
db.delete(filter={})
docs = [Document(page_content="Some text"), | Document(page_content="Other docs") | langchain.docstore.document.Document |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet psycopg2-binary')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken')
YBUSER = "[SANDBOX USER]"
YBPASSWORD = "[SANDBOX PASSWORD]"
YBDATABASE = "[SANDBOX_DATABASE]"
YBHOST = "trialsandbox.sandbox.aws.yellowbrickcloud.com"
OPENAI_API_KEY = "[OPENAI API KEY]"
import os
import pathlib
import re
import sys
import urllib.parse as urlparse
from getpass import getpass
import psycopg2
from IPython.display import Markdown, display
from langchain.chains import LLMChain, RetrievalQAWithSourcesChain
from langchain.docstore.document import Document
from langchain_community.vectorstores import Yellowbrick
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
yellowbrick_connection_string = (
f"postgres://{urlparse.quote(YBUSER)}:{YBPASSWORD}@{YBHOST}:5432/{YBDATABASE}"
)
YB_DOC_DATABASE = "sample_data"
YB_DOC_TABLE = "yellowbrick_documentation"
embedding_table = "my_embeddings"
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
system_template = """If you don't know the answer, Make up your best guess."""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
| HumanMessagePromptTemplate.from_template("{question}") | langchain.prompts.chat.HumanMessagePromptTemplate.from_template |
from langchain.output_parsers.enum import EnumOutputParser
from enum import Enum
class Colors(Enum):
RED = "red"
GREEN = "green"
BLUE = "blue"
parser = | EnumOutputParser(enum=Colors) | langchain.output_parsers.enum.EnumOutputParser |
import pprint
from langchain_community.utilities import SearxSearchWrapper
search = SearxSearchWrapper(searx_host="http://127.0.0.1:8888")
search.run("What is the capital of France")
search = SearxSearchWrapper(
searx_host="http://127.0.0.1:8888", k=5
) # k is for max number of items
search.run("large language model ", engines=["wiki"])
search = | SearxSearchWrapper(searx_host="http://127.0.0.1:8888", k=1) | langchain_community.utilities.SearxSearchWrapper |
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAI
template = """You are a chatbot having a conversation with a human.
{chat_history}
Human: {human_input}
Chatbot:"""
prompt = PromptTemplate(
input_variables=["chat_history", "human_input"], template=template
)
memory = ConversationBufferMemory(memory_key="chat_history")
llm = OpenAI()
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=True,
memory=memory,
)
llm_chain.predict(human_input="Hi there my friend")
llm_chain.predict(human_input="Not too bad - how are you?")
from langchain.prompts import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
)
from langchain_core.messages import SystemMessage
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_messages(
[
SystemMessage(
content="You are a chatbot having a conversation with a human."
), # The persistent system prompt
MessagesPlaceholder(
variable_name="chat_history"
), # Where the memory will be stored.
HumanMessagePromptTemplate.from_template(
"{human_input}"
), # Where the human input will injected
]
)
memory = | ConversationBufferMemory(memory_key="chat_history", return_messages=True) | langchain.memory.ConversationBufferMemory |
get_ipython().system(' pip install pdf2image')
import arxiv
from langchain_community.chat_models import ChatAnthropic
from langchain_community.document_loaders import ArxivLoader, UnstructuredPDFLoader
paper = next(arxiv.Search(query="Visual Instruction Tuning").results())
paper.download_pdf(filename="downloaded-paper.pdf")
loader = UnstructuredPDFLoader("downloaded-paper.pdf")
doc = loader.load()[0]
from langchain_community.document_loaders import WebBaseLoader
loader = | WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") | langchain_community.document_loaders.WebBaseLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet youtube_search')
from langchain.tools import YouTubeSearchTool
tool = | YouTubeSearchTool() | langchain.tools.YouTubeSearchTool |
"""For basic init and call"""
import os
from langchain_community.embeddings import VolcanoEmbeddings
os.environ["VOLC_ACCESSKEY"] = ""
os.environ["VOLC_SECRETKEY"] = ""
embed = | VolcanoEmbeddings(volcano_ak="", volcano_sk="") | langchain_community.embeddings.VolcanoEmbeddings |
import json
from pprint import pprint
from langchain.globals import set_debug
from langchain_community.llms import NIBittensorLLM
set_debug(True)
llm_sys = NIBittensorLLM(
system_prompt="Your task is to determine response based on user prompt.Explain me like I am technical lead of a project"
)
sys_resp = llm_sys(
"What is bittensor and What are the potential benefits of decentralized AI?"
)
print(f"Response provided by LLM with system prompt set is : {sys_resp}")
""" {
"choices": [
{"index": Bittensor's Metagraph index number,
"uid": Unique Identifier of a miner,
"responder_hotkey": Hotkey of a miner,
"message":{"role":"assistant","content": Contains actual response},
"response_ms": Time in millisecond required to fetch response from a miner}
]
} """
multi_response_llm = NIBittensorLLM(top_responses=10)
multi_resp = multi_response_llm("What is Neural Network Feeding Mechanism?")
json_multi_resp = json.loads(multi_resp)
pprint(json_multi_resp)
from langchain.chains import LLMChain
from langchain.globals import set_debug
from langchain.prompts import PromptTemplate
from langchain_community.llms import NIBittensorLLM
| set_debug(True) | langchain.globals.set_debug |
import os
import pprint
os.environ["SERPER_API_KEY"] = ""
from langchain_community.utilities import GoogleSerperAPIWrapper
search = GoogleSerperAPIWrapper()
search.run("Obama's first name?")
os.environ["OPENAI_API_KEY"] = ""
from langchain.agents import AgentType, Tool, initialize_agent
from langchain_community.utilities import GoogleSerperAPIWrapper
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
search = GoogleSerperAPIWrapper()
tools = [
Tool(
name="Intermediate Answer",
func=search.run,
description="useful for when you need to ask with search",
)
]
self_ask_with_search = initialize_agent(
tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True
)
self_ask_with_search.run(
"What is the hometown of the reigning men's U.S. Open champion?"
)
search = GoogleSerperAPIWrapper()
results = search.results("Apple Inc.")
pprint.pp(results)
search = GoogleSerperAPIWrapper(type="images")
results = search.results("Lion")
pprint.pp(results)
search = GoogleSerperAPIWrapper(type="news")
results = search.results("Tesla Inc.")
pprint.pp(results)
search = | GoogleSerperAPIWrapper(type="news", tbs="qdr:h") | langchain_community.utilities.GoogleSerperAPIWrapper |
get_ipython().system(' nomic login')
get_ipython().system(' nomic login token')
get_ipython().system(' pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain')
import os
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGCHAIN_API_KEY"] = "api_key"
from langchain_community.document_loaders import WebBaseLoader
urls = [
"https://lilianweng.github.io/posts/2023-06-23-agent/",
"https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
"https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/",
]
docs = [WebBaseLoader(url).load() for url in urls]
docs_list = [item for sublist in docs for item in sublist]
from langchain_text_splitters import CharacterTextSplitter
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
chunk_size=7500, chunk_overlap=100
)
doc_splits = text_splitter.split_documents(docs_list)
import tiktoken
encoding = tiktoken.get_encoding("cl100k_base")
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
for d in doc_splits:
print("The document is %s tokens" % len(encoding.encode(d.page_content)))
import os
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain_nomic import NomicEmbeddings
from langchain_nomic.embeddings import NomicEmbeddings
vectorstore = Chroma.from_documents(
documents=doc_splits,
collection_name="rag-chroma",
embedding=NomicEmbeddings(model="nomic-embed-text-v1"),
)
retriever = vectorstore.as_retriever()
from langchain_community.chat_models import ChatOllama
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI(temperature=0, model="gpt-4-1106-preview")
ollama_llm = "mistral:instruct"
model_local = | ChatOllama(model=ollama_llm) | langchain_community.chat_models.ChatOllama |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet vearch')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet vearch_cluster')
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores.vearch import Vearch
from langchain_text_splitters import RecursiveCharacterTextSplitter
from transformers import AutoModel, AutoTokenizer
model_path = "/data/zhx/zhx/langchain-ChatGLM_new/chatglm2-6b"
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda(0)
query = "你好!"
response, history = model.chat(tokenizer, query, history=[])
print(f"Human: {query}\nChatGLM:{response}\n")
query = "你知道凌波微步吗,你知道都有谁学会了吗?"
response, history = model.chat(tokenizer, query, history=history)
print(f"Human: {query}\nChatGLM:{response}\n")
file_path = "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/天龙八部/lingboweibu.txt" # Your local file path"
loader = TextLoader(file_path, encoding="utf-8")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
embedding_path = "/data/zhx/zhx/langchain-ChatGLM_new/text2vec/text2vec-large-chinese"
embeddings = | HuggingFaceEmbeddings(model_name=embedding_path) | langchain_community.embeddings.huggingface.HuggingFaceEmbeddings |
import os
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.llms import ForefrontAI
from getpass import getpass
FOREFRONTAI_API_KEY = getpass()
os.environ["FOREFRONTAI_API_KEY"] = FOREFRONTAI_API_KEY
llm = | ForefrontAI(endpoint_url="YOUR ENDPOINT URL HERE") | langchain_community.llms.ForefrontAI |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai')
from langchain.prompts import PromptTemplate
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(temperature=0).configurable_fields(
temperature=ConfigurableField(
id="llm_temperature",
name="LLM Temperature",
description="The temperature of the LLM",
)
)
model.invoke("pick a random number")
model.with_config(configurable={"llm_temperature": 0.9}).invoke("pick a random number")
prompt = PromptTemplate.from_template("Pick a random number above {x}")
chain = prompt | model
chain.invoke({"x": 0})
chain.with_config(configurable={"llm_temperature": 0.9}).invoke({"x": 0})
from langchain.runnables.hub import HubRunnable
prompt = HubRunnable("rlm/rag-prompt").configurable_fields(
owner_repo_commit=ConfigurableField(
id="hub_commit",
name="Hub Commit",
description="The Hub commit to pull from",
)
)
prompt.invoke({"question": "foo", "context": "bar"})
prompt.with_config(configurable={"hub_commit": "rlm/rag-prompt-llama"}).invoke(
{"question": "foo", "context": "bar"}
)
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatAnthropic
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
llm = | ChatAnthropic(temperature=0) | langchain_community.chat_models.ChatAnthropic |
from langchain_community.utilities import SerpAPIWrapper
search = SerpAPIWrapper()
search.run("Obama's first name?")
params = {
"engine": "bing",
"gl": "us",
"hl": "en",
}
search = | SerpAPIWrapper(params=params) | langchain_community.utilities.SerpAPIWrapper |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-api-python-client > /dev/null')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-auth-oauthlib > /dev/null')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-auth-httplib2 > /dev/null')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet beautifulsoup4 > /dev/null # This is optional but is useful for parsing HTML messages')
from langchain_community.agent_toolkits import GmailToolkit
toolkit = GmailToolkit()
from langchain_community.tools.gmail.utils import (
build_resource_service,
get_gmail_credentials,
)
credentials = get_gmail_credentials(
token_file="token.json",
scopes=["https://mail.google.com/"],
client_secrets_file="credentials.json",
)
api_resource = build_resource_service(credentials=credentials)
toolkit = | GmailToolkit(api_resource=api_resource) | langchain_community.agent_toolkits.GmailToolkit |
import asyncio
from langchain.callbacks import get_openai_callback
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
with | get_openai_callback() | langchain.callbacks.get_openai_callback |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet nlpcloud')
from langchain_community.embeddings import NLPCloudEmbeddings
import os
os.environ["NLPCLOUD_API_KEY"] = "xxx"
nlpcloud_embd = | NLPCloudEmbeddings() | langchain_community.embeddings.NLPCloudEmbeddings |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3 nltk')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain_experimental')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain pydantic')
import os
import boto3
comprehend_client = boto3.client("comprehend", region_name="us-east-1")
from langchain_experimental.comprehend_moderation import AmazonComprehendModerationChain
comprehend_moderation = AmazonComprehendModerationChain(
client=comprehend_client,
verbose=True, # optional
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
ModerationPiiError,
)
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comprehend_moderation
| {"input": (lambda x: x["output"]) | llm}
| comprehend_moderation
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-22-3345. Can you give me some more samples?"
}
)
except ModerationPiiError as e:
print(str(e))
else:
print(response["output"])
from langchain_experimental.comprehend_moderation import (
BaseModerationConfig,
ModerationPiiConfig,
ModerationPromptSafetyConfig,
ModerationToxicityConfig,
)
pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X")
toxicity_config = ModerationToxicityConfig(threshold=0.5)
prompt_safety_config = ModerationPromptSafetyConfig(threshold=0.5)
moderation_config = BaseModerationConfig(
filters=[pii_config, toxicity_config, prompt_safety_config]
)
comp_moderation_with_config = AmazonComprehendModerationChain(
moderation_config=moderation_config, # specify the configuration
client=comprehend_client, # optionally pass the Boto3 Client
verbose=True,
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comp_moderation_with_config
| {"input": (lambda x: x["output"]) | llm}
| comp_moderation_with_config
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-45-7890. Can you give me some more samples?"
}
)
except Exception as e:
print(str(e))
else:
print(response["output"])
from langchain_experimental.comprehend_moderation import BaseModerationCallbackHandler
class MyModCallback(BaseModerationCallbackHandler):
async def on_after_pii(self, output_beacon, unique_id):
import json
moderation_type = output_beacon["moderation_type"]
chain_id = output_beacon["moderation_chain_id"]
with open(f"output-{moderation_type}-{chain_id}.json", "w") as file:
data = {"beacon_data": output_beacon, "unique_id": unique_id}
json.dump(data, file)
"""
async def on_after_toxicity(self, output_beacon, unique_id):
pass
async def on_after_prompt_safety(self, output_beacon, unique_id):
pass
"""
my_callback = MyModCallback()
pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X")
toxicity_config = ModerationToxicityConfig(threshold=0.5)
moderation_config = BaseModerationConfig(filters=[pii_config, toxicity_config])
comp_moderation_with_config = AmazonComprehendModerationChain(
moderation_config=moderation_config, # specify the configuration
client=comprehend_client, # optionally pass the Boto3 Client
unique_id="[email protected]", # A unique ID
moderation_callback=my_callback, # BaseModerationCallbackHandler
verbose=True,
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comp_moderation_with_config
| {"input": (lambda x: x["output"]) | llm}
| comp_moderation_with_config
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"
}
)
except Exception as e:
print(str(e))
else:
print(response["output"])
get_ipython().run_line_magic('pip', 'install --upgrade --quiet huggingface_hub')
import os
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "<YOUR HF TOKEN HERE>"
repo_id = "google/flan-t5-xxl"
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFaceHub
template = """{question}"""
prompt = PromptTemplate.from_template(template)
llm = HuggingFaceHub(
repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 256}
)
pii_config = ModerationPiiConfig(
labels=["SSN", "CREDIT_DEBIT_NUMBER"], redact=True, mask_character="X"
)
toxicity_config = ModerationToxicityConfig(threshold=0.5)
prompt_safety_config = ModerationPromptSafetyConfig(threshold=0.8)
moderation_config_1 = BaseModerationConfig(
filters=[pii_config, toxicity_config, prompt_safety_config]
)
moderation_config_2 = | BaseModerationConfig(filters=[pii_config]) | langchain_experimental.comprehend_moderation.BaseModerationConfig |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet bilibili-api-python')
from langchain_community.document_loaders import BiliBiliLoader
loader = | BiliBiliLoader(["https://www.bilibili.com/video/BV1xt411o7Xu/"]) | langchain_community.document_loaders.BiliBiliLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet sagemaker')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-search-results')
import os
os.environ["OPENAI_API_KEY"] = "<ADD-KEY-HERE>"
os.environ["SERPAPI_API_KEY"] = "<ADD-KEY-HERE>"
from langchain.agents import initialize_agent, load_tools
from langchain.callbacks import SageMakerCallbackHandler
from langchain.chains import LLMChain, SimpleSequentialChain
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAI
from sagemaker.analytics import ExperimentAnalytics
from sagemaker.experiments.run import Run
from sagemaker.session import Session
HPARAMS = {
"temperature": 0.1,
"model_name": "gpt-3.5-turbo-instruct",
}
BUCKET_NAME = None
EXPERIMENT_NAME = "langchain-sagemaker-tracker"
session = Session(default_bucket=BUCKET_NAME)
RUN_NAME = "run-scenario-1"
PROMPT_TEMPLATE = "tell me a joke about {topic}"
INPUT_VARIABLES = {"topic": "fish"}
with Run(
experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session
) as run:
sagemaker_callback = SageMakerCallbackHandler(run)
llm = OpenAI(callbacks=[sagemaker_callback], **HPARAMS)
prompt = PromptTemplate.from_template(template=PROMPT_TEMPLATE)
chain = LLMChain(llm=llm, prompt=prompt, callbacks=[sagemaker_callback])
chain.run(**INPUT_VARIABLES)
sagemaker_callback.flush_tracker()
RUN_NAME = "run-scenario-2"
PROMPT_TEMPLATE_1 = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
PROMPT_TEMPLATE_2 = """You are a play critic from the New York Times. Given the synopsis of play, it is your job to write a review for that play.
Play Synopsis: {synopsis}
Review from a New York Times play critic of the above play:"""
INPUT_VARIABLES = {
"input": "documentary about good video games that push the boundary of game design"
}
with Run(
experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session
) as run:
sagemaker_callback = | SageMakerCallbackHandler(run) | langchain.callbacks.SageMakerCallbackHandler |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai')
import os
import uuid
uid = uuid.uuid4().hex[:6]
project_name = f"Run Fine-tuning Walkthrough {uid}"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "YOUR API KEY"
os.environ["LANGCHAIN_PROJECT"] = project_name
from enum import Enum
from langchain_core.pydantic_v1 import BaseModel, Field
class Operation(Enum):
add = "+"
subtract = "-"
multiply = "*"
divide = "/"
class Calculator(BaseModel):
"""A calculator function"""
num1: float
num2: float
operation: Operation = Field(..., description="+,-,*,/")
def calculate(self):
if self.operation == Operation.add:
return self.num1 + self.num2
elif self.operation == Operation.subtract:
return self.num1 - self.num2
elif self.operation == Operation.multiply:
return self.num1 * self.num2
elif self.operation == Operation.divide:
if self.num2 != 0:
return self.num1 / self.num2
else:
return "Cannot divide by zero"
from pprint import pprint
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
from langchain_core.pydantic_v1 import BaseModel
openai_function_def = convert_pydantic_to_openai_function(Calculator)
pprint(openai_function_def)
from langchain.output_parsers.openai_functions import PydanticOutputFunctionsParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are an accounting assistant."),
("user", "{input}"),
]
)
chain = (
prompt
| ChatOpenAI().bind(functions=[openai_function_def])
| | PydanticOutputFunctionsParser(pydantic_schema=Calculator) | langchain.output_parsers.openai_functions.PydanticOutputFunctionsParser |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-nvidia-ai-endpoints')
import getpass
import os
if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"):
nvapi_key = getpass.getpass("Enter your NVIDIA API key: ")
assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key"
os.environ["NVIDIA_API_KEY"] = nvapi_key
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="mixtral_8x7b")
result = llm.invoke("Write a ballad about LangChain.")
print(result.content)
print(llm.batch(["What's 2*3?", "What's 2*6?"]))
for chunk in llm.stream("How far can a seagull fly in one day?"):
print(chunk.content, end="|")
async for chunk in llm.astream(
"How long does it take for monarch butterflies to migrate?"
):
print(chunk.content, end="|")
ChatNVIDIA.get_available_models()
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_nvidia_ai_endpoints import ChatNVIDIA
prompt = ChatPromptTemplate.from_messages(
[("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")]
)
chain = prompt | ChatNVIDIA(model="llama2_13b") | | StrOutputParser() | langchain_core.output_parsers.StrOutputParser |
from langchain.globals import set_llm_cache
from langchain_openai import ChatOpenAI
llm = ChatOpenAI()
get_ipython().run_cell_magic('time', '', 'from langchain.cache import InMemoryCache\n\nset_llm_cache(InMemoryCache())\n\n# The first time, it is not yet in cache, so it should take longer\nllm.predict("Tell me a joke")\n')
get_ipython().run_cell_magic('time', '', '# The second time it is, so it goes faster\nllm.predict("Tell me a joke")\n')
get_ipython().system('rm .langchain.db')
from langchain.cache import SQLiteCache
set_llm_cache( | SQLiteCache(database_path=".langchain.db") | langchain.cache.SQLiteCache |
get_ipython().system('pip install boto3')
from langchain_experimental.recommenders import AmazonPersonalize
recommender_arn = "<insert_arn>"
client = AmazonPersonalize(
credentials_profile_name="default",
region_name="us-west-2",
recommender_arn=recommender_arn,
)
client.get_recommendations(user_id="1")
from langchain.llms.bedrock import Bedrock
from langchain_experimental.recommenders import AmazonPersonalizeChain
bedrock_llm = Bedrock(model_id="anthropic.claude-v2", region_name="us-west-2")
chain = AmazonPersonalizeChain.from_llm(
llm=bedrock_llm, client=client, return_direct=False
)
response = chain({"user_id": "1"})
print(response)
from langchain.prompts.prompt import PromptTemplate
RANDOM_PROMPT_QUERY = """
You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week,
given the movie and user information below. Your email will leverage the power of storytelling and persuasive language.
The movies to recommend and their information is contained in the <movie> tag.
All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them.
Put the email between <email> tags.
<movie>
{result}
</movie>
Assistant:
"""
RANDOM_PROMPT = | PromptTemplate(input_variables=["result"], template=RANDOM_PROMPT_QUERY) | langchain.prompts.prompt.PromptTemplate |
from langchain_community.document_transformers.openai_functions import (
create_metadata_tagger,
)
from langchain_core.documents import Document
from langchain_openai import ChatOpenAI
schema = {
"properties": {
"movie_title": {"type": "string"},
"critic": {"type": "string"},
"tone": {"type": "string", "enum": ["positive", "negative"]},
"rating": {
"type": "integer",
"description": "The number of stars the critic rated the movie",
},
},
"required": ["movie_title", "critic", "tone"],
}
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
document_transformer = create_metadata_tagger(metadata_schema=schema, llm=llm)
original_documents = [
Document(
page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."
),
Document(
page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.",
metadata={"reliable": False},
),
]
enhanced_documents = document_transformer.transform_documents(original_documents)
import json
print(
*[d.page_content + "\n\n" + json.dumps(d.metadata) for d in enhanced_documents],
sep="\n\n---------------\n\n",
)
from typing import Literal
from pydantic import BaseModel, Field
class Properties(BaseModel):
movie_title: str
critic: str
tone: Literal["positive", "negative"]
rating: int = Field(description="Rating out of 5 stars")
document_transformer = create_metadata_tagger(Properties, llm)
enhanced_documents = document_transformer.transform_documents(original_documents)
print(
*[d.page_content + "\n\n" + json.dumps(d.metadata) for d in enhanced_documents],
sep="\n\n---------------\n\n",
)
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template(
"""Extract relevant information from the following text.
Anonymous critics are actually Roger Ebert.
{input}
"""
)
document_transformer = | create_metadata_tagger(schema, llm, prompt=prompt) | langchain_community.document_transformers.openai_functions.create_metadata_tagger |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet azure-ai-formrecognizer > /dev/null')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet azure-cognitiveservices-speech > /dev/null')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet azure-ai-textanalytics > /dev/null')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet azure-ai-vision > /dev/null')
import os
os.environ["OPENAI_API_KEY"] = "sk-"
os.environ["AZURE_COGS_KEY"] = ""
os.environ["AZURE_COGS_ENDPOINT"] = ""
os.environ["AZURE_COGS_REGION"] = ""
from langchain_community.agent_toolkits import AzureCognitiveServicesToolkit
toolkit = | AzureCognitiveServicesToolkit() | langchain_community.agent_toolkits.AzureCognitiveServicesToolkit |
get_ipython().run_line_magic('pip', "install --upgrade --quiet langchain-openai 'deeplake[enterprise]' tiktoken")
from langchain_community.vectorstores import DeepLake
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
activeloop_token = getpass.getpass("activeloop token:")
embeddings = OpenAIEmbeddings()
from langchain_community.document_loaders import TextLoader
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
db = | DeepLake(dataset_path="./my_deeplake/", embedding=embeddings, overwrite=True) | langchain_community.vectorstores.DeepLake |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai')
from langchain.evaluation import load_evaluator
eval_chain = load_evaluator("pairwise_string")
from langchain.evaluation.loading import load_dataset
dataset = | load_dataset("langchain-howto-queries") | langchain.evaluation.loading.load_dataset |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai')
import os
import uuid
uid = uuid.uuid4().hex[:6]
project_name = f"Run Fine-tuning Walkthrough {uid}"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "YOUR API KEY"
os.environ["LANGCHAIN_PROJECT"] = project_name
from enum import Enum
from langchain_core.pydantic_v1 import BaseModel, Field
class Operation(Enum):
add = "+"
subtract = "-"
multiply = "*"
divide = "/"
class Calculator(BaseModel):
"""A calculator function"""
num1: float
num2: float
operation: Operation = Field(..., description="+,-,*,/")
def calculate(self):
if self.operation == Operation.add:
return self.num1 + self.num2
elif self.operation == Operation.subtract:
return self.num1 - self.num2
elif self.operation == Operation.multiply:
return self.num1 * self.num2
elif self.operation == Operation.divide:
if self.num2 != 0:
return self.num1 / self.num2
else:
return "Cannot divide by zero"
from pprint import pprint
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
from langchain_core.pydantic_v1 import BaseModel
openai_function_def = convert_pydantic_to_openai_function(Calculator)
pprint(openai_function_def)
from langchain.output_parsers.openai_functions import PydanticOutputFunctionsParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are an accounting assistant."),
("user", "{input}"),
]
)
chain = (
prompt
| ChatOpenAI().bind(functions=[openai_function_def])
| PydanticOutputFunctionsParser(pydantic_schema=Calculator)
| (lambda x: x.calculate())
)
math_questions = [
"What's 45/9?",
"What's 81/9?",
"What's 72/8?",
"What's 56/7?",
"What's 36/6?",
"What's 64/8?",
"What's 12*6?",
"What's 8*8?",
"What's 10*10?",
"What's 11*11?",
"What's 13*13?",
"What's 45+30?",
"What's 72+28?",
"What's 56+44?",
"What's 63+37?",
"What's 70-35?",
"What's 60-30?",
"What's 50-25?",
"What's 40-20?",
"What's 30-15?",
]
results = chain.batch([{"input": q} for q in math_questions], return_exceptions=True)
from langsmith.client import Client
client = Client()
successful_traces = {
run.trace_id
for run in client.list_runs(
project_name=project_name,
execution_order=1,
error=False,
)
}
llm_runs = [
run
for run in client.list_runs(
project_name=project_name,
run_type="llm",
)
if run.trace_id in successful_traces
]
from langchain_community.chat_loaders.langsmith import LangSmithRunChatLoader
loader = | LangSmithRunChatLoader(runs=llm_runs) | langchain_community.chat_loaders.langsmith.LangSmithRunChatLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet duckdb')
from langchain_community.document_loaders import DuckDBLoader
get_ipython().run_cell_magic('file', 'example.csv', 'Team,Payroll\nNationals,81.34\nReds,82.20\n')
loader = DuckDBLoader("SELECT * FROM read_csv_auto('example.csv')")
data = loader.load()
print(data)
loader = DuckDBLoader(
"SELECT * FROM read_csv_auto('example.csv')",
page_content_columns=["Team"],
metadata_columns=["Payroll"],
)
data = loader.load()
print(data)
loader = | DuckDBLoader(
"SELECT Team, Payroll, Team As source FROM read_csv_auto('example.csv') | langchain_community.document_loaders.DuckDBLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet opencv-python scikit-image')
import os
from langchain_openai import OpenAI
os.environ["OPENAI_API_KEY"] = "<your-key-here>"
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper
from langchain_openai import OpenAI
llm = OpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["image_desc"],
template="Generate a detailed prompt to generate an image based on the following description: {image_desc}",
)
chain = LLMChain(llm=llm, prompt=prompt)
image_url = | DallEAPIWrapper() | langchain_community.utilities.dalle_image_generator.DallEAPIWrapper |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain_openai')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("Input your OpenAI API key:")
tidb_connection_string_template = "mysql+pymysql://<USER>:<PASSWORD>@<HOST>:4000/<DB>?ssl_ca=/etc/ssl/cert.pem&ssl_verify_cert=true&ssl_verify_identity=true"
tidb_password = getpass.getpass("Input your TiDB password:")
tidb_connection_string = tidb_connection_string_template.replace(
"<PASSWORD>", tidb_password
)
from datetime import datetime
from langchain_community.chat_message_histories import TiDBChatMessageHistory
history = TiDBChatMessageHistory(
connection_string=tidb_connection_string,
session_id="code_gen",
earliest_time=datetime.utcnow(), # Optional to set earliest_time to load messages after this time point.
)
history.add_user_message("How's our feature going?")
history.add_ai_message(
"It's going well. We are working on testing now. It will be released in Feb."
)
history.messages
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You're an assistant who's good at coding. You're helping a startup build",
),
| MessagesPlaceholder(variable_name="history") | langchain_core.prompts.MessagesPlaceholder |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3 nltk')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain_experimental')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain pydantic')
import os
import boto3
comprehend_client = boto3.client("comprehend", region_name="us-east-1")
from langchain_experimental.comprehend_moderation import AmazonComprehendModerationChain
comprehend_moderation = AmazonComprehendModerationChain(
client=comprehend_client,
verbose=True, # optional
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
ModerationPiiError,
)
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comprehend_moderation
| {"input": (lambda x: x["output"]) | llm}
| comprehend_moderation
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-22-3345. Can you give me some more samples?"
}
)
except ModerationPiiError as e:
print(str(e))
else:
print(response["output"])
from langchain_experimental.comprehend_moderation import (
BaseModerationConfig,
ModerationPiiConfig,
ModerationPromptSafetyConfig,
ModerationToxicityConfig,
)
pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X")
toxicity_config = ModerationToxicityConfig(threshold=0.5)
prompt_safety_config = ModerationPromptSafetyConfig(threshold=0.5)
moderation_config = BaseModerationConfig(
filters=[pii_config, toxicity_config, prompt_safety_config]
)
comp_moderation_with_config = AmazonComprehendModerationChain(
moderation_config=moderation_config, # specify the configuration
client=comprehend_client, # optionally pass the Boto3 Client
verbose=True,
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comp_moderation_with_config
| {"input": (lambda x: x["output"]) | llm}
| comp_moderation_with_config
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-45-7890. Can you give me some more samples?"
}
)
except Exception as e:
print(str(e))
else:
print(response["output"])
from langchain_experimental.comprehend_moderation import BaseModerationCallbackHandler
class MyModCallback(BaseModerationCallbackHandler):
async def on_after_pii(self, output_beacon, unique_id):
import json
moderation_type = output_beacon["moderation_type"]
chain_id = output_beacon["moderation_chain_id"]
with open(f"output-{moderation_type}-{chain_id}.json", "w") as file:
data = {"beacon_data": output_beacon, "unique_id": unique_id}
json.dump(data, file)
"""
async def on_after_toxicity(self, output_beacon, unique_id):
pass
async def on_after_prompt_safety(self, output_beacon, unique_id):
pass
"""
my_callback = MyModCallback()
pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X")
toxicity_config = ModerationToxicityConfig(threshold=0.5)
moderation_config = BaseModerationConfig(filters=[pii_config, toxicity_config])
comp_moderation_with_config = AmazonComprehendModerationChain(
moderation_config=moderation_config, # specify the configuration
client=comprehend_client, # optionally pass the Boto3 Client
unique_id="[email protected]", # A unique ID
moderation_callback=my_callback, # BaseModerationCallbackHandler
verbose=True,
)
from langchain.prompts import PromptTemplate
from langchain_community.llms.fake import FakeListLLM
template = """Question: {question}
Answer:"""
prompt = PromptTemplate.from_template(template)
responses = [
"Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.",
"Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.",
]
llm = FakeListLLM(responses=responses)
chain = (
prompt
| comp_moderation_with_config
| {"input": (lambda x: x["output"]) | llm}
| comp_moderation_with_config
)
try:
response = chain.invoke(
{
"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"
}
)
except Exception as e:
print(str(e))
else:
print(response["output"])
get_ipython().run_line_magic('pip', 'install --upgrade --quiet huggingface_hub')
import os
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "<YOUR HF TOKEN HERE>"
repo_id = "google/flan-t5-xxl"
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFaceHub
template = """{question}"""
prompt = PromptTemplate.from_template(template)
llm = HuggingFaceHub(
repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 256}
)
pii_config = ModerationPiiConfig(
labels=["SSN", "CREDIT_DEBIT_NUMBER"], redact=True, mask_character="X"
)
toxicity_config = ModerationToxicityConfig(threshold=0.5)
prompt_safety_config = ModerationPromptSafetyConfig(threshold=0.8)
moderation_config_1 = BaseModerationConfig(
filters=[pii_config, toxicity_config, prompt_safety_config]
)
moderation_config_2 = BaseModerationConfig(filters=[pii_config])
amazon_comp_moderation = AmazonComprehendModerationChain(
moderation_config=moderation_config_1,
client=comprehend_client,
moderation_callback=my_callback,
verbose=True,
)
amazon_comp_moderation_out = AmazonComprehendModerationChain(
moderation_config=moderation_config_2, client=comprehend_client, verbose=True
)
chain = (
prompt
| amazon_comp_moderation
| {"input": (lambda x: x["output"]) | llm}
| amazon_comp_moderation_out
)
try:
response = chain.invoke(
{
"question": """What is John Doe's address, phone number and SSN from the following text?
John Doe, a resident of 1234 Elm Street in Springfield, recently celebrated his birthday on January 1st. Turning 43 this year, John reflected on the years gone by. He often shares memories of his younger days with his close friends through calls on his phone, (555) 123-4567. Meanwhile, during a casual evening, he received an email at [email protected] reminding him of an old acquaintance's reunion. As he navigated through some old documents, he stumbled upon a paper that listed his SSN as 123-45-6789, reminding him to store it in a safer place.
"""
}
)
except Exception as e:
print(str(e))
else:
print(response["output"])
endpoint_name = "<SAGEMAKER_ENDPOINT_NAME>" # replace with your SageMaker Endpoint name
region = "<REGION>" # replace with your SageMaker Endpoint region
import json
from langchain.prompts import PromptTemplate
from langchain_community.llms import SagemakerEndpoint
from langchain_community.llms.sagemaker_endpoint import LLMContentHandler
class ContentHandler(LLMContentHandler):
content_type = "application/json"
accepts = "application/json"
def transform_input(self, prompt: str, model_kwargs: dict) -> bytes:
input_str = json.dumps({"text_inputs": prompt, **model_kwargs})
return input_str.encode("utf-8")
def transform_output(self, output: bytes) -> str:
response_json = json.loads(output.read().decode("utf-8"))
return response_json["generated_texts"][0]
content_handler = ContentHandler()
template = """From the following 'Document', precisely answer the 'Question'. Do not add any spurious information in your answer.
Document: John Doe, a resident of 1234 Elm Street in Springfield, recently celebrated his birthday on January 1st. Turning 43 this year, John reflected on the years gone by. He often shares memories of his younger days with his close friends through calls on his phone, (555) 123-4567. Meanwhile, during a casual evening, he received an email at [email protected] reminding him of an old acquaintance's reunion. As he navigated through some old documents, he stumbled upon a paper that listed his SSN as 123-45-6789, reminding him to store it in a safer place.
Question: {question}
Answer:
"""
llm_prompt = PromptTemplate.from_template(template)
llm = SagemakerEndpoint(
endpoint_name=endpoint_name,
region_name=region,
model_kwargs={
"temperature": 0.95,
"max_length": 200,
"num_return_sequences": 3,
"top_k": 50,
"top_p": 0.95,
"do_sample": True,
},
content_handler=content_handler,
)
pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X")
toxicity_config = | ModerationToxicityConfig(threshold=0.5) | langchain_experimental.comprehend_moderation.ModerationToxicityConfig |
with open("../docs/docs/modules/state_of_the_union.txt") as f:
state_of_the_union = f.read()
from langchain.chains import AnalyzeDocumentChain
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
from langchain.chains.question_answering import load_qa_chain
qa_chain = | load_qa_chain(llm, chain_type="map_reduce") | langchain.chains.question_answering.load_qa_chain |
get_ipython().run_cell_magic('writefile', 'wechat_chats.txt', '女朋友 2023/09/16 2:51 PM\n天气有点凉\n\n男朋友 2023/09/16 2:51 PM\n珍簟凉风著,瑶琴寄恨生。嵇君懒书札,底物慰秋情。\n\n女朋友 2023/09/16 3:06 PM\n忙什么呢\n\n男朋友 2023/09/16 3:06 PM\n今天只干成了一件像样的事\n那就是想你\n\n女朋友 2023/09/16 3:06 PM\n[动画表情]\n')
import logging
import re
from typing import Iterator, List
from langchain_community.chat_loaders import base as chat_loaders
from langchain_core.messages import BaseMessage, HumanMessage
logger = logging.getLogger()
class WeChatChatLoader(chat_loaders.BaseChatLoader):
def __init__(self, path: str):
"""
Initialize the Discord chat loader.
Args:
path: Path to the exported Discord chat text file.
"""
self.path = path
self._message_line_regex = re.compile(
r"(?P<sender>.+?) (?P<timestamp>\d{4}/\d{2}/\d{2} \d{1,2}:\d{2} (?:AM|PM))", # noqa
)
def _append_message_to_results(
self,
results: List,
current_sender: str,
current_timestamp: str,
current_content: List[str],
):
content = "\n".join(current_content).strip()
if not re.match(r"\[.*\]", content):
results.append(
HumanMessage(
content=content,
additional_kwargs={
"sender": current_sender,
"events": [{"message_time": current_timestamp}],
},
)
)
return results
def _load_single_chat_session_from_txt(
self, file_path: str
) -> chat_loaders.ChatSession:
"""
Load a single chat session from a text file.
Args:
file_path: Path to the text file containing the chat messages.
Returns:
A `ChatSession` object containing the loaded chat messages.
"""
with open(file_path, "r", encoding="utf-8") as file:
lines = file.readlines()
results: List[BaseMessage] = []
current_sender = None
current_timestamp = None
current_content = []
for line in lines:
if re.match(self._message_line_regex, line):
if current_sender and current_content:
results = self._append_message_to_results(
results, current_sender, current_timestamp, current_content
)
current_sender, current_timestamp = re.match(
self._message_line_regex, line
).groups()
current_content = []
else:
current_content.append(line.strip())
if current_sender and current_content:
results = self._append_message_to_results(
results, current_sender, current_timestamp, current_content
)
return chat_loaders.ChatSession(messages=results)
def lazy_load(self) -> Iterator[chat_loaders.ChatSession]:
"""
Lazy load the messages from the chat file and yield them in the required format.
Yields:
A `ChatSession` object containing the loaded chat messages.
"""
yield self._load_single_chat_session_from_txt(self.path)
loader = WeChatChatLoader(
path="./wechat_chats.txt",
)
from typing import List
from langchain_community.chat_loaders.base import ChatSession
from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
raw_messages = loader.lazy_load()
merged_messages = merge_chat_runs(raw_messages)
messages: List[ChatSession] = list( | map_ai_messages(merged_messages, sender="男朋友") | langchain_community.chat_loaders.utils.map_ai_messages |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pygithub')
import os
from langchain.agents import AgentType, initialize_agent
from langchain_community.agent_toolkits.github.toolkit import GitHubToolkit
from langchain_community.utilities.github import GitHubAPIWrapper
from langchain_openai import ChatOpenAI
os.environ["GITHUB_APP_ID"] = "123456"
os.environ["GITHUB_APP_PRIVATE_KEY"] = "path/to/your/private-key.pem"
os.environ["GITHUB_REPOSITORY"] = "username/repo-name"
os.environ["GITHUB_BRANCH"] = "bot-branch-name"
os.environ["GITHUB_BASE_BRANCH"] = "main"
os.environ["OPENAI_API_KEY"] = ""
llm = ChatOpenAI(temperature=0, model="gpt-4-1106-preview")
github = GitHubAPIWrapper()
toolkit = GitHubToolkit.from_github_api_wrapper(github)
tools = toolkit.get_tools()
agent = initialize_agent(
tools,
llm,
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
print("Available tools:")
for tool in tools:
print("\t" + tool.name)
agent.run(
"You have the software engineering capabilities of a Google Principle engineer. You are tasked with completing issues on a github repository. Please look at the existing issues and complete them."
)
from langchain import hub
gh_issue_prompt_template = hub.pull("kastanday/new-github-issue")
print(gh_issue_prompt_template.template)
def format_issue(issue):
title = f"Title: {issue.get('title')}."
opened_by = f"Opened by user: {issue.get('opened_by')}"
body = f"Body: {issue.get('body')}"
comments = issue.get("comments") # often too long
return "\n".join([title, opened_by, body])
issue = github.get_issue(33) # task to implement a RNA-seq pipeline (bioinformatics)
final_gh_issue_prompt = gh_issue_prompt_template.format(
issue_description=format_issue(issue)
)
print(final_gh_issue_prompt)
from langchain.memory.summary_buffer import ConversationSummaryBufferMemory
from langchain_core.prompts.chat import MessagesPlaceholder
summarizer_llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo") # type: ignore
chat_history = | MessagesPlaceholder(variable_name="chat_history") | langchain_core.prompts.chat.MessagesPlaceholder |
get_ipython().system(' pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)')
get_ipython().system(' pip install "unstructured[all-docs]" pillow pydantic lxml pillow matplotlib chromadb tiktoken')
from langchain_text_splitters import CharacterTextSplitter
from unstructured.partition.pdf import partition_pdf
def extract_pdf_elements(path, fname):
"""
Extract images, tables, and chunk text from a PDF file.
path: File path, which is used to dump images (.jpg)
fname: File name
"""
return partition_pdf(
filename=path + fname,
extract_images_in_pdf=False,
infer_table_structure=True,
chunking_strategy="by_title",
max_characters=4000,
new_after_n_chars=3800,
combine_text_under_n_chars=2000,
image_output_dir_path=path,
)
def categorize_elements(raw_pdf_elements):
"""
Categorize extracted elements from a PDF into tables and texts.
raw_pdf_elements: List of unstructured.documents.elements
"""
tables = []
texts = []
for element in raw_pdf_elements:
if "unstructured.documents.elements.Table" in str(type(element)):
tables.append(str(element))
elif "unstructured.documents.elements.CompositeElement" in str(type(element)):
texts.append(str(element))
return texts, tables
fpath = "/Users/rlm/Desktop/cj/"
fname = "cj.pdf"
raw_pdf_elements = extract_pdf_elements(fpath, fname)
texts, tables = categorize_elements(raw_pdf_elements)
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
chunk_size=4000, chunk_overlap=0
)
joined_texts = " ".join(texts)
texts_4k_token = text_splitter.split_text(joined_texts)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
def generate_text_summaries(texts, tables, summarize_texts=False):
"""
Summarize text elements
texts: List of str
tables: List of str
summarize_texts: Bool to summarize texts
"""
prompt_text = """You are an assistant tasked with summarizing tables and text for retrieval. \
These summaries will be embedded and used to retrieve the raw text or table elements. \
Give a concise summary of the table or text that is well optimized for retrieval. Table or text: {element} """
prompt = ChatPromptTemplate.from_template(prompt_text)
model = ChatOpenAI(temperature=0, model="gpt-4")
summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser()
text_summaries = []
table_summaries = []
if texts and summarize_texts:
text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5})
elif texts:
text_summaries = texts
if tables:
table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5})
return text_summaries, table_summaries
text_summaries, table_summaries = generate_text_summaries(
texts_4k_token, tables, summarize_texts=True
)
import base64
import os
from langchain_core.messages import HumanMessage
def encode_image(image_path):
"""Getting the base64 string"""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def image_summarize(img_base64, prompt):
"""Make image summary"""
chat = ChatOpenAI(model="gpt-4-vision-preview", max_tokens=1024)
msg = chat.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"},
},
]
)
]
)
return msg.content
def generate_img_summaries(path):
"""
Generate summaries and base64 encoded strings for images
path: Path to list of .jpg files extracted by Unstructured
"""
img_base64_list = []
image_summaries = []
prompt = """You are an assistant tasked with summarizing images for retrieval. \
These summaries will be embedded and used to retrieve the raw image. \
Give a concise summary of the image that is well optimized for retrieval."""
for img_file in sorted(os.listdir(path)):
if img_file.endswith(".jpg"):
img_path = os.path.join(path, img_file)
base64_image = encode_image(img_path)
img_base64_list.append(base64_image)
image_summaries.append(image_summarize(base64_image, prompt))
return img_base64_list, image_summaries
img_base64_list, image_summaries = generate_img_summaries(fpath)
import uuid
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryStore
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
def create_multi_vector_retriever(
vectorstore, text_summaries, texts, table_summaries, tables, image_summaries, images
):
"""
Create retriever that indexes summaries, but returns raw images or texts
"""
store = | InMemoryStore() | langchain.storage.InMemoryStore |
from langchain_community.document_loaders import AZLyricsLoader
loader = | AZLyricsLoader("https://www.azlyrics.com/lyrics/mileycyrus/flowers.html") | langchain_community.document_loaders.AZLyricsLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet promptlayer')
import os
import promptlayer
from langchain_community.llms import PromptLayerOpenAI
from getpass import getpass
PROMPTLAYER_API_KEY = getpass()
os.environ["PROMPTLAYER_API_KEY"] = PROMPTLAYER_API_KEY
from getpass import getpass
OPENAI_API_KEY = getpass()
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
llm = | PromptLayerOpenAI(pl_tags=["langchain"]) | langchain_community.llms.PromptLayerOpenAI |