| 1 | |
| 00:00:00,000 --> 00:00:01,260 | |
| ู ูุณููู | |
| 2 | |
| 00:00:19,490 --> 00:00:23,670 | |
| ุจุณู ุงููู ุงูุฑุญู ู ุงูุฑุญูู ูุนูุฏ ุงูุฃู ูุฅูู ุงู ู ุง ุงุจุชุฏูุงู | |
| 3 | |
| 00:00:23,670 --> 00:00:28,950 | |
| ูู ุงูู ุญุงุถุฑุฉ ุงูู ุงุถูุฉ ููู section 5-7 ุงูุฐู ูุชุญุฏุซ ุนู | |
| 4 | |
| 00:00:28,950 --> 00:00:32,350 | |
| ุงู undetermined coefficients ุงููู ูู ุทุฑููุฉ | |
| 5 | |
| 00:00:32,350 --> 00:00:38,110 | |
| ุงูู ุนุงู ูุงุช ุงูู ุฌูููุฉ ูุญู ุงูู ุนุงุฏูุฉ ุงูุชูุงุถููุฉุจูุญู ุจูุฐู | |
| 6 | |
| 00:00:38,110 --> 00:00:42,370 | |
| ุงูุทุฑููุฉ ุฅุฐุง ุชุญูู ูู ุงูู ุนุงุฏูุฉ ุฃู ุฑุงู ุงูุฃู ุฑ ุงูุฃูู | |
| 7 | |
| 00:00:42,370 --> 00:00:48,210 | |
| ูุงูุช ุงูู ุนุงู ูุงุช ูููุง ุซูุงุจุช ููู ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ุงูุฃู ุฑ | |
| 8 | |
| 00:00:48,210 --> 00:00:53,450 | |
| ุงูุซุงูู ุดูู ุงู F of X ุชุจูู ุนูู ุดูู ู ุนูู ู ุง ูู ูุฐุง | |
| 9 | |
| 00:00:53,450 --> 00:00:57,810 | |
| ุดูู ุฃุญุฏ ุซูุงุซุฉ ุฃู ูุฑ ุงูุฃู ุฑ ุงูุฃูู ุฃู ูููู polynomial | |
| 10 | |
| 00:00:57,810 --> 00:01:01,930 | |
| ุงูุฃู ุฑ ุงูุซุงูู polynomial ูู exponential ุงูุฃู ุฑ | |
| 11 | |
| 00:01:01,930 --> 00:01:07,170 | |
| ุงูุซุงูุซ polynomialูู exponential ูู sin x ุฃู cos x | |
| 12 | |
| 00:01:07,170 --> 00:01:12,390 | |
| ุฃู ู ุฌู ูุนูู ุง ุฃู ุงููุฑู ููู ุง ุจูููู ุง ูุนุทููุง ุนูู ุฐูู ูู | |
| 13 | |
| 00:01:12,390 --> 00:01:17,270 | |
| ุงูู ุฑุฉ ุงูู ุงุถูุฉ ู ุซุงููู ููุฐุง ูู ุงูู ุซุงู ุฑูู ุชูุงุชุฉ ูุจูู | |
| 14 | |
| 00:01:17,270 --> 00:01:21,270 | |
| ุจุฏูุง ูุญู ุงูู ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ุงููู ุนูุฏูุง ูุฐู ุฐูุฑูุง | |
| 15 | |
| 00:01:21,270 --> 00:01:24,830 | |
| ูู ุงูู ุฑุฉ ุงูู ุงุถูุฉ ุจูุฌุฒุฆูุง ุฅูู ุฌุฒุฆูู ุจูุงุฎุฏ ุงู | |
| 16 | |
| 00:01:24,830 --> 00:01:28,730 | |
| homogeneous ูู ู ุซู ุงู non homogeneous differential | |
| 17 | |
| 00:01:28,730 --> 00:01:34,790 | |
| equationูุจูู ุจุฏุงุฌู ุงูููู ุงูุชุฑุถ ุงู Y ุชุณุงูู E ุฃูุณ RX | |
| 18 | |
| 00:01:34,790 --> 00:01:45,450 | |
| ุจูู solution of the homogeneous differential | |
| 19 | |
| 00:01:45,450 --> 00:01:51,890 | |
| equation ุงููู ูู ุงูู ุนุงุฏูุฉ ุงูุชุงููุฉ Y W Prime ุฒุงุฆุฏ Y | |
| 20 | |
| 00:01:51,890 --> 00:01:57,450 | |
| ูุณุงูู Zero then the characteristic equation | |
| 21 | |
| 00:02:12,070 --> 00:02:18,010 | |
| ุงูุญู ุงูู ุชุฌุงูุณ ูุจูู | |
| 22 | |
| 00:02:22,280 --> 00:02:32,080 | |
| The Homogeneous Differential Equation is ููุณุงูู | |
| 23 | |
| 00:02:32,080 --> 00:02:40,580 | |
| ูุงุณุงูู ูุงุณุงูู | |
| 24 | |
| 00:02:40,580 --> 00:02:44,700 | |
| ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู | |
| 25 | |
| 00:02:44,700 --> 00:02:45,880 | |
| ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู | |
| 26 | |
| 00:02:45,880 --> 00:02:47,560 | |
| ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู | |
| 27 | |
| 00:02:47,560 --> 00:02:47,620 | |
| ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู | |
| 28 | |
| 00:02:47,620 --> 00:02:51,060 | |
| ูุณุงูู ูุณุงูู | |
| 29 | |
| 00:02:51,060 --> 00:02:56,550 | |
| ูุณุจุฏู ุฃุฑูุญ ุฃุฏูุฑ ุนูู particular solution ูุญู | |
| 30 | |
| 00:02:56,550 --> 00:03:01,730 | |
| ุงูู ุนุงุฏูุฉ ุงููู ูู non homogeneous ูุจุงุฌู ุจูููู the | |
| 31 | |
| 00:03:01,730 --> 00:03:07,970 | |
| particular solution | |
| 32 | |
| 00:03:07,970 --> 00:03:17,010 | |
| of theDifferential equation start ู ุจุฑูุญ ุงููู ููู | |
| 33 | |
| 00:03:17,010 --> 00:03:24,150 | |
| ุงูุฃุณุงุณูุฉ ูุฐู ุจุณู ููุง star S ู ุฏููู ุงูุฑู ุฒ YP ู ุจุฏู | |
| 34 | |
| 00:03:24,150 --> 00:03:31,510 | |
| ุจููู ูุชุงูู X to the power S Vุจุฃุฌู ุนูู ุดูู ุงููู ูู | |
| 35 | |
| 00:03:31,510 --> 00:03:35,650 | |
| ุงูุฏุงูุฉ ุงููู ุนูุฏูุง ูุฐู ุฑูู ูู sign ูุนูู polynomial | |
| 36 | |
| 00:03:35,650 --> 00:03:39,790 | |
| ู ู ุงูุฏุฑุฌุฉ ุงูุตูุฑูุฉ ู ุถุฑูุจุฉ ูู sign ุฅุฐุง ุจุฏู ุฃูุชุจ | |
| 37 | |
| 00:03:39,790 --> 00:03:43,630 | |
| polynomial ู ู ุงูุฏุฑุฌุฉ ุงูุตูุฑูุฉ ูู sign ุฒุงุฆุฏ | |
| 38 | |
| 00:03:43,630 --> 00:03:49,090 | |
| polynomial ูู cosine ูุจูู ุจูุฏุฑ ุฃููู ูุฐู ุนุจุงุฑุฉ ุนู a | |
| 39 | |
| 00:03:49,090 --> 00:03:55,610 | |
| ูู cosine ุงู x ุฒุงุฆุฏ b ูู sine ุงู x ุจุงูุดูู ุงููู | |
| 40 | |
| 00:03:55,610 --> 00:04:04,280 | |
| ุนูุฏูุง ูุฐุงุนูุฏู ุง ุฃุจุญุซ ุนู ููู ุฉ S ูู ูู 0 ุงู 1 ุงู 2 ุงู | |
| 41 | |
| 00:04:04,280 --> 00:04:06,980 | |
| 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู | |
| 42 | |
| 00:04:06,980 --> 00:04:10,500 | |
| 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู | |
| 43 | |
| 00:04:10,500 --> 00:04:10,560 | |
| 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู | |
| 44 | |
| 00:04:10,560 --> 00:04:10,600 | |
| 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู | |
| 45 | |
| 00:04:10,600 --> 00:04:11,400 | |
| 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู | |
| 46 | |
| 00:04:11,400 --> 00:04:11,720 | |
| 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู | |
| 47 | |
| 00:04:11,720 --> 00:04:21,600 | |
| 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู 3 ุงู | |
| 48 | |
| 00:04:24,720 --> 00:04:28,780 | |
| ุจูุงุญุฏ ูุดูู ูู ุญุทูุชูุง ุจูุงุญุฏ ุจูุธู ููู ุชุดุจู ููุง ุจูููู | |
| 49 | |
| 00:04:28,780 --> 00:04:34,980 | |
| ุงูุชูู ูุฐุง ุงูุชุดุจู ุฅุฐุง ูู ุญุทูุช S ุจูุงุญุฏ ุจูุตูุฑ AX Cos | |
| 50 | |
| 00:04:34,980 --> 00:04:41,400 | |
| ูููุง BX Sin ูู ูู ุฃู term ููุง ูุดุจู ุฃู term ููุง | |
| 51 | |
| 00:04:41,400 --> 00:04:48,920 | |
| ุทุจุนุง ูุฃ ูุจูู ููุง hereููุง ุงู S ุชุณุงูู ูุงุญุฏ ูู ุง ุญุท ุงู | |
| 52 | |
| 00:04:48,920 --> 00:04:53,740 | |
| S ุชุณุงูู ูุงุญุฏ ุจูููู ุฃุฒููุง ุงูุดุจู ุงููู ู ูุฌูุฏ ุชู ุงู ุง ู ุง | |
| 53 | |
| 00:04:53,740 --> 00:04:56,880 | |
| ุจูู ุงู complementary solution ู ุงู particular | |
| 54 | |
| 00:04:56,880 --> 00:05:02,600 | |
| solution ูุจูู ุจูุงุก ุนููู ููุตุจุญ YP ุนูู ุงูุดูู ุงูุชุงูู | |
| 55 | |
| 00:05:02,600 --> 00:05:12,510 | |
| AX ูู cosine X ุฒุงุฆุฏ BX ูู sine Xุงูุงู ุจุฏูุง ูุญุฏุฏ | |
| 56 | |
| 00:05:12,510 --> 00:05:19,010 | |
| ููู ุชูู ุซูุงุจุช ุงู A ู ุงู B ูุฐูู ุจุฏู ุงุดุชู ู ุฑุฉ ู ุงุชููู | |
| 57 | |
| 00:05:19,010 --> 00:05:26,590 | |
| ู ุงุนูุถ ูู ุงูู ุนุงุฏูุฉ ุงูุฃุตููุฉ ูุจูู ุจุฏู ุงุฎุฏ Y P Prime | |
| 58 | |
| 00:05:26,930 --> 00:05:34,310 | |
| ูุฐู ุงูู ุดุชูุฉ ุญุตู ุถุฑุจ ุฏุงูุชูู ูุจูู a ูู cos x ูุงูุต ax | |
| 59 | |
| 00:05:34,310 --> 00:05:41,070 | |
| ูู sin x ุฒุงุฆุฏ ูู ุงู ูุฐู ุญุตู ุถุฑุจ ุฏุงูุชูู ูุจูู b ูู | |
| 60 | |
| 00:05:41,070 --> 00:05:50,100 | |
| sin x ุฒุงุฆุฏ bx ูู cos xูุจูู ุงุดุชููุง ููู ู ู X ู Cos X | |
| 61 | |
| 00:05:50,100 --> 00:05:56,040 | |
| ู X ู Sin X ูุญุงุตู ุถุฑุจ ุฏูุชูู ูุฐุง ุญุตููุง ุนูู Y' ุทุจุนุง | |
| 62 | |
| 00:05:56,040 --> 00:06:00,020 | |
| ู ุงููุด ู ูุง term ุฒู ุงูุชุงูู ูุจูู ุจูุฎูู ูู ุดู ุฒู ู ุง | |
| 63 | |
| 00:06:00,020 --> 00:06:06,500 | |
| ูู ุจุฏูุง ูุฑูุญ ูุฌูุจ YPW' ูุจูู ุจุฏูุง ุงุดุชู ูุฐู ุจุงูุณุงูุจ | |
| 64 | |
| 00:06:06,500 --> 00:06:16,830 | |
| A Sin X ููุฐู ุงูุณุงูุจ A Sin Xุจุนุฏ ุฐูู ุงุชุณุงูุจ ax ูู | |
| 65 | |
| 00:06:16,830 --> 00:06:23,190 | |
| cos x ุงุดุชูุช ูุฐู ุญุตู ุถุฑุจ ุฏูุชูู ุจูุงููุฌ ุงููู ุจุนุฏูุง | |
| 66 | |
| 00:06:23,190 --> 00:06:29,610 | |
| ูุจูู ุฒุงุฆุฏ b ูู cos x ุฎูุตูุง ู ููุง ุจุฏุฃุช ุงุดุชู ูุฐู ุญุตู | |
| 67 | |
| 00:06:29,610 --> 00:06:38,190 | |
| ุถุฑุจ ุฏูุชูู ูุจูู ุฒุงุฆุฏ b ูู cos x ูุงูุต bx ูู sin x | |
| 68 | |
| 00:06:38,620 --> 00:06:42,780 | |
| ูุจูู ุงุดุชููุงู ุญุตู ุถุฑุจ ุฏูุชูู ููุง ูู ุจุนุถ ุงูุนูุงุตุฑ | |
| 69 | |
| 00:06:42,780 --> 00:06:50,640 | |
| ู ุชุดุงุจูุฉ ูู ุนูุฏ ููุง ุณุงูุจ ุงุชููู a ูู sine ุงู X ูุนูุฏู | |
| 70 | |
| 00:06:50,640 --> 00:06:56,880 | |
| ูู ุงู ุฒุงุฆุฏ ุงุชููู b ูู cosine ุงู X ูุฏูู ุงุชููู ู ุน ุจุนุถ | |
| 71 | |
| 00:06:56,880 --> 00:07:03,720 | |
| ู ูุฏูู ุงุชููู ู ุน ุจุนุถ ุจุงูู ุนูุฏู ูุงูุต ax ูู cosine ุงู | |
| 72 | |
| 00:07:03,720 --> 00:07:10,180 | |
| X ููุงูุต bx ูู sine ุงู Xุจุนุฏ ุฐูู ุงุฎุฐ ุงูู ุนููู ุงุช ุงููู | |
| 73 | |
| 00:07:10,180 --> 00:07:15,040 | |
| ุญุตูุช ุนูููุง ู ุงุนูุถ ูู ุงูู ุนุงุฏูุฉ star ูุจูู ููุง | |
| 74 | |
| 00:07:15,040 --> 00:07:23,320 | |
| substitute in | |
| 75 | |
| 00:07:23,320 --> 00:07:33,740 | |
| the differential equation star we get ุจูุญุตู ุนูู ู ุง | |
| 76 | |
| 00:07:33,740 --> 00:07:34,200 | |
| ูุฃุชู | |
| 77 | |
| 00:07:40,110 --> 00:07:43,630 | |
| ูุฌุจ ุงู ุงุฒุงูุฉ ูู ุฏุงุจูู ุจุฑุงูู ูุงุญุท ููู ุชูุง ูู ุฏุงุจูู | |
| 78 | |
| 00:07:43,630 --> 00:07:48,950 | |
| ุจุฑุงูู ูู ุญุตููุง ุนูููุง ูุจูู ูุงูุต ุงุชููู ุงู ุตูู | |
| 79 | |
| 00:07:48,950 --> 00:07:55,980 | |
| ุงูุฒุงููุฉ ุซุชุง ุตูู ุงูุฒุงููุฉ Xุชู ุงู ุ ุงููู ุจุนุฏูุง ุฒุงุฆุฏ | |
| 80 | |
| 00:07:55,980 --> 00:08:04,340 | |
| ุงุชููู B ูู cosine ุงู X ุงููู ุจุนุฏูุง ูุงูุต ุงู AX ูู | |
| 81 | |
| 00:08:04,340 --> 00:08:11,080 | |
| cosine ุงู X ูุงูุต ุงู BX ูู sine ุงู X ูุฐุง ููู ุงููู | |
| 82 | |
| 00:08:11,080 --> 00:08:17,400 | |
| ุฃุฎุฏุชู ู ููุ YW prime ุถุงูู ููุง ู ููุ Y ููู Y ูุงููุงุ | |
| 83 | |
| 00:08:17,400 --> 00:08:24,560 | |
| ุจุฏู ุฃุฌู ุนูู ูุฏูู ูุจูู ุฒุงุฆุฏูู ุงููู ูู ู ูู ax ูู cos | |
| 84 | |
| 00:08:24,560 --> 00:08:33,520 | |
| x ู ุจุนุฏ ูู ูุฏู ุฒุงุฆุฏ bx ูู sin x ููู ุจูุณูู ุงูุทุฑู | |
| 85 | |
| 00:08:33,520 --> 00:08:40,300 | |
| ุงููู ูุชุจุน ุงูู ุนุงุฏูุฉ ุงููู ูู 4 ูู sin xุจูุฌู ูุฌู ุน ุนูุง | |
| 86 | |
| 00:08:40,300 --> 00:08:47,940 | |
| ax cos ุจุงูุณุงูุจ ู ax cos ุจุงูู ูุฌุจ ุนูุง bx sin ุจุงูุณุงูุจ | |
| 87 | |
| 00:08:47,940 --> 00:08:53,220 | |
| ู bx ุจูู ูู ุจุงูู ูุฌุจ ูุจูู ุตูุฉ ุงูู ุนุงุฏูุฉ ุนูู ุงูุดูู | |
| 88 | |
| 00:08:53,220 --> 00:09:00,740 | |
| ุงูุชุงูู ูุงูุต ุงุชููู a sin x ุฒุงุฆุฏู ุงุชููู b cos x ููู | |
| 89 | |
| 00:09:00,740 --> 00:09:07,540 | |
| ุจุฏู ูุณูู ุงุฑุจุน sin xุจุนุฏ ุฐูู ููุฑุฑ ุงูู ุนุงู ูุงุช ูู | |
| 90 | |
| 00:09:07,540 --> 00:09:13,340 | |
| ุงูุทุฑููู ุฅุฐุง ูู ูุฑุฑูุง ุงูู ุนุงู ูุงุช ูู ุงูุทุฑููู ุจุณูุง ููุต | |
| 91 | |
| 00:09:13,340 --> 00:09:19,580 | |
| ุงุชููู a ุจุฏู ุณุงูู ูุฏุงุด ุงุฑุจุนุฉ ูุนูุฏู ุงุชููู b ุจุฏู ุนูุฏู | |
| 92 | |
| 00:09:19,580 --> 00:09:26,520 | |
| cosine ููุง ู ุงุนูุงุด ูุจูู ุจูู zero ูุฐุง ู ุนูุงู ุงู ุงู a | |
| 93 | |
| 00:09:26,520 --> 00:09:33,330 | |
| ุชุณุงูู ุณุงูุจ ุงุชููู ู ุงู b ุชุณุงูู zeroูุจูู ุฃุตุจุญ ุดูู ุงู | |
| 94 | |
| 00:09:33,330 --> 00:09:46,570 | |
| YP ุนูู ุงูุดูู ุงูุชุงูู ูุจูู | |
| 95 | |
| 00:09:46,570 --> 00:09:50,570 | |
| ุฃุตุจุญ ูุฐุง ุดูู ุงู YP | |
| 96 | |
| 00:10:01,840 --> 00:10:11,150 | |
| Y ูุณุงูู YC ุฒุงุฆุฏ YPูุจูู ุจูุงุก ุนููู ูุตุจุญ y ูุณูู yc ูู | |
| 97 | |
| 00:10:11,150 --> 00:10:20,070 | |
| ุงูู ูุฌูุฏ ุนูุฏู ูุจูู c1 cos x ุฒุงุฆุฏ c2 ูู sin x ูุฒุงุฆุฏ | |
| 98 | |
| 00:10:20,070 --> 00:10:28,010 | |
| yp ูุงูุต 2x ูู cos x ูุจูู ูุฐุง ุงูุญู ุงูููุงุฆู ุชุจุน ู ูุ | |
| 99 | |
| 00:10:28,010 --> 00:10:32,990 | |
| ุชุจุน ุงูู ุนุงุฏูุฉ ูุงุญุธู ููุง term ู ู ุงูุชูุงุช termุงุช ุฒู | |
| 100 | |
| 00:10:32,990 --> 00:10:38,240 | |
| ุงูุชุงูู ู ุงููุด ุชุดุงุจูุจูู ุฃู term ูุงูterm ุงูุซุงูู | |
| 101 | |
| 00:10:38,240 --> 00:10:46,440 | |
| ุงูู ุซุงู ุฑูู ุฃุฑุจุน ูุจูู example ุฃุฑุจุน | |
| 102 | |
| 00:10:46,440 --> 00:10:50,720 | |
| ุจููู | |
| 103 | |
| 00:10:50,720 --> 00:10:56,260 | |
| ุฏู term a suitable | |
| 104 | |
| 00:10:56,260 --> 00:11:03,480 | |
| form ุดูู | |
| 105 | |
| 00:11:03,480 --> 00:11:09,990 | |
| ู ูุงุณุจFor the | |
| 106 | |
| 00:11:09,990 --> 00:11:19,330 | |
| particular solution | |
| 107 | |
| 00:11:19,330 --> 00:11:23,490 | |
| of the | |
| 108 | |
| 00:11:23,960 --> 00:11:32,520 | |
| Differential equation ููู ุนุงุฏูุฉ ุงูุชูุงุถููุฉ YW' ูุงูุต | |
| 109 | |
| 00:11:32,520 --> 00:11:49,540 | |
| 4Y' ุฒุงุฆุฏ 4Y ูุณุงูู 2X ุชุฑุจูุน ุฒุงุฆุฏ 4X E ุฃุณ 2Xุฒุงุฆุฏ ุงูุณ | |
| 110 | |
| 00:11:49,540 --> 00:11:55,100 | |
| ูู ุตูู ุงุชููู ุงูุณ ููุฐู ุจุฏู ุงุณู ููุง ุงูู ุนุงุฏูุฉ ูู ู ู | |
| 111 | |
| 00:11:55,100 --> 00:12:00,960 | |
| ุงูstar ูุจูู ุฌุณูู don't | |
| 112 | |
| 00:12:00,960 --> 00:12:07,800 | |
| don't evaluate the | |
| 113 | |
| 00:12:07,800 --> 00:12:08,620 | |
| constants | |
| 114 | |
| 00:12:38,460 --> 00:12:43,640 | |
| ูุงูุจ ุงูููููุฉ ุชุงููููุฑุฃ ุงูุณุคุงู ู ุฑุฉ ุชุงููุฉ ููุดูู ุดู | |
| 115 | |
| 00:12:43,640 --> 00:12:51,120 | |
| ุงูู ุทููุจ ุจูููููู ุญุฏุฏ ุญู ูู ุดูู ู ูุงุณุจ ูู particular | |
| 116 | |
| 00:12:51,120 --> 00:12:54,400 | |
| solution y, z ุชุจุน ุงู differential equation ูุฐุง | |
| 117 | |
| 00:12:54,400 --> 00:12:57,020 | |
| ูุจูู ุงููุงุณ ุจุชุญุฏุฏ ุดูู ุงู particular solution | |
| 118 | |
| 00:12:57,020 --> 00:13:00,840 | |
| ููููููู ู ุง ุชุญุณุจุด ุงูุซูุงุจุช ุงุถุงูุน ุดูุงุฌุฏู ูุงูุช ุจุชุฌูุจ | |
| 119 | |
| 00:13:00,840 --> 00:13:04,120 | |
| ุงูู ุดุชูุฉ ุงูุฃููู ูุงูุชุงููุฉ ูุงุชุนูุถ ูู ุงูู ุนุงุฏูุฉ ูุงุชุฌูุจ | |
| 120 | |
| 00:13:04,120 --> 00:13:07,940 | |
| ููู ุฌุฏูุด ููู ุฉ a ูb ุงู a ูb ูc ูู ุง ุฅูุง ุจุชุฏูุด ููู ุฉ | |
| 121 | |
| 00:13:07,940 --> 00:13:11,650 | |
| ุซูุงุจุช ุจุณ ูุชูู ุดูู mainุงูู Particular solution ููุณ | |
| 122 | |
| 00:13:11,650 --> 00:13:15,790 | |
| ูุงุฒู ูููู ููู ุชู ุซุงู ุชู ุจูููู ูููุณ ูุจูู ูุญุชุงุฌ | |
| 123 | |
| 00:13:15,790 --> 00:13:20,350 | |
| ููู ุนุงุฏูุฉ ูุญุชุงุฌ ุฃู ูุฃุฎุฐ ุงููHomogeneous differential | |
| 124 | |
| 00:13:20,350 --> 00:13:24,550 | |
| equation ูุจูู ูุจุฏุฃ ูู ุง ุจุฏุฃุช ูู ุงูู ุซุงู ุงููู ูุจูู | |
| 125 | |
| 00:13:24,550 --> 00:13:29,290 | |
| let Y ุชุณุงูู E ุฃูุณ RX ุจุฅููุ | |
| 126 | |
| 00:13:41,220 --> 00:13:50,680 | |
| ูุจูู ุจุงุฌู ุจูููู the characteristicEquation is R | |
| 127 | |
| 00:13:50,680 --> 00:13:56,060 | |
| ุชุฑุจูุน ูุงูุต ุงุฑุจุนุฉ R ุฒุงุฆุฏ ุงุฑุจุนุฉ ูุณุงูู Zero ุงู ุงู | |
| 128 | |
| 00:13:56,060 --> 00:14:02,560 | |
| ุดุฆุชู ูููููุง R ูุงูุต ุงุชููู ููู ุชุฑุจูุน ุชุณุงูู Zero ุงู | |
| 129 | |
| 00:14:02,560 --> 00:14:09,370 | |
| ุงู R ุชุณุงูู ุงุชููู ูุงูุญู ูุฐุง ู ูุจุฑ ูู ู ุฑุฉุูุจูู ู ุฑุชูู | |
| 130 | |
| 00:14:09,370 --> 00:14:12,850 | |
| ูุจูู of multiplicity two | |
| 131 | |
| 00:14:19,800 --> 00:14:25,640 | |
| 2 ูุนูู ุงูุญู ู ูุฑุฑ ู ุฑุชูู ุจูุงุก ุนููู ุจุฑูุญ ุจูููู ููุง | |
| 132 | |
| 00:14:25,640 --> 00:14:32,220 | |
| ูุจูู solution yc ุจุฏู ูุณุงูู ุงูุญู real ู ู ูุฑุฑ ู ุฑุชูู | |
| 133 | |
| 00:14:32,220 --> 00:14:38,680 | |
| ูุจูู c1 ุฒุงุฆุฏ c2x e ุงุต r | |
| 134 | |
| 00:14:44,740 --> 00:14:49,820 | |
| ุจูุจุฑูุฒ ูุฐุง ุงูุญู ู ุจูุณูุจู ู ุจูุฑูุญ ูุฑุฌุนูู ุจุนุฏ ูููู | |
| 135 | |
| 00:14:49,820 --> 00:14:52,800 | |
| ุงูุงู ุจุฏูุง ููุฌู ูู non homogeneous differential | |
| 136 | |
| 00:14:52,800 --> 00:14:56,280 | |
| equation ุงููู ุงู star ุงููู ุนูุฏูุง ุจุฏูุง ูุชุทูุน ุนูู | |
| 137 | |
| 00:14:56,280 --> 00:15:00,240 | |
| ุดูู ุงู F of X ุงููู ูู ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ูู ูู | |
| 138 | |
| 00:15:00,240 --> 00:15:05,740 | |
| polynomial ููุทุุฃู polynomial ูู exponential ุฃู | |
| 139 | |
| 00:15:05,740 --> 00:15:09,360 | |
| polynomial ูู sin ุฃู cos ุงูู ุฌู ูุนุฉ ุงูุญู ุฏ ููู ุฌุงูุจุฉ | |
| 140 | |
| 00:15:09,360 --> 00:15:13,720 | |
| ุงูุชูุช ุญุงูุงุช ูููู ุจุณุคุงู ุงููุงุนู ูู polynomial ู ู | |
| 141 | |
| 00:15:13,720 --> 00:15:17,180 | |
| ุงูุฏุฑุฌุฉ ุงูุซุงููุฉ polynomial ู ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู | |
| 142 | |
| 00:15:17,180 --> 00:15:21,820 | |
| exponential polynomial ู ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู sin ุฅุฐุง | |
| 143 | |
| 00:15:21,820 --> 00:15:27,630 | |
| ุฅูุด ูุนู ู ูู ุงูู ุนุงุฏูุฉ ุงููู ุนูุฏูุูุฌุฒููุง ุฅูู ุซูุงุซ | |
| 144 | |
| 00:15:27,630 --> 00:15:31,690 | |
| ู ุนุงุฏูุงุช ุชู ุงู ุ ู ุฃุญู ูู ูุงุญุฏุฉ ูููู ู ุฃุฌูุจ ุงู | |
| 145 | |
| 00:15:31,690 --> 00:15:35,390 | |
| particular solution ุชุจุนูุง ู ุฃุฌู ุน ุงูุญููู ุงูุชูุงุชุฉ | |
| 146 | |
| 00:15:35,390 --> 00:15:38,810 | |
| ุจูุนุทููู ุงู particular solution ูู ููุ ููู ุนุงุฏูุงูุฉ | |
| 147 | |
| 00:15:38,810 --> 00:15:43,970 | |
| ุทุจูุง ูุงููุธุฑูุฉ ุงููู ุฃุนุทุงูููุง ููู ูู ุฃูู section ูู | |
| 148 | |
| 00:15:43,970 --> 00:15:46,970 | |
| ุงู non homogeneous differential equation ููููุงูููุง | |
| 149 | |
| 00:15:46,970 --> 00:15:53,150 | |
| ูุฐุง ุจููุฒู ูุง ูู ููุ ูู sections ุงููุงุฏู ุฉ ุชู ุงู ุ ูุจูู | |
| 150 | |
| 00:15:53,150 --> 00:16:01,260 | |
| ุจุฏุงุฌู ุฃูููู ููุงdifferential equation star is | |
| 151 | |
| 00:16:01,260 --> 00:16:08,360 | |
| written as ูู ูููุง ุฃู ููุชุจูุง ุนูู ุงูุดูู ุงูุชุงูู ุงูู y | |
| 152 | |
| 00:16:08,360 --> 00:16:14,460 | |
| double prime ูุงูุต ุฃุฑุจุนุฉ y prime ุฒุงุฆุฏ ุฃุฑุจุนุฉ y ูุณูู | |
| 153 | |
| 00:16:14,460 --> 00:16:20,580 | |
| ูู ุ ูุณูู ุงุชููู x ุชุฑุจูุน ุงูู ุนุงุฏูุฉ ุงูุซุงููุฉ ุงููู ูู | |
| 154 | |
| 00:16:20,580 --> 00:16:33,690 | |
| ู ููุYW'-4Y'ุฒุงุฆุฏ 4Y ูุณุงูู 4XE2X | |
| 155 | |
| 00:16:33,690 --> 00:16:45,370 | |
| ุงูู ุนุงุฏูุฉ ุงูุชุงูุชุฉ YW'-4Y'ุฒุงุฆุฏ 4Y ูุณุงูู XSIN2X ูุณุงูู | |
| 156 | |
| 00:16:45,370 --> 00:16:50,350 | |
| X ูู SIN2X ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง | |
| 157 | |
| 00:16:58,280 --> 00:17:03,840 | |
| ุทูุจุ ุงูุขู ูุนูู ูุฃูู ุตุงุฑ ุนูุฏู ู ุด ู ุณุฃูุฉ ูุงุญุฏุฉุ ุซูุงุซ | |
| 158 | |
| 00:17:03,840 --> 00:17:07,120 | |
| ู ุณุงุฆูุ ุจุฏู ุฃุญู ูู ูุงุญุฏ ุฃุฌูุจ ุงู particle solution | |
| 159 | |
| 00:17:07,120 --> 00:17:12,980 | |
| ูุฃูู ูุง ุนูุงูุฉ ููุง ุจู ูู ุจุงูุงุฎุฑูุ ูุจูู ููุง ุจุฏู ุฃุฌูุจ | |
| 160 | |
| 00:17:12,980 --> 00:17:20,180 | |
| ุงู YP1 ูุจูู YP1 ูุณุงูู X to the power S ูููุ ูุฐู | |
| 161 | |
| 00:17:20,180 --> 00:17:21,740 | |
| polynomial ู ู ุงูุฏุฑุฌุฉ | |
| 162 | |
| 00:17:34,810 --> 00:17:40,490 | |
| ูู ุงู term ู ู ููุง ูุดุจู | |
| 163 | |
| 00:17:40,490 --> 00:17:42,250 | |
| ุงู term ูููุ | |
| 164 | |
| 00:17:45,280 --> 00:17:52,060 | |
| ู ุถุฑููุฉ ูุนูู ูุฐุง C1 E2 X ู C2 X E2 ูููุ ู ุงุนูุฏูุด | |
| 165 | |
| 00:17:52,060 --> 00:17:56,020 | |
| exponential ููุงู ุจู ุงููุด ูุจุฌู ููุง S ุจูุฏุฑ ุงููุ ุจ | |
| 166 | |
| 00:17:56,020 --> 00:18:03,680 | |
| Zero ูุจุฌู here ุงู S ุชุณุงูู Zero ูุจุฌู ุฃุตุจุญ Y P1 ุจุฏู | |
| 167 | |
| 00:18:03,680 --> 00:18:11,780 | |
| ูุณุงูู A0 X ุชุฑุจูุน ุฒุงุฆุฏ A1 X ุฒุงุฆุฏ A2 ุณูุจููุง ู ู ูุฐุง | |
| 168 | |
| 00:18:11,780 --> 00:18:20,370 | |
| ููุชูู ุนูู ุงููู ุจุนุฏูุงูุจูู ุจุฏู ุฃูุชุจ ูุจูู | |
| 169 | |
| 00:18:20,370 --> 00:18:23,230 | |
| ุจุฏู ุฃูุชุจ polynomial ู ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู ุงูู | |
| 170 | |
| 00:18:23,230 --> 00:18:26,990 | |
| exponential ูุจูู ุจุฏู ุฃูุชุจ polynomial ู ู ุงูุฏุฑุฌุฉ | |
| 171 | |
| 00:18:26,990 --> 00:18:32,070 | |
| ุงูุฃููู ูู ุงูู exponential ูุจูู ุจุฏู ุฃูุชุจ polynomial | |
| 172 | |
| 00:18:32,070 --> 00:18:34,410 | |
| ู ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู ุงูู exponential ูุจูู ุจุฏู ุฃูุชุจ | |
| 173 | |
| 00:18:34,410 --> 00:18:37,350 | |
| polynomial ู ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู ุงูู exponential | |
| 174 | |
| 00:18:37,350 --> 00:18:37,390 | |
| exponential ูุจูู ุจุฏู ุฃูุชุจ polynomial ู ู ุงูุฏุฑุฌุฉ | |
| 175 | |
| 00:18:37,390 --> 00:18:38,650 | |
| ุงูุฃููู ูู ุงูู exponential ูุจูู ุจุฏู ุฃูุชุจ polynomial | |
| 176 | |
| 00:18:38,650 --> 00:18:38,870 | |
| ู ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู ุงูู exponential ูุจูู ุจุฏู ุฃูุชุจ | |
| 177 | |
| 00:18:38,870 --> 00:18:39,870 | |
| polynomial ู ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู ุงูู exponential | |
| 178 | |
| 00:18:39,870 --> 00:18:40,510 | |
| ูุจูู ุจุฏู ุฃูุชุจ polynomial ู ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู ุงูู | |
| 179 | |
| 00:18:40,510 --> 00:18:42,530 | |
| exponential ูุจูู ุจุฏู ุฃูุชุจ polynomial ู ู ุงูุฏุฑุฌุฉ ุงูุฃ | |
| 180 | |
| 00:18:42,560 --> 00:18:55,400 | |
| ูู ูุฌุจ ุฃู ุฃุบุทู X to the power S ููู ูุฌุจ ุฃู ุฃุบุทู X | |
| 181 | |
| 00:18:55,400 --> 00:18:56,780 | |
| to the power S ููู ูุฌุจ ุฃู ุฃุบุทู X to the power S | |
| 182 | |
| 00:18:56,780 --> 00:18:58,460 | |
| ููู ูุฌุจ ุฃู ุฃุบุทู X to the power S ููู ูุฌุจ ุฃู ุฃุบุทู X | |
| 183 | |
| 00:18:58,460 --> 00:18:58,680 | |
| to the power S ููู ูุฌุจ ุฃู ุฃุบุทู X to the power S | |
| 184 | |
| 00:18:58,680 --> 00:18:59,380 | |
| ููู ูุฌุจ ุฃู ุฃุบุทู X to the power S ููู ูุฌุจ ุฃู ุฃุบุทู X | |
| 185 | |
| 00:18:59,380 --> 00:19:03,500 | |
| to the power S ููู ูุฌุจ ุฃู ุฃุบุทู X to the powerุทุจ | |
| 186 | |
| 00:19:03,500 --> 00:19:10,940 | |
| ุจุฏู ุงุญุท S ุจูุฏุงุดุ ุจูุงุญุฏ ูู ุญุทูุช S ุจูุงุญุฏ ุจุตูุฑ B0 X | |
| 187 | |
| 00:19:10,940 --> 00:19:15,420 | |
| ุชุฑุจูุฉ ูู ุงู exponential ููู ููู ุฒููุง ุทูุจ ูุดูู ูุฐู | |
| 188 | |
| 00:19:15,420 --> 00:19:21,930 | |
| B1 X ูู ุงู exponentialูู ุฒููุง ูุจูู S ุชุณุงูู ูุงุญุฏ ู ุด | |
| 189 | |
| 00:19:21,930 --> 00:19:26,830 | |
| ุตุญูุญุฉ ูุจูู ุงุญุท S ุจูุฏุฑุด ุฅุฐุง ูู ุญุทูุช ุงู S ุจุงุชููู | |
| 190 | |
| 00:19:26,830 --> 00:19:31,210 | |
| ุจูุถู ูู ุงูุฏู ุชุดุงุจู ูุจูู ุงุชูุงููู ูุจูู ุจูููู here | |
| 191 | |
| 00:19:31,210 --> 00:19:39,310 | |
| ููุง ุงู S ุชุณุงูู ุงุชููู ูุจูู ุงุตุจุญ Y P2 ุจุฏู ุณุงูู P0 X | |
| 192 | |
| 00:19:39,310 --> 00:19:47,370 | |
| ุชููุจ ุฒู P1 X ุชุฑุจูุน ููู ูู ุงู E ุฃุณ ุงุชููู Xูุนูู ุดููุช | |
| 193 | |
| 00:19:47,370 --> 00:19:51,030 | |
| ุงู S ู ุญุทูุช ู ูุงู ุงุชููู ุตุงุฑุช X ุชุฑุจูุน ุถุฑุจุช ูููู ูู | |
| 194 | |
| 00:19:51,030 --> 00:19:55,090 | |
| ุงููู ุฌูุง ูุตุงุฑุช ุนูู ุงูุดูู ุงููู ุนูุฏูุง ุจุฏุงุฎู ุงูู ุนุงุฏูุฉ | |
| 195 | |
| 00:19:55,090 --> 00:20:08,900 | |
| ุงูุชุงูุชุฉุงูู YP3 ุจุฏู ุฃูุชุจ | |
| 196 | |
| 00:20:08,900 --> 00:20:12,180 | |
| polynomial ู ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู ุงูู cosine ุฒู | |
| 197 | |
| 00:20:12,180 --> 00:20:15,160 | |
| polynomial ู ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู ุงูู sine | |
| 198 | |
| 00:20:18,960 --> 00:20:23,360 | |
| ูุจูู ุจุฏุฃ ูุงุฎุฏูุง ููุง ูู ุณููุงุช ูุงูุณููุงุช ูุฃ ูู ุงู ุจุฏู | |
| 199 | |
| 00:20:23,360 --> 00:20:28,860 | |
| ุงููู ุฏู ุง ุจุฏู ุงููู X to the power S ูู ุงูุฃูู X to | |
| 200 | |
| 00:20:28,860 --> 00:20:34,700 | |
| the power S ููู ุงูุขู ุจุฏู ุงููู ุฏู ูุงุฏุฉ | |
| 201 | |
| 00:20:37,040 --> 00:20:47,000 | |
| ูู ูุฐุง ุงูููุงู ู ุถุฑูุจ ูู cosine 2x ุฒุงุฆุฏ e node x | |
| 202 | |
| 00:20:47,000 --> 00:20:53,980 | |
| ุฒุงุฆุฏ e1 ููู ู ุถุฑูุจ ูู sin 2x ู exponential ู ุงุนูุฏูุด | |
| 203 | |
| 00:20:56,240 --> 00:21:03,100 | |
| ูู ุงู term ู ู ุงูู ุณุชุทูู ุงููู ููู ูุฐุง ูุดุจู ุฃู term | |
| 204 | |
| 00:21:03,100 --> 00:21:07,720 | |
| ู ู ุงูู ุณุชุทูู ุงููู ููู ูุฐุงุ ูุฃ ููุง ููู sign ููุง ูู | |
| 205 | |
| 00:21:07,720 --> 00:21:08,120 | |
| ุณุงูู | |
| 206 | |
| 00:21:13,370 --> 00:21:20,650 | |
| ุงูู S ุจุฏูุง ุชุณุงูู 0 ูุจูู ุฃุตุจุญ YP3 ุจุฏูุง ุชุณุงูู D node | |
| 207 | |
| 00:21:20,650 --> 00:21:32,590 | |
| X ุฒุงุฆุฏ D1 ูู Cos 2X ุฒุงุฆุฏ E node X ุฒุงุฆุฏ E1 ูู Sin | |
| 208 | |
| 00:21:32,590 --> 00:21:38,120 | |
| 2Xูุจูู ุงูู Particular solution ุงููู ุจุฏูุง ูุง ุจูุงุช | |
| 209 | |
| 00:21:38,120 --> 00:21:47,060 | |
| ูุจูู ูุณุงูู YP1 ุฒุงุฆุฏ YP2 ุฒุงุฆุฏ YP3 ูุจูู ุฃุตุจุญ YP | |
| 210 | |
| 00:21:47,060 --> 00:21:55,380 | |
| ูุณุงูู YP1 ูุงู ู ุจูุฒูู ุฒู ู ุง ูู A0 X ุชุฑุจูุน A1X ุฒุงุฆุฏ | |
| 211 | |
| 00:21:55,380 --> 00:21:57,580 | |
| A2 ุฒุงุฆุฏ | |
| 212 | |
| 00:22:19,860 --> 00:22:21,260 | |
| YP2YP3YP4YP5YP6YP7 | |
| 213 | |
| 00:22:29,550 --> 00:22:36,330 | |
| ูุจูู ูุฐุง ููู ูุนุชุจุฑ ู ู ุงู particular solution ุงููู | |
| 214 | |
| 00:22:36,330 --> 00:22:41,990 | |
| ู ุทููุจ ุนููุง ุญุฏ ููููุง ูุงูู ุชุณุงุคู ููุง ูู ูุฐุง ุงูุณุคุงูุ | |
| 215 | |
| 00:22:41,990 --> 00:22:48,270 | |
| ูู ุงู ุชุณุงุคูุุทูุจ ุนูู ููู ุงูุชูู ูุฐุง ุงู section ูุฅูู | |
| 216 | |
| 00:22:48,270 --> 00:22:55,590 | |
| ูููู ุฃุฑูุงู ุงูู ุณุงุฆู ูุจูู exercises ุฎู ุณุฉ ุณุจุนุฉ | |
| 217 | |
| 00:22:55,590 --> 00:23:01,730 | |
| ุงูู ุณุงุฆู ุงูุชุงููุฉ ู ู ูุงุญุฏ ูุบุงูุฉ ุนุดุฑูู ูู ู ุฎู ุณุฉ | |
| 218 | |
| 00:23:01,730 --> 00:23:08,730 | |
| ูุนุดุฑูู ูุบุงูุฉ ุชูุงุชูู ู ุฑูู | |
| 219 | |
| 00:23:08,730 --> 00:23:13,530 | |
| ุฃุฏููู ูุฏ ู ุง ุชูุฏุฑู ุจุชุตูุฑ ูุฐุง ุงูู ูุถูุน ุจุตูุฑ ุฌุฏุง | |
| 220 | |
| 00:23:26,290 --> 00:23:49,450 | |
| ุงููู ููู ูุฐุง ุงูุชูููุง ู ูู ุงุธู ุฎูุงุตุ | |
| 221 | |
| 00:23:49,450 --> 00:23:55,440 | |
| ุทูุจูู ุง ููุชูู ุฅูู ุงู section ุงูุฃุฎูุฑ ู ู ูุฐุง ุงู | |
| 222 | |
| 00:23:55,440 --> 00:24:00,320 | |
| chapter ููู ุงูุทุฑููุฉ ุงูุซุงููุฉ ู ู ุทุฑู ุญู ุงู non | |
| 223 | |
| 00:24:00,320 --> 00:24:03,800 | |
| homogeneous differential equation ููู ุทุฑููุฉ ุงู | |
| 224 | |
| 00:24:03,800 --> 00:24:11,280 | |
| variation of parameters ุชุบููุฑ ุงููุณูุทุงุช ูุจูู 85 ุฃู | |
| 225 | |
| 00:24:11,280 --> 00:24:19,340 | |
| 58 ุงููู ูู variation of | |
| 226 | |
| 00:24:20,530 --> 00:24:29,030 | |
| Parameters ูุณุชุฎุฏู | |
| 227 | |
| 00:24:29,030 --> 00:24:39,410 | |
| ูุฐู ุงูุทุฑููุฉ ูุณุชุฎุฏู ูุฐู ุงูุทุฑููุฉ to find a | |
| 228 | |
| 00:24:39,410 --> 00:24:45,850 | |
| particular solution to find a particular | |
| 229 | |
| 00:24:54,020 --> 00:24:58,120 | |
| YP ุงูุฑู ุฒ ููุฅููุงุน | |
| 230 | |
| 00:25:01,140 --> 00:25:07,280 | |
| Differential equation ููู ุนุงุฏูุฉ ุงูุชูุงุถููุฉ a0 as a | |
| 231 | |
| 00:25:07,280 --> 00:25:14,040 | |
| function of x ุฒุงุฆุฏ ุงู a1 as a function of x ูู | |
| 232 | |
| 00:25:14,040 --> 00:25:21,470 | |
| derivative n minus l1ุฒุงุฆุฏ ูุจูู ู ุงุดู ูุบุงูุฉ a n | |
| 233 | |
| 00:25:21,470 --> 00:25:27,750 | |
| minus one as a function of x y prime ุฒุงุฆุฏ a n as a | |
| 234 | |
| 00:25:27,750 --> 00:25:33,130 | |
| function of x ูู ุงู y ุจุฏู ูุณุงูู capital F of x | |
| 235 | |
| 00:25:33,130 --> 00:25:36,790 | |
| ููุฐู ุงููู ููุง ุจูุทูู ุนูููุง ุงูู ุนุงุฏูุฉ ุงูุฃุตููุฉ ุงููู ูู | |
| 236 | |
| 00:25:36,790 --> 00:25:46,210 | |
| starwhere ุญูุซ ุงู a node of x ู ุงู a one of x ู | |
| 237 | |
| 00:25:46,210 --> 00:25:54,330 | |
| ูุบุงูุฉ ุงู a n of x ูุฏูู ูููู need not need not | |
| 238 | |
| 00:25:54,330 --> 00:26:00,510 | |
| constants need | |
| 239 | |
| 00:26:00,510 --> 00:26:09,410 | |
| not constants and no restrictionู ุงุนูุฏูุด ูููุฏ | |
| 240 | |
| 00:26:09,410 --> 00:26:24,010 | |
| ู ุงุนูุฏูุด | |
| 241 | |
| 00:26:24,010 --> 00:26:24,850 | |
| ูููุฏ ุนูููุง | |
| 242 | |
| 00:26:33,720 --> 00:26:46,600 | |
| YC ูุจุฏู ูุณุงูู C1Y1 ุฒุงุฆุฏ C2Y2 ุฒุงุฆุฏ CNYN Assume that | |
| 243 | |
| 00:26:46,600 --> 00:26:57,440 | |
| is a solution of the homo | |
| 244 | |
| 00:27:10,960 --> 00:27:16,840 | |
| ุฒุงูุฏ ุฒุงูุฏ a n minus 1 as a function of x ูู ุงู y | |
| 245 | |
| 00:27:16,840 --> 00:27:23,680 | |
| prime ุฒุงูุฏ a n of x y ุจุฏู ูุณุงูู ูุฏูุ ุจุฏู ูุณุงูู 0 | |
| 246 | |
| 00:27:29,020 --> 00:27:32,880 | |
| to get a | |
| 247 | |
| 00:27:32,880 --> 00:27:37,540 | |
| particular solution | |
| 248 | |
| 00:27:37,540 --> 00:27:46,180 | |
| to get a particular solution yp of the | |
| 249 | |
| 00:27:46,180 --> 00:27:56,140 | |
| differential equation star by the method | |
| 250 | |
| 00:27:59,990 --> 00:28:07,590 | |
| of variation of | |
| 251 | |
| 00:28:07,590 --> 00:28:20,570 | |
| parameters replace | |
| 252 | |
| 00:28:20,570 --> 00:28:32,010 | |
| ุงุณุชุจุฏู replace the above constantsabove constants | |
| 253 | |
| 00:28:32,010 --> 00:28:42,250 | |
| in | |
| 254 | |
| 00:28:42,250 --> 00:28:48,930 | |
| the solution yc | |
| 255 | |
| 00:28:48,930 --> 00:28:52,550 | |
| by the functions | |
| 256 | |
| 00:28:55,020 --> 00:29:10,660 | |
| The functions C1 of X C2 of X ู ูุบุงูุฉ CN of X That | |
| 257 | |
| 00:29:10,660 --> 00:29:11,060 | |
| is | |
| 258 | |
| 00:29:15,470 --> 00:29:25,490 | |
| YP ูุตุจุญ ุนูู ุงูุดูู ุงูุชุงูู C1 of XY1 C2 of XY2 ุฒุงุฆุฏ | |
| 259 | |
| 00:29:25,490 --> 00:29:29,470 | |
| CN of XYN | |
| 260 | |
| 00:29:35,370 --> 00:29:44,010 | |
| ุงูู CM as a function of X ูุณูู ุชูุงู ู ุงููุฑูุณููู M | |
| 261 | |
| 00:29:44,010 --> 00:29:51,350 | |
| as a function of X ูู capital F1 of X ุนูู | |
| 262 | |
| 00:29:51,350 --> 00:29:59,090 | |
| ุงููุฑูุณููู of X ููู ุจุงููุณุจุฉ ุฅูู DX ูุงูู M | |
| 263 | |
| 00:30:02,270 --> 00:30:09,990 | |
| ู ูุบุงูุฉ ุงู N ู | |
| 264 | |
| 00:30:09,990 --> 00:30:14,950 | |
| ูุบุงูุฉ | |
| 265 | |
| 00:30:14,950 --> 00:30:21,750 | |
| ุงู N ู ูุบุงูุฉ ุงู N ู ูุบุงูุฉ ุงู N ู ูุบุงูุฉ ุงู N | |
| 266 | |
| 00:30:28,070 --> 00:30:34,350 | |
| is the determinant ุงูู ุญุฏุฏ | |
| 267 | |
| 00:30:34,350 --> 00:30:41,370 | |
| obtained from | |
| 268 | |
| 00:30:41,370 --> 00:30:46,810 | |
| ุงููุงูุณููู | |
| 269 | |
| 00:30:46,810 --> 00:30:52,130 | |
| of X by replacing | |
| 270 | |
| 00:30:58,290 --> 00:31:15,810 | |
| By replacing the M column By the column By | |
| 271 | |
| 00:31:15,810 --> 00:31:26,730 | |
| the column Zero Zero ููุธู ู ุงุดููู ูุบุงูุฉ ุงููุงุญุฏ and | |
| 272 | |
| 00:31:30,230 --> 00:31:42,150 | |
| ุงูู F1 of X ุชุณุงูู ุงูู F of X ู ูุณูู ุฉ ุนูู A0 of X | |
| 273 | |
| 00:31:42,150 --> 00:31:45,550 | |
| Note | |
| 274 | |
| 00:31:45,550 --> 00:31:50,310 | |
| When | |
| 275 | |
| 00:31:50,310 --> 00:32:00,490 | |
| we use the method when weuse the method of | |
| 276 | |
| 00:32:00,490 --> 00:32:05,590 | |
| variation | |
| 277 | |
| 00:32:05,590 --> 00:32:15,910 | |
| of parameters ุนูุฏู ุง | |
| 278 | |
| 00:32:15,910 --> 00:32:23,110 | |
| ูุณุชุฎุฏู ูุฐู ุงูุทุฑููุฉ variation of parameters the | |
| 279 | |
| 00:32:23,110 --> 00:32:23,850 | |
| coefficient | |
| 280 | |
| 00:32:33,870 --> 00:32:45,010 | |
| ูุฌุจ ุงู ูููู ููู ู ููู ู | |
| 281 | |
| 00:32:45,010 --> 00:32:47,290 | |
| ููู ู ููู ู ููู ู ููู ู ููู ู ููู ู ููู ู | |
| 282 | |
| 00:32:58,790 --> 00:33:11,670 | |
| is of the second order | |
| 283 | |
| 00:33:11,670 --> 00:33:14,970 | |
| that | |
| 284 | |
| 00:33:14,970 --> 00:33:18,690 | |
| is | |
| 285 | |
| 00:33:20,880 --> 00:33:30,340 | |
| ุงูู a0 of x yw prime a1 of x y prime a2 of x y | |
| 286 | |
| 00:33:30,340 --> 00:33:35,420 | |
| ุจุฏูุง ุชุณุงูู f | |
| 287 | |
| 00:33:35,420 --> 00:33:50,710 | |
| of x and f y1 and y2 are two solutionsare two | |
| 288 | |
| 00:33:50,710 --> 00:33:57,990 | |
| solutions of | |
| 289 | |
| 00:33:57,990 --> 00:34:12,570 | |
| the homogeneous equation a0 of x yw prime a1 of x | |
| 290 | |
| 00:34:12,570 --> 00:34:18,570 | |
| y prime a2 of x y ุจุฏู ูุณุงูู zero then | |
| 291 | |
| 00:34:23,050 --> 00:34:33,070 | |
| ุงูู C1 of X ูู ุชูุงู ู ููุงูุต Y2 as a function of X | |
| 292 | |
| 00:34:33,070 --> 00:34:39,550 | |
| ูู ุงูู F1 of X ุนูู ุฑููุณููู X DX | |
| 293 | |
| 00:34:43,770 --> 00:34:51,950 | |
| ุงูู C2 as a function of X ุจุฏู ูุณุงูู ุชูุงู ู ูู ููุ | |
| 294 | |
| 00:34:51,950 --> 00:34:58,690 | |
| ุจุฏู ูุณุงูู ุชูุงู ู ููู Y1 as a function of X ูู ุงูู | |
| 295 | |
| 00:34:58,690 --> 00:35:05,170 | |
| F1 of X ููู ุนูู ุงูู run skin of X ูู ุงูู DX | |
| 296 | |
| 00:35:05,170 --> 00:35:10,030 | |
| example | |
| 297 | |
| 00:35:10,030 --> 00:35:10,490 | |
| 1 | |
| 298 | |
| 00:35:15,200 --> 00:35:26,200 | |
| Find the general solution of | |
| 299 | |
| 00:35:26,200 --> 00:35:32,340 | |
| the differential equation ููู ุนุงุฏูุฉ | |
| 300 | |
| 00:35:32,340 --> 00:35:38,340 | |
| ุงูุชูุงุถููุฉ YW'-2Y | |
| 301 | |
| 00:35:43,090 --> 00:35:51,990 | |
| ููู ุนุงู ูุฉ ุงูุชุญูู ุนุถููุฉ y | |
| 302 | |
| 00:35:51,990 --> 00:36:03,650 | |
| triple prime ุฒุงุฆุฏ y prime ุจุฏู ูุณุงูู ุณูู x ุจูุณุงูู | |
| 303 | |
| 00:36:03,650 --> 00:36:12,610 | |
| ุณูู x ููุงูุต y ุนูู 2 ุฃูู ู ู x ุฃูู ู ู y ุนูู 2 | |
| 304 | |
| 00:37:01,140 --> 00:37:06,600 | |
| ุงูุทุฑููุฉ ุงูุซุงููุฉ ู ู ุญู ุงูู ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ุบูุฑ | |
| 305 | |
| 00:37:06,600 --> 00:37:11,260 | |
| ุงูู ุชุฌุงูุณุฉ ูุฐู ุงูุทุฑููุฉ ุณู ููุง ุงู variation of | |
| 306 | |
| 00:37:11,260 --> 00:37:14,940 | |
| parameters ูุจูู ุฃูู ุทุฑููุฉ ุทุฑููุฉ ุงู undetermined | |
| 307 | |
| 00:37:14,940 --> 00:37:18,380 | |
| coefficients ูุงูุทุฑููุฉ ุงูุซุงููุฉ ุงูุชู ูู ุทุฑููุฉ ุงู | |
| 308 | |
| 00:37:18,380 --> 00:37:23,200 | |
| variation of parameters ุชุบููุฑ ุงููุณูุทุงุช ุชุชูุฎุต ูุฐู | |
| 309 | |
| 00:37:23,200 --> 00:37:26,740 | |
| ุงูุทุฑููุฉ ููู ุง ูุฃุชูุทุจุนุง ุงูู Undetermined | |
| 310 | |
| 00:37:26,740 --> 00:37:30,880 | |
| coefficients ูููุง ู ุดุงู ูุดุชุบู ุจูุง ุจุฏูู ุดุฑุทูู ุงู | |
| 311 | |
| 00:37:30,880 --> 00:37:34,860 | |
| ุงูู ุนุงู ูุฉ ุชุซูุงุจุช ู ุงู F of X ุชุจูู ุนูู ุดูู ู ุนูู ุญุณุจ | |
| 312 | |
| 00:37:34,860 --> 00:37:37,660 | |
| ุงูุฌุฏูู ุงููู ุงุนุทุงูุงููุง ูุนููุ ู ุธุจูุทุ ููุง ุงู | |
| 313 | |
| 00:37:37,660 --> 00:37:41,460 | |
| variation ุจููููู ูุฃ ุงูู ุนุงู ูุฉ ุชุซูุงุจุช ู ุงููู ู ุชุบูุฑุฉ | |
| 314 | |
| 00:37:41,460 --> 00:37:45,660 | |
| ู ุงุนูุฏูุด ู ุดููุฉ ุงู F of X ุงููู ูู ุงูุทุฑู ุงููู ูู ูุฐู | |
| 315 | |
| 00:37:45,660 --> 00:37:49,180 | |
| ุงู F of X ูุงูุช ุนูู ุดูู ู ุนูู ู ุงููู ุบูุฑ ุนูููุง ุดูู | |
| 316 | |
| 00:37:49,180 --> 00:37:53,590 | |
| ู ุนูู ู ุงุนูุฏูุด ู ุดููุฉูุนูู ุฃูุด ู ุง ูููู ุดูู ุงู F ูููู ู | |
| 317 | |
| 00:37:53,590 --> 00:37:56,590 | |
| ุฃูุด ู ุง ูููู ุงูู ุนุงู ูุฉ ุซูุฉ ุจุทููุฉ ู ุชุบูุฑุงุช ู ุงุนูุฏูุด | |
| 318 | |
| 00:37:56,590 --> 00:38:00,970 | |
| ู ุดููุฉ ูุจูู ูุฐุง ุงูุดูู ุงูุนุงู ู ุงูู ุนุงุฏู ุฃุณุทุงุฑ ุญูุซ ูุฏูู | |
| 319 | |
| 00:38:00,970 --> 00:38:05,350 | |
| ุงูุฏูู ููุฉ not ููุตุฉ ููุณ ุจุงูุถุฑูุฑุฉ ูููููุง ููุตุฉ ูุนูู | |
| 320 | |
| 00:38:05,350 --> 00:38:08,470 | |
| ู ู ูู ูููููุง ููุตุฉ ู ู ู ูู ูููููุง ู ุชุบูุฑุงุช ู ุงุนูุฏูุด | |
| 321 | |
| 00:38:08,470 --> 00:38:12,070 | |
| ู ุดููุฉ ูู ูุฐู ุงูุนุงูู and | |
| 322 | |
| 00:38:13,430 --> 00:38:18,250 | |
| and no restrictions | |
| 323 | |
| 00:38:18,250 --> 00:38:23,170 | |
| ู ุงุนูุฏูุด ูููุฏ ุนูู ุดูู ุงู F of X ูู ุงู Undetermined | |
| 324 | |
| 00:38:23,170 --> 00:38:25,650 | |
| ููุช ูุงุจูููููู ูู ูุงุจูููููู ูู ูู ุงูุงูุณุจููููุด | |
| 325 | |
| 00:38:25,650 --> 00:38:28,830 | |
| ูุงุจูููููู ูู ูู ุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู | |
| 326 | |
| 00:38:28,830 --> 00:38:33,850 | |
| ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู | |
| 327 | |
| 00:38:33,850 --> 00:38:35,710 | |
| ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู | |
| 328 | |
| 00:38:35,710 --> 00:38:36,610 | |
| ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู | |
| 329 | |
| 00:38:36,610 --> 00:38:37,770 | |
| ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู | |
| 330 | |
| 00:38:37,770 --> 00:38:38,170 | |
| ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู | |
| 331 | |
| 00:38:38,170 --> 00:38:40,250 | |
| ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู ุงูุงูุณุจููููุด ูู | |
| 332 | |
| 00:38:40,250 --> 00:38:45,310 | |
| ุงูุงูุณุจููููุด ูู ุงูุงูุณูุฐุง ุงูุดุบู ุงููุญูุฏ ุงููู ูู ุงูุญู | |
| 333 | |
| 00:38:45,310 --> 00:38:47,610 | |
| ุงููComplementary Solution ุจุฏู ุฃุฏูุฑ ุนูู ุงูู | |
| 334 | |
| 00:38:47,610 --> 00:38:51,270 | |
| Particular Solution ุชุจุน ุงูู ุนุงุฏูุฉ ู ููุ ุชุจุน ุงูู ุนุงุฏูุฉ | |
| 335 | |
| 00:38:51,270 --> 00:38:55,570 | |
| Star ูุจุฌู ุจููู ุจุฏู ุฃูุชุฑุถ ุงูุญู ุจุทุฑููุฉ ุงู version of | |
| 336 | |
| 00:38:55,570 --> 00:38:59,870 | |
| parameters ูู ููุณ ุงูุญู ูุฐุง ุจุณ ุจุฏู ุฃุดููู ุซูุงุจุช ู | |
| 337 | |
| 00:38:59,870 --> 00:39:04,230 | |
| ุฃุถุน ุจุฏููู ุฏูุงู ูู X ูุจูู Star ุดูู ุงู Particular | |
| 338 | |
| 00:39:04,230 --> 00:39:09,490 | |
| Solution ูู C1 of X Y1 ุฒุงุฆุฏ C2 of X Y2 ุฒุงุฆุฏ ุฒุงุฆุฏ | |
| 339 | |
| 00:39:09,490 --> 00:39:14,560 | |
| CN ูA of X YNุทูุจ ู ูู ูู ุงููC ูุงุช ููู ุจุฏู ุฃุญุณุจูุง | |
| 340 | |
| 00:39:14,560 --> 00:39:19,980 | |
| ูุฐูุ ุจุนุฏ ุดููุฉ ุญุณุงุจุงุช ูุฌููุง ูู ูุงุนุฏุฉ ุจูุงุณุทุชูุง ุจุฌูุจ | |
| 341 | |
| 00:39:19,980 --> 00:39:25,320 | |
| ูู ุฏุงูุฉ ู ู ูุฐู ุงูุฏููุฉ ู ูู ููุ ูุงุนุฏุฉ CM of XM ุทุจุนุง | |
| 342 | |
| 00:39:25,320 --> 00:39:29,500 | |
| ุจูุงุญุฏ ูุงุซููู ูุบุงูุฉ ุงู N ูุนูู ุจC ูุงุญุฏ ูC ุงุชููู ูC | |
| 343 | |
| 00:39:29,500 --> 00:39:34,890 | |
| ุชูุงุชุฉ ูุฏู ุงูุงุฎุฑูููุณุงูู ุงูู Ronschen M F1 of X ุนูู | |
| 344 | |
| 00:39:34,890 --> 00:39:38,530 | |
| Ronschen of X DX ูุฌู ุนูู ุงูู Ronschen of X ุงูู | |
| 345 | |
| 00:39:38,530 --> 00:39:42,330 | |
| Ronschen ูุฐุง ุงูุชุงุจุน ุงูุญููู ุงููู ูู ุงูุญุงูุฉ ุงูุฃููู | |
| 346 | |
| 00:39:42,330 --> 00:39:46,190 | |
| Y1 ู Y2 ู YN ุจุฌูุจ ุงููู ูู ุงูู Ronschen ุจูููู ูุฐุง | |
| 347 | |
| 00:39:46,190 --> 00:39:50,140 | |
| ูู ุงูู Ronschen ุชุจุน ุญุตูู ุนูู ุดุฌุฑุฉุจุฏู ุฑููุณููู 1 ู | |
| 348 | |
| 00:39:50,140 --> 00:39:54,760 | |
| ุฑููุณููู 2 ู ุฑููุณููู 3 ูุบุงูุฉ ุฑููุณููู N ู ูู ูู ูุฐุงุ | |
| 349 | |
| 00:39:54,760 --> 00:39:58,720 | |
| ูุฐุง ุงู ุฑููุณููู 1 ุจุงุฌู ุนูู ุงู ุฑููุณููู ู ุฏู ุจุดูู | |
| 350 | |
| 00:39:58,720 --> 00:40:02,880 | |
| ุงูุนู ูุฏ ุงูุฃูู ู ุจุญุท ุจุฏุงูู ุงูุนู ูุฏ ูุฐุง ู ุจุญุณุจ ูุฏุงุด | |
| 351 | |
| 00:40:02,880 --> 00:40:07,890 | |
| ููู ุฉ ุงู ุฑููุณููู ุทุจ ุจุฏู ุฑููุณููู 2ุจุณูุจ ุงูุฑููุณููู ูุฐุง | |
| 352 | |
| 00:40:07,890 --> 00:40:13,670 | |
| ุฒู ู ุง ูู ู ุจุฌู ุนูู ุงูุนู ูุฏ ุงูุซุงูู ุจุดููู ููู ู ุจุญุท | |
| 353 | |
| 00:40:13,670 --> 00:40:16,810 | |
| ุจุฏุงูู ุงูุนู ูุฏ ูุฐุง ู ููุฐุง ุงูุฑููุณููู ุซูุงุซุฉ ุฑููุณููู | |
| 354 | |
| 00:40:16,810 --> 00:40:21,210 | |
| ูุบุงูุฉ ุจูู ููู ูููู ูุจูู ูู ูุฐู ุงูุญุงูุฉ ุฌุจุชูุง ุทุจ ู ูู | |
| 355 | |
| 00:40:21,210 --> 00:40:25,850 | |
| ูู ุงู F1 ูุฐูุ ุงู ุงู F1 ูุฐู ูู ุง ุชูุฌู ุงูู ุนุงุฏูุฉ ุจุฏ | |
| 356 | |
| 00:40:25,850 --> 00:40:30,310 | |
| ุงูู ุนุงุฏูุฉ ููุง ุงูู ุนุงู ู ุชุจุนู ูููู ุฌุฏูุดูุฐุง ูุนูู ุฃููู | |
| 357 | |
| 00:40:30,310 --> 00:40:36,110 | |
| ุฃุฌุณู ุงูุทุฑููู ุนูู ู ูู ุนูู a node of x ูุจูู ุงู F1 ูู | |
| 358 | |
| 00:40:36,110 --> 00:40:42,270 | |
| ุนุจุงุฑุฉ ุนู Fx ู ูุณูู ุฉ ุนูู ุงู a node of x ูุจูู ุงู F1 | |
| 359 | |
| 00:40:42,270 --> 00:40:47,270 | |
| of x ูู ุงู F of x ู ูุณูู ุฉ ุนูู ู ูู ุนูู ุงู a node of | |
| 360 | |
| 00:40:47,270 --> 00:40:52,490 | |
| x ุฃุตูุง ูุงุถุญ ููุงู ูุฐุง ุทูุจ ุงูุขู ูู ู ูุงุญุธุฉ ุจุฏูุง ูุดูุฑ | |
| 361 | |
| 00:40:52,490 --> 00:40:57,290 | |
| ุฅูููุง ุงูู ูุงุญุธุฉ ูุงูุช ุชุงููุฉููุชูุง ุจุณ ุจุฏูุง ูุนูุฏูุง ููุง | |
| 362 | |
| 00:40:57,290 --> 00:41:00,590 | |
| ุนูุฏู ุง ูุณุชุฎุฏู ุงู variation of parameters ูุงุฒู ูููู | |
| 363 | |
| 00:41:00,590 --> 00:41:05,610 | |
| ุงูู ุนุงู ู ุชุจุน Y ุงู ูู ู ูู ู ุงูุณูุช ู ุญุทูุช ุงู F of X | |
| 364 | |
| 00:41:05,610 --> 00:41:11,110 | |
| ูุฐู ุจุฏู ูุฐู ุจุตูู ููุงู ู ุบูุท ุจุตูู ุชุญููุด ู ู ุงุชูุฏุฑุด | |
| 365 | |
| 00:41:11,110 --> 00:41:16,250 | |
| ุชุชูุงู ูู ุชู ุงู ูุจูู ุชุชุฃูุฏู ุนูุฏู ุง ุจุฏู ุชุณุชุฎุฏู ุงูุชูุงู ู | |
| 366 | |
| 00:41:16,250 --> 00:41:20,390 | |
| ุจุชุฎูู ุงูู ุนุงู ู ุชุจุน Y to the derivative ุงู ูู ูุงุญุฏ | |
| 367 | |
| 00:41:20,390 --> 00:41:24,610 | |
| ุตุญูุญ ุชู ุงู ูู ูุทุจุฉ ุงูุฃููู ุจุนุฏูู ูููุง ู ูุงุญุธุฉ ุชุงููุฉ | |
| 368 | |
| 00:41:25,260 --> 00:41:28,720 | |
| ุจูููู ุงู equation star ูุฐู ูู ูุงูุช ู ู ุงูุฑุชุจุฉ | |
| 369 | |
| 00:41:28,720 --> 00:41:32,680 | |
| ุงูุซุงููุฉ ูุจูู ุจุฏู ุงูุฑููุณููู 1 ู ูุต ููุชูุง ู ุญุณุจุฉ ู | |
| 370 | |
| 00:41:32,680 --> 00:41:38,320 | |
| ุฎุงูุตุฉ ู ุฌุงูุฒุฉ ุงูุดู ุจูููู ุงู C 1 of X ุจุชุญุท ููุญู | |
| 371 | |
| 00:41:38,320 --> 00:41:42,940 | |
| ุงูุชุงูู ุจุฅุดุงุฑุฉ ุณุงูุจ ูู ุงู F 1 of X ุนูู ุงูุฑููุณููู of | |
| 372 | |
| 00:41:42,940 --> 00:41:48,260 | |
| X ุทูุจ ู ุงู C2ุ ู ุงู C2 ูู ุงูุญู ุงูุฃูู ูู ุงู 1 of X | |
| 373 | |
| 00:41:48,260 --> 00:41:51,850 | |
| ุนูู ู ููุ ุนูู ุงู W of Xูุจูู ูู ุงู ูุงุจุฏ ุชุญุณุจ | |
| 374 | |
| 00:41:51,850 --> 00:41:54,950 | |
| ุงูููุฑูููุณูู ูุฃ ูุฐุง ุฅู ูุงูุช ู ู ุงูุฑุชุจุฉ ุงูุซุงููุฉุ ู ู | |
| 375 | |
| 00:41:54,950 --> 00:41:59,930 | |
| ุงูุฑุชุจุฉ ุงูุชุงูุชุฉุ ุจุฏู ุฃุฑุฌุน ุนุงูู ูุง ููููุงู ุงูุฃููุ ูุงุถุญ | |
| 376 | |
| 00:41:59,930 --> 00:42:03,590 | |
| ููุงู ูููุ ุงูุฃู ู ุงููู ุญุทูู ุนูู ุฃุฑุถ ูุงูุนุฉ ุฌุงูู ูุญู | |
| 377 | |
| 00:42:03,590 --> 00:42:08,430 | |
| ุงูู ุนุงุฏูุฉ ูุฐูุจูููู ุชู ุงู ูุจูู ุงูุง ุจุฏู ุงุจุฏุง ุจุญู ุงู | |
| 378 | |
| 00:42:08,430 --> 00:42:12,190 | |
| homogenous differential equation ูู ุง ููุง ู ู ูุจู | |
| 379 | |
| 00:42:12,190 --> 00:42:19,470 | |
| ูุจูู ุจุงุฌู ุจูููู ููุง let Y ุชุณุงูู E ุฃูุณ RX ุจูู | |
| 380 | |
| 00:42:19,470 --> 00:42:21,090 | |
| solution | |
| 381 | |
| 00:42:27,760 --> 00:42:36,620 | |
| ูุจูู ููุง the characteristic equation is R ุชูุนูุจ | |
| 382 | |
| 00:42:36,620 --> 00:42:42,820 | |
| ุฒุงุฆุฏ R ูุณุงูู 0ูุจูู R ูู R ุชุฑุจูุน ุฒุงุฆุฏ ูุงุญุฏ ุจุฏู | |
| 383 | |
| 00:42:42,820 --> 00:42:49,640 | |
| ูุณุงูู Zero ูุจูู R ุชุณุงูู Zero ูR ุชุณุงูู ุฒุงุฆุฏ ุงู ูุงูุต | |
| 384 | |
| 00:42:49,640 --> 00:42:54,680 | |
| I ูุจูู ุจูุงุก ุนููู ุจูููู ุงู complementary solution | |
| 385 | |
| 00:42:54,680 --> 00:43:06,080 | |
| YC ุจุฏู ูุณุงูู C ูุงุญุฏ ูู ุงู E ุงู Zeroุฒุงุฆุฏ C2 Cos X | |
| 386 | |
| 00:43:06,080 --> 00:43:12,420 | |
| ุฒุงุฆุฏ C3 Sin X ูุฃูู ุฒุงุฏุฉ ูููุต I ุงู A ุจุงูุฒูุฑู ูุงูB | |
| 387 | |
| 00:43:12,420 --> 00:43:18,860 | |
| ุจุงูู ูู ุจูุงุญุฏ ูุจูู ูุฐุง ุงูุดูู ุงูู ุนุงุฏูุฉ | |
| 388 | |
| 00:43:18,860 --> 00:43:24,210 | |
| ุงูุฃุตููุฉ ุจูุงุชูุง ุฏู ุณู ููุง ุงู starุงูุงู ุงูุง ุจุฏู ุงูุชุจ | |
| 389 | |
| 00:43:24,210 --> 00:43:30,330 | |
| ุดูู ุงู particular solution ููู ุนุงุฏูุฉ star ู ูุงุญุธู | |
| 390 | |
| 00:43:30,330 --> 00:43:34,890 | |
| ุงู ุงูู ุนุงู ู ุชุจุน ุงูู ุดุชูุฉ ุงูุฃููู ูู ูุงุญุฏ ุตุญูุญ ุงูู ุฑุฉ | |
| 391 | |
| 00:43:34,890 --> 00:43:39,210 | |
| ูุฐู ูุนูู ูุง ูู ูู ููุง ุฏูุฑ ุนู ุงูุดุบู ู ุจุงุดุฑ ูู ูุฐุง | |
| 392 | |
| 00:43:39,210 --> 00:43:47,730 | |
| ุงูุณุคุงู ูุจูู ุจุงุฌู ุจูููู the particular solution | |
| 393 | |
| 00:43:47,730 --> 00:43:50,430 | |
| of | |
| 394 | |
| 00:44:02,410 --> 00:44:12,710 | |
| ูุจูู C1 of X ุฒุงุฆุฏ C2 of X ูู Cos X ุฒุงุฆุฏ C3 of X ูู | |
| 395 | |
| 00:44:12,710 --> 00:44:20,090 | |
| Sin Xุจุนุฏ ููู ุจุชุฑูุญ ุงุฌูุจ ุงูุฑููุณููู ูุจูู ูุฐุง | |
| 396 | |
| 00:44:20,090 --> 00:44:25,810 | |
| ุงูุฑููุณููู as a function of x ูู ูู ุงูุฑููุณููู ููุญููู | |
| 397 | |
| 00:44:25,810 --> 00:44:31,670 | |
| ุงูุชูุงุชุฉ ุงูุญู ุงูุฃูู ูุฏุงุด ููุง ุจูุงุช ูุงุญุฏ ูุงูุญู ุงูุชุงูู | |
| 398 | |
| 00:44:31,670 --> 00:44:36,690 | |
| cosine ุงู X ูุงูุญู ุงูุชุงูุช sin X ูุจูู ูู ุซูุงุซุฉ ุญููู | |
| 399 | |
| 00:44:36,690 --> 00:44:43,960 | |
| ูุจูู ูู ูุงุญุฏ ูุงูุชุงูู cosine ุงู X ูุงูุชุงูุช sin Xูุจูู | |
| 400 | |
| 00:44:43,960 --> 00:44:50,280 | |
| ุงูู ุดุชูุฉ Zero ุงูู ุดุชูุฉ ุณุงูุจ Sine X ุงูู ุดุชูุฉ Cos X | |
| 401 | |
| 00:44:50,280 --> 00:44:58,140 | |
| ูู ุงู ู ุฑุฉ Zero ูุงูุต Cos X ูุงูุต Sine X ุจุฏู ุงููู | |
| 402 | |
| 00:44:58,140 --> 00:45:05,170 | |
| ุจุงุณุชุฎุฏุงู ุนูุงุตุฑ ุงูุนู ูุฏ ุงูุฃูููุจูู ูุงุญุฏ ููู ูุดุท ุจุตูู | |
| 403 | |
| 00:45:05,170 --> 00:45:11,630 | |
| ุนู ูุฏู ูุจูู sin ุชุฑุจูุน ุงู X ุฒุงุฆุฏ cosine ุชุฑุจูุน ุงู X | |
| 404 | |
| 00:45:11,630 --> 00:45:16,650 | |
| ุงููู ูู ูุฏุงุดุฑ ุงููุงุญุฏ ุจุฏู ุฃุฌูุจ ุงูุฑููุณ ููู ูุงู as a | |
| 405 | |
| 00:45:16,650 --> 00:45:20,810 | |
| function of X ุจุฏู ุฃุดูู ุงูุนู ูุฏ ูุฐุง ู ุฃุณุชุจุฏูู | |
| 406 | |
| 00:45:20,810 --> 00:45:31,390 | |
| ุจุงูุนู ูุฏ 001ูุงูุงุชููู ูุฏูู ุฒู ู ุง ูู cos x sin x-sin | |
| 407 | |
| 00:45:31,390 --> 00:45:41,050 | |
| x cos x-cos x-sin x ููุณุงููุจูุฏููู ุจุฑุถู ุจุงุณุชุฎุฏุงู | |
| 408 | |
| 00:45:41,050 --> 00:45:46,830 | |
| ุงูุนู ูุฏ ุงูุฃูู ูุจูู zero ูุงูุต zero ุฒุงุฆุฏ ูุงุญุฏ ูู ุฃุดุท | |
| 409 | |
| 00:45:46,830 --> 00:45:51,250 | |
| ุจุตูู ุนู ูุฏู cosine ุชุฑุจูู ุฒุงุฆุฏ sine ุชุฑุจูู cosine | |
| 410 | |
| 00:45:51,250 --> 00:45:57,430 | |
| ุชุฑุจูู ุงู X ุฒุงุฆุฏ sine ุชุฑุจูู ุงู X ููู ุจูุฏุงุด ุจูุงุญุฏ | |
| 411 | |
| 00:45:57,910 --> 00:46:02,810 | |
| ูุจูู ุจูุงุก ุนููู ุจุฏู ุงุฌูุจ ุงูุฑููุณูู ุงุชููู as a | |
| 412 | |
| 00:46:02,810 --> 00:46:05,910 | |
| function of x ูุจูู ุงูุนู ูุฏู ุงููู ุงููู ูู ุจุฏู ุงุฑุฌุน | |
| 413 | |
| 00:46:05,910 --> 00:46:09,970 | |
| ูู ุง ูุงู ูุง ุจูุงุช ุงู ูุงุญุฏ zero zero ุงูุนู ูุฏู ุงูุชุงูู | |
| 414 | |
| 00:46:09,970 --> 00:46:13,550 | |
| ูู ุงููู ุจุฏู ุงุณุชุจุฏูู ุจ zero zero ูุงุญุฏ ูุงูุนู ูุฏู | |
| 415 | |
| 00:46:13,550 --> 00:46:20,110 | |
| ุงูุชุงูุช ูู ุง ูุงู sine ุงู X cosine ุงู X ูุงูุต sine ุงู | |
| 416 | |
| 00:46:20,110 --> 00:46:25,970 | |
| Xูุจูู ุจูุงุก ุนููู ูุฐุง ุงูููุงู ูุณุงูู ุจุฏุง ููู ุจุงุณุชุฎุฏุงู | |
| 417 | |
| 00:46:25,970 --> 00:46:31,590 | |
| ุนูุงุตุฑ ุงูุนู ูุฏ ุงูุฃูู ูุจูู ูุดุท ุจุตูู ูุนู ูุฏู zero ูุงูุต | |
| 418 | |
| 00:46:31,590 --> 00:46:36,470 | |
| cosine ุงู X ูุจูู ูุงูุต cosine ุงู X ุฎูููุง ูุฌูุจ | |
| 419 | |
| 00:46:36,470 --> 00:46:43,350 | |
| ุงูุฑููุณููู 3 as a function of X ูุณุงูู 1 0 0 ุงูุนู ูุฏ | |
| 420 | |
| 00:46:43,350 --> 00:46:50,590 | |
| ุงูุชุงูู ูู ุง ูู cosine ุงู X ูุงูุต sine ุงู Xูููุง ูุงูุต | |
| 421 | |
| 00:46:50,590 --> 00:46:58,270 | |
| cosine ุงู X ูููุง 001 ุจุงูุดูู ุงููู ุงููุนูุงู ุจุฏุง ุงููู | |
| 422 | |
| 00:46:58,270 --> 00:47:02,590 | |
| ุจุงุณุชุฎุฏุงู ุนูุงุตุฑ ุงูุนู ูุฏ ุงูุฃูู ุจุฌูุดุท ุจุตู ู ุนู ูุฏู ูุงูุต | |
| 423 | |
| 00:47:02,590 --> 00:47:11,780 | |
| sin Xุฎููุตูุง ู ููุ ุณุฃุญุตู ุนูู ุงูู C1 as a function of | |
| 424 | |
| 00:47:11,780 --> 00:47:19,880 | |
| X ุงูุชูุงู ู ู ู ุฃููุ ุงูุชูุงู ู ููู Ronskin 1 of X ูู | |
| 425 | |
| 00:47:19,880 --> 00:47:24,260 | |
| ุงูู F of X ูุง ููุฌุฏ ูููุง ุชุบููุฑ ูู ุง ูู ุนูู ุงูู | |
| 426 | |
| 00:47:24,260 --> 00:47:30,180 | |
| Ronskin of X ููู ุจุงููุณุจุฉ ุฅูู DX ูุณูู ุชูุงู ู Ronskin | |
| 427 | |
| 00:47:30,180 --> 00:47:35,670 | |
| 1 ุทูุนูุงู ุจูุฏุฑุด ุจูุงุญุฏูุจูู ูุฐุง ูุงุญุฏ ููู ุงู F of X | |
| 428 | |
| 00:47:35,670 --> 00:47:41,410 | |
| ุงููู ูุจูู ุฏูุดุฉ ุจูุงุช ุณู ุงู X ุงุฒุงูู ุนูู ุณู ุงู X ุนูู | |
| 429 | |
| 00:47:41,410 --> 00:47:47,270 | |
| ุงูุฑููุณููู of X ุงูุฃูู ุจุฑุถู ูุงุญุฏ ููู DX ูุจูู ุชูุงู ู | |
| 430 | |
| 00:47:47,270 --> 00:47:53,190 | |
| ุงูุณู ููู absolute value ูุณู ุงู X ุฒุงุฆุฏ ุชุงูู ุงู X | |
| 431 | |
| 00:47:53,190 --> 00:47:59,710 | |
| ุจุฏูุง ูุฌูุจ C2 as a function of Xูุจูู ุชูุงู ู ุฑูุณููู 2 | |
| 432 | |
| 00:47:59,710 --> 00:48:06,470 | |
| of x ูู f of x ุนูู ุฑูุณููู of x dx ูุณูู ุชูุงู ู | |
| 433 | |
| 00:48:06,470 --> 00:48:11,790 | |
| ุฑูุณููู 2 ูู ุจูุงูุต cos x | |
| 434 | |
| 00:48:22,510 --> 00:48:28,490 | |
| ูุจูู ุชูุงู ู ููุงูุต DX ูุจูู ุจูุงูุต X ู ูุง ุชูุชุจู | |
| 435 | |
| 00:48:28,490 --> 00:48:33,650 | |
| Constants ูุฃู ูู ุตูุงุฉ ู ูุชุงุจ ูุนู ููุง ููู ุชูุฑุงุฑ ูุจูู | |
| 436 | |
| 00:48:33,650 --> 00:48:38,510 | |
| ุณูุจูู ู ู ุงูุชูุฑุงุฑ ูุจูู ุจูุชุจูุง ููุท ุฒู ููู ุจุฏุฃ ูุงุฎุฏ | |
| 437 | |
| 00:48:38,510 --> 00:48:39,590 | |
| C3 | |
| 438 | |
| 00:48:46,760 --> 00:48:54,240 | |
| ูุจูู ุจูุฏู C3A of X ูุจูู ูุณุงูู ุชูุงู ู ุฑููุณููู 3 of X | |
| 439 | |
| 00:48:54,240 --> 00:49:00,900 | |
| ูู F of X ุนูู ุฑููุณููู of X DX Y ูุณุงูู ุงูุฑููุณููู 3 | |
| 440 | |
| 00:49:00,900 --> 00:49:09,010 | |
| ูู ุณุงูุจ ุตูู Xูุงูุฏุงูุฉ ุณู ุงู X ูุงูุฑู ุฒ ูุงู ูุงุญุฏ DX | |
| 441 | |
| 00:49:09,010 --> 00:49:15,810 | |
| ูุจูู ูุณุงูู ุชูุงู ู ุณุงูู sin X ุงูุณู ู ููุจ ุงู cos X DX | |
| 442 | |
| 00:49:15,810 --> 00:49:20,570 | |
| ุงุธู ุงูุจุณุทุฉ ูุงุถู ุงูู ูุงู ูุจูู ุงูุฌูุงุจ ููู absolute | |
| 443 | |
| 00:49:20,570 --> 00:49:28,570 | |
| value ู cos X ูุจูู ุฌุจุช ุงูุณููุงุชู ุชูุงุชุฉ ูุจูู ุณุงุฑ YP | |
| 444 | |
| 00:49:28,570 --> 00:49:33,720 | |
| ูุณุงูู ููู YP ูุง ุจูุงุชูููุจุฏู ุงุดูู ุงูู C1 ุงูู C1 | |
| 445 | |
| 00:49:33,720 --> 00:49:38,720 | |
| ุฌูุจูุงูุง ุงููู ูู ูุฏุงุด ุงููู ูู ุงู N absolute value | |
| 446 | |
| 00:49:38,720 --> 00:49:47,480 | |
| ูุณู ุงู X ุฒุงุฆุฏ ุชุงูู ุงู X ุฒุงุฆุฏ C2 ููู C2 ููู ุฒุงุฆุฏ | |
| 447 | |
| 00:49:47,480 --> 00:49:52,280 | |
| ุงููู ูู ูุงูุต X ูู ู ููุ ูู cosine ุงู X | |
| 448 | |
| 00:50:04,270 --> 00:50:12,930 | |
| ูุจูู y ูุณูู yc ูู | |
| 449 | |
| 00:50:12,930 --> 00:50:23,580 | |
| ุชุญุช ูุจูู c ูุงุญุฏุฒุงุฆุฏ C2 Cos X ุฒุงุฆุฏ C3 Sin X ุฒุงุฆุฏ YP | |
| 450 | |
| 00:50:23,580 --> 00:50:28,540 | |
| ูุงู ู ุจุฏู ูุฒูู ุฒู ู ุง ูู ุจุณ ููู ุฎุงุทุฑ ุงุฑุชุจู ูุจูู ูุงู | |
| 451 | |
| 00:50:28,540 --> 00:50:36,820 | |
| Sin X ูู Lin absolute value ู Cos X ูุงูุต X ูู Cos | |
| 452 | |
| 00:50:36,820 --> 00:50:45,600 | |
| X ุฒุงุฆุฏ Lin absolute value ูุณู Xุฒุงุฆุฏ ุชุงู ุงู X ููุงู | |
| 453 | |
| 00:50:45,600 --> 00:50:50,160 | |
| ุงููู ุจุงูุณุฑ ุนูููุง ูุจูู ูุฐุง ุญู ุงูุณุคุงู ุงููู ุนูุฏูุง | |
| 454 | |
| 00:50:50,160 --> 00:50:54,780 | |
| ุชู ุงู ู ููุฐุง ูุนูู ุงูุดุบู ุจูุฐู ุงูุทุฑููุฉ ุทุจุนุง ูู ุฌูุจูุงู | |
| 455 | |
| 00:50:54,780 --> 00:50:58,200 | |
| ุณุคุงู ูู ุงูุงู ุชุญุงู ูู ูุฒูุฏ ุนู ุงูุฑุชุจุฉ ุงูุชุงูุชุฉ ุงู | |
| 456 | |
| 00:50:58,200 --> 00:51:01,780 | |
| ุฏุฎููุง ูู ุงูุฑุชุจุฉ ุงูุฑุงุจุนุฉุจุฏู ู ุญุฏุฏ ู ู ุงูุฏุฑุฌุฉ ุงูุฑุงุจุนุฉ | |
| 457 | |
| 00:51:01,780 --> 00:51:05,760 | |
| ุจูุงุฎุฏ ููุช ูุชูุฑ ู ุงูุช ุชุญู ููู ูุจูู ููุท ู ู ุงูุฏุฑุฌุฉ | |
| 458 | |
| 00:51:05,760 --> 00:51:11,260 | |
| ุงูุซุงูุซุฉ ุงู ุงูุฏุฑุฌุฉ ุงูุซุงููุฉ ุงู ุดุงุก ุงููู ูุงุฒููุง ูู | |
| 459 | |
| 00:51:11,260 --> 00:51:15,600 | |
| ููุณ ุงู section ู ูู ุง ููุชูู ุจุนุฏ ูู ุนูุฏู ุจุนุถ ุงูุฃู ุซูุฉ | |
| 460 | |
| 00:51:15,600 --> 00:51:20,060 | |
| ุนูู ููุณ ุงูู ูุถูุน ุจุงูุงุถุงูุฉ ุงูู ุงุฎุฑ ุทุฑููุฉ ุงููู ูู | |
| 461 | |
| 00:51:20,060 --> 00:51:24,340 | |
| ุทุฑููุฉ reduction of order ูุงุฎุชุฒุงู ุงูุฑุชุจุฉ ููู ุญุงุถุฑุฉ | |
| 462 | |
| 00:51:24,340 --> 00:51:26,760 | |
| ุงูููู ุจุนุฏ ุงูุธูุฑ ุงู ุดุงุก ุงููู ู ุชุนุงูู | |