import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {Small image-text set}, author={James Briggs}, year={2022} } """ _DESCRIPTION = """\ Demo dataset for testing or showing image-text capabilities. """ _HOMEPAGE = "https://huggingface.co/datasets/jamescalam/image-text-demo" _LICENSE = "" _URL="https://huggingface.co/datasets/aadhiya/image-upoload/resolve/main/images.tar.gz" _REPO = "https://huggingface.co/datasets/jamescalam/image-text-demo" descriptions=['Botpeg Singing','Botpeg Thinking','Botpeg Dancing'] class ImageSet(datasets.GeneratorBasedBuilder): """Small sample of image-text pairs""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { 'text': datasets.Value("string"), 'image': datasets.Image(), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): path=dl_manager.download(_URL) image_iters=dl_manager.iter_archive(path) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": image_iters } ), ] def _generate_examples(self, images): """ This function returns the examples in the raw (text) form.""" idx=0 for filepath,image in images: yield idx,{ "image":{"path":filepath,"bytes":image.read()}, "text":descriptions[idx] } idx+=1