{
"language": "Solidity",
"sources": {
"@openzeppelin/contracts/access/AccessControl.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IAccessControl.sol\";\nimport \"../utils/Context.sol\";\nimport \"../utils/Strings.sol\";\nimport \"../utils/introspection/ERC165.sol\";\n\n/**\n * @dev Contract module that allows children to implement role-based access\n * control mechanisms. This is a lightweight version that doesn't allow enumerating role\n * members except through off-chain means by accessing the contract event logs. Some\n * applications may benefit from on-chain enumerability, for those cases see\n * {AccessControlEnumerable}.\n *\n * Roles are referred to by their `bytes32` identifier. These should be exposed\n * in the external API and be unique. The best way to achieve this is by\n * using `public constant` hash digests:\n *\n * ```\n * bytes32 public constant MY_ROLE = keccak256(\"MY_ROLE\");\n * ```\n *\n * Roles can be used to represent a set of permissions. To restrict access to a\n * function call, use {hasRole}:\n *\n * ```\n * function foo() public {\n * require(hasRole(MY_ROLE, msg.sender));\n * ...\n * }\n * ```\n *\n * Roles can be granted and revoked dynamically via the {grantRole} and\n * {revokeRole} functions. Each role has an associated admin role, and only\n * accounts that have a role's admin role can call {grantRole} and {revokeRole}.\n *\n * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means\n * that only accounts with this role will be able to grant or revoke other\n * roles. More complex role relationships can be created by using\n * {_setRoleAdmin}.\n *\n * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to\n * grant and revoke this role. Extra precautions should be taken to secure\n * accounts that have been granted it.\n */\nabstract contract AccessControl is Context, IAccessControl, ERC165 {\n struct RoleData {\n mapping(address => bool) members;\n bytes32 adminRole;\n }\n\n mapping(bytes32 => RoleData) private _roles;\n\n bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;\n\n /**\n * @dev Modifier that checks that an account has a specific role. Reverts\n * with a standardized message including the required role.\n *\n * The format of the revert reason is given by the following regular expression:\n *\n * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/\n *\n * _Available since v4.1._\n */\n modifier onlyRole(bytes32 role) {\n _checkRole(role);\n _;\n }\n\n /**\n * @dev See {IERC165-supportsInterface}.\n */\n function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);\n }\n\n /**\n * @dev Returns `true` if `account` has been granted `role`.\n */\n function hasRole(bytes32 role, address account) public view virtual override returns (bool) {\n return _roles[role].members[account];\n }\n\n /**\n * @dev Revert with a standard message if `_msgSender()` is missing `role`.\n * Overriding this function changes the behavior of the {onlyRole} modifier.\n *\n * Format of the revert message is described in {_checkRole}.\n *\n * _Available since v4.6._\n */\n function _checkRole(bytes32 role) internal view virtual {\n _checkRole(role, _msgSender());\n }\n\n /**\n * @dev Revert with a standard message if `account` is missing `role`.\n *\n * The format of the revert reason is given by the following regular expression:\n *\n * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/\n */\n function _checkRole(bytes32 role, address account) internal view virtual {\n if (!hasRole(role, account)) {\n revert(\n string(\n abi.encodePacked(\n \"AccessControl: account \",\n Strings.toHexString(account),\n \" is missing role \",\n Strings.toHexString(uint256(role), 32)\n )\n )\n );\n }\n }\n\n /**\n * @dev Returns the admin role that controls `role`. See {grantRole} and\n * {revokeRole}.\n *\n * To change a role's admin, use {_setRoleAdmin}.\n */\n function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {\n return _roles[role].adminRole;\n }\n\n /**\n * @dev Grants `role` to `account`.\n *\n * If `account` had not been already granted `role`, emits a {RoleGranted}\n * event.\n *\n * Requirements:\n *\n * - the caller must have ``role``'s admin role.\n *\n * May emit a {RoleGranted} event.\n */\n function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {\n _grantRole(role, account);\n }\n\n /**\n * @dev Revokes `role` from `account`.\n *\n * If `account` had been granted `role`, emits a {RoleRevoked} event.\n *\n * Requirements:\n *\n * - the caller must have ``role``'s admin role.\n *\n * May emit a {RoleRevoked} event.\n */\n function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {\n _revokeRole(role, account);\n }\n\n /**\n * @dev Revokes `role` from the calling account.\n *\n * Roles are often managed via {grantRole} and {revokeRole}: this function's\n * purpose is to provide a mechanism for accounts to lose their privileges\n * if they are compromised (such as when a trusted device is misplaced).\n *\n * If the calling account had been revoked `role`, emits a {RoleRevoked}\n * event.\n *\n * Requirements:\n *\n * - the caller must be `account`.\n *\n * May emit a {RoleRevoked} event.\n */\n function renounceRole(bytes32 role, address account) public virtual override {\n require(account == _msgSender(), \"AccessControl: can only renounce roles for self\");\n\n _revokeRole(role, account);\n }\n\n /**\n * @dev Grants `role` to `account`.\n *\n * If `account` had not been already granted `role`, emits a {RoleGranted}\n * event. Note that unlike {grantRole}, this function doesn't perform any\n * checks on the calling account.\n *\n * May emit a {RoleGranted} event.\n *\n * [WARNING]\n * ====\n * This function should only be called from the constructor when setting\n * up the initial roles for the system.\n *\n * Using this function in any other way is effectively circumventing the admin\n * system imposed by {AccessControl}.\n * ====\n *\n * NOTE: This function is deprecated in favor of {_grantRole}.\n */\n function _setupRole(bytes32 role, address account) internal virtual {\n _grantRole(role, account);\n }\n\n /**\n * @dev Sets `adminRole` as ``role``'s admin role.\n *\n * Emits a {RoleAdminChanged} event.\n */\n function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {\n bytes32 previousAdminRole = getRoleAdmin(role);\n _roles[role].adminRole = adminRole;\n emit RoleAdminChanged(role, previousAdminRole, adminRole);\n }\n\n /**\n * @dev Grants `role` to `account`.\n *\n * Internal function without access restriction.\n *\n * May emit a {RoleGranted} event.\n */\n function _grantRole(bytes32 role, address account) internal virtual {\n if (!hasRole(role, account)) {\n _roles[role].members[account] = true;\n emit RoleGranted(role, account, _msgSender());\n }\n }\n\n /**\n * @dev Revokes `role` from `account`.\n *\n * Internal function without access restriction.\n *\n * May emit a {RoleRevoked} event.\n */\n function _revokeRole(bytes32 role, address account) internal virtual {\n if (hasRole(role, account)) {\n _roles[role].members[account] = false;\n emit RoleRevoked(role, account, _msgSender());\n }\n }\n}\n"
},
"@openzeppelin/contracts/access/AccessControlEnumerable.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IAccessControlEnumerable.sol\";\nimport \"./AccessControl.sol\";\nimport \"../utils/structs/EnumerableSet.sol\";\n\n/**\n * @dev Extension of {AccessControl} that allows enumerating the members of each role.\n */\nabstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {\n using EnumerableSet for EnumerableSet.AddressSet;\n\n mapping(bytes32 => EnumerableSet.AddressSet) private _roleMembers;\n\n /**\n * @dev See {IERC165-supportsInterface}.\n */\n function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);\n }\n\n /**\n * @dev Returns one of the accounts that have `role`. `index` must be a\n * value between 0 and {getRoleMemberCount}, non-inclusive.\n *\n * Role bearers are not sorted in any particular way, and their ordering may\n * change at any point.\n *\n * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure\n * you perform all queries on the same block. See the following\n * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]\n * for more information.\n */\n function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) {\n return _roleMembers[role].at(index);\n }\n\n /**\n * @dev Returns the number of accounts that have `role`. Can be used\n * together with {getRoleMember} to enumerate all bearers of a role.\n */\n function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) {\n return _roleMembers[role].length();\n }\n\n /**\n * @dev Overload {_grantRole} to track enumerable memberships\n */\n function _grantRole(bytes32 role, address account) internal virtual override {\n super._grantRole(role, account);\n _roleMembers[role].add(account);\n }\n\n /**\n * @dev Overload {_revokeRole} to track enumerable memberships\n */\n function _revokeRole(bytes32 role, address account) internal virtual override {\n super._revokeRole(role, account);\n _roleMembers[role].remove(account);\n }\n}\n"
},
"@openzeppelin/contracts/access/IAccessControl.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev External interface of AccessControl declared to support ERC165 detection.\n */\ninterface IAccessControl {\n /**\n * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`\n *\n * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite\n * {RoleAdminChanged} not being emitted signaling this.\n *\n * _Available since v3.1._\n */\n event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);\n\n /**\n * @dev Emitted when `account` is granted `role`.\n *\n * `sender` is the account that originated the contract call, an admin role\n * bearer except when using {AccessControl-_setupRole}.\n */\n event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);\n\n /**\n * @dev Emitted when `account` is revoked `role`.\n *\n * `sender` is the account that originated the contract call:\n * - if using `revokeRole`, it is the admin role bearer\n * - if using `renounceRole`, it is the role bearer (i.e. `account`)\n */\n event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);\n\n /**\n * @dev Returns `true` if `account` has been granted `role`.\n */\n function hasRole(bytes32 role, address account) external view returns (bool);\n\n /**\n * @dev Returns the admin role that controls `role`. See {grantRole} and\n * {revokeRole}.\n *\n * To change a role's admin, use {AccessControl-_setRoleAdmin}.\n */\n function getRoleAdmin(bytes32 role) external view returns (bytes32);\n\n /**\n * @dev Grants `role` to `account`.\n *\n * If `account` had not been already granted `role`, emits a {RoleGranted}\n * event.\n *\n * Requirements:\n *\n * - the caller must have ``role``'s admin role.\n */\n function grantRole(bytes32 role, address account) external;\n\n /**\n * @dev Revokes `role` from `account`.\n *\n * If `account` had been granted `role`, emits a {RoleRevoked} event.\n *\n * Requirements:\n *\n * - the caller must have ``role``'s admin role.\n */\n function revokeRole(bytes32 role, address account) external;\n\n /**\n * @dev Revokes `role` from the calling account.\n *\n * Roles are often managed via {grantRole} and {revokeRole}: this function's\n * purpose is to provide a mechanism for accounts to lose their privileges\n * if they are compromised (such as when a trusted device is misplaced).\n *\n * If the calling account had been granted `role`, emits a {RoleRevoked}\n * event.\n *\n * Requirements:\n *\n * - the caller must be `account`.\n */\n function renounceRole(bytes32 role, address account) external;\n}\n"
},
"@openzeppelin/contracts/access/IAccessControlEnumerable.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IAccessControl.sol\";\n\n/**\n * @dev External interface of AccessControlEnumerable declared to support ERC165 detection.\n */\ninterface IAccessControlEnumerable is IAccessControl {\n /**\n * @dev Returns one of the accounts that have `role`. `index` must be a\n * value between 0 and {getRoleMemberCount}, non-inclusive.\n *\n * Role bearers are not sorted in any particular way, and their ordering may\n * change at any point.\n *\n * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure\n * you perform all queries on the same block. See the following\n * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]\n * for more information.\n */\n function getRoleMember(bytes32 role, uint256 index) external view returns (address);\n\n /**\n * @dev Returns the number of accounts that have `role`. Can be used\n * together with {getRoleMember} to enumerate all bearers of a role.\n */\n function getRoleMemberCount(bytes32 role) external view returns (uint256);\n}\n"
},
"@openzeppelin/contracts/access/Ownable.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../utils/Context.sol\";\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract Ownable is Context {\n address private _owner;\n\n event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n /**\n * @dev Initializes the contract setting the deployer as the initial owner.\n */\n constructor() {\n _transferOwnership(_msgSender());\n }\n\n /**\n * @dev Throws if called by any account other than the owner.\n */\n modifier onlyOwner() {\n _checkOwner();\n _;\n }\n\n /**\n * @dev Returns the address of the current owner.\n */\n function owner() public view virtual returns (address) {\n return _owner;\n }\n\n /**\n * @dev Throws if the sender is not the owner.\n */\n function _checkOwner() internal view virtual {\n require(owner() == _msgSender(), \"Ownable: caller is not the owner\");\n }\n\n /**\n * @dev Leaves the contract without owner. It will not be possible to call\n * `onlyOwner` functions anymore. Can only be called by the current owner.\n *\n * NOTE: Renouncing ownership will leave the contract without an owner,\n * thereby removing any functionality that is only available to the owner.\n */\n function renounceOwnership() public virtual onlyOwner {\n _transferOwnership(address(0));\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Can only be called by the current owner.\n */\n function transferOwnership(address newOwner) public virtual onlyOwner {\n require(newOwner != address(0), \"Ownable: new owner is the zero address\");\n _transferOwnership(newOwner);\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Internal function without access restriction.\n */\n function _transferOwnership(address newOwner) internal virtual {\n address oldOwner = _owner;\n _owner = newOwner;\n emit OwnershipTransferred(oldOwner, newOwner);\n }\n}\n"
},
"@openzeppelin/contracts/security/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Contract module that helps prevent reentrant calls to a function.\n *\n * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier\n * available, which can be applied to functions to make sure there are no nested\n * (reentrant) calls to them.\n *\n * Note that because there is a single `nonReentrant` guard, functions marked as\n * `nonReentrant` may not call one another. This can be worked around by making\n * those functions `private`, and then adding `external` `nonReentrant` entry\n * points to them.\n *\n * TIP: If you would like to learn more about reentrancy and alternative ways\n * to protect against it, check out our blog post\n * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].\n */\nabstract contract ReentrancyGuard {\n // Booleans are more expensive than uint256 or any type that takes up a full\n // word because each write operation emits an extra SLOAD to first read the\n // slot's contents, replace the bits taken up by the boolean, and then write\n // back. This is the compiler's defense against contract upgrades and\n // pointer aliasing, and it cannot be disabled.\n\n // The values being non-zero value makes deployment a bit more expensive,\n // but in exchange the refund on every call to nonReentrant will be lower in\n // amount. Since refunds are capped to a percentage of the total\n // transaction's gas, it is best to keep them low in cases like this one, to\n // increase the likelihood of the full refund coming into effect.\n uint256 private constant _NOT_ENTERED = 1;\n uint256 private constant _ENTERED = 2;\n\n uint256 private _status;\n\n constructor() {\n _status = _NOT_ENTERED;\n }\n\n /**\n * @dev Prevents a contract from calling itself, directly or indirectly.\n * Calling a `nonReentrant` function from another `nonReentrant`\n * function is not supported. It is possible to prevent this from happening\n * by making the `nonReentrant` function external, and making it call a\n * `private` function that does the actual work.\n */\n modifier nonReentrant() {\n _nonReentrantBefore();\n _;\n _nonReentrantAfter();\n }\n\n function _nonReentrantBefore() private {\n // On the first call to nonReentrant, _status will be _NOT_ENTERED\n require(_status != _ENTERED, \"ReentrancyGuard: reentrant call\");\n\n // Any calls to nonReentrant after this point will fail\n _status = _ENTERED;\n }\n\n function _nonReentrantAfter() private {\n // By storing the original value once again, a refund is triggered (see\n // https://eips.ethereum.org/EIPS/eip-2200)\n _status = _NOT_ENTERED;\n }\n}\n"
},
"@openzeppelin/contracts/token/ERC20/ERC20.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IERC20.sol\";\nimport \"./extensions/IERC20Metadata.sol\";\nimport \"../../utils/Context.sol\";\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20PresetMinterPauser}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin Contracts guidelines: functions revert\n * instead returning `false` on failure. This behavior is nonetheless\n * conventional and does not conflict with the expectations of ERC20\n * applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn't required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\ncontract ERC20 is Context, IERC20, IERC20Metadata {\n mapping(address => uint256) private _balances;\n\n mapping(address => mapping(address => uint256)) private _allowances;\n\n uint256 private _totalSupply;\n\n string private _name;\n string private _symbol;\n\n /**\n * @dev Sets the values for {name} and {symbol}.\n *\n * The default value of {decimals} is 18. To select a different value for\n * {decimals} you should overload it.\n *\n * All two of these values are immutable: they can only be set once during\n * construction.\n */\n constructor(string memory name_, string memory symbol_) {\n _name = name_;\n _symbol = symbol_;\n }\n\n /**\n * @dev Returns the name of the token.\n */\n function name() public view virtual override returns (string memory) {\n return _name;\n }\n\n /**\n * @dev Returns the symbol of the token, usually a shorter version of the\n * name.\n */\n function symbol() public view virtual override returns (string memory) {\n return _symbol;\n }\n\n /**\n * @dev Returns the number of decimals used to get its user representation.\n * For example, if `decimals` equals `2`, a balance of `505` tokens should\n * be displayed to a user as `5.05` (`505 / 10 ** 2`).\n *\n * Tokens usually opt for a value of 18, imitating the relationship between\n * Ether and Wei. This is the value {ERC20} uses, unless this function is\n * overridden;\n *\n * NOTE: This information is only used for _display_ purposes: it in\n * no way affects any of the arithmetic of the contract, including\n * {IERC20-balanceOf} and {IERC20-transfer}.\n */\n function decimals() public view virtual override returns (uint8) {\n return 18;\n }\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view virtual override returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view virtual override returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `to` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address to, uint256 amount) public virtual override returns (bool) {\n address owner = _msgSender();\n _transfer(owner, to, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender) public view virtual override returns (uint256) {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on\n * `transferFrom`. This is semantically equivalent to an infinite approval.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n address owner = _msgSender();\n _approve(owner, spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20}.\n *\n * NOTE: Does not update the allowance if the current allowance\n * is the maximum `uint256`.\n *\n * Requirements:\n *\n * - `from` and `to` cannot be the zero address.\n * - `from` must have a balance of at least `amount`.\n * - the caller must have allowance for ``from``'s tokens of at least\n * `amount`.\n */\n function transferFrom(\n address from,\n address to,\n uint256 amount\n ) public virtual override returns (bool) {\n address spender = _msgSender();\n _spendAllowance(from, spender, amount);\n _transfer(from, to, amount);\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n address owner = _msgSender();\n _approve(owner, spender, allowance(owner, spender) + addedValue);\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {\n address owner = _msgSender();\n uint256 currentAllowance = allowance(owner, spender);\n require(currentAllowance >= subtractedValue, \"ERC20: decreased allowance below zero\");\n unchecked {\n _approve(owner, spender, currentAllowance - subtractedValue);\n }\n\n return true;\n }\n\n /**\n * @dev Moves `amount` of tokens from `from` to `to`.\n *\n * This internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `from` must have a balance of at least `amount`.\n */\n function _transfer(\n address from,\n address to,\n uint256 amount\n ) internal virtual {\n require(from != address(0), \"ERC20: transfer from the zero address\");\n require(to != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(from, to, amount);\n\n uint256 fromBalance = _balances[from];\n require(fromBalance >= amount, \"ERC20: transfer amount exceeds balance\");\n unchecked {\n _balances[from] = fromBalance - amount;\n // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by\n // decrementing then incrementing.\n _balances[to] += amount;\n }\n\n emit Transfer(from, to, amount);\n\n _afterTokenTransfer(from, to, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements:\n *\n * - `account` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _beforeTokenTransfer(address(0), account, amount);\n\n _totalSupply += amount;\n unchecked {\n // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.\n _balances[account] += amount;\n }\n emit Transfer(address(0), account, amount);\n\n _afterTokenTransfer(address(0), account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements:\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n uint256 accountBalance = _balances[account];\n require(accountBalance >= amount, \"ERC20: burn amount exceeds balance\");\n unchecked {\n _balances[account] = accountBalance - amount;\n // Overflow not possible: amount <= accountBalance <= totalSupply.\n _totalSupply -= amount;\n }\n\n emit Transfer(account, address(0), amount);\n\n _afterTokenTransfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.\n *\n * This internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(\n address owner,\n address spender,\n uint256 amount\n ) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Updates `owner` s allowance for `spender` based on spent `amount`.\n *\n * Does not update the allowance amount in case of infinite allowance.\n * Revert if not enough allowance is available.\n *\n * Might emit an {Approval} event.\n */\n function _spendAllowance(\n address owner,\n address spender,\n uint256 amount\n ) internal virtual {\n uint256 currentAllowance = allowance(owner, spender);\n if (currentAllowance != type(uint256).max) {\n require(currentAllowance >= amount, \"ERC20: insufficient allowance\");\n unchecked {\n _approve(owner, spender, currentAllowance - amount);\n }\n }\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens\n * will be transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of ``from``'s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].\n */\n function _beforeTokenTransfer(\n address from,\n address to,\n uint256 amount\n ) internal virtual {}\n\n /**\n * @dev Hook that is called after any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens\n * has been transferred to `to`.\n * - when `from` is zero, `amount` tokens have been minted for `to`.\n * - when `to` is zero, `amount` of ``from``'s tokens have been burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].\n */\n function _afterTokenTransfer(\n address from,\n address to,\n uint256 amount\n ) internal virtual {}\n}\n"
},
"@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in\n * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].\n *\n * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by\n * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't\n * need to send a transaction, and thus is not required to hold Ether at all.\n */\ninterface IERC20Permit {\n /**\n * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,\n * given ``owner``'s signed approval.\n *\n * IMPORTANT: The same issues {IERC20-approve} has related to transaction\n * ordering also apply here.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `deadline` must be a timestamp in the future.\n * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`\n * over the EIP712-formatted function arguments.\n * - the signature must use ``owner``'s current nonce (see {nonces}).\n *\n * For more information on the signature format, see the\n * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP\n * section].\n */\n function permit(\n address owner,\n address spender,\n uint256 value,\n uint256 deadline,\n uint8 v,\n bytes32 r,\n bytes32 s\n ) external;\n\n /**\n * @dev Returns the current nonce for `owner`. This value must be\n * included whenever a signature is generated for {permit}.\n *\n * Every successful call to {permit} increases ``owner``'s nonce by one. This\n * prevents a signature from being used multiple times.\n */\n function nonces(address owner) external view returns (uint256);\n\n /**\n * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.\n */\n // solhint-disable-next-line func-name-mixedcase\n function DOMAIN_SEPARATOR() external view returns (bytes32);\n}\n"
},
"@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../IERC20.sol\";\n\n/**\n * @dev Interface for the optional metadata functions from the ERC20 standard.\n *\n * _Available since v4.1._\n */\ninterface IERC20Metadata is IERC20 {\n /**\n * @dev Returns the name of the token.\n */\n function name() external view returns (string memory);\n\n /**\n * @dev Returns the symbol of the token.\n */\n function symbol() external view returns (string memory);\n\n /**\n * @dev Returns the decimals places of the token.\n */\n function decimals() external view returns (uint8);\n}\n"
},
"@openzeppelin/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller's account to `to`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address to, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender's allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `from` to `to` using the\n * allowance mechanism. `amount` is then deducted from the caller's\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address from,\n address to,\n uint256 amount\n ) external returns (bool);\n}\n"
},
"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../IERC20.sol\";\nimport \"../extensions/draft-IERC20Permit.sol\";\nimport \"../../../utils/Address.sol\";\n\n/**\n * @title SafeERC20\n * @dev Wrappers around ERC20 operations that throw on failure (when the token\n * contract returns false). Tokens that return no value (and instead revert or\n * throw on failure) are also supported, non-reverting calls are assumed to be\n * successful.\n * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,\n * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.\n */\nlibrary SafeERC20 {\n using Address for address;\n\n function safeTransfer(\n IERC20 token,\n address to,\n uint256 value\n ) internal {\n _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));\n }\n\n function safeTransferFrom(\n IERC20 token,\n address from,\n address to,\n uint256 value\n ) internal {\n _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));\n }\n\n /**\n * @dev Deprecated. This function has issues similar to the ones found in\n * {IERC20-approve}, and its usage is discouraged.\n *\n * Whenever possible, use {safeIncreaseAllowance} and\n * {safeDecreaseAllowance} instead.\n */\n function safeApprove(\n IERC20 token,\n address spender,\n uint256 value\n ) internal {\n // safeApprove should only be called when setting an initial allowance,\n // or when resetting it to zero. To increase and decrease it, use\n // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'\n require(\n (value == 0) || (token.allowance(address(this), spender) == 0),\n \"SafeERC20: approve from non-zero to non-zero allowance\"\n );\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));\n }\n\n function safeIncreaseAllowance(\n IERC20 token,\n address spender,\n uint256 value\n ) internal {\n uint256 newAllowance = token.allowance(address(this), spender) + value;\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));\n }\n\n function safeDecreaseAllowance(\n IERC20 token,\n address spender,\n uint256 value\n ) internal {\n unchecked {\n uint256 oldAllowance = token.allowance(address(this), spender);\n require(oldAllowance >= value, \"SafeERC20: decreased allowance below zero\");\n uint256 newAllowance = oldAllowance - value;\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));\n }\n }\n\n function safePermit(\n IERC20Permit token,\n address owner,\n address spender,\n uint256 value,\n uint256 deadline,\n uint8 v,\n bytes32 r,\n bytes32 s\n ) internal {\n uint256 nonceBefore = token.nonces(owner);\n token.permit(owner, spender, value, deadline, v, r, s);\n uint256 nonceAfter = token.nonces(owner);\n require(nonceAfter == nonceBefore + 1, \"SafeERC20: permit did not succeed\");\n }\n\n /**\n * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement\n * on the return value: the return value is optional (but if data is returned, it must not be false).\n * @param token The token targeted by the call.\n * @param data The call data (encoded using abi.encode or one of its variants).\n */\n function _callOptionalReturn(IERC20 token, bytes memory data) private {\n // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since\n // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that\n // the target address contains contract code and also asserts for success in the low-level call.\n\n bytes memory returndata = address(token).functionCall(data, \"SafeERC20: low-level call failed\");\n if (returndata.length > 0) {\n // Return data is optional\n require(abi.decode(returndata, (bool)), \"SafeERC20: ERC20 operation did not succeed\");\n }\n }\n}\n"
},
"@openzeppelin/contracts/utils/Address.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)\n\npragma solidity ^0.8.1;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary Address {\n /**\n * @dev Returns true if `account` is a contract.\n *\n * [IMPORTANT]\n * ====\n * It is unsafe to assume that an address for which this function returns\n * false is an externally-owned account (EOA) and not a contract.\n *\n * Among others, `isContract` will return false for the following\n * types of addresses:\n *\n * - an externally-owned account\n * - a contract in construction\n * - an address where a contract will be created\n * - an address where a contract lived, but was destroyed\n * ====\n *\n * [IMPORTANT]\n * ====\n * You shouldn't rely on `isContract` to protect against flash loan attacks!\n *\n * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets\n * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract\n * constructor.\n * ====\n */\n function isContract(address account) internal view returns (bool) {\n // This method relies on extcodesize/address.code.length, which returns 0\n // for contracts in construction, since the code is only stored at the end\n // of the constructor execution.\n\n return account.code.length > 0;\n }\n\n /**\n * @dev Replacement for Solidity's `transfer`: sends `amount` wei to\n * `recipient`, forwarding all available gas and reverting on errors.\n *\n * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n * of certain opcodes, possibly making contracts go over the 2300 gas limit\n * imposed by `transfer`, making them unable to receive funds via\n * `transfer`. {sendValue} removes this limitation.\n *\n * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n *\n * IMPORTANT: because control is transferred to `recipient`, care must be\n * taken to not create reentrancy vulnerabilities. Consider using\n * {ReentrancyGuard} or the\n * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n */\n function sendValue(address payable recipient, uint256 amount) internal {\n require(address(this).balance >= amount, \"Address: insufficient balance\");\n\n (bool success, ) = recipient.call{value: amount}(\"\");\n require(success, \"Address: unable to send value, recipient may have reverted\");\n }\n\n /**\n * @dev Performs a Solidity function call using a low level `call`. A\n * plain `call` is an unsafe replacement for a function call: use this\n * function instead.\n *\n * If `target` reverts with a revert reason, it is bubbled up by this\n * function (like regular Solidity function calls).\n *\n * Returns the raw returned data. To convert to the expected return value,\n * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n *\n * Requirements:\n *\n * - `target` must be a contract.\n * - calling `target` with `data` must not revert.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionCallWithValue(target, data, 0, \"Address: low-level call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n * `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal returns (bytes memory) {\n return functionCallWithValue(target, data, 0, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but also transferring `value` wei to `target`.\n *\n * Requirements:\n *\n * - the calling contract must have an ETH balance of at least `value`.\n * - the called Solidity function must be `payable`.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value\n ) internal returns (bytes memory) {\n return functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n * with `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value,\n string memory errorMessage\n ) internal returns (bytes memory) {\n require(address(this).balance >= value, \"Address: insufficient balance for call\");\n (bool success, bytes memory returndata) = target.call{value: value}(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {\n return functionStaticCall(target, data, \"Address: low-level static call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal view returns (bytes memory) {\n (bool success, bytes memory returndata) = target.staticcall(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but performing a delegate call.\n *\n * _Available since v3.4._\n */\n function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionDelegateCall(target, data, \"Address: low-level delegate call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n * but performing a delegate call.\n *\n * _Available since v3.4._\n */\n function functionDelegateCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal returns (bytes memory) {\n (bool success, bytes memory returndata) = target.delegatecall(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling\n * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.\n *\n * _Available since v4.8._\n */\n function verifyCallResultFromTarget(\n address target,\n bool success,\n bytes memory returndata,\n string memory errorMessage\n ) internal view returns (bytes memory) {\n if (success) {\n if (returndata.length == 0) {\n // only check isContract if the call was successful and the return data is empty\n // otherwise we already know that it was a contract\n require(isContract(target), \"Address: call to non-contract\");\n }\n return returndata;\n } else {\n _revert(returndata, errorMessage);\n }\n }\n\n /**\n * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the\n * revert reason or using the provided one.\n *\n * _Available since v4.3._\n */\n function verifyCallResult(\n bool success,\n bytes memory returndata,\n string memory errorMessage\n ) internal pure returns (bytes memory) {\n if (success) {\n return returndata;\n } else {\n _revert(returndata, errorMessage);\n }\n }\n\n function _revert(bytes memory returndata, string memory errorMessage) private pure {\n // Look for revert reason and bubble it up if present\n if (returndata.length > 0) {\n // The easiest way to bubble the revert reason is using memory via assembly\n /// @solidity memory-safe-assembly\n assembly {\n let returndata_size := mload(returndata)\n revert(add(32, returndata), returndata_size)\n }\n } else {\n revert(errorMessage);\n }\n }\n}\n"
},
"@openzeppelin/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n function _msgSender() internal view virtual returns (address) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes calldata) {\n return msg.data;\n }\n}\n"
},
"@openzeppelin/contracts/utils/cryptography/ECDSA.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../Strings.sol\";\n\n/**\n * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.\n *\n * These functions can be used to verify that a message was signed by the holder\n * of the private keys of a given address.\n */\nlibrary ECDSA {\n enum RecoverError {\n NoError,\n InvalidSignature,\n InvalidSignatureLength,\n InvalidSignatureS,\n InvalidSignatureV // Deprecated in v4.8\n }\n\n function _throwError(RecoverError error) private pure {\n if (error == RecoverError.NoError) {\n return; // no error: do nothing\n } else if (error == RecoverError.InvalidSignature) {\n revert(\"ECDSA: invalid signature\");\n } else if (error == RecoverError.InvalidSignatureLength) {\n revert(\"ECDSA: invalid signature length\");\n } else if (error == RecoverError.InvalidSignatureS) {\n revert(\"ECDSA: invalid signature 's' value\");\n }\n }\n\n /**\n * @dev Returns the address that signed a hashed message (`hash`) with\n * `signature` or error string. This address can then be used for verification purposes.\n *\n * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:\n * this function rejects them by requiring the `s` value to be in the lower\n * half order, and the `v` value to be either 27 or 28.\n *\n * IMPORTANT: `hash` _must_ be the result of a hash operation for the\n * verification to be secure: it is possible to craft signatures that\n * recover to arbitrary addresses for non-hashed data. A safe way to ensure\n * this is by receiving a hash of the original message (which may otherwise\n * be too long), and then calling {toEthSignedMessageHash} on it.\n *\n * Documentation for signature generation:\n * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]\n * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]\n *\n * _Available since v4.3._\n */\n function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {\n if (signature.length == 65) {\n bytes32 r;\n bytes32 s;\n uint8 v;\n // ecrecover takes the signature parameters, and the only way to get them\n // currently is to use assembly.\n /// @solidity memory-safe-assembly\n assembly {\n r := mload(add(signature, 0x20))\n s := mload(add(signature, 0x40))\n v := byte(0, mload(add(signature, 0x60)))\n }\n return tryRecover(hash, v, r, s);\n } else {\n return (address(0), RecoverError.InvalidSignatureLength);\n }\n }\n\n /**\n * @dev Returns the address that signed a hashed message (`hash`) with\n * `signature`. This address can then be used for verification purposes.\n *\n * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:\n * this function rejects them by requiring the `s` value to be in the lower\n * half order, and the `v` value to be either 27 or 28.\n *\n * IMPORTANT: `hash` _must_ be the result of a hash operation for the\n * verification to be secure: it is possible to craft signatures that\n * recover to arbitrary addresses for non-hashed data. A safe way to ensure\n * this is by receiving a hash of the original message (which may otherwise\n * be too long), and then calling {toEthSignedMessageHash} on it.\n */\n function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {\n (address recovered, RecoverError error) = tryRecover(hash, signature);\n _throwError(error);\n return recovered;\n }\n\n /**\n * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.\n *\n * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]\n *\n * _Available since v4.3._\n */\n function tryRecover(\n bytes32 hash,\n bytes32 r,\n bytes32 vs\n ) internal pure returns (address, RecoverError) {\n bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);\n uint8 v = uint8((uint256(vs) >> 255) + 27);\n return tryRecover(hash, v, r, s);\n }\n\n /**\n * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.\n *\n * _Available since v4.2._\n */\n function recover(\n bytes32 hash,\n bytes32 r,\n bytes32 vs\n ) internal pure returns (address) {\n (address recovered, RecoverError error) = tryRecover(hash, r, vs);\n _throwError(error);\n return recovered;\n }\n\n /**\n * @dev Overload of {ECDSA-tryRecover} that receives the `v`,\n * `r` and `s` signature fields separately.\n *\n * _Available since v4.3._\n */\n function tryRecover(\n bytes32 hash,\n uint8 v,\n bytes32 r,\n bytes32 s\n ) internal pure returns (address, RecoverError) {\n // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature\n // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines\n // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most\n // signatures from current libraries generate a unique signature with an s-value in the lower half order.\n //\n // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value\n // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or\n // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept\n // these malleable signatures as well.\n if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {\n return (address(0), RecoverError.InvalidSignatureS);\n }\n\n // If the signature is valid (and not malleable), return the signer address\n address signer = ecrecover(hash, v, r, s);\n if (signer == address(0)) {\n return (address(0), RecoverError.InvalidSignature);\n }\n\n return (signer, RecoverError.NoError);\n }\n\n /**\n * @dev Overload of {ECDSA-recover} that receives the `v`,\n * `r` and `s` signature fields separately.\n */\n function recover(\n bytes32 hash,\n uint8 v,\n bytes32 r,\n bytes32 s\n ) internal pure returns (address) {\n (address recovered, RecoverError error) = tryRecover(hash, v, r, s);\n _throwError(error);\n return recovered;\n }\n\n /**\n * @dev Returns an Ethereum Signed Message, created from a `hash`. This\n * produces hash corresponding to the one signed with the\n * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]\n * JSON-RPC method as part of EIP-191.\n *\n * See {recover}.\n */\n function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {\n // 32 is the length in bytes of hash,\n // enforced by the type signature above\n return keccak256(abi.encodePacked(\"\\x19Ethereum Signed Message:\\n32\", hash));\n }\n\n /**\n * @dev Returns an Ethereum Signed Message, created from `s`. This\n * produces hash corresponding to the one signed with the\n * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]\n * JSON-RPC method as part of EIP-191.\n *\n * See {recover}.\n */\n function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {\n return keccak256(abi.encodePacked(\"\\x19Ethereum Signed Message:\\n\", Strings.toString(s.length), s));\n }\n\n /**\n * @dev Returns an Ethereum Signed Typed Data, created from a\n * `domainSeparator` and a `structHash`. This produces hash corresponding\n * to the one signed with the\n * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]\n * JSON-RPC method as part of EIP-712.\n *\n * See {recover}.\n */\n function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {\n return keccak256(abi.encodePacked(\"\\x19\\x01\", domainSeparator, structHash));\n }\n}\n"
},
"@openzeppelin/contracts/utils/cryptography/EIP712.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/EIP712.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./ECDSA.sol\";\n\n/**\n * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.\n *\n * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,\n * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding\n * they need in their contracts using a combination of `abi.encode` and `keccak256`.\n *\n * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding\n * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA\n * ({_hashTypedDataV4}).\n *\n * The implementation of the domain separator was designed to be as efficient as possible while still properly updating\n * the chain id to protect against replay attacks on an eventual fork of the chain.\n *\n * NOTE: This contract implements the version of the encoding known as \"v4\", as implemented by the JSON RPC method\n * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].\n *\n * _Available since v3.4._\n */\nabstract contract EIP712 {\n /* solhint-disable var-name-mixedcase */\n // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to\n // invalidate the cached domain separator if the chain id changes.\n bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;\n uint256 private immutable _CACHED_CHAIN_ID;\n address private immutable _CACHED_THIS;\n\n bytes32 private immutable _HASHED_NAME;\n bytes32 private immutable _HASHED_VERSION;\n bytes32 private immutable _TYPE_HASH;\n\n /* solhint-enable var-name-mixedcase */\n\n /**\n * @dev Initializes the domain separator and parameter caches.\n *\n * The meaning of `name` and `version` is specified in\n * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:\n *\n * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.\n * - `version`: the current major version of the signing domain.\n *\n * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart\n * contract upgrade].\n */\n constructor(string memory name, string memory version) {\n bytes32 hashedName = keccak256(bytes(name));\n bytes32 hashedVersion = keccak256(bytes(version));\n bytes32 typeHash = keccak256(\n \"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)\"\n );\n _HASHED_NAME = hashedName;\n _HASHED_VERSION = hashedVersion;\n _CACHED_CHAIN_ID = block.chainid;\n _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);\n _CACHED_THIS = address(this);\n _TYPE_HASH = typeHash;\n }\n\n /**\n * @dev Returns the domain separator for the current chain.\n */\n function _domainSeparatorV4() internal view returns (bytes32) {\n if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) {\n return _CACHED_DOMAIN_SEPARATOR;\n } else {\n return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);\n }\n }\n\n function _buildDomainSeparator(\n bytes32 typeHash,\n bytes32 nameHash,\n bytes32 versionHash\n ) private view returns (bytes32) {\n return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));\n }\n\n /**\n * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this\n * function returns the hash of the fully encoded EIP712 message for this domain.\n *\n * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:\n *\n * ```solidity\n * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(\n * keccak256(\"Mail(address to,string contents)\"),\n * mailTo,\n * keccak256(bytes(mailContents))\n * )));\n * address signer = ECDSA.recover(digest, signature);\n * ```\n */\n function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {\n return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);\n }\n}\n"
},
"@openzeppelin/contracts/utils/introspection/ERC165.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IERC165.sol\";\n\n/**\n * @dev Implementation of the {IERC165} interface.\n *\n * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check\n * for the additional interface id that will be supported. For example:\n *\n * ```solidity\n * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);\n * }\n * ```\n *\n * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.\n */\nabstract contract ERC165 is IERC165 {\n /**\n * @dev See {IERC165-supportsInterface}.\n */\n function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n return interfaceId == type(IERC165).interfaceId;\n }\n}\n"
},
"@openzeppelin/contracts/utils/introspection/IERC165.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC165 standard, as defined in the\n * https://eips.ethereum.org/EIPS/eip-165[EIP].\n *\n * Implementers can declare support of contract interfaces, which can then be\n * queried by others ({ERC165Checker}).\n *\n * For an implementation, see {ERC165}.\n */\ninterface IERC165 {\n /**\n * @dev Returns true if this contract implements the interface defined by\n * `interfaceId`. See the corresponding\n * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]\n * to learn more about how these ids are created.\n *\n * This function call must use less than 30 000 gas.\n */\n function supportsInterface(bytes4 interfaceId) external view returns (bool);\n}\n"
},
"@openzeppelin/contracts/utils/math/Math.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Standard math utilities missing in the Solidity language.\n */\nlibrary Math {\n enum Rounding {\n Down, // Toward negative infinity\n Up, // Toward infinity\n Zero // Toward zero\n }\n\n /**\n * @dev Returns the largest of two numbers.\n */\n function max(uint256 a, uint256 b) internal pure returns (uint256) {\n return a > b ? a : b;\n }\n\n /**\n * @dev Returns the smallest of two numbers.\n */\n function min(uint256 a, uint256 b) internal pure returns (uint256) {\n return a < b ? a : b;\n }\n\n /**\n * @dev Returns the average of two numbers. The result is rounded towards\n * zero.\n */\n function average(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b) / 2 can overflow.\n return (a & b) + (a ^ b) / 2;\n }\n\n /**\n * @dev Returns the ceiling of the division of two numbers.\n *\n * This differs from standard division with `/` in that it rounds up instead\n * of rounding down.\n */\n function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b - 1) / b can overflow on addition, so we distribute.\n return a == 0 ? 0 : (a - 1) / b + 1;\n }\n\n /**\n * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0\n * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)\n * with further edits by Uniswap Labs also under MIT license.\n */\n function mulDiv(\n uint256 x,\n uint256 y,\n uint256 denominator\n ) internal pure returns (uint256 result) {\n unchecked {\n // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use\n // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256\n // variables such that product = prod1 * 2^256 + prod0.\n uint256 prod0; // Least significant 256 bits of the product\n uint256 prod1; // Most significant 256 bits of the product\n assembly {\n let mm := mulmod(x, y, not(0))\n prod0 := mul(x, y)\n prod1 := sub(sub(mm, prod0), lt(mm, prod0))\n }\n\n // Handle non-overflow cases, 256 by 256 division.\n if (prod1 == 0) {\n return prod0 / denominator;\n }\n\n // Make sure the result is less than 2^256. Also prevents denominator == 0.\n require(denominator > prod1);\n\n ///////////////////////////////////////////////\n // 512 by 256 division.\n ///////////////////////////////////////////////\n\n // Make division exact by subtracting the remainder from [prod1 prod0].\n uint256 remainder;\n assembly {\n // Compute remainder using mulmod.\n remainder := mulmod(x, y, denominator)\n\n // Subtract 256 bit number from 512 bit number.\n prod1 := sub(prod1, gt(remainder, prod0))\n prod0 := sub(prod0, remainder)\n }\n\n // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.\n // See https://cs.stackexchange.com/q/138556/92363.\n\n // Does not overflow because the denominator cannot be zero at this stage in the function.\n uint256 twos = denominator & (~denominator + 1);\n assembly {\n // Divide denominator by twos.\n denominator := div(denominator, twos)\n\n // Divide [prod1 prod0] by twos.\n prod0 := div(prod0, twos)\n\n // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.\n twos := add(div(sub(0, twos), twos), 1)\n }\n\n // Shift in bits from prod1 into prod0.\n prod0 |= prod1 * twos;\n\n // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such\n // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for\n // four bits. That is, denominator * inv = 1 mod 2^4.\n uint256 inverse = (3 * denominator) ^ 2;\n\n // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works\n // in modular arithmetic, doubling the correct bits in each step.\n inverse *= 2 - denominator * inverse; // inverse mod 2^8\n inverse *= 2 - denominator * inverse; // inverse mod 2^16\n inverse *= 2 - denominator * inverse; // inverse mod 2^32\n inverse *= 2 - denominator * inverse; // inverse mod 2^64\n inverse *= 2 - denominator * inverse; // inverse mod 2^128\n inverse *= 2 - denominator * inverse; // inverse mod 2^256\n\n // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.\n // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is\n // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1\n // is no longer required.\n result = prod0 * inverse;\n return result;\n }\n }\n\n /**\n * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.\n */\n function mulDiv(\n uint256 x,\n uint256 y,\n uint256 denominator,\n Rounding rounding\n ) internal pure returns (uint256) {\n uint256 result = mulDiv(x, y, denominator);\n if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {\n result += 1;\n }\n return result;\n }\n\n /**\n * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.\n *\n * Inspired by Henry S. Warren, Jr.'s \"Hacker's Delight\" (Chapter 11).\n */\n function sqrt(uint256 a) internal pure returns (uint256) {\n if (a == 0) {\n return 0;\n }\n\n // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.\n //\n // We know that the \"msb\" (most significant bit) of our target number `a` is a power of 2 such that we have\n // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.\n //\n // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`\n // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`\n // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`\n //\n // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.\n uint256 result = 1 << (log2(a) >> 1);\n\n // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,\n // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at\n // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision\n // into the expected uint128 result.\n unchecked {\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n return min(result, a / result);\n }\n }\n\n /**\n * @notice Calculates sqrt(a), following the selected rounding direction.\n */\n function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = sqrt(a);\n return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 2, rounded down, of a positive value.\n * Returns 0 if given 0.\n */\n function log2(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >> 128 > 0) {\n value >>= 128;\n result += 128;\n }\n if (value >> 64 > 0) {\n value >>= 64;\n result += 64;\n }\n if (value >> 32 > 0) {\n value >>= 32;\n result += 32;\n }\n if (value >> 16 > 0) {\n value >>= 16;\n result += 16;\n }\n if (value >> 8 > 0) {\n value >>= 8;\n result += 8;\n }\n if (value >> 4 > 0) {\n value >>= 4;\n result += 4;\n }\n if (value >> 2 > 0) {\n value >>= 2;\n result += 2;\n }\n if (value >> 1 > 0) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 2, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log2(value);\n return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 10, rounded down, of a positive value.\n * Returns 0 if given 0.\n */\n function log10(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >= 10**64) {\n value /= 10**64;\n result += 64;\n }\n if (value >= 10**32) {\n value /= 10**32;\n result += 32;\n }\n if (value >= 10**16) {\n value /= 10**16;\n result += 16;\n }\n if (value >= 10**8) {\n value /= 10**8;\n result += 8;\n }\n if (value >= 10**4) {\n value /= 10**4;\n result += 4;\n }\n if (value >= 10**2) {\n value /= 10**2;\n result += 2;\n }\n if (value >= 10**1) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log10(value);\n return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 256, rounded down, of a positive value.\n * Returns 0 if given 0.\n *\n * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.\n */\n function log256(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >> 128 > 0) {\n value >>= 128;\n result += 16;\n }\n if (value >> 64 > 0) {\n value >>= 64;\n result += 8;\n }\n if (value >> 32 > 0) {\n value >>= 32;\n result += 4;\n }\n if (value >> 16 > 0) {\n value >>= 16;\n result += 2;\n }\n if (value >> 8 > 0) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log256(value);\n return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);\n }\n }\n}\n"
},
"@openzeppelin/contracts/utils/Strings.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./math/Math.sol\";\n\n/**\n * @dev String operations.\n */\nlibrary Strings {\n bytes16 private constant _SYMBOLS = \"0123456789abcdef\";\n uint8 private constant _ADDRESS_LENGTH = 20;\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` decimal representation.\n */\n function toString(uint256 value) internal pure returns (string memory) {\n unchecked {\n uint256 length = Math.log10(value) + 1;\n string memory buffer = new string(length);\n uint256 ptr;\n /// @solidity memory-safe-assembly\n assembly {\n ptr := add(buffer, add(32, length))\n }\n while (true) {\n ptr--;\n /// @solidity memory-safe-assembly\n assembly {\n mstore8(ptr, byte(mod(value, 10), _SYMBOLS))\n }\n value /= 10;\n if (value == 0) break;\n }\n return buffer;\n }\n }\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.\n */\n function toHexString(uint256 value) internal pure returns (string memory) {\n unchecked {\n return toHexString(value, Math.log256(value) + 1);\n }\n }\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.\n */\n function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {\n bytes memory buffer = new bytes(2 * length + 2);\n buffer[0] = \"0\";\n buffer[1] = \"x\";\n for (uint256 i = 2 * length + 1; i > 1; --i) {\n buffer[i] = _SYMBOLS[value & 0xf];\n value >>= 4;\n }\n require(value == 0, \"Strings: hex length insufficient\");\n return string(buffer);\n }\n\n /**\n * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.\n */\n function toHexString(address addr) internal pure returns (string memory) {\n return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);\n }\n}\n"
},
"@openzeppelin/contracts/utils/structs/EnumerableSet.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)\n// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Library for managing\n * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive\n * types.\n *\n * Sets have the following properties:\n *\n * - Elements are added, removed, and checked for existence in constant time\n * (O(1)).\n * - Elements are enumerated in O(n). No guarantees are made on the ordering.\n *\n * ```\n * contract Example {\n * // Add the library methods\n * using EnumerableSet for EnumerableSet.AddressSet;\n *\n * // Declare a set state variable\n * EnumerableSet.AddressSet private mySet;\n * }\n * ```\n *\n * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)\n * and `uint256` (`UintSet`) are supported.\n *\n * [WARNING]\n * ====\n * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure\n * unusable.\n * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.\n *\n * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an\n * array of EnumerableSet.\n * ====\n */\nlibrary EnumerableSet {\n // To implement this library for multiple types with as little code\n // repetition as possible, we write it in terms of a generic Set type with\n // bytes32 values.\n // The Set implementation uses private functions, and user-facing\n // implementations (such as AddressSet) are just wrappers around the\n // underlying Set.\n // This means that we can only create new EnumerableSets for types that fit\n // in bytes32.\n\n struct Set {\n // Storage of set values\n bytes32[] _values;\n // Position of the value in the `values` array, plus 1 because index 0\n // means a value is not in the set.\n mapping(bytes32 => uint256) _indexes;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function _add(Set storage set, bytes32 value) private returns (bool) {\n if (!_contains(set, value)) {\n set._values.push(value);\n // The value is stored at length-1, but we add 1 to all indexes\n // and use 0 as a sentinel value\n set._indexes[value] = set._values.length;\n return true;\n } else {\n return false;\n }\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function _remove(Set storage set, bytes32 value) private returns (bool) {\n // We read and store the value's index to prevent multiple reads from the same storage slot\n uint256 valueIndex = set._indexes[value];\n\n if (valueIndex != 0) {\n // Equivalent to contains(set, value)\n // To delete an element from the _values array in O(1), we swap the element to delete with the last one in\n // the array, and then remove the last element (sometimes called as 'swap and pop').\n // This modifies the order of the array, as noted in {at}.\n\n uint256 toDeleteIndex = valueIndex - 1;\n uint256 lastIndex = set._values.length - 1;\n\n if (lastIndex != toDeleteIndex) {\n bytes32 lastValue = set._values[lastIndex];\n\n // Move the last value to the index where the value to delete is\n set._values[toDeleteIndex] = lastValue;\n // Update the index for the moved value\n set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex\n }\n\n // Delete the slot where the moved value was stored\n set._values.pop();\n\n // Delete the index for the deleted slot\n delete set._indexes[value];\n\n return true;\n } else {\n return false;\n }\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function _contains(Set storage set, bytes32 value) private view returns (bool) {\n return set._indexes[value] != 0;\n }\n\n /**\n * @dev Returns the number of values on the set. O(1).\n */\n function _length(Set storage set) private view returns (uint256) {\n return set._values.length;\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function _at(Set storage set, uint256 index) private view returns (bytes32) {\n return set._values[index];\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function _values(Set storage set) private view returns (bytes32[] memory) {\n return set._values;\n }\n\n // Bytes32Set\n\n struct Bytes32Set {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {\n return _add(set._inner, value);\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {\n return _remove(set._inner, value);\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {\n return _contains(set._inner, value);\n }\n\n /**\n * @dev Returns the number of values in the set. O(1).\n */\n function length(Bytes32Set storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {\n return _at(set._inner, index);\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {\n bytes32[] memory store = _values(set._inner);\n bytes32[] memory result;\n\n /// @solidity memory-safe-assembly\n assembly {\n result := store\n }\n\n return result;\n }\n\n // AddressSet\n\n struct AddressSet {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(AddressSet storage set, address value) internal returns (bool) {\n return _add(set._inner, bytes32(uint256(uint160(value))));\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(AddressSet storage set, address value) internal returns (bool) {\n return _remove(set._inner, bytes32(uint256(uint160(value))));\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(AddressSet storage set, address value) internal view returns (bool) {\n return _contains(set._inner, bytes32(uint256(uint160(value))));\n }\n\n /**\n * @dev Returns the number of values in the set. O(1).\n */\n function length(AddressSet storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(AddressSet storage set, uint256 index) internal view returns (address) {\n return address(uint160(uint256(_at(set._inner, index))));\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function values(AddressSet storage set) internal view returns (address[] memory) {\n bytes32[] memory store = _values(set._inner);\n address[] memory result;\n\n /// @solidity memory-safe-assembly\n assembly {\n result := store\n }\n\n return result;\n }\n\n // UintSet\n\n struct UintSet {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(UintSet storage set, uint256 value) internal returns (bool) {\n return _add(set._inner, bytes32(value));\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(UintSet storage set, uint256 value) internal returns (bool) {\n return _remove(set._inner, bytes32(value));\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(UintSet storage set, uint256 value) internal view returns (bool) {\n return _contains(set._inner, bytes32(value));\n }\n\n /**\n * @dev Returns the number of values in the set. O(1).\n */\n function length(UintSet storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(UintSet storage set, uint256 index) internal view returns (uint256) {\n return uint256(_at(set._inner, index));\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function values(UintSet storage set) internal view returns (uint256[] memory) {\n bytes32[] memory store = _values(set._inner);\n uint256[] memory result;\n\n /// @solidity memory-safe-assembly\n assembly {\n result := store\n }\n\n return result;\n }\n}\n"
},
"contracts/BridgeEndpoint.sol": {
"content": "// SPDX-License-Identifier: MIT\n\npragma solidity 0.8.17;\n\nimport \"./utils/helpers/ERC20Fixed.sol\";\nimport \"./utils/math/FixedPoint.sol\";\nimport \"./utils/helpers/Errors.sol\";\nimport \"@openzeppelin/contracts/token/ERC20/ERC20.sol\";\nimport \"@openzeppelin/contracts/access/AccessControlEnumerable.sol\";\nimport \"@openzeppelin/contracts/access/Ownable.sol\";\nimport \"@openzeppelin/contracts/utils/cryptography/ECDSA.sol\";\nimport \"@openzeppelin/contracts/utils/cryptography/EIP712.sol\";\nimport \"@openzeppelin/contracts/security/ReentrancyGuard.sol\";\n\ncontract BridgeEndpoint is\n Ownable,\n AccessControlEnumerable,\n EIP712,\n ReentrancyGuard\n{\n using ERC20Fixed for ERC20;\n using FixedPoint for uint256;\n\n bytes32 public constant VALIDATOR_ROLE = keccak256(\"VALIDATOR_ROLE\");\n bytes32 public constant RELAYER_ROLE = keccak256(\"RELAYER_ROLE\");\n bytes32 public constant WHITELISTED = keccak256(\"WHITELISTED\");\n bytes32 public constant APPROVED_TOKEN = keccak256(\"APPROVED_TOKEN\");\n bytes32 public constant APPROVED_RECIPIENT = keccak256(\"APPROVED_RECIPIENT\");\n\n uint256 private constant MAX_REQUIRED_VALIDATORS = 100;\n\n uint256 public requiredValidators;\n uint256 public minFee;\n bool public isPaused;\n bool public useWhitelist;\n\n struct SignaturePackage {\n address signer;\n bytes32 orderHash;\n bytes signature;\n }\n\n // constant, subject to governance\n mapping(bytes32 => bool) public orderSent;\n mapping(bytes32 => mapping(address => bool)) public orderValidatedBy;\n mapping(address => uint256) public feePerToken;\n mapping(address => uint256) public minAmountPerToken;\n mapping(address => uint256) public maxAmountPerToken;\n\n // variable\n mapping(address => uint256) public accruedFeePerToken;\n\n event TransferToWrapEvent(\n string indexed settle,\n address indexed token,\n address to,\n uint256 amount\n );\n event TransferToUnwrapEvent(\n bytes32 orderHash,\n bytes32 salt,\n address indexed recipient,\n address indexed token,\n uint256 amount\n );\n event SetRequiredValidatorsEvent(uint256 requiredValidators);\n event SetApprovedReceiverEvent(address indexed receiver, bool approved);\n event SetApprovedTokenEvent(\n address indexed token,\n bool approved,\n uint256 fee,\n uint256 minAmount,\n uint256 maxAmount\n );\n event CollectAccruedFeeEvent(address indexed token, uint256 collectAmount);\n event PauseEvent(bool isPaused);\n event ApplyWhitelistEvent(bool useWhitelist);\n event SetMinFeeEvent(uint256 minFee);\n\n modifier notPaused() {\n _require(!isPaused, Errors.BRIDGE_PAUSED);\n _;\n }\n\n modifier onlyWhitelisted() {\n _require(\n !useWhitelist || hasRole(WHITELISTED, msg.sender),\n Errors.INVALID_SENDER\n );\n _;\n }\n\n modifier onlyApprovedRecipient(address recipient) {\n _require(hasRole(APPROVED_RECIPIENT, recipient), Errors.INVALID_RECIPIENT);\n _;\n }\n\n modifier onlyApprovedToken(address token) {\n _require(hasRole(APPROVED_TOKEN, token), Errors.INVALID_TOKEN);\n _;\n }\n\n constructor(\n address owner,\n string memory name,\n string memory version,\n uint256 _requiredValidators\n ) EIP712(name, version) {\n _require(\n _requiredValidators < MAX_REQUIRED_VALIDATORS,\n Errors.INVALID_REQUIRED_VALIDATORS\n );\n _transferOwnership(owner);\n _grantRole(DEFAULT_ADMIN_ROLE, owner);\n requiredValidators = _requiredValidators;\n isPaused = true;\n useWhitelist = true;\n }\n\n // public functions\n\n // send to approved recipient after deducting fee\n // @dev amount must be in 18-digit fixed\n function transferToWrap(\n address token,\n address recipient,\n uint256 amount,\n string calldata settleData\n )\n external\n nonReentrant\n notPaused\n onlyWhitelisted\n onlyApprovedRecipient(recipient)\n onlyApprovedToken(token)\n {\n _require(\n amount <= maxAmountPerToken[token] && amount >= minAmountPerToken[token],\n Errors.INVALID_AMOUNT\n );\n _require(amount > minFee, Errors.AMOUNT_SMALLER_THAN_FEE);\n\n uint256 feeDeducted = amount.mulDown(feePerToken[token]).max(minFee);\n accruedFeePerToken[token] = accruedFeePerToken[token].add(feeDeducted);\n uint256 netAmount = amount.sub(feeDeducted);\n\n ERC20(token).transferFromFixed(msg.sender, recipient, netAmount);\n ERC20(token).transferFromFixed(msg.sender, address(this), feeDeducted);\n\n emit TransferToWrapEvent(settleData, token, recipient, netAmount);\n }\n\n // read-only functions\n\n function domainSeparatorV4() external view returns (bytes32) {\n return _domainSeparatorV4();\n }\n\n function hashTypedDataV4(bytes32 structHash) external view returns (bytes32) {\n return _hashTypedDataV4(structHash);\n }\n\n // priviledged functions\n\n // send unwrapped tokens to user\n // @dev salt should be tx hash of source chain\n // @dev amount must be in 18-digit fixed\n function transferToUnwrap(\n address token,\n address recipient,\n uint256 amount,\n bytes32 salt,\n SignaturePackage[] calldata proofs\n )\n external\n onlyRole(RELAYER_ROLE)\n nonReentrant\n notPaused\n onlyApprovedToken(token)\n {\n bytes32 orderHash = _hashTypedDataV4(\n keccak256(\n abi.encode(\n keccak256(\n \"Order(address recipient,address token,uint256 amountInFixed,bytes32 salt)\"\n ),\n recipient,\n token,\n amount,\n salt\n )\n )\n );\n _require(proofs.length >= requiredValidators, Errors.INSUFFICIENT_PROOFS);\n _require(!orderSent[orderHash], Errors.ORDER_ALREADY_SENT);\n\n for (uint256 i = 0; i < proofs.length; i++) {\n _require(\n !orderValidatedBy[orderHash][proofs[i].signer],\n Errors.DUPLICATE_SIGNATURE\n );\n _require(proofs[i].orderHash == orderHash, Errors.ORDER_HASH_MISMATCH);\n _require(\n hasRole(VALIDATOR_ROLE, proofs[i].signer),\n Errors.SIGNER_VALIDAGTOR_MISMATCH\n );\n _require(\n proofs[i].signer ==\n ECDSA.recover(proofs[i].orderHash, proofs[i].signature),\n Errors.INVALID_SIGNATURE\n );\n\n orderValidatedBy[orderHash][proofs[i].signer] = true;\n }\n orderSent[orderHash] = true;\n\n ERC20(token).transferFixed(recipient, amount);\n\n emit TransferToUnwrapEvent(orderHash, salt, recipient, token, amount);\n }\n\n function pause(bool _isPaused) external onlyOwner {\n isPaused = _isPaused;\n emit PauseEvent(isPaused);\n }\n\n function setMinFee(uint256 _minFee) external onlyOwner {\n minFee = _minFee;\n emit SetMinFeeEvent(minFee);\n }\n\n function setRequiredValidators(\n uint256 _requiredValidators\n ) external onlyOwner {\n _require(\n _requiredValidators < MAX_REQUIRED_VALIDATORS,\n Errors.INVALID_REQUIRED_VALIDATORS\n );\n requiredValidators = _requiredValidators;\n emit SetRequiredValidatorsEvent(requiredValidators);\n }\n\n function setApprovedToken(\n address token,\n bool approved,\n uint256 fee,\n uint256 minAmount,\n uint256 maxAmount\n ) external onlyOwner {\n _require(token != address(0), Errors.ZERO_TOKEN_ADDRESS);\n _require(ERC20(token).decimals() <= 18, Errors.INVALID_TOKEN_DECIMALS);\n if (approved) {\n _grantRole(APPROVED_TOKEN, token);\n } else {\n _revokeRole(APPROVED_TOKEN, token);\n }\n feePerToken[token] = fee;\n minAmountPerToken[token] = minAmount;\n maxAmountPerToken[token] = maxAmount;\n emit SetApprovedTokenEvent(token, approved, fee, minAmount, maxAmount);\n }\n\n function collectAccruedFee(\n address token\n ) external onlyOwner onlyApprovedToken(token) {\n uint256 collectAmount = 0;\n if (accruedFeePerToken[token] > 0) {\n collectAmount = accruedFeePerToken[token];\n accruedFeePerToken[token] = 0;\n ERC20(token).transferFixed(msg.sender, collectAmount);\n }\n emit CollectAccruedFeeEvent(token, collectAmount);\n }\n\n function whitelist(address[] calldata whitelisted) external onlyOwner {\n for (uint256 i = 0; i < whitelisted.length; i++) {\n _grantRole(WHITELISTED, whitelisted[i]);\n }\n }\n\n function revokeWhitelist(address[] calldata revoked) external onlyOwner {\n for (uint256 i = 0; i < revoked.length; i++) {\n _revokeRole(WHITELISTED, revoked[i]);\n }\n }\n\n function applyWhitelist(bool _useWhitelist) external onlyOwner {\n useWhitelist = _useWhitelist;\n emit ApplyWhitelistEvent(useWhitelist);\n }\n\n function grantValidators(address[] calldata added) external onlyOwner {\n for (uint256 i = 0; i < added.length; i++) {\n _grantRole(VALIDATOR_ROLE, added[i]);\n }\n }\n\n function revokeValidators(address[] calldata removed) external onlyOwner {\n for (uint256 i = 0; i < removed.length; i++) {\n _revokeRole(VALIDATOR_ROLE, removed[i]);\n }\n }\n}\n"
},
"contracts/utils/helpers/ERC20Fixed.sol": {
"content": "// SPDX-License-Identifier: MIT\n\npragma solidity 0.8.17;\n\nimport \"@openzeppelin/contracts/token/ERC20/ERC20.sol\";\nimport \"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol\";\n\nlibrary ERC20Fixed {\n using SafeERC20 for ERC20;\n\n function transferFixed(ERC20 _token, address _to, uint256 _amount) internal {\n _token.safeTransfer(_to, _amount / (10 ** (18 - _token.decimals())));\n }\n\n function transferFromFixed(\n ERC20 _token,\n address _from,\n address _to,\n uint256 _amount\n ) internal {\n _token.safeTransferFrom(\n _from,\n _to,\n _amount / (10 ** (18 - _token.decimals()))\n );\n }\n\n function balanceOfFixed(\n ERC20 _token,\n address _owner\n ) internal view returns (uint256) {\n return _token.balanceOf(_owner) * (10 ** (18 - _token.decimals()));\n }\n\n function totalSupplyFixed(ERC20 _token) internal view returns (uint256) {\n return _token.totalSupply() * (10 ** (18 - _token.decimals()));\n }\n\n function allowanceFixed(\n ERC20 _token,\n address _owner,\n address _spender\n ) internal view returns (uint256) {\n return\n _token.allowance(_owner, _spender) * (10 ** (18 - _token.decimals()));\n }\n\n function approveFixed(\n ERC20 _token,\n address _spender,\n uint256 _amount\n ) internal {\n _token.safeApprove(_spender, _amount / (10 ** (18 - _token.decimals())));\n }\n\n function increaseAllowanceFixed(\n ERC20 _token,\n address _spender,\n uint256 _addedValue\n ) internal {\n _token.safeIncreaseAllowance(\n _spender,\n _addedValue / (10 ** (18 - _token.decimals()))\n );\n }\n\n function decreaseAllowanceFixed(\n ERC20 _token,\n address _spender,\n uint256 _subtractedValue\n ) internal {\n _token.safeDecreaseAllowance(\n _spender,\n _subtractedValue / (10 ** (18 - _token.decimals()))\n );\n }\n}\n"
},
"contracts/utils/helpers/Errors.sol": {
"content": "// SPDX-License-Identifier: GPL-3.0-or-later\n// This program is free software: you can redistribute it and/or modify\n// it under the terms of the GNU General Public License as published by\n// the Free Software Foundation, either version 3 of the License, or\n// (at your option) any later version.\n\n// This program is distributed in the hope that it will be useful,\n// but WITHOUT ANY WARRANTY; without even the implied warranty of\n// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n// GNU General Public License for more details.\n\n// You should have received a copy of the GNU General Public License\n// along with this program. If not, see .\n\npragma solidity 0.8.17;\n\n// solhint-disable\n\n/**\n * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are\n * supported.\n * Uses the default 'ALX' prefix for the error code\n */\nfunction _require(bool condition, uint256 errorCode) pure {\n if (!condition) _revert(errorCode);\n}\n\n/**\n * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are\n * supported.\n */\nfunction _require(bool condition, uint256 errorCode, bytes3 prefix) pure {\n if (!condition) _revert(errorCode, prefix);\n}\n\n/**\n * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.\n * Uses the default 'ALX' prefix for the error code\n */\nfunction _revert(uint256 errorCode) pure {\n _revert(errorCode, 0x414c58); // This is the raw byte representation of \"ALX\"\n}\n\n/**\n * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.\n */\nfunction _revert(uint256 errorCode, bytes3 prefix) pure {\n uint256 prefixUint = uint256(uint24(prefix));\n // We're going to dynamically create a revert string based on the error code, with the following format:\n // 'ALX#{errorCode}'\n // where the code is left-padded with zeroes to three digits (so they range from 000 to 999).\n //\n // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a\n // number (8 to 16 bits) than the individual string characters.\n //\n // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a\n // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a\n // safe place to rely on it without worrying about how its usage might affect e.g. memory contents.\n assembly {\n // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999\n // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for\n // the '0' character.\n\n let units := add(mod(errorCode, 10), 0x30)\n\n errorCode := div(errorCode, 10)\n let tenths := add(mod(errorCode, 10), 0x30)\n\n errorCode := div(errorCode, 10)\n let hundreds := add(mod(errorCode, 10), 0x30)\n\n // With the individual characters, we can now construct the full string.\n // We first append the '#' character (0x23) to the prefix. In the case of 'ALX', it results in 0x42414c23 ('ALX#')\n // Then, we shift this by 24 (to provide space for the 3 bytes of the error code), and add the\n // characters to it, each shifted by a multiple of 8.\n // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits\n // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte\n // array).\n let formattedPrefix := shl(24, add(0x23, shl(8, prefixUint)))\n\n let revertReason := shl(\n 200,\n add(formattedPrefix, add(add(units, shl(8, tenths)), shl(16, hundreds)))\n )\n\n // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded\n // message will have the following layout:\n // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]\n\n // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We\n // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.\n mstore(\n 0x0,\n 0x08c379a000000000000000000000000000000000000000000000000000000000\n )\n // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).\n mstore(\n 0x04,\n 0x0000000000000000000000000000000000000000000000000000000000000020\n )\n // The string length is fixed: 7 characters.\n mstore(0x24, 7)\n // Finally, the string itself is stored.\n mstore(0x44, revertReason)\n\n // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of\n // the encoded message is therefore 4 + 32 + 32 + 32 = 100.\n revert(0, 100)\n }\n}\n\nlibrary Errors {\n // Math\n uint256 internal constant ADD_OVERFLOW = 0;\n uint256 internal constant SUB_OVERFLOW = 1;\n uint256 internal constant SUB_UNDERFLOW = 2;\n uint256 internal constant MUL_OVERFLOW = 3;\n uint256 internal constant ZERO_DIVISION = 4;\n uint256 internal constant DIV_INTERNAL = 5;\n uint256 internal constant X_OUT_OF_BOUNDS = 6;\n uint256 internal constant Y_OUT_OF_BOUNDS = 7;\n uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;\n uint256 internal constant INVALID_EXPONENT = 9;\n\n // Input\n uint256 internal constant OUT_OF_BOUNDS = 100;\n uint256 internal constant UNSORTED_ARRAY = 101;\n uint256 internal constant UNSORTED_TOKENS = 102;\n uint256 internal constant INPUT_LENGTH_MISMATCH = 103;\n uint256 internal constant ZERO_TOKEN = 104;\n\n // Bridge Endpoint\n uint256 internal constant BRIDGE_PAUSED = 200;\n uint256 internal constant INVALID_SENDER = 201;\n uint256 internal constant INVALID_RECIPIENT = 202;\n uint256 internal constant INVALID_TOKEN = 203;\n uint256 internal constant INVALID_REQUIRED_VALIDATORS = 204;\n uint256 internal constant INVALID_AMOUNT = 205;\n uint256 internal constant AMOUNT_SMALLER_THAN_FEE = 206;\n uint256 internal constant INSUFFICIENT_PROOFS = 207;\n uint256 internal constant ORDER_ALREADY_SENT = 208;\n uint256 internal constant DUPLICATE_SIGNATURE = 209;\n uint256 internal constant ORDER_HASH_MISMATCH = 210;\n uint256 internal constant SIGNER_VALIDAGTOR_MISMATCH = 211;\n uint256 internal constant INVALID_SIGNATURE = 212;\n uint256 internal constant ZERO_TOKEN_ADDRESS = 213;\n uint256 internal constant INVALID_TOKEN_DECIMALS = 214;\n\n // Misc\n uint256 internal constant UNIMPLEMENTED = 998;\n uint256 internal constant SHOULD_NOT_HAPPEN = 999;\n}\n"
},
"contracts/utils/math/FixedPoint.sol": {
"content": "// SPDX-License-Identifier: GPL-3.0-or-later\n// This program is free software: you can redistribute it and/or modify\n// it under the terms of the GNU General Public License as published by\n// the Free Software Foundation, either version 3 of the License, or\n// (at your option) any later version.\n\n// This program is distributed in the hope that it will be useful,\n// but WITHOUT ANY WARRANTY; without even the implied warranty of\n// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n// GNU General Public License for more details.\n\n// You should have received a copy of the GNU General Public License\n// along with this program. If not, see .\n\npragma solidity ^0.8.17;\n\nimport \"../helpers/Errors.sol\";\nimport \"./LogExpMath.sol\";\n\n/* solhint-disable private-vars-leading-underscore */\n\nlibrary FixedPoint {\n uint256 internal constant ONE = 1e18; // 18 decimal places\n uint256 internal constant TWO = 2 * ONE;\n uint256 internal constant FOUR = 4 * ONE;\n uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)\n\n // Minimum base for the power function when the exponent is 'free' (larger than ONE).\n uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18;\n\n function add(uint256 a, uint256 b) internal pure returns (uint256) {\n // Fixed Point addition is the same as regular checked addition\n\n uint256 c = a + b;\n _require(c >= a, Errors.ADD_OVERFLOW);\n return c;\n }\n\n function sub(uint256 a, uint256 b) internal pure returns (uint256) {\n // Fixed Point addition is the same as regular checked addition\n\n _require(b <= a, Errors.SUB_OVERFLOW);\n uint256 c = a - b;\n return c;\n }\n\n function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {\n uint256 product = a * b;\n _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);\n\n return product / ONE;\n }\n\n function mulUp(uint256 a, uint256 b) internal pure returns (uint256 result) {\n uint256 product = a * b;\n _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);\n\n // The traditional divUp formula is:\n // divUp(x, y) := (x + y - 1) / y\n // To avoid intermediate overflow in the addition, we distribute the division and get:\n // divUp(x, y) := (x - 1) / y + 1\n // Note that this requires x != 0, if x == 0 then the result is zero\n //\n // Equivalent to:\n // result = product == 0 ? 0 : ((product - 1) / FixedPoint.ONE) + 1;\n assembly {\n result := mul(iszero(iszero(product)), add(div(sub(product, 1), ONE), 1))\n }\n }\n\n function divDown(uint256 a, uint256 b) internal pure returns (uint256) {\n _require(b != 0, Errors.ZERO_DIVISION);\n\n uint256 aInflated = a * ONE;\n _require(a == 0 || aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow\n\n return aInflated / b;\n }\n\n function divUp(uint256 a, uint256 b) internal pure returns (uint256 result) {\n _require(b != 0, Errors.ZERO_DIVISION);\n\n uint256 aInflated = a * ONE;\n _require(a == 0 || aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow\n\n // The traditional divUp formula is:\n // divUp(x, y) := (x + y - 1) / y\n // To avoid intermediate overflow in the addition, we distribute the division and get:\n // divUp(x, y) := (x - 1) / y + 1\n // Note that this requires x != 0, if x == 0 then the result is zero\n //\n // Equivalent to:\n // result = a == 0 ? 0 : (a * FixedPoint.ONE - 1) / b + 1;\n assembly {\n result := mul(\n iszero(iszero(aInflated)),\n add(div(sub(aInflated, 1), b), 1)\n )\n }\n }\n\n /**\n * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above\n * the true value (that is, the error function expected - actual is always positive).\n */\n function powDown(uint256 x, uint256 y) internal pure returns (uint256) {\n // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50\n // and 80/20 Weighted Pools\n if (y == ONE) {\n return x;\n } else if (y == TWO) {\n return mulDown(x, x);\n } else if (y == FOUR) {\n uint256 square = mulDown(x, x);\n return mulDown(square, square);\n } else {\n uint256 raw = LogExpMath.pow(x, y);\n uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);\n\n if (raw < maxError) {\n return 0;\n } else {\n return sub(raw, maxError);\n }\n }\n }\n\n /**\n * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below\n * the true value (that is, the error function expected - actual is always negative).\n */\n function powUp(uint256 x, uint256 y) internal pure returns (uint256) {\n // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50\n // and 80/20 Weighted Pools\n if (y == ONE) {\n return x;\n } else if (y == TWO) {\n return mulUp(x, x);\n } else if (y == FOUR) {\n uint256 square = mulUp(x, x);\n return mulUp(square, square);\n } else {\n uint256 raw = LogExpMath.pow(x, y);\n uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);\n\n return add(raw, maxError);\n }\n }\n\n /**\n * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.\n *\n * Useful when computing the complement for values with some level of relative error, as it strips this error and\n * prevents intermediate negative values.\n */\n function complement(uint256 x) internal pure returns (uint256 result) {\n // Equivalent to:\n // result = (x < ONE) ? (ONE - x) : 0;\n assembly {\n result := mul(lt(x, ONE), sub(ONE, x))\n }\n }\n\n /**\n * @dev Returns the largest of two numbers of 256 bits.\n */\n function max(uint256 a, uint256 b) internal pure returns (uint256 result) {\n // Equivalent to:\n // result = (a < b) ? b : a;\n assembly {\n result := sub(a, mul(sub(a, b), lt(a, b)))\n }\n }\n\n /**\n * @dev Returns the smallest of two numbers of 256 bits.\n */\n function min(uint256 a, uint256 b) internal pure returns (uint256 result) {\n // Equivalent to `result = (a < b) ? a : b`\n assembly {\n result := sub(a, mul(sub(a, b), gt(a, b)))\n }\n }\n}\n"
},
"contracts/utils/math/LogExpMath.sol": {
"content": "// SPDX-License-Identifier: MIT\n// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated\n// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the\n// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to\n// permit persons to whom the Software is furnished to do so, subject to the following conditions:\n\n// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the\n// Software.\n\n// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE\n// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR\n// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR\n// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\npragma solidity 0.8.17;\n\nimport \"../helpers/Errors.sol\";\n\n/* solhint-disable */\n\n/**\n * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).\n *\n * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural\n * exponentiation and logarithm (where the base is Euler's number).\n *\n * @author Fernando Martinelli - @fernandomartinelli\n * @author Sergio Yuhjtman - @sergioyuhjtman\n * @author Daniel Fernandez - @dmf7z\n */\nlibrary LogExpMath {\n // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying\n // two numbers, and multiply by ONE when dividing them.\n\n // All arguments and return values are 18 decimal fixed point numbers.\n int256 constant ONE_18 = 1e18;\n\n // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the\n // case of ln36, 36 decimals.\n int256 constant ONE_20 = 1e20;\n int256 constant ONE_36 = 1e36;\n\n // The domain of natural exponentiation is bound by the word size and number of decimals used.\n //\n // Because internally the result will be stored using 20 decimals, the largest possible result is\n // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.\n // The smallest possible result is 10^(-18), which makes largest negative argument\n // ln(10^(-18)) = -41.446531673892822312.\n // We use 130.0 and -41.0 to have some safety margin.\n int256 constant MAX_NATURAL_EXPONENT = 130e18;\n int256 constant MIN_NATURAL_EXPONENT = -41e18;\n\n // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point\n // 256 bit integer.\n int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;\n int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;\n\n uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);\n\n // 18 decimal constants\n int256 constant x0 = 128000000000000000000; // 2ˆ7\n int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)\n int256 constant x1 = 64000000000000000000; // 2ˆ6\n int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)\n\n // 20 decimal constants\n int256 constant x2 = 3200000000000000000000; // 2ˆ5\n int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)\n int256 constant x3 = 1600000000000000000000; // 2ˆ4\n int256 constant a3 = 888611052050787263676000000; // eˆ(x3)\n int256 constant x4 = 800000000000000000000; // 2ˆ3\n int256 constant a4 = 298095798704172827474000; // eˆ(x4)\n int256 constant x5 = 400000000000000000000; // 2ˆ2\n int256 constant a5 = 5459815003314423907810; // eˆ(x5)\n int256 constant x6 = 200000000000000000000; // 2ˆ1\n int256 constant a6 = 738905609893065022723; // eˆ(x6)\n int256 constant x7 = 100000000000000000000; // 2ˆ0\n int256 constant a7 = 271828182845904523536; // eˆ(x7)\n int256 constant x8 = 50000000000000000000; // 2ˆ-1\n int256 constant a8 = 164872127070012814685; // eˆ(x8)\n int256 constant x9 = 25000000000000000000; // 2ˆ-2\n int256 constant a9 = 128402541668774148407; // eˆ(x9)\n int256 constant x10 = 12500000000000000000; // 2ˆ-3\n int256 constant a10 = 113314845306682631683; // eˆ(x10)\n int256 constant x11 = 6250000000000000000; // 2ˆ-4\n int256 constant a11 = 106449445891785942956; // eˆ(x11)\n\n /**\n * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.\n *\n * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.\n */\n function pow(uint256 x, uint256 y) internal pure returns (uint256) {\n if (y == 0) {\n // We solve the 0^0 indetermination by making it equal one.\n return uint256(ONE_18);\n }\n\n if (x == 0) {\n return 0;\n }\n\n // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to\n // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means\n // x^y = exp(y * ln(x)).\n\n // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.\n _require(x >> 255 == 0, Errors.X_OUT_OF_BOUNDS);\n int256 x_int256 = int256(x);\n\n // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In\n // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.\n\n // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.\n _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS);\n int256 y_int256 = int256(y);\n\n int256 logx_times_y;\n if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {\n int256 ln_36_x = _ln_36(x_int256);\n\n // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just\n // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal\n // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the\n // (downscaled) last 18 decimals.\n logx_times_y = ((ln_36_x / ONE_18) *\n y_int256 +\n ((ln_36_x % ONE_18) * y_int256) /\n ONE_18);\n } else {\n logx_times_y = _ln(x_int256) * y_int256;\n }\n logx_times_y /= ONE_18;\n\n // Finally, we compute exp(y * ln(x)) to arrive at x^y\n _require(\n MIN_NATURAL_EXPONENT <= logx_times_y &&\n logx_times_y <= MAX_NATURAL_EXPONENT,\n Errors.PRODUCT_OUT_OF_BOUNDS\n );\n\n return uint256(exp(logx_times_y));\n }\n\n /**\n * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.\n *\n * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.\n */\n function exp(int256 x) internal pure returns (int256) {\n _require(\n x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT,\n Errors.INVALID_EXPONENT\n );\n\n if (x < 0) {\n // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it\n // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).\n // Fixed point division requires multiplying by ONE_18.\n return ((ONE_18 * ONE_18) / exp(-x));\n }\n\n // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,\n // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7\n // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the\n // decomposition.\n // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this\n // decomposition, which will be lower than the smallest x_n.\n // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.\n // We mutate x by subtracting x_n, making it the remainder of the decomposition.\n\n // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause\n // intermediate overflows. Instead we store them as plain integers, with 0 decimals.\n // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the\n // decomposition.\n\n // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct\n // it and compute the accumulated product.\n\n int256 firstAN;\n if (x >= x0) {\n x -= x0;\n firstAN = a0;\n } else if (x >= x1) {\n x -= x1;\n firstAN = a1;\n } else {\n firstAN = 1; // One with no decimal places\n }\n\n // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the\n // smaller terms.\n x *= 100;\n\n // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point\n // one. Recall that fixed point multiplication requires dividing by ONE_20.\n int256 product = ONE_20;\n\n if (x >= x2) {\n x -= x2;\n product = (product * a2) / ONE_20;\n }\n if (x >= x3) {\n x -= x3;\n product = (product * a3) / ONE_20;\n }\n if (x >= x4) {\n x -= x4;\n product = (product * a4) / ONE_20;\n }\n if (x >= x5) {\n x -= x5;\n product = (product * a5) / ONE_20;\n }\n if (x >= x6) {\n x -= x6;\n product = (product * a6) / ONE_20;\n }\n if (x >= x7) {\n x -= x7;\n product = (product * a7) / ONE_20;\n }\n if (x >= x8) {\n x -= x8;\n product = (product * a8) / ONE_20;\n }\n if (x >= x9) {\n x -= x9;\n product = (product * a9) / ONE_20;\n }\n\n // x10 and x11 are unnecessary here since we have high enough precision already.\n\n // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series\n // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).\n\n int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.\n int256 term; // Each term in the sum, where the nth term is (x^n / n!).\n\n // The first term is simply x.\n term = x;\n seriesSum += term;\n\n // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,\n // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.\n\n term = ((term * x) / ONE_20) / 2;\n seriesSum += term;\n\n term = ((term * x) / ONE_20) / 3;\n seriesSum += term;\n\n term = ((term * x) / ONE_20) / 4;\n seriesSum += term;\n\n term = ((term * x) / ONE_20) / 5;\n seriesSum += term;\n\n term = ((term * x) / ONE_20) / 6;\n seriesSum += term;\n\n term = ((term * x) / ONE_20) / 7;\n seriesSum += term;\n\n term = ((term * x) / ONE_20) / 8;\n seriesSum += term;\n\n term = ((term * x) / ONE_20) / 9;\n seriesSum += term;\n\n term = ((term * x) / ONE_20) / 10;\n seriesSum += term;\n\n term = ((term * x) / ONE_20) / 11;\n seriesSum += term;\n\n term = ((term * x) / ONE_20) / 12;\n seriesSum += term;\n\n // 12 Taylor terms are sufficient for 18 decimal precision.\n\n // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor\n // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply\n // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),\n // and then drop two digits to return an 18 decimal value.\n\n return (((product * seriesSum) / ONE_20) * firstAN) / 100;\n }\n\n /**\n * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.\n */\n function log(int256 arg, int256 base) internal pure returns (int256) {\n // This performs a simple base change: log(arg, base) = ln(arg) / ln(base).\n\n // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by\n // upscaling.\n\n int256 logBase;\n if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {\n logBase = _ln_36(base);\n } else {\n logBase = _ln(base) * ONE_18;\n }\n\n int256 logArg;\n if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {\n logArg = _ln_36(arg);\n } else {\n logArg = _ln(arg) * ONE_18;\n }\n\n // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places\n return (logArg * ONE_18) / logBase;\n }\n\n /**\n * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.\n */\n function ln(int256 a) internal pure returns (int256) {\n // The real natural logarithm is not defined for negative numbers or zero.\n _require(a > 0, Errors.OUT_OF_BOUNDS);\n if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {\n return _ln_36(a) / ONE_18;\n } else {\n return _ln(a);\n }\n }\n\n /**\n * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.\n */\n function _ln(int256 a) private pure returns (int256) {\n if (a < ONE_18) {\n // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less\n // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.\n // Fixed point division requires multiplying by ONE_18.\n return (-_ln((ONE_18 * ONE_18) / a));\n }\n\n // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which\n // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,\n // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot\n // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.\n // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this\n // decomposition, which will be lower than the smallest a_n.\n // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.\n // We mutate a by subtracting a_n, making it the remainder of the decomposition.\n\n // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point\n // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by\n // ONE_18 to convert them to fixed point.\n // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide\n // by it and compute the accumulated sum.\n\n int256 sum = 0;\n if (a >= a0 * ONE_18) {\n a /= a0; // Integer, not fixed point division\n sum += x0;\n }\n\n if (a >= a1 * ONE_18) {\n a /= a1; // Integer, not fixed point division\n sum += x1;\n }\n\n // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.\n sum *= 100;\n a *= 100;\n\n // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.\n\n if (a >= a2) {\n a = (a * ONE_20) / a2;\n sum += x2;\n }\n\n if (a >= a3) {\n a = (a * ONE_20) / a3;\n sum += x3;\n }\n\n if (a >= a4) {\n a = (a * ONE_20) / a4;\n sum += x4;\n }\n\n if (a >= a5) {\n a = (a * ONE_20) / a5;\n sum += x5;\n }\n\n if (a >= a6) {\n a = (a * ONE_20) / a6;\n sum += x6;\n }\n\n if (a >= a7) {\n a = (a * ONE_20) / a7;\n sum += x7;\n }\n\n if (a >= a8) {\n a = (a * ONE_20) / a8;\n sum += x8;\n }\n\n if (a >= a9) {\n a = (a * ONE_20) / a9;\n sum += x9;\n }\n\n if (a >= a10) {\n a = (a * ONE_20) / a10;\n sum += x10;\n }\n\n if (a >= a11) {\n a = (a * ONE_20) / a11;\n sum += x11;\n }\n\n // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series\n // that converges rapidly for values of `a` close to one - the same one used in ln_36.\n // Let z = (a - 1) / (a + 1).\n // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))\n\n // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires\n // division by ONE_20.\n int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);\n int256 z_squared = (z * z) / ONE_20;\n\n // num is the numerator of the series: the z^(2 * n + 1) term\n int256 num = z;\n\n // seriesSum holds the accumulated sum of each term in the series, starting with the initial z\n int256 seriesSum = num;\n\n // In each step, the numerator is multiplied by z^2\n num = (num * z_squared) / ONE_20;\n seriesSum += num / 3;\n\n num = (num * z_squared) / ONE_20;\n seriesSum += num / 5;\n\n num = (num * z_squared) / ONE_20;\n seriesSum += num / 7;\n\n num = (num * z_squared) / ONE_20;\n seriesSum += num / 9;\n\n num = (num * z_squared) / ONE_20;\n seriesSum += num / 11;\n\n // 6 Taylor terms are sufficient for 36 decimal precision.\n\n // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)\n seriesSum *= 2;\n\n // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both\n // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal\n // value.\n\n return (sum + seriesSum) / 100;\n }\n\n /**\n * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,\n * for x close to one.\n *\n * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.\n */\n function _ln_36(int256 x) private pure returns (int256) {\n // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits\n // worthwhile.\n\n // First, we transform x to a 36 digit fixed point value.\n x *= ONE_18;\n\n // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).\n // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))\n\n // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires\n // division by ONE_36.\n int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);\n int256 z_squared = (z * z) / ONE_36;\n\n // num is the numerator of the series: the z^(2 * n + 1) term\n int256 num = z;\n\n // seriesSum holds the accumulated sum of each term in the series, starting with the initial z\n int256 seriesSum = num;\n\n // In each step, the numerator is multiplied by z^2\n num = (num * z_squared) / ONE_36;\n seriesSum += num / 3;\n\n num = (num * z_squared) / ONE_36;\n seriesSum += num / 5;\n\n num = (num * z_squared) / ONE_36;\n seriesSum += num / 7;\n\n num = (num * z_squared) / ONE_36;\n seriesSum += num / 9;\n\n num = (num * z_squared) / ONE_36;\n seriesSum += num / 11;\n\n num = (num * z_squared) / ONE_36;\n seriesSum += num / 13;\n\n num = (num * z_squared) / ONE_36;\n seriesSum += num / 15;\n\n // 8 Taylor terms are sufficient for 36 decimal precision.\n\n // All that remains is multiplying by 2 (non fixed point).\n return seriesSum * 2;\n }\n}\n"
}
},
"settings": {
"optimizer": {
"enabled": true,
"runs": 2000,
"details": {
"yul": true,
"yulDetails": {
"stackAllocation": true,
"optimizerSteps": "dhfoDgvulfnTUtnIf"
}
}
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}
}