Weyaxi commited on
Commit
42472b3
·
0 Parent(s):

Duplicate from Weyaxi/commit-trash-huggingface-spaces-codes

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +63 -0
  2. README.md +202 -0
  3. errors.txt +24 -0
  4. names.txt +0 -0
  5. spaces.csv +0 -0
  6. spaces.zip +3 -0
  7. spaces/0019c/NewBing/Dockerfile +34 -0
  8. spaces/0019c/NewBing/README.md +12 -0
  9. spaces/01zhangclare/bingai/Dockerfile +34 -0
  10. spaces/01zhangclare/bingai/README.md +12 -0
  11. spaces/07jeancms/minima/README.md +13 -0
  12. spaces/07jeancms/minima/app.py +7 -0
  13. spaces/0x1337/vector-inference/README.md +12 -0
  14. spaces/0x1337/vector-inference/app.py +5 -0
  15. spaces/0x7194633/mbrat-ru-sum/README.md +12 -0
  16. spaces/0x7194633/mbrat-ru-sum/app.py +13 -0
  17. spaces/0x7194633/nllb-1.3B-demo/README.md +12 -0
  18. spaces/0x7194633/nllb-1.3B-demo/app.py +83 -0
  19. spaces/0x7194633/nllb-1.3B-demo/flores200_codes.py +211 -0
  20. spaces/0x876/Yotta_Mix/README.md +12 -0
  21. spaces/0x876/Yotta_Mix/app.py +3 -0
  22. spaces/0x90e/ESRGAN-MANGA/ESRGAN/architecture.py +37 -0
  23. spaces/0x90e/ESRGAN-MANGA/ESRGAN/block.py +261 -0
  24. spaces/0x90e/ESRGAN-MANGA/ESRGAN_plus/architecture.py +38 -0
  25. spaces/0x90e/ESRGAN-MANGA/ESRGAN_plus/block.py +287 -0
  26. spaces/0x90e/ESRGAN-MANGA/ESRGANer.py +156 -0
  27. spaces/0x90e/ESRGAN-MANGA/README.md +10 -0
  28. spaces/0x90e/ESRGAN-MANGA/app.py +86 -0
  29. spaces/0x90e/ESRGAN-MANGA/inference.py +59 -0
  30. spaces/0x90e/ESRGAN-MANGA/inference_manga_v2.py +46 -0
  31. spaces/0x90e/ESRGAN-MANGA/process_image.py +31 -0
  32. spaces/0x90e/ESRGAN-MANGA/run_cmd.py +9 -0
  33. spaces/0x90e/ESRGAN-MANGA/util.py +6 -0
  34. spaces/0xAnders/ama-bot/README.md +13 -0
  35. spaces/0xAnders/ama-bot/app.py +70 -0
  36. spaces/0xHacked/zkProver/Dockerfile +21 -0
  37. spaces/0xHacked/zkProver/README.md +11 -0
  38. spaces/0xHacked/zkProver/app.py +77 -0
  39. spaces/0xJustin/0xJustin-Dungeons-and-Diffusion/README.md +13 -0
  40. spaces/0xJustin/0xJustin-Dungeons-and-Diffusion/app.py +3 -0
  41. spaces/0xSpleef/openchat-openchat_8192/README.md +12 -0
  42. spaces/0xSpleef/openchat-openchat_8192/app.py +3 -0
  43. spaces/0xSynapse/Image_captioner/README.md +13 -0
  44. spaces/0xSynapse/Image_captioner/app.py +62 -0
  45. spaces/0xSynapse/LlamaGPT/README.md +13 -0
  46. spaces/0xSynapse/LlamaGPT/app.py +408 -0
  47. spaces/0xSynapse/PixelFusion/README.md +13 -0
  48. spaces/0xSynapse/PixelFusion/app.py +85 -0
  49. spaces/0xSynapse/Segmagine/README.md +13 -0
  50. spaces/0xSynapse/Segmagine/app.py +97 -0
.gitattributes ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ # Audio files - uncompressed
38
+ *.pcm filter=lfs diff=lfs merge=lfs -text
39
+ *.sam filter=lfs diff=lfs merge=lfs -text
40
+ *.raw filter=lfs diff=lfs merge=lfs -text
41
+ # Audio files - compressed
42
+ *.aac filter=lfs diff=lfs merge=lfs -text
43
+ *.flac filter=lfs diff=lfs merge=lfs -text
44
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
45
+ *.ogg filter=lfs diff=lfs merge=lfs -text
46
+ *.wav filter=lfs diff=lfs merge=lfs -text
47
+ # Image files - uncompressed
48
+ *.bmp filter=lfs diff=lfs merge=lfs -text
49
+ *.gif filter=lfs diff=lfs merge=lfs -text
50
+ *.png filter=lfs diff=lfs merge=lfs -text
51
+ *.tiff filter=lfs diff=lfs merge=lfs -text
52
+ # Image files - compressed
53
+ *.jpg filter=lfs diff=lfs merge=lfs -text
54
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
55
+ *.webp filter=lfs diff=lfs merge=lfs -text
56
+ spaces/Pattr/DrumClassification/lilypond-2.24.2/lib/guile/2.2/ccache/system/vm/assembler.go filter=lfs diff=lfs merge=lfs -text
57
+ spaces/Pattr/DrumClassification/lilypond-2.24.2/lib/guile/2.2/ccache/system/vm/dwarf.go filter=lfs diff=lfs merge=lfs -text
58
+ spaces/bigscience-data/bloom-tokenizer-multilinguality/index.html filter=lfs diff=lfs merge=lfs -text
59
+ spaces/bigscience-data/bloom-tokens/index.html filter=lfs diff=lfs merge=lfs -text
60
+ spaces/ghuron/artist/dataset/astro.sql filter=lfs diff=lfs merge=lfs -text
61
+ spaces/pdjewell/sommeli_ai/images/px.html filter=lfs diff=lfs merge=lfs -text
62
+ spaces/pdjewell/sommeli_ai/images/px_2d.html filter=lfs diff=lfs merge=lfs -text
63
+ spaces/pdjewell/sommeli_ai/images/px_3d.html filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ configs:
3
+ - config_name: default
4
+ data_files:
5
+ spaces.csv
6
+
7
+ license: other
8
+ language:
9
+ - code
10
+ size_categories:
11
+ - 100K<n<1M
12
+ ---
13
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/lzGCX2qjX_nPeRBZoa2v0.png)
14
+
15
+ # 📊 Dataset Description
16
+
17
+ This dataset comprises code files of Huggingface Spaces that have more than 0 likes as of November 10, 2023. This dataset contains various programming languages totaling in 672 MB of compressed and 2.05 GB of uncompressed data.
18
+
19
+ # 📝 Data Fields
20
+
21
+ | Field | Type | Description |
22
+ |------------|--------|------------------------------------------|
23
+ | repository | string | Huggingface Spaces repository names. |
24
+ | sdk | string | Software Development Kit of the space. |
25
+ | license | string | License type of the space. |
26
+
27
+ ## 🧩 Data Structure
28
+
29
+ Data structure of the data.
30
+
31
+ ```
32
+ spaces/
33
+ ├─ author1/
34
+ │ ├─ space1
35
+ │ ├─ space2
36
+ ├─ author2/
37
+ │ ├─ space1
38
+ │ ├─ space2
39
+ │ ├─ space3
40
+ ```
41
+
42
+ # 🏛️ Licenses
43
+
44
+ Huggingface Spaces contains a variety of licenses. Here is the list of the licenses that this dataset contains:
45
+
46
+ ```python
47
+ [
48
+ 'None',
49
+ 'mit',
50
+ 'apache-2.0',
51
+ 'openrail',
52
+ 'gpl-3.0',
53
+ 'other',
54
+ 'afl-3.0',
55
+ 'unknown',
56
+ 'creativeml-openrail-m',
57
+ 'cc-by-nc-4.0',
58
+ 'cc-by-4.0',
59
+ 'cc',
60
+ 'cc-by-nc-sa-4.0',
61
+ 'bigscience-openrail-m',
62
+ 'bsd-3-clause',
63
+ 'agpl-3.0',
64
+ 'wtfpl',
65
+ 'gpl',
66
+ 'artistic-2.0',
67
+ 'lgpl-3.0',
68
+ 'cc-by-sa-4.0',
69
+ 'Configuration error',
70
+ 'bsd',
71
+ 'cc-by-nc-nd-4.0',
72
+ 'cc0-1.0',
73
+ 'unlicense',
74
+ 'llama2',
75
+ 'bigscience-bloom-rail-1.0',
76
+ 'gpl-2.0',
77
+ 'bsd-2-clause',
78
+ 'osl-3.0',
79
+ 'cc-by-2.0',
80
+ 'cc-by-3.0',
81
+ 'cc-by-nc-3.0',
82
+ 'cc-by-nc-2.0',
83
+ 'cc-by-nd-4.0',
84
+ 'openrail++',
85
+ 'bigcode-openrail-m',
86
+ 'bsd-3-clause-clear',
87
+ 'eupl-1.1',
88
+ 'cc-by-sa-3.0',
89
+ 'mpl-2.0',
90
+ 'c-uda',
91
+ 'gfdl',
92
+ 'cc-by-nc-sa-2.0',
93
+ 'cc-by-2.5',
94
+ 'bsl-1.0',
95
+ 'odc-by',
96
+ 'deepfloyd-if-license',
97
+ 'ms-pl',
98
+ 'ecl-2.0',
99
+ 'pddl',
100
+ 'ofl-1.1',
101
+ 'lgpl-2.1',
102
+ 'postgresql',
103
+ 'lppl-1.3c',
104
+ 'ncsa',
105
+ 'cc-by-nc-sa-3.0'
106
+ ]
107
+ ```
108
+
109
+ # 📊 Dataset Statistics
110
+
111
+ | Language | File Extension | File Counts | File Size (MB) | Line Counts |
112
+ |------------|-----------------|-------------|----------------|-------------|
113
+ | Python | .py | 141,560 | 1079.0 | 28,653,744 |
114
+ | SQL | .sql | 21 | 523.6 | 645 |
115
+ | JavaScript | .js | 6,790 | 369.8 | 2,137,054 |
116
+ | Markdown | .md | 63,237 | 273.4 | 3,110,443 |
117
+ | HTML | .html | 1,953 | 265.8 | 516,020 |
118
+ | C | .c | 1,320 | 132.2 | 3,558,826 |
119
+ | Go | .go | 429 | 46.3 | 6,331 |
120
+ | CSS | .css | 3,097 | 25.6 | 386,334 |
121
+ | C Header | .h | 2,824 | 20.4 | 570,948 |
122
+ | C++ | .cpp | 1,117 | 15.3 | 494,939 |
123
+ | TypeScript | .ts | 4,158 | 14.8 | 439,551 |
124
+ | TSX | .tsx | 4,273 | 9.4 | 306,416 |
125
+ | Shell | .sh | 3,294 | 5.5 | 171,943 |
126
+ | Perl | .pm | 92 | 4.2 | 128,594 |
127
+ | C# | .cs | 22 | 3.9 | 41,265 |
128
+
129
+
130
+ ## 🖥️ Language
131
+
132
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/Dn8oaZh2BXtOHgQ8DaX09.png)
133
+
134
+ ## 📁 Size
135
+
136
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/vRLCfs-QrEnDwhBnBu3rc.png)
137
+
138
+ ## 📝 Line Count
139
+
140
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/8F_qgL1o7xZxR1zZ8bP76.png)
141
+
142
+ # 🤗 Huggingface Spaces Statistics
143
+
144
+ ## 🛠️ Software Development Kit (SDK)
145
+
146
+ Software Development Kit pie chart.
147
+
148
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/BmW_BdYtH3XpYNH23NLVZ.png)
149
+
150
+ ## 🏛️ License
151
+
152
+ License chart.
153
+
154
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/dnxm5dJA_QzekwULwPS33.png)
155
+
156
+ # 📅 Dataset Creation
157
+
158
+ This dataset was created in these steps:
159
+
160
+ 1. Scraped all spaces using the Huggingface Hub API.
161
+
162
+ ```python
163
+ from huggingface_hub import HfApi
164
+ api = HfApi()
165
+
166
+ spaces = api.list_spaces(sort="likes", full=1, direction=-1)
167
+ ```
168
+
169
+ 2. Filtered spaces with more than 0 likes.
170
+
171
+ ```python
172
+ a = {}
173
+
174
+ for i in tqdm(spaces):
175
+ i = i.__dict__
176
+ if i['likes'] > 0:
177
+ try:
178
+ try:
179
+ a[i['id']] = {'sdk': i['sdk'], 'license': i['cardData']['license'], 'likes': i['likes']}
180
+ except KeyError:
181
+ a[i['id']] = {'sdk': i['sdk'], 'license': None, 'likes': i['likes']}
182
+ except:
183
+ a[i['id']] = {'sdk': "Configuration error", 'license': "Configuration error", 'likes': i['likes']}
184
+
185
+ data_list = [{'repository': key, 'sdk': value['sdk'], 'license': value['license'], 'likes': value['likes']} for key, value in a.items()]
186
+
187
+ df = pd.DataFrame(data_list)
188
+ ```
189
+
190
+ 3. Cloned spaces locally.
191
+
192
+ ```python
193
+ from huggingface_hub import snapshot_download
194
+
195
+ programming = ['.asm', '.bat', '.cmd', '.c', '.h', '.cs', '.cpp', '.hpp', '.c++', '.h++', '.cc', '.hh', '.C', '.H', '.cmake', '.css', '.dockerfile', 'Dockerfile', '.f90', '.f', '.f03', '.f08', '.f77', '.f95', '.for', '.fpp', '.go', '.hs', '.html', '.java', '.js', '.jl', '.lua', 'Makefile', '.md', '.markdown', '.php', '.php3', '.php4', '.php5', '.phps', '.phpt', '.pl', '.pm', '.pod', '.perl', '.ps1', '.psd1', '.psm1', '.py', '.rb', '.rs', '.sql', '.scala', '.sh', '.bash', '.command', '.zsh', '.ts', '.tsx', '.tex', '.vb']
196
+ pattern = [f"*{i}" for i in programming]
197
+
198
+ for i in repos:
199
+ snapshot_download(i, repo_type="space", local_dir=f"spaces/{i}", allow_patterns=pattern)
200
+ ````
201
+
202
+ 4. Processed the data to derive statistics.
errors.txt ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ky2k/Toxicity_Classifier_POC
2
+ tialenAdioni/chat-gpt-api
3
+ Narsil/myspace
4
+ arxify/RVC-beta-v2-0618
5
+ WitchHuntTV/WinnieThePoohSVC_sovits4
6
+ yizhangliu/Grounded-Segment-Anything
7
+ Robert001/UniControl-Demo
8
+ internetsignal/audioLDM
9
+ inamXcontru/PoeticTTS
10
+ dcarpintero/nlp-summarizer-pegasus
11
+ SungBeom/chatwine-korean
12
+ x6/BingAi
13
+ 1gistliPinn/ChatGPT4
14
+ colakin/video-generater
15
+ stomexserde/gpt4-ui
16
+ quidiaMuxgu/Expedit-SAM
17
+ NasirKhalid24/Dalle2-Diffusion-Prior
18
+ joaopereirajp/livvieChatBot
19
+ diacanFperku/AutoGPT
20
+ tioseFevbu/cartoon-converter
21
+ chuan-hd/law-assistant-chatbot
22
+ mshukor/UnIVAL
23
+ xuyingliKepler/openai_play_tts
24
+ TNR-5/lib111
names.txt ADDED
The diff for this file is too large to render. See raw diff
 
spaces.csv ADDED
The diff for this file is too large to render. See raw diff
 
spaces.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbb4b253de8e51bfa330e5c7cf31f7841e64ef30c1718d4a05c75e21c8ccf729
3
+ size 671941275
spaces/0019c/NewBing/Dockerfile ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Build Stage
2
+ # 使用 golang:alpine 作为构建阶段的基础镜像
3
+ FROM golang:alpine AS builder
4
+
5
+ # 添加 git,以便之后能从GitHub克隆项目
6
+ RUN apk --no-cache add git
7
+
8
+ # 从 GitHub 克隆 go-proxy-bingai 项目到 /workspace/app 目录下
9
+ RUN git clone https://github.com/Harry-zklcdc/go-proxy-bingai.git /workspace/app
10
+
11
+ # 设置工作目录为之前克隆的项目目录
12
+ WORKDIR /workspace/app
13
+
14
+ # 编译 go 项目。-ldflags="-s -w" 是为了减少编译后的二进制大小
15
+ RUN go build -ldflags="-s -w" -tags netgo -trimpath -o go-proxy-bingai main.go
16
+
17
+ # Runtime Stage
18
+ # 使用轻量级的 alpine 镜像作为运行时的基础镜像
19
+ FROM alpine
20
+
21
+ # 设置工作目录
22
+ WORKDIR /workspace/app
23
+
24
+ # 从构建阶段复制编译后的二进制文件到运行时镜像中
25
+ COPY --from=builder /workspace/app/go-proxy-bingai .
26
+
27
+ # 设置环境变量,此处为随机字符
28
+ ENV Go_Proxy_BingAI_USER_TOKEN_1="1h_21qf8tNmRtDy5a4fZ05RFgkZeZ9akmnW9NtSo5s6aJilplld4X4Lj7BkJ3EQSNbu7tu-z_-OAHqeELJqlpF-bvOCMo5lWGjyCTcJcqIHnYiu_vlgrdDyo99wQHgsvNR5pKASGikeDgAVSN7CN6YM74n7glWgJ7hGpd33s9zcgdCea94XcsO5AmoPIoxA02O6zGkpTnIdc61W7D1WQUflqxgaSHCGWlrhw7aoPs-io"
29
+
30
+ # 暴露8080端口
31
+ EXPOSE 8080
32
+
33
+ # 容器启动时运行的命令
34
+ CMD ["/workspace/app/go-proxy-bingai"]
spaces/0019c/NewBing/README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: NewBing
3
+ emoji: 🏢
4
+ colorFrom: green
5
+ colorTo: red
6
+ sdk: docker
7
+ pinned: false
8
+ license: mit
9
+ app_port: 8080
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/01zhangclare/bingai/Dockerfile ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Build Stage
2
+ # 使用 golang:alpine 作为构建阶段的基础镜像
3
+ FROM golang:alpine AS builder
4
+
5
+ # 添加 git,以便之后能从GitHub克隆项目
6
+ RUN apk --no-cache add git
7
+
8
+ # 从 GitHub 克隆 go-proxy-bingai 项目到 /workspace/app 目录下
9
+ RUN git clone https://github.com/Harry-zklcdc/go-proxy-bingai.git /workspace/app
10
+
11
+ # 设置工作目录为之前克隆的项目目录
12
+ WORKDIR /workspace/app
13
+
14
+ # 编译 go 项目。-ldflags="-s -w" 是为了减少编译后的二进制大小
15
+ RUN go build -ldflags="-s -w" -tags netgo -trimpath -o go-proxy-bingai main.go
16
+
17
+ # Runtime Stage
18
+ # 使用轻量级的 alpine 镜像作为运行时的基础镜像
19
+ FROM alpine
20
+
21
+ # 设置工作目录
22
+ WORKDIR /workspace/app
23
+
24
+ # 从构建阶段复制编译后的二进制文件到运行时镜像中
25
+ COPY --from=builder /workspace/app/go-proxy-bingai .
26
+
27
+ # 设置环境变量,此处为随机字符
28
+ ENV Go_Proxy_BingAI_USER_TOKEN_1="kJs8hD92ncMzLaoQWYtX5rG6bE3fZ4iO"
29
+
30
+ # 暴露8080端口
31
+ EXPOSE 8080
32
+
33
+ # 容器启动时运行的命令
34
+ CMD ["/workspace/app/go-proxy-bingai"]
spaces/01zhangclare/bingai/README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Bingai
3
+ emoji: 🏃
4
+ colorFrom: indigo
5
+ colorTo: purple
6
+ sdk: docker
7
+ pinned: false
8
+ license: mit
9
+ app_port: 8080
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/07jeancms/minima/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Minima
3
+ emoji: 🔥
4
+ colorFrom: yellow
5
+ colorTo: gray
6
+ sdk: gradio
7
+ sdk_version: 3.35.2
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/07jeancms/minima/app.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
5
+
6
+ iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ iface.launch()
spaces/0x1337/vector-inference/README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Vector Inference
3
+ emoji: 🏃
4
+ colorFrom: pink
5
+ colorTo: purple
6
+ sdk: gradio
7
+ app_file: app.py
8
+ pinned: false
9
+ license: wtfpl
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0x1337/vector-inference/app.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ gr.Interface.load("models/coder119/Vectorartz_Diffusion").launch()\
4
+
5
+ iface.launch()
spaces/0x7194633/mbrat-ru-sum/README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Mbrat Ru Sum
3
+ emoji: 🦀
4
+ colorFrom: purple
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 3.1.3
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0x7194633/mbrat-ru-sum/app.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import MBartTokenizer, MBartForConditionalGeneration
3
+
4
+ model_name = "IlyaGusev/mbart_ru_sum_gazeta"
5
+ tokenizer = MBartTokenizer.from_pretrained(model_name)
6
+ model = MBartForConditionalGeneration.from_pretrained(model_name)
7
+
8
+ def summarize(text):
9
+ input_ids = tokenizer.batch_encode_plus([text], return_tensors="pt", max_length=1024)["input_ids"].to(model.device)
10
+ summary_ids = model.generate(input_ids=input_ids, no_repeat_ngram_size=4)
11
+ return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
12
+
13
+ gr.Interface(fn=summarize, inputs="text", outputs="text", description="Russian Summarizer").launch()
spaces/0x7194633/nllb-1.3B-demo/README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Nllb Translation Demo
3
+ emoji: 👀
4
+ colorFrom: indigo
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 3.0.26
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0x7194633/nllb-1.3B-demo/app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import gradio as gr
4
+ import time
5
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
6
+ from flores200_codes import flores_codes
7
+
8
+
9
+ def load_models():
10
+ # build model and tokenizer
11
+ model_name_dict = {'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B'}
12
+
13
+ model_dict = {}
14
+
15
+ for call_name, real_name in model_name_dict.items():
16
+ print('\tLoading model: %s' % call_name)
17
+ model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
18
+ tokenizer = AutoTokenizer.from_pretrained(real_name)
19
+ model_dict[call_name+'_model'] = model
20
+ model_dict[call_name+'_tokenizer'] = tokenizer
21
+
22
+ return model_dict
23
+
24
+
25
+ def translation(source, target, text):
26
+ if len(model_dict) == 2:
27
+ model_name = 'nllb-distilled-1.3B'
28
+
29
+ start_time = time.time()
30
+ source = flores_codes[source]
31
+ target = flores_codes[target]
32
+
33
+ model = model_dict[model_name + '_model']
34
+ tokenizer = model_dict[model_name + '_tokenizer']
35
+
36
+ translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target)
37
+ output = translator(text, max_length=400)
38
+
39
+ end_time = time.time()
40
+
41
+ output = output[0]['translation_text']
42
+ result = {'inference_time': end_time - start_time,
43
+ 'source': source,
44
+ 'target': target,
45
+ 'result': output}
46
+ return result
47
+
48
+
49
+ if __name__ == '__main__':
50
+ print('\tinit models')
51
+
52
+ global model_dict
53
+
54
+ model_dict = load_models()
55
+
56
+ # define gradio demo
57
+ lang_codes = list(flores_codes.keys())
58
+ #inputs = [gr.inputs.Radio(['nllb-distilled-600M', 'nllb-1.3B', 'nllb-distilled-1.3B'], label='NLLB Model'),
59
+ inputs = [gr.inputs.Dropdown(lang_codes, default='English', label='Source'),
60
+ gr.inputs.Dropdown(lang_codes, default='Korean', label='Target'),
61
+ gr.inputs.Textbox(lines=5, label="Input text"),
62
+ ]
63
+
64
+ outputs = gr.outputs.JSON()
65
+
66
+ title = "NLLB distilled 1.3B demo"
67
+
68
+ demo_status = "Demo is running on CPU"
69
+ description = f"Details: https://github.com/facebookresearch/fairseq/tree/nllb. {demo_status}"
70
+ examples = [
71
+ ['English', 'Korean', 'Hi. nice to meet you']
72
+ ]
73
+
74
+ gr.Interface(translation,
75
+ inputs,
76
+ outputs,
77
+ title=title,
78
+ description=description,
79
+ examples=examples,
80
+ examples_per_page=50,
81
+ ).launch()
82
+
83
+
spaces/0x7194633/nllb-1.3B-demo/flores200_codes.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ codes_as_string = '''Acehnese (Arabic script) ace_Arab
2
+ Acehnese (Latin script) ace_Latn
3
+ Mesopotamian Arabic acm_Arab
4
+ Ta’izzi-Adeni Arabic acq_Arab
5
+ Tunisian Arabic aeb_Arab
6
+ Afrikaans afr_Latn
7
+ South Levantine Arabic ajp_Arab
8
+ Akan aka_Latn
9
+ Amharic amh_Ethi
10
+ North Levantine Arabic apc_Arab
11
+ Modern Standard Arabic arb_Arab
12
+ Modern Standard Arabic (Romanized) arb_Latn
13
+ Najdi Arabic ars_Arab
14
+ Moroccan Arabic ary_Arab
15
+ Egyptian Arabic arz_Arab
16
+ Assamese asm_Beng
17
+ Asturian ast_Latn
18
+ Awadhi awa_Deva
19
+ Central Aymara ayr_Latn
20
+ South Azerbaijani azb_Arab
21
+ North Azerbaijani azj_Latn
22
+ Bashkir bak_Cyrl
23
+ Bambara bam_Latn
24
+ Balinese ban_Latn
25
+ Belarusian bel_Cyrl
26
+ Bemba bem_Latn
27
+ Bengali ben_Beng
28
+ Bhojpuri bho_Deva
29
+ Banjar (Arabic script) bjn_Arab
30
+ Banjar (Latin script) bjn_Latn
31
+ Standard Tibetan bod_Tibt
32
+ Bosnian bos_Latn
33
+ Buginese bug_Latn
34
+ Bulgarian bul_Cyrl
35
+ Catalan cat_Latn
36
+ Cebuano ceb_Latn
37
+ Czech ces_Latn
38
+ Chokwe cjk_Latn
39
+ Central Kurdish ckb_Arab
40
+ Crimean Tatar crh_Latn
41
+ Welsh cym_Latn
42
+ Danish dan_Latn
43
+ German deu_Latn
44
+ Southwestern Dinka dik_Latn
45
+ Dyula dyu_Latn
46
+ Dzongkha dzo_Tibt
47
+ Greek ell_Grek
48
+ English eng_Latn
49
+ Esperanto epo_Latn
50
+ Estonian est_Latn
51
+ Basque eus_Latn
52
+ Ewe ewe_Latn
53
+ Faroese fao_Latn
54
+ Fijian fij_Latn
55
+ Finnish fin_Latn
56
+ Fon fon_Latn
57
+ French fra_Latn
58
+ Friulian fur_Latn
59
+ Nigerian Fulfulde fuv_Latn
60
+ Scottish Gaelic gla_Latn
61
+ Irish gle_Latn
62
+ Galician glg_Latn
63
+ Guarani grn_Latn
64
+ Gujarati guj_Gujr
65
+ Haitian Creole hat_Latn
66
+ Hausa hau_Latn
67
+ Hebrew heb_Hebr
68
+ Hindi hin_Deva
69
+ Chhattisgarhi hne_Deva
70
+ Croatian hrv_Latn
71
+ Hungarian hun_Latn
72
+ Armenian hye_Armn
73
+ Igbo ibo_Latn
74
+ Ilocano ilo_Latn
75
+ Indonesian ind_Latn
76
+ Icelandic isl_Latn
77
+ Italian ita_Latn
78
+ Javanese jav_Latn
79
+ Japanese jpn_Jpan
80
+ Kabyle kab_Latn
81
+ Jingpho kac_Latn
82
+ Kamba kam_Latn
83
+ Kannada kan_Knda
84
+ Kashmiri (Arabic script) kas_Arab
85
+ Kashmiri (Devanagari script) kas_Deva
86
+ Georgian kat_Geor
87
+ Central Kanuri (Arabic script) knc_Arab
88
+ Central Kanuri (Latin script) knc_Latn
89
+ Kazakh kaz_Cyrl
90
+ Kabiyè kbp_Latn
91
+ Kabuverdianu kea_Latn
92
+ Khmer khm_Khmr
93
+ Kikuyu kik_Latn
94
+ Kinyarwanda kin_Latn
95
+ Kyrgyz kir_Cyrl
96
+ Kimbundu kmb_Latn
97
+ Northern Kurdish kmr_Latn
98
+ Kikongo kon_Latn
99
+ Korean kor_Hang
100
+ Lao lao_Laoo
101
+ Ligurian lij_Latn
102
+ Limburgish lim_Latn
103
+ Lingala lin_Latn
104
+ Lithuanian lit_Latn
105
+ Lombard lmo_Latn
106
+ Latgalian ltg_Latn
107
+ Luxembourgish ltz_Latn
108
+ Luba-Kasai lua_Latn
109
+ Ganda lug_Latn
110
+ Luo luo_Latn
111
+ Mizo lus_Latn
112
+ Standard Latvian lvs_Latn
113
+ Magahi mag_Deva
114
+ Maithili mai_Deva
115
+ Malayalam mal_Mlym
116
+ Marathi mar_Deva
117
+ Minangkabau (Arabic script) min_Arab
118
+ Minangkabau (Latin script) min_Latn
119
+ Macedonian mkd_Cyrl
120
+ Plateau Malagasy plt_Latn
121
+ Maltese mlt_Latn
122
+ Meitei (Bengali script) mni_Beng
123
+ Halh Mongolian khk_Cyrl
124
+ Mossi mos_Latn
125
+ Maori mri_Latn
126
+ Burmese mya_Mymr
127
+ Dutch nld_Latn
128
+ Norwegian Nynorsk nno_Latn
129
+ Norwegian Bokmål nob_Latn
130
+ Nepali npi_Deva
131
+ Northern Sotho nso_Latn
132
+ Nuer nus_Latn
133
+ Nyanja nya_Latn
134
+ Occitan oci_Latn
135
+ West Central Oromo gaz_Latn
136
+ Odia ory_Orya
137
+ Pangasinan pag_Latn
138
+ Eastern Panjabi pan_Guru
139
+ Papiamento pap_Latn
140
+ Western Persian pes_Arab
141
+ Polish pol_Latn
142
+ Portuguese por_Latn
143
+ Dari prs_Arab
144
+ Southern Pashto pbt_Arab
145
+ Ayacucho Quechua quy_Latn
146
+ Romanian ron_Latn
147
+ Rundi run_Latn
148
+ Russian rus_Cyrl
149
+ Sango sag_Latn
150
+ Sanskrit san_Deva
151
+ Santali sat_Olck
152
+ Sicilian scn_Latn
153
+ Shan shn_Mymr
154
+ Sinhala sin_Sinh
155
+ Slovak slk_Latn
156
+ Slovenian slv_Latn
157
+ Samoan smo_Latn
158
+ Shona sna_Latn
159
+ Sindhi snd_Arab
160
+ Somali som_Latn
161
+ Southern Sotho sot_Latn
162
+ Spanish spa_Latn
163
+ Tosk Albanian als_Latn
164
+ Sardinian srd_Latn
165
+ Serbian srp_Cyrl
166
+ Swati ssw_Latn
167
+ Sundanese sun_Latn
168
+ Swedish swe_Latn
169
+ Swahili swh_Latn
170
+ Silesian szl_Latn
171
+ Tamil tam_Taml
172
+ Tatar tat_Cyrl
173
+ Telugu tel_Telu
174
+ Tajik tgk_Cyrl
175
+ Tagalog tgl_Latn
176
+ Thai tha_Thai
177
+ Tigrinya tir_Ethi
178
+ Tamasheq (Latin script) taq_Latn
179
+ Tamasheq (Tifinagh script) taq_Tfng
180
+ Tok Pisin tpi_Latn
181
+ Tswana tsn_Latn
182
+ Tsonga tso_Latn
183
+ Turkmen tuk_Latn
184
+ Tumbuka tum_Latn
185
+ Turkish tur_Latn
186
+ Twi twi_Latn
187
+ Central Atlas Tamazight tzm_Tfng
188
+ Uyghur uig_Arab
189
+ Ukrainian ukr_Cyrl
190
+ Umbundu umb_Latn
191
+ Urdu urd_Arab
192
+ Northern Uzbek uzn_Latn
193
+ Venetian vec_Latn
194
+ Vietnamese vie_Latn
195
+ Waray war_Latn
196
+ Wolof wol_Latn
197
+ Xhosa xho_Latn
198
+ Eastern Yiddish ydd_Hebr
199
+ Yoruba yor_Latn
200
+ Yue Chinese yue_Hant
201
+ Chinese (Simplified) zho_Hans
202
+ Chinese (Traditional) zho_Hant
203
+ Standard Malay zsm_Latn
204
+ Zulu zul_Latn'''
205
+
206
+ codes_as_string = codes_as_string.split('\n')
207
+
208
+ flores_codes = {}
209
+ for code in codes_as_string:
210
+ lang, lang_code = code.split('\t')
211
+ flores_codes[lang] = lang_code
spaces/0x876/Yotta_Mix/README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: CompVis Stable Diffusion V1 4
3
+ emoji: 📉
4
+ colorFrom: pink
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 3.39.0
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0x876/Yotta_Mix/app.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ import gradio as gr
2
+
3
+ gr.Interface.load("models/CompVis/stable-diffusion-v1-4").launch()
spaces/0x90e/ESRGAN-MANGA/ESRGAN/architecture.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ import ESRGAN.block as B
5
+
6
+ class RRDB_Net(nn.Module):
7
+ def __init__(self, in_nc, out_nc, nf, nb, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', \
8
+ mode='CNA', res_scale=1, upsample_mode='upconv'):
9
+ super(RRDB_Net, self).__init__()
10
+ n_upscale = int(math.log(upscale, 2))
11
+ if upscale == 3:
12
+ n_upscale = 1
13
+
14
+ fea_conv = B.conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None)
15
+ rb_blocks = [B.RRDB(nf, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
16
+ norm_type=norm_type, act_type=act_type, mode='CNA') for _ in range(nb)]
17
+ LR_conv = B.conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode)
18
+
19
+ if upsample_mode == 'upconv':
20
+ upsample_block = B.upconv_blcok
21
+ elif upsample_mode == 'pixelshuffle':
22
+ upsample_block = B.pixelshuffle_block
23
+ else:
24
+ raise NotImplementedError('upsample mode [%s] is not found' % upsample_mode)
25
+ if upscale == 3:
26
+ upsampler = upsample_block(nf, nf, 3, act_type=act_type)
27
+ else:
28
+ upsampler = [upsample_block(nf, nf, act_type=act_type) for _ in range(n_upscale)]
29
+ HR_conv0 = B.conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type)
30
+ HR_conv1 = B.conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None)
31
+
32
+ self.model = B.sequential(fea_conv, B.ShortcutBlock(B.sequential(*rb_blocks, LR_conv)),\
33
+ *upsampler, HR_conv0, HR_conv1)
34
+
35
+ def forward(self, x):
36
+ x = self.model(x)
37
+ return x
spaces/0x90e/ESRGAN-MANGA/ESRGAN/block.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+ import torch
3
+ import torch.nn as nn
4
+
5
+ ####################
6
+ # Basic blocks
7
+ ####################
8
+
9
+
10
+ def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1):
11
+ # helper selecting activation
12
+ # neg_slope: for leakyrelu and init of prelu
13
+ # n_prelu: for p_relu num_parameters
14
+ act_type = act_type.lower()
15
+ if act_type == 'relu':
16
+ layer = nn.ReLU(inplace)
17
+ elif act_type == 'leakyrelu':
18
+ layer = nn.LeakyReLU(neg_slope, inplace)
19
+ elif act_type == 'prelu':
20
+ layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
21
+ else:
22
+ raise NotImplementedError('activation layer [%s] is not found' % act_type)
23
+ return layer
24
+
25
+
26
+ def norm(norm_type, nc):
27
+ # helper selecting normalization layer
28
+ norm_type = norm_type.lower()
29
+ if norm_type == 'batch':
30
+ layer = nn.BatchNorm2d(nc, affine=True)
31
+ elif norm_type == 'instance':
32
+ layer = nn.InstanceNorm2d(nc, affine=False)
33
+ else:
34
+ raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
35
+ return layer
36
+
37
+
38
+ def pad(pad_type, padding):
39
+ # helper selecting padding layer
40
+ # if padding is 'zero', do by conv layers
41
+ pad_type = pad_type.lower()
42
+ if padding == 0:
43
+ return None
44
+ if pad_type == 'reflect':
45
+ layer = nn.ReflectionPad2d(padding)
46
+ elif pad_type == 'replicate':
47
+ layer = nn.ReplicationPad2d(padding)
48
+ else:
49
+ raise NotImplementedError('padding layer [%s] is not implemented' % pad_type)
50
+ return layer
51
+
52
+
53
+ def get_valid_padding(kernel_size, dilation):
54
+ kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
55
+ padding = (kernel_size - 1) // 2
56
+ return padding
57
+
58
+
59
+ class ConcatBlock(nn.Module):
60
+ # Concat the output of a submodule to its input
61
+ def __init__(self, submodule):
62
+ super(ConcatBlock, self).__init__()
63
+ self.sub = submodule
64
+
65
+ def forward(self, x):
66
+ output = torch.cat((x, self.sub(x)), dim=1)
67
+ return output
68
+
69
+ def __repr__(self):
70
+ tmpstr = 'Identity .. \n|'
71
+ modstr = self.sub.__repr__().replace('\n', '\n|')
72
+ tmpstr = tmpstr + modstr
73
+ return tmpstr
74
+
75
+
76
+ class ShortcutBlock(nn.Module):
77
+ #Elementwise sum the output of a submodule to its input
78
+ def __init__(self, submodule):
79
+ super(ShortcutBlock, self).__init__()
80
+ self.sub = submodule
81
+
82
+ def forward(self, x):
83
+ output = x + self.sub(x)
84
+ return output
85
+
86
+ def __repr__(self):
87
+ tmpstr = 'Identity + \n|'
88
+ modstr = self.sub.__repr__().replace('\n', '\n|')
89
+ tmpstr = tmpstr + modstr
90
+ return tmpstr
91
+
92
+
93
+ def sequential(*args):
94
+ # Flatten Sequential. It unwraps nn.Sequential.
95
+ if len(args) == 1:
96
+ if isinstance(args[0], OrderedDict):
97
+ raise NotImplementedError('sequential does not support OrderedDict input.')
98
+ return args[0] # No sequential is needed.
99
+ modules = []
100
+ for module in args:
101
+ if isinstance(module, nn.Sequential):
102
+ for submodule in module.children():
103
+ modules.append(submodule)
104
+ elif isinstance(module, nn.Module):
105
+ modules.append(module)
106
+ return nn.Sequential(*modules)
107
+
108
+
109
+ def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True,
110
+ pad_type='zero', norm_type=None, act_type='relu', mode='CNA'):
111
+ """
112
+ Conv layer with padding, normalization, activation
113
+ mode: CNA --> Conv -> Norm -> Act
114
+ NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
115
+ """
116
+ assert mode in ['CNA', 'NAC', 'CNAC'], 'Wong conv mode [%s]' % mode
117
+ padding = get_valid_padding(kernel_size, dilation)
118
+ p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
119
+ padding = padding if pad_type == 'zero' else 0
120
+
121
+ c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, \
122
+ dilation=dilation, bias=bias, groups=groups)
123
+ a = act(act_type) if act_type else None
124
+ if 'CNA' in mode:
125
+ n = norm(norm_type, out_nc) if norm_type else None
126
+ return sequential(p, c, n, a)
127
+ elif mode == 'NAC':
128
+ if norm_type is None and act_type is not None:
129
+ a = act(act_type, inplace=False)
130
+ # Important!
131
+ # input----ReLU(inplace)----Conv--+----output
132
+ # |________________________|
133
+ # inplace ReLU will modify the input, therefore wrong output
134
+ n = norm(norm_type, in_nc) if norm_type else None
135
+ return sequential(n, a, p, c)
136
+
137
+
138
+ ####################
139
+ # Useful blocks
140
+ ####################
141
+
142
+
143
+ class ResNetBlock(nn.Module):
144
+ """
145
+ ResNet Block, 3-3 style
146
+ with extra residual scaling used in EDSR
147
+ (Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17)
148
+ """
149
+
150
+ def __init__(self, in_nc, mid_nc, out_nc, kernel_size=3, stride=1, dilation=1, groups=1, \
151
+ bias=True, pad_type='zero', norm_type=None, act_type='relu', mode='CNA', res_scale=1):
152
+ super(ResNetBlock, self).__init__()
153
+ conv0 = conv_block(in_nc, mid_nc, kernel_size, stride, dilation, groups, bias, pad_type, \
154
+ norm_type, act_type, mode)
155
+ if mode == 'CNA':
156
+ act_type = None
157
+ if mode == 'CNAC': # Residual path: |-CNAC-|
158
+ act_type = None
159
+ norm_type = None
160
+ conv1 = conv_block(mid_nc, out_nc, kernel_size, stride, dilation, groups, bias, pad_type, \
161
+ norm_type, act_type, mode)
162
+ # if in_nc != out_nc:
163
+ # self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \
164
+ # None, None)
165
+ # print('Need a projecter in ResNetBlock.')
166
+ # else:
167
+ # self.project = lambda x:x
168
+ self.res = sequential(conv0, conv1)
169
+ self.res_scale = res_scale
170
+
171
+ def forward(self, x):
172
+ res = self.res(x).mul(self.res_scale)
173
+ return x + res
174
+
175
+
176
+ class ResidualDenseBlock_5C(nn.Module):
177
+ """
178
+ Residual Dense Block
179
+ style: 5 convs
180
+ The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
181
+ """
182
+
183
+ def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
184
+ norm_type=None, act_type='leakyrelu', mode='CNA'):
185
+ super(ResidualDenseBlock_5C, self).__init__()
186
+ # gc: growth channel, i.e. intermediate channels
187
+ self.conv1 = conv_block(nc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
188
+ norm_type=norm_type, act_type=act_type, mode=mode)
189
+ self.conv2 = conv_block(nc+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
190
+ norm_type=norm_type, act_type=act_type, mode=mode)
191
+ self.conv3 = conv_block(nc+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
192
+ norm_type=norm_type, act_type=act_type, mode=mode)
193
+ self.conv4 = conv_block(nc+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
194
+ norm_type=norm_type, act_type=act_type, mode=mode)
195
+ if mode == 'CNA':
196
+ last_act = None
197
+ else:
198
+ last_act = act_type
199
+ self.conv5 = conv_block(nc+4*gc, nc, 3, stride, bias=bias, pad_type=pad_type, \
200
+ norm_type=norm_type, act_type=last_act, mode=mode)
201
+
202
+ def forward(self, x):
203
+ x1 = self.conv1(x)
204
+ x2 = self.conv2(torch.cat((x, x1), 1))
205
+ x3 = self.conv3(torch.cat((x, x1, x2), 1))
206
+ x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
207
+ x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
208
+ return x5.mul(0.2) + x
209
+
210
+
211
+ class RRDB(nn.Module):
212
+ """
213
+ Residual in Residual Dense Block
214
+ """
215
+
216
+ def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
217
+ norm_type=None, act_type='leakyrelu', mode='CNA'):
218
+ super(RRDB, self).__init__()
219
+ self.RDB1 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
220
+ norm_type, act_type, mode)
221
+ self.RDB2 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
222
+ norm_type, act_type, mode)
223
+ self.RDB3 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
224
+ norm_type, act_type, mode)
225
+
226
+ def forward(self, x):
227
+ out = self.RDB1(x)
228
+ out = self.RDB2(out)
229
+ out = self.RDB3(out)
230
+ return out.mul(0.2) + x
231
+
232
+
233
+ ####################
234
+ # Upsampler
235
+ ####################
236
+
237
+
238
+ def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
239
+ pad_type='zero', norm_type=None, act_type='relu'):
240
+ """
241
+ Pixel shuffle layer
242
+ (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
243
+ Neural Network, CVPR17)
244
+ """
245
+ conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias,
246
+ pad_type=pad_type, norm_type=None, act_type=None)
247
+ pixel_shuffle = nn.PixelShuffle(upscale_factor)
248
+
249
+ n = norm(norm_type, out_nc) if norm_type else None
250
+ a = act(act_type) if act_type else None
251
+ return sequential(conv, pixel_shuffle, n, a)
252
+
253
+
254
+ def upconv_blcok(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
255
+ pad_type='zero', norm_type=None, act_type='relu', mode='nearest'):
256
+ # Up conv
257
+ # described in https://distill.pub/2016/deconv-checkerboard/
258
+ upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
259
+ conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias,
260
+ pad_type=pad_type, norm_type=norm_type, act_type=act_type)
261
+ return sequential(upsample, conv)
spaces/0x90e/ESRGAN-MANGA/ESRGAN_plus/architecture.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ import ESRGAN_plus.block as B
5
+
6
+
7
+ class RRDB_Net(nn.Module):
8
+ def __init__(self, in_nc, out_nc, nf, nb, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', \
9
+ mode='CNA', res_scale=1, upsample_mode='upconv'):
10
+ super(RRDB_Net, self).__init__()
11
+ n_upscale = int(math.log(upscale, 2))
12
+ if upscale == 3:
13
+ n_upscale = 1
14
+
15
+ fea_conv = B.conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None)
16
+ rb_blocks = [B.RRDB(nf, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
17
+ norm_type=norm_type, act_type=act_type, mode='CNA') for _ in range(nb)]
18
+ LR_conv = B.conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode)
19
+
20
+ if upsample_mode == 'upconv':
21
+ upsample_block = B.upconv_blcok
22
+ elif upsample_mode == 'pixelshuffle':
23
+ upsample_block = B.pixelshuffle_block
24
+ else:
25
+ raise NotImplementedError('upsample mode [%s] is not found' % upsample_mode)
26
+ if upscale == 3:
27
+ upsampler = upsample_block(nf, nf, 3, act_type=act_type)
28
+ else:
29
+ upsampler = [upsample_block(nf, nf, act_type=act_type) for _ in range(n_upscale)]
30
+ HR_conv0 = B.conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type)
31
+ HR_conv1 = B.conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None)
32
+
33
+ self.model = B.sequential(fea_conv, B.ShortcutBlock(B.sequential(*rb_blocks, LR_conv)),\
34
+ *upsampler, HR_conv0, HR_conv1)
35
+
36
+ def forward(self, x):
37
+ x = self.model(x)
38
+ return x
spaces/0x90e/ESRGAN-MANGA/ESRGAN_plus/block.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+ import torch
3
+ import torch.nn as nn
4
+
5
+ ####################
6
+ # Basic blocks
7
+ ####################
8
+
9
+
10
+ def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1):
11
+ # helper selecting activation
12
+ # neg_slope: for leakyrelu and init of prelu
13
+ # n_prelu: for p_relu num_parameters
14
+ act_type = act_type.lower()
15
+ if act_type == 'relu':
16
+ layer = nn.ReLU(inplace)
17
+ elif act_type == 'leakyrelu':
18
+ layer = nn.LeakyReLU(neg_slope, inplace)
19
+ elif act_type == 'prelu':
20
+ layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
21
+ else:
22
+ raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type))
23
+ return layer
24
+
25
+
26
+ def norm(norm_type, nc):
27
+ # helper selecting normalization layer
28
+ norm_type = norm_type.lower()
29
+ if norm_type == 'batch':
30
+ layer = nn.BatchNorm2d(nc, affine=True)
31
+ elif norm_type == 'instance':
32
+ layer = nn.InstanceNorm2d(nc, affine=False)
33
+ else:
34
+ raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type))
35
+ return layer
36
+
37
+
38
+ def pad(pad_type, padding):
39
+ # helper selecting padding layer
40
+ # if padding is 'zero', do by conv layers
41
+ pad_type = pad_type.lower()
42
+ if padding == 0:
43
+ return None
44
+ if pad_type == 'reflect':
45
+ layer = nn.ReflectionPad2d(padding)
46
+ elif pad_type == 'replicate':
47
+ layer = nn.ReplicationPad2d(padding)
48
+ else:
49
+ raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type))
50
+ return layer
51
+
52
+
53
+ def get_valid_padding(kernel_size, dilation):
54
+ kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
55
+ padding = (kernel_size - 1) // 2
56
+ return padding
57
+
58
+
59
+ class ConcatBlock(nn.Module):
60
+ # Concat the output of a submodule to its input
61
+ def __init__(self, submodule):
62
+ super(ConcatBlock, self).__init__()
63
+ self.sub = submodule
64
+
65
+ def forward(self, x):
66
+ output = torch.cat((x, self.sub(x)), dim=1)
67
+ return output
68
+
69
+ def __repr__(self):
70
+ tmpstr = 'Identity .. \n|'
71
+ modstr = self.sub.__repr__().replace('\n', '\n|')
72
+ tmpstr = tmpstr + modstr
73
+ return tmpstr
74
+
75
+
76
+ class ShortcutBlock(nn.Module):
77
+ #Elementwise sum the output of a submodule to its input
78
+ def __init__(self, submodule):
79
+ super(ShortcutBlock, self).__init__()
80
+ self.sub = submodule
81
+
82
+ def forward(self, x):
83
+ output = x + self.sub(x)
84
+ return output
85
+
86
+ def __repr__(self):
87
+ tmpstr = 'Identity + \n|'
88
+ modstr = self.sub.__repr__().replace('\n', '\n|')
89
+ tmpstr = tmpstr + modstr
90
+ return tmpstr
91
+
92
+
93
+ def sequential(*args):
94
+ # Flatten Sequential. It unwraps nn.Sequential.
95
+ if len(args) == 1:
96
+ if isinstance(args[0], OrderedDict):
97
+ raise NotImplementedError('sequential does not support OrderedDict input.')
98
+ return args[0] # No sequential is needed.
99
+ modules = []
100
+ for module in args:
101
+ if isinstance(module, nn.Sequential):
102
+ for submodule in module.children():
103
+ modules.append(submodule)
104
+ elif isinstance(module, nn.Module):
105
+ modules.append(module)
106
+ return nn.Sequential(*modules)
107
+
108
+
109
+ def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True, \
110
+ pad_type='zero', norm_type=None, act_type='relu', mode='CNA'):
111
+ '''
112
+ Conv layer with padding, normalization, activation
113
+ mode: CNA --> Conv -> Norm -> Act
114
+ NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
115
+ '''
116
+ assert mode in ['CNA', 'NAC', 'CNAC'], 'Wong conv mode [{:s}]'.format(mode)
117
+ padding = get_valid_padding(kernel_size, dilation)
118
+ p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
119
+ padding = padding if pad_type == 'zero' else 0
120
+
121
+ c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, \
122
+ dilation=dilation, bias=bias, groups=groups)
123
+ a = act(act_type) if act_type else None
124
+ if 'CNA' in mode:
125
+ n = norm(norm_type, out_nc) if norm_type else None
126
+ return sequential(p, c, n, a)
127
+ elif mode == 'NAC':
128
+ if norm_type is None and act_type is not None:
129
+ a = act(act_type, inplace=False)
130
+ # Important!
131
+ # input----ReLU(inplace)----Conv--+----output
132
+ # |________________________|
133
+ # inplace ReLU will modify the input, therefore wrong output
134
+ n = norm(norm_type, in_nc) if norm_type else None
135
+ return sequential(n, a, p, c)
136
+
137
+
138
+ def conv1x1(in_planes, out_planes, stride=1):
139
+ """1x1 convolution"""
140
+ return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
141
+
142
+
143
+ class GaussianNoise(nn.Module):
144
+ def __init__(self, sigma=0.1, is_relative_detach=False):
145
+ super().__init__()
146
+ self.sigma = sigma
147
+ self.is_relative_detach = is_relative_detach
148
+ self.noise = torch.tensor(0, dtype=torch.float).to(torch.device('cuda'))
149
+
150
+ def forward(self, x):
151
+ if self.training and self.sigma != 0:
152
+ scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
153
+ sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
154
+ x = x + sampled_noise
155
+ return x
156
+
157
+
158
+ ####################
159
+ # Useful blocks
160
+ ####################
161
+
162
+
163
+ class ResNetBlock(nn.Module):
164
+ '''
165
+ ResNet Block, 3-3 style
166
+ with extra residual scaling used in EDSR
167
+ (Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17)
168
+ '''
169
+
170
+ def __init__(self, in_nc, mid_nc, out_nc, kernel_size=3, stride=1, dilation=1, groups=1, \
171
+ bias=True, pad_type='zero', norm_type=None, act_type='relu', mode='CNA', res_scale=1):
172
+ super(ResNetBlock, self).__init__()
173
+ conv0 = conv_block(in_nc, mid_nc, kernel_size, stride, dilation, groups, bias, pad_type, \
174
+ norm_type, act_type, mode)
175
+ if mode == 'CNA':
176
+ act_type = None
177
+ if mode == 'CNAC': # Residual path: |-CNAC-|
178
+ act_type = None
179
+ norm_type = None
180
+ conv1 = conv_block(mid_nc, out_nc, kernel_size, stride, dilation, groups, bias, pad_type, \
181
+ norm_type, act_type, mode)
182
+ # if in_nc != out_nc:
183
+ # self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \
184
+ # None, None)
185
+ # print('Need a projecter in ResNetBlock.')
186
+ # else:
187
+ # self.project = lambda x:x
188
+ self.res = sequential(conv0, conv1)
189
+ self.res_scale = res_scale
190
+
191
+ def forward(self, x):
192
+ res = self.res(x).mul(self.res_scale)
193
+ return x + res
194
+
195
+
196
+ class ResidualDenseBlock_5C(nn.Module):
197
+ '''
198
+ Residual Dense Block
199
+ style: 5 convs
200
+ The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
201
+ '''
202
+
203
+ def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
204
+ norm_type=None, act_type='leakyrelu', mode='CNA', noise_input=True):
205
+ super(ResidualDenseBlock_5C, self).__init__()
206
+ # gc: growth channel, i.e. intermediate channels
207
+ self.noise = GaussianNoise() if noise_input else None
208
+ self.conv1x1 = conv1x1(nc, gc)
209
+ self.conv1 = conv_block(nc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
210
+ norm_type=norm_type, act_type=act_type, mode=mode)
211
+ self.conv2 = conv_block(nc+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
212
+ norm_type=norm_type, act_type=act_type, mode=mode)
213
+ self.conv3 = conv_block(nc+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
214
+ norm_type=norm_type, act_type=act_type, mode=mode)
215
+ self.conv4 = conv_block(nc+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
216
+ norm_type=norm_type, act_type=act_type, mode=mode)
217
+ if mode == 'CNA':
218
+ last_act = None
219
+ else:
220
+ last_act = act_type
221
+ self.conv5 = conv_block(nc+4*gc, nc, 3, stride, bias=bias, pad_type=pad_type, \
222
+ norm_type=norm_type, act_type=last_act, mode=mode)
223
+
224
+ def forward(self, x):
225
+ x1 = self.conv1(x)
226
+ x2 = self.conv2(torch.cat((x, x1), 1))
227
+ x2 = x2 + self.conv1x1(x)
228
+ x3 = self.conv3(torch.cat((x, x1, x2), 1))
229
+ x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
230
+ x4 = x4 + x2
231
+ x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
232
+ return self.noise(x5.mul(0.2) + x)
233
+
234
+
235
+ class RRDB(nn.Module):
236
+ '''
237
+ Residual in Residual Dense Block
238
+ (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
239
+ '''
240
+
241
+ def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
242
+ norm_type=None, act_type='leakyrelu', mode='CNA'):
243
+ super(RRDB, self).__init__()
244
+ self.RDB1 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
245
+ norm_type, act_type, mode)
246
+ self.RDB2 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
247
+ norm_type, act_type, mode)
248
+ self.RDB3 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
249
+ norm_type, act_type, mode)
250
+ self.noise = GaussianNoise()
251
+
252
+ def forward(self, x):
253
+ out = self.RDB1(x)
254
+ out = self.RDB2(out)
255
+ out = self.RDB3(out)
256
+ return self.noise(out.mul(0.2) + x)
257
+
258
+
259
+ ####################
260
+ # Upsampler
261
+ ####################
262
+
263
+
264
+ def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, \
265
+ pad_type='zero', norm_type=None, act_type='relu'):
266
+ '''
267
+ Pixel shuffle layer
268
+ (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
269
+ Neural Network, CVPR17)
270
+ '''
271
+ conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias, \
272
+ pad_type=pad_type, norm_type=None, act_type=None)
273
+ pixel_shuffle = nn.PixelShuffle(upscale_factor)
274
+
275
+ n = norm(norm_type, out_nc) if norm_type else None
276
+ a = act(act_type) if act_type else None
277
+ return sequential(conv, pixel_shuffle, n, a)
278
+
279
+
280
+ def upconv_blcok(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, \
281
+ pad_type='zero', norm_type=None, act_type='relu', mode='nearest'):
282
+ # Up conv
283
+ # described in https://distill.pub/2016/deconv-checkerboard/
284
+ upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
285
+ conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias, \
286
+ pad_type=pad_type, norm_type=norm_type, act_type=act_type)
287
+ return sequential(upsample, conv)
spaces/0x90e/ESRGAN-MANGA/ESRGANer.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageChops
2
+ import numpy as np
3
+ import cv2 as cv
4
+ import math
5
+ import torch
6
+ from torch.nn import functional as F
7
+
8
+ """
9
+ Borrowed and adapted from https://github.com/xinntao/Real-ESRGAN/blob/master/realesrgan/utils.py
10
+ Thank you xinntao!
11
+ """
12
+ class ESRGANer():
13
+ """A helper class for upsampling images with ESRGAN.
14
+
15
+ Args:
16
+ scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
17
+ model (nn.Module): The defined network. Default: None.
18
+ tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
19
+ input images into tiles, and then process each of them. Finally, they will be merged into one image.
20
+ 0 denotes for do not use tile. Default: 500.
21
+ tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
22
+ pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
23
+ """
24
+
25
+ def __init__(self,
26
+ scale=4,
27
+ model=None,
28
+ tile=300,
29
+ tile_pad=10,
30
+ pre_pad=10
31
+ ):
32
+ self.scale = scale
33
+ self.tile_size = tile
34
+ self.tile_pad = tile_pad
35
+ self.pre_pad = pre_pad
36
+ self.mod_scale = None
37
+
38
+ self.model = model
39
+
40
+ def pre_process(self, img):
41
+ """Pre-process, such as pre-pad and mod pad, so that the images can be divisible
42
+ """
43
+ self.img = img
44
+
45
+ # pre_pad
46
+ if self.pre_pad != 0:
47
+ self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
48
+ # mod pad for divisible borders
49
+ if self.scale == 2:
50
+ self.mod_scale = 2
51
+ elif self.scale == 1:
52
+ self.mod_scale = 4
53
+ if self.mod_scale is not None:
54
+ self.mod_pad_h, self.mod_pad_w = 0, 0
55
+ _, _, h, w = self.img.size()
56
+ if (h % self.mod_scale != 0):
57
+ self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
58
+ if (w % self.mod_scale != 0):
59
+ self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
60
+ self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
61
+
62
+ def process(self):
63
+ # model inference
64
+ self.output = self.model(self.img)
65
+
66
+ def tile_process(self):
67
+ """It will first crop input images to tiles, and then process each tile.
68
+ Finally, all the processed tiles are merged into one images.
69
+
70
+ Modified from: https://github.com/ata4/esrgan-launcher
71
+ """
72
+ batch, channel, height, width = self.img.shape
73
+ output_height = height * self.scale
74
+ output_width = width * self.scale
75
+ output_shape = (batch, channel, output_height, output_width)
76
+
77
+ # start with black image
78
+ self.output = self.img.new_zeros(output_shape)
79
+ tiles_x = math.ceil(width / self.tile_size)
80
+ tiles_y = math.ceil(height / self.tile_size)
81
+
82
+ print("Image processing started...")
83
+
84
+ # loop over all tiles
85
+ for y in range(tiles_y):
86
+ for x in range(tiles_x):
87
+ # extract tile from input image
88
+ ofs_x = x * self.tile_size
89
+ ofs_y = y * self.tile_size
90
+ # input tile area on total image
91
+ input_start_x = ofs_x
92
+ input_end_x = min(ofs_x + self.tile_size, width)
93
+ input_start_y = ofs_y
94
+ input_end_y = min(ofs_y + self.tile_size, height)
95
+
96
+ # input tile area on total image with padding
97
+ input_start_x_pad = max(input_start_x - self.tile_pad, 0)
98
+ input_end_x_pad = min(input_end_x + self.tile_pad, width)
99
+ input_start_y_pad = max(input_start_y - self.tile_pad, 0)
100
+ input_end_y_pad = min(input_end_y + self.tile_pad, height)
101
+
102
+ # input tile dimensions
103
+ input_tile_width = input_end_x - input_start_x
104
+ input_tile_height = input_end_y - input_start_y
105
+ tile_idx = y * tiles_x + x + 1
106
+ input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
107
+
108
+ # upscale tile
109
+ try:
110
+ with torch.no_grad():
111
+ output_tile = self.model(input_tile)
112
+ except RuntimeError as error:
113
+ print('Error', error)
114
+ print(f'Processing tile {tile_idx}/{tiles_x * tiles_y}')
115
+
116
+ # output tile area on total image
117
+ output_start_x = input_start_x * self.scale
118
+ output_end_x = input_end_x * self.scale
119
+ output_start_y = input_start_y * self.scale
120
+ output_end_y = input_end_y * self.scale
121
+
122
+ # output tile area without padding
123
+ output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
124
+ output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
125
+ output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
126
+ output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
127
+
128
+ # put tile into output image
129
+ self.output[:, :, output_start_y:output_end_y,
130
+ output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
131
+ output_start_x_tile:output_end_x_tile]
132
+
133
+ print('All tiles processed, saving output image!')
134
+
135
+ def post_process(self):
136
+ # remove extra pad
137
+ if self.mod_scale is not None:
138
+ _, _, h, w = self.output.size()
139
+ self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
140
+ # remove prepad
141
+ if self.pre_pad != 0:
142
+ _, _, h, w = self.output.size()
143
+ self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
144
+ return self.output
145
+
146
+ @torch.no_grad()
147
+ def enhance(self, img):
148
+ self.pre_process(img)
149
+
150
+ if self.tile_size > 0:
151
+ self.tile_process()
152
+ else:
153
+ self.process()
154
+ output_img = self.post_process()
155
+
156
+ return output_img
spaces/0x90e/ESRGAN-MANGA/README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: ESRGAN MANGA
3
+ emoji: 🏃
4
+ colorFrom: red
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 3.12.0
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
spaces/0x90e/ESRGAN-MANGA/app.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import util
3
+ import process_image
4
+ from run_cmd import run_cmd
5
+
6
+ is_colab = util.is_google_colab()
7
+
8
+ css = '''
9
+ .file-preview {
10
+ overflow: hidden !important;
11
+ margin: 5px 0 !important;
12
+ padding: 0 10px !important;
13
+ }
14
+
15
+ .file-preview div div:nth-child(2) {
16
+ flex-grow: 1 !important;
17
+ }
18
+
19
+ .file-preview div div:nth-child(3) {
20
+ text-align: right !important;
21
+ padding: 0.5rem 0;
22
+ width: auto;
23
+ }
24
+
25
+ #preview_file .h-full.min-h-\[15rem\].flex.justify-center.items-center {
26
+ min-height: initial !important;
27
+ padding: 10px 0;
28
+ }
29
+
30
+ #preview_file a {
31
+ border-radius: 0.5rem;
32
+ padding-top: 0.5rem;
33
+ padding-bottom: 0.5rem;
34
+ padding-left: 1rem;
35
+ padding-right: 1rem;
36
+ font-size: 1rem;
37
+ line-height: 1.5rem;
38
+ font-weight: 600;
39
+ color: white;
40
+ background-color: gray;
41
+ }
42
+
43
+ .colab_img {
44
+ margin: 10px 0;
45
+ display: inline-block;
46
+ margin: 0 10px;
47
+ }
48
+ '''
49
+
50
+ title = "ESRGAN Upscaling With Custom Models"
51
+
52
+ with gr.Blocks(title=title, css=css) as demo:
53
+ gr.Markdown(
54
+ f"""
55
+ # {title}
56
+ This space uses old ESRGAN architecture to upscale images, using models made by the community.
57
+
58
+ Once the photo upscaled (*it can take a long time, this space only uses CPU*).
59
+ """)
60
+
61
+ gr.HTML(value="For faster upscaling using GPU: <a href='https://colab.research.google.com/drive/1QfOA6BBdL4NrUmx-9d-pjacxNfu81HQo#scrollTo=H7qo-6AWFbLH' target='_blank'><img class='colab_img' src='https://colab.research.google.com/assets/colab-badge.svg' alt='Open In Colab'></a> buy me a coffee (beer) if this helped 🍺😁")
62
+
63
+ gr.HTML(value="<a href='https://ko-fi.com/Y8Y7GVAAF' target='_blank' style='display:block;margin-bottom:5px'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>")
64
+
65
+ with gr.Box():
66
+ with gr.Row():
67
+ with gr.Column():
68
+ input_image = gr.Image(type="pil", label="Input")
69
+ upscale_size = gr.Radio(["x4", "x2"], label="Upscale by:", value="x4")
70
+ upscale_type = gr.Radio(["Manga", "Anime", "Photo", "General"], label="Select the type of picture you want to upscale:", value="Manga")
71
+
72
+ with gr.Row():
73
+ upscale_btn = gr.Button(value="Upscale", variant="primary")
74
+
75
+ with gr.Column():
76
+ output_image = gr.Image(type="filepath", interactive=False, label="Upscaled image", elem_id="preview_img")
77
+
78
+ with gr.Row():
79
+ out_file = gr.File(interactive=False, show_label=False, elem_id="preview_file")
80
+
81
+ gr.HTML(value="<p><a href='https://upscale.wiki/wiki/Model_Database'>Model Database</a></p>")
82
+
83
+ upscale_btn.click(process_image.inference, inputs=[input_image, upscale_size, upscale_type], outputs=[output_image, out_file])
84
+
85
+ demo.queue()
86
+ demo.launch(debug=is_colab, share=is_colab, inline=is_colab)
spaces/0x90e/ESRGAN-MANGA/inference.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import cv2
3
+ import numpy as np
4
+ import torch
5
+ import ESRGAN.architecture as esrgan
6
+ import ESRGAN_plus.architecture as esrgan_plus
7
+ from run_cmd import run_cmd
8
+ from ESRGANer import ESRGANer
9
+
10
+ def is_cuda():
11
+ if torch.cuda.is_available():
12
+ return True
13
+ else:
14
+ return False
15
+
16
+ model_type = sys.argv[2]
17
+
18
+ if model_type == "Anime":
19
+ model_path = "models/4x-AnimeSharp.pth"
20
+ if model_type == "Photo":
21
+ model_path = "models/4x_Valar_v1.pth"
22
+ else:
23
+ model_path = "models/4x_NMKD-Siax_200k.pth"
24
+
25
+ OUTPUT_PATH = sys.argv[1]
26
+ device = torch.device('cuda' if is_cuda() else 'cpu')
27
+
28
+ if model_type != "Photo":
29
+ model = esrgan.RRDB_Net(3, 3, 64, 23, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv')
30
+ else:
31
+ model = esrgan_plus.RRDB_Net(3, 3, 64, 23, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv')
32
+
33
+ if is_cuda():
34
+ print("Using GPU 🥶")
35
+ model.load_state_dict(torch.load(model_path), strict=True)
36
+ else:
37
+ print("Using CPU 😒")
38
+ model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=True)
39
+
40
+ model.eval()
41
+
42
+ for k, v in model.named_parameters():
43
+ v.requires_grad = False
44
+ model = model.to(device)
45
+
46
+ # Read image
47
+ img = cv2.imread(OUTPUT_PATH, cv2.IMREAD_COLOR)
48
+ img = img * 1.0 / 255
49
+ img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
50
+ img_LR = img.unsqueeze(0)
51
+ img_LR = img_LR.to(device)
52
+
53
+ upsampler = ESRGANer(model=model)
54
+ output = upsampler.enhance(img_LR)
55
+
56
+ output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
57
+ output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
58
+ output = (output * 255.0).round()
59
+ cv2.imwrite(OUTPUT_PATH, output, [int(cv2.IMWRITE_PNG_COMPRESSION), 5])
spaces/0x90e/ESRGAN-MANGA/inference_manga_v2.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import cv2
3
+ import numpy as np
4
+ import torch
5
+ import ESRGAN.architecture as arch
6
+ from ESRGANer import ESRGANer
7
+
8
+ def is_cuda():
9
+ if torch.cuda.is_available():
10
+ return True
11
+ else:
12
+ return False
13
+
14
+ model_path = 'models/4x_eula_digimanga_bw_v2_nc1_307k.pth'
15
+ OUTPUT_PATH = sys.argv[1]
16
+ device = torch.device('cuda' if is_cuda() else 'cpu')
17
+
18
+ model = arch.RRDB_Net(1, 1, 64, 23, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv')
19
+
20
+ if is_cuda():
21
+ print("Using GPU 🥶")
22
+ model.load_state_dict(torch.load(model_path), strict=True)
23
+ else:
24
+ print("Using CPU 😒")
25
+ model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=True)
26
+
27
+ model.eval()
28
+
29
+ for k, v in model.named_parameters():
30
+ v.requires_grad = False
31
+ model = model.to(device)
32
+
33
+ # Read image
34
+ img = cv2.imread(OUTPUT_PATH, cv2.IMREAD_GRAYSCALE)
35
+ img = img * 1.0 / 255
36
+ img = torch.from_numpy(img[np.newaxis, :, :]).float()
37
+ img_LR = img.unsqueeze(0)
38
+ img_LR = img_LR.to(device)
39
+
40
+ upsampler = ESRGANer(model=model)
41
+ output = upsampler.enhance(img_LR)
42
+
43
+ output = output.squeeze(dim=0).float().cpu().clamp_(0, 1).numpy()
44
+ output = np.transpose(output, (1, 2, 0))
45
+ output = (output * 255.0).round()
46
+ cv2.imwrite(OUTPUT_PATH, output, [int(cv2.IMWRITE_PNG_COMPRESSION), 5])
spaces/0x90e/ESRGAN-MANGA/process_image.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from run_cmd import run_cmd
4
+ from PIL import Image
5
+ import tempfile
6
+ import uuid
7
+ import numpy as np
8
+
9
+ temp_path = tempfile.gettempdir()
10
+
11
+ def inference(img, size, type):
12
+ if not img:
13
+ raise Exception("No image!")
14
+
15
+ OUTPUT_PATH = os.path.join(temp_path, f"{str(uuid.uuid4())[0:12]}_{size}.png")
16
+
17
+ img.save(OUTPUT_PATH)
18
+
19
+ if type == "Manga":
20
+ run_cmd(f"python inference_manga_v2.py {OUTPUT_PATH}")
21
+ else:
22
+ run_cmd(f"python inference.py {OUTPUT_PATH} {type}")
23
+
24
+ img_out = Image.open(OUTPUT_PATH)
25
+
26
+ if size == "x2":
27
+ img_out = img_out.resize((img_out.width // 2, img_out.height // 2), resample=Image.BICUBIC)
28
+
29
+ img_out = np.array(img_out)
30
+
31
+ return img_out, gr.File.update(value=OUTPUT_PATH)
spaces/0x90e/ESRGAN-MANGA/run_cmd.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from subprocess import call
2
+ import sys
3
+
4
+ def run_cmd(command):
5
+ try:
6
+ call(command, shell=True)
7
+ except KeyboardInterrupt:
8
+ print("Process interrupted")
9
+ sys.exit(1)
spaces/0x90e/ESRGAN-MANGA/util.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ def is_google_colab():
4
+ if os.getenv("COLAB_RELEASE_TAG"):
5
+ return True
6
+ return False
spaces/0xAnders/ama-bot/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Ama Bot
3
+ emoji: 🌍
4
+ colorFrom: gray
5
+ colorTo: yellow
6
+ sdk: gradio
7
+ sdk_version: 3.32.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0xAnders/ama-bot/app.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ import git
4
+
5
+ git.Git().clone("https://github.com/Jesse-zj/bobo-test.git")
6
+
7
+ from llama_index import SimpleDirectoryReader, GPTListIndex, readers, GPTVectorStoreIndex, LLMPredictor, PromptHelper,ServiceContext
8
+ from llama_index import StorageContext, load_index_from_storage
9
+ from langchain import OpenAI
10
+ import sys
11
+ import os
12
+ from IPython.display import Markdown, display
13
+
14
+ openai_api_key = os.environ['OPENAI_API_KEY']
15
+
16
+ def construct_index(directory_path):
17
+ # set maximum input size
18
+ max_input_size = 4096
19
+ # set number of output tokens
20
+ num_outputs = 1000
21
+ # set maximum chunk overlap
22
+ max_chunk_overlap = 30
23
+ # set chunk size limit
24
+ chunk_size_limit = 600
25
+
26
+ # define LLM
27
+ llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="text-davinci-003", max_tokens=num_outputs))
28
+ prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)
29
+
30
+ documents = SimpleDirectoryReader(directory_path).load_data()
31
+
32
+ service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
33
+
34
+ index = GPTVectorStoreIndex.from_documents(
35
+ documents, service_context=service_context
36
+ )
37
+
38
+ index.storage_context.persist('index.json')
39
+
40
+ return index
41
+
42
+ def ask_ai(query):
43
+ # set maximum input size
44
+ max_input_size = 4096
45
+ # set number of output tokens
46
+ num_outputs = 1000
47
+ # set maximum chunk overlap
48
+ max_chunk_overlap = 30
49
+ # set chunk size limit
50
+ chunk_size_limit = 600
51
+
52
+ # define LLM
53
+ llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="text-davinci-003", max_tokens=num_outputs))
54
+ prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)
55
+
56
+ service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
57
+ # rebuild storage context
58
+ storage_context = StorageContext.from_defaults(persist_dir="index.json")
59
+ # load index
60
+ index = load_index_from_storage(storage_context, service_context=service_context)
61
+
62
+ query_engine = index.as_query_engine()
63
+ response = query_engine.query(query)
64
+ return str(response)
65
+
66
+
67
+ construct_index('bobo-test')
68
+
69
+ iface = gr.Interface(fn=ask_ai, inputs="textbox", outputs="text")
70
+ iface.launch()
spaces/0xHacked/zkProver/Dockerfile ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM nvidia/cuda:12.1.1-devel-ubuntu20.04
2
+ ARG DEBIAN_FRONTEND=noninteractive
3
+ ENV TZ=Asia/Hong_Kong
4
+ RUN apt-get update && apt-get install --no-install-recommends -y tzdata python3.9 python3.9-dev python3.9-venv build-essential && \
5
+ apt-get clean && rm -rf /var/lib/apt/lists/*
6
+
7
+ RUN useradd -m -u 1000 user
8
+ USER user
9
+
10
+ ENV HOME=/home/user \
11
+ PATH=/home/user/.local/bin:$PATH
12
+
13
+ WORKDIR $HOME/app
14
+ COPY --chown=user . $HOME/app
15
+
16
+ RUN python3.9 -m venv $HOME/app/venv && $HOME/app/venv/bin/pip install --no-cache-dir --upgrade pip
17
+ RUN $HOME/app/venv/bin/pip install --no-cache-dir --upgrade -r requirements.txt
18
+
19
+ RUN cd $HOME/app && chmod +x $HOME/app/bin/*
20
+
21
+ CMD ["/home/user/app/venv/bin/python", "app.py"]
spaces/0xHacked/zkProver/README.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: ZkProver
3
+ emoji: ⚡
4
+ colorFrom: red
5
+ colorTo: yellow
6
+ sdk: docker
7
+ pinned: false
8
+ license: bsd
9
+ ---
10
+
11
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0xHacked/zkProver/app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tempfile
3
+ import uuid
4
+ import subprocess
5
+ import gradio as gr
6
+
7
+
8
+ BIN = os.path.join(os.path.dirname(__file__), "bin", "zkProver_linux_gpu")
9
+
10
+
11
+ def run_zk_prover(network, block_number, contract, file):
12
+ if not contract:
13
+ raise gr.Error("contract is required")
14
+ if not file:
15
+ raise gr.Error('file is required')
16
+ args = [
17
+ BIN,
18
+ "evm", "-r", "https://rpc.flashbots.net/"
19
+ ]
20
+ if block_number:
21
+ args.extend(["-b", str(block_number)])
22
+ proof_path = "/tmp/" + str(uuid.uuid4()) + ".bin"
23
+ args.extend(["-o", proof_path])
24
+
25
+ args.append(file.name + ":" + contract)
26
+
27
+ proc = subprocess.Popen(args,)
28
+ proc.wait()
29
+
30
+ if proc.returncode != 0:
31
+ raise gr.Error("generate proof failed")
32
+ return proof_path
33
+
34
+
35
+ with gr.Blocks() as demo:
36
+ gr.Markdown(
37
+ """
38
+ # 0xHacked
39
+ This is the demo for [0xHacked](https://0xHacked.com), a trustless bug bounty platform. You can generate the proof of exploit here. However, due to the constraints of ZKP, the generation might be low on Huggingface.
40
+ <br/>
41
+ We recommend [compiling it from the source](https://github.com/0xHackedLabs/zkProver). The generation can be very quick on GPU. For more details, please refer to [0xHacked Documentation](https://docs.0xHacked.com).
42
+ <br/>
43
+ The sample PoC provided below takes ~800s to generate the proof. You can click "SushiRouterExploit.sol" below and hit "Run" to try it!
44
+ """
45
+ )
46
+ with gr.Column():
47
+ with gr.Row():
48
+ with gr.Column():
49
+ network_input = gr.Dropdown(["Ethereum"], value="Ethereum", label='Network')
50
+ block_number_input = gr.Number(precision=0, label='Block Number')
51
+ contract_input = gr.Textbox(label='Poc Contract')
52
+ file_input = gr.File(file_types=[".sol"], label='Solidity File')
53
+ submit_btn = gr.Button(label="Submit")
54
+ with gr.Column():
55
+ fileout = gr.File(label='Proof File')
56
+
57
+ gr.Examples(
58
+ examples=[[
59
+ "Ethereum",
60
+ 17007841,
61
+ "SushiExpProxy",
62
+ "./examples/SushiRouterExploit.sol"],
63
+ ],
64
+ fn=run_zk_prover,
65
+ inputs=[network_input, block_number_input, contract_input, file_input],
66
+ outputs=fileout
67
+ )
68
+
69
+ submit_btn.click(
70
+ fn=run_zk_prover,
71
+ inputs=[network_input, block_number_input, contract_input, file_input],
72
+ outputs=fileout
73
+ )
74
+
75
+ if __name__ == "__main__":
76
+ demo.launch(server_name="0.0.0.0", server_port=7860)
77
+
spaces/0xJustin/0xJustin-Dungeons-and-Diffusion/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: 0xJustin Dungeons And Diffusion
3
+ emoji: 📊
4
+ colorFrom: pink
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 3.19.1
8
+ app_file: app.py
9
+ pinned: false
10
+ license: openrail
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0xJustin/0xJustin-Dungeons-and-Diffusion/app.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ import gradio as gr
2
+
3
+ gr.Interface.load("models/0xJustin/Dungeons-and-Diffusion").launch()
spaces/0xSpleef/openchat-openchat_8192/README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Openchat-openchat 8192
3
+ emoji: 🌍
4
+ colorFrom: red
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: 3.35.2
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0xSpleef/openchat-openchat_8192/app.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ import gradio as gr
2
+
3
+ gr.Interface.load("models/openchat/openchat_8192").launch()
spaces/0xSynapse/Image_captioner/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Image Captioner
3
+ emoji: ⚡
4
+ colorFrom: indigo
5
+ colorTo: green
6
+ sdk: streamlit
7
+ sdk_version: 1.19.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: creativeml-openrail-m
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0xSynapse/Image_captioner/app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #imported all required libraries
2
+ import streamlit as st
3
+ import torch
4
+ import requests
5
+ from PIL import Image
6
+ from io import BytesIO
7
+ from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel
8
+
9
+
10
+ #used a pretrained model hosted on huggingface
11
+ loc = "ydshieh/vit-gpt2-coco-en"
12
+
13
+ feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
14
+ tokenizer = AutoTokenizer.from_pretrained(loc)
15
+ model = VisionEncoderDecoderModel.from_pretrained(loc)
16
+ model.eval()
17
+
18
+ #defined a function for prediction
19
+
20
+ def predict(image):
21
+ pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
22
+
23
+ with torch.no_grad():
24
+ output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
25
+
26
+ preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
27
+ preds = [pred.strip() for pred in preds]
28
+
29
+ return preds
30
+
31
+ #defined a function for Streamlit App
32
+ def app():
33
+ st.title("ImaginateAI")
34
+ st.write("ViT and GPT2 are used to generate Image Caption for the uploaded image. COCO Dataset was used for training. This image captioning model might have some biases that I couldn’t figure during testing")
35
+ st.write("Upload an image or paste a URL to get predicted captions.")
36
+
37
+ upload_option = st.selectbox("Choose an option:", ("Upload Image", "Paste URL"))
38
+
39
+ if upload_option == "Upload Image":
40
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg"])
41
+
42
+ if uploaded_file is not None:
43
+ image = Image.open(uploaded_file)
44
+ preds = predict(image)
45
+ st.image(image, caption="Uploaded Image", use_column_width=True)
46
+ st.write("Predicted Caption:", preds)
47
+
48
+
49
+ elif upload_option == "Paste URL":
50
+ image_url = st.text_input("Enter Image URL")
51
+ if st.button("Submit") and image_url:
52
+ try:
53
+ response = requests.get(image_url, stream=True)
54
+ image = Image.open(BytesIO(response.content))
55
+ preds = predict(image)
56
+ st.image(image, caption="Image from URL", use_column_width=True)
57
+ st.write("Predicted Caption:", preds)
58
+ except:
59
+ st.write("Error: Invalid URL or unable to fetch image.")
60
+
61
+ if __name__ == "__main__":
62
+ app()
spaces/0xSynapse/LlamaGPT/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: LlamaGPT
3
+ emoji: 📚
4
+ colorFrom: green
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 3.39.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: lgpl-3.0
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0xSynapse/LlamaGPT/app.py ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Run codes."""
2
+ # pylint: disable=line-too-long, broad-exception-caught, invalid-name, missing-function-docstring, too-many-instance-attributes, missing-class-docstring
3
+ # ruff: noqa: E501
4
+ import gc
5
+ import os
6
+ import platform
7
+ import random
8
+ import time
9
+ from dataclasses import asdict, dataclass
10
+ from pathlib import Path
11
+
12
+ # from types import SimpleNamespace
13
+ import gradio as gr
14
+ import psutil
15
+ from about_time import about_time
16
+ from ctransformers import AutoModelForCausalLM
17
+ from dl_hf_model import dl_hf_model
18
+ from loguru import logger
19
+
20
+
21
+
22
+
23
+ # url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q2_K.bin"
24
+ #url = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/blob/main/llama-2-7b-chat.ggmlv3.q2_K.bin" # 2.87G
25
+ url = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/blob/main/llama-2-7b-chat.ggmlv3.q4_K_M.bin" # 2.87G
26
+
27
+
28
+ prompt_template = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
29
+
30
+ ### Instruction: {user_prompt}
31
+
32
+ ### Response:
33
+ """
34
+
35
+ prompt_template = """System: You are a helpful,
36
+ respectful and honest assistant. Always answer as
37
+ helpfully as possible, while being safe. Your answers
38
+ should not include any harmful, unethical, racist,
39
+ sexist, toxic, dangerous, or illegal content. Please
40
+ ensure that your responses are socially unbiased and
41
+ positive in nature. If a question does not make any
42
+ sense, or is not factually coherent, explain why instead
43
+ of answering something not correct. If you don't know
44
+ the answer to a question, please don't share false
45
+ information.
46
+ User: {prompt}
47
+ Assistant: """
48
+
49
+ prompt_template = """System: You are a helpful assistant.
50
+ User: {prompt}
51
+ Assistant: """
52
+
53
+ prompt_template = """Question: {question}
54
+ Answer: Let's work this out in a step by step way to be sure we have the right answer."""
55
+
56
+ prompt_template = """[INST] <>
57
+ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible assistant. Think step by step.
58
+ <>
59
+
60
+ What NFL team won the Super Bowl in the year Justin Bieber was born?
61
+ [/INST]"""
62
+
63
+ prompt_template = """[INST] <<SYS>>
64
+ You are an unhelpful assistant. Always answer as helpfully as possible. Think step by step. <</SYS>>
65
+
66
+ {question} [/INST]
67
+ """
68
+
69
+ prompt_template = """[INST] <<SYS>>
70
+ You are a helpful assistant.
71
+ <</SYS>>
72
+
73
+ {question} [/INST]
74
+ """
75
+
76
+ _ = [elm for elm in prompt_template.splitlines() if elm.strip()]
77
+ stop_string = [elm.split(":")[0] + ":" for elm in _][-2]
78
+
79
+ logger.debug(f"{stop_string=}")
80
+
81
+ _ = psutil.cpu_count(logical=False) - 1
82
+ cpu_count: int = int(_) if _ else 1
83
+ logger.debug(f"{cpu_count=}")
84
+
85
+ LLM = None
86
+ gc.collect()
87
+
88
+ try:
89
+ model_loc, file_size = dl_hf_model(url)
90
+ except Exception as exc_:
91
+ logger.error(exc_)
92
+ raise SystemExit(1) from exc_
93
+
94
+ LLM = AutoModelForCausalLM.from_pretrained(
95
+ model_loc,
96
+ model_type="llama",
97
+ # threads=cpu_count,
98
+ )
99
+
100
+ logger.info(f"done load llm {model_loc=} {file_size=}G")
101
+
102
+ os.environ["TZ"] = "Asia/Shanghai"
103
+ try:
104
+ time.tzset() # type: ignore # pylint: disable=no-member
105
+ except Exception:
106
+ # Windows
107
+ logger.warning("Windows, cant run time.tzset()")
108
+
109
+ _ = """
110
+ ns = SimpleNamespace(
111
+ response="",
112
+ generator=(_ for _ in []),
113
+ )
114
+ # """
115
+
116
+ @dataclass
117
+ class GenerationConfig:
118
+ temperature: float = 0.7
119
+ top_k: int = 50
120
+ top_p: float = 0.9
121
+ repetition_penalty: float = 1.0
122
+ max_new_tokens: int = 512
123
+ seed: int = 42
124
+ reset: bool = False
125
+ stream: bool = True
126
+ # threads: int = cpu_count
127
+ # stop: list[str] = field(default_factory=lambda: [stop_string])
128
+
129
+
130
+ def generate(
131
+ question: str,
132
+ llm=LLM,
133
+ config: GenerationConfig = GenerationConfig(),
134
+ ):
135
+ """Run model inference, will return a Generator if streaming is true."""
136
+ # _ = prompt_template.format(question=question)
137
+ # print(_)
138
+
139
+ prompt = prompt_template.format(question=question)
140
+
141
+ return llm(
142
+ prompt,
143
+ **asdict(config),
144
+ )
145
+
146
+
147
+ logger.debug(f"{asdict(GenerationConfig())=}")
148
+
149
+
150
+ def user(user_message, history):
151
+ # return user_message, history + [[user_message, None]]
152
+ history.append([user_message, None])
153
+ return user_message, history # keep user_message
154
+
155
+
156
+ def user1(user_message, history):
157
+ # return user_message, history + [[user_message, None]]
158
+ history.append([user_message, None])
159
+ return "", history # clear user_message
160
+
161
+
162
+ def bot_(history):
163
+ user_message = history[-1][0]
164
+ resp = random.choice(["How are you?", "I love you", "I'm very hungry"])
165
+ bot_message = user_message + ": " + resp
166
+ history[-1][1] = ""
167
+ for character in bot_message:
168
+ history[-1][1] += character
169
+ time.sleep(0.02)
170
+ yield history
171
+
172
+ history[-1][1] = resp
173
+ yield history
174
+
175
+
176
+ def bot(history):
177
+ user_message = history[-1][0]
178
+ response = []
179
+
180
+ logger.debug(f"{user_message=}")
181
+
182
+ with about_time() as atime: # type: ignore
183
+ flag = 1
184
+ prefix = ""
185
+ then = time.time()
186
+
187
+ logger.debug("about to generate")
188
+
189
+ config = GenerationConfig(reset=True)
190
+ for elm in generate(user_message, config=config):
191
+ if flag == 1:
192
+ logger.debug("in the loop")
193
+ prefix = f"({time.time() - then:.2f}s) "
194
+ flag = 0
195
+ print(prefix, end="", flush=True)
196
+ logger.debug(f"{prefix=}")
197
+ print(elm, end="", flush=True)
198
+ # logger.debug(f"{elm}")
199
+
200
+ response.append(elm)
201
+ history[-1][1] = prefix + "".join(response)
202
+ yield history
203
+
204
+ _ = (
205
+ f"(time elapsed: {atime.duration_human}, " # type: ignore
206
+ f"{atime.duration/len(''.join(response)):.2f}s/char)" # type: ignore
207
+ )
208
+
209
+ history[-1][1] = "".join(response) + f"\n{_}"
210
+ yield history
211
+
212
+
213
+ def predict_api(prompt):
214
+ logger.debug(f"{prompt=}")
215
+ try:
216
+ # user_prompt = prompt
217
+ config = GenerationConfig(
218
+ temperature=0.2,
219
+ top_k=10,
220
+ top_p=0.9,
221
+ repetition_penalty=1.0,
222
+ max_new_tokens=512, # adjust as needed
223
+ seed=42,
224
+ reset=True, # reset history (cache)
225
+ stream=False,
226
+ # threads=cpu_count,
227
+ # stop=prompt_prefix[1:2],
228
+ )
229
+
230
+ response = generate(
231
+ prompt,
232
+ config=config,
233
+ )
234
+
235
+ logger.debug(f"api: {response=}")
236
+ except Exception as exc:
237
+ logger.error(exc)
238
+ response = f"{exc=}"
239
+ # bot = {"inputs": [response]}
240
+ # bot = [(prompt, response)]
241
+
242
+ return response
243
+
244
+
245
+ css = """
246
+ .importantButton {
247
+ background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
248
+ border: none !important;
249
+ }
250
+ .importantButton:hover {
251
+ background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
252
+ border: none !important;
253
+ }
254
+ .disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;}
255
+ .xsmall {font-size: x-small;}
256
+ """
257
+ etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
258
+ examples_list = [
259
+ ["What is the capital of India"],
260
+ ["How to play Chess? Provide detailed steps."],
261
+ ["If it takes 10 hours to dry 10 clothes, assuming all the clothes are hung together at the same time for drying , then how long will it take to dry a cloth?"],
262
+ ["is infinity + 1 bigger than infinity?"],
263
+ ["Explain the plot of Oppenheimer 2023 movie in a sentence."],
264
+ ["How long does it take to become proficient in French, and what are the best methods for retaining information?"],
265
+ ["What are some common mistakes to avoid when writing code?"],
266
+ ["Build a prompt to generate a beautiful portrait of a horse"],
267
+ ["Suggest four metaphors to describe the benefits of AI"],
268
+ ["Write most important points of Bhagavad Gita"],
269
+ ["Write a summary Why is it so hard to understand Quantum mechanics"],
270
+
271
+ ]
272
+
273
+ logger.info("start block")
274
+
275
+ with gr.Blocks(
276
+ title="LlamaGPT🤖",
277
+ theme=gr.themes.Soft(text_size="sm", spacing_size="sm"),
278
+ css=css,
279
+ ) as block:
280
+ # buff_var = gr.State("")
281
+ with gr.Accordion("LlamaGPT🧠", open=False, style={"text-align": "center", "font-weight": "bold"}):
282
+
283
+ gr.Markdown(
284
+ f"""<div style="text-align: center;">
285
+ <h5>Gradio Demo for Meta's Llama 2 7B-chat</h5><br>
286
+ Few examples are there as prompts to test the model. You probably should try on your own related prompts to test the bot.
287
+ </div>""",
288
+ elem_classes="xsmall",
289
+ )
290
+
291
+ # chatbot = gr.Chatbot().style(height=700) # 500
292
+ chatbot = gr.Chatbot(height=500)
293
+
294
+ # buff = gr.Textbox(show_label=False, visible=True)
295
+
296
+ with gr.Row():
297
+ with gr.Column(scale=5):
298
+ msg = gr.Textbox(
299
+ label="Chat Message Box",
300
+ placeholder="Ask me anything (press Shift+Enter or click Submit to send)",
301
+ show_label=False,
302
+ # container=False,
303
+ lines=6,
304
+ max_lines=30,
305
+ show_copy_button=True,
306
+ # ).style(container=False)
307
+ )
308
+ with gr.Column(scale=1, min_width=50):
309
+ with gr.Row():
310
+ submit = gr.Button("Submit", elem_classes="xsmall")
311
+ stop = gr.Button("Stop", visible=True)
312
+ clear = gr.Button("Clear History", visible=True)
313
+ with gr.Row(visible=False):
314
+ with gr.Accordion("Advanced Options:", open=False):
315
+ with gr.Row():
316
+ with gr.Column(scale=2):
317
+ system = gr.Textbox(
318
+ label="System Prompt",
319
+ value=prompt_template,
320
+ show_label=False,
321
+ container=False,
322
+ # ).style(container=False)
323
+ )
324
+ with gr.Column():
325
+ with gr.Row():
326
+ change = gr.Button("Change System Prompt")
327
+ reset = gr.Button("Reset System Prompt")
328
+
329
+ with gr.Accordion("Example Inputs", open=True):
330
+ examples = gr.Examples(
331
+ examples=examples_list,
332
+ inputs=[msg],
333
+ examples_per_page=40,
334
+ )
335
+
336
+ # with gr.Row():
337
+ with gr.Accordion("Disclaimer", open=False):
338
+ _ = Path(model_loc).name
339
+ gr.Markdown(
340
+ f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
341
+ "factually accurate information. {_} was trained on various public datasets; while great efforts "
342
+ "have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
343
+ "biased, or otherwise offensive outputs.",
344
+ elem_classes=["disclaimer"],
345
+ )
346
+
347
+ msg_submit_event = msg.submit(
348
+ # fn=conversation.user_turn,
349
+ fn=user,
350
+ inputs=[msg, chatbot],
351
+ outputs=[msg, chatbot],
352
+ queue=True,
353
+ show_progress="full",
354
+ # api_name=None,
355
+ ).then(bot, chatbot, chatbot, queue=True)
356
+ submit_click_event = submit.click(
357
+ # fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg
358
+ fn=user1, # clear msg
359
+ inputs=[msg, chatbot],
360
+ outputs=[msg, chatbot],
361
+ queue=True,
362
+ # queue=False,
363
+ show_progress="full",
364
+ # api_name=None,
365
+ ).then(bot, chatbot, chatbot, queue=True)
366
+ stop.click(
367
+ fn=None,
368
+ inputs=None,
369
+ outputs=None,
370
+ cancels=[msg_submit_event, submit_click_event],
371
+ queue=False,
372
+ )
373
+ clear.click(lambda: None, None, chatbot, queue=False)
374
+
375
+ with gr.Accordion("For Chat/Translation API", open=False, visible=False):
376
+ input_text = gr.Text()
377
+ api_btn = gr.Button("Go", variant="primary")
378
+ out_text = gr.Text()
379
+
380
+ api_btn.click(
381
+ predict_api,
382
+ input_text,
383
+ out_text,
384
+ api_name="api",
385
+ )
386
+
387
+ # block.load(update_buff, [], buff, every=1)
388
+ # block.load(update_buff, [buff_var], [buff_var, buff], every=1)
389
+
390
+ # concurrency_count=5, max_size=20
391
+ # max_size=36, concurrency_count=14
392
+ # CPU cpu_count=2 16G, model 7G
393
+ # CPU UPGRADE cpu_count=8 32G, model 7G
394
+
395
+ # does not work
396
+ _ = """
397
+ # _ = int(psutil.virtual_memory().total / 10**9 // file_size - 1)
398
+ # concurrency_count = max(_, 1)
399
+ if psutil.cpu_count(logical=False) >= 8:
400
+ # concurrency_count = max(int(32 / file_size) - 1, 1)
401
+ else:
402
+ # concurrency_count = max(int(16 / file_size) - 1, 1)
403
+ # """
404
+
405
+ concurrency_count = 1
406
+ logger.info(f"{concurrency_count=}")
407
+
408
+ block.queue(concurrency_count=concurrency_count, max_size=5).launch(debug=True)
spaces/0xSynapse/PixelFusion/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: PixelFusion
3
+ emoji: 🔥
4
+ colorFrom: green
5
+ colorTo: yellow
6
+ sdk: gradio
7
+ sdk_version: 3.39.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: gpl-3.0
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0xSynapse/PixelFusion/app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Neural Style Transfer using TensorFlow's Pretrained Style Transfer Model
3
+ https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2
4
+
5
+ '''
6
+
7
+
8
+ import gradio as gr
9
+ import tensorflow as tf
10
+ import tensorflow_hub as hub
11
+ from PIL import Image
12
+ import numpy as np
13
+ import cv2
14
+ import os
15
+
16
+
17
+
18
+ model = hub.load("https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2")
19
+
20
+
21
+ # source: https://stackoverflow.com/questions/4993082/how-can-i-sharpen-an-image-in-opencv
22
+ def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=1.0, threshold=0):
23
+ """Return a sharpened version of the image, using an unsharp mask."""
24
+ blurred = cv2.GaussianBlur(image, kernel_size, sigma)
25
+ sharpened = float(amount + 1) * image - float(amount) * blurred
26
+ sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
27
+ sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
28
+ sharpened = sharpened.round().astype(np.uint8)
29
+ if threshold > 0:
30
+ low_contrast_mask = np.absolute(image - blurred) < threshold
31
+ np.copyto(sharpened, image, where=low_contrast_mask)
32
+ return sharpened
33
+
34
+
35
+ def style_transfer(content_img,style_image, style_weight = 1, content_weight = 1, style_blur=False):
36
+ content_img = unsharp_mask(content_img,amount=1)
37
+ content_img = tf.image.resize(tf.convert_to_tensor(content_img,tf.float32)[tf.newaxis,...] / 255.,(512,512),preserve_aspect_ratio=True)
38
+ style_img = tf.convert_to_tensor(style_image,tf.float32)[tf.newaxis,...] / 255.
39
+ if style_blur:
40
+ style_img= tf.nn.avg_pool(style_img, [3,3], [1,1], "VALID")
41
+ style_img = tf.image.adjust_contrast(style_img, style_weight)
42
+ content_img = tf.image.adjust_contrast(content_img,content_weight)
43
+ content_img = tf.image.adjust_saturation(content_img, 2)
44
+ content_img = tf.image.adjust_contrast(content_img,1.5)
45
+ stylized_img = model(content_img, style_img)[0]
46
+
47
+ return Image.fromarray(np.uint8(stylized_img[0]*255))
48
+
49
+
50
+
51
+
52
+ title = "PixelFusion🧬"
53
+ description = "Gradio Demo for Artistic Neural Style Transfer. To use it, simply upload a content image and a style image. [Learn More](https://www.tensorflow.org/tutorials/generative/style_transfer)."
54
+ article = "</br><p style='text-align: center'><a href='https://github.com/0xsynapse' target='_blank'>GitHub</a></p> "
55
+
56
+
57
+ content_input = gr.inputs.Image(label="Upload Your Image ",)
58
+ style_input = gr.inputs.Image( label="Upload Style Image ",shape= (256,256), )
59
+ style_slider = gr.inputs.Slider(0,2,label="Adjust Style Density" ,default=1,)
60
+ content_slider = gr.inputs.Slider(1,5,label="Content Sharpness" ,default=1,)
61
+ # style_checkbox = gr.Checkbox(value=False,label="Tune Style(experimental)")
62
+
63
+
64
+ examples = [
65
+ ["Content/content_1.jpg","Styles/style_1.jpg",1.20,1.70,"style_checkbox"],
66
+ ["Content/content_2.jpg","Styles/style_2.jpg",0.91,2.54,"style_checkbox"],
67
+ ["Content/content_3.png","Styles/style_3.jpg",1.02,2.47,"style_checkbox"]
68
+ ]
69
+ interface = gr.Interface(fn=style_transfer,
70
+ inputs=[content_input,
71
+ style_input,
72
+ style_slider ,
73
+ content_slider,
74
+ # style_checkbox
75
+ ],
76
+ outputs=gr.outputs.Image(type="pil"),
77
+ title=title,
78
+ description=description,
79
+ article=article,
80
+ examples=examples,
81
+ enable_queue=True
82
+ )
83
+
84
+
85
+ interface.launch()
spaces/0xSynapse/Segmagine/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Segmagine
3
+ emoji: 🚀
4
+ colorFrom: gray
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 3.39.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: lgpl-3.0
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
spaces/0xSynapse/Segmagine/app.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import cv2
4
+ import gradio as gr
5
+ import matplotlib
6
+ import matplotlib.pyplot as plt
7
+ import numpy as np
8
+ import torch
9
+
10
+ from PIL import Image
11
+
12
+ from segment_anything import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry
13
+
14
+ # suppress server-side GUI windows
15
+ matplotlib.pyplot.switch_backend('Agg')
16
+
17
+ # setup models
18
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
19
+ sam = sam_model_registry["vit_b"](checkpoint="./sam_vit_b_01ec64.pth")
20
+ sam.to(device=device)
21
+ mask_generator = SamAutomaticMaskGenerator(sam)
22
+ predictor = SamPredictor(sam)
23
+
24
+
25
+ # copied from: https://github.com/facebookresearch/segment-anything
26
+ def show_anns(anns):
27
+ if len(anns) == 0:
28
+ return
29
+ sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
30
+ ax = plt.gca()
31
+ ax.set_autoscale_on(False)
32
+ polygons = []
33
+ color = []
34
+ for ann in sorted_anns:
35
+ m = ann['segmentation']
36
+ img = np.ones((m.shape[0], m.shape[1], 3))
37
+ color_mask = np.random.random((1, 3)).tolist()[0]
38
+ for i in range(3):
39
+ img[:,:,i] = color_mask[i]
40
+ ax.imshow(np.dstack((img, m*0.35)))
41
+
42
+
43
+ # demo function
44
+ def segment_image(input_image):
45
+
46
+ if input_image is not None:
47
+
48
+ # generate masks
49
+ masks = mask_generator.generate(input_image)
50
+
51
+ # add masks to image
52
+ plt.clf()
53
+ ppi = 100
54
+ height, width, _ = input_image.shape
55
+ plt.figure(figsize=(width / ppi, height / ppi)) # convert pixel to inches
56
+ plt.imshow(input_image)
57
+ show_anns(masks)
58
+ plt.axis('off')
59
+
60
+ # save and get figure
61
+ plt.savefig('output_figure.png', bbox_inches='tight')
62
+ output_image = cv2.imread('output_figure.png')
63
+ return Image.fromarray(output_image)
64
+
65
+
66
+ with gr.Blocks() as demo:
67
+
68
+ with gr.Row():
69
+ gr.Markdown("## Segmagine 🎨")
70
+ with gr.Row():
71
+ gr.Markdown("Gradio demo for Segment Anything Model (SAM) by Meta AI Research, produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image. It has been trained on a dataset of 11 million images and 1.1 billion masks, and has strong zero-shot performance on a variety of segmentation tasks.[Learn More](https://segment-anything.com/)")
72
+
73
+ with gr.Row():
74
+
75
+ with gr.Column():
76
+ image_input = gr.Image()
77
+ segment_image_button = gr.Button('Generate Mask')
78
+
79
+ with gr.Column():
80
+ image_output = gr.Image()
81
+
82
+ segment_image_button.click(segment_image, inputs=[image_input], outputs=image_output)
83
+
84
+ gr.Examples(
85
+ examples=[
86
+ ['./examples/dog.jpg'],
87
+ ['./examples/groceries.jpg'],
88
+ ['./examples/truck.jpg']
89
+
90
+ ],
91
+ inputs=[image_input],
92
+ outputs=[image_output],
93
+ fn=segment_image,
94
+ #cache_examples=True
95
+ )
96
+
97
+ demo.launch()