--- dataset_info: features: - name: id dtype: string - name: query dtype: string - name: answer dtype: string - name: text dtype: string - name: choices sequence: string - name: gold dtype: int64 splits: - name: test num_bytes: 384180 num_examples: 496 download_size: 140144 dataset_size: 384180 license: cc-by-nc-4.0 task_categories: - text-classification language: - en tags: - finance pretty_name: FinBen FOMC size_categories: - n<1K --- --- # Dataset Card for FinBen-FOMC ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://huggingface.co/datasets/TheFinAI/finben-fomc - **Repository:** https://huggingface.co/datasets/TheFinAI/finben-fomc - **Paper:** FinBen: An Holistic Financial Benchmark for Large Language Models - **Leaderboard:** https://huggingface.co/spaces/finosfoundation/Open-Financial-LLM-Leaderboard ### Dataset Summary FinBen-FOMC is a financial sentiment classification dataset adapted from **FOMC (Shah et al., 2023a)**. The dataset is designed for training and evaluating large language models (LLMs) on classifying central bank policy stances as **Hawkish, Dovish, or Neutral**. ### Supported Tasks and Leaderboards - **Task:** Hawkish-Dovish Classification - **Evaluation Metric:** F1 Score, Accuracy - **Test Size:** 496 instances ### Languages - English ## Dataset Structure ### Data Instances Each instance consists of a structured format with the following fields: - **id**: A unique identifier for each data instance. - **query**: An excerpt from a central bank’s release. - **answer**: The classification label (`HAWKISH`, `DOVISH`, or `NEUTRAL`). ### Data Fields - **id**: Unique string identifier for the data instance. - **query**: The input text containing an excerpt from a central bank statement. - **answer**: The classification label (`HAWKISH`, `DOVISH`, or `NEUTRAL`). ### Data Splits The dataset is split into: - **Test:** 496 instances ## Dataset Creation ### Curation Rationale The dataset is adapted from **FOMC (Shah et al., 2023a)** to improve its suitability for LLM-based classification tasks in central bank policy analysis. ### Source Data #### Initial Data Collection and Normalization The dataset originates from Federal Open Market Committee (FOMC) statements and other central bank releases. #### Who are the source language producers? Central bank officials and policy documents. ### Annotations #### Annotation Process Annotations follow a structured classification framework to label monetary policy stances. #### Who are the annotators? Financial experts and researchers. ### Personal and Sensitive Information No personally identifiable information (PII) is included. ## Considerations for Using the Data ### Social Impact of Dataset This dataset enhances financial NLP capabilities, allowing more accurate analysis of monetary policy signals. ### Discussion of Biases Potential biases may exist due to: - Interpretation differences in policy statements. - Variability in central bank language across periods. ### Other Known Limitations - Requires financial domain expertise for best model performance. - May not generalize well to non-FOMC policy documents. ## Additional Information ### Dataset Curators - The Fin AI Team ### Licensing Information - **License:** CC BY-NC 4.0 ### Citation Information **Original Dataset:** ```bibtex @inproceedings{shah2023trillion, title={Trillion Dollar Words: A New Financial Dataset, Task & Market Analysis}, author={Shah, Agam and Paturi, Suvan and Chava, Sudheer}, booktitle={Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, editor={Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki}, pages={6664--6679}, year={2023}, organization={Association for Computational Linguistics}, address={Toronto, Canada}, doi={10.18653/v1/2023.acl-long.368} } ``` **Adapted Version (FinBen-FOMC):** ```bibtex @article{xie2024finben, title={FinBen: A Holistic Financial Benchmark for Large Language Models}, author={Xie, Qianqian and others}, journal={arXiv preprint arXiv:2402.12659}, year={2024} } ```