# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Waleed-bin-Qamar/NER-BAILII-UK-CCA. Criminal court appeals of uk""" import csv import json import os import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @inproceedings{title = "A great new dataset", author = "A great new dataset", booktitle = "A great new dataset", month = sep, year = "2050", address = "a,b", publisher = "Association in b", doi = " ", pages = " ", abstract = " ", } """ _DESCRIPTION = """\ A great new dataset """ # due privacy issues private addresses are used _URL = "https://drive.google.com/" _TRAINING_FILE_URL = "uc?id=1Hn30-V5tm_JxKB7Q09BpZJu1VylinpGu&export=download" _DEV_FILE_URL = "uc?id=1saGAPzk0zaj6dIo5FKa1rb5SCdHwJnAq&export=download" _TEST_FILE_URL = "uc?id=1stsN0Iq1guKNH0oJc0ZjqIj57ExR_iYT&export=download" class NER_BAILIIConfig(datasets.BuilderConfig): def __init__(self, **kwargs): """BuilderConfig for NER_BAILIIConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(NER_BAILIIConfig, self).__init__(**kwargs) class NER_BAILII(datasets.GeneratorBasedBuilder): """NER-BAILII-UK-CCA. Criminal court appeals of uk""" BUILDER_CONFIGS = [ NER_BAILIIConfig( name="NER-BAILII-UK-CCA", version=datasets.Version("1.0.0"), description="The NER-BAILII-UK-CCA Name Entities recognization Dataset" ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( {"id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ 'O', 'B-defendant_pleaded_guilty', 'I-defendant_pleaded_guilty', 'B-appeal_against_sentence', 'I-appeal_against_sentence', 'B-defendant', 'I-defendant', 'B-date_of_original_trial_or_conviction', 'I-date_of_original_trial_or_conviction', 'B-offence', 'I-offence', 'B-defendant_original_sentence', 'I-defendant_original_sentence', 'B-decision_granted', 'I-decision_granted', 'B-date_of_crime', 'I-date_of_crime', 'B-decision_refused', 'I-decision_refused', 'B-expert_witness_used_at_original_trail', 'I-expert_witness_used_at_original_trail', 'B-victim_age', 'I-victim_age', 'B-defendant_is_female', 'I-defendant_is_female', 'B-appeal_against_conviction', 'I-appeal_against_conviction', 'B-defendant_custodial_sentence_years', 'I-defendant_custodial_sentence_years', 'B-date_of_offence', 'I-date_of_offence', 'B-decision_quashed', 'I-decision_quashed', 'B-defendant_gender', 'B-victim_is_male', 'B-victim_is_female', 'B-victim_gender', 'B-previous_convictions', 'I-previous_convictions', 'I-s_age', ] ) ) } ), supervised_keys=None, homepage="http://linkedin", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" #_TEST_FILE_URL #_DEV_FILE_URL #_TRAINING_FILE_URL urls_to_download = { "train": f"{_URL}{_TRAINING_FILE_URL}", "dev": f"{_URL}{_DEV_FILE_URL}", "test": f"{_URL}{_TEST_FILE_URL}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: current_tokens = [] current_labels = [] sentence_counter = 0 for row in f: row = row.rstrip() if row: token, label = row.split("\t") current_tokens.append(token) current_labels.append(label) else: # New sentence if not current_tokens: # Consecutive empty lines will cause empty sentences continue assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels" sentence = ( sentence_counter, { "id": str(sentence_counter), "tokens": current_tokens, "ner_tags": current_labels, }, ) sentence_counter += 1 current_tokens = [] current_labels = [] yield sentence # Don't forget last sentence in dataset 🧐 if current_tokens: yield sentence_counter, { "id": str(sentence_counter), "tokens": current_tokens, "ner_tags": current_labels, }