import json from tqdm import tqdm import scipy.stats as stats def evaluate_retrieval(retrieval_file, topk): retrieval = json.load(open(retrieval_file)) accuracy = { k : [] for k in topk } max_k = max(topk) for qid in tqdm(list(retrieval.keys())): contexts = retrieval[qid]['contexts'] has_ans_idx = max_k # first index in contexts that has answers for idx, ctx in enumerate(contexts): if idx >= max_k: break if ctx['has_answer']: has_ans_idx = idx break for k in topk: accuracy[k].append(0 if has_ans_idx >= k else 1) return accuracy if __name__=="__main__": topk = [5, 10, 20, 50, 100] all_scores_a,all_scores_b=None,None for DATA in ["nq","trivia","wq","curated","squad"]: FileNameA="/data/t-junhanyang/InfoCSE/QA_TEST/InfoCSE_ICT_K1.{}.test.json".format(DATA) FileNameB="/data/t-junhanyang/InfoCSE/QA_TEST/CONPONO.{}.test.json".format(DATA) scores_a=evaluate_retrieval(FileNameA,topk) if all_scores_a is None: all_scores_a=scores_a else: for k in topk: all_scores_a[k]+=scores_a[k] print(FileNameB) scores_b=evaluate_retrieval(FileNameB,topk) if all_scores_b is None: all_scores_b=scores_b else: for k in topk: all_scores_b[k]+=scores_b[k] print(len(all_scores_a[5])) print(len(all_scores_a[100])) for k in topk: stat_val, p_val = stats.ttest_ind(all_scores_a[k], all_scores_b[k]) print(str(k)+': '+str(p_val/2))