|
"""ALFFAAmharic automatic speech recognition dataset.""" |
|
|
|
|
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{ |
|
title={ALFFAAmharic Acoustic-Phonetic Continuous Speech Corpus}, |
|
author={Samuael et al}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The ALFFAAmharic corpus of reading speech has been developed to provide speech data for acoustic-phonetic research studies |
|
and for the evaluation of automatic speech recognition systems. |
|
""" |
|
|
|
|
|
class ALFFAAmharicASRConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for ALFFAAmharicASR.""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Args: |
|
data_dir: `string`, the path to the folder containing the files in the |
|
downloaded .tar |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ALFFAAmharicASRConfig, self).__init__(version=datasets.Version("2.0.1", ""), **kwargs) |
|
|
|
|
|
class ALFFAAmharic(datasets.GeneratorBasedBuilder): |
|
"""ALFFAAmharicASR dataset.""" |
|
|
|
BUILDER_CONFIGS = [ALFFAAmharicASRConfig(name="clean", description="'Clean' speech.")] |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return ( |
|
"To use ALFFAAmharic you have to download it manually. " |
|
"`datasets.load_dataset('ALFFAAmharic_asr', data_dir='path/to/folder/folder_name')`" |
|
) |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
|
|
if not os.path.exists(data_dir): |
|
raise FileNotFoundError( |
|
f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('ALFFAAmharic_asr', data_dir=...)` that includes files unzipped from the ALFFAAmharic zip. Manual download instructions: {self.manual_download_instructions}" |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train", "data_dir": data_dir}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test", "data_dir": data_dir}), |
|
] |
|
|
|
def _generate_examples(self, split, data_dir): |
|
"""Generate examples from ALFFAAmharic archive_path based on the test/train csv information.""" |
|
file = open(f"{data_dir}/{split}/text.txt", "r", encoding="utf-8") |
|
lines = file.readlines() |
|
file.close() |
|
|
|
|
|
for i in range(len(lines)): |
|
splited = lines[i].strip("\n").split(" ") |
|
if len(splited)==0: |
|
continue |
|
wav_path = f"{data_dir}/{split}/wav/{splited[0]}.wav" |
|
transcript = " ".join(splited[1:]) |
|
|
|
yield i, { |
|
"file": str(wav_path), |
|
"audio": str(wav_path), |
|
"text": transcript, |
|
} |
|
|
|
|
|
def with_case_insensitive_suffix(path: Path, suffix: str): |
|
path = path.with_suffix(suffix.lower()) |
|
path = path if path.exists() else path.with_suffix(suffix.upper()) |
|
return path |
|
|