Super B-Malware Mario I-Malware Run I-Malware Malware I-Malware # O 2 O – O DroidJack B-Malware RAT I-Malware Gamers O love O Mario B-System and O Pokemon B-System , O but O so O do O malware O authors O . O A O few O days O back O , O we O wrote O about O an O Android B-System Marcher B-Malware trojan O variant O posing O as O the O Super B-System Mario I-System Run I-System game O for O Android B-System . O We O have O found O another O instance O of O malware O posing O as O the O Super B-System Mario I-System Run I-System Android B-System app O , O and O this O time O it O has O taken O the O form O of O DroidJack B-Malware RAT I-Malware ( O remote O access O trojan O ) O . O Proofpoint B-Organization wrote O about O the O DroidJack B-Malware RAT I-Malware side-loaded O with O the O Pokemon B-System GO I-System app O back O in O July O 2016 O ; O the O difference O here O is O that O there O is O no O game O included O in O the O malicious O package O . O The O authors O are O trying O to O latch O onto O the O popularity O of O the O Super B-System Mario I-System Run I-System game O to O target O eagerly O waiting O Android B-System users O . O Details O : O Name O : O Super B-System Mario I-System Run I-System Package O Name O : O net.droidjack.server B-Indicator MD5 O : O 69b4b32e4636f1981841cbbe3b927560 B-Indicator Technical O Analysis O : O The O malicious O package O claims O to O be O the O Super B-System Mario I-System Run I-System game O , O as O shown O in O the O permissions O screenshot O below O , O but O in O reality O this O is O a O malicious O RAT O called O DroidJack B-Malware ( O also O known O as O SandroRAT B-Malware ) O that O is O getting O installed O . O Once O installed O , O the O RAT O registers O the O infected O device O as O shown O below O . O DroidJack B-Malware RAT I-Malware starts O capturing O sensitive O information O like O call O data O , O SMS O data O , O videos O , O photos O , O etc O . O Observe O below O the O code O routine O for O call O recording O . O This O RAT O records O all O the O calls O and O stores O the O recording O to O an O “ O .amr B-Indicator ” O file O . O The O following O is O the O code O routine O for O video O capturing O . O Here O , O the O RAT O stores O all O the O captured O videos O in O a O “ O video.3gp B-Indicator ” O file O . O It O also O harvests O call O details O and O SMS O logs O as O shown O below O . O Upon O further O inspection O , O we O have O observed O that O this O RAT O extracts O WhatsApp B-System data O too O . O The O RAT O stores O all O the O data O in O a O database O ( O DB O ) O in O order O to O send O it O to O the O Command O & O Control O ( O C O & O C O ) O server O . O The O following O are O the O DBs O created O and O maintained O by O the O RAT O . O We O saw O the O following O hardcoded O C O & O C O server O location O in O the O RAT O package O : O Conclusion O : O The O DroidJack B-Malware RAT I-Malware is O another O example O of O a O growing O trend O in O which O malware O authors O seek O to O exploit O public O interest O as O a O way O to O spread O malware O . O In O this O case O , O like O others O before O , O the O event O of O a O popular O game O release O became O an O opportunity O to O trick O unsuspecting O users O into O downloading O the O RAT O . O As O a O reminder O , O it O is O always O a O good O practice O to O download O apps O only O from O trusted O app O stores O such O as O Google B-System Play I-System . O This O practice O can O be O enforced O by O unchecking O the O " O Unknown O Sources O '' O option O under O the O " O Security O '' O settings O of O your O device O . O XLoader B-Malware Disguises O as O Android B-System Apps O , O Has O FakeSpy B-Malware Links O This O new O XLoader B-Malware variant O poses O as O a O security O app O for O Android B-System devices O , O and O uses O a O malicious O iOS B-System profile O to O affect O iPhone B-System and O iPad B-System devices O . O By O : O Hara O Hiroaki O , O Lilang O Wu O , O Lorin O Wu O April O 02 O , O 2019 O In O previous O attacks O , O XLoader B-Malware posed O as O Facebook B-System , O Chrome B-System and O other O legitimate O applications O to O trick O users O into O downloading O its O malicious O app O . O Trend B-Organization Micro I-Organization researchers O found O a O new O variant O that O uses O a O different O way O to O lure O users O . O This O new O XLoader B-Malware variant O poses O as O a O security O app O for O Android B-System devices O , O and O uses O a O malicious O iOS B-System profile O to O affect O iPhone B-System and O iPad B-System devices O . O Aside O from O a O change O in O its O deployment O techniques O , O a O few O changes O in O its O code O set O it O apart O from O its O previous O versions O . O This O newest O variant O has O been O labeled O XLoader B-Malware version O 6.0 O ( O detected O as O AndroidOS_XLoader.HRXD B-Indicator ) O , O following O the O last O version O discussed O in O a O previous O research O on O the O malware O family O . O Infection O chain O The O threat O actors O behind O this O version O used O several O fake O websites O as O their O host O — O copying O that O of O a O Japanese O mobile O phone O operator O ’ O s O website O in O particular O — O to O trick O users O into O downloading O the O fake O security O Android B-System application O package O ( O APK O ) O . O Monitoring O efforts O on O this O new O variant O revealed O that O the O malicious O websites O are O spread O through O smishing O . O The O infection O has O not O spread O very O widely O at O the O time O of O writing O , O but O we O ’ O ve O seen O that O many O users O have O already O received O its O SMS O content O . O In O the O past O , O XLoader B-Malware showed O the O ability O to O mine O cryptocurrency O on O PCs O and O perform O account O phishing O on O iOS B-System devices O . O This O new O wave O also O presents O unique O attack O vectors O based O on O the O kind O of O device O it O has O accessed O . O In O the O case O of O Android B-System devices O , O accessing O the O malicious O website O or O pressing O any O of O the O buttons O will O prompt O the O download O of O the O APK O . O However O , O successfully O installing O this O malicious O APK O requires O that O the O user O has O allowed O the O installation O of O such O apps O as O controlled O in O the O Unknown O Sources O settings O . O If O users O allow O such O apps O to O be O installed O , O then O it O can O be O actively O installed O on O the O victim O ’ O s O device O . O The O infection O chain O is O slightly O more O roundabout O in O the O case O of O Apple B-System devices O . O Accessing O the O same O malicious O site O would O redirect O its O user O to O another O malicious O website O ( O hxxp B-Indicator : I-Indicator //apple-icloud I-Indicator [ I-Indicator . I-Indicator ] I-Indicator qwq-japan I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator or O hxxp B-Indicator : I-Indicator //apple-icloud I-Indicator [ I-Indicator . I-Indicator ] I-Indicator zqo-japan I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator ) O that O prompts O the O user O to O install O a O malicious O iOS B-System configuration O profile O to O solve O a O network O issue O preventing O the O site O to O load O . O If O the O user O installs O the O profile O , O the O malicious O website O will O open O , O revealing O it O to O be O an O Apple B-Organization phishing O site O , O as O seen O in O figure O 2 O . O Technical O analysis O Most O of O this O new O attack O ’ O s O routines O are O similar O to O those O of O the O previous O XLoader B-Malware versions O . O However O , O as O mentioned O earlier O , O an O analysis O of O this O new O variant O showed O some O changes O in O its O code O in O line O with O its O new O deployment O method O . O We O discuss O these O changes O and O its O effect O on O Android B-System and O Apple B-System devices O . O Malicious O APK O Like O its O previous O versions O , O XLoader B-Malware 6.0 I-Malware abuses O social O media O user O profiles O to O hide O its O real O C O & O C O addresses O , O but O this O time O its O threat O actors O chose O the O social O media O platform O Twitter B-Organization , O which O was O never O used O in O previous O attacks O . O The O real O C O & O C O address O is O encoded O in O the O Twitter B-Organization names O , O and O can O only O be O revealed O once O decoded O . O This O adds O an O extra O layer O against O detection O . O The O code O for O this O characteristic O and O the O corresponding O Twitter B-Organization accounts O can O be O seen O in O figures O 3 O and O 4 O respectively O . O Version O 6.0 O also O adds O a O command O called O “ O getPhoneState O ” O , O which O collects O unique O identifiers O of O mobile O devices O such O as O IMSI O , O ICCID O , O Android B-System ID O , O and O device O serial O number O . O This O addition O is O seen O in O Figure O 5 O . O Considering O the O other O malicious O behaviors O of O XLoader B-Malware , O this O added O operation O could O be O very O dangerous O as O threat O actors O can O use O it O to O perform O targeted O attacks O . O Malicious O iOS B-System profile O In O the O case O of O Apple B-System devices O , O the O downloaded O malicious O iOS B-System profile O gathers O the O following O : O Unique O device O identifier O ( O UDID O ) O International O Mobile O Equipment O Identity O ( O IMEI O ) O Integrated O Circuit O Card O ID O ( O ICCID O ) O Mobile O equipment O identifier O ( O MEID O ) O Version O number O Product O number O The O profile O installations O differ O depending O on O the O iOS B-System . O For O versions O 11.0 O and O 11.4 O , O the O installation O is O straightforward O . O If O a O user O visits O the O profile O host O website O and O allows O the O installer O to O download O , O the O iOS B-System system O will O go O directly O to O the O “ O Install O Profile O ” O page O ( O which O shows O a O verified O safety O certificate O ) O , O and O then O request O the O users O ’ O passcode O for O the O last O step O of O installation O . O On O later O versions O , O specifically O iOS B-System 12.1.1 I-System and O iOS B-System 12.2 I-System , O the O process O is O different O . O After O the O profile O is O downloaded O , O the O iOS B-System system O will O first O ask O users O to O review O the O profile O in O their O settings O if O they O want O to O install O it O . O Users O can O see O a O “ O Profile O Downloaded O ” O added O in O their O settings O ( O this O feature O is O in O iOS B-System 12.2 I-System , O but O not O on O iOS B-System 12.1.1 I-System ) O . O This O gives O users O a O chance O to O see O details O and O better O understand O any O changes O made O . O After O the O review O , O the O process O is O the O same O as O above O . O After O the O profile O is O installed O , O the O user O will O then O be O redirected O to O another O Apple B-Organization phishing O site O . O The O phishing O site O uses O the O gathered O information O as O its O GET O parameter O , O allowing O the O attacker O to O access O the O stolen O information O . O Ongoing O activity O While O monitoring O this O particular O threat O , O we O found O another O XLoader B-Malware variant O posing O as O a O pornography O app O aimed O at O South O Korean O users O . O The O " O porn O kr O sex O '' O APK O connects O to O a O malicious O website O that O runs O XLoader B-Malware in O the O background O . O The O website O uses O a O different O fixed O twitter B-Organization account O ( O https B-Indicator : I-Indicator //twitter.com/fdgoer343 I-Indicator ) O . O This O attack O , O however O , O seems O exclusive O to O Android B-System users O , O as O it O does O not O have O the O code O to O attack O iOS B-System devices O . O Succeeding O monitoring O efforts O revealed O a O newer O variant O that O exploits O the O social O media O platforms O Instagram B-Organization and O Tumblr B-Organization instead O of O Twitter B-Organization to O hide O its O C O & O C O address O . O We O labeled O this O new O variant O XLoader B-Malware version O 7.0 O , O because O of O the O different O deployment O method O and O its O use O of O the O native O code O to O load O the O payload O and O hide O in O Instagram B-Organization and O Tumblr B-Organization profiles O . O These O more O recent O developments O indicate O that O XLoader B-Malware is O still O evolving O . O Adding O connections O to O FakeSpy B-Malware We O have O been O seeing O activity O from O XLoader B-Malware since O 2018 O , O and O have O since O followed O up O our O initial O findings O with O a O detailed O research O revealing O a O wealth O of O activity O dating O back O to O as O early O as O January O 2015 O , O which O outlined O a O major O discovery—its O connection O to O FakeSpy B-Malware . O The O emergence O of O XLoader B-Malware 6.0 I-Malware does O not O only O indicate O that O the O threat O actors O behind O it O remain O active O ; O it O also O holds O fresh O evidence O of O its O connection O to O FakeSpy B-Malware . O One O such O immediately O apparent O connection O was O the O similar O deployment O technique O used O by O both O XLoader B-Malware 6.0 I-Malware and O FakeSpy B-Malware . O It O had O again O cloned O a O different O legitimate O Japanese O website O to O host O its O malicious O app O , O similar O to O what O FakeSpy B-Malware had O also O done O before O . O Their O similarity O is O made O more O apparent O by O looking O at O their O naming O method O for O downloadable O files O , O domain O structure O of O fake O websites O and O other O details O of O their O deployment O techniques O , O exemplified O in O figure O 10 O . O XLoader B-Malware 6.0 I-Malware also O mirrors O the O way O FakeSpy B-Malware hides O its O real O C O & O C O server O . O When O before O it O had O used O several O different O social O media O platforms O , O it O now O uses O the O Twitter B-Organization platform O , O something O FakeSpy B-Malware has O done O in O its O past O attacks O . O Analysis O of O the O malicious O iOS B-System profile O also O revealed O further O connections O , O as O the O profile O can O also O be O downloaded O from O a O website O that O FakeSpy B-Malware deployed O early O this O year O . O Conclusion O and O security O recommendations O The O continued O monitoring O of O XLoader B-Malware showed O how O its O operators O continuously O changed O its O features O , O such O as O its O attack O vector O deployment O infrastructure O and O deployment O techniques O . O This O newest O entry O seems O to O indicate O that O these O changes O won O ’ O t O be O stopping O soon O . O Being O aware O of O this O fact O can O help O create O defensive O strategies O , O as O well O as O prepare O for O upcoming O attacks O . O In O addition O , O just O as O uncovering O new O characteristics O is O important O , O finding O ones O we O ’ O ve O also O seen O in O a O different O malware O family O like O FakeSpy B-Malware also O provides O valuable O insight O . O Links O between O XLoader B-Malware and O FakeSpy B-Malware can O give O clues O to O the O much O broader O inner O workings O of O the O threat O actors O behind O them O . O Perhaps O more O information O on O XLoader B-Malware will O be O known O in O the O future O . O For O now O , O users O can O make O the O best O of O the O knowledge O they O have O now O to O significantly O reduce O the O effectivity O of O such O malware O . O Users O of O iOS B-System can O remove O the O malicious O profile O using O the O Apple B-Organization Configurator O 2 O , O Apple B-Organization ’ O s O official O iOS B-System helper O app O for O managing O Apple B-Organization devices O . O Following O simple O best O practices O , O like O strictly O downloading O applications O or O any O files O from O trusted O sources O and O being O wary O of O unsolicited O messages O , O can O also O prevent O similar O attacks O from O compromising O devices O . O Indicators O of O Compromise O SHA256 O Package O App O label O 332e68d865009d627343b89a5744843e3fde4ae870193f36b82980363439a425 B-Indicator ufD.wykyx.vlhvh B-Indicator SEX O kr O porn O 403401aa71df1830d294b78de0e5e867ee3738568369c48ffafe1b15f3145588 B-Indicator ufD.wyjyx.vahvh B-Indicator 佐川急便 O 466dafa82a4460dcad722d2ad9b8ca332e9a896fc59f06e16ebe981ad3838a6b B-Indicator com.dhp.ozqh B-Indicator Facebook B-Organization 5022495104c280286e65184e3164f3f248356d065ad76acef48ee2ce244ffdc8 B-Indicator ufD.wyjyx.vahvh B-Indicator Anshin O Scan O a0f3df39d20c4eaa410a61a527507dbc6b17c7f974f76e13181e98225bda0511 B-Indicator com.aqyh.xolo B-Indicator 佐川急便 O cb412b9a26c1e51ece7a0e6f98f085e1c27aa0251172bf0a361eb5d1165307f7 B-Indicator jp.co.sagawa.SagawaOfficialApp B-Indicator 佐川急便 O Malicious O URLs O : O hxxp B-Indicator : I-Indicator //38 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 27 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 99 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 11/xvideo/ I-Indicator hxxp B-Indicator : I-Indicator //apple-icloud I-Indicator [ I-Indicator . I-Indicator ] I-Indicator qwe-japan I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //apple-icloud I-Indicator [ I-Indicator . I-Indicator ] I-Indicator qwq-japan I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com/ I-Indicator hxxp B-Indicator : I-Indicator //apple-icloud I-Indicator [ I-Indicator . I-Indicator ] I-Indicator zqo-japan I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com/ I-Indicator hxxp B-Indicator : I-Indicator //files.spamo I-Indicator [ I-Indicator . I-Indicator ] I-Indicator jp/佐川急便.apk I-Indicator hxxp B-Indicator : I-Indicator //mailsa-qae I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //mailsa-qaf I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //mailsa-qau I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //mailsa-qaw I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //mailsa-wqe I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //mailsa-wqo I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //mailsa-wqp I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //mailsa-wqq I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //mailsa-wqu I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //mailsa-wqw I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //nttdocomo-qae I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //nttdocomo-qaq I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //nttdocomo-qaq I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com/aa I-Indicator hxxp B-Indicator : I-Indicator //nttdocomo-qar I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //nttdocomo-qat I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //nttdocomo-qaw I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //sagawa-reg I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com/ I-Indicator hxxp B-Indicator : I-Indicator //www I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 711231 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //www I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 759383 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //www I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 923525 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //www I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 923915 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator hxxp B-Indicator : I-Indicator //www I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 975685 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator Malicious O Twitter B-Organization accounts O : O https B-Indicator : I-Indicator //twitter.com/lucky88755 I-Indicator https B-Indicator : I-Indicator //twitter.com/lucky98745 I-Indicator https B-Indicator : I-Indicator //twitter.com/lucky876543 I-Indicator https B-Indicator : I-Indicator //twitter.com/luckyone1232 I-Indicator https B-Indicator : I-Indicator //twitter.com/sadwqewqeqw I-Indicator https B-Indicator : I-Indicator //twitter.com/gyugyu87418490 I-Indicator https B-Indicator : I-Indicator //twitter.com/fdgoer343 I-Indicator https B-Indicator : I-Indicator //twitter.com/sdfghuio342 I-Indicator https B-Indicator : I-Indicator //twitter.com/asdqweqweqeqw I-Indicator https B-Indicator : I-Indicator //twitter.com/ukenivor3 I-Indicator Malicious O Instagram B-Organization account O : O https B-Indicator : I-Indicator //www.instagram.com/freedomguidepeople1830/ I-Indicator Malicious O Tumblr B-Organization accounts O : O https B-Indicator : I-Indicator //mainsheetgyam.tumblr.com/ I-Indicator https B-Indicator : I-Indicator //hormonaljgrj.tumblr.com/ I-Indicator https B-Indicator : I-Indicator //globalanab.tumblr.com/ I-Indicator C O & O C O addresses O : O 104 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 160 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 191 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 190:8822 I-Indicator 61 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 230 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 204 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 87:28833 I-Indicator 61 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 230 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 204 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 87:28844 I-Indicator 61 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 230 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 204 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 87:28855 I-Indicator 61 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 230 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 205 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 122:28833 I-Indicator 61 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 230 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 205 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 122:28844 I-Indicator 61 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 230 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 205 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 122:28855 I-Indicator 61 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 230 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 205 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 132:28833 I-Indicator 61 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 230 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 205 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 132:28844 I-Indicator 61 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 230 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 205 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 132:28855 I-Indicator GoldenCup B-Malware : O New O Cyber O Threat O Targeting O World O Cup O Fans O As O the O World O Cup O launches O , O so O does O a O new O threat O Officials O from O the O Israeli B-Organization Defense I-Organization Force I-Organization recently O uncovered O an O Android B-System Spyware O campaign O targeting O Israeli O soldiers O and O orchestrated O by O " O Hamas B-Organization . O '' O The O latest O samples O attributed O to O this O campaign O were O discovered O by O security O researchers O from O ClearSky B-Organization . O In O our O research O , O we O focus O on O the O most O recent O sample O , O an O application O dubbed O as O " O Golden B-Malware Cup I-Malware '' O , O launched O just O before O the O start O of O World O Cup O 2018 O . O Distribution O / O Infection O When O this O campaign O started O at O the O start O of O 2018 O , O the O malware O ( O " O GlanceLove B-Malware '' O , O " O WinkChat B-Malware '' O ) O was O distributed O by O the O perpetrators O mainly O via O fake O Facebook B-System profiles O , O attempting O to O seduce O IDF O soldiers O to O socialize O on O a O different O platform O ( O their O malware O ) O . O As O this O approach O was O not O a O great O success O , O their O last O attempt O was O to O quickly O create O a O World O Cup O app O and O this O time O distribute O it O to O Israeli O citizens O , O not O just O soldiers O . O The O official O “ O Golden B-Malware Cup I-Malware ” O Facebook B-System page O . O The O short O URL O redirects O to O the O application O page O at O Google B-System Play I-System . O The O official O “ O Golden B-Malware Cup I-Malware ” O Facebook B-System page O . O The O short O URL O redirects O to O the O application O page O at O Google B-System Play I-System . O We O assume O it O was O rushed O because O , O unlike O GlanceLove B-Malware , O it O lacked O any O real O obfuscation O . O Even O the O C O & O C O server O side O was O mostly O exposed O with O the O file O listing O available O for O everyone O to O traverse O through O it O . O It O contained O approximately O 8GB O of O stolen O data O . O A O recent O whois O of O “ O goldncup.com B-Indicator ” O . O Creation O date O is O a O week O before O the O start O of O the O tournament O . O A O recent O whois O of O “ O goldncup.com B-Indicator ” O . O Creation O date O is O a O week O before O the O start O of O the O tournament O . O How O it O Works O In O order O to O get O into O the O Google B-System Play I-System Store O , O the O malware O uses O a O phased O approach O which O is O quite O a O common O practice O for O malware O authors O these O days O . O The O original O app O looks O innocent O , O with O most O of O its O code O aimed O at O implementing O the O real O features O that O the O app O claims O to O provide O . O In O addition O , O it O collects O identifiers O and O some O data O from O the O device O . O After O getting O a O command O from O the O C O & O C O , O the O app O is O able O to O download O a O malicious O payload O in O the O form O of O a O .dex O file O that O is O being O dynamically O loaded O adding O the O additional O malicious O capabilities O . O In O this O way O , O the O malware O authors O can O submit O their O app O and O add O the O malicious O capabilities O only O after O their O app O is O live O on O the O Play B-System Store I-System . O Communication O with O the O C O & O C O In O order O to O communicate O with O its O C O & O C O , O the O app O uses O the O MQTT O ( O Message O Queuing O Telemetry O Transport O ) O protocol O , O which O is O transported O over O TCP B-Indicator port I-Indicator 1883 I-Indicator . O Initiating O the O MQTT O client O . O Initiating O the O MQTT O client O . O Initiating O the O MQTT O client O . O The O app O connects O to O the O MQTT O broker O with O hardcoded O username O and O password O and O a O unique O device O identifier O generated O for O each O device O . O The O MQTT O connection O to O broker O The O MQTT O connection O to O broker O The O MQTT O communication O is O used O primarily O to O update O the O device O state O and O get O commands O from O the O C O & O C O . O It O uses O different O topics O that O include O the O unique O device O identifier O , O which O side O is O sending O the O message O , O and O whether O it O is O information O message O or O command O . O HTTP O Communication O In O addition O to O the O MQTT O communication O , O the O app O also O uses O plain O text O HTTP O communication O in O order O to O download O the O .dex O file O and O upload O collected O data O . O All O of O the O files O that O are O being O uploaded O or O downloaded O are O zip O files O encrypted O by O AES O with O ECB O mode O . O The O key O for O each O file O is O generated O randomly O and O stored O in O the O encrypted O file O with O a O fixed O offset O . O In O order O to O upload O the O file O , O the O app O uses O a O basic O REST O communication O with O the O server O , O checking O if O the O file O exists O and O uploading O it O if O it O isn O ’ O t O . O The O path O that O is O used O for O the O uploads O is O : O http B-Indicator : I-Indicator // I-Indicator /apps/d/p/op.php I-Indicator The O communication O looks O like O this O : O First O Phase O The O first O phase O of O the O app O ’ O s O attack O flow O collects O device O information O and O a O list O of O apps O installed O on O the O device O . O These O are O then O uploaded O to O the O C O & O C O HTTP O server O . O The O collection O of O basic O device O information O . O The O collection O of O basic O device O information O . O In O addition O , O at O this O stage O the O app O can O process O one O of O these O commands O : O • O Collect O device O info O • O Install O app O • O Is O online O ? O • O Change O server O domain O Out O of O these O , O the O most O interesting O command O is O the O “ O install O app O ” O command O that O downloads O an O encrypted O zip O file O containing O the O second O phase O dex O file O , O unpacks O and O loads O it O . O Second O Phase O The O second O phase O dex O file O contains O 3 O main O services O that O are O being O used O : O • O ConnManager O - O handles O connections O to O the O C O & O C O • O ReceiverManager O - O waits O for O incoming O calls O / O app O installations O • O TaskManager O - O manages O the O data O collection O tasks O The O C O & O C O server O address O is O different O than O the O one O that O is O used O by O the O first O phase O , O so O the O app O reconnects O to O the O new O server O as O well O as O starts O the O periodic O data O collector O tasks O . O By O analyzing O the O TaskManager O class O we O can O see O the O new O commands O that O are O supported O at O this O stage O : O As O can O be O seen O in O the O code O snippet O above O , O there O are O quite O a O lot O of O data O collection O tasks O that O are O now O available O : O Collect O device O info O Track O location O Upload O contacts O information O Upload O sent O and O received O SMS O messages O Upload O images O Upload O video O files O Send O recursive O dirlist O of O the O external O storage O Upload O specific O files O Record O audio O using O the O microphone O Record O calls O Use O the O camera O to O capture O bursts O of O snapshots O Those O tasks O can O either O run O periodically O , O on O event O ( O such O as O incoming O call O ) O or O when O getting O a O command O from O the O C O & O C O server O . O Mitigations O Stay O protected O from O mobile O malware O by O taking O these O precautions O : O Do O not O download O apps O from O unfamiliar O sites O Only O install O apps O from O trusted O sources O Pay O close O attention O to O the O permissions O requested O by O apps O Install O a O suitable O mobile O security O app O , O such O as O SEP O Mobile O or O Norton O , O to O protect O your O device O and O data O Keep O your O operating O system O up O to O date O Make O frequent O backups O of O important O data O Indicators O of O Compromise O ( O IoCs O ) O Package O names O : O anew.football.cup.world.com.worldcup B-Indicator com.coder.glancelove B-Indicator com.winkchat I-Indicator APK O SHA2 O : O 166f3a863bb2b66bda9c76dccf9529d5237f6394721f46635b053870eb2fcc5a B-Indicator b45defca452a640b303288131eb64c485f442aae0682a3c56489d24d59439b47 B-Indicator d9601735d674a9e55546fde0bffde235bc5f2546504b31799d874e8c31d5b6e9 B-Indicator 2ce54d93510126fca83031f9521e40cd8460ae564d3d927e17bd63fb4cb20edc B-Indicator 67b1a1e7b505ac510322b9d4f4fc1e8a569d6d644582b588faccfeeaa4922cb7 B-Indicator 1664cb343ee830fa94725fed143b119f7e2351307ed0ce04724b23469b9002f2 B-Indicator Loaded O DEX O SHA2 O : O afaf446a337bf93301b1d72855ccdd76112595f6e4369d977bea6f9721edf37e B-Indicator Domain/IP O : O goldncup B-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator glancelove B-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator autoandroidup B-Indicator [ I-Indicator . I-Indicator ] I-Indicator website I-Indicator mobilestoreupdate B-Indicator [ I-Indicator . I-Indicator ] I-Indicator website I-Indicator updatemobapp B-Indicator [ I-Indicator . I-Indicator ] I-Indicator website I-Indicator 107 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 175 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 144 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 26 I-Indicator 192 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 64 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 114 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 147 I-Indicator Red B-Malware Alert I-Malware 2.0 I-Malware : O Android B-System Trojan O targets O security-seekers O A O malicious O , O counterfeit O version O of O a O VPN B-System client O for O mobile O devices O targets O security-minded O victims O with O a O RAT O . O Written O by O Jagadeesh O Chandraiah O JULY O 23 O , O 2018 O SophosLabs B-Organization has O uncovered O a O mobile O malware O distribution O campaign O that O uses O advertising O placement O to O distribute O the O Red B-Malware Alert I-Malware Trojan I-Malware , O linking O counterfeit O branding O of O well-known O apps O to O Web O pages O that O deliver O an O updated O , O 2.0 O version O of O this O bank O credential O thief O . O The O group O distributing O this O family O of O malware O decorates O it O in O the O branding O and O logos O of O well-known O social O media O or O media O player O apps O , O system O update O patches O , O or O ( O in O its O most O recent O campaign O ) O VPN B-System client O apps O in O an O attempt O to O lure O users O into O downloading O , O installing O , O and O elevating O the O privileges O of O a O Trojanized O app O hosted O on O a O site O not O affiliated O with O any O reputable O app O market O or O store O . O Aside O from O the O inescapable O irony O of O disguising O a O security-reducing O Trojan O as O an O ostensibly O security-enhancing O app O , O and O the O righteous O affront O to O the O whole O concept O of O a O VPN O ’ O s O purpose O a O Trojan O so O disguised O inspires O , O this O represents O an O escalation O in O the O variety O of O app O types O targeted O by O this O campaign O of O bankbots O in O disguise O . O Red B-Malware Alert I-Malware Plays O Dress-Up O In O the O wild O , O we O found O Web O pages O designed O to O ( O vaguely O ) O resemble O legitimate O app O market O pages O , O hosting O files O for O download O that O have O been O disguised O as O a O legitimate O mobile O application O of O moderately O broad O appeal O , O such O as O a O media O player O or O social O media O app O . O But O the O categories O targeted O by O this O group O seem O to O be O broadening O with O the O inclusion O of O VPN B-System software O . O The O Web O page O shown O here O on O the O left O is O hosted O on O a O domain O that O seems O apt O : O free-vpn B-Indicator [ I-Indicator . I-Indicator ] I-Indicator download I-Indicator . O Investigation O of O this O domain O led O to O additional O domains O that O appear O to O have O been O registered O for O use O with O the O campaign O , O but O are O not O in O use O yet O . O ( O You O can O find O additional O IoCs O at O the O end O of O this O article O ) O As O you O can O see O , O the O Web O page O uses O a O similar O colour O scheme O as O , O and O the O icon O design O from O , O a O legitimate O VPN O application O ( O VPN O Proxy O Master O ) O found O on O the O Google B-System Play I-System store I-System . O The O fake O doesn O ’ O t O quite O nail O the O app O name O . O In O addition O to O “ O Free B-System VPN I-System Master I-System Android I-System , O ” O we O ’ O ve O observed O Red B-Malware Alert I-Malware 2.0 I-Malware Trojans O in O the O wild O disguising O themselves O using O names O like O : O Flash B-System Player I-System or O Update B-System Flash I-System Player I-System Android B-System Update I-System or O Android B-System Antivirus I-System Chrome B-System Update I-System or O Google B-System Update I-System Update B-System Google I-System Market I-System WhatsApp B-System Viber B-System OneCoin B-System Wallet B-System Pornhub O Tactic O FlashLight O or O PROFlashLight O Finanzonline O The O vast O majority O of O in-the-wild O Red B-Malware Alert I-Malware 2.0 I-Malware samples I-Malware falsely O present O themselves O as O Adobe B-System Flash I-System player I-System for O Android B-System , O a O utility O that O Adobe B-Organization stopped O supporting O years O ago O . O Our O logs O show O a O number O of O simultaneous B-Malware Red I-Malware Alert I-Malware 2.0 I-Malware campaigns I-Malware in O operation O , O many O ( O but O not O all O ) O hosted O on O dynamic O DNS O domains O . O The O Red B-Malware Alert I-Malware Payload I-Malware Once O installed O , O the O malware O requests O Device O Administrator O privileges O . O If O the O malware O obtains O device O administrator O rights O , O it O will O be O able O to O lock O the O screen O by O itself O , O expire O the O password O , O and O resist O being O uninstalled O through O normal O methods O . O Device O admin O request O from O app O that O says O it O is O WhatsApp O The O app O then O stays O in O the O background O listening O to O commands O from O the O cybercrooks O . O Within O some O of O the O first O of O those O commands O , O the O bot O typically O receives O a O list O of O banks O it O will O target O . O The O Trojan O works O by O creating O an O overlay O whenever O the O user O launches O the O banking O application O . O Currently O Running O Applications O Banking O Trojans O that O rely O on O the O overlay O mechanism O to O steal O information O need O to O know O what O application O is O in O the O foreground O . O They O do O this O not O only O to O identify O whether O the O use O of O a O particular O app O may O permit O them O to O harvest O another O credential O , O but O also O because O each O targeted O app O needs O to O have O an O overlay O mapped O to O its O design O , O so O the O Trojan O can O intercept O and O steal O user O data O . O This O quest O to O determine O the O currently O running O application O is O a O hallmark O of O overlay O malware O , O so O we O thought O we O ’ O d O take O a O closer O look O at O how O it O ’ O s O done O . O To O prevent O this O , O Android B-System ’ O s O engineers O regularly O release O updates O that O contain O bug O fixes O designed O to O prevent O apps O from O getting O the O list O of O currently O running O apps O without O explicit O permission O . O With O every O Android B-System update O , O the O malware O authors O are O forced O to O come O up O with O new O tricks O . O This O particular O case O is O not O an O exception O . O The O author O ( O s O ) O of O this O malware O wrote O separate O subroutines O that O identify O the O operating O system O version O and O fire O off O methods O to O obtain O a O list O of O currently O running O applications O known O to O work O on O that O particular O version O of O Android B-System . O First O , O they O use O the O built-in O toolbox O commands O to O determine O what O apps O are O running O . O If O that O doesn O ’ O t O work O , O they O try O to O use O queryUsageStats O : O When O the O malware O invokes O queryUsageStats O , O it O asks O for O the O list O of O applications O that O ran O in O the O last O 1 O million O milliseconds O ( O 16 O minutes O and O 40 O seconds O ) O . O String O Resources O Used O to O Store O App O Data O Red B-Malware Alert I-Malware 2.0 I-Malware stores O its O data O in O an O atypical O location O ( O inside O the O Strings.xml B-Indicator file I-Indicator embedded O in O the O app O ) O to O fetch O its O critical O data O , O such O as O the O C2 O address O . O The O com.dsufabunfzs.dowiflubs O strings O in O the O screenshot O above O refer O to O the O internal O name O this O particular O malware O was O given O , O which O in O this O case O was O randomized O into O alphabet O salad O . O It O ’ O s O been O SophosLabs O ’ O observation O that O Red B-Malware Alert I-Malware Trojans I-Malware usually O have O a O randomized O internal O name O like O this O . O The O strings O section O of O the O app O contains O embedded O command-and-control O IP O addresses O , O ports O , O and O domain O names O in O plaintext O . O It O is O an O invaluable O source O of O intelligence O about O a O given O campaign O .. O The O following O snippet O shows O the O location O within O the O Trojan O where O it O uses O SQLite O database O commands O to O store O and O recall O command-and-control O addresses O : O Backdoor O Commands O The O Red B-Malware Alert I-Malware code I-Malware also O contains O an O embedded O list O of O commands O the O botmaster O can O send O to O the O bot O . O The O malware O can O execute O a O variety O of O arbitrary O commands O , O including O ( O for O example O ) O intercepting O or O sending O text O messages O without O the O user O ’ O s O knowledge O , O obtaining O a O copy O of O the O victim O ’ O s O Address B-System Book I-System , O or O call O or O text O message O logs O , O or O sending O phone O network O feature O codes O ( O also O known O as O USSD O codes O ) O . O C2 O and O Targeted O Banks O As O described O earlier O , O the O C2 O domain O is O kept O in O the O app O ’ O s O resources O . O During O the O app O execution O , O the O malware O contacts O C2 O domain O for O further O instructions O . O Most O of O the O network O traffic O we O ’ O ve O observed O is O HTTP B-Indicator . O The O C2 O address O , O as O stored O in O samples O we O ’ O ve O seen O , O comprise O both O an O IP O address O and O port O number O ; O So O far O , O all O the O samples O we O ’ O ve O tested O attempted O to O contact O an O IP O address O on O port B-Indicator 7878/tcp I-Indicator . O If O the O main O C2 O domain O is O not O responsive O , O the O bot O fetches O a O backup O C2 O domain O from O a O Twitter B-Organization account O . O Static O analysis O of O the O code O reveals O that O the O malware O downloads O the O overlay O template O to O use O against O any O of O the O bank O ( O s O ) O it O is O targeting O . O The O malware O also O sends O regular O telemetry O back O to O its O C2 O server O about O the O infected O device O in O the O form O of O an O HTTP B-Indicator POST O to O its O C2 O server O . O It O uses O the O base O Dalvik O User-Agent O string O for O the O device O it O ’ O s O running O on O . O The O content O of O the O HTTP B-Indicator POST O data O is O telemetry O data O in O a O json O format O about O the O device O the O malware O is O running O on O . O The O list O of O banks O targeted O by O Red B-Malware Alert I-Malware 2.0 I-Malware includes O NatWest O , O Barclays B-Organization , O Westpac O , O and O Citibank O . O Red B-Malware Alert I-Malware 2.0 I-Malware is O a O banking O bot O that O is O currently O very O active O online O , O and O presents O a O risk O to O Android O devices O . O We O expect O to O see O more O diversification O in O the O social O engineering O lures O this O threat O group O employs O as O time O goes O on O . O So O far O , O legitimate O app O stores O appear O to O be O this O malware O ’ O s O Achilles O heel O ; O disabling O the O installation O of O third-party O apps O has O been O an O effective O prevention O measure O . O Stick O to O Google B-System Play I-System and O use O VPN O software O from O reputable O vendors O . O Sophos B-Organization detects O all O the O samples O of O this O Trojan O family O as O Andr/Banker-GWC O and O Andr/Spybot-A O . O In O the O wild O , O these O are O only O distributed O as O a O direct O download O from O unofficial O Web O pages O ( O “ O third-party O ” O app O ) O and O not O through O legitimate O app O stores O . O Red B-Malware Alert I-Malware 2.0 I-Malware IoCs O list O C2 O addresses O 103.239.30.126:7878 B-Indicator 146.185.241.29:7878 B-Indicator 146.185.241.42:7878 B-Indicator 185.126.200.3:7878 B-Indicator 185.126.200.12:7878 B-Indicator 185.126.200.15:7878 B-Indicator 185.126.200.18:7878 B-Indicator 185.165.28.15:7878 B-Indicator 185.243.243.241:7878 B-Indicator 185.243.243.244:7878 B-Indicator 185.243.243.245:7878 B-Indicator Domains O Malware O source O Web O hosts O on O 167.99.176.61 B-Indicator : O free-androidvpn.date B-Indicator free-androidvpn.download O free-androidvpn.online O free-vpn.date B-Indicator free-vpn.download O free-vpn.online O Hashes O 22fcfce096392f085218c3a78dd0fa4be9e67ed725bce42b965a27725f671cf O 55292a4dde8727faad1c40c914cf1be9dfdcf4e67b515aa593bcd8d86e824372 B-Indicator be92a751e5abbcd24151b509dbb4feb98ea46f367a99d6f86ed4a7c162461e31 B-Indicator 5c4d666cef84abc2a1ffd3b1060ef28fa3c6c3bb4fad1fa26db99350b41bea4c B-Indicator 06081ab7faa729e33b9397a0e47548e75cbec3d43c50e6368e81d737552150a5 B-Indicator 753999cb19a4346042f973e30cf1158c44f2335ab65859d3bfa16bca4098e2ef B-Indicator As O a O result O of O a O lot O of O hard O work O done O by O our O security O research O teams O , O we O revealed O today O a O new O and O alarming O malware O campaign O . O The O attack O campaign O , O named O Gooligan B-Malware , O breached O the O security O of O over O one O million O Google B-Organization accounts O . O The O number O continues O to O rise O at O an O additional O 13,000 O breached O devices O each O day O . O Our O research O exposes O how O the O malware O roots O infected O devices O and O steals O authentication O tokens O that O can O be O used O to O access O data O from O Google B-System Play I-System , O Gmail B-System , O Google B-System Photos I-System , O Google B-System Docs I-System , O G B-System Suite I-System , O Google B-System Drive I-System , O and O more O . O Gooligan B-Malware is O a O new O variant O of O the O Android O malware O campaign O found O by O our O researchers O in O the O SnapPea B-Malware app O last O year O . O Check B-Organization Point I-Organization reached O out O to O the O Google B-Organization Security I-Organization team O immediately O with O information O on O this O campaign O . O Our O researchers O are O working O closely O with O Google B-Organization to O investigate O the O source O of O the O Gooligan B-Malware campaign I-Malware . O “ O We O ’ O re O appreciative O of O both O Check B-Organization Point I-Organization ’ O s O research O and O their O partnership O as O we O ’ O ve O worked O together O to O understand O these O issues O , O ” O said O Adrian O Ludwig O , O Google B-Organization ’ O s O director O of O Android B-System security O . O “ O As O part O of O our O ongoing O efforts O to O protect O users O from O the O Ghost B-Malware Push I-Malware family I-Malware of O malware O , O we O ’ O ve O taken O numerous O steps O to O protect O our O users O and O improve O the O security O of O the O Android B-System ecosystem O overall. O ” O We O are O very O encouraged O by O the O statement O Google B-Organization shared O with O us O addressing O the O issue O . O We O have O chosen O to O join O forces O to O continue O the O investigation O around O Gooligan B-Malware . O Google B-Organization also O stated O that O they O are O taking O numerous O steps O including O proactively O notifying O affected O accounts O , O revoking O affected O tokens O and O deploying O SafetyNet O improvements O to O protect O users O from O these O apps O in O the O future O . O Who O is O affected O ? O Gooligan B-Malware potentially O affects O devices O on O Android B-System 4 I-System ( I-System Jelly I-System Bean I-System , I-System KitKat I-System ) I-System and I-System 5 I-System ( I-System Lollipop I-System ) I-System , O which O is O over O 74 O % O of O in-market O devices O today O . O About O 57 O % O of O these O devices O are O located O in O Asia O and O about O 9 O % O are O in O Europe O . O In O our O research O we O identified O tens O of O fake O applications O that O were O infected O with O this O malware O . O If O you O ’ O ve O downloaded O one O of O the O apps O listed O in O Appendix O A O , O below O , O you O might O be O infected O . O You O may O review O your O application O list O in O “ O Settings O - O > O Apps O ” O , O if O you O find O one O of O this O applications O , O please O consider O downloading O an O antivirus O product O such O as O Check B-Organization Point I-Organization ZoneAlarm B-System to O check O if O you O are O indeed O infected O . O We O have O noticed O that O hundreds O of O the O email O addresses O are O associated O with O enterprise O accounts O worldwide O . O How O do O you O know O if O your O Google B-Organization account O is O breached O ? O You O can O check O if O your O account O is O compromised O by O accessing O the O following O web O site O that O we O created O : O https B-Indicator : I-Indicator //gooligan.checkpoint.com/ I-Indicator . O If O your O account O has O been O breached O , O the O following O steps O are O required O : O A O clean O installation O of O an O operating O system O on O your O mobile O device O is O required O ( O a O process O called O “ O flashing O ” O ) O . O As O this O is O a O complex O process O , O we O recommend O powering O off O your O device O and O approaching O a O certified O technician O , O or O your O mobile O service O provider O , O to O request O that O your O device O be O “ O re-flashed. O ” O Change O your O Google B-Organization account O passwords O immediately O after O this O process O . O How O do O Android O devices O become O infected O ? O We O found O traces O of O the O Gooligan B-Malware malware O code O in O dozens O of O legitimate-looking O apps O on O third-party O Android B-System app O stores O . O These O stores O are O an O attractive O alternative O to O Google B-System Play I-System because O many O of O their O apps O are O free O , O or O offer O free O versions O of O paid O apps O . O However O , O the O security O of O these O stores O and O the O apps O they O sell O aren O ’ O t O always O verified O . O Gooligan-infected B-Malware apps O can O also O be O installed O using O phishing O scams O where O attackers O broadcast O links O to O infected O apps O to O unsuspecting O users O via O SMS O or O other O messaging O services O . O How O did O Gooligan B-Malware emerge O ? O Our O researchers O first O encountered O Gooligan B-Malware ’ O s O code O in O the O malicious O SnapPea B-Malware app O last O year O . O At O the O time O this O malware O was O reported O by O several O security O vendors O , O and O attributed O to O different O malware O families O like O Ghostpush B-Malware , O MonkeyTest B-Malware , O and O Xinyinhe B-Malware . O By O late O 2015 O , O the O malware O ’ O s O creators O had O gone O mostly O silent O until O the O summer O of O 2016 O when O the O malware O reappeared O with O a O more O complex O architecture O that O injects O malicious O code O into O Android B-System system O processes O . O The O change O in O the O way O the O malware O works O today O may O be O to O help O finance O the O campaign O through O fraudulent O ad O activity O . O The O malware O simulates O clicks O on O app O advertisements O provided O by O legitimate O ad O networks O and O forces O the O app O to O install O on O a O device O . O An O attacker O is O paid O by O the O network O when O one O of O these O apps O is O installed O successfully O . O Logs O collected O by O Check B-Organization Point I-Organization researchers O show O that O every O day O Gooligan B-Malware installs O at O least O 30,000 O apps O fraudulently O on O breached O devices O or O over O 2 O million O apps O since O the O campaign O began O . O How O does O Gooligan B-Malware work O ? O The O infection O begins O when O a O user O downloads O and O installs O a O Gooligan-infected B-Malware app O on O a O vulnerable O Android O device O . O Our O research O team O has O found O infected O apps O on O third-party O app O stores O , O but O they O could O also O be O downloaded O by O Android B-System users O directly O by O tapping O malicious O links O in O phishing O attack O messages O . O After O an O infected O app O is O installed O , O it O sends O data O about O the O device O to O the O campaign O ’ O s O Command O and O Control O ( O C O & O C O ) O server O . O Gooligan B-Malware then O downloads O a O rootkit O from O the O C O & O C O server O that O takes O advantage O of O multiple O Android B-System 4 I-System and I-System 5 I-System exploits O including O the O well-known O VROOT B-Vulnerability ( O CVE-2013-6282 B-Vulnerability ) O and O Towelroot B-Vulnerability ( O CVE-2014-3153 B-Vulnerability ) O . O These O exploits O still O plague O many O devices O today O because O security O patches O that O fix O them O may O not O be O available O for O some O versions O of O Android B-System , O or O the O patches O were O never O installed O by O the O user O . O If O rooting O is O successful O , O the O attacker O has O full O control O of O the O device O and O can O execute O privileged O commands O remotely O . O After O achieving O root O access O , O Gooligan B-Malware downloads O a O new O , O malicious O module O from O the O C O & O C O server O and O installs O it O on O the O infected O device O . O This O module O injects O code O into O running O Google B-System Play I-System or O GMS B-System ( I-System Google I-System Mobile I-System Services I-System ) I-System to O mimic O user O behavior O so O Gooligan B-Malware can O avoid O detection O , O a O technique O first O seen O with O the O mobile O malware O HummingBad B-Malware . O The O module O allows O Gooligan B-Malware to O : O Steal O a O user O ’ O s O Google B-Organization email O account O and O authentication O token O information O Install O apps O from O Google B-System Play I-System and O rate O them O to O raise O their O reputation O Install O adware O to O generate O revenue O Ad O servers O , O which O don O ’ O t O know O whether O an O app O using O its O service O is O malicious O or O not O , O send O Gooligan B-Malware the O names O of O the O apps O to O download O from O Google B-System Play I-System . O After O an O app O is O installed O , O the O ad O service O pays O the O attacker O . O Then O the O malware O leaves O a O positive O review O and O a O high O rating O on O Google B-System Play I-System using O content O it O receives O from O the O C O & O C O server O . O Our O research O team O was O able O to O identify O several O instances O of O this O activity O by O cross-referencing O data O from O breached O devices O with O Google B-System Play I-System app O reviews O . O This O is O another O reminder O of O why O users O shouldn O ’ O t O rely O on O ratings O alone O to O decide O whether O to O trust O an O app O . O Similar O to O HummingBad B-Malware , O the O malware O also O fakes O device O identification O information O , O such O as O IMEI O and O IMSI O , O to O download O an O app O twice O while O seeming O like O the O installation O is O happening O on O a O different O device O , O thereby O doubling O the O potential O revenue O . O What O are O Google B-Organization authorization O tokens O ? O A O Google B-Organization authorization O token O is O a O way O to O access O the O Google B-Organization account O and O the O related O services O of O a O user O . O It O is O issued O by O Google B-Organization once O a O user O successfully O logged O into O this O account O . O When O an O authorization O token O is O stolen O by O a O hacker O , O they O can O use O this O token O to O access O all O the O Google B-Organization services O related O to O the O user O , O including O Google B-System Play I-System , O Gmail B-System , O Google B-System Docs I-System , O Google B-System Drive I-System , O and O Google B-System Photos I-System . O While O Google B-Organization implemented O multiple O mechanisms O , O like O two-factor-authentication O , O to O prevent O hackers O from O compromising O Google B-Organization accounts O , O a O stolen O authorization O token O bypasses O this O mechanism O and O allows O hackers O the O desired O access O as O the O user O is O perceived O as O already O logged O in O . O Conclusion O Gooligan B-Malware has O breached O over O a O million O Google B-Organization accounts O . O We O believe O that O it O is O the O largest O Google B-Malware account O breach O to O date O , O and O we O are O working O with O Google B-Organization to O continue O the O investigation O . O We O encourage O Android B-System users O to O validate O whether O their O accounts O have O been O breached O . O Hacking B-Organization Team I-Organization Spying O Tool O Listens O to O Calls O By O : O Trend B-Organization Micro I-Organization July O 21 O , O 2015 O Following O news O that O iOS B-System devices O are O at O risk O of O spyware O related O to O the O Hacking B-Organization Team I-Organization , O the O saga O continues O into O the O Android B-System sphere O . O We O found O that O among O the O leaked O files O is O the O code O for O Hacking O Team O ’ O s O open-source O malware O suite O RCSAndroid B-Malware ( O Remote B-Malware Control I-Malware System I-Malware Android I-Malware ) O , O which O was O sold O by O the O company O as O a O tool O for O monitoring O targets O . O ( O Researchers O have O been O aware O of O this O suite O as O early O as O 2014 O . O ) O The O RCSAndroid B-Malware code O can O be O considered O one O of O the O most O professionally O developed O and O sophisticated O Android B-System malware O ever O exposed O . O The O leak O of O its O code O provides O cybercriminals O with O a O new O weaponized O resource O for O enhancing O their O surveillance O operations O . O Based O on O the O leaked O code O , O the O RCSAndroid B-Malware app O can O do O the O following O intrusive O routines O to O spy O on O targets O : O Capture O screenshots O using O the O “ O screencap O ” O command O and O framebuffer O direct O reading O Monitor O clipboard O content O Collect O passwords O for O Wi-Fi O networks O and O online O acco O ; O .unts O , O including O Skype B-System , O Facebook B-System , O Twitter B-System , O Google B-System , O WhatsApp B-System , O Mail B-System , O and O LinkedIn B-System Record O using O the O microphone O Collect O SMS O , O MMS O , O and O Gmail B-System messages O Record O location O Gather O device O information O Capture O photos O using O the O front O and O back O cameras O Collect O contacts O and O decode O messages O from O IM O accounts O , O including O Facebook B-System Messenger I-System , O WhatsApp B-System , O Skype B-System , O Viber B-System , O Line B-System , O WeChat B-System , O Hangouts B-System , O Telegram B-System , O and O BlackBerry B-System Messenger I-System . O Capture O real-time O voice O calls O in O any O network O or O app O by O hooking O into O the O “ O mediaserver O ” O system O service O RCSAndroid B-Malware in O the O Wild O Our O analysis O reveals O that O this O RCSAndroid B-Malware ( O AndroidOS_RCSAgent.HRX B-Indicator ) O has O been O in O the O wild O since O 2012 O . O Traces O of O its O previous O uses O in O the O wild O were O found O inside O the O configuration O file O : O It O was O configured O to O use O a O Command-and-control O ( O C O & O C O ) O server O in O the O United O States O ; O however O , O the O server O was O bought O from O a O host O service O provider O and O is O now O unavailable O . O It O was O configured O to O activate O via O SMS O sent O from O a O Czech O Republic O number O . O Attackers O can O send O SMS O with O certain O messages O to O activate O the O agent O and O trigger O corresponding O action O . O This O can O also O define O what O kind O of O evidences O to O collect O . O Based O on O emails O leaked O in O the O dump O , O a O number O of O Czech O firms O appear O to O be O in O business O with O the O Hacking O team O , O including O a O major O IT O partner O in O the O Olympic O Games O . O Dropping O Cluster O Bombs O RCSAndroid B-Malware is O a O threat O that O works O like O a O cluster O bomb O in O that O it O deploys O multiple O dangerous O exploits O and O uses O various O techniques O to O easily O infect O Android B-System devices O . O While O analyzing O the O code O , O we O found O that O the O whole O system O consists O of O four O critical O components O , O as O follows O : O penetration O solutions O , O ways O to O get O inside O the O device O , O either O via O SMS/email O or O a O legitimate O app O low-level O native O code O , O advanced O exploits O and O spy O tools O beyond O Android B-System ’ O s O security O framework O high-level O Java O agent O – O the O app O ’ O s O malicious O APK O command-and-control O ( O C O & O C O ) O servers O , O used O to O remotely O send/receive O malicious O commands O Attackers O use O two O methods O to O get O targets O to O download O RCSAndroid B-Malware . O The O first O method O is O to O send O a O specially O crafted O URL O to O the O target O via O SMS O or O email O . O The O URL O will O trigger O exploits O for O arbitrary B-Vulnerability memory I-Vulnerability read I-Vulnerability ( I-Vulnerability CVE-2012-2825 I-Vulnerability ) I-Vulnerability and O heap B-Vulnerability buffer I-Vulnerability overflow I-Vulnerability ( I-Vulnerability CVE-2012-2871 I-Vulnerability ) I-Vulnerability vulnerabilities O in O the O default O browsers O of O Android B-System versions I-System 4.0 I-System Ice I-System Cream I-System Sandwich I-System to O 4.3 B-System Jelly I-System Bean I-System , O allowing O another O local O privilege O escalation O exploit O to O execute O . O When O root O privilege O is O gained O , O a O shell O backdoor O and O malicious O RCSAndroid B-Malware agent O APK O file O will O be O installed O The O second O method O is O to O use O a O stealthy O backdoor O app O such O as O ANDROIDOS_HTBENEWS.A B-Malware , O which O was O designed O to O bypass O Google B-System Play I-System . O The O role O of O ANDROIDOS_HTBENEWS.A B-Malware and O the O malicious O APK O mentioned O in O the O first O method O is O to O exploit O a O local B-Vulnerability privilege I-Vulnerability escalation I-Vulnerability vulnerability I-Vulnerability in O Android O devices O . O Hacking O Team O has O been O known O to O use O both O CVE-2014-3153 B-Vulnerability and O CVE-2013-6282 B-Vulnerability in O their O attacks O . O The O said O exploits O will O root O the O device O and O install O a O shell O backdoor O . O The O shell O backdoor O then O installs O the O RCSAndroid B-Malware agent O . O This O agent O has O two O core O modules O , O the O Evidence O Collector O and O the O Event O Action O Trigger O . O The O Evidence O Collector O module O is O responsible O for O the O spying O routines O outlined O above O . O One O of O its O most O notable O routines O is O capturing O voice O calls O in O real O time O by O hooking O into O the O “ O mediaserver O ” O system O service O . O The O basic O idea O is O to O hook O the O voice O call O process O in O mediaserver O . O Take O voice O call O playback O process O for O example O . O The O mediaserver O will O first O builds O a O new O unique O track O , O start O to O play O the O track O , O loop O play O all O audio O buffer O , O then O finally O stop O the O playback O . O The O raw O wave O audio O buffer O frame O can O be O dumped O in O the O getNextBuffer O ( O ) O function O . O With O the O help O of O the O open-source O Android B-System Dynamic O Binary O Instrumentation O Toolkit O and O root O privilege O , O it O is O possible O to O intercept O any O function O execution O . O The O Event O Action O Trigger O module O triggers O malicious O actions O based O on O certain O events O . O These O events O can O be O based O on O time O , O charging O or O battery O status O , O location O , O connectivity O , O running O apps O , O focused O app O , O SIM O card O status O , O SMS O received O with O keywords O , O and O screen O turning O on O . O According O to O the O configuration O pattern O , O these O actions O are O registered O to O certain O events O : O Sync O configuration O data O , O upgrade O modules O , O and O download O new O payload O ( O This O uses O transport O protocol O ZProtocol O encrypted O by O AES/CBC/PKCS5Padding O algorithm O to O communicate O with O the O C O & O C O server O . O ) O Upload O and O purge O collected O evidence O Destroy O device O by O resetting O locking O password O Execute O shell O commands O Send O SMS O with O defined O content O or O location O Disable O network O Disable O root O Uninstall O bot O To O avoid O detection O and O removal O of O the O agent O app O in O the O device O memory O , O the O RCSAndroid B-Malware suite O also O detects O emulators O or O sandboxes O , O obfuscates O code O using O DexGuard B-System , O uses O ELF O string O obfuscator O , O and O adjusts O the O OOM O ( O out-of-memory O ) O value O . O Interestingly O , O one O unused O feature O of O the O app O is O its O ability O to O manipulate O data O in O the O Android B-System package O manager O to O add O and O remove O permissions O and O components O as O well O as O hide O the O app O icon O . O Recommendations O Popular O mobile O platforms O like O Android B-System are O common O targets O for O organized O or O commercialized O monitoring O operations O . O Attackers O know O that O rooting O devices O via O malware O exploits O is O an O effective O means O to O control O devices O and O gather O information O from O them O . O In O a O root O broken O device O , O security O is O a O fairy O tale O . O Take O note O of O the O following O best O practices O to O prevent O this O threat O from O getting O in O your O device O : O Disable O app O installations O from O unknown O , O third-party O sources O . O Constantly O update O your O Android B-System devices O to O the O latest O version O to O help O prevent O exploits O , O especially O in O the O case O of O RCSAndroid B-Malware which O can O affect O only O up O to O version O 4.4.4 B-System KitKat I-System . O Note O , O however O , O that O based O on O the O leak O mail O from O a O customer O inquiry O , O Hacking B-Organization Team I-Organization was O in O the O process O of O developing O exploits O for O Android B-System 5.0 I-System Lollipop I-System . O Install O a O mobile O security O solution O to O secure O your O device O from O threats O . O The O leaked O RCSAndroid B-Malware code I-Malware is O a O commercial O weapon O now O in O the O wild O . O Mobile O users O are O called O on O to O be O on O top O of O this O news O and O be O on O guard O for O signs O of O monitoring O . O Some O indicators O may O come O in O the O form O of O peculiar O behavior O such O as O unexpected O rebooting O , O finding O unfamiliar O apps O installed O , O or O instant O messaging O apps O suddenly O freezing O . O Should O a O device O become O infected O , O this O backdoor O can O not O be O removed O without O root O privilege O . O Users O may O be O required O the O help O of O their O device O manufacturer O to O get O support O for O firmware O flashing O . O Trend B-Organization Micro I-Organization offers O security O for O Android B-System mobile O devices O through O Mobile B-System Security I-System for I-System Android™ I-System to O protect O against O these O types O of O attacks O . O Find O out O more O about O the O 7 O Android B-System Security O Hacks O You O Need O to O Do O Right O Now O to O keep O your O mobile O data O safe O . O Update O as O of O July O 23 O , O 2015 O 1:00 O AM O PDT O ( O UTC-7 O ) O We O have O added O a O link O to O a O previous O report O discussing O this O threat O . O Timeline O of O posts O related O to O the O Hacking O Team O DATE O UPDATE O July O 5 O The O Italian O company O Hacking B-Organization Team I-Organization was O hacked O , O with O more O than O 400GB O of O confidential O company O data O made O available O to O the O public O . O July O 7 O Three O exploits O – O two O for O Flash B-System Player I-System and O one O for O the O Windows B-System kernel—were O initially O found O in O the O information O dump O . O One O of O these O [ O CVE-2015-5119 B-Vulnerability ] O was O a O Flash O zero-day O . O The O Windows B-Vulnerability kernel I-Vulnerability vulnerability I-Vulnerability ( O CVE-2015-2387 B-Vulnerability ) O existed O in O the O open O type O font O manager O module O ( O ATMFD.dll B-Indicator ) O and O can O be O exploited O to O bypass O the O sandbox O mitigation O mechanism O . O The O Flash B-System zero-day O exploit O ( O CVE-2015-5119 B-Vulnerability ) O was O added O into O the O Angler B-Malware Exploit I-Malware Kit I-Malware and O Nuclear B-Malware Exploit I-Malware Pack I-Malware . O It O was O also O used O in O limited O attacks O in O Korea O and O Japan O . O July O 11 O Two O new O Flash B-Vulnerability zero-day I-Vulnerability vulnerabilities I-Vulnerability , O CVE-2015-5122 B-Vulnerability and O CVE-2015-5123 B-Vulnerability , O were O found O in O the O hacking O team O dump O . O July O 13 O Further O analysis O of O the O hacking O team O dump O revealed O that O the O company O used O UEFI B-Malware BIOS I-Malware rootkit I-Malware to O keep O their O Remote B-Malware Control I-Malware System I-Malware ( I-Malware RCS I-Malware ) I-Malware agent O installed O in O their O targets O ’ O systems O . O July O 14 O A O new O zero-day B-Vulnerability vulnerability I-Vulnerability ( O CVE-2015-2425 B-Vulnerability ) O was O found O in O Internet B-System Explorer I-System . O July O 16 O On O the O mobile O front O , O a O fake O news O app O designed O to O bypass O Google B-System Play I-System was O discovered O . O July O 20 O A O new O zero-day B-Vulnerability vulnerability I-Vulnerability ( O CVE-2015-2426 B-Vulnerability ) O was O found O in O Windows B-System , O which O Microsoft B-Organization fixed O in O an O out-of-band O patch O . O July O 21 O Analysis O of O the O RCSAndroid B-Malware spying O tool O revealed O that O Hacking O Team O can O listen O to O calls O and O roots O devices O to O get O in O . O July O 28 O A O recent O campaign O compromised O Taiwan O and O Hong O Kong O sites O to O deliver O Flash B-System exploits O related O to O Hacking B-Organization Team I-Organization . O Android B-System users O warned O of O malware O attack O spreading O via O SMS O FEB O 16 O , O 2016 O Security O researchers O are O warning O owners O of O Android B-System smartphones O about O a O new O malware O attack O , O spreading O via O SMS O text O messages O . O As O the O team O at O Scandinavian O security O group O CSIS B-Organization describes O , O malware O known O as O MazarBOT B-Malware is O being O distributed O via O SMS O in O Denmark O and O is O likely O to O also O be O encountered O in O other O countries O . O Victims O ’ O first O encounter O with O the O malware O reportedly O comes O via O an O unsolicited O text O message O that O their O Android B-System smartphone I-System receives O . O The O txt O message O uses O social O engineering O to O dupe O unsuspecting O users O into O clicking O on O a O link O to O a O downloadable O Android B-System application O . O CSIS B-Organization provided O a O ( O sanitised O ) O version O of O a O typical O message O to O warn O users O what O to O look O out O for O : O “ O You O have O received O a O multimedia O message O from O + O [ O country O code O ] O [ O sender O number O ] O Follow O the O link O http B-Indicator : I-Indicator //www.mmsforyou I-Indicator [ I-Indicator . I-Indicator ] I-Indicator net/mms.apk I-Indicator to O view O the O message O ” O Once O the O APK O package O is O downloaded O , O potential O victims O are O urged O to O grant O the O malicious O app O a O wide O range O of O permissions O on O their O Android O device O : O App O permissions O SEND_SMS O RECEIVE_BOOT_COMPLETED O INTERNET O SYSTEM_ALERT_WINDOW O WRITE_SMS O ACCESS_NETWORK_STATE O WAKE_LOCK O GET_TASKS O CALL_PHONE O RECEIVE_SMS O READ_PHONE_STATE O READ_SMS O ERASE_PHONE O Once O installed O , O MazarBOT B-Malware downloads O a O copy O of O Tor B-System onto O users O ’ O Android B-System smartphones O and O uses O it O to O connect O anonymously O to O the O net O before O sending O a O text O message O containing O the O victim O ’ O s O location O to O an O Iranian O mobile O phone O number O . O With O the O malware O now O in O place O , O a O number O of O actions O can O be O performed O , O including O allowing O attackers O to O secretly O monitor O and O control O smartphones O via O a O backdoor O , O send O messages O to O premium-rate O numbers O , O and O intercept O two-factor O authentication O codes O sent O by O online O banking O apps O and O the O like O . O In O fact O , O with O full O access O to O the O compromised O Android B-System smartphone I-System , O the O opportunities O for O criminals O to O wreak O havoc O are O significant O – O such O as O erasing O infected O phones O or O launching O man-in-the-middle O ( O MITM O ) O attacks O . O In O its O analysis O , O CSIS B-Organization notes O that O MazarBOT B-Malware was O reported O by O Recorded B-Organization Future I-Organization last O November O as O being O actively O sold O in O Russian O underground O forums O and O intriguingly O , O the O malware O will O not O activate O on O Android B-System devices O configured O with O Russian O language O settings O . O This O , O in O itself O , O does O not O prove O that O the O perpetrators O of O the O malware O campaign O are O based O in O Russia O , O but O it O certainly O sounds O as O if O that O is O a O strong O possibility O . O Malware O authors O in O the O past O have O often O coded O a O “ O safety O net O ” O into O their O malware O to O prevent O them O from O accidentally O infecting O their O own O computers O and O devices O . O For O more O detailed O information O about O the O threat O , O check O out O the O blog O post O from O CSIS B-Organization . O And O , O of O course O , O remember O to O always O be O wary O of O unsolicited O , O unusual O text O messages O and O installing O apps O from O third-party O sources O on O your O Android B-System smartphone I-System . O Coronavirus B-System Update I-System App I-System Leads O to O Project B-Malware Spy I-Malware Android B-System and O iOS B-System Spyware O We O discovered O a O cyberespionage O campaign O we O have O named O Project B-Malware Spy I-Malware infecting O Android B-System and O iOS B-System devices O with O spyware O by O using O the O coronavirus O disease O ( O Covid-19 O ) O as O a O lure O . O By O : O Tony O Bao O , O Junzhi O Lu O April O 14 O , O 2020 O We O discovered O a O potential O cyberespionage O campaign O , O which O we O have O named O Project B-Malware Spy I-Malware , O that O infects O Android B-System and O iOS B-System devices O with O spyware O ( O detected O by O Trend B-Organization Micro I-Organization as O AndroidOS_ProjectSpy.HRX B-Indicator and O IOS_ProjectSpy.A B-Indicator , O respectively O ) O . O Project B-Malware Spy I-Malware uses O the O ongoing O coronavirus O pandemic O as O a O lure O , O posing O as O an O app O called O Coronavirus O Updates O . O We O also O found O similarities O in O two O older O samples O disguised O as O a O Google B-Organization service O and O , O subsequently O , O as O a O music O app O after O further O investigation O . O However O , O we O have O noted O a O significantly O small O number O of O downloads O of O the O app O in O Pakistan O , O India O , O Afghanistan O , O Bangladesh O , O Iran O , O Saudi O Arabia O , O Austria O , O Romania O , O Grenada O , O and O Russia O . O Project B-Malware Spy I-Malware routine O At O the O end O of O March O 2020 O , O we O came O across O an O app O masquerading O as O a O coronavirus O update O app O , O which O we O named O Project B-Malware Spy I-Malware based O on O the O login O page O of O its O backend O server O . O This O app O carries O a O number O of O the O capabilities O : O Upload O GSM B-System , O WhatsApp B-System , O Telegram B-System , O Facebook B-System , O and O Threema B-System messages O Upload O voice O notes O , O contacts O stored O , O accounts O , O call O logs O , O location O information O , O and O images O Upload O the O expanded O list O of O collected O device O information O ( O e.g. O , O IMEI O , O product O , O board O , O manufacturer O , O tag O , O host O , O Android B-System version O , O application O version O , O name O , O model O brand O , O user O , O serial O , O hardware O , O bootloader O , O and O device O ID O ) O Upload O SIM O information O ( O e.g. O , O IMSI O , O operator O code O , O country O , O MCC-mobile O country O , O SIM O serial O , O operator O name O , O and O mobile O number O ) O Upload O wifi O information O ( O e.g. O , O SSID O , O wifi O speed O , O and O MAC O address O ) O Upload O other O information O ( O e.g. O , O display O , O date O , O time O , O fingerprint O , O created O at O , O and O updated O at O ) O The O app O is O capable O of O stealing O messages O from O popular O messaging O apps O by O abusing O the O notification O permissions O to O read O the O notification O content O and O saving O it O to O the O database O . O It O requests O permission O to O access O the O additional O storage O . O Project B-Malware Spy I-Malware ’ O s O earlier O versions O Searching O for O the O domain O in O our O sample O database O , O we O found O that O the O coronavirus O update O app O appears O to O be O the O latest O version O of O another O sample O that O we O detected O in O May O 2019 O . O The O first O version O of O Project B-Malware Spy I-Malware ( O detected O by O Trend B-Organization Micro I-Organization as O AndroidOS_SpyAgent.HRXB B-Indicator ) O had O the O following O capabilities O : O Collect O device O and O system O information O ( O i.e. O , O IMEI O , O device O ID O , O manufacturer O , O model O and O phone O number O ) O , O location O information O , O contacts O stored O , O and O call O logs O Collect O and O send O SMS O Take O pictures O via O the O camera O Upload O recorded O MP4 O files O Monitor O calls O Searching O further O , O we O also O found O another O sample O that O could O be O the O second O version O of O Project O Spy O . O This O version O appeared O as O Wabi O Music O , O and O copied O a O popular O video-sharing O social O networking O service O as O its O backend O login O page O . O In O this O second O version O , O the O developer O ’ O s O name O listed O was O “ O concipit1248 O ” O in O Google B-System Play I-System , O and O may O have O been O active O between O May O 2019 O to O February O 2020 O . O This O app O appears O to O have O become O unavailable O on O Google B-System Play I-System in O March O 2020 O . O The O second O Project B-Malware Spy I-Malware version O has O similar O capabilities O to O the O first O version O , O with O the O addition O of O the O following O : O Stealing O notification O messages O sent O from O WhatsApp B-System , O Facebook B-System , O and O Telegram B-System Abandoning O the O FTP O mode O of O uploading O the O recorded O images O Aside O from O changing O the O app O ’ O s O supposed O function O and O look O , O the O second O and O third O versions O ’ O codes O had O little O differences O . O Potentially O malicious O iOS B-System connection O Using O the O codes O and O “ O Concipit1248 O ” O to O check O for O more O versions O , O we O found O two O other O apps O in O the O App B-System Store I-System . O Further O analysis O of O the O iOS O app O “ O Concipit1248 O ” O showed O that O the O server O used O , O spy B-Indicator [ I-Indicator . I-Indicator ] I-Indicator cashnow I-Indicator [ I-Indicator . I-Indicator ] I-Indicator ee I-Indicator , O is O the O same O one O used O in O the O Android B-System version O of O Project B-System Spy I-System . O However O , O although O the O “ O Concipit1248 O ” O app O requested O permissions O to O open O the O device O camera O and O read O photos O , O the O code O only O can O upload O a O self-contained O PNG O file O to O a O remote O sever O . O This O may O imply O the O “ O Concipit1248 O ” O app O is O still O incubating O . O The O other O iOS B-System app O “ O Concipit O Shop O ” O from O the O same O developer O appeared O normal O and O was O last O updated O on O November O 2019 O . O Apple B-Organization has O confirmed O that O the O iOS B-System apps O are O not O functioning O based O on O analysis O of O the O codes O , O and O stated O that O the O sandbox O is O able O to O detect O and O block O these O malicious O behaviors O . O Conclusion O The O “ O Corona O Updates O ” O app O had O relatively O low O downloads O in O Pakistan O , O India O , O Afghanistan O , O Bangladesh O , O Iran O , O Saudi O Arabia O , O Austria O , O Romania O , O Grenada O , O and O Russia O . O Perhaps O the O app O ’ O s O false O capabilities O also O fueled O the O low O number O of O downloads O . O It O also O appears O the O apps O may O still O be O in O development O or O incubation O , O maybe O waiting O for O a O “ O right O time O ” O to O inject O the O malicious O codes O . O It O ’ O s O also O possible O that O the O apps O are O being O used O to O test O other O possible O techniques O . O A O possible O indication O for O timing O might O be O when O the O app O reaches O a O specific O number O of O downloads O or O infected O devices O . O The O coding O style O suggests O that O the O cybercriminals O behind O this O campaign O are O amateurs O . O The O incomplete O iOS B-System codes O used O in O this O campaign O may O have O been O bought O while O other O capabilities O appear O to O have O been O added O . O This O may O also O explain O the O timing O in O between O the O apps O becoming O fully O functional O and O “ O incubation. O ” O As O this O is O a O group O we O have O not O observed O before O , O we O will O continue O monitoring O this O campaign O for O further O developments O . O Users O are O cautioned O to O research O and O check O reviews O before O they O download O apps O . O Observe O and O look O at O the O app O ’ O s O display O and O text O , O stated O functions O , O reviews O from O other O users O , O and O requested O permissions O before O downloading O . O Make O sure O that O all O other O apps O installed O and O the O device O operating O systems O are O updated O to O the O latest O version O . O Indicators O of O Compromise O ( O IoCs O ) O SHA256 O Detection O e394e53e53cd9047d6cff184ac333ef7698a34b777ae3aac82c2c669ef661dfe B-Indicator AndroidOS_SpyAgent.HRXB B-Indicator e8d4713e43241ab09d40c2ae8814302f77de76650ccf3e7db83b3ac8ad41f9fa B-Indicator AndroidOS_ProjectSpy.HRX O 29b0d86ae68d83f9578c3f36041df943195bc55a7f3f1d45a9c23f145d75af9d B-Indicator AndroidOS_ProjectSpy.HRX O 3a15e7b8f4e35e006329811a6a2bf291d449884a120332f24c7e3ca58d0fbbdb B-Indicator IOS_ProjectSpy.A B-Indicator URLs O cashnow B-Indicator [ I-Indicator . I-Indicator ] I-Indicator ee I-Indicator Backend O server B-Indicator ftp I-Indicator [ I-Indicator . I-Indicator ] I-Indicator XXXX I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator Backend O server B-Indicator spy I-Indicator [ I-Indicator . I-Indicator ] I-Indicator cashnow I-Indicator [ I-Indicator . I-Indicator ] I-Indicator ee I-Indicator Backend O server B-Indicator xyz I-Indicator [ I-Indicator . I-Indicator ] I-Indicator cashnow I-Indicator [ I-Indicator . I-Indicator ] I-Indicator ee I-Indicator Backend O server O October O 8 O , O 2020 O Sophisticated O new O Android B-System malware O marks O the O latest O evolution O of O mobile O ransomware O Attackers O are O persistent O and O motivated O to O continuously O evolve O – O and O no O platform O is O immune O . O That O is O why O Microsoft B-Organization has O been O working O to O extend O its O industry-leading O endpoint O protection O capabilities O beyond O Windows B-System . O The O addition O of O mobile O threat O defense O into O these O capabilities O means O that O Microsoft B-System Defender I-System for O Endpoint O ( O previously O Microsoft B-System Defender I-System Advanced I-System Threat I-System Protection I-System ) O now O delivers O protection O on O all O major O platforms O . O Microsoft B-Organization ’ O s O mobile O threat O defense O capabilities O further O enrich O the O visibility O that O organizations O have O on O threats O in O their O networks O , O as O well O as O provide O more O tools O to O detect O and O respond O to O threats O across O domains O and O across O platforms O . O Like O all O of O Microsoft B-Organization ’ O s O security O solutions O , O these O new O capabilities O are O likewise O backed O by O a O global O network O of O threat O researchers O and O security O experts O whose O deep O understanding O of O the O threat O landscape O guide O the O continuous O innovation O of O security O features O and O ensure O that O customers O are O protected O from O ever-evolving O threats O . O For O example O , O we O found O a O piece O of O a O particularly O sophisticated O Android B-System ransomware O with O novel O techniques O and O behavior O , O exemplifying O the O rapid O evolution O of O mobile O threats O that O we O have O also O observed O on O other O platforms O . O The O mobile O ransomware O , O detected O by O Microsoft B-System Defender I-System for O Endpoint O as O AndroidOS/MalLocker.B B-Indicator , O is O the O latest O variant O of O a O ransomware O family O that O ’ O s O been O in O the O wild O for O a O while O but O has O been O evolving O non-stop O . O This O ransomware O family O is O known O for O being O hosted O on O arbitrary O websites O and O circulated O on O online O forums O using O various O social O engineering O lures O , O including O masquerading O as O popular O apps O , O cracked O games O , O or O video O players O . O The O new O variant O caught O our O attention O because O it O ’ O s O an O advanced O malware O with O unmistakable O malicious O characteristic O and O behavior O and O yet O manages O to O evade O many O available O protections O , O registering O a O low O detection O rate O against O security O solutions O . O As O with O most O Android B-System ransomware O , O this O new O threat O doesn O ’ O t O actually O block O access O to O files O by O encrypting O them O . O Instead O , O it O blocks O access O to O devices O by O displaying O a O screen O that O appears O over O every O other O window O , O such O that O the O user O can O ’ O t O do O anything O else O . O The O said O screen O is O the O ransom O note O , O which O contains O threats O and O instructions O to O pay O the O ransom O . O What O ’ O s O innovative O about O this O ransomware O is O how O it O displays O its O ransom O note O . O In O this O blog O , O we O ’ O ll O detail O the O innovative O ways O in O which O this O ransomware O surfaces O its O ransom O note O using O Android B-System features O we O haven O ’ O t O seen O leveraged O by O malware O before O , O as O well O as O incorporating O an O open-source O machine O learning O module O designed O for O context-aware O cropping O of O its O ransom O note O . O New O scheme O , O same O goal O In O the O past O , O Android B-System ransomware O used O a O special O permission O called O “ O SYSTEM_ALERT_WINDOW O ” O to O display O their O ransom O note O . O Apps O that O have O this O permission O can O draw O a O window O that O belongs O to O the O system O group O and O can O ’ O t O be O dismissed O . O No O matter O what O button O is O pressed O , O the O window O stays O on O top O of O all O other O windows O . O The O notification O was O intended O to O be O used O for O system O alerts O or O errors O , O but O Android B-System threats O misused O it O to O force O the O attacker-controlled O UI O to O fully O occupy O the O screen O , O blocking O access O to O the O device O . O Attackers O create O this O scenario O to O persuade O users O to O pay O the O ransom O so O they O can O gain O back O access O to O the O device O . O To O catch O these O threats O , O security O solutions O used O heuristics O that O focused O on O detecting O this O behavior O . O Google B-Organization later O implemented O platform-level O changes O that O practically O eliminated O this O attack O surface O . O These O changes O include O : O Removing O the O SYSTEM_ALERT_WINDOW O error O and O alert O window O types O , O and O introducing O a O few O other O types O as O replacement O Elevating O the O permission O status O of O SYSTEM_ALERT_WINDOW O to O special O permission O by O putting O it O into O the O “ O above O dangerous O ” O category O , O which O means O that O users O have O to O go O through O many O screens O to O approve O apps O that O ask O for O permission O , O instead O of O just O one O click O Introducing O an O overlay O kill O switch O on O Android B-System 8.0 I-System and O later O that O users O can O activate O anytime O to O deactivate O a O system O alert O window O To O adapt O , O Android B-System malware O evolved O to O misusing O other O features O , O but O these O aren O ’ O t O as O effective O . O For O example O , O some O strains O of O ransomware O abuse O accessibility O features O , O a O method O that O could O easily O alarm O users O because O accessibility O is O a O special O permission O that O requires O users O to O go O through O several O screens O and O accept O a O warning O that O the O app O will O be O able O to O monitor O activity O via O accessibility O services O . O Other O ransomware O families O use O infinite O loops O of O drawing O non-system O windows B-System , O but O in O between O drawing O and O redrawing O , O it O ’ O s O possible O for O users O to O go O to O settings O and O uninstall O the O offending O app O . O The O new O Android B-Malware ransomware O variant O overcomes O these O barriers O by O evolving O further O than O any O Android B-Malware malware O we O ’ O ve O seen O before O . O To O surface O its O ransom O note O , O it O uses O a O series O of O techniques O that O take O advantage O of O the O following O components O on O Android B-System : O The O “ O call O ” O notification O , O among O several O categories O of O notifications O that O Android B-System supports O , O which O requires O immediate O user O attention O . O The O “ O onUserLeaveHint O ( O ) O ” O callback O method O of O the O Android B-System Activity I-System ( O i.e. O , O the O typical O GUI O screen O the O user O sees O ) O is O called O as O part O of O the O activity O lifecycle O when O the O activity O is O about O to O go O into O the O background O as O a O result O of O user O choice O , O for O example O , O when O the O user O presses O the O Home O key O . O The O malware O connects O the O dots O and O uses O these O two O components O to O create O a O special O type O of O notification O that O triggers O the O ransom O screen O via O the O callback O . O As O the O code O snippet O shows O , O the O malware O creates O a O notification O builder O and O then O does O the O following O : O setCategory O ( O “ O call O ” O ) O – O This O means O that O the O notification O is O built O as O a O very O important O notification O that O needs O special O privilege O . O setFullScreenIntent O ( O ) O – O This O API O wires O the O notification O to O a O GUI O so O that O it O pops O up O when O the O user O taps O on O it O . O At O this O stage O , O half O the O job O is O done O for O the O malware O . O However O , O the O malware O wouldn O ’ O t O want O to O depend O on O user O interaction O to O trigger O the O ransomware O screen O , O so O , O it O adds O another O functionality O of O Android B-System callback O : O As O the O code O snippet O shows O , O the O malware O overrides O the O onUserLeaveHint O ( O ) O callback O function O of O Activity O class O . O The O function O onUserLeaveHint O ( O ) O is O called O whenever O the O malware O screen O is O pushed O to O background O , O causing O the O in-call O Activity O to O be O automatically O brought O to O the O foreground O . O Recall O that O the O malware O hooked O the O RansomActivity O intent O with O the O notification O that O was O created O as O a O “ O call O ” O type O notification O . O This O creates O a O chain O of O events O that O triggers O the O automatic O pop-up O of O the O ransomware O screen O without O doing O infinite O redraw O or O posing O as O system O window O . O Machine O learning O module O indicates O continuous O evolution O As O mentioned O , O this O ransomware O is O the O latest O variant O of O a O malware O family O that O has O undergone O several O stages O of O evolution O . O The O knowledge O graph O below O shows O the O various O techniques O this O ransomware O family O has O been O seen O using O , O including O abusing O the O system O alert O window O , O abusing O accessibility O features O , O and O , O more O recently O , O abusing O notification O services O . O This O ransomware O family O ’ O s O long O history O tells O us O that O its O evolution O is O far O from O over O . O We O expect O it O to O churn O out O new O variants O with O even O more O sophisticated O techniques O . O In O fact O , O recent O variants O contain O code O forked O from O an O open-source O machine O learning O module O used O by O developers O to O automatically O resize O and O crop O images O based O on O screen O size O , O a O valuable O function O given O the O variety O of O Android B-System devices O . O The O frozen O TinyML B-System model O is O useful O for O making O sure O images O fit O the O screen O without O distortion O . O In O the O case O of O this O ransomware O , O using O the O model O would O ensure O that O its O ransom O note—typically O fake O police O notice O or O explicit O images O supposedly O found O on O the O device—would O appear O less O contrived O and O more O believable O , O increasing O the O chances O of O the O user O paying O for O the O ransom O . O The O library O that O uses O tinyML B-System is O not O yet O wired O to O the O malware O ’ O s O functionalities O , O but O its O presence O in O the O malware O code O indicates O the O intention O to O do O so O in O future O variants O . O We O will O continue O to O monitor O this O ransomware O family O to O ensure O customers O are O protected O and O to O share O our O findings O and O insights O to O the O community O for O broad O protection O against O these O evolving O mobile O threats O . O Protecting O organizations O from O threats O across O domains O and O platforms O Mobile O threats O continue O to O rapidly O evolve O , O with O attackers O continuously O attempting O to O sidestep O technological O barriers O and O creatively O find O ways O to O accomplish O their O goal O , O whether O financial O gain O or O finding O an O entry O point O to O broader O network O compromise O . O This O new O mobile O ransomware O variant O is O an O important O discovery O because O the O malware O exhibits O behaviors O that O have O not O been O seen O before O and O could O open O doors O for O other O malware O to O follow O . O It O reinforces O the O need O for O comprehensive O defense O powered O by O broad O visibility O into O attack O surfaces O as O well O as O domain O experts O who O track O the O threat O landscape O and O uncover O notable O threats O that O might O be O hiding O amidst O massive O threat O data O and O signals O . O Microsoft B-System Defender I-System for O Endpoint O on O Android B-System , O now O generally O available O , O extends O Microsoft B-Organization ’ O s O industry-leading O endpoint O protection O to O Android B-System . O It O detects O this O ransomware O ( O AndroidOS/MalLocker.B B-Indicator ) O , O as O well O as O other O malicious O apps O and O files O using O cloud-based O protection O powered O by O deep O learning O and O heuristics O , O in O addition O to O content-based O detection O . O It O also O protects O users O and O organizations O from O other O mobile O threats O , O such O as O mobile O phishing O , O unsafe O network O connections O , O and O unauthorized O access O to O sensitive O data O . O Learn O more O about O our O mobile O threat O defense O capabilities O in O Microsoft B-System Defender I-System for O Endpoint O on O Android B-System . O Malware O , O phishing O , O and O other O threats O detected O by O Microsoft B-System Defender I-System for O Endpoint O are O reported O to O the O Microsoft B-Organization Defender I-Organization Security I-Organization Center I-Organization , O allowing O SecOps O to O investigate O mobile O threats O along O with O endpoint O signals O from O Windows B-System and O other O platforms O using O Microsoft B-System Defender I-System for O Endpoint O ’ O s O rich O set O of O tools O for O detection O , O investigation O , O and O response O . O Threat O data O from O endpoints O are O combined O with O signals O from O email O and O data O , O identities O , O and O apps O in O Microsoft B-System 365 I-System Defender I-System ( O previously O Microsoft B-System Threat I-System Protection I-System ) O , O which O orchestrates O detection O , O prevention O , O investigation O , O and O response O across O domains O , O providing O coordinated O defense O . O Microsoft B-System Defender I-System for O Endpoint O on O Android B-System further O enriches O organizations O ’ O visibility O into O malicious O activity O , O empowering O them O to O comprehensively O prevent O , O detect O , O and O respond O to O against O attack O sprawl O and O cross-domain O incidents O . O Technical O analysis O Obfuscation O On O top O of O recreating O ransomware O behavior O in O ways O we O haven O ’ O t O seen O before O , O the O Android B-System malware O variant O uses O a O new O obfuscation O technique O unique O to O the O Android B-System platform O . O One O of O the O tell-tale O signs O of O an O obfuscated O malware O is O the O absence O of O code O that O defines O the O classes O declared O in O the O manifest O file O . O The O classes.dex O has O implementation O for O only O two O classes O : O The O main O application O class O gCHotRrgEruDv O , O which O is O involved O when O the O application O opens O A O helper O class O that O has O definition O for O custom O encryption O and O decryption O This O means O that O there O ’ O s O no O code O corresponding O to O the O services O declared O in O the O manifest O file O : O Main O Activity O , O Broadcast O Receivers O , O and O Background O . O How O does O the O malware O work O without O code O for O these O key O components O ? O As O is O characteristic O for O obfuscated O threats O , O the O malware O has O encrypted O binary O code O stored O in O the O Assets O folder O : O When O the O malware O runs O for O the O first O time O , O the O static O block O of O the O main O class O is O run O . O The O code O is O heavily O obfuscated O and O made O unreadable O through O name O mangling O and O use O of O meaningless O variable O names O : O Decryption O with O a O twist O The O malware O uses O an O interesting O decryption O routine O : O the O string O values O passed O to O the O decryption O function O do O not O correspond O to O the O decrypted O value O , O they O correspond O to O junk O code O to O simply O hinder O analysis O . O On O Android B-System , O an O Intent O is O a O software O mechanism O that O allows O users O to O coordinate O the O functions O of O different O Activities O to O achieve O a O task O . O It O ’ O s O a O messaging O object O that O can O be O used O to O request O an O action O from O another O app O component O . O The O Intent O object O carries O a O string O value O as O “ O action O ” O parameter O . O The O malware O creates O an O Intent O inside O the O decryption O function O using O the O string O value O passed O as O the O name O for O the O Intent O . O It O then O decrypts O a O hardcoded O encrypted O value O and O sets O the O “ O action O ” O parameter O of O the O Intent O using O the O setAction O API O . O Once O this O Intent O object O is O generated O with O the O action O value O pointing O to O the O decrypted O content O , O the O decryption O function O returns O the O Intent O object O to O the O callee O . O The O callee O then O invokes O the O getAction O method O to O get O the O decrypted O content O . O Payload O deployment O Once O the O static O block O execution O is O complete O , O the O Android B-System Lifecycle I-System callback O transfers O the O control O to O the O OnCreate O method O of O the O main O class O . O Malware O code O showing O onCreate O method O Figure O 9. O onCreate O method O of O the O main O class O decrypting O the O payload O Next O , O the O malware-defined O function O decryptAssetToDex O ( O a O meaningful O name O we O assigned O during O analysis O ) O receives O the O string O “ O CuffGmrQRT B-Indicator ” O as O the O first O argument O , O which O is O the O name O of O the O encrypted O file O stored O in O the O Assets O folder O . O Malware O code O showing O decryption O of O assets O Figure O 10 O . O Decrypting O the O assets O After O being O decrypted O , O the O asset O turns O into O the O .dex O file O . O This O is O a O notable O behavior O that O is O characteristic O of O this O ransomware O family O . O Comparison O of O code O of O Asset O file O before O and O after O decryption O Figure O 11 O . O Asset O file O before O and O after O decryption O Once O the O encrypted O executable O is O decrypted O and O dropped O in O the O storage O , O the O malware O has O the O definitions O for O all O the O components O it O declared O in O the O manifest O file O . O It O then O starts O the O final O detonator O function O to O load O the O dropped O .dex O file O into O memory O and O triggers O the O main O payload O . O Malware O code O showing O loading O of O decrypted O dex O file O Figure O 12 O . O Loading O the O decrypted O .dex O file O into O memory O and O triggering O the O main O payload O Main O payload O When O the O main O payload O is O loaded O into O memory O , O the O initial O detonator O hands O over O the O control O to O the O main O payload O by O invoking O the O method O XoqF O ( O which O we O renamed O to O triggerInfection O during O analysis O ) O from O the O gvmthHtyN O class O ( O renamed O to O PayloadEntry O ) O . O Malware O code O showing O handover O from O initial O module O to O main O payload O Figure O 13 O . O Handover O from O initial O module O to O the O main O payload O As O mentioned O , O the O initial O handover O component O called O triggerInfection O with O an O instance O of O appObj O and O a O method O that O returns O the O value O for O the O variable O config O . O Malware O code O showing O definition O of O populateConfigMap O Figure O 14 O . O Definition O of O populateConfigMap O , O which O loads O the O map O with O values O Correlating O the O last O two O steps O , O one O can O observe O that O the O malware O payload O receives O the O configuration O for O the O following O properties O : O number O – O The O default O number O to O be O send O to O the O server O ( O in O case O the O number O is O not O available O from O the O device O ) O api O – O The O API O key O url O – O The O URL O to O be O used O in O WebView O to O display O on O the O ransom O note O The O malware O saves O this O configuration O to O the O shared O preferences O of O the O app O data O and O then O it O sets O up O all O the O Broadcast O Receivers O . O This O action O registers O code O components O to O get O notified O when O certain O system O events O happen O . O This O is O done O in O the O function O initComponents O . O Malware O code O showing O initializing O broadcast O receiver O Figure O 15 O . O Initializing O the O BroadcastReceiver O against O system O events O From O this O point O on O , O the O malware O execution O is O driven O by O callback O functions O that O are O triggered O on O system O events O like O connectivity O change O , O unlocking O the O phone O , O elapsed O time O interval O , O and O others O . O Lookout B-Organization researchers O have O identified O a O new O , O highly O targeted O surveillanceware O family O known O as O Desert B-Malware Scorpion I-Malware in O the O Google B-System Play I-System Store I-System . O Lookout B-Organization notified O Google B-Organization of O the O finding O and O Google B-Organization removed O the O app O immediately O while O also O taking O action O on O it O in O Google B-System Play I-System Protect I-System . O The O app O ties O together O two O malware O families O - O Desert B-Malware Scorpion I-Malware and O another O targeted O surveillanceware O family O named O FrozenCell B-Malware - O that O we O believe O are O being O developed O by O a O single O , O evolving O surveillanceware O actor O called O APT-C-23 B-Malware targeting O individuals O in O the O Middle O East O . O We O 've O seen O this O actor O rely O heavily O on O phishing O campaigns O to O trick O victims O into O downloading O their O malicious O apps O , O specifically O on O Facebook B-System . O Even O sophisticated O actors O are O using O lower O cost O , O less O technologically O impressive O means O like O phishing O to O spread O their O malware O because O it O 's O cheap O and O very O effective O , O especially O on O mobile O devices O where O there O are O more O ways O to O interact O with O a O victim O ( O messaging O apps O , O social O media O apps O , O etc O . O ) O , O and O less O screen O real O estate O for O victims O to O identify O potential O indicators O of O a O threat O . O Lookout B-Organization customers O are O protected O against O this O threat O and O additionally O we O have O included O a O list O of O IOCs O at O the O end O of O this O report O . O The O potential O actor O and O who O they O target O Our O current O analysis O strongly O suggests O Desert B-Malware Scorpion I-Malware is O being O deployed O in O targeted O attacks O against O Middle O Eastern O individuals O of O interest O specifically O those O in O Palestine O and O has O also O been O highlighted O by O other O researchers O . O We O have O been O able O to O tie O the O malware O to O a O long-running O Facebook B-Organization profile O that O we O observed O promoting O the O first O stage O of O this O family O , O a O malicious O chat O application O called O Dardesh B-Malware via O links O to O Google B-System Play I-System . O The O Lookout B-Organization Threat I-Organization Intelligence I-Organization team O identified O that O this O same O Facebook B-Organization profile O has O also O posted O Google B-System Drive I-System links O to O Android B-System malware O belonging O to O the O FrozenCell B-Malware family O attributed O to O APT-C-27 B-Indicator . O These O factors O , O in O combination O with O the O fact O that O the O command O and O control O infrastructure O used O by O Frozen B-Malware Cell I-Malware and O Desert B-Malware Scorpion I-Malware resides O in O similar O IP O blocks O , O supports O the O theory O that O the O same O actor O is O responsible O for O operating O , O if O not O developing O , O both O families O . O What O it O does O The O surveillance O functionality O of O Desert B-Malware Scorpion I-Malware resides O in O a O second O stage O payload O that O can O only O be O downloaded O if O the O victim O has O downloaded O , O installed O , O and O interacted O with O the O first-stage O chat O application O . O The O chat O application O acts O as O a O dropper O for O this O second-stage O payload O app O . O At O the O time O of O writing O Lookout B-Organization has O observed O two O updates O to O the O Dardesh B-Malware application O , O the O first O on O February O 26 O and O the O second O on O March O 28 O . O The O malicious O capabilities O observed O in O the O second O stage O include O the O following O : O Upload O attacker-specified O files O to O C2 O servers O Get O list O of O installed O applications O Get O device O metadata O Inspect O itself O to O get O a O list O of O launchable O activities O Retrieves O PDF O , O txt O , O doc O , O xls O , O xlsx O , O ppt O , O pptx O files O found O on O external O storage O Send O SMS O Retrieve O text O messages O Track O device O location O Handle O limited O attacker O commands O via O out O of O band O text O messages O Record O surrounding O audio O Record O calls O Record O video O Retrieve O account O information O such O as O email O addresses O Retrieve O contacts O Removes O copies O of O itself O if O any O additional O APKs O are O downloaded O to O external O storage O . O Call O an O attacker-specified O number O Uninstall O apps O Check O if O a O device O is O rooted O Hide O its O icon O Retrieve O list O of O files O on O external O storage O If O running O on O a O Huawei O device O it O will O attempt O to O add O itself O to O the O protected O list O of O apps O able O to O run O with O the O screen O off O Encrypts O some O exfiltrated O data O Desert B-Malware Scorpion I-Malware 's O second O stage O masquerades O as O a O generic O " O settings O '' O application O . O Curiously O , O several O of O these O have O included O the O world O " O Fateh O '' O in O their O package O name O , O which O may O be O referring O to O the O Fatah B-Organization political O party O . O Such O references O would O be O in O line O with O FrozenCell B-Malware 's O phishing O tactics O in O which O they O used O file O names O to O lure O people O associated O with O the O political O party O to O open O malicious O documents O . O Desert B-Malware Scorpion I-Malware 's O second O stage O is O capable O of O installing O another O non-malicious O application O ( O included O in O the O second O stage O ) O which O is O highly O specific O to O the O Fatah B-Organization political O party O and O supports O the O targeting O theory O . O The O Lookout B-Organization Threat I-Organization Intelligence I-Organization team O is O increasingly O seeing O the O same O tradecraft O , O tactics O , O and O procedures O that O APT-C-23 B-Malware favors O being O used O by O other O actors O . O The O approach O of O separating O malicious O functionality O out O into O separate O stages O that O are O later O downloaded O during O execution O and O not O present O in O the O initial O app O published O to O the O Google B-System Play I-System Store I-System , O combined O with O social O engineering O delivered O via O social O media O platforms O like O Facebook B-Organization , O requires O minimal O investment O in O comparison O to O premium O tooling O like O Pegasus B-Malware or O FinFisher B-Malware . O As O we O 've O seen O with O actors O like O Dark B-Malware Caracal I-Malware , O this O low O cost O , O low O sophistication O approach O that O relies O heavily O upon O social O engineering O has O still O been O shown O to O be O highly O successful O for O those O operating O such O campaigns O . O Given O previous O operational O security O errors O from O this O actor O in O the O past O which O resulted O in O exfiltrated O content O being O publicly O accessible O Lookout B-Organization Threat I-Organization Intelligence I-Organization is O continuing O to O map O out O infrastructure O and O closely O monitor O their O continued O evolution O . O Virulent B-Malware Android B-System malware O returns O , O gets O > O 2 O million O downloads O on O Google B-System Play I-System HummingWhale B-Malware is O back O with O new O tricks O , O including O a O way O to O gin O user O ratings O . O DAN O GOODIN O - O 1/23/2017 O , O 4:39 O PM O A O virulent B-Malware family O of O malware O that O infected O more O than O 10 O million O Android B-System devices O last O year O has O made O a O comeback O , O this O time O hiding O inside O Google B-System Play I-System apps O that O have O been O downloaded O by O as O many O as O 12 O million O unsuspecting O users O . O HummingWhale B-Malware , O as O the O professionally O developed O malware O has O been O dubbed O , O is O a O variant O of O HummingBad B-Malware , O the O name O given O to O a O family O of O malicious O apps O researchers O documented O in O July O invading O non-Google O app O markets O . O HummingBad B-Malware attempted O to O override O security O protections O by O exploiting O unpatched B-Vulnerability vulnerabilities I-Vulnerability that O gave O the O malware O root O privileges O in O older O versions O of O Android B-System . O Before O Google B-Organization shut O it O down O , O it O installed O more O than O 50,000 O fraudulent O apps O each O day O , O displayed O 20 O million O malicious O advertisements O , O and O generated O more O than O $ O 300,000 O per O month O in O revenue O . O Of O the O 10 O million O people O who O downloaded O HummingBad-contaminated B-Malware apps O , O an O estimated O 286,000 O of O them O were O located O in O the O US O . O HummingWhale B-Malware , O by O contrast O , O managed O to O sneak O its O way O into O about O 20 O Google B-System Play I-System apps O that O were O downloaded O from O 2 O million O to O 12 O million O times O , O according O to O researchers O from O Check B-Organization Point I-Organization , O the O security O company O that O has O been O closely O following O the O malware O family O for O almost O a O year O . O Rather O than O rooting O devices O , O the O latest O variant O includes O new O virtual O machine O techniques O that O allow O the O malware O to O perform O ad O fraud O better O than O ever O , O company O researchers O said O in O a O blog O post O published O Monday O . O " O Users O must O realize O that O they O can O no O longer O trust O in O installing O only O apps O with O a O high O reputation O from O official O app O stores O as O their O sole O defense O , O '' O the O researchers O wrote O in O an O e-mail O to O Ars B-Organization . O " O This O malware O employs O several O tactics O to O keep O its O activity O hidden O , O meaning O users O might O be O unaware O of O its O existence O on O their O device O . O '' O As O was O the O case O with O HummingBad B-Malware , O the O purpose O of O HummingWhale B-Malware is O to O generate O revenue O by O displaying O fraudulent O ads O and O automatically O installing O apps O . O When O users O try O to O close O the O ads O , O the O new O functionality O causes O already O downloaded O apps O to O run O in O a O virtual O machine O . O That O creates O a O fake O ID O that O allows O the O perpetrators O to O generate O referral O revenues O . O Use O of O the O virtual O machine O brings O many O technical O benefits O to O the O operators O , O chief O among O them O allowing O the O malware O to O install O apps O without O requiring O users O to O approve O a O list O of O elevated O permissions O . O Advertisement O The O VM O also O disguises O the O malicious O activity O , O making O it O easier O for O the O apps O to O infiltrate O Google B-System Play I-System . O It O has O the O added O benefit O of O installing O a O nearly O unlimited O number O of O fraudulent O apps O without O overloading O the O infected O device O . O Until O now O , O Android B-System malware O that O wanted O advanced O capabilities O typically O had O to O trick O users O into O approving O sometimes O scary-sounding O permissions O or O exploit O rooting O vulnerabilities O . O Ginning O the O ratings O FURTHER O READING O 1 O million O Google B-Organization accounts O compromised O by O Android B-System malware O called O Gooligan B-Malware To O implement O the O VM O feature O , O the O malicious O APK O installation O dropper O used O by O HummingWhale B-Malware uses O DroidPlugin B-Malware , O an O extension O originally O developed O by O developers O from O China-based O company O Qihoo B-Organization 360 I-Organization , O Check B-Organization Point I-Organization said O . O HummingWhale B-Malware has O also O been O observed O hiding O the O original O malicious O app O once O it O 's O installed O and O trying O to O improve O its O Google B-System Play I-System reputation O by O automatically O generating O posts O disguised O as O positive O user O comments O and O ratings O . O Gooligan B-Malware , O a O family O of O Android B-System malware O that O came O to O light O in O November O after O it O compromised O more O than O 1 O million O Google B-Organization accounts O , O contained O similar O abilities O to O tamper O with O Google B-System Play I-System ratings O . O People O who O want O to O know O if O their O Android B-System devices O are O infected O can O download O the O Check B-Organization Point I-Organization app O here O . O A O separate O app O from O Check B-Organization Point I-Organization competitor O Lookout B-Organization also O detects O the O threat O as O a O variant O of O the O Shedun B-Malware malware O family O . O More O technically O inclined O people O can O detect O infections O by O seeing O if O a O device O connects O to O a O control O server O located O at O app.blinkingcamera.com B-Indicator . O Package O names O for O infected O apps O typically O contain O a O common O naming O structure O that O includes O com.XXXXXXXXX.camera B-Indicator , O for O example O com.bird.sky.whale.camera B-Indicator ( O app O name O : O Whale B-System Camera I-System ) O , O com.color.rainbow.camera B-Indicator ( O Rainbow B-System Camera I-System ) O , O and O com.fishing.when.orangecamera B-Indicator ( O Orange B-System Camera I-System ) O . O Google B-Organization officials O removed O the O malicious O apps O from O the O Play B-System market I-System after O receiving O a O private O report O of O their O existence O . O A O company O representative O declined O to O comment O for O this O post O . O BusyGasper B-Malware – O the O unfriendly O spy O 29 O AUG O 2018 O In O early O 2018 O our O mobile O intruder-detection O technology O was O triggered O by O a O suspicious O Android B-System sample O that O , O as O it O turned O out O , O belonged O to O an O unknown O spyware O family O . O Further O investigation O showed O that O the O malware O , O which O we O named O BusyGasper B-Malware , O is O not O all O that O sophisticated O , O but O demonstrates O some O unusual O features O for O this O type O of O threat O . O From O a O technical O point O of O view O , O the O sample O is O a O unique O spy O implant O with O stand-out O features O such O as O device O sensors O listeners O , O including O motion O detectors O that O have O been O implemented O with O a O degree O of O originality O . O It O has O an O incredibly O wide-ranging O protocol O – O about O 100 O commands O – O and O an O ability O to O bypass O the O Doze O battery O saver O . O As O a O modern O Android O spyware O it O is O also O capable O of O exfiltrating O data O from O messaging O applications O ( O WhatsApp B-System , O Viber B-System , O Facebook B-System ) O . O Moreover O , O BusyGasper B-Malware boasts O some O keylogging O tools O – O the O malware O processes O every O user O tap O , O gathering O its O coordinates O and O calculating O characters O by O matching O given O values O with O hardcoded O ones O . O The O sample O has O a O multicomponent O structure O and O can O download O a O payload O or O updates O from O its O C O & O C O server O , O which O happens O to O be O an O FTP O server O belonging O to O the O free O Russian O web O hosting O service O Ucoz O . O It O is O noteworthy O that O BusyGasper B-Malware supports O the O IRC O protocol O which O is O rarely O seen O among O Android B-System malware O . O In O addition O , O the O malware O can O log O in O to O the O attacker O ’ O s O email O inbox O , O parse O emails O in O a O special O folder O for O commands O and O save O any O payloads O to O a O device O from O email O attachments O . O This O particular O operation O has O been O active O since O approximately O May O 2016 O up O to O the O present O time O . O Infection O vector O and O victims O While O looking O for O the O infection O vector O , O we O found O no O evidence O of O spear O phishing O or O any O of O the O other O common O vectors O . O But O some O clues O , O such O as O the O existence O of O a O hidden O menu O for O operator O control O , O point O to O a O manual O installation O method O – O the O attackers O used O physical O access O to O a O victim O ’ O s O device O to O install O the O malware O . O This O would O explain O the O number O of O victims O – O there O are O less O than O 10 O of O them O and O according O to O our O detection O statistics O , O they O are O all O located O in O the O Russia O . O Intrigued O , O we O continued O our O search O and O found O more O interesting O clues O that O could O reveal O some O detailed O information O about O the O owners O of O the O infected O devices O . O Several O TXT O files O with O commands O on O the O attacker O ’ O s O FTP O server O contain O a O victim O identifier O in O the O names O that O was O probably O added O by O the O criminals O : O CMDS10114-Sun1.txt B-Indicator CMDS10134-Ju_ASUS.txt B-Indicator CMDS10134-Tad.txt B-Indicator CMDS10166-Jana.txt B-Indicator CMDS10187-Sun2.txt B-Indicator CMDS10194-SlavaAl.txt B-Indicator CMDS10209-Nikusha.txt B-Indicator Some O of O them O sound O like O Russian O names O : O Jana O , O SlavaAl O , O Nikusha O . O As O we O know O from O the O FTP O dump O analysis O , O there O was O a O firmware O component O from O ASUS B-Organization firmware O , O indicating O the O attacker O ’ O s O interest O in O ASUS B-Organization devices O , O which O explains O the O victim O file O name O that O mentions O “ O ASUS O ” O . O Information O gathered O from O the O email O account O provides O a O lot O of O the O victims O ’ O personal O data O , O including O messages O from O IM O applications O . O Gathered O file O Type O Description O lock O Text O Implant O log O ldata O sqlite3 O Location O data O based O on O network O ( O cell_id O ) O gdata O sqlite3 O Location O data O based O on O GPS O coordinates O sdata B-Indicator sqlite3 I-Indicator SMS O messages O f.db B-Indicator sqlite3 I-Indicator Facebook B-System messages O v.db B-Indicator sqlite3 I-Indicator Viber B-System messages O w.db B-Indicator sqlite3 I-Indicator WhatsApp B-System messages O Among O the O other O data O gathered O were O SMS O banking O messages O that O revealed O an O account O with O a O balance O of O more O than O US O $ O 10,000.But O as O far O as O we O know O , O the O attacker O behind O this O campaign O is O not O interested O in O stealing O the O victims O ’ O money O . O We O found O no O similarities O to O commercial O spyware O products O or O to O other O known O spyware O variants O , O which O suggests O BusyGasper B-Malware is O self-developed O and O used O by O a O single O threat O actor O . O At O the O same O time O , O the O lack O of O encryption O , O use O of O a O public O FTP O server O and O the O low O opsec O level O could O indicate O that O less O skilled O attackers O are O behind O the O malware O . O Technical O details O Here O is O the O meta O information O for O the O observed O samples O , O certificates O and O hardcoded O version O stamps O : O Certificate O MD5 O Module O Version O Serial O Number O : O 0x76607c02 B-Indicator Issuer O : O CN=Ron O Validity O : O from O = O Tue O Aug O 30 O 13:01:30 O MSK O 2016 O to O = O Sat O Aug O 24 O 13:01:30 O MSK O 2041 O Subject O : O CN=Ron O 9e005144ea1a583531f86663a5f14607 B-Indicator 1 O – O 18abe28730c53de6d9e4786c7765c3d8 B-Indicator 2 O 2.0 O Serial O Number O : O 0x6a0d1fec B-Indicator Issuer O : O CN=Sun O Validity O : O from O = O Mon O May O 16 O 17:42:40 O MSK O 2016 O to O = O Fri O May O 10 O 17:42:40 O MSK O 2041 O Subject O : O CN=Sun O 9ffc350ef94ef840728564846f2802b0 B-Indicator 2 O v2.51sun O 6c246bbb40b7c6e75c60a55c0da9e2f2 B-Indicator 2 O v2.96s O 7c8a12e56e3e03938788b26b84b80bd6 B-Indicator 2 O v3.09s O bde7847487125084f9e03f2b6b05adc3 B-Indicator 2 O v3.12s O 2560942bb50ee6e6f55afc495d238a12 B-Indicator 2 O v3.18s O It O ’ O s O interesting O that O the O issuer O “ O Sun O ” O matches O the O “ O Sun1 O ” O and O “ O Sun2 O ” O identifiers O of O infected O devices O from O the O FTP O server O , O suggesting O they O may O be O test O devices O . O The O analyzed O implant O has O a O complex O structure O , O and O for O now O we O have O observed O two O modules O . O First O ( O start O ) O module O The O first O module O , O which O was O installed O on O the O targeted O device O , O could O be O controlled O over O the O IRC O protocol O and O enable O deployment O of O other O components O by O downloading O a O payload O from O the O FTP O server O : O @ O install O command O As O can O be O seen O from O the O screenshot O above O , O a O new O component O was O copied O in O the O system O path O , O though O that O sort O of O operation O is O impossible O without O root O privileges O . O At O the O time O of O writing O we O had O no O evidence O of O an O exploit O being O used O to O obtain O root O privileges O , O though O it O is O possible O that O the O attackers O used O some O unseen O component O to O implement O this O feature O . O Here O is O a O full O list O of O possible O commands O that O can O be O executed O by O the O first O module O : O Command O name O Description O @ O stop O Stop O IRC O @ O quit O System.exit B-Indicator ( I-Indicator 0 I-Indicator ) I-Indicator @ O start O Start O IRC O @ O server O Set O IRC O server O ( O default O value O is O “ O irc.freenode.net B-Indicator ” O ) O , O port O is O always O 6667 O @ O boss O Set O IRC O command O and O control O nickname O ( O default O value O is O “ O ISeency O ” O ) O @ O nick O Set O IRC O client O nickname O @ O screen O Report O every O time O when O screen O is O on O ( O enable/disable O ) O @ O root O Use O root O features O ( O enable/disable O ) O @ O timer O Set O period O of O IRCService O start O @ O hide O Hide O implant O icon O @ O unhide O Unhide O implant O icon O @ O run O Execute O specified O shell O @ O broadcast O Send O command O to O the O second O module O @ O echo O Write O specified O message O to O log O @ O install O Download O and O copy O specified O component O to O the O system O path O The O implant O uses O a O complex O intent-based O communication O mechanism O between O its O components O to O broadcast O commands O : O Approximate O graph O of O relationships O between O BusyGasper O components O Second O ( O main O ) O module O This O module O writes O a O log O of O the O command O execution O history O to O the O file O named O “ O lock O ” O , O which O is O later O exfiltrated O . O Below O is O a O fragment O of O such O a O log O : O Log O with O specified O command O Log O files O can O be O uploaded O to O the O FTP O server O and O sent O to O the O attacker O ’ O s O email O inbox O . O It O ’ O s O even O possible O to O send O log O messages O via O SMS O to O the O attacker O ’ O s O number O . O As O the O screenshot O above O shows O , O the O malware O has O its O own O command O syntax O that O represents O a O combination O of O characters O while O the O “ O # O ” O symbol O is O a O delimiter O . O A O full O list O of O all O possible O commands O with O descriptions O can O be O found O in O Appendix O II O below O . O The O malware O has O all O the O popular O capabilities O of O modern O spyware O . O Below O is O a O description O of O the O most O noteworthy O : O The O implant O is O able O to O spy O on O all O available O device O sensors O and O to O log O registered O events O . O Moreover O , O there O is O a O special O handler O for O the O accelerometer O that O is O able O to O calculate O and O log O the O device O ’ O s O speed O : O This O feature O is O used O in O particular O by O the O command O “ O tk0 O ” O that O mutes O the O device O , O disables O keyguard O , O turns O off O the O brightness O , O uses O wakelock O and O listens O to O device O sensors O . O This O allows O it O to O silently O execute O any O backdoor O activity O without O the O user O knowing O that O the O device O is O in O an O active O state O . O As O soon O as O the O user O picks O up O the O device O , O the O implant O will O detect O a O motion O event O and O execute O the O “ O tk1 O ” O and O “ O input O keyevent O 3 O ” O commands O . O “ O tk1 O ” O will O disable O all O the O effects O of O the O “ O tk0 O ” O command O , O while O “ O input O keyevent O 3 O ” O is O the O shell O command O that O simulates O the O pressing O of O the O ‘ O home O ’ O button O so O all O the O current O activities O will O be O minimized O and O the O user O won O ’ O t O suspect O anything O . O Location O services O to O enable O ( O GPS/network O ) O tracking O : O The O email O command O and O control O protocol O . O The O implant O can O log O in O to O the O attackers O email O inbox O , O parse O emails O for O commands O in O a O special O “ O Cmd O ” O folder O and O save O any O payloads O to O a O device O from O email O attachments O . O Accessing O the O “ O Cmd O ” O folder O in O the O attacker O ’ O s O email O box O Moreover O , O it O can O send O a O specified O file O or O all O the O gathered O data O from O the O victim O device O via O email O . O Emergency O SMS O commands O . O If O an O incoming O SMS O contains O one O of O the O following O magic O strings O : O ” O 2736428734″ B-Indicator or O ” O 7238742800″ B-Indicator the O malware O will O execute O multiple O initial O commands O : O Keylogger O implementation O Keylogging O is O implemented O in O an O original O manner O . O Immediately O after O activation O , O the O malware O creates O a O textView O element O in O a O new O window O with O the O following O layout O parameters O : O All O these O parameters O ensure O the O element O is O hidden O from O the O user O . O Then O it O adds O onTouchListener O to O this O textView O and O is O able O to O process O every O user O tap O . O Interestingly O , O there O is O an O allowlist O of O tapped O activities O : O ui.ConversationActivity O ui.ConversationListActivity O SemcInCallScreen O Quadrapop O SocialPhonebookActivity O The O listener O can O operate O with O only O coordinates O , O so O it O calculates O pressed O characters O by O matching O given O values O with O hardcoded O ones O : O Additionally O , O if O there O is O a O predefined O command O , O the O keylogger O can O make O a O screenshot O of O the O tapped O display O area O : O Manual O access O and O operator O menu O There O is O a O hidden O menu O ( O Activity O ) O for O controlling O implant O features O that O looks O like O it O was O created O for O manual O operator O control O . O To O activate O this O menu O the O operator O needs O to O call O the O hardcoded O number O “ O 9909 O ” O from O the O infected O device O : O A O hidden O menu O then O instantly O appears O on O the O device O display O : O The O operator O can O use O this O interface O to O type O any O command O for O execution O . O It O also O shows O a O current O malware O log O . O Infrastructure O FTP O server O The O attackers O used O ftp B-Indicator : I-Indicator //213.174.157 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 151/ I-Indicator as O a O command O and O control O server O . O The O IP O belongs O to O the O free O Russian O web O hosting O service O Ucoz O . O Files O Description O CMDS O * O .txt O Text O files O with O commands O to O execute O supersu.apk B-Indicator SuperSU O ( O eu.chainfire.supersu B-Indicator , O https B-Indicator : I-Indicator //play.google.com/store/apps/details I-Indicator ? I-Indicator id=eu.chainfire.supersu I-Indicator ) O tool O 246.us B-Indicator us.x B-Indicator SuperSU O ELF O binaries O supersu.cfg B-Indicator supersu.cfg.ju B-Indicator supersu.cfg.old B-Indicator SuperSU O configs O with O spyware O implant O mention O bb.txt B-Indicator BusyBox O v1.26.2 O ELF O file O bdata.xml B-Indicator Config O file O for O excluding O malware O components O from O Android B-System battery O saver O feature O Doze O bdatas.apk B-Indicator Main O implant O module O com.android.network.irc.apk B-Indicator Start O implant O module O MobileManagerService.apk B-Indicator ASUS B-Organization firmware O system O component O ( O clean O ) O mobilemanager.apk B-Indicator Corrupted O archive O privapp.txt B-Indicator Looks O like O a O list O of O system O applications O ( O including O spyware O components O ) O from O the O infected O device O run-as.x B-Indicator run-as.y B-Indicator Run-as O tool O ELF O file O SuperSU O config O fragment O for O implant O components O and O the O busybox O tool O supersu.cfg B-Indicator : O This O config O allows O the O implant O to O use O all O root O features O silently O . O Content O of O bdata.xml O file O : O It O can O be O added O to O the O /system/etc/sysconfig/ B-Indicator path O to O allowlist O specified O implant O components O from O the O battery O saving O system O . O Email O account O A O Gmail B-System account O with O password O is O mentioned O in O the O sample O ’ O s O code O : O It O contains O the O victim O ’ O s O exfiltrated O data O and O “ O cmd O ” O directory O with O commands O for O victim O devices O . O 10 O million O Android B-System phones O infected O by O all-powerful O auto-rooting O apps O First O detected O in O November O , O Shedun/HummingBad B-Malware infections O are O surging O . O 7/7/2016 O , O 1:50 O PM O Security O experts O have O documented O a O disturbing O spike O in O a O particularly O virulent O family O of O Android B-System malware O , O with O more O than O 10 O million O handsets O infected O and O more O than O 286,000 O of O them O in O the O US O . O FURTHER O READING O New O type O of O auto-rooting O Android B-System adware O is O nearly O impossible O to O remove O Researchers O from O security O firm O Check B-Organization Point I-Organization Software I-Organization said O the O malware O installs O more O than O 50,000 O fraudulent O apps O each O day O , O displays O 20 O million O malicious O advertisements O , O and O generates O more O than O $ O 300,000 O per O month O in O revenue O . O The O success O is O largely O the O result O of O the O malware O 's O ability O to O silently O root O a O large O percentage O of O the O phones O it O infects O by O exploiting O vulnerabilities B-Vulnerability that I-Vulnerability remain I-Vulnerability unfixed I-Vulnerability in I-Vulnerability older I-Vulnerability versions I-Vulnerability of I-Vulnerability Android I-Vulnerability . O The O Check B-Organization Point I-Organization researchers O have O dubbed O the O malware O family O " O HummingBad B-Malware , O '' O but O researchers O from O mobile O security O company O Lookout B-Organization say O HummingBad B-Malware is O in O fact O Shedun B-Malware , O a O family O of O auto-rooting O malware O that O came O to O light O last O November O and O had O already O infected O a O large O number O of O devices O . O Update O Jul O 11 O 2016 O 8:32 O : O On O Monday O , O a O Checkpoint B-Organization representative O disputed O Lookout B-Organization 's O contention O and O pointed O to O this O blog O post O from O security O firm O Eleven B-Organization Paths I-Organization as O support O . O The O blog O post O said O HummingBad B-Malware " O uses O a O completely O different O infrastructure O with O little O in O common O '' O with O Shedun I-Malware . O In O an O e-mail O , O a O Lookout B-Organization representative O stood O by O its O analysis O and O said O company O researchers O planned O to O publish O an O in-depth O response O in O the O coming O days O . O For O the O past O five O months O , O Check B-Organization Point I-Organization researchers O have O quietly O observed O the O China-based O advertising O company O behind O HummingBad B-Malware in O several O ways O , O including O by O infiltrating O the O command O and O control O servers O it O uses O . O The O researchers O say O the O malware O uses O the O unusually O tight O control O it O gains O over O infected O devices O to O create O windfall O profits O and O steadily O increase O its O numbers O . O HummingBad B-Malware does O this O by O silently O installing O promoted O apps O on O infected O phones O , O defrauding O legitimate O mobile O advertisers O , O and O creating O fraudulent O statistics O inside O the O official O Google B-System Play I-System Store I-System . O " O Accessing O these O devices O and O their O sensitive O data O creates O a O new O and O steady O stream O of O revenue O for O cybercriminals O , O '' O Check I-Organization Point I-Organization researchers O wrote O in O a O recently O published O report O . O " O Emboldened O by O financial O and O technological O independence O , O their O skillsets O will O advance–putting O end O users O , O enterprises O , O and O government O agencies O at O risk O . O '' O The O report O said O HummingBad B-Malware apps O are O developed O by O Yingmob B-Organization , O a O Chinese O mobile O ad O server O company O that O other O researchers O claim O is O behind O the O Yinspector B-Malware iOS B-System malware O . O HummingBad B-Malware sends O notifications O to O Umeng O , O a O tracking O and O analytics O service O attackers O use O to O manage O their O campaign O . O Check B-Organization Point I-Organization analyzed O Yingmob B-Organization ’ O s O Umeng O account O to O gain O further O insights O into O the O HummingBad B-Malware campaign O and O found O that O beyond O the O 10 O million O devices O under O the O control O of O malicious O apps O , O Yingmob B-Organization has O non-malicious O apps O installed O on O another O 75 O million O or O so O devices O . O The O researchers O wrote O : O While O profit O is O powerful O motivation O for O any O attacker O , O Yingmob B-Organization ’ O s O apparent O self-sufficiency O and O organizational O structure O make O it O well-positioned O to O expand O into O new O business O ventures O , O including O productizing O the O access O to O the O 85 O million O Android B-System devices O it O controls O . O This O alone O would O attract O a O whole O new O audience–and O a O new O stream O of O revenue–for O Yingmob B-Organization . O Quick O , O easy O access O to O sensitive O data O on O mobile O devices O connected O to O enterprises O and O government O agencies O around O the O globe O is O extremely O attractive O to O cybercriminals O and O hacktivists O . O Drive-by O downloads O and O multiple O rooting O exploits O The O malware O uses O a O variety O of O methods O to O infect O devices O . O One O involves O drive-by O downloads O , O possibly O on O booby-trapped O porn O sites O . O The O attacks O use O multiple O exploits O in O an O attempt O to O gain O root O access O on O a O device O . O When O rooting O fails O , O a O second O component O delivers O a O fake O system O update O notification O in O hopes O of O tricking O users O into O granting O HummingBad B-Malware system-level O permissions O . O Whether O or O not O rooting O succeeds O , O HummingBad B-Malware downloads O a O large O number O of O apps O . O In O some O cases O , O malicious O components O are O dynamically O downloaded O onto O a O device O after O an O infected O app O is O installed O . O From O there O , O infected O phones O display O illegitimate O ads O and O install O fraudulent O apps O after O certain O events O , O such O as O rebooting O , O the O screen O turning O on O or O off O , O a O detection O that O the O user O is O present O , O or O a O change O in O Internet O connectivity O . O HummingBad B-Malware also O has O the O ability O to O inject O code O into O Google B-System Play I-System to O tamper O with O its O ratings O and O statistics O . O It O does O this O by O using O infected O devices O to O imitate O clicks O on O the O install O , O buy O , O and O accept O buttons O . O Many O of O the O 10 O million O infected O phones O are O running O old O versions O of O Android B-System and O reside O in O China O ( O 1.6 O million O ) O and O India O ( O 1.35 O million O ) O . O Still O , O US-based O infected O phones O total O almost O 287,000 O . O The O most O widely O infected O major O Android B-System versions O are O KitKat B-System with O 50 O percent O , O followed O by O Jelly B-System Bean I-System with O 40 O percent O . O Lollipop B-System has O 7 O percent O , O Ice B-System Cream I-System Sandwich I-System has O 2 O percent O , O and O Marshmallow B-System has O 1 O percent O . O It O 's O often O hard O for O average O users O to O know O if O their O phones O have O been O rooted O , O and O Shedun B-Malware apps O often O wait O some O period O of O time O before O displaying O obtrusive O ads O or O installing O apps O . O The O best O bet O for O Readers O who O want O to O make O sure O their O phone O is O n't O infected O is O to O scan O their O phones O using O the O free O version O of O the O Lookout B-Organization Security O and O Antivirus O app O . O Android B-System malware O has O drastically O lower O rates O of O success O when O app O installations O outside O of O Google B-System Play I-System are O barred O . O Readers O should O carefully O think O through O the O risks O before O changing O this O default O setting O . O Top O 20 O countries O targeted O by O Hummingbad/Shedun B-Malware . O Enlarge O / O Top O 20 O countries O targeted O by O Hummingbad/Shedun B-Malware . O Check B-Organization Point I-Organization Software I-Organization Hummingbad/Shedun B-Malware infections O by O Android B-System version O . O Enlarge O / O Hummingbad/Shedun B-Malware infections O by O Android B-System version O . O Check B-Organization Point I-Organization Software I-Organization So O far O , O HummingBad B-Malware has O been O observed O using O its O highly O privileged O status O only O to O engage O in O click O fraud O , O display O pop-up O ads O , O tamper O with O Google B-System Play I-System , O and O install O additional O apps O that O do O more O of O the O same O . O But O there O 's O little O stopping O it O from O doing O much O worse O . O That O 's O because O the O malware O roots O most O of O the O phones O it O infects O , O a O process O that O subverts O key O security O mechanisms O built O into O Android B-System . O Under O a O model O known O as O sandboxing O , O most O Android B-System apps O are O n't O permitted O to O access O passwords O or O other O data O available O to O most O other O apps O . O System O applications O with O root O , O by O contrast O , O have O super-user O permissions O that O allow O them O to O break O out O of O such O sandboxes O . O From O there O , O root-level O apps O can O read O or O modify O data O and O resources O that O would O be O off-limits O to O normal O apps O . O As O Lookout B-Organization first O reported O more O than O eight O months O ago O , O the O problem O with O Shedun/HummingBad B-Malware and O similar O malicious O app O families O that O silently O exploit O Android B-Vulnerability rooting I-Vulnerability vulnerabilities I-Vulnerability is O that O the O infections O can O survive O normal O factory O resets O . O Lookout B-Organization said O in O its O own O blog O post O published O Wednesday O that O its O threat O detection O network O has O recently O observed O a O surge O of O Shedun B-Malware attacks O , O indicating O the O scourge O wo O n't O be O going O away O any O time O soon O . O An O investigation O of O Chrysaor B-Malware Malware O on O Android B-System 03 O April O 2017 O Google B-Organization is O constantly O working O to O improve O our O systems O that O protect O users O from O Potentially O Harmful O Applications O ( O PHAs O ) O . O Usually O , O PHA O authors O attempt O to O install O their O harmful O apps O on O as O many O devices O as O possible O . O However O , O a O few O PHA O authors O spend O substantial O effort O , O time O , O and O money O to O create O and O install O their O harmful O app O on O one O or O a O very O small O number O of O devices O . O This O is O known O as O a O targeted O attack O . O In O this O blog O post O , O we O describe O Chrysaor B-Malware , O a O newly O discovered O family O of O spyware O that O was O used O in O a O targeted O attack O on O a O small O number O of O Android B-System devices O , O and O how O investigations O like O this O help O Google B-Organization protect O Android B-System users O from O a O variety O of O threats O . O What O is O Chrysaor B-Malware ? O Chrysaor B-Malware is O spyware O believed O to O be O created O by O NSO B-Organization Group I-Organization Technologies I-Organization , O specializing O in O the O creation O and O sale O of O software O and O infrastructure O for O targeted O attacks O . O Chrysaor B-Malware is O believed O to O be O related O to O the O Pegasus B-Malware spyware O that O was O first O identified O on O iOS B-System and O analyzed O by O Citizen B-Organization Lab I-Organization and O Lookout B-Organization . O Late O last O year O , O after O receiving O a O list O of O suspicious O package O names O from O Lookout B-Organization , O we O discovered O that O a O few O dozen O Android B-System devices O may O have O installed O an O application O related O to O Pegasus B-Malware , O which O we O named O Chrysaor B-Malware . O Although O the O applications O were O never O available O in O Google B-System Play I-System , O we O immediately O identified O the O scope O of O the O problem O by O using O Verify B-System Apps I-System . O We O gathered O information O from O affected O devices O , O and O concurrently O , O attempted O to O acquire O Chrysaor B-Malware apps O to O better O understand O its O impact O on O users O . O We O 've O contacted O the O potentially O affected O users O , O disabled O the O applications O on O affected O devices O , O and O implemented O changes O in O Verify B-System Apps I-System to O protect O all O users O . O What O is O the O scope O of O Chrysaor B-Malware ? O Chrysaor B-Malware was O never O available O in O Google B-System Play I-System and O had O a O very O low O volume O of O installs O outside O of O Google B-System Play I-System . O Among O the O over O 1.4 O billion O devices O protected O by O Verify B-System Apps I-System , O we O observed O fewer O than O 3 O dozen O installs O of O Chrysaor B-Malware on O victim O devices O . O These O devices O were O located O in O the O following O countries O : O How O we O protect O you O To O protect O Android B-System devices O and O users O , O Google B-System Play I-System provides O a O complete O set O of O security O services O that O update O outside O of O platform O releases O . O Users O do O n't O have O to O install O any O additional O security O services O to O keep O their O devices O safe O . O In O 2016 O , O these O services O protected O over O 1.4 O billion O devices O , O making O Google B-Organization one O of O the O largest O providers O of O on-device O security O services O in O the O world O : O Identify O PHAs O using O people O , O systems O in O the O cloud O , O and O data O sent O to O us O from O devices O Warn O users O about O or O blocking O users O from O installing O PHAs O Continually O scan O devices O for O PHAs O and O other O harmful O threats O Additionally O , O we O are O providing O detailed O technical O information O to O help O the O security O industry O in O our O collective O work O against O PHAs O . O What O do O I O need O to O do O ? O It O is O extremely O unlikely O you O or O someone O you O know O was O affected O by O Chrysaor B-Malware malware O . O Through O our O investigation O , O we O identified O less O than O 3 O dozen O devices O affected O by O Chrysaor B-Malware , O we O have O disabled O Chrysaor B-Malware on O those O devices O , O and O we O have O notified O users O of O all O known O affected O devices O . O Additionally O , O the O improvements O we O made O to O our O protections O have O been O enabled O for O all O users O of O our O security O services O . O To O ensure O you O are O fully O protected O against O PHAs O and O other O threats O , O we O recommend O these O 5 O basic O steps O : O Install O apps O only O from O reputable O sources O : O Install O apps O from O a O reputable O source O , O such O as O Google B-System Play I-System . O No O Chrysaor B-Malware apps O were O on O Google B-System Play I-System . O Enable O a O secure O lock O screen O : O Pick O a O PIN O , O pattern O , O or O password O that O is O easy O for O you O to O remember O and O hard O for O others O to O guess O . O Update O your O device O : O Keep O your O device O up-to-date O with O the O latest O security O patches O . O Verify O Apps O : O Ensure O Verify O Apps O is O enabled O . O Locate O your O device O : O Practice O finding O your O device O with O Android B-System Device I-System Manager I-System because O you O are O far O more O likely O to O lose O your O device O than O install O a O PHA O . O How O does O Chrysaor B-Malware work O ? O To O install O Chrysaor B-Malware , O we O believe O an O attacker O coaxed O specifically O targeted O individuals O to O download O the O malicious O software O onto O their O device O . O Once O Chrysaor B-Malware is O installed O , O a O remote O operator O is O able O to O surveil O the O victim O 's O activities O on O the O device O and O within O the O vicinity O , O leveraging O microphone O , O camera O , O data O collection O , O and O logging O and O tracking O application O activities O on O communication O apps O such O as O phone O and O SMS O . O One O representative O sample O Chrysaor B-Malware app O that O we O analyzed O was O tailored O to O devices O running O Jellybean B-System ( I-System 4.3 I-System ) I-System or O earlier O . O The O following O is O a O review O of O scope O and O impact O of O the O Chrysaor B-Malware app O named O com.network.android B-Indicator tailored O for O a O Samsung B-Organization device O target O , O with O SHA256 O digest O : O ade8bef0ac29fa363fc9afd958af0074478aef650adeb0318517b48bd996d5d5Upon B-Indicator installation O , O the O app O uses O known O framaroot O exploits O to O escalate O privileges O and O break O Android B-System 's O application O sandbox O . O If O the O targeted O device O is O not O vulnerable O to O these O exploits O , O then O the O app O attempts O to O use O a O superuser O binary O pre-positioned O at O /system/csk B-Indicator to O elevate O privileges O . O After O escalating O privileges O , O the O app O immediately O protects O itself O and O starts O to O collect O data O , O by O : O Installing O itself O on O the O /system O partition O to O persist O across O factory O resets O Removing O Samsung B-Organization 's O system O update O app O ( O com.sec.android.fotaclient B-Indicator ) O and O disabling O auto-updates O to O maintain O persistence O ( O sets O Settings.System.SOFTWARE_UPDATE_AUTO_UPDATE B-Indicator to I-Indicator 0 I-Indicator ) O Deleting O WAP O push O messages O and O changing O WAP O message O settings O , O possibly O for O anti-forensic O purpose O . O Starting O content O observers O and O the O main O task O loop O to O receive O remote O commands O and O exfiltrate O data O The O app O uses O six O techniques O to O collect O user O data O : O Repeated O commands O : O use O alarms O to O periodically O repeat O actions O on O the O device O to O expose O data O , O including O gathering O location O data O . O Data O collectors O : O dump O all O existing O content O on O the O device O into O a O queue O . O Data O collectors O are O used O in O conjunction O with O repeated O commands O to O collect O user O data O including O , O SMS O settings O , O SMS O messages O , O Call O logs O , O Browser O History O , O Calendar O , O Contacts O , O Emails O , O and O messages O from O selected O messaging O apps O , O including O WhatsApp B-System , O Twitter B-System , O Facebook B-System , O Kakoa B-System , O Viber B-System , O and O Skype B-System by O making O /data/data O directories O of O the O apps O world O readable O . O Content O observers O : O use O Android B-System 's O ContentObserver O framework O to O gather O changes O in O SMS B-System , O Calendar B-System , O Contacts B-System , O Cell B-System info I-System , O Email B-System , O WhatsApp B-System , O Facebook B-System , O Twitter B-System , O Kakao B-System , O Viber B-System , O and O Skype B-System . O Screenshots O : O captures O an O image O of O the O current O screen O via O the O raw O frame O buffer O . O Keylogging O : O record O input O events O by O hooking O IPCThreadState O : O :Transact O from O /system/lib/libbinder.so B-Indicator , O and O intercepting O android B-Indicator : I-Indicator :parcel I-Indicator with O the O interface O com.android.internal.view.IInputContext B-Indicator . O RoomTap O : O silently O answers O a O telephone O call O and O stays O connected O in O the O background O , O allowing O the O caller O to O hear O conversations O within O the O range O of O the O phone O 's O microphone O . O If O the O user O unlocks O their O device O , O they O will O see O a O black O screen O while O the O app O drops O the O call O , O resets O call O settings O and O prepares O for O the O user O to O interact O with O the O device O normally O . O Finally O , O the O app O can O remove O itself O through O three O ways O : O Via O a O command O from O the O server O Autoremove O if O the O device O has O not O been O able O to O check O in O to O the O server O after O 60 O days O Via O an O antidote O file O . O If O /sdcard/MemosForNotes B-Indicator was O present O on O the O device O , O the O Chrysaor B-Malware app O removes O itself O from O the O device O . O Samples O uploaded O to O VirusTotal B-Organization To O encourage O further O research O in O the O security O community O , O we O ’ O ve O uploaded O these O sample O Chrysaor B-Malware apps O to O Virus B-Organization Total I-Organization . O Package O Name O SHA256 O digest O SHA1 O certificate O com.network.android B-Indicator ade8bef0ac29fa363fc9afd958af0074478aef650adeb0318517b48bd996d5d5 B-Indicator 44f6d1caa257799e57f0ecaf4e2e216178f4cb3d B-Indicator com.network.android B-Indicator 3474625e63d0893fc8f83034e835472d95195254e1e4bdf99153b7c74eb44d86 B-Indicator 516f8f516cc0fd8db53785a48c0a86554f75c3ba B-Indicator Additional O digests O with O links O to O Chrysaor B-Malware As O a O result O of O our O investigation O we O have O identified O these O additional O Chrysaor-related B-Malware apps O . O Package O Name O SHA256 O digest O SHA1 O certificate O com.network.android B-Indicator 98ca5f94638768e7b58889bb5df4584bf5b6af56b188da48c10a02648791b30c B-Indicator 516f8f516cc0fd8db53785a48c0a86554f75c3ba B-Indicator com.network.android B-Indicator 5353212b70aa096d918e4eb6b49eb5ad8f59d9bec02d089e88802c01e707c3a1 B-Indicator 44f6d1caa257799e57f0ecaf4e2e216178f4cb3d B-Indicator com.binary.sms.receiver B-Indicator 9fae5d148b89001555132c896879652fe1ca633d35271db34622248e048c78ae B-Indicator 7771af1ad3a3d9c0b4d9b55260bb47c2692722cf B-Indicator com.android.copy B-Indicator e384694d3d17cd88ec3a66c740c6398e07b8ee401320ca61e26bdf96c20485b4 B-Indicator 7771af1ad3a3d9c0b4d9b55260bb47c2692722cf B-Indicator com.android.copy B-Indicator 12e085ab85db887438655feebd249127d813e31df766f8c7b009f9519916e389 B-Indicator 7771af1ad3a3d9c0b4d9b55260bb47c2692722cf B-Indicator com.android.copy B-Indicator 6348104f8ef22eba5ac8ee737b192887629de987badbb1642e347d0dd01420f8 B-Indicator 31a8633c2cd67ae965524d0b2192e9f14d04d016 B-Indicator FinFisher B-Malware exposed O : O A O researcher O ’ O s O tale O of O defeating O traps O , O tricks O , O and O complex O virtual O machines O March O 1 O , O 2018 O Office B-System 365 I-System Advanced I-System Threat I-System Protection I-System ( O Office B-System 365 I-System ATP I-System ) O blocked O many O notable O zero-day O exploits O in O 2017 O . O In O our O analysis O , O one O activity O group O stood O out O : O NEODYMIUM B-Malware . O This O threat O actor O is O remarkable O for O two O reasons O : O Its O access O to O sophisticated O zero-day O exploits O for O Microsoft B-Organization and O Adobe B-Organization software O Its O use O of O an O advanced O piece O of O government-grade O surveillance O spyware O FinFisher B-Malware , O also O known O as O FinSpy B-Malware and O detected O by O Microsoft B-Organization security O products O as O Wingbird B-Malware FinFisher B-Malware is O such O a O complex O piece O of O malware O that O , O like O other O researchers O , O we O had O to O devise O special O methods O to O crack O it O . O We O needed O to O do O this O to O understand O the O techniques O FinFisher B-Malware uses O to O compromise O and O persist O on O a O machine O , O and O to O validate O the O effectiveness O of O Office B-System 365 I-System ATP I-System detonation O sandbox O , O Windows B-System Defender I-System Advanced I-System Threat I-System Protection I-System ( O Windows B-System Defender I-System ATP I-System ) O generic O detections O , O and O other O Microsoft B-Organization security O solutions O . O This O task O proved O to O be O nontrivial O . O FinFisher B-Malware is O not O afraid O of O using O all O kinds O of O tricks O , O ranging O from O junk O instructions O and O “ O spaghetti O code O ” O to O multiple O layers O of O virtual O machines O and O several O known O and O lesser-known O anti-debug O and O defensive O measures O . O Security O analysts O are O typically O equipped O with O the O tools O to O defeat O a O good O number O of O similar O tricks O during O malware O investigations O . O However O , O FinFisher B-Malware is O in O a O different O category O of O malware O for O the O level O of O its O anti-analysis O protection O . O It O ’ O s O a O complicated O puzzle O that O can O be O solved O by O skilled O reverse O engineers O only O with O good O amount O of O time O , O code O , O automation O , O and O creativity O . O The O intricate O anti-analysis O methods O reveal O how O much O effort O the O FinFisher B-Malware authors O exerted O to O keep O the O malware O hidden O and O difficult O to O analyze O . O This O exercise O revealed O tons O of O information O about O techniques O used O by O FinFisher B-Malware that O we O used O to O make O Office B-System 365 I-System ATP I-System more O resistant O to O sandbox O detection O and O Windows B-System Defender I-System ATP I-System to O catch O similar O techniques O and O generic O behaviors O . O Using O intelligence O from O our O in-depth O investigation O , O Windows B-System Defender I-System ATP I-System can O raise O alerts O for O malicious O behavior O employed O by O FinFisher B-Malware ( O such O as O memory O injection O in O persistence O ) O in O different O stages O of O the O attack O kill O chain O . O Machine O learning O in O Windows B-System Defender I-System ATP I-System further O flags O suspicious O behaviors O observed O related O to O the O manipulation O of O legitimate O Windows B-System binaries O . O Figure O 1 O . O Generic O Windows B-System Defender I-System ATP I-System detections O trigger O alerts O on O FinFisher B-Malware behavior O While O our O analysis O has O allowed O us O to O immediately O protect O our O customers O , O we O ’ O d O like O to O share O our O insights O and O add O to O the O growing O number O of O published O analyses O by O other O talented O researchers O ( O listed O below O this O blog O post O ) O . O We O hope O that O this O blog O post O helps O other O researchers O to O understand O and O analyze O FinFisher B-Malware samples O and O that O this O industry-wide O information-sharing O translate O to O the O protection O of O as O many O customers O as O possible O . O Spaghetti O and O junk O codes O make O common O analyst O tools O ineffective O In O analyzing O FinFisher B-Malware , O the O first O obfuscation O problem O that O requires O a O solution O is O the O removal O of O junk O instructions O and O “ O spaghetti O code O ” O , O which O is O a O technique O that O aims O to O confuse O disassembly O programs O . O Spaghetti O code O makes O the O program O flow O hard O to O read O by O adding O continuous O code O jumps O , O hence O the O name O . O An O example O of O FinFisher B-Malware ’ O s O spaghetti O code O is O shown O below O . O Figure O 2 O . O The O spaghetti O code O in O FinFisher B-Malware dropper O This O problem O is O not O novel O , O and O in O common O situations O there O are O known O reversing O plugins O that O may O help O for O this O task O . O In O the O case O of O FinFisher B-Malware , O however O , O we O could O not O find O a O good O existing O interactive O disassembler O ( O IDA O ) O plugin O that O can O normalize O the O code O flow O . O So O we O decided O to O write O our O own O plugin O code O using O IDA O Python B-System . O Armed O with O this O code O , O we O removed O this O first O layer O of O anti-analysis O protection O . O Removing O the O junk O instructions O revealed O a O readable O block O of O code O . O This O code O starts O by O allocating O two O chunks O of O memory O : O a O global O 1 O MB O buffer O and O one O 64 O KB O buffer O per O thread O . O The O big O first O buffer O is O used O as O index O for O multiple O concurrent O threads O . O A O big O chunk O of O data O is O extracted O from O the O portable O executable O ( O PE O ) O file O itself O and O decrypted O two O times O using O a O custom O XOR O algorithm O . O We O determined O that O this O chunk O of O data O contains O an O array O of O opcode O instructions O ready O to O be O interpreted O by O a O custom O virtual O machine O program O ( O from O this O point O on O referenced O generically O as O “ O VM O ” O ) O implemented O by O FinFisher B-Malware authors O . O Figure O 3 O . O The O stages O of O the O FinFisher B-Malware multi-layered O protection O mechanisms O Stage O 0 O : O Dropper O with O custom O virtual O machine O The O main O dropper O implements O the O VM O dispatcher O loop O and O can O use O 32 O different O opcodes O handlers O . O Th O 64KB O buffer O is O used O as O a O VM O descriptor O data O structure O to O store O data O and O the O just-in-time O ( O JIT O ) O generated O code O to O run O . O The O VM O dispatcher O loop O routine O ends O with O a O JMP O to O another O routine O . O In O total O , O there O are O 32 O different O routines O , O each O of O them O implementing O a O different O opcode O and O some O basic O functionality O that O the O malware O program O may O execute O . O Figure O 4 O . O A O snapshot B-Malware of O the O code O that O processes O each O VM O opcode O and O the O associate O interpreter O The O presence O of O a O VM O and O virtualized O instruction O blocks O can O be O described O in O simpler O terms O : O Essentially O , O the O creators O of O FinFisher B-Malware interposed O a O layer O of O dynamic O code O translation O ( O the O virtual O machine O ) O that O makes O analysis O using O regular O tools O practically O impossible O . O Static O analysis O tools O like O IDA O may O not O be O useful O in O analyzing O custom O code O that O is O interpreted O and O executed O through O a O VM O and O a O new O set O of O instructions O . O On O the O other O hand O , O dynamic O analysis O tools O ( O like O debuggers O or O sandbox O ) O face O the O anti-debug O and O anti-analysis O tricks O hidden O in O the O virtualized O code O itself O that O detects O sandbox O environments O and O alters O the O behavior O of O the O malware O . O At O this O stage O , O the O analysis O can O only O continue O by O manually O investigating O the O individual O code O blocks O and O opcode O handlers O , O which O are O highly O obfuscated O ( O also O using O spaghetti O code O ) O . O Reusing O our O deobfuscation O tool O and O some O other O tricks O , O we O have O been O able O to O reverse O and O analyze O these O opcodes O and O map O them O to O a O finite O list O that O can O be O used O later O to O automate O the O analysis O process O with O some O scripting O . O The O opcode O instructions O generated O by O this O custom O VM O are O divided O into O different O categories O : O Logical O opcodes O , O which O implement O bit-logic O operators O ( O OR O , O AND O , O NOT O , O XOR O ) O and O mathematical O operators O Conditional O branching O opcodes O , O which O implement O a O code O branch O based O on O conditions O ( O equals O to O JC O , O JE O , O JZ O , O other O similar O branching O opcodes O ) O Load/Store O opcodes O , O which O write O to O or O read O from O particular O addresses O of O the O virtual O address O space O of O the O process O Specialized O opcodes O for O various O purposes O , O like O execute O specialized O machine O instruction O that O are O not O virtualized O We O are O publishing O below O the O ( O hopefully O ) O complete O list O of O opcodes O used O by O FinFisher B-Malware VM O that O we O found O during O our O analysis O and O integrated O into O our O de-virtualization O script O : O INDEX O MNEMONIC O DESCRIPTION O 0x0 O EXEC O Execute O machine O code O 0x1 O JG O Jump O if O greater/Jump O if O not O less O or O equal O 0x2 O WRITE O Write O a O value O into O the O dereferenced O internal O VM O value O ( O treated O as O a O pointer O ) O 0x3 O JNO O Jump O if O not O overflow O 0x4 O JLE O Jump O if O less O or O equal O ( O signed O ) O 0x5 O MOV O Move O the O value O of O a O register O into O the O VM O descriptor O ( O same O as O opcode O 0x1F O ) O 0x6 O JO O Jump O if O overflow O 0x7 O PUSH O Push O the O internal O VM O value O to O the O stack O 0x8 O ZERO O Reset O the O internal O VM O value O to O 0 O ( O zero O ) O 0x9 O JP O Jump O if O parity O even O 0xA O WRITE O Write O into O an O address O 0xB O ADD O Add O the O value O of O a O register O to O the O internal O VM O value O 0xC O JNS O Jump O if O not O signed O 0xD O JL O Jump O if O less O ( O signed O ) O 0xE O EXEC O Execute O machine O code O and O branch O 0xF O JBE O Jump O if O below O or O equal O or O Jump O if O not O above O 0x10 O SHL O Shift O left O the O internal O value O the O number O of O times O specified O into O the O opcodes O 0x11 O JA O Jump O if O above/Jump O if O not O below O or O equal O 0x12 O MOV O Move O the O internal O VM O value O into O a O register O 0x13 O JZ O JMP O if O zero O 0x14 O ADD O Add O an O immediate O value O to O the O internal O Vm O descriptor O 0x15 O JB O Jump O if O below O ( O unsigned O ) O 0x16 O JS O Jump O if O signed O 0x17 O EXEC O Execute O machine O code O ( O same O as O opcode O 0x0 O ) O 0x18 O JGE O Jump O if O greater O or O equal/Jump O if O not O less O 0x19 O DEREF O Write O a O register O value O into O a O dereferenced O pointer O 0x1A O JMP O Special O obfuscated O “ O Jump O if O below O ” O opcode O 0x1B O * O Resolve O a O pointer O 0x1C O LOAD O Load O a O value O into O the O internal O VM O descriptor O 0x1D O JNE O Jump O if O not O equal/Jump O if O not O zero O 0x1E O CALL O Call O an O external O function O or O a O function O located O in O the O dropper O 0x1F O MOV O Move O the O value O of O a O register O into O the O VM O descriptor O 0x20 O JNB O Jump O if O not O below/Jump O if O above O or O equal/Jump O if O not O carry O 0x21 O JNP O Jump O if O not O parity/Jump O if O parity O odd O Each O virtual O instruction O is O stored O in O a O special O data O structure O that O contains O all O the O information O needed O to O be O properly O read O and O executed O by O the O VM O . O This O data O structure O is O 24 O bytes O and O is O composed O of O some O fixed O fields O and O a O variable O portion O that O depends O on O the O opcode O . O Before O interpreting O the O opcode O , O the O VM O decrypts O the O opcode O ’ O s O content O ( O through O a O simple O XOR O algorithm O ) O , O which O it O then O relocates O ( O if O needed O ) O , O using O the O relocation O fields O . O Here O is O an O approximate O diagram O of O the O opcode O data O structure O : O Figure O 5 O . O A O graphical O representation O of O the O data O structure O used O to O store O each O VM O opcode O The O VM O handler O is O completely O able O to O generate O different O code O blocks O and O deal O with O relocated O code O due O to O address O space O layout O randomization O ( O ASLR O ) O . O It O is O also O able O to O move O code O execution O into O different O locations O if O needed O . O For O instance O , O in O the O case O of O the O “ O Execute O ” O opcode O ( O 0x17 O ) O , O the O 32-bit O code O to O run O is O stored O entirely O into O the O variable O section O with O the O value O at O offset O 5 O specifying O the O number O of O bytes O to O be O copied O and O executed O . O Otherwise O , O in O the O case O of O conditional O opcodes O , O the O variable O part O can O contain O the O next O JIT O packet O ID O or O the O next O relative O virtual O address O ( O RVA O ) O where O code O execution O should O continue O . O Of O course O , O not O all O the O opcodes O are O can O be O easily O read O and O understood O due O to O additional O steps O that O the O authors O have O taken O to O make O analysis O extremely O complicated O . O For O example O , O this O is O how O opcode O 0x1A O is O implemented O : O The O opcode O should O represent O a O JB O ( O Jump O if O below O ) O function O , O but O it O ’ O s O implemented O through O set O carry O ( O STC O ) O instruction O followed O by O a O JMP O into O the O dispatcher O code O that O will O verify O the O carry O flag O condition O set O by O STC O . O Figure O 6 O . O One O of O the O obfuscation O tricks O included O by O the O malware O authors O in O a O VM O opcode O dispatcher O Even O armed O with O the O knowledge O we O have O described O so O far O , O it O still O took O us O many O hours O to O write O a O full-fledged O opcode O interpreter O that O ’ O s O able O to O reconstruct O the O real O code O executed O by O FinFisher B-Malware . O Stage O 1 O : O Loader O malware O keeps O sandbox O and O debuggers O away O The O first O stage O of O FinFisher B-Malware running O through O this O complicated O virtual O machine O is O a O loader O malware O designed O to O probe O the O system O and O determine O whether O it O ’ O s O running O in O a O sandbox O environment O ( O typical O for O cloud-based O detonation O solution O like O Office B-System 365 I-System ATP I-System ) O . O The O loader O first O dynamically O rebuilds O a O simple O import O address O table O ( O IAT O ) O , O resolving O all O the O API O needed O from O Kernel32 O and O NtDll O libraries O . O It O then O continues O executing O in O a O spawned O new O thread O that O checks O if O there O are O additional O undesired O modules O inside O its O own O virtual O address O space O ( O for O example O , O modules O injected O by O certain O security O solutions O ) O . O It O eventually O kills O all O threads O that O belong O to O these O undesired O modules O ( O using O ZwQueryInformationThread O native O API O with O ThreadQuerySetWin32StartAddress O information O class O ) O . O The O first O anti-sandbox O technique O is O the O loader O checking O the O code O segment O . O If O it O ’ O s O not O 0x1B O ( O for O 32-bit O systems O ) O or O 0x23 O ( O for O 32-bit O system O under O Wow64 O ) O , O the O loader O exits O . O Next O , O the O dropper O checks O its O own O parent O process O for O indications O that O it O is O running O in O a O sandbox O setup O . O It O calculates O the O MD5 O hash O of O the O lower-case O process O image O name O and O terminates O if O one O of O the O following O conditions O are O met O : O The O MD5 O hash O of O the O parent O process O image O name O is O either O D0C4DBFA1F3962AED583F6FCE666F8BC B-Indicator or O 3CE30F5FED4C67053379518EACFCF879 B-Indicator The O parent O process O ’ O s O full O image O path O is O equal O to O its O own O process O path O If O these O initial O checks O are O passed O , O the O loader O builds O a O complete O IAT O by O reading O four O imported O libraries O from O disk O ( O ntdll.dll B-Indicator , O kernel32.dll B-Indicator , O advapi32.dll B-Indicator , O and O version.dll B-Indicator ) O and O remapping O them O in O memory O . O This O technique O makes O use O of O debuggers O and O software O breakpoints O useless O . O During O this O stage O , O the O loader O may O also O call O a O certain O API O using O native O system O calls O , O which O is O another O way O to O bypass O breakpoints O on O API O and O security O solutions O using O hooks O . O Figure O 7 O . O FinFisher B-Malware loader O calling O native O Windows B-System API O to O perform O anti-debugging O tricks O At O this O point O , O the O fun O in O analysis O is O not O over O . O A O lot O of O additional O anti-sandbox O checks O are O performed O in O this O exact O order O : O Check O that O the O malware O is O not O executed O under O the O root O folder O of O a O drive O Check O that O the O malware O file O is O readable O from O an O external O source O Check O that O the O hash O of O base O path O is O not O 3D6D62AF1A7C8053DBC8E110A530C679 B-Indicator Check O that O the O full O malware O path O contains O only O human O readable O characters O ( O “ O a-z O ” O , O “ O A-Z O ” O , O and O “ O 0-9 O ” O ) O Check O that O no O node O in O the O full O path O contains O the O MD5 O string O of O the O malware O file O Fingerprint O the O system O and O check O the O following O registry O values O : O HKLM\SOFTWARE\Microsoft\Cryptography\MachineGuid B-Indicator should O not O be O “ O 6ba1d002-21ed-4dbe-afb5-08cf8b81ca32 B-Indicator ” O HKLM\SOFTWARE\Microsoft\Windows B-Indicator NT\CurrentVersion\DigitalProductId I-Indicator should O not O be O “ O 55274-649-6478953-23109 B-Indicator ” O , O “ O A22-00001 B-Indicator ” O , O or O “ O 47220 B-Indicator ” O HARDWARE\Description\System\SystemBiosDate B-Indicator should O not O contain O “ O 01/02/03 O ” O Check O that O the O mutex O WininetStartupMutex0 O does O not O already O exist O Check O that O no O DLL O whose O base O name O has O hash O value O of O 0xC9CEF3E4 B-Indicator is O mapped O into O the O malware O address O space O The O hashes O in O these O checks O are O most O likely O correspond O to O sandbox O or O security O products O that O the O FinFisher B-Malware authors O want O to O avoid O . O Next O , O the O loader O checks O that O it O ’ O s O not O running O in O a O virtualized O environment O ( O VMWare B-System or O Hyper-V B-System ) O or O under O a O debugger O . O For O the O hardware O virtualization O check O , O the O loader O obtains O the O hardware O device O list O and O checks O if O the O MD5 O of O the O vendor O ID O is O equal O to O a O predefined O list O . O In O our O tests O , O the O malware O sample O was O able O to O easily O detect O both O VMWare B-System and O Hyper-V B-System environments O through O the O detection O of O the O virtualized O peripherals O ( O for O example O , O Vmware B-Organization has O VEN_15AD O as O vendor O ID O , O HyperV O has O VMBus O as O bus O name O ) O . O Office B-System 365 I-System ATP I-System sandbox O employs O special O mechanisms O to O avoid O being O detected O by O similar O checks O . O The O loader O ’ O s O anti-debugger O code O is O based O on O the O following O three O methods O : O The O first O call O aims O to O destroy O the O debugger O connection O : O NOTE O : O This O call O completely O stops O the O execution O of O WinDbg O and O other O debuggers O The O second O call O tries O to O detect O the O presence O of O a O debugger O : O The O final O call O tries O to O destroy O the O possibility O of O adding O software O breakpoint O : O Finally O , O if O the O loader O is O happy O with O all O the O checks O done O so O far O , O based O on O the O victim O operating O system O ( O 32 O or O 64-bit O ) O it O proceeds O to O decrypt O a O set O of O fake O bitmap O resources O ( O stage O 2 O ) O embedded O in O the O executable O and O prepares O the O execution O of O a O new O layer O of O VM O decoding O . O Each O bitmap O resource O is O extracted O , O stripped O of O the O first O 0x428 O bytes O ( O BMP O headers O and O garbage O data O ) O , O and O combined O into O one O file O . O The O block O is O decrypted O using O a O customized O algorithm O that O uses O a O key O derived O from O the O original O malware O dropper O ’ O s O TimeDateStamp O field O multiplied O by O 5 O . O Figure O 8 O . O The O fake O bitmap O image O embedded O as O resource O The O 32-bit O stage O 2 O malware O uses O a O customized O loading O mechanism O ( O i.e. O , O the O PE O file O has O a O scrambled O IAT O and O relocation O table O ) O and O exports O only O one O function O . O For O the O 64-bit O stage O 2 O malware O , O the O code O execution O is O transferred O from O the O loader O using O a O well-known O technique O called O Heaven O ’ O s O Gate O . O In O the O next O sections O , O for O simplicity O , O we O will O continue O the O analysis O only O on O the O 64-bit O payload O . O Figure O 9 O . O Heaven O ’ O s O gate O is O still O in O use O in O 2017 O Stage O 2 O : O A O second O multi-platform O virtual O machine O The O 64-bit O stage O 2 O malware O implements O another O loader O combined O with O another O virtual O machine O . O The O architecture O is O quite O similar O to O the O one O described O previously O , O but O the O opcodes O are O slightly O different O . O After O reversing O these O opcodes O , O we O were O able O to O update O our O interpreter O script O to O support O both O 32-bit O and O 64-bit O virtual O machines O used O by O FinFisher B-Malware . O INDEX O MNEMONIC O DESCRIPTION O 0x0 O JMP O Special O obfuscated O conditional O Jump O ( O always O taken O or O always O ignored O ) O 0x1 O JMP O Jump O to O a O function O ( O same O as O opcode O 0x10 O ) O 0x2 O CALL O Call O to O the O function O pointed O by O the O internal O VM O value O 0x3 O CALL O Optimized O CALL O function O ( O like O the O 0x1E O opcode O of O the O 32-bit O VM O ) O 0x4 O EXEC O Execute O code O and O move O to O the O next O packet O 0x5 O JMP O Jump O to O an O internal O function O 0x6 O NOP O No O operation O , O move O to O the O next O packet O 0x7 O CALL O Call O an O imported O API O ( O whose O address O is O stored O in O the O internal O VM O value O ) O 0x8 O LOAD O Load O a O value O into O the O VM O descriptor O structure O * O 0x9 O STORE O Store O the O internal O VM O value O inside O a O register O 0xA O WRITE O Resolve O a O pointer O and O store O the O value O of O a O register O in O its O content O 0xB O READ O Move O the O value O pointed O by O the O VM O internal O value O into O a O register O 0xC O LOAD O Load O a O value O into O the O VM O descriptor O structure O ( O not O optimized O ) O 0xD O CMP O Compare O the O value O pointed O by O the O internal O VM O descriptor O with O a O register O 0xE O CMP O Compare O the O value O pointed O by O the O internal O VM O descriptor O with O an O immediate O value O 0xF O XCHG O Exchange O the O value O pointed O by O the O internal O VM O descriptor O with O a O register O 0x10 O SHL O Jump O to O a O function O ( O same O as O opcode O 0x1 O ) O This O additional O virtual O machine O performs O the O same O duties O as O the O one O already O described O but O in O a O 64-bit O environment O . O It O extracts O and O decrypts O the O stage O 3 O malware O , O which O is O stored O in O encrypted O resources O such O as O fake O dialog O boxes O . O The O extraction O method O is O the O same O , O but O the O encryption O algorithm O ( O also O XOR O ) O is O much O simpler O . O The O new O payload O is O decrypted O , O remapped O , O and O executed O in O memory O , O and O represents O the O installation O and O persistence O stage O of O the O malware O . O Stage O 3 O : O Installer O that O takes O DLL O side-loading O to O a O new O level O Stage O 3 O represents O the O setup O program O for O FinFisher B-Malware . O It O is O the O first O plain O stage O that O does O not O employ O a O VM O or O obfuscation O . O The O code O supports O two O different O installation O methods O : O setup O in O a O UAC-enforced B-System environment I-System ( O with O limited O privileges O ) O , O or O an O installation O with O full-administrative O privileges O enabled O ( O in O cases O where O the O malware O gains O the O ability O to O run O with O elevated O permissions O ) O . O We O were O a O bit O disappointed O that O we O did O not O see O traces O of O a O true O privilege B-Vulnerability escalation I-Vulnerability exploit I-Vulnerability after O all O this O deobfuscation O work O , O but O it O seems O these O FinFisher B-Malware samples O were O designed O to O work O just O using O UAC O bypasses O . O The O setup O code O receives O an O installation O command O from O the O previous O stage O . O In O our O test O , O this O command O was O the O value O 3 O . O The O malware O creates O a O global O event O named O 0x0A7F1FFAB12BB2 B-Indicator and O drops O some O files O under O a O folder O located O in O C B-Indicator : I-Indicator \ProgramData I-Indicator or O in O the O user O application O data O folder O . O The O name O of O the O folder O and O the O malware O configuration O are O read O from O a O customized O configuration O file O stored O in O the O resource O section O of O the O setup O program O . O Here O the O list O of O the O files O potentially O dropped O during O the O installation O stage O : O FILE O NAME O STAGE O DESCRIPTION O d3d9.dll B-Indicator Stage O 4 O Malware O loader O used O for O UAC O environments O with O limited O privileges O ; O also O protected O by O VM O obfuscation O aepic.dll B-Indicator , O sspisrv.dll B-Indicator , O userenv.dll B-Indicator Stage O 4 O Malware O loader O used O in O presence O of O administrative O privileges O ; O executed O from O ( O and O injected O into O ) O a O fake O service O ; O also O protected O by O VM O obfuscation O msvcr90.dll B-Indicator Stage O 5 O Malware O payload O injected O into O the O explorer.exe B-Indicator or O winlogon.exe B-Indicator process O ; O also O protected O by O VM O obfuscation O .cab O Config O Main O configuration O file O ; O encrypted O setup.cab B-Indicator Unknown O Last O section O of O the O setup O executable O ; O content O still O unknown O .7z O Plugin O Malware O plugin O used O to O spy O the O victim O network O communications O wsecedit.rar B-Indicator Stage O 6 O Main O malware O executable O After O writing O some O of O these O files O , O the O malware O decides O which O kind O of O installation O to O perform O based O on O the O current O privilege O provided O by O the O hosting O process O ( O for O example O , O if O a O Microsoft B-System Office I-System process O was O used O as O exploit O vector O ) O : O Installation O process O under O UAC O When O running O under O a O limited O UAC O account O , O the O installer O extracts O d3d9.dll B-Indicator and O creates O a O persistence O key O under O HKCU\Software\Microsoft\Windows\Run B-Indicator . O The O malware O sets O a O registry O value O ( O whose O name O is O read O from O the O configuration O file O ) O to O “ O C B-Indicator : I-Indicator \Windows\system32\rundll32.exe I-Indicator c B-Indicator : I-Indicator \ProgramData\AuditApp\d3d9.dll I-Indicator , I-Indicator Control_Run B-Indicator ” O . O Before O doing O this O , O the O malware O makes O a O screenshot O of O the O screen O and O displays O it O on O top O of O all O other O windows B-System for O few O seconds O . O This O indicates O that O the O authors O are O trying O to O hide O some O messages O showed O by O the O system O during O the O setup O process O . O When O loaded O with O startup O command O 2 O , O the O installer O can O copy O the O original O explorer.exe B-Indicator file I-Indicator inside O its O current O running O directory O and O rename O d3d9.dll B-Indicator to O uxtheme.dll B-Indicator . O In O this O case O the O persistence O is O achieved O by O loading O the O original O explorer.exe B-Indicator from O its O startup O location O and O , O using O DLL O side-loading O , O passing O the O execution O control O to O the O stage O 4 O malware O ( O discussed O in O next O section O ) O . O Finally O , O the O malware O spawns O a O thread O that O has O the O goal O to O load O , O remap O , O and O relocate O the O stage O 5 O malware O . O In O this O context O , O there O is O indeed O no O need O to O execute O the O stage O 4 O malware O . O The O msvcr90.dll B-Indicator file I-Indicator is O opened O , O read O , O and O decrypted O , O and O the O code O execution O control O is O transferred O to O the O RunDll O exported O routine O . O In O the O case O of O 32-bit O systems O , O the O malware O may O attempt O a O known O UAC O bypass O by O launching O printui.exe B-Indicator system O process O and O using O token O manipulation O with O NtFilterToken O as O described O in O this O blog O post O . O Installation O process O with O administrative O privilege O This O installation O method O is O more O interesting O because O it O reveals O how O the O malware O tries O to O achieve O stealthier O persistence O on O the O machine O . O The O method O is O a O well-known O trick O used O by O penetration O testers O that O was O automated O and O generalized O by O FinFisher B-Malware The O procedure O starts O by O enumerating O the O KnownDlls O object O directory O and O then O scanning O for O section O objects O of O the O cached O system O DLLs O . O Next O , O the O malware O enumerates O all O .exe O programs O in O the O % O System O % O folder O and O looks O for O an O original O signed O Windows B-System binary O that O imports O from O at O least O one O KnownDll O and O from O a O library O that O is O not O in O the O KnownDll O directory O . O When O a O suitable O .exe O file O candidate O is O found O , O it O is O copied O into O the O malware O installation O folder O ( O for O example O , O C B-Indicator : I-Indicator \ProgramData I-Indicator ) O . O At O this O point O the O malware O extracts O and O decrypts O a O stub O DLL O from O its O own O resources O ( O ID O 101 O ) O . O It O then O calls O a O routine O that O adds O a O code O section O to O a O target O module O . O This O section O will O contain O a O fake O export O table O mimicking O the O same O export O table O of O the O original O system O DLL O chosen O . O At O the O time O of O writing O , O the O dropper O supports O aepic.dll B-Indicator , O sspisrv.dll B-Indicator , O ftllib.dll B-Indicator , O and O userenv.dll B-Indicator to O host O the O malicious O FinFisher B-Malware payload O . O Finally O , O a O new O Windows B-System service O is O created O with O the O service O path O pointing O to O the O candidate O .exe O located O in O this O new O directory O together O with O the O freshly O created O , O benign-looking O DLL O . O In O this O way O , O when O the O service O runs O during O boot O , O the O original O Windows B-System executable O is O executed O from O a O different O location O and O it O will O automatically O load O and O map O the O malicious O DLL O inside O its O address O space O , O instead O of O using O the O genuine O system O library O . O This O routine O is O a O form O of O generic O and O variable O generator O of O DLL O side-loading O combinations O . O Figure O 10 O . O Windows B-System Defender I-System ATP I-System timeline O can O pinpoint O the O service O DLL O side-loading O trick O ( O in O this O example O , O using O fltlib.dll B-Indicator ) O . O In O the O past O , O we O have O seen O other O activity O groups O like O LEAD O employ O a O similar O attacker O technique O named O “ O proxy-library O ” O to O achieve O persistence O , O but O not O with O this O professionalism O . O The O said O technique O brings O the O advantage O of O avoiding O auto-start O extensibility O points O ( O ASEP O ) O scanners O and O programs O that O checks O for O binaries O installed O as O service O ( O for O the O latter O , O the O service O chosen O by O FinFisher B-Malware will O show O up O as O a O clean O Windows B-System signed O binary O ) O . O The O malware O cleans O the O system O event O logs O using O OpenEventLog/ClearEventLog O APIs O , O and O then O terminates O the O setup O procedure O with O a O call O to O StartService O to O run O the O stage O 4 O malware O . O Figure O 11 O . O The O DLL O side-loaded O stage O 4 O malware O mimicking O a O real O export O table O to O avoid O detection O Stage O 4 O : O The O memory O loader O – O Fun O injection O with O GDI O function O hijacking O Depending O on O how O stage O 4 O was O launched O , O two O different O things O may O happen O : O In O the O low-integrity O case O ( O under O UAC O ) O the O installer O simply O injects O the O stage O 5 O malware O into O the O bogus O explorer.exe B-Indicator process O started O earlier O and O terminates O In O the O high-integrity O case O ( O with O administrative O privileges O or O after O UAC O bypass O ) O , O the O code O searches O for O the O process O hosting O the O Plug O and O Play O service O ( O usually O svchost.exe B-Indicator ) O loaded O in O memory O and O injects O itself O into O it O For O the O second O scenario O , O the O injection O process O works O like O this O : O The O malware O opens O the O target O service O process O . O It O allocates O and O fills O four O chunks O of O memory O inside O the O service O process O . O One O chunk O contains O the O entire O malware O DLL O code O ( O without O PE O headers O ) O . O Another O chunk O is O used O to O copy O a O basic O Ntdll O and O Kernel32 O import O address O table O . O Two O chunks O are O filled O with O an O asynchronous O procedure O call O ( O APC O ) O routine O code O and O a O stub O . O It O opens O the O service O thread O of O the O service O process O and O uses O the O ZwQueueApcThread B-Indicator native O API O to O inject O an O APC O . O The O APC O routine O creates O a O thread O in O the O context O of O the O svchost.exe B-Indicator process O that O will O map O and O execute O the O stage O 5 O malware O into O the O winlogon.exe B-Indicator process O . O The O injection O method O used O for O winlogon.exe B-Indicator is O also O interesting O and O quite O unusual O . O We O believe O that O this O method O is O engineered O to O avoid O trivial O detection O of O process O injection O using O the O well-detected O CreateRemoteThread B-Indicator or O ZwQueueApcThread B-Indicator API O . O The O malware O takes O these O steps O : O Check O if O the O system O master O boot O record O ( O MBR O ) O contains O an O infection O marker O ( O 0xD289C989C089 B-Indicator 8-bytes O value O at O offset O 0x2C O ) O , O and O , O if O so O , O terminate O itself O Check O again O if O the O process O is O attached O to O a O debugger O ( O using O the O techniques O described O previously O ) O Read O , O decrypt O , O and O map O the O stage O 5 O malware O ( O written O in O the O previous O stage O in O msvcr90.dll B-Indicator ) O Open O winlogon.exe B-Indicator process O Load O user32.dll B-Indicator system O library O and O read O the O KernelCallbackTable B-Indicator pointer O from O its O own O process O environment O block O ( O PEB O ) O ( O Note O : O The O KernelCallbackTable O points O to O an O array O of O graphic O functions O used O by O Win32 O kernel O subsystem O module O win32k.sys B-Indicator as O call-back O into O user-mode O . O ) O Calculate O the O difference O between O this O pointer O and O the O User32 O base O address O . O Copy O the O stage O 5 O DLL O into O winlogon.exe B-Indicator Allocate O a O chunk O of O memory O in O winlogon.exe B-Indicator process O and O copy O the O same O APC O routine O seen O previously O Read O and O save O the O original O pointer O of O the O __fnDWORD O internal O User32 O routine O ( O located O at O offset O +0x10 O of O the O KernelCallbackTable O ) O and O replace O this O pointer O with O the O address O of O the O APC O stub O routine O After O this O function O pointer O hijacking O , O when O winlogon.exe B-Indicator makes O any O graphical O call O ( O GDI O ) O , O the O malicious O code O can O execute O without O using O CreateRemoteThread O or O similar O triggers O that O are O easily O detectable O . O After O execution O it O takes O care O of O restoring O the O original O KernelCallbackTable O . O Stage O 5 O : O The O final O loader O takes O control O The O stage O 5 O malware O is O needed O only O to O provide O one O more O layer O of O obfuscation O , O through O the O VM O , O of O the O final O malware O payload O and O to O set O up O a O special O Structured O Exception O Hander O routine O , O which O is O inserted O as O Wow64PrepareForException O in O Ntdll O . O This O special O exception O handler O is O needed O to O manage O some O memory O buffers O protection O and O special O exceptions O that O are O used O to O provide O more O stealthy O execution O . O After O the O VM O code O has O checked O again O the O user O environment O , O it O proceeds O to O extract O and O execute O the O final O un-obfuscated O payload O sample O directly O into O winlogon.exe B-Indicator ( O alternatively O , O into O explorer.exe B-Indicator ) O process O . O After O the O payload O is O extracted O , O decrypted O , O and O mapped O in O the O process O memory O , O the O malware O calls O the O new O DLL O entry O point O , O and O then O the O RunDll O exported O function O . O The O latter O implements O the O entire O spyware O program O . O Stage O 6 O : O The O payload O is O a O modular O spyware O framework O for O further O analysis O Our O journey O to O deobfuscating O FinFisher B-Malware has O allowed O us O to O uncover O the O complex O anti-analysis O techniques O used O by O this O malware O , O as O well O as O to O use O this O intel O to O protect O our O customers O , O which O is O our O top O priority O . O Analysis O of O the O additional O spyware O modules O is O future O work O . O It O is O evident O that O the O ultimate O goal O of O this O program O is O to O steal O information O . O The O malware O architecture O is O modular O , O which O means O that O it O can O execute O plugins O . O The O plugins O are O stored O in O its O resource O section O and O can O be O protected O by O the O same O VM O . O The O sample O we O analyzed O in O October O , O for O example O , O contains O a O plugin O that O is O able O to O spy O on O internet O connections O , O and O can O even O divert O some O SSL O connections O and O steal O data O from O encrypted O traffic O . O Some O FinFisher B-Malware variants O incorporate O an O MBR B-Indicator rootkit I-Indicator , O the O exact O purpose O of O which O is O not O clear O . O Quite O possibly O , O this O routine O targets O older O platforms O like O Windows B-System 7 I-System and O machines O not O taking O advantage O of O hardware O protections O like O UEFI O and O SecureBoot O , O available O on O Windows B-System 10 I-System . O Describing O this O additional O piece O of O code O in O detail O is O outside O the O scope B-System of O this O analysis O and O may O require O a O new O dedicated O blog O post O . O Defense O against O FinFisher B-Malware Exposing O as O much O of O FinFisher B-Malware ’ O s O riddles O as O possible O during O this O painstaking O analysis O has O allowed O us O to O ensure O our O customers O are O protected O against O this O advanced O piece O of O malware O . O Windows B-System 10 I-System S O devices O are O naturally O protected O against O FinFisher B-Malware and O other O threats O thanks O to O the O strong O code O integrity O policies O that O don O ’ O t O allow O unknown O unsigned O binaries O to O run O ( O thus O stopping O FinFisher B-Malware ’ O s O PE O installer O ) O or O loaded O ( O blocking O FinFisher B-Malware ’ O s O DLL O persistence O ) O . O On O Windows B-System 10 I-System , O similar O code O integrity O policies O can O be O configured O using O Windows B-System Defender I-System Application I-System Control I-System . O Office B-System 365 I-System Advanced I-System Threat I-System Protection I-System secures O mailboxes O from O email O campaigns O that O use O zero-day B-Vulnerability exploits I-Vulnerability to O deliver O threats O like O FinFisher B-Malware . O Office B-System 365 I-System ATP I-System blocks O unsafe O attachments O , O malicious O links O , O and O linked-to O files O using O time-of-click O protection O . O Using O intel O from O this O research O , O we O have O made O Office B-System 365 I-System ATP I-System more O resistant O to O FinFisher B-Malware ’ O s O anti-sandbox O checks O . O Generic O detections O , O advanced O behavioral O analytics O , O and O machine O learning O technologies O in O Windows B-System Defender I-System Advanced I-System Threat I-System Protection I-System detect O FinFisher B-Malware ’ O s O malicious O behavior O throughout O the O attack O kill O chain O and O alert O SecOps O personnel O . O Windows B-System Defender I-System ATP I-System also O integrates O with O the O Windows B-System protection O stack O so O that O protections O from O Windows B-System Defender I-System AV I-System and O Windows B-System Defender I-System Exploit I-System Guard I-System are O reported O in O Windows B-System Defender I-System ATP I-System portal O , O enabling O SecOps O personnel O to O centrally O manage O security O , O and O as O well O as O promptly O investigate O and O respond O to O hostile O activity O in O the O network O . O We O hope O that O this O writeup O of O our O journey O through O all O the O multiple O layers O of O protection O , O obfuscation O , O and O anti-analysis O techniques O of O FinFisher B-Malware will O be O useful O to O other O researchers O studying O this O malware O . O We O believe O that O an O industry-wide O collaboration O and O information-sharing O is O important O in O defending O customers O against O this O complex O piece O of O malware O . O TUESDAY O , O APRIL O 9 O , O 2019 O Gustuff B-Malware banking O botnet O targets O Australia O EXECUTIVE O SUMMARY O Cisco B-Organization Talos I-Organization has O uncovered O a O new O Android-based B-System campaign O targeting O Australian O financial O institutions O . O As O the O investigation O progressed O , O Talos B-Organization came O to O understand O that O this O campaign O was O associated O with O the O " O ChristinaMorrow O '' O text O message O spam O scam O previously O spotted O in O Australia O . O Although O this O malware O 's O credential-harvest O mechanism O is O not O particularly O sophisticated O , O it O does O have O an O advanced O self-preservation O mechanism O . O Even O though O this O is O not O a O traditional O remote O access O tool O ( O RAT O ) O , O this O campaign O seems O to O target O mainly O private O users O . O Aside O from O the O credential O stealing O , O this O malware O also O includes O features O like O the O theft O of O users O ' O contact O list O , O collecting O phone O numbers O associated O names O , O and O files O and O photos O on O the O device O . O But O that O does O n't O mean O companies O and O organizations O are O out O of O the O woods O . O They O should O still O be O on O the O lookout O for O these O kinds O of O trojans O , O as O the O attackers O could O target O corporate O accounts O that O contain O large O amounts O of O money O . O The O information O collected O by O the O malware O and O the O control O over O the O victim O 's O mobile O device O allows O their O operators O to O perform O more O complex O social O engineering O attacks O . O A O motivated O attacker O can O use O this O trojan O to O harvest O usernames O and O passwords O and O then O reuse O them O to O login O into O the O organization O 's O system O where O the O victim O works O . O This O is O a O good O example O where O two-factor O authentication O based O on O SMS O would O fail O since O the O attacker O can O read O the O SMS O . O Corporations O can O protect O themselves O from O these O side-channel O attacks O by O deploying O client-based O two-factor O authentication O , O such O as O Duo B-System Security I-System . O One O of O the O most O impressive O features O of O this O malware O is O its O resilience O . O If O the O command O and O control O ( O C2 O ) O server O is O taken O down O , O the O malicious O operator O can O still O recover O the O malware O control O by O sending O SMS O messages O directly O to O the O infected O devices O . O This O makes O the O taking O down O and O recovery O of O the O network O much O harder O and O poses O a O considerable O challenge O for O defenders O . O THE O CAMPAIGN O The O malware O 's O primary O infection O vector O is O SMS O . O Just O like O the O old-school O mail O worms O that O used O the O victim O 's O address B-System book I-System to O select O the O next O victims O , O this O banking O trojan O 's O activation O cycle O includes O the O exfiltration O of O the O victim O 's O address O book O . O The O trojan O will O receive O instructions O from O the O C2 O to O spread O . O Spread O command O from O C2 O The O victim O receives O the O command O sendSMSMass O . O Usually O , O this O message O targets O four O or O five O people O at O a O time O . O The O body O contains O a O message O and O URL O . O Again O , O the O concept O is O that O new O victims O are O more O likely O to O install O the O malware O if O the O SMS O comes O from O someone O they O know O . O When O a O victim O tries O to O access O the O URL O in O the O SMS O body O , O the O C2 O will O check O if O the O mobile O device O meets O the O criteria O to O receive O the O malware O ( O see O infrastructure O section O ) O . O If O the O device O does O not O meet O the O criteria O , O it O wo O n't O receive O any O data O , O otherwise O , O it O will O be O redirected O to O a O second O server O to O receive O a O copy O of O the O malware O to O install O on O their O device O . O The O domain O on O this O campaign O was O registered O on O Jan. O 19 O , O 2019 O . O However O , O Talos B-Organization has O identified O that O was O used O at O least O since O November O 2018 O . O During O the O investigation O , O Talos B-Organization was O also O able O to O determine O that O the O same O infrastructure O has O been O used O to O deploy O similar O campaigns O using O different O versions O of O the O malware O . O Distribution O of O victims O . O Talos B-Organization assess O with O high O confidence O that O this O campaign O is O targeting O Australian O financial O institutions O based O on O several O factors O . O Our O Umbrella O telemetry O shows O that O the O majority O of O the O request O comes O from O Australia O and O the O majority O of O the O phone O numbers O infected O have O the O international O indicative O for O Australia O . O Finally O , O the O specific O overlays O are O designed O for O Australian O financial O institutions O , O and O Australia O is O one O of O the O geographic O regions O that O is O accepted O by O the O C2 O . O DNS O queries O distribution O over O time O The O campaign O does O n't O seem O to O be O growing O at O a O fast O pace O . O Our O data O shows O , O on O average O , O about O three O requests O per O hour O to O the O drop O host O . O This O request O is O only O made O upon O installation O , O but O there O is O no O guarantee O that O it O will O be O installed O . O This O data O , O when O analyzed O with O the O number O of O commands O to O send O SMSs O that O Talos O received O during O the O investigation O , O lead O us O to O conclude O that O the O malicious O operator O is O aggressively O spreading O the O malware O , O but O that O does O n't O seem O to O result O in O the O same O number O of O new O infections O . O Examples O of O the O overlays O available O to O the O malware O Above O , O you O can O see O examples O of O the O injections O that O distributed O to O the O malware O as O part O of O this O specific O campaign O . O While O doing O our O investigation O we O were O able O to O identify O other O malware O packages O with O different O names O . O Some O of O these O might O have O been O used O on O old O campaigns O or O were O already O prepared O for O new O campaigns O . O MALWARE O TECHNICAL O DETAILS O During O our O investigation O , O researchers O uncovered O a O malware O known O as O " O Gustuff. B-Malware '' O . O Given O the O lack O of O indicators O of O compromise O , O we O decided O to O check O to O see O if O this O was O the O same O malware O we O had O been O researching O . O Our O Threat O Intelligence O and O Interdiction O team O found O the O Gustuff B-Malware malware O being O advertised O in O the O Exploit.in B-Indicator forum O as O a O botnet O for O rent O . O The O seller O , O known O as O " O bestoffer O , O '' O was O , O at O some O point O , O expelled O from O the O forum O . O Gustuff B-Malware advertising O screenshot O The O companies O advertised O in O the O image O above O were O from O Australia O , O which O matches O up O with O the O campaign O we O researched O . O The O screenshots O provided O by O the O author O align O with O the O advertised O features O and O the O features O that O we O discovered O while O doing O our O analysis O . O Admin O panel O The O administration O panel O shows O the O application O configuration O , O which O matches O the O commands O from O the O C2 O . O Country O selection O The O administration O console O screenshots O also O show O the O ability O to O filter O the O results O by O country O . O In O this O case O , O " O AU O '' O is I-Organization the O code O shown O , O which O is O Australia O . O Based O on O this O information O , O Talos B-Organization assesses O with O high O confidence O that O the O malware O is O the O same O and O this O is O , O in O fact O , O the O Gustuff B-Malware malware O . O Design O In O the O manifest O , O the O malware O requests O a O large O number O of O permissions O . O However O , O it O does O n't O request O permissions O like O BIND_ADMIN O . O To O perform O some O of O its O activities O , O the O malware O does O not O need O high O privileges O inside O the O device O , O as O we O will O explain O ahead O . O Permissions O in O the O manifest O This O malware O is O designed O to O avoid O detection O and O analysis O . O It O has O several O protections O in O place O , O both O in O the O C2 O and O the O malware O 's O code O . O The O code O is O not O only O obfuscated O but O also O packed O . O The O packer O , O besides O making O the O static O analysis O more O complex O , O will O break O the O standard O debugger O . O Manifest O activity O declaration O Class O list O inside O the O dex O file O The O main O malware O classes O are O packed O , O to O a O point O where O the O class O defined O in O the O manifest O has O a O handler O for O the O MAIN O category O that O does O not O exist O in O the O DEX O file O . O Error O when O trying O to O debug O the O malware O using O the O Android B-System Studio I-System IDE I-System . O One O of O the O side O effects O of O this O packer O is O the O inability O of O Android B-System Studio I-System IDE I-System to O debug O the O code O . O This O happens O because O the O IDE O executes O the O code O from O the O Android B-System debug I-System bridge I-System ( O ADB O ) O by O calling O the O activity O declared O in O the O manifest O by O name O . O Since O the O class O does O not O exist O at O startup O , O the O application O does O not O run O on O the O debugger O . O Although O Talos B-Malware analyzed O the O unpacked O version O of O the O code O , O the O packer O analysis O is O beyond O the O scope O of O this O post O . O Check O code O for O emulators O As O part O of O its O defense O , O the O malware O payload O first O checks O for O emulators O to O prevent O analysis O on O sandboxes O . O It O checks O for O different O kinds O of O emulators O , O including O QEMU B-System , O Genymotion B-System , O BlueStacks B-System and O Bignox B-System . O If O the O malware O determines O that O is O not O running O on O an O emulator O , O it O then O performs O additional O checks O to O ensure O that O it O wo O n't O be O detected O . O Code O to O check O the O existence O of O SafetyNet O Google B-System API I-System It O also O checks O if O the O Android B-System SafetyNet O is O active O and O reporting O back O to O the O C2 O . O This O helps O the O C2 O define O what O actions O it O can O do O before O being O detected O on O the O mobile O device O . O List O of O anti-virus O packages O that O are O checked O The O payload O goes O a O long O way O to O protect O itself O and O checks O for O anti-virus O software O installed O on O the O mobile O device O . O The O trojan O uses O the O Android B-System Accessibility I-System API O to O intercept O all O interactions O between O the O user O and O the O mobile O device O . O The O Android B-System developer O documentation O describes O the O accessibility O event O class O as O a O class O that O " O represents O accessibility O events O that O are O seen O by O the O system O when O something O notable O happens O in O the O user O interface O . O For O example O , O when O a O button O is O clicked O , O a O view O is O focused O , O etc O . O '' O For O each O interaction O , O the O malware O will O check O if O the O generator O is O a O package O that O belongs O to O the O anti-virus O list O , O the O malware O will O abuse O another O feature O of O the O Accessibility B-System API I-System . O There O is O a O function O called O " O performGlobalAction O '' O with O the O description O below O . O Android B-System documentation O describes O that O function O as O " O a O global O action O . O Such O an O action O can O be O performed O at O any O moment O , O regardless O of O the O current O application O or O user O location O in O that O application O . O For O example O , O going O back O , O going O home O , O opening O recents O , O etc O . O '' O The O trojan O calls O this O function O with O the O action O GLOBAL_ACTION_BACK O , O which O equals O the O pressing O of O the O back O button O on O the O device O , O thus O canceling O the O opening O of O the O anti-virus O application O . O The O same O event O interception O is O used O to O place O the O webview O overlay O when O the O user O tries O to O access O the O targeted O applications O , O allowing O it O to O display O its O overlay O , O thus O intercepting O the O credentials O . O The O beaconing O only O starts O after O the O application O is O installed O and O removed O from O the O running O tasks O . O Beaconing O information O The O ID O is O generated O for O each O installation O of O the O malware O , O while O the O token O remains O unique O . O Some O of O the O checks O performed O previously O are O immediately O sent O to O the O C2 O , O like O the O safetyNet O , O admin O and O defaultSMSApp O . O The O beaconing O is O sent O to O the O URL O http B-Indicator : I-Indicator // I-Indicator /api/v2/get.php I-Indicator with O an O interval O of O 60 O seconds O . O Answer O from O the O C2 O The O C2 O will O check O the O country O field O , O if O it O 's O empty O or O if O the O country O is O not O targeted O , O it O will O reply O with O a O " O Unauthorized O '' O answer O . O Otherwise O , O it O will O return O a O JSON O encoded O " O OK O , O '' O and O if O that O is O the O case O , O the O command O to O be O executed O . O List O of O available O commands O The O command O names O are O self-explanatory O . O The O command O will O be O issued O as O an O answer O to O the O beaconing O , O and O the O result O will O be O returned O to O the O URL O http B-Indicator : I-Indicator // I-Indicator /api/v2/set_state.php I-Indicator Example O of O the O command O " O changeServer O '' O The O commands O are O issued O in O a O JSON O format O , O and O the O obfuscation O is O part O of O the O malware O code O and O not O added O by O the O packer O . O It O is O a O custom O obfuscation O partly O based O on O base85 B-Indicator encoding I-Indicator , O which O is O in O itself O unusual O , O in O malware O . O Base85 B-Indicator encoding I-Indicator is O usually O used O on O pdf O and O postscript O documentsThe O configuration O of O the O malware O is O stored O in O custom O preferences O files O , O using O the O same O obfuscation O scheme O . O Activation O cycle O As O we O have O explained O above O , O the O malware O has O several O defence O mechanisms O . O Beside O the O obfuscation O and O the O environment O checks O , O the O malware O also O has O some O interesting O anti-sandbox O mechanisms O . O After O installation O , O the O user O needs O to O run O the O application O . O The O user O needs O to O press O the O " O close O '' O button O to O finish O the O installation O . O However O , O this O wo O n't O close O the O application O , O it O will O send O it O to O the O background O , O instead O . O While O the O application O is O in O the O background O , O although O the O service O is O already O running O , O the O beaconing O will O not O start O . O The O beaconing O will O only O start O after O the O application O is O removed O from O the O background O , O ultimately O stopping O it O . O This O will O be O the O trigger O for O the O service O to O start O the O beaconing O . O As O mentioned O previously O , O the O beaconing O is O done O every O 60 O seconds O . O However O , O no O command O is O received O from O the O C2 O until O the O inactiveTime O field O ( O see O beaconing O information O image O above O ) O has O at O least O the O value O of O 2000000 O . O This O time O resets O every O time O the O user O performs O some O activity O . O After O the O checks O , O the O malware O becomes O active O , O but O first O , O it O goes O through O seven O steps O , O each O one O calling O a O different O command O : O uploadPhoneNumbers O : O Exfiltrates O all O phone O numbers O that O are O in O the O contact O list O . O Aside O from O the O natural O value O of O phone O numbers O associated O with O the O names O of O their O owners O . O Using O the O SMS O has O an O initial O infection O vector O is O another O possibility O for O the O exfiltration O . O One O of O the O purposes O of O the O exfiltration O of O the O contact O list O is O to O use O them O to O attack O other O victims O using O SMS O as O an O initial O vector O . O checkApps O : O Asks O the O malware O to O see O if O the O packages O sent O as O parameters O are O installed O . O The O malware O contains O a O list O of O 209 O packages O hardcoded O in O its O source O code O . O However O , O the O C2 O can O send O an O updated O list O . O List O of O packages O received O from O the O C2 O adminNumber O : O Setup O of O the O admin O phone O number O . O In O our O case O , O the O administrator O phone O number O belongs O to O a O mobile O network O in O Australia O . O Phone O number O for O administration O changeServer O : O At O this O point O , O the O malware O changes O the O C2 O to O a O new O host O , O even O though O the O API O and O communication O protocol O continues O to O be O the O same O . O Change O server O request O The O URL O 's O for O the O new O server O is O obfuscated O , O preventing O easy O network O identification O . O changeActivity O : O This O command O will O set O up O the O webview O to O overlay O any O of O the O target O activities O . O changeActivity O command O The O webview O injects O are O not O hosted O on O the O C2 O , O they O are O hosted O on O a O completely O different O server O . O params O : O This O command O allows O the O malicious O operator O to O change O configuration O parameters O in O the O malware O . O During O this O stage O of O the O activation O cycle O , O the O malware O increases O the O beaconing O time O to O avoid O detection O . O Command O to O change O the O beaconing O changeArchive O : O The O final O command O of O the O activation O cycle O is O the O download O of O an O archive O . O This O archive O is O stored O in O the O same O host O has O the O webviews O . O The O archive O is O a O ZIP O containing O several O files O , O which O is O protected O with O a O password O . O Change O archive O command O After O this O activation O cycle O , O the O malware O will O start O the O collection O of O information O activities O and O dissemination O . O Malicious O activity O Once O the O activation O cycle O ends O , O the O trojan O will O start O its O malicious O activities O . O These O activities O depend O on O the O device O configuration O . O Depending O if O the O victim O has O any O of O the O targeted O applications O , O the O anti-virus O installed O or O geographic O location O , O the O malware O can O harvest O credentials O from O the O targeted O applications O , O exfiltrate O all O personal O information O or O simply O use O the O victim O 's O device O to O send O SMS O to O spread O the O trojan O The O malware O deploys O overlaying O webviews O to O trick O the O user O and O eventually O steal O their O login O credentials O . O These O are O adapted O to O the O information O the O malicious O operator O wants O to O retrieve O . O The O first O webview O overlay O is O created O on O step O 6 O of O the O activation O cycle O . O Pin O request O overlay O This O overlay O asks O the O user O to O provide O their O PIN O to O unlock O the O mobile O device O , O which O is O immediately O exfiltrated O to O the O C2 O . O The O last O step O of O the O activation O cycle O is O the O download O of O a O password-protected O ZIP O file O . O This O file O contains O all O HTML O , O CSS O and O PNG O files O necessary O to O create O overlays O . O Talos O found O 189 O logos O from O banks O to O cryptocurrency O exchanges O inside O the O archive O , O all O of O which O could O be O targeted O . O The O archive O also O contained O all O the O necessary O codes O to O target O Australian O financial O institutions O . O The O overlays O are O activated O by O the O malicious O operator O using O the O command O changeActivity O , O as O seen O on O step O 5 O of O the O activation O cycle O . O In O this O case O , O we O can O see O that O the O HTML O code O of O the O overlay O is O stored O in O the O C2 O infrastructure O . O However O , O since O the O archive O that O is O downloaded O into O the O device O has O all O the O necessary O information O and O the O malicious O actor O has O access O to O the O device O via O SMS O , O the O malicious O operator O can O keep O its O activity O even O without O the O C2 O infrastructure O . O Infrastructure O The O infrastructure O supporting O this O malware O is O rather O complex O . O It O is O clear O that O on O all O stages O there O are O at O least O two O layers O . O The O infrastructure O has O several O layers O , O although O not O being O very O dynamic O , O still O has O several O layers O each O one O providing O some O level O of O protection O . O All O the O IP O addresses O belong O to O the O same O company O Hetzner B-Organization , O an O IP-hosting O firm O in O Germany O . O COVERAGE O Cisco B-Organization Cloud B-System Web I-System Security I-System ( O CWS O ) O or O Web B-System Security I-System Appliance I-System ( O WSA O ) O web O scanning O prevents O access O to O malicious O websites O and O detects O malware O used O in O these O attacks O . O Email O Security O can O block O malicious O emails O sent O by O threat O actors O as O part O of O their O campaign O . O Network O Security O appliances O such O as O Next-Generation B-System Firewall I-System ( O NGFW O ) O , O Next-Generation B-System Intrusion I-System Prevention I-System System I-System ( O NGIPS O ) O , O and O Meraki B-System MX I-System can O detect O malicious O activity O associated O with O this O threat O . O AMP O Threat O Grid O helps O identify O malicious O binaries O and O build O protection O into O all O Cisco B-Organization Security O products O . O Umbrella O , O our O secure O internet O gateway O ( O SIG O ) O , O blocks O users O from O connecting O to O malicious O domains O , O IPs O , O and O URLs O , O whether O users O are O on O or O off O the O corporate O network O . O Open O Source O SNORTⓇ O Subscriber O Rule O Set O customers O can O stay O up O to O date O by O downloading O the O latest O rule O pack O available O for O purchase O on O Snort.org O . O INDICATORS O OF O COMPROMISE O ( O IOCS O ) O Domains O Facebook-photos-au.su O Homevideo2-12l.ml B-Indicator videohosting1-5j.gq B-Indicator URLs O hxxp B-Indicator : I-Indicator //88.99.227 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 26/html2/2018/GrafKey/new-inj-135-3-dark.html I-Indicator hxxp B-Indicator : I-Indicator //88.99.227 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 26/html2/arc92/au483x.zip I-Indicator hxxp B-Indicator : I-Indicator //94.130.106 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 117:8080/api/v1/report/records.php I-Indicator hxxp B-Indicator : I-Indicator //88.99.227 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator 26/html2/new-inj-135-3-white.html I-Indicator hxxp B-Indicator : I-Indicator //facebook-photos-au I-Indicator [ I-Indicator . I-Indicator ] I-Indicator su/ChristinaMorrow I-Indicator hxxp B-Indicator : I-Indicator //homevideo2-12l I-Indicator [ I-Indicator . I-Indicator ] I-Indicator ml/mms3/download_3.php I-Indicator IP O addresses O 78.46.201.36 B-Indicator 88.99.170.84 B-Indicator 88.99.227.26 B-Indicator 94.130.106.117 B-Indicator 88.99.174.200 B-Indicator 88.99.189.31 B-Indicator Hash O 369fcf48c1eb982088c22f86672add10cae967af82613bee6fb8a3669603dc48 B-Indicator b2d4fcf03c7a8bf135fbd3073bea450e2e6661ad8ef2ab2058a3c04f81fc3f3e B-Indicator 8f5d5d8419a4832d175a6028c9e7d445f1e99fdc12170db257df79831c69ae4e B-Indicator a5ebcdaf5fd10ec9de85d62e48cc97a4e08c699a7ebdeab0351b86ab1370557d B-Indicator 84578b9b2c3cc1c7bbfcf4038a6c76ae91dfc82eef5e4c6815627eaf6b4ae6f6 B-Indicator 89eecd91dff4bf42bebbf3aa85aa512ddf661d3e9de4c91196c98f4fc325a018 B-Indicator 9edee3f3d539e3ade61ac2956a6900d93ba3b535b6a76b3a9ee81e2251e25c61 B-Indicator 0e48e5dbc3a60910c1460b382d28e087a580f38f57d3f82d4564309346069bd1 B-Indicator c113cdd2a5e164dcba157fc4e6026495a1cfbcb0b1a8bf3e38e7eddbb316e01f B-Indicator 1819d2546d9c9580193827c0d2f5aad7e7f2856f7d5e6d40fd739b6cecdb1e9e B-Indicator b213c1de737b72f8dd7185186a246277951b651c64812692da0b9fdf1be5bf15 B-Indicator 453e7827e943cdda9121948f3f4a68d6289d09777538f92389ca56f6e6de03f0 B-Indicator 0246dd4acd9f64ff1508131c57a7b29e995e102c74477d5624e1271700ecb0e2 B-Indicator 88034e0eddfdb6297670d28ed810aef87679e9492e9b3e782cc14d9d1a55db84 B-Indicator e08f08f4fa75609731c6dd597dc55c8f95dbdd5725a6a90a9f80134832a07f2e B-Indicator 01c5b637f283697350ca361f241416303ab6123da4c6726a6555ac36cb654b5c B-Indicator 1fb06666befd581019af509951320c7e8535e5b38ad058069f4979e9a21c7e1c B-Indicator 6bdfb79f813448b7f1b4f4dbe6a45d1938f3039c93ecf80318cedd1090f7e341 B-Indicator ADDITIONAL O INFORMATION O Packages O monitored O pin.secret.access B-Indicator com.chase.sig.android B-Indicator com.morganstanley.clientmobile.prod B-Indicator com.wf.wellsfargomobile B-Indicator com.citi.citimobile B-Indicator com.konylabs.capitalone B-Indicator com.infonow.bofa B-Indicator com.htsu.hsbcpersonalbanking B-Indicator com.usaa.mobile.android.usaa B-Indicator com.schwab.mobile B-Indicator com.americanexpress.android.acctsvcs.us O com.pnc.ecommerce.mobile B-Indicator com.regions.mobbanking B-Indicator com.clairmail.fth B-Indicator com.grppl.android.shell.BOS B-Indicator com.tdbank B-Indicator com.huntington.m B-Indicator com.citizensbank.androidapp B-Indicator com.usbank.mobilebanking B-Indicator com.ally.MobileBanking B-Indicator com.key.android B-Indicator com.unionbank.ecommerce.mobile.android B-Indicator com.mfoundry.mb.android.mb_BMOH071025661 B-Indicator com.bbt.cmol B-Indicator com.sovereign.santander B-Indicator com.mtb.mbanking.sc.retail.prod B-Indicator com.fi9293.godough B-Indicator com.commbank.netbank B-Indicator org.westpac.bank B-Indicator org.stgeorge.bank B-Indicator au.com.nab.mobile B-Indicator au.com.bankwest.mobile B-Indicator au.com.ingdirect.android B-Indicator org.banksa.bank B-Indicator com.anz.android B-Indicator com.anz.android.gomoney B-Indicator com.citibank.mobile.au B-Indicator org.bom.bank B-Indicator com.latuabancaperandroid B-Indicator com.comarch.mobile B-Indicator com.jpm.sig.android B-Indicator com.konylabs.cbplpat B-Indicator by.belinvestbank B-Indicator no.apps.dnbnor B-Indicator com.arkea.phonegap B-Indicator com.alseda.bpssberbank B-Indicator com.belveb.belvebmobile B-Indicator com.finanteq.finance.ca B-Indicator pl.eurobank B-Indicator pl.eurobank2 B-Indicator pl.noblebank.mobile B-Indicator com.getingroup.mobilebanking B-Indicator hr.asseco.android.mtoken.getin B-Indicator pl.getinleasing.mobile B-Indicator com.icp.ikasa.getinon B-Indicator eu.eleader.mobilebanking.pekao B-Indicator softax.pekao.powerpay B-Indicator softax.pekao.mpos B-Indicator dk.jyskebank.mobilbank B-Indicator com.starfinanz.smob.android.bwmobilbanking B-Indicator eu.newfrontier.iBanking.mobile.SOG.Retail B-Indicator com.accessbank.accessbankapp B-Indicator com.sbi.SBIFreedomPlus B-Indicator com.zenithBank.eazymoney B-Indicator net.cts.android.centralbank B-Indicator com.f1soft.nmbmobilebanking.activities.main B-Indicator com.lb.smartpay B-Indicator com.mbmobile B-Indicator com.db.mobilebanking B-Indicator com.botw.mobilebanking B-Indicator com.fg.wallet B-Indicator com.sbi.SBISecure B-Indicator com.icsfs.safwa B-Indicator com.interswitchng.www B-Indicator com.dhanlaxmi.dhansmart.mtc B-Indicator com.icomvision.bsc.tbc B-Indicator hr.asseco.android.jimba.cecro B-Indicator com.vanso.gtbankapp B-Indicator com.fss.pnbpsp B-Indicator com.mfino.sterling B-Indicator cy.com.netinfo.netteller.boc B-Indicator ge.mobility.basisbank B-Indicator com.snapwork.IDBI B-Indicator com.lcode.apgvb B-Indicator com.fact.jib B-Indicator mn.egolomt.bank B-Indicator com.pnbrewardz B-Indicator com.firstbank.firstmobile B-Indicator wit.android.bcpBankingApp.millenniumPL B-Indicator com.grppl.android.shell.halifax B-Indicator com.revolut.revolut B-Indicator de.commerzbanking.mobil B-Indicator uk.co.santander.santanderUK B-Indicator se.nordea.mobilebank B-Indicator com.snapwork.hdfc B-Indicator com.csam.icici.bank.imobile B-Indicator com.msf.kbank.mobile B-Indicator com.bmm.mobilebankingapp B-Indicator net.bnpparibas.mescomptes B-Indicator fr.banquepopulaire.cyberplus B-Indicator com.caisseepargne.android.mobilebanking B-Indicator com.palatine.android.mobilebanking.prod B-Indicator com.ocito.cdn.activity.creditdunord B-Indicator com.fullsix.android.labanquepostale.accountaccess B-Indicator mobi.societegenerale.mobile.lappli B-Indicator com.db.businessline.cardapp B-Indicator com.skh.android.mbanking B-Indicator com.ifs.banking.fiid1491 B-Indicator de.dkb.portalapp B-Indicator pl.pkobp.ipkobiznes B-Indicator pl.com.suntech.mobileconnect B-Indicator eu.eleader.mobilebanking.pekao.firm B-Indicator pl.mbank B-Indicator pl.upaid.nfcwallet.mbank B-Indicator eu.eleader.mobilebanking.bre B-Indicator pl.asseco.mpromak.android.app.bre B-Indicator pl.asseco.mpromak.android.app.bre.hd B-Indicator pl.mbank.mnews B-Indicator eu.eleader.mobilebanking.raiffeisen B-Indicator pl.raiffeisen.nfc B-Indicator hr.asseco.android.jimba.rmb B-Indicator com.advantage.RaiffeisenBank B-Indicator pl.bzwbk.ibiznes24 B-Indicator pl.bzwbk.bzwbk24 B-Indicator pl.bzwbk.mobile.tab.bzwbk24 B-Indicator com.comarch.mobile.investment B-Indicator com.android.vending B-Indicator com.snapchat.android B-Indicator jp.naver.line.android B-Indicator com.viber.voip B-Indicator com.gettaxi.android B-Indicator com.whatsapp B-Indicator com.tencent.mm B-Indicator com.skype.raider B-Indicator com.ubercab B-Indicator com.paypal.android.p2pmobile B-Indicator com.circle.android B-Indicator com.coinbase.android B-Indicator com.walmart.android B-Indicator com.bestbuy.android B-Indicator com.ebay.gumtree.au B-Indicator com.ebay.mobile B-Indicator com.westernunion.android.mtapp B-Indicator com.moneybookers.skrillpayments B-Indicator com.gyft.android B-Indicator com.amazon.mShop.android.shopping B-Indicator com.comarch.mobile.banking.bgzbnpparibas.biznes B-Indicator pl.bnpbgzparibas.firmapp B-Indicator com.finanteq.finance.bgz B-Indicator pl.upaid.bgzbnpp B-Indicator de.postbank.finanzassistent B-Indicator pl.bph B-Indicator de.comdirect.android B-Indicator com.starfinanz.smob.android.sfinanzstatus B-Indicator de.sdvrz.ihb.mobile.app B-Indicator pl.ing.mojeing B-Indicator com.ing.mobile B-Indicator pl.ing.ingksiegowosc B-Indicator com.comarch.security.mobilebanking B-Indicator com.comarch.mobile.investment.ing B-Indicator com.ingcb.mobile.cbportal B-Indicator de.buhl.finanzblick B-Indicator pl.pkobp.iko B-Indicator pl.ipko.mobile B-Indicator pl.inteligo.mobile B-Indicator de.number26.android B-Indicator pl.millennium.corpApp I-Indicator eu.transfer24.app O pl.aliorbank.aib O pl.corelogic.mtoken B-Indicator alior.bankingapp.android B-Indicator com.ferratumbank.mobilebank B-Indicator com.swmind.vcc.android.bzwbk_mobile.app B-Indicator de.schildbach.wallet B-Indicator piuk.blockchain.android B-Indicator com.bitcoin.mwallet B-Indicator com.btcontract.wallet B-Indicator com.bitpay.wallet B-Indicator com.bitpay.copay B-Indicator btc.org.freewallet.app B-Indicator org.electrum.electrum B-Indicator com.xapo B-Indicator com.airbitz B-Indicator com.kibou.bitcoin B-Indicator com.qcan.mobile.bitcoin.wallet B-Indicator me.cryptopay.android B-Indicator com.bitcoin.wallet B-Indicator lt.spectrofinance.spectrocoin.android.wallet B-Indicator com.kryptokit.jaxx B-Indicator com.wirex B-Indicator bcn.org.freewallet.app B-Indicator com.hashengineering.bitcoincash.wallet B-Indicator bcc.org.freewallet.app B-Indicator com.coinspace.app B-Indicator btg.org.freewallet.app B-Indicator net.bither B-Indicator co.edgesecure.app B-Indicator com.arcbit.arcbit B-Indicator distributedlab.wallet B-Indicator de.schildbach.wallet_test B-Indicator com.aegiswallet B-Indicator com.plutus.wallet B-Indicator com.coincorner.app.crypt B-Indicator eth.org.freewallet.app B-Indicator secret.access B-Indicator secret.pattern B-Indicator RuMMS B-Malware : O The O Latest O Family O of O Android B-System Malware O Attacking O Users O in O Russia O Via O SMS O Phishing O April O 26 O , O 2016 O Introduction O Recently O we O observed O an O Android B-Malware malware O family O being O used O to O attack O users O in O Russia O . O The O malware O samples O were O mainly O distributed O through O a O series O of O malicious O subdomains O registered O under O a O legitimate O domain O belonging O to O a O well-known O shared O hosting O service O provider O in O Russia O . O Because O all O the O URLs O used O in O this O campaign O have O the O form O of O hxxp B-Indicator : I-Indicator //yyyyyyyy I-Indicator [ I-Indicator . I-Indicator ] I-Indicator XXXX.ru/mms.apk I-Indicator ( O where O XXXX.ru B-Indicator represents O the O hosting O provider O ’ O s O domain O ) O , O we O named O this O malware O family O RuMMS B-Malware . O To O lure O the O victims O to O download O the O malware O , O threat O actors O use O SMS O phishing O – O sending O a O short O SMS O message O containing O a O malicious O URL O to O the O potential O victims O . O Unwary O users O who O click O the O seemingly O innocuous O link O will O have O their O device O infected O with O RuMMS B-Malware malware O . O Figure O 1 O describes O this O infection O process O and O the O main O behaviors O of O RuMMS B-Malware . O On O April O 3 O , O 2016 O , O we O still O observed O new O RuMMS B-Malware samples O emerging O in O the O wild O . O The O earliest O identified O sample O , O however O , O can O be O traced O back O to O Jan. O 18 O , O 2016 O . O Within O this O time O period O , O we O identified O close O to O 300 O samples O belonging O to O this O family O ( O all O sample O hashes O are O listed O in O the O Appendix O ) O . O After O landing O on O the O victim O ’ O s O phone O , O the O RuMMS B-Malware apps O will O request O device O administrator O privileges O , O remove O their O icons O to O hide O themselves O from O users O , O and O remain O running O in O the O background O to O perform O a O series O of O malicious O behaviors O . O So O far O we O have O identified O the O following O behaviors O : O Sending O device O information O to O a O remote O command O and O control O ( O C2 O ) O server O . O Contacting O the O C2 O server O for O instructions O . O Sending O SMS O messages O to O financial O institutions O to O query O account O balances O . O Uploading O any O incoming O SMS O messages O ( O including O the O balance O inquiry O results O ) O to O the O remote O C2 O server O . O Sending O C2-specified O SMS O messages O to O phone O numbers O in O the O victim O ’ O s O contacts O . O Forward O incoming O phone O calls O to O intercept O voice-based O two-factor O authentication O . O Each O of O these O behaviors O is O under O the O control O of O the O remote O C2 O server O . O In O other O words O , O the O C2 O server O can O specify O the O message O contents O to O be O sent O , O the O time O period O in O which O to O forward O the O voice O call O , O and O the O recipients O of O outgoing O messages O . O As O part O of O our O investigation O into O this O malware O , O we O emulated O an O infected O Android B-System device O in O order O to O communicate O with O the O RuMMS B-Malware C2 O server O . O During O one O session O , O the O C2 O server O commanded O our O emulated O device O to O send O four O different O SMS O messages O to O four O different O phone O numbers O , O all O of O which O were O associated O with O Russian O financial O institutions O . O At O least O three O of O the O messages O were O intended O to O check O a O user O ’ O s O account O balance O at O the O institution O ( O we O could O not O confirm O the O purpose O of O the O fourth O ) O .Through O additional O research O , O we O identified O several O forum O posts O where O victims O complained O of O funds O ( O up O to O 600 O rubles O ) O were O transferred O out O of O their O accounts O after O RuMMS B-Malware infected O their O phones O . O We O do O not O know O exactly O how O many O people O have O been O infected O with O RuMMS B-Malware malware O . O However O , O our O data O suggests O that O there O have O been O at O least O 2,729 O infections O between O January O 2016 O and O early O April O 2016 O , O with O a O peak O in O March O of O more O than O 1,100 O infections O . O Smishing O : O The O Major O Way O To O Distribute O RuMMS B-Malware We O have O not O observed O any O instances O of O RuMMS B-Malware on O Google B-System Play I-System or O other O online O app O stores O . O Smishing O ( O SMS O phishing O ) O is O currently O the O primary O way O threat O actors O are O distributing O the O malware O . O The O process O starts O when O an O SMS O phishing O message O arrives O at O a O user O ’ O s O phone O . O An O example O SMS O message O is O shown O in O Figure O 1 O . O The O message O translates O roughly O to O “ O You O got O a O photo O in O MMS O format O : O hxxp B-Indicator : I-Indicator //yyyyyyyy.XXXX.ru/mms.apk. I-Indicator ” O So O far O we O identified O seven O different O URLs O being O used O to O spread O RuMMS B-Malware in O the O wild O . O All O of O the O URLs O reference O the O file O “ O mms.apk B-Indicator ” O and O all O use O the O domain O “ O XXXX.ru B-Indicator ” O , O which O belongs O to O a O top O five O shared O hosting O platform O in O Russia O ( O the O domain O itself O has O been O obfuscated O to O anonymize O the O provider O ) O . O The O threat O actors O registered O at O least O seven O subdomains O through O the O hosting O provider O , O each O consisting O of O eight O random-looking O characters O ( O asdfgjcr B-Indicator , O cacama18 B-Indicator , O cacamadf B-Indicator , O konkonq2 B-Indicator , O mmsmtsh5 B-Indicator , O riveroer B-Indicator , O and O sdfkjhl2 B-Indicator . O ) O As O of O this O writing O , O no O files O were O hosted O at O any O of O the O links O . O The O threat O actors O seem O to O have O abandoned O these O URLs O and O might O be O looking O into O other O ways O to O reach O more O victims O . O Use O of O a O shared O hosting O service O to O distribute O malware O is O highly O flexible O and O low O cost O for O the O threat O actors O . O It O is O also O much O harder O for O network O defenders O or O researchers O to O track O a O campaign O where O the O infrastructure O is O a O moving O target O . O Many O top O providers O in O Russia O offer O cheap O prices O for O their O shared O hosting O services O , O and O some O even O provide O free O 30-day O trial O periods O . O Threat O actors O can O register O subdomains O through O the O hosting O provider O and O use O the O provider O ’ O s O services O for O a O short-period O campaign O . O A O few O days O later O they O can O cancel O the O trial O and O do O not O need O to O pay O a O penny O . O In O addition O , O these O out-of-the-box O hosting O services O usually O provide O better O infrastructure O than O the O attackers O could O manage O to O construct O ( O or O compromise O ) O themselves O . O RuMMS B-Malware Code O Analysis O All O RuMMS B-Malware samples O share O the O same O behaviors O , O major O parts O of O which O are O shown O in O Figure O 1 O . O However O , O the O underlying O code O can O be O quite O different O in O that O various O obfuscation O mechanisms O were O adopted O to O evade O detection O by O anti-virus O tools O . O We O used O a O sample O app O named O “ O org.starsizew B-Indicator ” O with O an O MD5 O of O d8caad151e07025fdbf5f3c26e3ceaff B-Indicator to O analyze O RuMMS B-Malware ’ O s O code O . O Several O of O the O main O components O of O RuMMS B-Malware are O shown O in O Figure O 2 O . O The O activity O class O “ O org.starsizew.MainActivity B-Indicator ” O executes O when O the O app O is O started O . O It O first O starts O another O activity O defined O in O “ O org.starsizew.Aa B-Indicator ” O to O request O device O administrator O privileges O , O and O then O calls O the O following O API O of O “ O android.content.pm.PackageManager B-Indicator ” O ( O the O Android B-System package O manager O to O remove O its O own O icon O on O the O home O screen O in O order O to O conceal O the O existence O of O RuMMS B-Malware from O the O user O : O At O the O same O time O , O ” O org.starsizew.MainActivity B-Indicator ” O will O start O the O main O service O as O defined O in O “ O org.starsizew.Tb B-Indicator ” O , O and O use O a O few O mechanisms O to O keep O the O main O service O running O continuously O in O the O background O . O The O class O “ O org.starsizew.Ac B-Indicator ” O is O designed O for O this O purpose O ; O its O only O task O is O to O check O if O the O main O service O is O running O , O and O restart O the O main O service O if O the O answer O is O no O . O The O class O “ O org.starsizew.Tb B-Indicator ” O also O has O a O self-monitoring O mechanism O to O restart O itself O when O its O own O onDestroy O API O is O triggered O . O Other O than O that O , O its O major O functionality O is O to O collect O private O device O information O , O upload O it O to O a O remote O C2 O server O , O and O handle O any O commands O as O requested O by O the O C2 O server O . O All O those O functions O are O implemented O in O asynchronous O tasks O by O “ O org.starsizew.i B-Indicator ” O . O The O class O “ O org.starsizew.Ma B-Indicator ” O is O registered O to O intercept O incoming O SMS O messages O , O the O arrival O of O which O will O trigger O the O Android B-System system O to O call O its O “ O onReceive O ” O API O . O Its O major O functionality O is O also O implemented O through O the O call O of O the O asynchronous O task O ( O “ O org.starsizew.i B-Indicator ” O ) O , O including O uploading O the O incoming O SMS O messages O to O the O remote O C2 O server O and O executing O any O commands O as O instructed O by O the O remote O attacker O . O C2 O Communication O The O C2 O communication O includes O two O parts O : O sending O information O to O the O remote O HTTP O server O and O parsing O the O server O ’ O s O response O to O execute O any O commands O as O instructed O by O the O remote O attackers O . O The O functionality O for O these O two O parts O is O implemented O by O doInBackground O and O onPostExecute O respectively O , O two O API O methods O of O “ O android.os.AsyncTask B-Indicator ” O as O extended O by O class O “ O org.starsizew.i B-Indicator ” O . O Figure O 3 O . O Method O doInBackground O : O to O send O information O to O remote O C2 O server O As O seen O from O the O major O code O body O of O method O doInBackground O shown O in O Figure O 3 O ( O some O of O the O original O classes O and O methods O are O renamed O for O easier O understanding O ) O , O there O are O three O calls O to O HttpPost O with O different O contents O as O parameters O . O At O line O 5 O , O local O variable O v4 O specifies O the O first O parameter O url O , O which O can O be O changed O by O the O remote O C2 O server O later O . O These O URLs O are O all O in O the O form O of O “ O http B-Indicator : I-Indicator // I-Indicator $ I-Indicator C2. I-Indicator $ I-Indicator SERVER. I-Indicator $ I-Indicator IP/api/ I-Indicator ? I-Indicator id= I-Indicator $ I-Indicator NUM I-Indicator ” O . O The O second O parameter O is O a O constant O string O “ O POST O ” O , O and O the O third O parameter O is O a O series O of O key-value O pairs O to O be O sent O , O assembled O at O runtime O . O The O value O of O the O first O item O , O whose O key O is O “ O method O ” O ( O line O 7 O ) O , O indicates O the O type O of O the O contents O : O install O , O info O and O sms O . O The O first O type O of O content O , O starting O with O “ O method=install O ” O , O will O be O sent O when O the O app O is O started O for O the O first O time O , O including O the O following O device O private O information O : O Victim O identifier O Network O operator O Device O model O Device O OS O version O Phone O number O Device O identifier O App O version O Country O The O second O type O of O information O will O be O sent O periodically O to O indicate O that O the O device O is O alive O . O It O only O has O two O parts O , O the O method O indicated O by O word O “ O info O ” O and O the O victim O identifier O . O The O third O type O of O information O will O be O sent O when O RuMMS B-Malware intercepts O any O SMS O messages O , O including O the O balance O inquiry O results O when O it O contacts O the O SMS O code O of O a O particular O financial O service O . O Method O onPostExecute O parses O the O response O from O the O above O HTTP O session O and O executes O the O commands O provided O by O the O remote O attacker O . O As O seen O from O the O code O in O Figure O 5 O , O the O commands O RuMMS B-Malware supports O right O now O include O : O install_true O : O to O modify O app O preference O to O indicate O that O the O C2 O server O received O the O victim O device O ’ O s O status O . O sms_send O : O to O send O C2-specified O SMS O messages O to O C2-specified O recipients O . O sms_grab O : O to O upload O periodically O the O SMS O messages O in O the O inbox O to O C2 O server O . O delivery O : O to O deliver O specified O text O to O all O victim O ’ O s O contacts O ( O SMS O worming O ) O . O call_number O : O to O forward O phone O calls O to O intercept O voice O based O two-factor O authentication O . O new_url O : O to O change O the O URL O of O the O C2 O server O in O the O app O preference O . O ussd O : O to O call O a O C2-specified O phone O number O . O Figure O 5 O . O Method O onPostExecute O : O to O handle O instructions O from O remote O C2 O Figure O 6 O shows O an O example O response O sent O back O from O one O C2 O server O . O Note O that O inside O this O single O response O , O there O is O one O “ O install_true O ” O command O , O one O “ O sms_grab O ” O command O and O four O “ O sms_send O ” O commands O . O With O the O four O “ O sms_send O ” O commands O , O the O messages O as O specified O in O the O key O “ O text O ” O will O be O sent O immediately O to O the O specified O short O numbers O . O Our O analysis O suggests O that O the O four O short O numbers O are O associated O with O Russian O financial O institutions O , O presumably O where O a O victim O would O be O likely O to O have O accounts O . O Figure O 6 O . O Example O Response O in O JSON O format O In O particular O , O short O number O “ O +7494 O ” O is O associated O with O a O payment O service O provider O in O Russia O . O The O provider O ’ O s O website O described O how O the O code O 7494 O can O be O used O to O provide O a O series O of O payment-related O capabilities O . O For O example O , O sending O text O “ O Balance O ” O will O trigger O a O response O with O the O victim O ’ O s O wallet O balance O . O Sending O text O “ O confirm O 1 O ” O will O include O proof O of O payment O . O Sending O text O “ O call O on O ” O will O activate O the O USSD O payment O confirmation O service O . O During O our O investigation O , O we O observed O the O C2 O server O sending O multiple O “ O balance O ” O commands O to O different O institutions O , O presumably O to O query O the O victim O ’ O s O financial O account O balances O . O RuMMS B-Malware can O upload O responses O to O the O balance O inquiries O ( O received O via O SMS O message O ) O to O the O remote O C2 O server O , O which O can O send O back O additional O commands O to O be O sent O from O the O victim O to O the O provider O ’ O s O payment O service O . O These O could O include O resetting O the O user O ’ O s O PIN O , O enabling O or O disabling O various O alerts O and O confirmations O , O and O confirming O the O user O ’ O s O identity O . O RuMMS B-Malware Samples O , O C2 O , O Hosting O Sites O , O Infections O and O Timeline O In O total O we O captured O 297 O RuMMS B-Malware samples O , O all O of O which O attempt O to O contact O an O initial O C2 O server O that O we O extracted O from O the O app O package O . O Figure O 7 O lists O the O IP O addresses O of O these O C2 O servers O , O the O number O of O RuMMS B-Malware apps O that O connect O to O each O of O them O , O and O the O example O URL O used O as O the O first O parameter O of O the O HttpPost O operation O ( O used O in O the O code O of O Figure O 3 O ) O . O This O indicates O that O multiple O C2 O servers O were O used O in O this O campaign O , O but O one O ( O 37.1.207.31 B-Indicator ) O was O the O most O heavily O used O . O Figure O 7 O . O RuMMS B-Malware samples O and O C2 O servers O Figure O 8 O shows O how O these O samples O , O C2 O servers O and O hosting O websites O are O related O to O each O other O , O including O when O they O were O compiled O or O observed O . O In O the O quadrant O , O the O smaller O boxes O in O blue-gray O represent O particular O apps O in O the O RuMMS B-Malware family O , O while O the O bigger O boxes O in O deep-blue O represent O C2 O servers O used O by O some O RuMMS B-Malware apps O . O The O dotted O arrows O represent O the O use O of O a O particular O C2 O server O by O a O specific O app O to O send O information O and O fetch O instructions O . O In O this O figure O we O have O 11 O RuMMS B-Malware samples O , O all O of O which O were O hosted O on O the O website O as O shown O in O the O “ O y O ” O axis O . O The O dates O on O the O “ O x O ” O axis O show O the O dates O when O we O first O saw O these O apps O in O the O wild O . O This O figure O demonstrates O the O following O interesting O information O : O The O time O range O when O threat O actors O distributed O RuMMS B-Malware on O those O shared-hosting O websites O is O from O January O 2016 O to O March O 2016 O . O Threat O actors O used O different O websites O to O host O different O payloads O at O different O times O . O This O kind O of O “ O moving O target O ” O behavior O made O it O harder O to O track O their O actions O . O The O same O websites O have O hosted O different O RuMMS B-Malware samples O at O different O dates O . O C2 O servers O are O shared O by O multiple O samples O . O This O matches O our O observations O of O C2 O servers O as O shown O in O Figure O 7 O . O Figure O 8 O . O RuMMS B-Malware samples O , O hosting O sites O , O C2 O servers O from O Jan. O 2016 O to O Mar O . O 2016 O We O do O not O know O exactly O how O many O people O have O been O infected O with O RuMMS B-Malware malware O ; O however O , O our O data O suggests O that O there O are O at O least O 2,729 O infections O with O RuMMS B-Malware samples O from O January O 2016 O to O early O April O 2016 O . O Figure O 9 O shows O the O number O of O RuMMS B-Malware infections O recorded O in O the O last O four O months O . O When O we O first O observed O the O malware O in O January O , O we O recorded O 380 O infections O . O In O February O , O we O recorded O 767 O infections O . O In O March O , O it O peaked O at O 1,169 O infections O . O In O April O , O at O the O time O of O writing O this O post O , O we O recorded O 413 O RuMMS B-Malware infections O . O Although O the O propagation O trend O seems O to O be O slowing O down O a O bit O , O the O figure O tells O us O that O RuMMS B-Malware malware O is O still O alive O in O the O wild O . O We O continue O to O monitor O its O progress O . O Conclusion O Smishing O ( O SMS O phishing O ) O offers O a O unique O vector O to O infect O mobile O users O . O The O recent O RuMMS B-Malware campaign O shows O that O Smishing O is O still O a O popular O means O for O threat O actors O to O distribute O their O malware O . O In O addition O , O the O use O of O shared-hosting O providers O adds O flexibility O to O the O threat O actor O ’ O s O campaign O and O makes O it O harder O for O defending O parties O to O track O these O moving O targets O . O Fortunately O , O FireEye B-System Mobile I-System Threat I-System Prevention I-System platform O can O recognize O the O malicious O SMS O and O networking O behaviors O used O by O these O RuMMS B-Malware samples O , O and O help O us O quickly O identify O the O threat O . O To O protect O yourself O from O these O threats O , O FireEye B-Organization suggests O that O users O : O Take O caution O before O clicking O any O links O where O you O are O not O sure O about O the O origin O . O Don O ’ O t O install O apps O outside O the O official O app O store O . O Exodus B-Malware : O New O Android B-System Spyware O Made O in O Italy O Mar O 29 O Summary O We O identified O a O new O Android B-System spyware O platform O we O named O Exodus B-Malware , O which O is O composed O of O two O stages O we O call O Exodus B-Malware One I-Malware and O Exodus B-Malware Two I-Malware . O We O have O collected O numerous O samples O spanning O from O 2016 O to O early O 2019 O . O Instances O of O this O spyware O were O found O on O the O Google B-System Play I-System Store I-System , O disguised O as O service O applications O from O mobile O operators O . O Both O the O Google B-System Play I-System Store I-System pages O and O the O decoys O of O the O malicious O apps O are O in O Italian O . O According O to O publicly O available O statistics O , O as O well O as O confirmation O from O Google B-Organization , O most O of O these O apps O collected O a O few O dozens O installations O each O , O with O one O case O reaching O over O 350 O . O All O of O the O victims O are O located O in O Italy O . O All O of O these O Google B-System Play I-System Store I-System pages O have O been O taken O down O by O Google B-Organization . O We O believe O this O spyware O platform O is O developed O by O an O Italian O company O called O eSurv B-Organization , O which O primarily O operates O in O the O business O of O video O surveillance O . O According O to O public O records O it O appears O that O eSurv B-Organization began O to O also O develop O intrusion O software O in O 2016 O . O Exodus B-Malware is O equipped O with O extensive O collection O and O interception O capabilities O . O Worryingly O , O some O of O the O modifications O enforced O by O the O spyware O might O expose O the O infected O devices O to O further O compromise O or O data O tampering O . O Disguised O Spyware O Uploaded O on O Google B-System Play I-System Store I-System We O identified O previously O unknown O spyware O apps O being O successfully O uploaded O on O Google B-System Play I-System Store I-System multiple O times O over O the O course O of O over O two O years O . O These O apps O would O remain O available O on O the O Play B-System Store I-System for O months O and O would O eventually O be O re-uploaded O . O While O details O would O vary O , O all O of O the O identified O copies O of O this O spyware O shared O a O similar O disguise O . O In O most O cases O they O would O be O crafted O to O appear O as O applications O distributed O by O unspecified O mobile O operators O in O Italy O . O Often O the O app O description O on O the O Play B-System Store I-System would O reference O some O SMS O messages O the O targets O would O supposedly O receive O leading O them O to O the O Play B-System Store I-System page O . O All O of O the O Play B-System Store I-System pages O we O identified O and O all O of O the O decoys O of O the O apps O themselves O are O written O in O Italian O . O According O to O Google B-Organization , O whom O we O have O contacted O to O alert O about O our O discoveries O , O nearly O 25 O variants O of O this O spyware O were O uploaded O on O Google B-System Play I-System Store I-System . O Google B-System Play I-System has O removed O the O apps O and O they O stated O that O " O thanks O to O enhanced O detection O models O , O Google B-System Play I-System Protect I-System will O now O be O able O to O better O detect O future O variants O of O these O applications O '' O . O While O Google I-Organization did O not O share O with O us O the O total O number O of O infected O devices O , O they O confirmed O that O one O of O these O malicious O apps O collected O over O 350 O installations O through O the O Play B-System Store I-System , O while O other O variants O collected O few O dozens O each O , O and O that O all O infections O were O located O in O Italy O . O We O have O directly O observed O multiple O copies O of O Exodus B-Malware with O more O than O 50 O installs O and O we O can O estimate O the O total O number O of O infections O to O amount O in O the O several O hundreds O , O if O not O a O thousand O or O more O . O Stage O 1 O : O Exodus B-Malware One I-Malware The O first O stage O installed O by O downloading O the O malicious O apps O uploaded O on O Google B-System Play I-System Store I-System only O acts O as O a O dropper O . O Following O are O some O examples O of O the O decoys O used O by O these O droppers O : O The O purpose O of O Exodus B-Malware One I-Malware seems O to O be O to O collect O some O basic O identifying O information O about O the O device O ( O namely O the O IMEI O code O and O the O phone O number O ) O and O send O it O to O the O Command O & O Control O server O . O This O is O usually O done O in O order O to O validate O the O target O of O a O new O infection O . O This O is O further O corroborated O by O some O older O and O unobfuscated O samples O from O 2016 O , O whose O primary O classes O are O named O CheckValidTarget O . O During O our O tests O the O spyware O was O upgraded O to O the O second O stage O on O our O test O device O immediately O after O the O first O check-ins O . O This O suggests O that O the O operators O of O the O Command O & O Control O are O not O enforcing O a O validation O of O the O targets O . O Additionally O , O during O a O period O of O several O days O , O our O infected O test O device O was O never O remotely O disinfected O by O the O operators O . O For O the O purpose O of O this O report O we O analyze O here O the O Exodus B-Malware One I-Malware sample O with O hash O 8453ce501fee1ca8a321f16b09969c517f92a24b058ac5b54549eabd58bf1884 B-Indicator which O communicated O with O the O Command O & O Control O server O at O 54.71.249.137 B-Indicator . O Other O samples O communicated O with O other O servers O listed O at O the O bottom O of O this O report O . O Exodus O One O checks-in O by O sending O a O POST O request O containing O the O app O package O name O , O the O device O IMEI O and O an O encrypted O body O containing O additional O device O information O . O The O encrypted O body O is O composed O of O various O identifiers O which O are O joined O together O : O doFinal O ( O ) O is O called O to O encrypt O the O device O information O string O : O The O user O agent O string O is O built O from O the O package O name O and O IMEI O number O : O Finally O the O HTTP O request O is O sent O to O the O server O at O https B-Indicator : I-Indicator //54.71.249.137/eddd0317-2bdc-4140-86cb-0e8d7047b874 I-Indicator . O Many O of O the O strings O in O the O application O are O XOR O 'd O with O the O key O Kjk1MmphFG O : O After O some O additional O requests O , O the O dropper O made O a O POST O request O to O https B-Indicator : I-Indicator //54.71.249.137/56e087c9-fc56-49bb-bbd0-4fafc4acd6e1 I-Indicator which O returned O a O zip O file O containing O the O second O stage O binaries O . O Stage O 2 O : O Exodus B-Malware Two I-Malware The O Zip O archive O returned O by O the O check-in O performed O by O Exodus B-Malware One I-Malware is O a O collection O of O files O including O the O primary O payload O mike.jar B-Indicator and O several O compiled O utilities O that O serve O different O functions O . O At O least O in O most O recent O versions O , O as O of O January O 2019 O , O the O Zip O archive O would O actually O contain O the O i686 O , O arm O and O arm64 O versions O of O all O deployed O binaries O . O File O Name O Modified O Date O SHA256 O null_arm O 2018-02-27 O 06:44:00 O 48a7dd672931e408662d2b5e1abcd6ef00097b8ffe3814f0d2799dd6fd74bd88 B-Indicator null_i686 O 2018-02-27 O 06:44:00 O c228a534535b22a316a97908595a2d793d0fecabadc32846c6d1bfb08ca9a658 B-Indicator null_arm64 O 2018-02-27 O 06:43:00 O 48a7dd672931e408662d2b5e1abcd6ef00097b8ffe3814f0d2799dd6fd74bd88 B-Indicator sepolicy-inject_arm O 2019-01-08 O 04:55:00 O 47449a612697ad99a6fbd6e02a84e957557371151f2b034a411ebb10496648c8 B-Indicator sepolicy-inject_arm64 O 2019-01-08 O 04:55:00 O 824ad333320cbb7873dc49e61c14f749b0e0d88723635524463f2e6f56ea133a B-Indicator sepolicy-inject_i686 O 2019-01-08 O 04:55:00 O 13ec6cec511297ac3137cf7d6e4a7c4f5dd2b24478a06262a44f13a3d61070b6 B-Indicator rootdaemon_arm O 2019-01-08 O 04:55:00 O 00c787c0c0bc26caf623e66373a5aaa1b913b9caee1f34580bdfdd21954b7cc4 B-Indicator rootdaemon_arm64 O 2019-01-08 O 04:55:00 O 3ee3a973c62ba5bd9eab595a7c94b7a26827c5fa5b21964d511ab58903929ec5 B-Indicator mike.jar B-Indicator 2018-12-06 O 05:50:00 O a42a05bf9b412cd84ea92b166d790e8e72f1d01764f93b05ace62237fbabe40e B-Indicator rootdaemon_i686 O 2019-01-08 O 04:55:00 O b46f282f9a1bce3798faee3212e28924730a657eb93cda3824c449868b6ee2e7 B-Indicator zygotedaemonarm O 2019-01-08 O 04:55:00 O e3f65f84dd6c2c3a5a653a3788d78920c0321526062a6b53daaf23fa57778a5f B-Indicator zygotedaemonarm64 O 2019-01-08 O 04:55:00 O 11499ff2418f4523344de81a447f6786fdba4982057d4114f64db929990b4b59 B-Indicator zygotedaemoni686 O 2019-01-08 O 04:55:00 O 3c9f08b3280851f54414dfa5a57f40d3b7be7b73736fa0ba21b078e75ce54d33 B-Indicator sapp.apk B-Indicator 2019-01-08 O 04:53:00 O 4bf1446c412dd5c552539490d03e999a6ceb96ae60a9e7846427612bec316619 B-Indicator placeholder O 2018-03-29 O 16:31:00 O e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 B-Indicator After O download O , O Exodus B-Malware One I-Malware would O dynamically O load O and O execute O the O primary O stage O 2 O payload O mike.jar B-Indicator using O the O Android B-System API I-System DexClassLoader O ( O ) O . O mike.jar B-Indicator implements O most O of O the O data O collection O and O exfiltration O capabilities O of O this O spyware O . O Of O the O various O binaries O downloaded O , O the O most O interesting O are O null O , O which O serves O as O a O local O and O reverse O shell O , O and O rootdaemon O , O which O takes O care O of O privilege O escalation O and O data O acquisition O . O rootdaemon O will O first O attempt O to O jailbreak O the O device O using O a O modified O version O of O the O DirtyCow B-Vulnerability exploit I-Vulnerability . O Similarly O to O another O Android B-System spyware O made O in O Italy O , O originally O discovered O by O Lukas O Stefanko O and O later O named O Skygofree B-Malware and O analyzed O in O depth O by O Kaspersky B-Organization Labs I-Organization , O Exodus B-Malware also O takes O advantage O of O " O protectedapps O '' O , O a O feature O in O Huawei B-Organization phones O that O allows O to O configure O power-saving O options O for O running O applications O . O By O manipulating O a O SQLite O database O , O Exodus B-Malware is O able O to O keep O itself O running O even O when O the O screen O goes O off O and O the O application O would O otherwise O be O suspended O to O reduce O battery O consumption O . O Additionally O , O rootdaemon O attempts O to O remove O its O own O power O usage O statistics O from O Huawei B-Organization phones O ' O SystemManager O : O Similarly O , O the O malicious O application O probably O attempts O to O minimize O traces O on O Samsung B-Organization phones O by O adding O to O the O file O /data/data/com.samsung.android.securitylogagent/shared_prefs/apm_sp_status_of_apps.xml B-Indicator the O following O lines O : O And O adding O to O the O file O /data/data/com.samsung.android.securitylogagent/shared_prefs/com.samsung.android.securitylogagent_preferences.xml B-Indicator these O lines O instead O : O Data O Collection O and O Exfiltration O As O mentioned O , O mike.jar B-Indicator equips O the O spyware O with O extensive O collection O capabilities O , O including O : O Retrieve O a O list O of O installed O applications O . O Record O surroundings O using O the O built-in O microphone O in O 3gp O format O . O Retrieve O the O browsing O history O and O bookmarks O from O Chrome B-System and O SBrowser B-System ( O the O browser O shipped O with O Samsung B-Organization phones O ) O . O Extract O events O from O the O Calendar B-System app I-System . O Extract O the O calls O log O . O Record O phone O calls O audio O in O 3gp O format O . O Take O pictures O with O the O embedded O camera O . O Collect O information O on O surrounding O cellular O towers O ( O BTS O ) O . O Extract O the O address B-System book I-System . O Extract O the O contacts O list O from O the O Facebook B-System app I-System . O Extract O logs O from O Facebook B-System Messenger I-System conversations O . O Take O a O screenshot O of O any O app O in O foreground O . O Extract O information O on O pictures O from O the O Gallery O . O Extract O information O from O th O GMail B-System app O . O Dump O data O from O the O IMO O messenger B-System app O . O Extract O call O logs O , O contacts O and O messages O from O the O Skype B-System app O . O Retrieve O all O SMS O messages O . O Extract O messages O and O the O encryption O key O from O the O Telegram B-System app O . O Dump O data O from O the O Viber B-System messenger I-System app O . O Extract O logs O from O WhatsApp B-System . O Retrieve O media O exchanged O through O WhatsApp B-System . O Extract O the O Wi-Fi O network O 's O password O . O Extract O data O from O WeChat B-System app O . O Extract O current O GPS O coordinates O of O the O phone O . O While O some O of O these O acquisition O are O performed O purely O through O code O in O mike.jar B-Indicator , O some O others O that O require O access O to O , O for O example O , O SQLite O databases O or O other O files O in O the O application O 's O storage O are O performed O through O rootdaemon O instead O , O which O should O be O running O with O root O privileges O . O In O order O to O achieve O this O , O mike.jar B-Indicator connects O to O rootdaemon O through O various O TCP O ports O that O the O daemon O binds O on O some O extraction O routines O for O supported O applications O : O Port B-Indicator 6202 I-Indicator : O WhatsApp B-System extraction O service O . O Ports B-Indicator 6203 I-Indicator and I-Indicator 6204 I-Indicator : O Facebook B-Organization extraction O service O . O Port B-Indicator 6205 I-Indicator : O Gmail B-System extraction O service O . O Port B-Indicator 6206 I-Indicator : O Skype B-System extraction O service O . O Port B-Indicator 6207 I-Indicator : O Viber B-System extraction O service O . O Port B-Indicator 6208 I-Indicator : O IMO B-System extraction O service O . O Port B-Indicator 6209 I-Indicator : O Telegram B-System extraction O service O . O Port B-Indicator 6210 I-Indicator : O SBrowser B-System extraction O service O . O Port B-Indicator 6211 I-Indicator : O Calendar B-System extraction O service O . O Port B-Indicator 6212 I-Indicator : O Chrome B-System extraction O service O . O These O services O appear O to O be O running O on O all O network O interfaces O and O are O therefore O accessible O to O anyone O sharing O a O local O network O with O an O infected O device O . O Following O we O can O see O an O example O of O a O connection O to O port B-Indicator 6209 I-Indicator which O is O used O to O extract O data O from O the O Telegram B-System app O . O We O are O able O to O send O commands O to O the O service O such O as O dumpmsgdb O or O getkey O ( O which O dumps O the O tgnet.dat B-Indicator file I-Indicator ) O . O Data O acquired O from O mike.jar B-Indicator 's O extraction O modules O is O normally O XORed O and O stored O in O a O folder O named O .lost+found O on O the O SD O card O . O Data O is O eventually O exfiltrated O over O a O TLS O connection O to O the O Command O & O Control O server B-Indicator ws.my-local-weather I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator through O an O upload O queue O . O As O mentioned O before O , O our O test O device O was O automatically O from O stage O one O to O stage O two O , O which O started O collecting O data O . O For O example O , O the O password O of O the O WiFi O network O used O by O the O phone O was O stored O in O the O folder O /storage/emulated/0/.lost+found/0BBDA068-9D27-4B55-B226-299FCF2B4242/ B-Indicator using O the O following O file O name O format O DD_MM_2019_HH_mm_ss_XXXXXXXXXXXXX.txt.crypt B-Indicator ( O the O datetime O followed O by O the O IMEI O ) O . O Eventually O we O observed O the O agent O exfiltrate O the O WiFi O password O from O our O test O phone O to O the O Command O & O Control O server O : O Similarly O , O the O agent O also O sent O to O the O Command O & O Control O the O list O of O installed O apps O : O This O Command O & O Control O seems O to O have O been O active O since O at O least O April O 2017 O and O was O registered O impersonating O the O legitimate O service O AccuWeather B-System . O Local O and O Remote O Shells O In O order O to O execute O commands O on O the O infected O devices O , O as O well O as O to O provide O a O reverse O shell O to O the O Command O & O Control O operators O , O Exodus B-Malware Two I-Malware immediately O attempts O to O execute O a O payload O it O downloads O with O the O name O null O . O Once O launched O , O null O will O first O verify O whether O it O is O able O to O fork O on O the O system O and O that O there O is O no O other O instance O of O itself O currently O running O by O checking O whether O the O local O port B-Indicator number I-Indicator 6842 I-Indicator is O available O . O This O payload O will O then O attempt O to O instantiate O a O remote O reverse O /system/bin/sh B-Indicator shell O to O the O Command O & O Control O ws.my-local-weather B-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator on O port B-Indicator 22011 I-Indicator . O It O is O worth O noticing O that O this O remote O reverse O shell O does O not O employ O any O transport O cryptography O . O The O traffic O transits O in O clear O and O is O therefore O potentially O exposed O to O man-in-the-middle O attacks O : O At O the O same O time O , O null O will O also O bind O a O local O shell O on O 0.0.0.0:6842 B-Indicator . O This O local O port O is O used O by O Exodus B-Malware Two I-Malware to O execute O various O commands O on O the O Android B-System device O , O such O as O enabling O or O disabling O certain O services O , O or O parsing O app O databases O . O However O , O binding O a O shell O on O all O available O interfaces O will O obviously O make O it O accessible O to O anyone O who O is O sharing O at O least O a O local O network O with O an O infected O device O . O For O example O , O if O an O infected O device O is O connected O to O a O public O Wi-Fi O network O any O other O host O will O be O able O to O obtain O a O terminal O on O the O device O without O any O form O of O authentication O or O verification O by O simply O connecting O to O the O port O . O If O the O mobile O operator O does O n't O enforce O proper O client O isolation O , O it O is O possible O that O the O infected O devices O are O also O exposed O to O the O rest O of O the O cellular O network O . O Obviously O , O this O inevitably O leaves O the O device O open O not O only O to O further O compromise O but O to O data O tampering O as O well O . O null O is O not O the O only O payload O opening O a O shell O on O the O phone O . O The O rootdaemon O binary O in O fact O offers O several O other O possibilities O to O execute O commands O on O the O infected O device O just O by O connecting O to O TCP O port B-Indicator 6200 I-Indicator and O issuing O one O of O the O following O commands O . O Sending O the O command O sh O to O TCP O port B-Indicator 6200 I-Indicator results O in O a O full O terminal O being O dropped O : O Sending O the O command O cmd O followed O by O a O proper O terminal O command O will O execute O it O and O print O the O output O ( O in O the O example O we O use O id O which O displays O the O identity O of O the O system O user O running O the O issued O commands O ) O : O Doing O the O same O as O above O but O with O command O sucmd O will O run O the O terminal O command O as O root O : O Other O commands O supported O by O rootdaemon O on O TCP O port B-Indicator 6200 I-Indicator are O su O ( O which O in O our O tests O did O n't O properly O work O ) O , O loadsocketpolicy O , O loadfilepolicy O , O remount O and O removeroot O . O At O the O cost O of O possibly O being O overly O verbose O , O following O is O the O output O of O an O nmap O scan O of O the O infected O Android O device O from O a O laptop O in O the O same O local O network O , O which O further O demonstrantes O the O availability O of O the O same O open O TCP O ports O that O we O have O mentioned O thus O far O : O Identification O of O eSurv B-Organization Presence O of O Italian O language O At O a O first O look O , O the O first O samples O of O the O spyware O we O obtained O did O not O show O immediately O evident O connections O to O any O company O . O However O , O the O persistent O presence O of O Italian O language O both O on O the O Google B-System Play I-System Store O pages O as O well O as O inside O the O spyware O code O was O a O clear O sign O that O an O Italian O actor O was O behind O the O creation O of O this O platform O . O Initially O some O particular O words O from O the O decompiled O classes.dex B-Indicator of O Exodus B-Malware Two O sent O us O in O the O right O direction O . O " O Mundizza O '' O is O a O dialectal O word O , O a O derivative O of O the O proper O Italian O word O " O immondizia O '' O that O translates O to O " O trash O '' O or O " O garbage O '' O in O English O . O Interestingly O , O " O mundizza O '' O is O typical O of O Calabria O , O a O region O in O the O south O of O Italy O , O and O more O specifically O it O appears O to O be O language O native O of O the O city O of O Catanzaro O . O Additionally O , O some O copies O of O Exodus O One O use O the O following O XOR O key O : O Rino O Gattuso O is O a O famous O retired O Italian O footballer O , O originally O from O Calabria O . O While O not O too O seriously O , O these O elements O made O us O restrict O our O research O into O surveillance O companies O from O the O region O . O Overlapping O Infrastructure O with O eSurv O Surveillance O Cameras O The O Command O & O Control O domain O configured O in O several O of O the O malicious O applications O found O on O Google B-System Play I-System Store I-System , O ws.my-local-weather B-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator , O points O to O the O IP O address O 54.69.156.31 B-Indicator which O serves O a O self-signed O TLS O certificate O with O the O certificate O common O name O MyCert O and O fingerprint O 11:41:45:2F B-Indicator : I-Indicator A7:07:23:54 I-Indicator : O AE:9A B-Indicator : I-Indicator CE I-Indicator : I-Indicator F4 I-Indicator : I-Indicator FE:56 I-Indicator : I-Indicator AE I-Indicator : I-Indicator AC I-Indicator : O B1 B-Indicator : I-Indicator C2:15:9F:6A I-Indicator : I-Indicator FC:1E I-Indicator : I-Indicator CC:7D I-Indicator : B-Indicator F8:61 I-Indicator : I-Indicator E3:25:26:73:6A I-Indicator . O A O search O for O this O certificate O fingerprint O on O the O Internet O scanning O service O Censys O returns O 8 O additional O servers O : O IP O address O 34.208.71.9 B-Indicator 34.212.92.0 B-Indicator 34.216.43.114 B-Indicator 52.34.144.229 B-Indicator 54.69.156.31 B-Indicator 54.71.249.137 B-Indicator 54.189.5.198 B-Indicator 78.5.0.195 B-Indicator 207.180.245.74 B-Indicator Opening O the O Command O & O Control O web O page O in O a O browser O presents O a O Basic O Authentication O prompt O : O Closing O this O prompt O causes O the O server O to O send O a O " O 401 O Unauthorized O Response O '' O with O an O " O Access O Denied O '' O message O in O Italian O . O All O of O the O other O IP O address O we O discovered O sharing O the O same O TLS O certificate O behave O in O the O same O way O . O The O Command O & O Control O server O also O displays O a O favicon O image O which O looks O like O a O small O orange O ball O . O At O the O time O of O writing O , O a O reverse O image O search O for O the O favicon O on O Shodan O using O the O query O http.favicon.hash:990643579 B-Indicator returned O around O 40 O web O servers O which O use O the O same O favicon O . O Many O of O these O servers O are O control O panels O for O video O surveillance O systems O developed O by O the O Italian O company O eSurv O , O based O in O Catanzaro O , O in O Calabria O , O Italy O . O Their O publicly O advertised O products O include O CCTV O management O systems O , O surveillance O drones O , O face O and O license O plate O recognition O systems O . O eSurv B-Organization 's O logo O is O identical O to O the O Command O & O Control O server O favicon O . O Older O samples O connecting O to O eSurv B-Organization Finally O , O Google B-Organization shared O with O us O some O older O samples O of O Exodus B-Malware One I-Malware ( O with O hashes O 2055584625d24687bd027a63bc0b8faa7d1a854a535de74afba24840a52b1d2f B-Indicator and O a37f5d2418c5f2f64d06ba28fe62edee1293a56158ddfa9f04020e316054363f B-Indicator ) O which O are O not O obfuscated O and O use O the O following O disguise O : O The O configuration O of O these O older O samples O is O very O similar O to O newer O ones O , O but O it O provides O additional O insights O being O not O obfuscated O : O Firstly O we O can O notice O that O , O instead O of O generic O domain O names O or O IP O addresses O , O these O samples O communicated O with O a O Command O & O Control O server O located O at O attiva.exodus.esurv B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator ( O " O attiva O '' O is O the O Italian O for O " O activate O '' O ) O . O ( O We I-System named O the O spyware O " O Exodus O '' O after O this O Command O & O Control O domain O name O . O ) O Following O is O the O snippet O of O code O in O these O older O Exodus B-Malware One I-Malware samples O showing O the O connection O to O the O Command O & O Control O : O Below O is O the O almost O identical O composition O of O the O request O to O the O Command O & O Control O server O in O mike.jar B-Indicator ( O also O containing O the O path O 7e661733-e332-429a-a7e2-23649f27690f O ) O : O To O further O corroborate O the O connection O of O the O Exodus B-Malware spyware I-Malware with O eSurv O , O the O domain B-Indicator attiva.exodus.esurv.it I-Indicator resolves O to O the O IP O 212.47.242.236 B-Indicator which O , O according O to O public O passive O DNS O data O , O in O 2017 O was O used O to O host O the O domain B-Indicator server1cs.exodus.connexxa.it I-Indicator . O Connexxa O was O a O company O also O from O Catanzaro O . O According O to O publicly O available O information O , O the O founder O of O Connexxa B-Organization seems O to O also O be O the O CEO O of O eSurv B-Organization . O Interestingly O , O we O found O other O DNS O records O mostly O from O 2017 O that O follow O a O similar O pattern O and O appear O to O contain O two-letters O codes O for O districts O in O Italy O : O Server O City O server1bo.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Bologna O server1bs.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Brescia O server1cs.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Cosenza O server1ct.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Catania O server1fermo.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator server1fi.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Firenze O server1gioiat.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator server1na.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Napoli O server1rc.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Reggio O Calabria O server2ct.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Catania O server2cz.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Catanzaro O server2fi.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Firenze O server2mi.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Milano O server2rc.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Reggio O Calabria O server3bo.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Bologna O server3ct.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Catania O server3.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator server3fi.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Firenze O server4fi.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Firenze O serverrt.exodus.connexxa B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator Public O Resume O Confirms O Development O of O Android B-System Agent O Additionally O , O an O employee O of O eSurv B-Organization quite O precisely O described O their O work O in O developing O an O " O agent O to O gather O data O from O Android B-System devices O and O send O it O to O a O C O & O C O server O '' O as O well O as O researching O " O vulnerabilities O in O mobile O devices O ( O mainly O Android B-System ) O '' O in O a O publicly O available O resume O . O Further O details O in O it O reflect O characteristics O of O Exodus B-Malware ( O such O as O the O bypass O of O power O managers O we O described O from O Exodus B-Malware One I-Malware , O and O more O ) O : O Indicators O of O Compromise O Exodus B-Malware One I-Malware 011b6bcebd543d4eb227e840f04e188fb01f2335b0b81684b60e6b45388d3820 B-Indicator 0f5f1409b1ebbee4aa837d20479732e11399d37f05b47b5359dc53a4001314e5 B-Indicator 2055584625d24687bd027a63bc0b8faa7d1a854a535de74afba24840a52b1d2f B-Indicator 26fef238028ee4b5b8da631c77bfb44ada3d5db8129c45dea5df6a51c9ea5f55 B-Indicator 33a9da16d096426c82f150e39fc4f9172677885cfeaedcff10c86414e88be802 B-Indicator 34d000ee1e36efd10eb37e2b79d69249d5a85682a61390a89a1b9391c46bf2ba B-Indicator 4f6146956b50ae3a6e80a1c1f771dba848ba677064eb0e166df5804ac2766898 B-Indicator 5db49122d866967295874ab2c1ce23a7cde50212ff044bbea1da9b49bb9bc149 B-Indicator 70e2eea5609c6954c61f2e5e0a3aea832d0643df93d18d7d78b6f9444dcceef0 B-Indicator 80810a8ec9624f317f832ac2e212dba033212258285344661e5da11b0d9f0b62 B-Indicator 8453ce501fee1ca8a321f16b09969c517f92a24b058ac5b54549eabd58bf1884 B-Indicator a37f5d2418c5f2f64d06ba28fe62edee1293a56158ddfa9f04020e316054363f B-Indicator db59407f72666526fca23d31e3b4c5df86f25eff178e17221219216c6975c63f B-Indicator e0acbb0d7e55fb67e550a6bf5cf5c499a9960eaf5f037b785f9004585202593b B-Indicator Exodus B-Malware One I-Malware Package O Names O com.phonecarrier.linecheck B-Indicator rm.rf I-Indicator operatore.italia B-Indicator it.offertetelefonicheperte I-Indicator it.servizipremium B-Indicator assistenza.sim B-Indicator assistenza.linea.riattiva B-Indicator assistenza.linea B-Indicator it.promofferte B-Indicator Exodus B-Malware Two I-Malware 64c11fdb317d6b7c9930e639f55863df592f23f3c7c861ddd97048891a90c64b B-Indicator a42a05bf9b412cd84ea92b166d790e8e72f1d01764f93b05ace62237fbabe40e B-Indicator Exodus B-Malware Two I-Malware ELF O Utilities O 00c787c0c0bc26caf623e66373a5aaa1b913b9caee1f34580bdfdd21954b7cc4 B-Indicator 11499ff2418f4523344de81a447f6786fdba4982057d4114f64db929990b4b59 B-Indicator 13ec6cec511297ac3137cf7d6e4a7c4f5dd2b24478a06262a44f13a3d61070b6 B-Indicator 3c9f08b3280851f54414dfa5a57f40d3b7be7b73736fa0ba21b078e75ce54d33 B-Indicator 3ee3a973c62ba5bd9eab595a7c94b7a26827c5fa5b21964d511ab58903929ec5 B-Indicator 47449a612697ad99a6fbd6e02a84e957557371151f2b034a411ebb10496648c8 B-Indicator 48a7dd672931e408662d2b5e1abcd6ef00097b8ffe3814f0d2799dd6fd74bd88 B-Indicator 824ad333320cbb7873dc49e61c14f749b0e0d88723635524463f2e6f56ea133a B-Indicator b46f282f9a1bce3798faee3212e28924730a657eb93cda3824c449868b6ee2e7 B-Indicator c228a534535b22a316a97908595a2d793d0fecabadc32846c6d1bfb08ca9a658 B-Indicator e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 B-Indicator e3f65f84dd6c2c3a5a653a3788d78920c0321526062a6b53daaf23fa57778a5f B-Indicator Command O & O Controls O ad1.fbsba B-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator ws.my-local-weather B-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator 54.71.249 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 137 I-Indicator 54.69.156 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 31 I-Indicator 162.243.172 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 208 I-Indicator attiva.exodus.esurv B-Indicator [ I-Indicator . I-Indicator ] I-Indicator it I-Indicator The O rise O of O mobile O banker O Asacub B-Malware 28 O AUG O 2018 O We O encountered O the O Trojan-Banker.AndroidOS.Asacub B-Malware family O for O the O first O time O in O 2015 O , O when O the O first O versions O of O the O malware O were O detected O , O analyzed O , O and O found O to O be O more O adept O at O spying O than O stealing O funds O . O The O Trojan O has O evolved O since O then O , O aided O by O a O large-scale O distribution O campaign O by O its O creators O ( O in O spring-summer O 2017 O ) O , O helping O Asacub B-Malware to O claim O top O spots O in O last O year O ’ O s O ranking O by O number O of O attacks O among O mobile O banking O Trojans O , O outperforming O other O families O such O as O Svpeng B-Malware and O Faketoken B-Malware . O We O decided O to O take O a O peek O under O the O hood O of O a O modern O member O of O the O Asacub B-Malware family O . O Our O eyes O fell O on O the O latest O version O of O the O Trojan O , O which O is O designed O to O steal O money O from O owners O of O Android B-System devices O connected O to O the O mobile O banking O service O of O one O of O Russia O ’ O s O largest O banks O . O Asacub B-Malware versions O Sewn O into O the O body O of O the O Trojan O is O the O version O number O , O consisting O of O two O or O three O digits O separated O by O periods O . O The O numbering O seems O to O have O started O anew O after O the O version O 9 O . O The O name O Asacub B-Malware appeared O with O version O 4 O in O late O 2015 O ; O previous O versions O were O known O as O Trojan-SMS.AndroidOS.Smaps B-Indicator . O Versions O 5.X.X-8.X.X O were O active O in O 2016 O , O and O versions O 9.X.X-1.X.X O in O 2017 O . O In O 2018 O , O the O most O actively O distributed O versions O were O 5.0.0 O and O 5.0.3 O . O Communication O with O C O & O C O Although O Asacub B-Malware ’ O s O capabilities O gradually O evolved O , O its O network O behavior O and O method O of O communication O with O the O command-and-control O ( O C O & O C O ) O server O changed O little O . O This O strongly O suggested O that O the O banking O Trojans O , O despite O differing O in O terms O of O capability O , O belong O to O the O same O family O . O Data O was O always O sent O to O the O C O & O C O server O via O HTTP O in O the O body O of O a O POST O request O in O encrypted O form O to O the O relative O address O /something/index.php B-Indicator . O In O earlier O versions O , O the O something O part O of O the O relative O path O was O a O partially O intelligible O , O yet O random O mix O of O words O and O short O combinations O of O letters O and O numbers O separated O by O an O underscore O , O for O example O , O “ O bee_bomb O ” O or O “ O my_te2_mms O ” O . O Example O of O traffic O from O an O early O version O of O Asacub B-Malware ( O 2015 O ) O The O data O transmitted O and O received O is O encrypted O with O the O RC4 O algorithm O and O encoded O using O the O base64 O standard O . O The O C O & O C O address O and O the O encryption O key O ( O one O for O different O modifications O in O versions O 4.x O and O 5.x O , O and O distinct O for O different O C O & O Cs O in O later O versions O ) O are O stitched O into O the O body O of O the O Trojan O . O In O early O versions O of O Asacub B-Malware , O .com O , O .biz O , O .info O , O .in O , O .pw O were O used O as O top-level O domains O . O In O the O 2016 O version O , O the O value O of O the O User-Agent O header O changed O , O as O did O the O method O of O generating O the O relative O path O in O the O URL O : O now O the O part O before O /index.php O is O a O mix O of O a O pronounceable O ( O if O not O entirely O meaningful O ) O word O and O random O letters O and O numbers O , O for O example O , O “ O muromec280j9tqeyjy5sm1qy71 B-Indicator ” O or O “ O parabbelumf8jgybdd6w0qa0 B-Indicator ” O . O Moreover O , O incoming O traffic O from O the O C O & O C O server O began O to O use O gzip O compression O , O and O the O top-level O domain O for O all O C O & O Cs O was O .com O : O Since O December O 2016 O , O the O changes O in O C O & O C O communication O methods O have O affected O only O how O the O relative O path O in O the O URL O is O generated O : O the O pronounceable O word O was O replaced O by O a O rather O long O random O combination O of O letters O and O numbers O , O for O example O , O “ O ozvi4malen7dwdh B-Indicator ” O or O “ O f29u8oi77024clufhw1u5ws62 B-Indicator ” O . O At O the O time O of O writing O this O article O , O no O other O significant O changes O in O Asacub B-Malware ’ O s O network O behavior O had O been O observed O : O The O origin O of O Asacub B-Malware It O is O fairly O safe O to O say O that O the O Asacub B-Malware family O evolved O from O Trojan-SMS.AndroidOS.Smaps B-Indicator . O Communication O between O both O Trojans O and O their O C O & O C O servers O is O based O on O the O same O principle O , O the O relative O addresses O to O which O Trojans O send O network O requests O are O generated O in O a O similar O manner O , O and O the O set O of O possible O commands O that O the O two O Trojans O can O perform O also O overlaps O . O What O ’ O s O more O , O the O numbering O of O Asacub B-Malware versions O is O a O continuation O of O the O Smaps B-Malware system O . O The O main O difference O is O that O Smaps B-Malware transmits O data O as O plain O text O , O while O Asacub B-Malware encrypts O data O with O the O RC4 O algorithm O and O then O encodes O it O into O base64 O format O . O Let O ’ O s O compare O examples O of O traffic O from O Smaps B-Malware and O Asacub B-Malware — O an O initializing O request O to O the O C O & O C O server O with O information O about O the O infected O device O and O a O response O from O the O server O with O a O command O for O execution O : O Smaps B-Malware request O Asacub B-Malware request O Decrypted O data O from O Asacub B-Malware traffic O : O { O “ O id O ” O : O ” O 532bf15a-b784-47e5-92fa-72198a2929f5″ B-Indicator , O ” O type O ” O : O ” O get O ” O , O ” O info O ” O : O ” O imei:365548770159066 O , O country O : O PL O , O cell O : O Tele2 O , O android:4.2.2 O , O model O : O GT-N5100 O , O phonenumber O : O +486679225120 O , O sim:6337076348906359089f O , O app O : O null O , O ver:5.0.2″ O } O Data O sent O to O the O server O [ O { O “ O command O ” O : O ” O sent O & O & O & O ” O , O ” O params O ” O : O { O “ O to O ” O : O ” O +79262000900″ O , O ” O body O ” O : O ” O \u0410\u0412\u0422\u041e\u041f\u041b\u0410\u0422\u0415\u0416 O 1000 O 50″ O , O ” O timestamp O ” O : O ” O 1452272572″ O } O } O , O { O “ O command O ” O : O ” O sent O & O & O & O ” O , O ” O params O ” O : O { O “ O to O ” O : O ” O +79262000900″ O , O ” O body O ” O : O ” O BALANCE O ” O , O ” O timestamp O ” O : O ” O 1452272573″ O } O } O ] O Instructions O received O from O the O server O A O comparison O can O also O be O made O of O the O format O in O which O Asacub O and O Smaps O forward O incoming O SMS O ( O encoded O with O the O base64 O algorithm O ) O from O the O device O to O the O C O & O C O server O : O Smaps O format O Asacub O format O Decrypted O data O from O Asacub O traffic O : O { O “ O data O ” O : O ” O 2015:10:14_02:41:15″ O , O ” O id O ” O : O ” O 532bf15a-b784-47e5-92fa-72198a2929f5″ B-Indicator , O ” O text O ” O : O ” O SSB0aG91Z2h0IHdlIGdvdCBwYXN0IHRoaXMhISBJJ20gbm90IGh1bmdyeSBhbmQgbmU= O ” O , O ” O number O ” O : O ” O 1790″ O , O ” O type O ” O : O ” O load O ” O } O Propagation O The O banking O Trojan O is O propagated O via O phishing O SMS O containing O a O link O and O an O offer O to O view O a O photo O or O MMS O . O The O link O points O to O a O web O page O with O a O similar O sentence O and O a O button O for O downloading O the O APK O file O of O the O Trojan O to O the O device O . O The O Trojan O download O window O Asacub B-Malware masquerades O under O the O guise O of O an O MMS O app O or O a O client O of O a O popular O free O ads O service O . O We O came O across O the O names O Photo O , O Message O , O Avito O Offer O , O and O MMS O Message O . O App O icons O under O which O Asacub B-Malware masks O itself O The O APK O files O of O the O Trojan O are O downloaded O from O sites O such O as O mmsprivate B-Indicator [ I-Indicator . I-Indicator ] I-Indicator site I-Indicator , O photolike B-Indicator [ I-Indicator . I-Indicator ] I-Indicator fun I-Indicator , O you-foto B-Indicator [ I-Indicator . I-Indicator ] I-Indicator site I-Indicator , O and O mms4you B-Indicator [ I-Indicator . I-Indicator ] I-Indicator me I-Indicator under O names O in O the O format O : O photo_ B-Indicator [ I-Indicator number I-Indicator ] I-Indicator _img.apk I-Indicator , O mms_ B-Indicator [ I-Indicator number I-Indicator ] I-Indicator _img.apk I-Indicator avito_ B-Indicator [ I-Indicator number I-Indicator ] I-Indicator .apk I-Indicator , O mms.img_ B-Indicator [ I-Indicator number I-Indicator ] I-Indicator _photo.apk I-Indicator , O mms B-Indicator [ I-Indicator number I-Indicator ] I-Indicator _photo.image.apk I-Indicator , O mms B-Indicator [ I-Indicator number I-Indicator ] I-Indicator _photo.img.apk I-Indicator , O mms.img.photo_ B-Indicator [ I-Indicator number I-Indicator ] I-Indicator .apk I-Indicator , O photo_ B-Indicator [ I-Indicator number I-Indicator ] I-Indicator _obmen.img.apk I-Indicator . O For O the O Trojan O to O install O , O the O user O must O allow O installation O of O apps O from O unknown O sources O in O the O device O settings O . O Infection O During O installation O , O depending O on O the O version O of O the O Trojan O , O Asacub B-Malware prompts O the O user O either O for O Device O Administrator O rights O or O for O permission O to O use O AccessibilityService O . O After O receiving O the O rights O , O it O sets O itself O as O the O default O SMS O app O and O disappears O from O the O device O screen O . O If O the O user O ignores O or O rejects O the O request O , O the O window O reopens O every O few O seconds O . O The O Trojan O requests O Device O Administrator O rights O The O Trojan O requests O permission O to O use O AccessibilityService O After O installation O , O the O Trojan O starts O communicating O with O the O cybercriminals O ’ O C O & O C O server O . O All O data O is O transmitted O in O JSON O format O ( O after O decryption O ) O . O It O includes O information O about O the O smartphone O model O , O the O OS O version O , O the O mobile O operator O , O and O the O Trojan O version O . O Let O ’ O s O take O an O in-depth O look O at O Asacub B-Malware 5.0.3 O , O the O most O widespread O version O in O 2018 O . O Structure O of O data O sent O to O the O server O : O To O begin O with O , O the O Trojan O sends O information O about O the O device O to O the O server O : O In O response O , O the O server O sends O the O code O of O the O command O for O execution O ( O “ O command O ” O ) O , O its O parameters O ( O “ O params O ” O ) O , O and O the O time O delay O before O execution O ( O “ O waitrun O ” O in O milliseconds O ) O . O List O of O commands O sewn O into O the O body O of O the O Trojan O : O Command O code O Parameters O Actions O 2 O – O Sending O a O list O of O contacts O from O the O address B-System book I-System of O the O infected O device O to O the O C O & O C O server O 7 O “ O to O ” O : O int O Calling O the O specified O number O 11 O “ O to O ” O : O int O , O “ O body O ” O : O string O Sending O an O SMS O with O the O specified O text O to O the O specified O number O 19 O “ O text O ” O : O string O , O “ O n O ” O : O string O Sending O SMS O with O the O specified O text O to O numbers O from O the O address B-System book I-System of O the O infected O device O , O with O the O name O of O the O addressee O from O the O address B-System book I-System substituted O into O the O message O text O 40 O “ O text O ” O : O string O Shutting O down O applications O with O specific O names O ( O antivirus O and O banking O applications O ) O The O set O of O possible O commands O is O the O most O significant O difference O between O the O various O flavors O of O Asacub B-Malware . O In O the O 2015-early O 2016 O versions O examined O in O this O article O , O C O & O C O instructions O in O JSON O format O contained O the O name O of O the O command O in O text O form O ( O “ O get_sms O ” O , O “ O block_phone O ” O ) O . O In O later O versions O , O instead O of O the O name O of O the O command O , O its O numerical O code O was O transmitted O . O The O same O numerical O code O corresponded O to O one O command O in O different O versions O , O but O the O set O of O supported O commands O varied O . O For O example O , O version O 9.0.7 O ( O 2017 O ) O featured O the O following O set O of O commands O : O 2 O , O 4 O , O 8 O , O 11 O , O 12 O , O 15 O , O 16 O , O 17 O , O 18 O , O 19 O , O 20 O . O After O receiving O the O command O , O the O Trojan O attempts O to O execute O it O , O before O informing O C O & O C O of O the O execution O status O and O any O data O received O . O The O “ O id O ” O value O inside O the O “ O data O ” O block O is O equal O to O the O “ O timestamp O ” O value O of O the O relevant O command O : O In O addition O , O the O Trojan O sets O itself O as O the O default O SMS O application O and O , O on O receiving O a O new O SMS O , O forwards O the O sender O ’ O s O number O and O the O message O text O in O base64 O format O to O the O cybercriminal O : O Thus O , O Asacub B-Malware can O withdraw O funds O from O a O bank O card O linked O to O the O phone O by O sending O SMS O for O the O transfer O of O funds O to O another O account O using O the O number O of O the O card O or O mobile O phone O . O Moreover O , O the O Trojan O intercepts O SMS O from O the O bank O that O contain O one-time O passwords O and O information O about O the O balance O of O the O linked O bank O card O . O Some O versions O of O the O Trojan O can O autonomously O retrieve O confirmation O codes O from O such O SMS O and O send O them O to O the O required O number O . O What O ’ O s O more O , O the O user O can O not O check O the O balance O via O mobile O banking O or O change O any O settings O there O , O because O after O receiving O the O command O with O code O 40 O , O the O Trojan O prevents O the O banking O app O from O running O on O the O phone O . O User O messages O created O by O the O Trojan O during O installation O typically O contain O grammatical O and O spelling O errors O , O and O use O a O mixture O of O Cyrillic O and O Latin O characters O . O The O Trojan O also O employs O various O obfuscation O methods O : O from O the O simplest O , O such O as O string O concatenation O and O renaming O of O classes O and O methods O , O to O implementing O functions O in O native O code O and O embedding O SO O libraries O in O C/C++ O in O the O APK O file O , O which O requires O the O use O of O additional O tools O or O dynamic O analysis O for O deobfuscation O , O since O most O tools O for O static O analysis O of O Android O apps O support O only O Dalvik O bytecode O . O In O some O versions O of O Asacub B-Malware , O strings O in O the O app O are O encrypted O using O the O same O algorithm O as O data O sent O to O C O & O C O , O but O with O different O keys O . O Example O of O using O native O code O for O obfuscation O Examples O of O using O string O concatenation O for O obfuscation O Example O of O encrypting O strings O in O the O Trojan O Asacub B-Malware distribution O geography O Asacub B-Malware is O primarily O aimed O at O Russian O users O : O 98 O % O of O infections O ( O 225,000 O ) O occur O in O Russia O , O since O the O cybercriminals O specifically O target O clients O of O a O major O Russian O bank O . O The O Trojan O also O hit O users O from O Ukraine O , O Turkey O , O Germany O , O Belarus O , O Poland O , O Armenia O , O Kazakhstan O , O the O US O , O and O other O countries O . O Conclusion O The O case O of O Asacub B-Malware shows O that O mobile O malware O can O function O for O several O years O with O minimal O changes O to O the O distribution O scheme O . O It O is O basically O SMS O spam O : O many O people O still O follow O suspicious O links O , O install O software O from O third-party O sources O , O and O give O permissions O to O apps O without O a O second O thought O . O At O the O same O time O , O cybercriminals O are O reluctant O to O change O the O method O of O communication O with O the O C O & O C O server O , O since O this O would O require O more O effort O and O reap O less O benefit O than O modifying O the O executable O file O . O The O most O significant O change O in O this O particular O Trojan O ’ O s O history O was O the O encryption O of O data O sent O between O the O device O and O C O & O C O . O That O said O , O so O as O to O hinder O detection O of O new O versions O , O the O Trojan O ’ O s O APK O file O and O the O C O & O C O server O domains O are O changed O regularly O , O and O the O Trojan O download O links O are O often O one-time-use O . O IOCs O C O & O C O IP O addresses O : O 155.133.82.181 B-Indicator 155.133.82.240 B-Indicator 155.133.82.244 B-Indicator 185.234.218.59 B-Indicator 195.22.126.160 B-Indicator 195.22.126.163 B-Indicator 195.22.126.80 B-Indicator 195.22.126.81 B-Indicator 5.45.73.24 B-Indicator 5.45.74.130 B-Indicator IP I-Indicator addresses I-Indicator from O which O the O Trojan O was O downloaded O : O 185.174.173.31 B-Indicator 185.234.218.59 B-Indicator 188.166.156.110 B-Indicator 195.22.126.160 B-Indicator 195.22.126.80 B-Indicator 195.22.126.81 B-Indicator 195.22.126.82 B-Indicator 195.22.126.83 B-Indicator SHA256 O : O 158c7688877853ffedb572ccaa8aa9eff47fa379338151f486e46d8983ce1b67 B-Indicator 3aedbe7057130cf359b9b57fa533c2b85bab9612c34697585497734530e7457d B-Indicator f3ae6762df3f2c56b3fe598a9e3ff96ddf878c553be95bacbd192bd14debd637 B-Indicator df61a75b7cfa128d4912e5cb648cfc504a8e7b25f6c83ed19194905fef8624c8 B-Indicator c0cfd462ab21f6798e962515ac0c15a92036edd3e2e63639263bf2fd2a10c184 B-Indicator d791e0ce494104e2ae0092bb4adc398ce740fef28fa2280840ae7f61d4734514 B-Indicator 38dcec47e2f4471b032a8872ca695044ddf0c61b9e8d37274147158f689d65b9 B-Indicator 27cea60e23b0f62b4b131da29fdda916bc4539c34bb142fb6d3f8bb82380fe4c B-Indicator 31edacd064debdae892ab0bc788091c58a03808997e11b6c46a6a5de493ed25d B-Indicator 87ffec0fe0e7a83e6433694d7f24cfde2f70fc45800aa2acb8e816ceba428951 B-Indicator eabc604fe6b5943187c12b8635755c303c450f718cc0c8e561df22a27264f101 B-Indicator Kernel O Backdoor O found O in O Gadgets O Powered O by O Popular O Chinese O ARM B-System Maker O May O 12 O , O 2016 O Mohit O Kumar O How O to O Hack O an O Android B-System device O ? O It O is O possibly O one O of O the O most O frequently O asked O questions O on O the O Internet O . O Although O it O 's O not O pretty O simple O to O hack O Android B-System devices O and O gadgets O , O sometimes O you O just O get O lucky O to O find O a O backdoor O access O . O Thanks O to O Allwinner B-Organization , O a O Chinese O ARM B-System system-on-a-chip O maker O , O which O has O recently O been O caught O shipping O a O version O of O Linux B-System Kernel O with O an O incredibly O simple O and O easy-to-use O built-in O backdoor O . O Chinese O fabless O semiconductor O company O Allwinner B-Organization is O a O leading O supplier O of O application O processors O that O are O used O in O many O low-cost O Android B-System tablets O , O ARM-based B-Organization PCs O , O set-top O boxes O , O and O other O electronic O devices O worldwide O . O Simple O Backdoor O Exploit O to O Hack O Android B-System Devices O All O you O need O to O do O to O gain O root O access O of O an O affected O Android B-System device O is… O Send O the O text O " O rootmydevice O '' O to O any O undocumented O debugging O process O . O The O local O privileges O escalation O backdoor O code O for O debugging O ARM-powered B-System Android B-System devices O managed O to O make O its O way O in O shipped O firmware O after O firmware O makers O wrote O their O own O kernel O code O underneath O a O custom O Android B-System build O for O their O devices O , O though O the O mainstream O kernel O source O is O unaffected O . O The O backdoor O code O is O believed O to O have O been O left O by O mistake O by O the O authors O after O completing O the O debugging O process O . O For O exploiting O this O issue O , O any O process O running O with O any O UID O can O be O converted O into O root O easily O by O simply O using O the O following O command O : O echo O " O rootmydevice B-Indicator '' O > I-Indicator /proc/sunxi_debug/sunxi_debug I-Indicator The O Linux B-Indicator 3.4-sunxi I-Indicator kernel O was O originally O designed O to O support O the O Android B-System operating O system O on O Allwinner B-Organization ARM B-System for O tablets O , O but O later O it O was O used O to O port O Linux B-System to O many O Allwinner B-Organization processors O on O boards O like O Banana B-System Pi I-System micro-PCs I-System , O Orange B-System Pi I-System , O and O other O devices O . O At O the O forum O of O the O Armbian B-System operating O system O , O a O moderator O who O goes O by O the O name O Tkaiser O noted O that O the O backdoor O code O could O remotely O be O exploitable O " O if O combined O with O networked O services O that O might O allow O access O to O /proc B-Indicator . O '' O This O security O hole O is O currently O present O in O every O operating O system O image O for O A83T B-System , O H3 B-System or O H8 B-System devices O that O rely O on O kernel B-System 3.4 I-System , O he O added O . O This O blunder O made O by O the O company O has O been O frustrating O to O many O developers O . O Allwinner B-Organization has O also O been O less O transparent O about O the O backdoor O code O . O David O Manouchehri O released O the O information O about O the O backdoor O through O its O own O Github B-Organization account O ( O Pastebin B-Organization ) O and O then O apparently O deleted O it O . O Mobile O Malware O Evolution O : O 2013 O 24 O FEB O 2014 O The O mobile O malware O sector O is O growing O rapidly O both O technologically O and O structurally O . O It O is O safe O to O say O that O today O ’ O s O cybercriminal O is O no O longer O a O lone O hacker O but O part O of O a O serious O business O operation O . O There O are O various O types O of O actors O involved O in O the O mobile O malware O industry O : O virus O writers O , O testers O , O interface O designers O of O both O the O malicious O apps O and O the O web O pages O they O are O distributed O from O , O owners O of O the O partner O programs O that O spread O the O malware O , O and O mobile O botnet O owners O . O This O division O of O labor O among O the O cybercriminals O can O also O be O seen O in O the O behavior O of O their O Trojans O . O In O 2013 O , O there O was O evidence O of O cooperation O ( O most O probably O on O a O commercial O basis O ) O between O different O groups O of O virus O writers O . O For O example O , O the O botnet O Trojan-SMS.AndroidOS.Opfake.a B-Malware , O in O addition O to O its O own O activity O , O also O spread O Backdoor.AndroidOS.Obad.a B-Malware by O sending O spam O containing O a O link O to O the O malware O to O the O victim O ’ O s O list O of O contacts O . O It O is O now O clear O that O a O distinct O industry O has O developed O and O is O becoming O more O focused O on O extracting O profits O , O which O is O clearly O evident O from O the O functionality O of O the O malware O . O 2013 O in O figures O A O total O of O 143,211 O new O modifications O of O malicious O programs O targeting O mobile O devices O were O detected O in O all O of O 2013 O ( O as O of O January O 1 O , O 2014 O ) O . O In O 2013 O , O 3,905,502 O installation O packages O were O used O by O cybercriminals O to O distribute O mobile O malware O . O Overall O in O 2012-2013 O we O detected O approximately O 10,000,000 O unique O malicious O installation O packages O : O Different O installation O packages O can O install O programs O with O the O same O functionality O that O differ O only O in O terms O of O the O malicious O app O interface O and O , O for O instance O , O the O content O of O the O text O messages O it O spreads O . O Android B-System remains O a O prime O target O for O malicious O attacks O . O 98.05 O % O of O all O malware O detected O in O 2013 O targeted O this O platform O , O confirming O both O the O popularity O of O this O mobile O OS O and O the O vulnerability O of O its O architecture O . O Most O mobile O malware O is O designed O to O steal O users O ’ O money O , O including O SMS-Trojans O , O and O lots O of O backdoors O and O Trojans O . O Over O the O year O , O the O number O of O mobile O malware O modifications O designed O for O phishing O , O the O theft O of O credit O card O information O and O money O increased O by O a O factor O of O 19.7 O . O In O 2013 O , O Kaspersky B-Organization Lab I-Organization mobile O products O prevented O 2,500 O infections O by O banking O Trojans O . O Methods O and O techniques O 2013 O not O only O saw O a O radical O increase O in O output O from O mobile O virus O writers O but O also O saw O them O actively O applying O methods O and O technologies O that O allowed O cybercriminals O to O use O their O malware O more O effectively O . O There O were O several O distinct O areas O where O mobile O malware O underwent O advances O . O Distribution O Cybercriminals O made O use O of O some O exceptionally O sophisticated O methods O to O infect O mobile O devices O . O Infecting O legal O web O resources O help O spread O mobile O malware O via O popular O websites O . O More O and O more O smartphone O and O tablet O owners O use O their O devices O to O access O websites O , O unaware O that O even O the O most O reputable O resources O can O be O hacked O . O According O to O our O data O , O 0.4 O % O of O the O websites O visited O by O users O of O our O products O were O compromised O sites O . O Distribution O via O alternative O app O stores O . O In O Asia O there O are O numerous O companies O producing O Android-based B-System devices O and O Android B-System apps O , O and O many O of O them O offer O users O their O own O app O stores O containing O programs O that O can O not O be O found O in O Google B-System Play I-System . O The O purely O nominal O control O over O the O applications O uploaded O to O these O stores O means O attackers O can O conceal O Trojans O in O apps O made O to O look O like O innocent O games O or O utilities O . O Distribution O via O botnets O . O As O a O rule O , O bots O self-proliferate O by O sending O out O text O messages O with O a O malicious O link O to O addresses O in O the O victim O ’ O s O address O book O . O We O also O registered O one O episode O of O mobile O malware O spreading O via O a O third-party O botnet O . O Resistance O to O anti-malware O protection O The O ability O of O malicious O software O to O operate O continuously O on O the O victim O ’ O s O mobile O device O is O an O important O aspect O of O its O development O . O The O longer O a O Trojan O “ O lives O ” O on O a O smartphone O , O the O more O money O it O will O make O for O the O owner O . O This O is O an O area O where O virus O writers O are O actively O working O , O resulting O in O a O large O number O of O technological O innovations O . O Criminals O are O increasingly O using O obfuscation O , O the O deliberate O act O of O creating O complex O code O to O make O it O difficult O to O analyze O . O The O more O complex O the O obfuscation O , O the O longer O it O will O take O an O antivirus O solution O to O neutralize O the O malicious O code O . O Tellingly O , O current O virus O writers O have O mastered O commercial O obfuscators O . O This O implies O they O have O made O considerable O investments O . O For O example O , O one O commercial O obfuscator O , O which O cost O €350 O , O was O used O for O Trojans O and O Opfak.bo B-Malware Obad.a I-Malware Android O vulnerabilities O are O used O by O criminals O for O three O reasons O : O to O bypass O the O code O integrity O check O when O installing O an O application O ( O vulnerability O Master O Key O ) O ; O to O enhance O the O rights O of O malicious O applications O , O considerably O extending O their O capabilities O ; O and O to O make O it O more O difficult O to O remove O malware O . O For O example O , O Svpeng B-Malware uses O a O previously O unknown O vulnerability O to O protect O itself O from O being O removed O manually O or O by O the O antivirus O program O . O Cybercriminals O also O exploit O the O Master B-Vulnerability Key I-Vulnerability vulnerability I-Vulnerability and O have O learned O to O embed O unsigned O executable O files O in O Android B-System installation O packages O . O Digital O signature O verification O can O be O bypassed O by O giving O the O malicious O file O exactly O the O same O name O as O a O legitimate O file O and O placing O it O on O the O same O level O in O the O archive O . O The O system O verifies O the O signature O of O the O legitimate O file O while O installing O the O malicious O file O . O Unfortunately O , O there O is O a O specific O feature O of O Android O vulnerabilities O that O means O it O is O only O possible O to O get O rid O of O them O by O receiving O an O update O from O the O device O manufacturers O . O However O , O many O users O are O in O no O hurry O to O update O the O operating O systems O of O their O products O . O If O a O smartphone O or O tablet O was O released O more O than O a O year O ago O , O it O is O probably O no O longer O supported O by O the O manufacturer O and O patching O of O vulnerabilities O is O no O longer O provided O . O In O that O case O , O the O only O help O comes O from O an O antivirus O solution O , O for O example O , O Kaspersky B-System Internet I-System Security I-System for O Android B-System . O Embedding O malicious O code O in O legitimate O programs O helps O conceal O infections O from O the O victim O . O Of O course O , O this O does O not O mean O the O digital O signature O of O the O software O developer O can O be O used O . O However O , O due O to O the O absence O of O certification O centers O verifying O the O digital O signatures O of O Android O programs O , O nothing O prevents O criminals O from O adding O their O own O signature O . O As O a O result O , O a O copy O of O Angry B-System Birds I-System installed O from O an O unofficial O app O store O or O downloaded O from O a O forum O could O easily O contain O malicious O functionality O . O Capabilities O and O functionality O In O 2013 O , O we O detected O several O technological O innovations O developed O and O used O by O criminals O in O their O malicious O software O . O Below O are O descriptions O of O some O of O the O most O interesting O . O Control O of O malware O from O a O single O center O provides O maximum O flexibility O . O Botnets O can O make O considerably O more O money O than O autonomous O Trojans O . O It O comes O as O no O surprise O then O that O many O SMS-Trojans O include O bot O functionality O . O According O to O our O estimates O , O about O 60 O % O of O mobile O malware O are O elements O of O both O large O and O small O mobile O botnets O . O By O using O Google B-System Cloud I-System Messaging I-System botnet O owners O can O operate O without O a O C O & O C O server O , O thus O eliminating O the O threat O of O the O botnet O being O detected O and O blocked O by O law O enforcement O authorities O . O Google B-System Cloud I-System Messaging I-System is O designed O to O send O short O message O ( O up O to O 4 O KB O ) O to O mobile O devices O via O Google B-Organization services O . O The O developer O simply O has O to O register O and O receive O a O unique O ID O for O his O applications O . O The O commands O received O via O GCM B-System can O not O be O blocked O immediately O on O an O infected O device O . O We O have O detected O several O malicious O programs O using O GCM B-System for O command O and O control O – O the O widespread O Trojan-SMS.AndroidOS.FakeInst.a B-Malware , O Trojan-SMS.AndroidOS.Agent.ao B-Malware , O and O Trojan-SMS.AndroidOS.OpFake.a B-Malware among O others O . O Google B-Organization is O actively O combating O this O use O of O the O service O , O responding O quickly O to O reports O from O antivirus O companies O and O blocking O the O IDs O of O cybercriminals O . O Attacks O on O Windows B-System XP I-System allows O mobile O malware O to O infect O a O PC O after O connecting O a O smartphone O or O tablet O . O In O early O 2013 O we O detected O two O identical O applications O on O Google B-System Play I-System that O were O allegedly O designed O for O cleaning O the O operating O system O of O Android-based B-System devices O from O unnecessary O processes O . O In O fact O , O the O applications O are O designed O to O download O the O autorun.inf B-Indicator file I-Indicator , O an O icon O file O and O the O win32-Trojan B-System file O , O which O the O mobile O malicious O program O locates O in O the O root O directory O of O an O SD B-System card I-System . O On O connecting O a O smartphone O in O the O USB B-System drive I-System emulation O mode O to O a O computer O running O Windows B-System XP I-System , O the O system O automatically O starts O the O Trojan O ( O if O AutoPlay O on O the O external O media O is O not O disabled O ) O and O is O infected O . O The O Trojan O allows O the O criminals O to O remotely O control O the O victim O ’ O s O computer O and O is O capable O of O recording O sound O from O a O microphone O . O We O would O like O to O emphasize O that O this O method O of O attack O only O works O on O Windows B-System XP I-System and O Android B-System versions O prior O to O 2.2 O . O The O most O advanced O mobile O malicious O programs O today O are O Trojans O targeting O users O ’ O bank O accounts O – O the O most O attractive O source O of O criminal O earnings O . O Trend O of O the O year O : O mobile O banking O Trojans O 2013 O was O marked O by O a O rapid O rise O in O the O number O of O Android B-System banking O Trojans O . O The O cyber O industry O of O mobile O malware O is O becoming O more O focused O on O making O profits O more O effectively O , O i.e. O , O mobile O phishing O , O theft O of O credit O card O information O , O money O transfers O from O bank O cards O to O mobile O phones O and O from O phones O to O the O criminalas O ’ O e-wallets O . O Cybercriminals O have O become O obsessed O by O this O method O of O illegal O earnings O : O at O the O beginning O of O the O year O we O knew O only O 67 O banking O Trojans O , O but O by O the O end O of O the O year O there O were O already O 1321 O unique O samples O . O Kaspersky B-System Lab I-System mobile O products O prevented O 2,500 O infections O by O banking O Trojans O . O mobile_treats_2013_04s O The O number O of O mobile O banking O Trojans O in O our O collection O Mobile O banking O Trojans O can O run O together O with O Win-32 B-System Trojans O to O bypass O the O two-factor O authentication O – O mTAN O theft O ( O the O theft O of O banking O verification O codes O that O banks O send O their O customers O in O SMS O messages O ) O . O However O , O in O 2013 O , O autonomous O mobile O banking O Trojans O developed O further O . O Currently O , O such O Trojans O attack O a O limited O number O of O bank O customers O , O but O it O is O expected O that O cybercriminals O will O invent O new O techniques O that O will O allow O them O to O expand O the O number O and O the O geography O of O potential O victims O . O mobile_treats_2013_05s O Infections O caused O by O mobile O banking O programs O Today O , O the O majority O of O banking O Trojan O attacks O affect O users O in O Russia O and O the O CIS O . O However O , O this O situation O will O not O last O long O : O given O the O cybercriminals O ’ O interest O in O user O bank O accounts O , O the O activity O of O mobile O banking O Trojans O is O expected O to O grow O in O other O countries O in O 2014 O . O As O mentioned O above O , O banking O Trojans O are O perhaps O the O most O complex O of O all O mobile O threats O , O and O Svpeng B-Malware is O one O of O the O most O striking O examples O . O Svpeng B-Malware In O mid-July O , O we O detected O Trojan-SMS.AndroidOS.Svpeng.a B-Malware which O , O unlike O its O SMS O Trojan O counterparts O , O is O focused O on O stealing O money O from O the O victiim O ’ O s O bank O account O rather O than O from O his O mobile O phone O . O It O can O not O act O independently O and O operates O strictly O in O accordance O with O commands O received O from O the O C O & O C O server O . O This O malicious O program O spreads O via O SMS O spam O and O from O compromised O legitimate O sites O that O redirect O mobile O users O to O a O malicious O resource O . O There O the O user O is O prompted O to O download O and O install O a O Trojan O imitating O an O Adobe B-System Flash I-System Player I-System update O . O Svpeng B-Malware is O capable O of O doing O lots O of O things O . O It O collects O information O about O the O smartphone O ( O IMEI O , O country O , O service O provider O , O operating O system O language O ) O and O sends O it O to O the O host O via O the O HTTP O POST O request O . O This O appears O to O be O necessary O to O determine O the O number O of O banks O the O victim O may O use O . O Svpeng B-Malware is O only O currently O attacking O clients O of O Russian O banks O . O Typically O , O however O , O cybercriminals O first O test-run O a O technology O on O the O Russian O sector O of O the O Internet O and O then O roll O it O out O globally O , O attacking O users O in O other O countries O . O It O steals O SMS O messages O and O information O about O voice O calls O . O It O helps O the O attacker O find O out O which O banks O the O owner O of O the O smartphone O calls O – O the O Trojan O receives O a O list O of O bank O phone O numbers O from O its O C O & O C O server O . O It O steals O money O from O the O victim O ’ O s O bank O account O . O In O Russia O , O some O major O banks O offer O their O clients O a O special O service O that O allows O them O to O transfer O money O from O their O bank O card O to O their O mobile O phone O account O . O Customers O have O to O send O a O set O text O message O from O their O phone O to O a O specific O bank O number O . O Svpeng B-Malware sends O the O corresponding O messages O to O the O SMS O services O of O two O banks O . O Svpeng B-Malware does O this O to O check O if O the O cards O from O these O banks O are O attached O to O the O number O of O the O infected O phone O and O to O find O out O the O account O balance O . O If O the O phone O is O attached O to O a O bank O card O , O commands O are O sent O from O the O C O & O C O server O with O instructions O to O transfer O money O from O the O user O ’ O s O bank O account O to O his/her O mobile O account O . O The O cybercriminals O then O send O this O money O to O a O digital O wallet O or O to O a O premium O number O and O cash O it O in O . O It O steals O logins O and O passwords O to O online O banking O accounts O by O substituting O he O window O displayed O by O the O bank O application O . O Currently O , O this O only O affects O Russian O banks O , O but O the O technology O behind O Svpeng B-Malware could O easily O be O used O to O target O other O banking O applications O . O It O steals O bank O card O information O ( O the O number O , O the O expiry O date O , O CVC2/CVV2 O ) O imitating O the O process O of O registering O the O bank O card O with O Google B-System Play I-System . O If O the O user O has O launched O Play B-System Market I-System , O the O Trojan O intercepts O the O event O and O displays O a O window O on O top O of O the O Google B-System Play I-System window O , O prompting O the O user O to O enter O his/her O bank O card O details O in O the O fake O window O . O The O data O entered O by O the O user O is O sent O to O the O cybercriminals O . O mobile_treats_2013_06s O It O extorts O money O from O users O by O threatening O to O block O the O smartphone O : O it O displays O a O message O demanding O $ O 500 O to O unblock O the O device O . O In O actual O fact O , O the O Trojan O does O not O block O anything O and O the O phone O can O be O used O without O any O problems O . O It O hides O traces O of O its O activity O by O masking O the O outgoing O and O incoming O text O messages O and O blocking O calls O and O messages O from O numbers O belonging O to O the O bank O . O The O Trojan O gets O the O list O of O bank O phone O numbers O from O its O C O & O C O server O . O It O protects O itself O from O deletion O by O requesting O Device O Administrator O rights O during O the O installation O . O As O a O result O , O the O Trojan O delete O button O in O the O list O of O applications O becomes O inactive O , O which O may O cause O problems O for O inexperienced O users O . O It O is O impossible O to O deprive O it O of O these O rights O without O the O use O of O specialized O tools O ( O such O as O Kaspersky B-System Internet I-System Security I-System for O Android B-System ) O . O To O protect O itself O from O being O removed O , O Svpeng B-Malware uses O a O previously O unknown O vulnerability O in O Android B-System . O It O uses O the O same O trick O to O prevent O the O smartphone O from O being O returned O to O its O factory O settings O . O The O Trojan O is O distributed O in O Russia O and O CIS O countries O . O But O , O as O we O have O already O mentioned O , O the O criminals O could O easily O turn O their O attention O to O users O in O other O countries O . O Perkele B-Malware and O Wroba B-Malware Foreign O users O have O also O been O on O the O receiving O end O of O several O malicious O innovations O targeting O bank O accounts O . O The O Perkele B-Malware Android O Trojan O not O only O attacks O Russian O users O but O also O clients O of O several O European O banks O . O It O is O of O interest O primarily O because O it O operates O in O conjunction O with O various O banking O win32-Trojans B-System . O Its O main O task O is O to O bypass O the O two-factor O authentication O of O the O client O in O the O online O banking O system O . O Due O to O the O specific O nature O of O its O activity O , O Perkele B-Malware is O distributed O in O a O rather O unusual O way O . O When O a O user O enters O an O Internet O banking O site O on O a O computer O infected O by O banking O malware O ( O ZeuS B-Malware , O Citadel B-Malware ) O , O a O request O about O the O smartphone O number O and O type O of O operating O system O is O injected O into O the O code O of O the O authentication O page O . O This O data O is O immediately O sent O to O the O cybercriminals O and O the O computer O displays O the O QR O code O containing O a O link O to O the O alleged O certificate O of O the O online O banking O system O . O After O scanning O the O QR O code O and O installing O a O component O downloaded O from O the O link O , O the O user O infects O his O smartphone O with O the O Trojan O program O that O boasts O functionality O that O is O of O great O interest O to O the O attackers O . O Perkele B-Malware intercepts O mTANs O ( O confirmation O codes O for O banking O operations O ) O sent O by O the O bank O via O text O message O . O By O using O the O login O and O password O stolen O from O the O browser O , O the O Windows O Trojan O initiates O a O fake O transaction O while O Perkele B-Malware intercepts O ( O via O the O C O & O C O server O ) O the O mTAN O sent O by O the O bank O to O the O user O . O Money O then O disappears O from O the O victim O ’ O s O account O and O is O cashed O in O without O the O owner O ’ O s O knowledge O . O The O Korean O malware O Wroba B-Malware , O in O addition O to O the O traditional O vector O of O infection O via O file-sharing O services O , O spreads O via O alternative O app O stores O . O Once O it O infects O a O device O , O Wroba B-Malware behaves O very O aggressively O . O It O searches O for O mobile O banking O applications O , O removes O them O and O uploads O counterfeit O versions O . O From O the O outside O , O they O are O indistinguishable O from O the O legitimate O applications O . O However O , O they O possess O no O banking O functions O , O and O merely O steal O the O logins O and O passwords O entered O by O users O . O ViperRAT B-Malware : O The O Mobile O APT O Targeting O The O Israeli B-Organization Defense I-Organization Force I-Organization That O Should O Be O On O Your O Radar O February O 16 O , O 2017 O ViperRAT B-Malware is O an O active O , O advanced O persistent O threat O ( O APT O ) O that O sophisticated O threat O actors O are O actively O using O to O target O and O spy O on O the O Israeli B-Organization Defense I-Organization Force.The I-Organization threat O actors O behind O the O ViperRAT B-Malware surveillanceware O collect O a O significant O amount O of O sensitive O information O off O of O the O device O , O and O seem O most O interested O in O exfiltrating O images O and O audio O content O . O The O attackers O are O also O hijacking O the O device O camera O to O take O pictures O . O Using O data O collected O from O the O Lookout B-Organization global O sensor O network O , O the O Lookout O research O team O was O able O to O gain O unique O visibility O into O the O ViperRAT B-Malware malware O , O including O 11 O new O , O unreported O applications O . O We O also O discovered O and O analyzed O live O , O misconfigured O malicious O command O and O control O servers O ( O C2 O ) O , O from O which O we O were O able O to O identify O how O the O attacker O gets O new O , O infected O apps O to O secretly O install O and O the O types O of O activities O they O are O monitoring O . O In O addition O , O we O uncovered O the O IMEIs O of O the O targeted O individuals O ( O IMEIs O will O not O be O shared O publicly O for O the O privacy O and O safety O of O the O victims O ) O as O well O as O the O types O of O exfiltrated O content O . O In O aggregate O , O the O type O of O information O stolen O could O let O an O attacker O know O where O a O person O is O , O with O whom O they O are O associated O ( O including O contacts O ’ O profile O photos O ) O , O the O messages O they O are O sending O , O the O websites O they O visit O and O search O history O , O screenshots O that O reveal O data O from O other O apps O on O the O device O , O the O conversations O they O have O in O the O presence O of O the O device O , O and O a O myriad O of O images O including O anything O at O which O device O ’ O s O camera O is O pointed O . O Lookout B-Organization has O determined O ViperRAT B-Malware is O a O very O sophisticated O threat O that O adds O to O the O mounting O evidence O that O targeted O mobile O attacks O against O governments O and O business O is O a O real O problem O . O Lookout B-Organization researchers O have O been O tracking O this O threat O for O the O last O month O . O Given O that O this O is O an O active O threat O , O we O ’ O ve O been O working O behind-the-scenes O with O our O customers O to O ensure O both O personal O and O enterprise O customers O are O protected O from O this O threat O and O only O decided O to O come O forward O with O this O information O after O the O research O team O at O Kaspersky B-Organization released O a O report O earlier O today O . O Additionally O , O we O have O determined O that O though O original O reports O of O this O story O attribute O this O surveillanceware O tool O to O Hamas B-Organization , O this O may O not O be O the O case O , O as O we O demonstrate O below O . O The O increasing O sophistication O of O surveillanceware O The O structure O of O the O surveillanceware O indicates O it O is O very O sophisticated O . O Analysis O indicates O there O are O currently O two O distinct O variants O of O ViperRAT B-Malware . O The O first O variant O is O a O “ O first O stage O application O , O ” O that O performs O basic O profiling O of O a O device O , O and O under O certain O conditions O attempts O to O download O and O install O a O much O more O comprehensive O surveillanceware O component O , O which O is O the O second O variant O . O The O first O variant O involves O social O engineering O the O target O into O downloading O a O trojanized O app O . O Previous O reports O alleged O this O surveillanceware O tool O was O deployed O using O ‘ O honey O traps O ’ O where O the O actor O behind O it O would O reach O out O to O targets O via O fake O social O media O profiles O of O young O women O . O After O building O an O initial O rapport O with O targets O , O the O actors O behind O these O social O media O accounts O would O instruct O victims O to O install O an O additional O app O for O easier O communication O . O Specifically O , O Lookout B-Organization determined O these O were O trojanized O versions O of O the O apps O SR B-System Chat I-System and O YeeCall B-System Pro I-System . O We O also O uncovered O ViperRAT B-Malware in O a O billiards O game O , O an O Israeli O Love O Songs O player O , O and O a O Move O To O iOS B-System app O . O The O second O stage O The O second O stage O apps O contain O the O surveillanceware O capabilities O . O Lookout B-Organization uncovered O nine O secondary O payload O applications O : O * O These O apps O have O not O been O previously O reported O and O were O discovered O using O data O from O the O Lookout B-Organization global O sensor O network O , O which O collects O app O and O device O information O from O over O 100 O million O sensors O to O provide O researchers O and O customers O with O a O holistic O look O at O the O mobile O threat O ecosystem O today O . O Naming O additional O payload O applications O as O system O updates O is O a O clever O technique O used O by O malware O authors O to O trick O victims O into O believing O a O threat O isn O ’ O t O present O on O their O device O . O ViperRAT B-Malware takes O this O one O step O further O by O using O its O dropper O app O to O identify O an O appropriate O second O stage O ‘ O update O ’ O that O may O go O unnoticed O . O For O example O , O if O a O victim O has O Viber B-System on O their O device O , O it O will O choose O to O retrieve O the O Viber B-System Update I-System second O stage O . O If O he O doesn O ’ O t O have O Viber O , O the O generically-named O System O Updates O app O gets O downloaded O and O installed O instead O . O What O was O taken O The O actors O behind O ViperRAT B-Malware seem O to O be O particularly O interested O in O image O data O . O We O were O able O to O identify O that O 8,929 O files O had O been O exfiltrated O from O compromised O devices O and O that O the O overwhelming O majority O of O these O , O 97 O percent O , O were O highly O likely O encrypted O images O taken O using O the O device O camera O . O We O also O observed O automatically O generated O files O on O the O C2 O , O indicating O the O actor O behind O this O campaign O also O issues O commands O to O search O for O and O exfiltrate O PDF O and O Office O documents O . O This O should O be O highly O alarming O to O any O government O agency O or O enterprise O . O We O observed O legitimate O exfiltrated O files O of O the O following O types O of O data O : O Contact O information O Compressed O recorded O audio O in O the O Adaptive O Multi-Rate O ( O amr O ) O file O format O Images O captured O from O the O device O camera O Images O stored O on O both O internal O device O and O SDCard O storage O that O are O listed O in O the O MediaStore O Device O geolocation O information O SMS O content O Chrome O browser O search O history O and O bookmarks O Call O log O information O Cell O tower O information O Device O network O metadata O ; O such O as O phone O number O , O device O software O version O , O network O country O , O network O operator O , O SIM O country O , O SIM O operator O , O SIM O serial O , O IMSI O , O voice O mail O number O , O phone O type O , O network O type O , O data O state O , O data O activity O , O call O state O , O SIM O state O , O whether O device O is O roaming O , O and O if O SMS O is O supported O . O Standard O browser O search O history O Standard O browser O bookmarks O Device O handset O metadata O ; O such O as O brand O , O display O , O hardware O , O manufacturer O , O product O , O serial O , O radio O version O , O and O SDK O . O Command O and O control O API O calls O ViperRAT B-Malware samples O are O capable O of O communicating O to O C2 O servers O through O an O exposed O API O as O well O as O websockets O . O Below O is O a O collection O of O API O methods O and O a O brief O description O around O their O purpose O . O On O attribution O Media O reporting O on O ViperRAT B-Malware thus O far O attributes O this O surveillanceware O tool O to O Hamas B-Organization . O Israeli O media O published O the O first O reports O about O the O social O networking O and O social O engineering O aspects O of O this O campaign O . O However O it O ’ O s O unclear O whether O organizations O that O later O reported O on O ViperRAT B-Malware performed O their O own O independent O research O or O simply O based O their O content O on O the O original O Israeli O report O . O Hamas B-Organization is O not O widely O known O for O having O a O sophisticated O mobile O capability O , O which O makes O it O unlikely O they O are O directly O responsible O for O ViperRAT B-Malware . O ViperRAT B-Malware has O been O operational O for O quite O some O time O , O with O what O appears O to O be O a O test O application O that O surfaced O in O late O 2015 O . O Many O of O the O default O strings O in O this O application O are O in O Arabic O , O including O the O name O . O It O is O unclear O whether O this O means O early O samples O were O targeting O Arabic O speakers O or O if O the O developers O behind O it O are O fluent O in O Arabic O . O This O leads O us O to O believe O this O is O another O actor O . O What O this O means O for O you O All O Lookout B-Organization customers O are O protected O from O this O threat O . O However O , O the O existence O of O threats O like O ViperRAT B-Malware and O Pegasus B-Malware , O the O most O sophisticated O piece O of O mobile O surveillanceware O we O ’ O ve O seen O to O date O , O are O evidence O that O attackers O are O targeting O mobile O devices O . O Mobile O devices O are O at O the O frontier O of O cyber O espionage O , O and O other O criminal O motives O . O Enterprise O and O government O employees O all O use O these O devices O in O their O day-to-day O work O , O which O means O IT O and O security O leaders O within O these O organizations O must O prioritize O mobile O in O their O security O strategies O . O Check B-Organization Point I-Organization researchers O discovered O another O widespread O malware O campaign O on O Google B-System Play I-System , O Google B-Organization ’ O s O official O app O store O . O The O malware O , O dubbed O “ O Judy B-Malware ” O , O is O an O auto-clicking O adware O which O was O found O on O 41 O apps O developed O by O a O Korean O company O . O The O malware O uses O infected O devices O to O generate O large O amounts O of O fraudulent O clicks O on O advertisements O , O generating O revenues O for O the O perpetrators O behind O it O . O The O malicious O apps O reached O an O astonishing O spread O between O 4.5 O million O and O 18.5 O million O downloads O . O Some O of O the O apps O we O discovered O resided O on O Google B-System Play I-System for O several O years O , O but O all O were O recently O updated O . O It O is O unclear O how O long O the O malicious O code O existed O inside O the O apps O , O hence O the O actual O spread O of O the O malware O remains O unknown O . O We O also O found O several O apps O containing O the O malware O , O which O were O developed O by O other O developers O on O Google B-System Play I-System . O The O connection O between O the O two O campaigns O remains O unclear O , O and O it O is O possible O that O one O borrowed O code O from O the O other O , O knowingly O or O unknowingly O . O The O oldest O app O of O the O second O campaign O was O last O updated O in O April O 2016 O , O meaning O that O the O malicious O code O hid O for O a O long O time O on O the O Play B-System store I-System undetected O . O These O apps O also O had O a O large O amount O of O downloads O between O 4 O and O 18 O million O , O meaning O the O total O spread O of O the O malware O may O have O reached O between O 8.5 O and O 36.5 O million O users O . O Similar O to O previous O malware O which O infiltrated O Google B-System Play I-System , O such O as O FalseGuide B-Malware and O Skinner B-Malware , O Judy O relies O on O the O communication O with O its O Command O and O Control O server O ( O C O & O C O ) O for O its O operation O . O After O Check B-Organization Point I-Organization notified O Google B-Organization about O this O threat O , O the O apps O were O swiftly O removed O from O the O Play B-System store I-System . O How O Judy B-Malware operates O : O To O bypass O Bouncer B-System , O Google B-System Play I-System ’ O s O protection O , O the O hackers O create O a O seemingly O benign O bridgehead O app O , O meant O to O establish O connection O to O the O victim O ’ O s O device O , O and O insert O it O into O the O app O store O . O Once O a O user O downloads O a O malicious O app O , O it O silently O registers O receivers O which O establish O a O connection O with O the O C O & O C O server O . O The O server O replies O with O the O actual O malicious O payload O , O which O includes O JavaScript O code O , O a O user-agent O string O and O URLs O controlled O by O the O malware O author O . O The O malware O opens O the O URLs O using O the O user O agent O that O imitates O a O PC O browser O in O a O hidden O webpage O and O receives O a O redirection O to O another O website O . O Once O the O targeted O website O is O launched O , O the O malware O uses O the O JavaScript O code O to O locate O and O click O on O banners O from O the O Google B-System ads I-System infrastructure O . O Upon O clicking O the O ads O , O the O malware O author O receives O payment O from O the O website O developer O , O which O pays O for O the O illegitimate O clicks O and O traffic O . O The O JavaScript O code O locates O the O targeted O ads O by O searching O for O iframes O which O contain O ads O from O Google B-System ads I-System infrastructure O , O as O shown O in O the O image O below O : O The O fraudulent O clicks O generate O a O large O revenue O for O the O perpetrators O , O especially O since O the O malware O reached O a O presumably O wide O spread O . O Who O is O behind O Judy B-Malware ? O The O malicious O apps O are O all O developed O by O a O Korean O company O named O Kiniwini B-Organization , O registered O on O Google B-System Play I-System as O ENISTUDIO B-Organization corp I-Organization . O The O company O develops O mobile O apps O for O both O Android B-System and O iOS B-System platforms O . O It O is O quite O unusual O to O find O an O actual O organization O behind O mobile O malware O , O as O most O of O them O are O developed O by O purely O malicious O actors O . O It O is O important O to O note O that O the O activity O conducted O by O the O malware O is O not O borderline O advertising O , O but O definitely O an O illegitimate O use O of O the O users O ’ O mobile O devices O for O generating O fraudulent O clicks O , O benefiting O the O attackers O . O In O addition O to O the O clicking O activity O , O Judy B-Malware displays O a O large O amount O of O advertisements O , O which O in O some O cases O leave O users O with O no O option O but O clicking O on O the O ad O itself O . O Although O most O apps O have O positive O ratings O , O some O of O the O users O have O noticed O and O reported O Judy B-Malware ’ O s O suspicious O activities O , O as O seen O in O the O images O below O : O As O seen O in O previous O malware O , O such O as O DressCode B-Malware , O a O high O reputation O does O not O necessarily O indicate O that O the O app O is O safe O for O use O . O Hackers O can O hide O their O apps O ’ O real O intentions O or O even O manipulate O users O into O leaving O positive O ratings O , O in O some O cases O unknowingly O . O Users O can O not O rely O on O the O official O app O stores O for O their O safety O , O and O should O implement O advanced O security O protections O capable O of O detecting O and O blocking O zero-day O mobile O malware O . O PHA O Family O Highlights O : O Bread B-Malware ( O and O Friends O ) O January O 9 O , O 2020 O In O this O edition O of O our O PHA O Family O Highlights O series O we O introduce O Bread B-Malware , O a O large-scale O billing O fraud O family O . O We O first O started O tracking O Bread B-Malware ( O also O known O as O Joker B-Malware ) O in O early O 2017 O , O identifying O apps O designed O solely O for O SMS O fraud O . O As O the O Play B-System Store I-System has O introduced O new O policies O and O Google B-System Play I-System Protect I-System has O scaled O defenses O , O Bread B-Malware apps O were O forced O to O continually O iterate O to O search O for O gaps O . O They O have O at O some O point O used O just O about O every O cloaking O and O obfuscation O technique O under O the O sun O in O an O attempt O to O go O undetected O . O Many O of O these O samples O appear O to O be O designed O specifically O to O attempt O to O slip O into O the O Play B-System Store I-System undetected O and O are O not O seen O elsewhere O . O In O this O post O , O we O show O how O Google B-System Play I-System Protect I-System has O defended O against O a O well O organized O , O persistent O attacker O and O share O examples O of O their O techniques O . O TL O ; O DR O Google B-System Play I-System Protect I-System detected O and O removed O 1.7k O unique O Bread B-Malware apps O from O the O Play B-System Store I-System before O ever O being O downloaded O by O users O Bread B-Malware apps O originally O performed O SMS O fraud O , O but O have O largely O abandoned O this O for O WAP O billing O following O the O introduction O of O new O Play B-System policies O restricting O use O of O the O SEND_SMS O permission O and O increased O coverage O by O Google B-System Play I-System Protect I-System More O information O on O stats O and O relative O impact O is O available O in O the O Android B-System Security O 2018 O Year O in O Review O report O BILLING O FRAUD O Bread B-Malware apps O typically O fall O into O two O categories O : O SMS O fraud O ( O older O versions O ) O and O toll O fraud O ( O newer O versions O ) O . O Both O of O these O types O of O fraud O take O advantage O of O mobile O billing O techniques O involving O the O user O ’ O s O carrier O . O SMS O Billing O Carriers O may O partner O with O vendors O to O allow O users O to O pay O for O services O by O SMS O . O The O user O simply O needs O to O text O a O prescribed O keyword O to O a O prescribed O number O ( O shortcode O ) O . O A O charge O is O then O added O to O the O user O ’ O s O bill O with O their O mobile O service O provider O . O Toll O Billing O Carriers O may O also O provide O payment O endpoints O over O a O web O page O . O The O user O visits O the O URL O to O complete O the O payment O and O enters O their O phone O number O . O Verification O that O the O request O is O coming O from O the O user O ’ O s O device O is O completed O using O two O possible O methods O : O The O user O connects O to O the O site O over O mobile O data O , O not O WiFi O ( O so O the O service O provider O directly O handles O the O connection O and O can O validate O the O phone O number O ) O ; O or O The O user O must O retrieve O a O code O sent O to O them O via O SMS O and O enter O it O into O the O web O page O ( O thereby O proving O access O to O the O provided O phone O number O ) O . O Fraud O Both O of O the O billing O methods O detailed O above O provide O device O verification O , O but O not O user O verification O . O The O carrier O can O determine O that O the O request O originates O from O the O user O ’ O s O device O , O but O does O not O require O any O interaction O from O the O user O that O can O not O be O automated O . O Malware O authors O use O injected O clicks O , O custom O HTML O parsers O and O SMS O receivers O to O automate O the O billing O process O without O requiring O any O interaction O from O the O user O . O STRING O & O DATA O OBFUSCATION O Bread O apps O have O used O many O innovative O and O classic O techniques O to O hide O strings O from O analysis O engines O . O Here O are O some O highlights O . O Standard O Encryption O Frequently O , O Bread O apps O take O advantage O of O standard O crypto O libraries O in O ` O java.util.crypto B-Indicator ` O . O We O have O discovered O apps O using O AES O , O Blowfish O , O and O DES O as O well O as O combinations O of O these O to O encrypt O their O strings O . O Custom O Encryption O Other O variants O have O used O custom-implemented O encryption O algorithms O . O Some O common O techniques O include O : O basic O XOR O encryption O , O nested O XOR O and O custom O key-derivation O methods O . O Some O variants O have O gone O so O far O as O to O use O a O different O key O for O the O strings O of O each O class O . O Split O Strings O Encrypted O strings O can O be O a O signal O that O the O code O is O trying O to O hide O something O . O Bread B-Malware has O used O a O few O tricks O to O keep O strings O in O plaintext O while O preventing O basic O string O matching O . O Going O one O step O further O , O these O substrings O are O sometimes O scattered O throughout O the O code O , O retrieved O from O static O variables O and O method O calls O . O Various O versions O may O also O change O the O index O of O the O split O ( O e.g O . O “ O .clic O ” O and O “ O k O ( O ) O ; O ” O ) O . O Delimiters O Another O technique O to O obfuscate O unencrypted O strings O uses O repeated O delimiters O . O A O short O , O constant O string O of O characters O is O inserted O at O strategic O points O to O break O up O keywords O : O At O runtime O , O the O delimiter O is O removed O before O using O the O string O : O API O OBFUSCATION O SMS O and O toll O fraud O generally O requires O a O few O basic O behaviors O ( O for O example O , O disabling O WiFi O or O accessing O SMS O ) O , O which O are O accessible O by O a O handful O of O APIs O . O Given O that O there O are O a O limited O number O of O behaviors O required O to O identify O billing O fraud O , O Bread B-Malware apps O have O had O to O try O a O wide O variety O of O techniques O to O mask O usage O of O these O APIs O . O Reflection O Most O methods O for O hiding O API O usage O tend O to O use O Java O reflection O in O some O way O . O In O some O samples O , O Bread B-Malware has O simply O directly O called O the O Reflect O API O on O strings O decrypted O at O runtime O . O JNI O Bread B-Malware has O also O tested O our O ability O to O analyze O native O code O . O In O one O sample O , O no O SMS-related O code O appears O in O the O DEX O file O , O but O there O is O a O native O method O registered O . O Two O strings O are O passed O into O the O call O , O the O shortcode O and O keyword O used O for O SMS O billing O ( O getter O methods O renamed O here O for O clarity O ) O . O In O the O native O library O , O it O stores O the O strings O to O access O the O SMS O API O . O The O nativesend O method O uses O the O Java O Native O Interface O ( O JNI O ) O to O fetch O and O call O the O Android B-System SMS O API O . O The O following O is O a O screenshot O from O IDA O with O comments O showing O the O strings O and O JNI O functions O . O WebView O JavaScript O Interface O Continuing O on O the O theme O of O cross-language O bridges O , O Bread B-Malware has O also O tried O out O some O obfuscation O methods O utilizing O JavaScript O in O WebViews O . O The O following O method O is O declared O in O the O DEX O . O Without O context O , O this O method O does O not O reveal O much O about O its O intended O behavior O , O and O there O are O no O calls O made O to O it O anywhere O in O the O DEX O . O However O , O the O app O does O create O a O WebView O and O registers O a O JavaScript O interface O to O this O class O . O This O gives O JavaScript O run O in O the O WebView O access O to O this O method O . O The O app O loads O a O URL O pointing O to O a O Bread-controlled O server O . O The O response O contains O some O basic O HTML O and O JavaScript O . O In O green O , O we O can O see O the O references O to O the O SMS O API O . O In O red O , O we O see O those O values O being O passed O into O the O suspicious O Java O method O through O the O registered O interface O . O Now O , O using O these O strings O method1 O can O use O reflection O to O call O sendTextMessage O and O process O the O payment O . O PACKING O In O addition O to O implementing O custom O obfuscation O techniques O , O apps O have O used O several O commercially O available O packers O including O : O Qihoo360 B-System , O AliProtect B-System and O SecShell B-System . O More O recently O , O we O have O seen O Bread-related B-Malware apps O trying O to O hide O malicious O code O in O a O native O library O shipped O with O the O APK O . O Earlier O this O year O , O we O discovered O apps O hiding O a O JAR O in O the O data O section O of O an O ELF O file O which O it O then O dynamically O loads O using O DexClassLoader O . O The O figure O below O shows O a O fragment O of O encrypted O JAR O stored O in O .rodata O section O of O a O shared O object O shipped O with O the O APK O as O well O as O the O XOR O key O used O for O decryption O . O After O we O blocked O those O samples O , O they O moved O a O significant O portion O of O malicious O functionality O into O the O native O library O , O which O resulted O in O a O rather O peculiar O back O and O forth O between O Dalvik O and O native O code O : O COMMAND O & O CONTROL O Dynamic O Shortcodes O & O Content O Early O versions O of O Bread O utilized O a O basic O command O and O control O infrastructure O to O dynamically O deliver O content O and O retrieve O billing O details O . O In O the O example O server O response O below O , O the O green O fields O show O text O to O be O shown O to O the O user O . O The O red O fields O are O used O as O the O shortcode O and O keyword O for O SMS O billing O . O State O Machines O Since O various O carriers O implement O the O billing O process O differently O , O Bread B-Malware has O developed O several O variants O containing O generalized O state O machines O implementing O all O possible O steps O . O At O runtime O , O the O apps O can O check O which O carrier O the O device O is O connected O to O and O fetch O a O configuration O object O from O the O command O and O control O server O . O The O configuration O contains O a O list O of O steps O to O execute O with O URLs O and O JavaScript O . O The O steps O implemented O include O : O Load O a O URL O in O a O WebView O Run O JavaScript O in O WebView O Toggle O WiFi O state O Toggle O mobile O data O state O Read/modify O SMS O inbox O Solve O captchas O Captchas O One O of O the O more O interesting O states O implements O the O ability O to O solve O basic O captchas O ( O obscured O letters O and O numbers O ) O . O First O , O the O app O creates O a O JavaScript O function O to O call O a O Java O method O , O getImageBase64 O , O exposed O to O WebView O using O addJavascriptInterface O . O The O value O used O to O replace O GET_IMG_OBJECT O comes O from O the O JSON O configuration O . O The O app O then O uses O JavaScript O injection O to O create O a O new O script O in O the O carrier O ’ O s O web O page O to O run O the O new O function O . O The O base64-encoded O image O is O then O uploaded O to O an O image O recognition O service O . O If O the O text O is O retrieved O successfully O , O the O app O uses O JavaScript O injection O again O to O submit O the O HTML O form O with O the O captcha O answer O . O CLOAKING O Client-side O Carrier O Checks O In O our O basic O command O & O control O example O above O , O we O didn O ’ O t O address O the O ( O incorrectly O labeled O ) O “ O imei O ” O field O . O This O contains O the O Mobile O Country O Code O ( O MCC O ) O and O Mobile O Network O Code O ( O MNC O ) O values O that O the O billing O process O will O work O for O . O In O this O example O , O the O server O response O contains O several O values O for O Thai O carriers O . O The O app O checks O if O the O device O ’ O s O network O matches O one O of O those O provided O by O the O server O . O If O it O does O , O it O will O commence O with O the O billing O process O . O If O the O value O does O not O match O , O the O app O skips O the O “ O disclosure O ” O page O and O billing O process O and O brings O the O user O straight O to O the O app O content O . O In O some O versions O , O the O server O would O only O return O valid O responses O several O days O after O the O apps O were O submitted O . O Server-side O Carrier O Checks O In O the O JavaScript O bridge O API O obfuscation O example O covered O above O , O the O server O supplied O the O app O with O the O necessary O strings O to O complete O the O billing O process O . O However O , O analysts O may O not O always O see O the O indicators O of O compromise O in O the O server O ’ O s O response O . O In O this O example O , O the O requests O to O the O server O take O the O following O form O : O Here O , O the O “ O operator O ” O query O parameter O is O the O Mobile O Country O Code O and O Mobile O Network O Code O . O The O server O can O use O this O information O to O determine O if O the O user O ’ O s O carrier O is O one O of O Bread B-Malware ’ O s O targets O . O If O not O , O the O response O is O scrubbed O of O the O strings O used O to O complete O the O billing O fraud O . O MISLEADING O USERS O Bread B-Malware apps O sometimes O display O a O pop-up O to O the O user O that O implies O some O form O of O compliance O or O disclosure O , O showing O terms O and O conditions O or O a O confirm O button O . O However O , O the O actual O text O would O often O only O display O a O basic O welcome O message O . O Other O versions O included O all O the O pieces O needed O for O a O valid O disclosure O message O . O However O , O there O are O still O two O issues O here O : O The O numbers O to O contact O for O cancelling O the O subscription O are O not O real O The O billing O process O commences O even O if O you O don O ’ O t O hit O the O “ O Confirm O ” O button O Even O if O the O disclosure O here O displayed O accurate O information O , O the O user O would O often O find O that O the O advertised O functionality O of O the O app O did O not O match O the O actual O content O . O Bread B-Malware apps O frequently O contain O no O functionality O beyond O the O billing O process O or O simply O clone O content O from O other O popular O apps O . O VERSIONING O Bread B-Malware has O also O leveraged O an O abuse O tactic O unique O to O app O stores O : O versioning O . O Some O apps O have O started O with O clean O versions O , O in O an O attempt O to O grow O user O bases O and O build O the O developer O accounts O ’ O reputations O . O Only O later O is O the O malicious O code O introduced O , O through O an O update O . O Interestingly O , O early O “ O clean O ” O versions O contain O varying O levels O of O signals O that O the O updates O will O include O malicious O code O later O . O Some O are O first O uploaded O with O all O the O necessary O code O except O the O one O line O that O actually O initializes O the O billing O process O . O Others O may O have O the O necessary O permissions O , O but O are O missing O the O classes O containing O the O fraud O code O . O And O others O have O all O malicious O content O removed O , O except O for O log O comments O referencing O the O payment O process O . O All O of O these O methods O attempt O to O space O out O the O introduction O of O possible O signals O in O various O stages O , O testing O for O gaps O in O the O publication O process O . O However O , O GPP O does O not O treat O new O apps O and O updates O any O differently O from O an O analysis O perspective O . O FAKE O REVIEWS O When O early O versions O of O apps O are O first O published O , O many O five O star O reviews O appear O with O comments O like O : O “ O So O .. O good O .. O ” O “ O very O beautiful O ” O Later O , O 1 O star O reviews O from O real O users O start O appearing O with O comments O like O : O “ O Deception O ” O “ O The O app O is O not O honest O … O ” O SUMMARY O Sheer O volume O appears O to O be O the O preferred O approach O for O Bread B-Malware developers O . O At O different O times O , O we O have O seen O three O or O more O active O variants O using O different O approaches O or O targeting O different O carriers O . O Within O each O variant O , O the O malicious O code O present O in O each O sample O may O look O nearly O identical O with O only O one O evasion O technique O changed O . O Sample O 1 O may O use O AES-encrypted B-Organization strings O with O reflection O , O while O Sample O 2 O ( O submitted O on O the O same O day O ) O will O use O the O same O code O but O with O plaintext O strings O . O At O peak O times O of O activity O , O we O have O seen O up O to O 23 O different O apps O from O this O family O submitted O to O Play B-System in O one O day O . O At O other O times O , O Bread B-Malware appears O to O abandon O hope O of O making O a O variant O successful O and O we O see O a O gap O of O a O week O or O longer O before O the O next O variant O . O This O family O showcases O the O amount O of O resources O that O malware O authors O now O have O to O expend O . O Google B-System Play I-System Protect I-System is O constantly O updating O detection O engines O and O warning O users O of O malicious O apps O installed O on O their O device O . O SELECTED O SAMPLES O Package O Name O SHA-256 O Digest O com.rabbit.artcamera B-Indicator 18c277c7953983f45f2fe6ab4c7d872b2794c256604e43500045cb2b2084103f B-Indicator org.horoscope.astrology.predict B-Indicator 6f1a1dbeb5b28c80ddc51b77a83c7a27b045309c4f1bff48aaff7d79dfd4eb26 B-Indicator com.theforest.rotatemarswallpaper B-Indicator 4e78a26832a0d471922eb61231bc498463337fed8874db5f70b17dd06dcb9f09 B-Indicator com.jspany.temp B-Indicator 0ce78efa764ce1e7fb92c4de351ec1113f3e2ca4b2932feef46d7d62d6ae87f5 B-Indicator com.hua.ru.quan B-Indicator 780936deb27be5dceea20a5489014236796a74cc967a12e36cb56d9b8df9bc86 B-Indicator com.rongnea.udonood B-Indicator 8b2271938c524dd1064e74717b82e48b778e49e26b5ac2dae8856555b5489131 B-Indicator com.mbv.a.wp B-Indicator 01611e16f573da2c9dbc7acdd445d84bae71fecf2927753e341d8a5652b89a68 B-Indicator com.pho.nec.sg B-Indicator b4822eeb71c83e4aab5ddfecfb58459e5c5e10d382a2364da1c42621f58e119b B-Indicator Exobot B-Malware ( O Marcher B-Malware ) O - O Android B-System banking O Trojan O on O the O rise O February O 2017 O Introduction O The O past O months O many O different O banking O Trojans O for O the O Android B-System platform O have O received O media O attention O . O One O of O these O , O called O Marcher B-Malware ( O aka O Exobot B-Malware ) O , O seems O to O be O especially O active O with O different O samples O appearing O on O a O daily O basis O . O This O malware O variant O also O appears O to O be O technically O superior O to O many O other O banking O Trojans O being O able O to O use O its O overlay O attack O even O on O Android B-System 6 I-System , O which O has O technical O improvements O compared O to O the O previous O Android B-System versions O to O prevent O such O attacks O . O The O main O infection O vector O is O a O phishing O attack O using O SMS/MMS O . O The O social O engineering O message O includes O a O link O that O leads O to O a O fake O version O of O a O popular O app O , O using O names O like O Runtastic B-System , O WhatsApp B-System or O Netflix B-System . O On O installation O , O the O app O requests O the O user O to O provide O SMS O storage O access O and O high O Android B-System privileges O such O as O Device O Admin O . O Other O infection O vectors O include O pornographic O websites O serving O apps O called O Adobe B-System Flash I-System or O YouPorn B-System . O The O Marcher B-Malware banking O malware O uses O two O main O attack O vectors O . O The O first O attack O vector O is O to O compromise O the O out O of O band O authentication O for O online O banks O that O rely O on O SMS O using O SMS O forwarding O . O The O second O attack O vector O , O the O overlay O attack O , O shows O a O customized O phishing O window O whenever O a O targeted O application O is O started O on O the O device O . O The O overlay O window O is O often O indistinguishable O from O the O expected O screen O ( O such O as O a O login O screen O for O a O banking O app O ) O and O is O used O to O steal O the O victim O ’ O s O banking O credentials O . O The O target O list O and O bank O specific O fake O login O pages O can O be O dynamically O updated O via O their O C2 O panel O ( O dashboard O back-end O ) O which O significantly O increases O the O adaptability O and O scalability O of O this O attack O . O In O addition O , O this O type O of O Android B-System banking O malware O does O not O require O the O device O to O be O rooted O or O the O app O to O have O any O specific O Android B-System permission O ( O besides O android.permission.INTERNET B-Indicator to O retrieve O the O overlay O contents O and O send O its O captured O data O ) O . O The O many O changes O we O see O in O the O way O the O attacks O are O performed O show O that O attackers O are O heavily O experimenting O to O find O the O best O way O of O infecting O a O mobile O device O and O abusing O existing O functionality O to O perform O successful O phishing O attacks O . O The O next O stage O in O device O infection O could O be O the O use O of O exploit O kits O and O malvertising O , O which O would O be O quite O effective O due O the O many O Android B-Vulnerability vulnerabilities I-Vulnerability and O consumers O with O unpatched B-Vulnerability devices I-Vulnerability . O In O addition O future O Trojans O could O leverage O root O exploits O to O make O them O almost O impossible O to O remove O and O give O malicious O actors O the O ability O to O hook O generic O low O level O API O ’ O s O that O are O used O by O all O ( O banking O ) O applications O , O just O like O the O attack O vector O as O has O been O used O on O the O desktop O platform O for O years O . O Technical O Analysis O Permissions O Marcher B-Malware ’ O s O APK O size O is O fairly O small O ( O only O 683KB O for O sample O eb8f02fc30ec49e4af1560e54b53d1a7 B-Indicator ) O , O much O smaller O than O most O legitimate O apps O and O other O popular O mobile O malware O samples O . O This O sample O only O includes O Dalvik O bytecode O and O resources O without O any O native O libraries O . O The O package O name O ( O vyn.hhsdzgvoexobmkygffzwuewrbikzud B-Indicator ) O and O its O many O activities O and O services O have O randomized O names O , O probably O to O make O it O a O bit O more O difficult O to O detect O the O package O using O blacklisting O . O The O set O of O permissions O required O by O Marcher B-Malware according O to O the O manifest O is O as O follows O : O ∗ O android.permission.CHANGE_NETWORK_STATE B-Indicator ( O change O network O connectivity O state O ) O ∗ O android.permission.SEND_SMS B-Indicator ( O send O SMS O messages O ) O ∗ O android.permission.USES_POLICY_FORCE_LOCK B-Indicator ( O lock O the O device O ) O ∗ O android.permission.RECEIVE_BOOT_COMPLETED B-Indicator ( O start O malware O when O device O boots O ) O ∗ O android.permission.INTERNET B-Indicator ( O communicate O with O the O internet O ) O ∗ O android.permission.VIBRATE B-Indicator ( O control O the O vibrator O ) O ∗ O android.permission.ACCESS_WIFI_STATE B-Indicator ( O view O information O about O the O status O of O Wi-Fi O ) O ∗ O android.permission.WRITE_SMS B-Indicator ( O edit/delete O SMS O ) O ∗ O android.permission.ACCESS_NETWORK_STATE B-Indicator ( O view O the O status O of O all O networks O ) O ∗ O android.permission.WAKE_LOCK B-Indicator ( O prevent O the O phone O from O going O to O sleep O ) O ∗ O android.permission.GET_TASKS B-Indicator ( O retrieve O running O applications O ) O ∗ O android.permission.CALL_PHONE B-Indicator ( O call O phone O numbers O ) O ∗ O android.permission.WRITE_SETTINGS B-Indicator ( O read/write O global O system O settings O ) O ∗ O android.permission.RECEIVE_SMS B-Indicator ( O intercept O SMS O messages O ) O ∗ O android.permission.READ_PHONE_STATE B-Indicator ( O read O phone O details O of O the O device O such O as O phone O number O and O serial O number O ) O ∗ O android.permission.CHANGE_WIFI_STATE B-Indicator ( O connect O to O and O disconnect O from O Wi-Fi O networks O and O make O changes O to O configured O networks O ) O ∗ O android.permission.READ_CONTACTS B-Indicator ( O read O all O contact O data O ) O * O android.permission.READ_SMS B-Indicator ( O read O SMS O messages O ) O Obviously O a O fairly O significant O list O of O permissions O of O which O many O are O suspicious O , O especially O when O combined O . O Runtastic B-System sample O permission O prompt O Runtastic B-System sample O permission O prompt O Checking O foreground O app O Marcher B-Malware is O one O of O the O few O Android O banking O Trojans O to O use O the O AndroidProcesses O library O , O which O enables O the O application O to O obtain O the O name O of O the O Android B-System package O that O is O currently O running O in O the O foreground O . O This O library O is O used O because O it O uses O the O only O ( O publicly O known O ) O way O to O retrieve O this O information O on O Android B-System 6 I-System ( O using O the O process O OOM O score O read O from O the O /proc O directory O ) O . O When O the O current O app O on O the O foreground O matches O with O an O app O targeted O by O the O malware O , O the O Trojan O will O show O the O corresponding O phishing O overlay O , O making O the O user O think O it O is O the O app O that O was O just O started O . O Dynamic O overlays O When O victims O open O up O a O targeted O app O , O Marcher B-Malware smoothly O displays O an O overlay O , O a O customized O WebView O , O looks O in O its O application O preferences O ( O main_prefs.xml O ) O and O decides O which O specified O URL O is O needed O for O the O targeted O app O . O The O complete O list O of O apps O can O be O seen O below O . O The O phishing O pages O shown O in O the O overlay O use O Ajax O calls O to O communicate O with O a O PHP O back-end O which O stores O all O user O input O . O The O C2 O backend O url O looks O like O this O : O https B-Indicator : I-Indicator //evilhost/c2folder/njs2/ I-Indicator ? I-Indicator fields I-Indicator [ I-Indicator ] I-Indicator . O There O is O no O way O to O access O the O original O app O again O even O if O victims O terminate O the O overlay O process O and O reopen O app O , O until O credit O card O ( O name O , O number O , O expiry O date O , O security O code O ) O and/or O bank O information O ( O PIN O , O VBV O passcode O , O date O of O birth O , O etc O . O ) O are O filled O in O and O verified O . O The O information O is O then O stored O in O local O app O database O as O well O as O sent O to O the O backend O . O Agent B-Malware Smith I-Malware : O A O New O Species O of O Mobile O Malware O July O 10 O , O 2019 O Check B-Organization Point I-Organization Researchers O recently O discovered O a O new O variant O of O mobile O malware O that O quietly O infected O around O 25 O million O devices O , O while O the O user O remains O completely O unaware O . O Disguised O as O Google B-Organization related O app O , O the O core O part O of O malware O exploits O various O known O Android B-Vulnerability vulnerabilities I-Vulnerability and O automatically O replaces O installed O apps O on O the O device O with O malicious O versions O without O the O user O ’ O s O interaction O . O This O unique O on-device O , O just-in-time O ( O JIT O ) O approach O inspired O researchers O to O dub O this O malware O as O “ O Agent B-Malware Smith I-Malware ” O . O “ O Agent B-Malware Smith I-Malware ” O currently O uses O its O broad O access O to O the O device O ’ O s O resources O to O show O fraudulent O ads O for O financial O gain O . O This O activity O resembles O previous O campaigns O such O as O Gooligan B-Malware , O HummingBad B-Malware and O CopyCat B-Malware . O The O primary O targets O , O so O far O , O are O based O in O India O though O other O Asian O countries O such O as O Pakistan O and O Bangladesh O are O also O affected O . O In O a O much-improved O Android B-System security O environment O , O the O actors O behind O Agent B-Malware Smith I-Malware seem O to O have O moved O into O the O more O complex O world O of O constantly O searching O for O new O loopholes O , O such O as O Janus B-Vulnerability , O Bundle B-Vulnerability and O Man-in-the-Disk B-Vulnerability , O to O achieve O a O 3-stage O infection O chain O , O in O order O to O build O a O botnet O of O controlled O devices O to O earn O profit O for O the O perpetrator O . O “ O Agent B-Malware Smith I-Malware ” O is O possibly O the O first O campaign O seen O that O ingrates O and O weaponized O all O these O loopholes O and O are O described O in O detail O below O . O In O this O case O , O “ O Agent B-Malware Smith I-Malware ” O is O being O used O to O for O financial O gain O through O the O use O of O malicious O advertisements O . O However O , O it O could O easily O be O used O for O far O more O intrusive O and O harmful O purposes O such O as O banking O credential O theft O . O Indeed O , O due O to O its O ability O to O hide O it O ’ O s O icon O from O the O launcher O and O impersonates O any O popular O existing O apps O on O a O device O , O there O are O endless O possibilities O for O this O sort O of O malware O to O harm O a O user O ’ O s O device O . O Check B-Organization Point I-Organization Research O has O submitted O data O to O Google B-Organization and O law O enforcement O units O to O facilitate O further O investigation O . O As O a O result O , O information O related O to O the O malicious O actor O is O tentatively O redacted O in O this O publication O . O Check B-Organization Point I-Organization has O worked O closely O with O Google B-Organization and O at O the O time O of O publishing O , O no O malicious O apps O remain O on O the O Play B-System Store I-System . O Encounter O In O early O 2019 O , O the O Check B-Organization Point I-Organization Research O team O observed O a O surge O of O Android B-System malware O attack O attempts O against O users O in O India O which O had O strong O characteristics O of O Janus B-Vulnerability vulnerability O abuse O ; O All O samples O our O team O collected O during O preliminary O investigation O had O the O ability O to O hide O their O app O icons O and O claim O to O be O Google B-Organization related O updaters O or O vending O modules O ( O a O key O component O of O Google B-System Play I-System framework O ) O . O Upon O further O analysis O it O became O clear O this O application O was O as O malicious O as O they O come O and O initially O resembled O the O CopyCat B-Malware malware O , O discovered O by O Check B-Organization Point I-Organization Research O back O in O April O 2016 O . O As O the O research O progressed O , O it O started O to O reveal O unique O characteristics O which O made O us O believe O we O were O looking O at O an O all-new O malware O campaign O found O in O the O wild O . O After O a O series O of O technical O analysis O ( O which O is O covered O in O detail O below O ) O and O heuristic O threat O hunting O , O we O discovered O that O a O complete O “ O Agent B-Malware Smith I-Malware ” O infection O has O three O main O phases O : O A O dropper O app O lures O victim O to O install O itself O voluntarily O . O The O initial O dropper O has O a O weaponized O Feng O Shui O Bundle O as O encrypted O asset O files O . O Dropper O variants O are O usually O barely O functioning O photo O utility O , O games O , O or O sex O related O apps O . O The O dropper O automatically O decrypts O and O installs O its O core O malware O APK O which O later O conducts O malicious O patching O and O app O updates O . O The O core O malware O is O usually O disguised O as O Google B-Organization Updater O , O Google B-Organization Update O for O U O or O “ O com.google.vending B-Indicator ” O . O The O core O malware O ’ O s O icon O is O hidden O . O The O core O malware O extracts O the O device O ’ O s O installed O app O list O . O If O it O finds O apps O on O its O prey O list O ( O hard-coded O or O sent O from O C O & O C O server O ) O , O it O will O extract O the O base O APK O of O the O target O innocent O app O on O the O device O , O patch O the O APK O with O malicious O ads O modules O , O install O the O APK O back O and O replace O the O original O one O as O if O it O is O an O update O . O “ O Agent B-Malware Smith I-Malware ” O repacks O its O prey O apps O at O smali/baksmali O code O level O . O During O the O final O update O installation O process O , O it O relies O on O the O Janus B-Vulnerability vulnerability O to O bypass O Android B-System ’ O s O APK O integrity O checks O . O Upon O kill O chain O completion O , O “ O Agent B-Malware Smith I-Malware ” O will O then O hijack O compromised O user O apps O to O show O ads O . O In O certain O situations O , O variants O intercept O compromised O apps O ’ O original O legitimate O ads O display O events O and O report O back O to O the O intended O ad-exchange O with O the O “ O Agent B-Malware Smith I-Malware ” O campaign O hacker O ’ O s O ad O IDs O . O Our O intelligence O shows O “ O Agent B-Malware Smith I-Malware ” O droppers O proliferate O through O third-party O app O store O “ O 9Apps B-System ” O , O a O UC O team O backed O store O , O targeted O mostly O at O Indian O ( O Hindi O ) O , O Arabic O , O and O Indonesian O users O . O “ O Agent B-Malware Smith I-Malware ” O itself O , O though O , O seems O to O target O mainly O India O users O . O Unlike O previously O discovered O non O Google B-System Play I-System centric O campaigns O whose O victims O almost O exclusively O come O from O less O developed O countries O and O regions O , O “ O Agent B-Malware Smith I-Malware ” O successfully O penetrated O into O noticeable O number O of O devices O in O developed O countries O such O as O Saudi O Arabia O , O UK O and O US O . O Technical O Analysis O “ O Agent B-Malware Smith I-Malware ” O has O a O modular O structure O and O consists O of O the O following O modules O : O Loader O Core O Boot O Patch O AdSDK O Updater O As O stated O above O , O the O first O step O of O this O infection O chain O is O the O dropper O . O The O dropper O is O a O repacked O legitimate O application O which O contains O an O additional O piece O of O code O – O “ O loader O ” O . O The O loader O has O a O very O simple O purpose O , O extract O and O run O the O “ O core O ” O module O of O “ O Agent B-Malware Smith I-Malware ” O . O The O “ O core O ” O module O communicates O with O the O C O & O C O server O , O receiving O the O predetermined O list O of O popular O apps O to O scan O the O device O for O . O If O any O application O from O that O list O was O found O , O it O utilizes O the O Janus B-Vulnerability vulnerability O to O inject O the O “ O boot O ” O module O into O the O repacked O application O . O After O the O next O run O of O the O infected O application O , O the O “ O boot O ” O module O will O run O the O “ O patch O ” O module O , O which O hooks O the O methods O from O known O ad O SDKs O to O its O own O implementation O . O Figure O 1 O : O ‘ O Agent B-Malware Smith I-Malware ’ O s O modular O structure O Technical O Analysis O – O Loader O Module O The O “ O loader O ” O module O , O as O stated O above O , O extracts O and O runs O the O “ O core O ” O module O . O While O the O “ O core O ” O module O resides O inside O the O APK O file O , O it O is O encrypted O and O disguised O as O a O JPG O file O – O the O first O two O bytes O are O actually O the O magic O header O of O JPG O files O , O while O the O rest O of O the O data O is O encoded O with O an O XOR O cipher O . O Figure O 2 O : O “ O Agent B-Malware Smith I-Malware ’ O s O jpg O file O structure O After O the O extraction O , O the O “ O loader O ” O module O adds O the O code O to O the O application O while O using O the O legitimate O mechanism O by O Android B-System to O handle O large O DEX O files O . O Figure O 3 O : O Loading O core O malicious O code O into O the O benign O application O Once O the O “ O core O ” O module O is O extracted O and O loaded O , O the O “ O loader O ” O uses O the O reflection O technique O to O initialize O and O start O the O “ O core O ” O module O . O Figure O 4 O : O Loader O calls O initialization O method O Technical O Analysis O – O Core O Module O With O the O main O purpose O of O spreading O the O infection O , O “ O Agent B-Malware Smith I-Malware ” O implements O in O the O “ O core O ” O module O : O A O series O of O ‘ O Bundle B-Vulnerability ’ O vulnerabilities O , O which O is O used O to O install O applications O without O the O victim O ’ O s O awareness O . O The O Janus B-Vulnerability vulnerability O , O which O allows O the O actor O to O replace O any O application O with O an O infected O version O . O The O “ O core O ” O module O contacts O the O C O & O C O server O , O trying O to O get O a O fresh O list O of O applications O to O search O for O , O or O if O that O fails O , O use O a O default O app O list O : O whatsapp B-System lenovo.anyshare.gps B-Indicator mxtech.videoplayer.ad B-Indicator jio.jioplay.tv B-Indicator jio.media.jiobeats B-Indicator jiochat.jiochatapp B-Indicator jio.join B-Indicator good.gamecollection B-Indicator opera.mini.native B-Indicator startv.hotstar B-Indicator meitu.beautyplusme B-Indicator domobile.applock B-Indicator touchtype.swiftkey B-Indicator flipkart.android B-Indicator cn.xender B-Indicator eterno O truecaller O For O each O application O on O the O list O , O the O “ O core O ” O module O checks O for O a O matching O version O and O MD5 O hash O of O the O installed O application O , O and O also O checks O for O the O application O running O in O the O user-space O . O If O all O conditions O are O met O , O “ O Agent B-Malware Smith I-Malware ” O tries O to O infect O the O application O . O The O “ O core O ” O module O will O use O one O of O two O methods O to O infect O the O application O – O Decompile O and O Binary O . O The O decompile O method O is O based O on O the O fact O that O Android B-System applications O are O Java-based O , O meaning O it O is O possible O to O recompile O it O . O Therefore O , O “ O Agent B-Malware Smith I-Malware ” O decompiles O both O the O original O application O and O the O malicious O payload O and O fuses O them O together O . O Figure O 5 O : O core O module O mixes O malicious O payload O with O the O original O application O While O decompiling O the O original O app O , O “ O Agent B-Malware Smith I-Malware ” O has O the O opportunity O to O modify O the O methods O inside O , O replace O some O of O the O methods O in O the O original O application O that O handles O advertisement O with O its O own O code O and O focus O on O methods O communicating O with O ‘ O AdMob B-System ’ O , O ‘ O Facebook B-System ’ O , O ‘ O MoPub B-System ’ O and O ‘ O Unity B-System Ads I-System ’ O . O Figure O 6 O : O Targeted O ad O network O Figure O 7 O : O Injection O example O After O all O of O the O required O changes O , O “ O Agent B-Malware Smith I-Malware ” O compiles O the O application O and O builds O a O DEX O file O containing O both O the O original O code O of O the O original O application O and O the O malicious O payload O . O In O some O cases O , O the O decompilation O process O will O fail O , O and O “ O Agent B-Malware Smith I-Malware ” O will O try O another O method O for O infecting O the O original O application O – O A O binary O patch O , O which O simply O provides O a O binary O file O of O the O “ O boot O ” O module O of O “ O Agent B-Malware Smith I-Malware ” O . O Once O the O payload O is O prepared O , O “ O Agent B-Malware Smith I-Malware ” O uses O it O to O build O another O APK O file O , O exploiting O the O Janus B-Vulnerability vulnerability O : O Figure O 8 O : O The O new O infected O APK O file O structure O Solely O injecting O the O code O of O the O loader O is O not O enough O . O As O “ O Agent B-Malware Smith I-Malware ” O uses O a O modular O approach O , O and O as O stated O earlier O , O the O original O loader O extracts O everything O from O the O assets O , O the O usage O of O the O Janus B-Vulnerability vulnerability O can O only O change O the O code O of O the O original O application O , O not O the O resources O . O This O means O that O the O only O thing O possible O in O this O case O is O to O replace O its O DEX O file O . O To O overcome O this O issue O , O “ O Agent B-Malware Smith I-Malware ” O found O another O solution O . O Seeing O as O the O system O loader O of O the O DEX O files O ( O ART O ) O fully O ignores O everything O that O goes O after O the O data O section O , O the O patcher O writes O all O of O its O resources O right O there O . O This O action O changes O the O original O file O size O of O the O DEX O file O , O which O makes O the O malicious O resources O a O part O of O the O DEX O file O , O a O section O that O is O ignored O by O the O signature O validation O process O . O Figure O 9 O : O Malware O secretly O adds O malicious O resources O to O the O DEX O file O Now O , O after O the O alteration O of O the O original O application O , O Android B-System ’ O s O package O manager O will O think O that O this O is O an O update O for O the O application O signed O by O the O same O certificate O , O but O in O reality O , O it O will O execute O the O malicious O DEX O file O . O Even O now O , O this O is O still O not O enough O . O “ O Agent B-Malware Smith I-Malware ” O needs O to O be O updated/installed O without O the O user O ’ O s O consent O . O To O achieve O this O , O “ O Agent B-Malware Smith I-Malware ” O utilizes O a O series O of O 1-day B-Vulnerability vulnerabilities I-Vulnerability , O which O allows O any O application O to O run O an O activity O inside O a O system O application O , O even O if O this O activity O is O not O exported O . O The O malicious O application O sends O a O request O to O choose O a O network O account O , O a O specific O account O that O can O only O be O processed O by O authentication O services O exported O by O the O malicious O application O . O The O system O service O ‘ O AccountManagerService O ’ O looks O for O the O application O that O can O process O this O request O . O While O doing O so O , O it O will O reach O a O service O exported O by O “ O Agent B-Malware Smith I-Malware ” O , O and O sends O out O an O authentication O request O that O would O lead O to O a O call O to O the O ‘ O addAccount O ’ O method O . O Then O , O a O request O is O formed O in O such O a O way O that O an O activity O that O installs O the O application O is O called O , O bypassing O all O security O checks O . O Figure O 10 O : O The O algorithm O of O the O malicious O update O , O while O “ O Agent B-Malware Smith I-Malware ” O updates O application O If O all O that O has O failed O , O “ O Agent B-Malware Smith I-Malware ” O turns O to O Man-in-the-Disk B-Vulnerability vulnerability O for O ‘ O SHAREit B-System ’ O or O ‘ O Xender B-System ’ O applications O . O This O is O a O very O simple O process O , O which O is O replacing O their O update O file O on O SD O card O with O its O own O malicious O payload O . O Figure O 11 O : O ‘ O Agent B-Malware Smith I-Malware ’ O uses O man-in-disk B-Vulnerability to O install O the O malicious O update O Technical O Analysis O – O Boot O Module O The O “ O boot O ” O module O is O basically O another O “ O loader O ” O module O , O but O this O time O it O ’ O s O executed O in O the O infected O application O . O The O purpose O of O this O module O is O to O extract O and O execute O a O malicious O payload O – O the O “ O patch O ” O module O . O The O infected O application O contains O its O payload O inside O the O DEX O file O . O All O that O is O needed O is O to O get O the O original O size O of O the O DEX O file O and O read O everything O that O comes O after O this O offset O . O Figure O 12 O : O Boot O module O After O the O patch O module O is O extracted O , O the O “ O boot O ” O module O executes O it O , O using O the O same O method O described O in O the O “ O loader O ” O module O . O The O “ O boot O ” O module O has O placeholder O classes O for O the O entry O points O of O the O infected O applications O . O This O allows O the O “ O boot O ” O module O to O execute O the O payloads O when O the O infected O application O is O started O . O Figure O 13 O : O placeholder O classes O in O Boot O module O Technical O Analysis O – O Patch O Module O When O “ O Agent B-Malware Smith I-Malware ” O has O reached O its O goal O – O a O malicious O payload O running O inside O the O original O application O , O with O hooks O on O various O methods O – O at O this O point O , O everything O lies O with O maintaining O the O required O code O in O case O of O an O update O for O the O original O application O . O While O investing O a O lot O of O resources O in O the O development O of O this O malware O , O the O actor O behind O “ O Agent B-Malware Smith I-Malware ” O does O not O want O a O real O update O to O remove O all O of O the O changes O made O , O so O here O is O where O the O “ O patch O ” O module O comes O in O to O play O With O the O sole O purpose O of O disabling O automatic O updates O for O the O infected O application O , O this O module O observes O the O update O directory O for O the O original O application O and O removes O the O file O once O it O appears O . O Another O trick O in O “ O Agent B-Malware Smith I-Malware ’ O s O arsenal O is O to O change O the O settings O of O the O update O timeout O , O making O the O original O application O wait O endlessly O for O the O update O check O . O Figure O 14 O : O disabling O infected O apps O auto-update O Figure O 15 O : O changing O the O settings O of O the O update O timeout O The O Ad O Displaying O Payload O Following O all O of O the O above O , O now O is O the O time O to O take O a O look O into O the O actual O payload O that O displays O ads O to O the O victim O . O In O the O injected O payload O , O the O module O implements O the O method O ‘ O callActivityOnCreate O ’ O . O At O any O time O an O infected O application O will O create O an O activity O , O this O method O will O be O called O , O and O call O ‘ O requestAd O ’ O from O “ O Agent B-Malware Smith I-Malware ’ O s O code O . O “ O Agent B-Malware Smith I-Malware ” O will O replace O the O original O application O ’ O s O activities O with O an O in-house O SDK O ’ O s O activity O , O which O will O show O the O banner O received O from O the O server O . O In O the O case O of O the O infected O application O not O specified O in O the O code O , O “ O Agent B-Malware Smith I-Malware ” O will O simply O show O ads O on O the O activity O being O loaded O . O Figure O 16 O : O integrating O an O in-house O ad O SDK O Figure O 17 O : O replacing O original O app O activities O with O the O malicious O ad O SDK O activity O Figure O 18 O : O the O malware O showing O ads O on O any O activity O being O loaded O Connecting O the O Dots O As O our O malware O sample O analysis O took O the O team O closer O to O reveal O the O “ O Agent O Smith O ” O campaign O in O its O entirety O and O it O is O here O that O the O C O & O C O server O investigation O enters O the O center O stage O . O We O started O with O most O frequently O used O C O & O C O domains O “ O a B-Indicator * I-Indicator * I-Indicator * I-Indicator d.com I-Indicator ” O , O “ O a B-Indicator * I-Indicator * I-Indicator * I-Indicator d.net I-Indicator ” O , O and O “ O a B-Indicator * I-Indicator * I-Indicator * I-Indicator d.org I-Indicator ” O . O Among O multiple O sub-domains O , O “ O ad.a B-Indicator * I-Indicator * I-Indicator * I-Indicator d.org I-Indicator ” O and O “ O gd.a B-Indicator * I-Indicator * I-Indicator * I-Indicator d.org I-Indicator ” O both O historically O resolved O to O the O same O suspicious O IP O address O . O The O reverse O DNS O history O of O this O IP O brought O “ O ads.i B-Indicator * I-Indicator * I-Indicator * I-Indicator e.com I-Indicator ” O into O our O attention O . O An O extended O malware O hunting O process O returned O to O us O a O large O set O of O “ O Agent B-Malware Smith I-Malware ” O dropper O variants O which O helped O us O further O deduce O a O relation O among O multiple O C O & O C O server O infrastructures O . O In O a O different O period O of O the O “ O Agent B-Malware Smith I-Malware ” O campaign O , O droppers O and O core O modules O used O various O combinations O of O the O “ O a O * O * O * O d O ” O and O “ O i O * O * O * O e O ” O domains O for O malicious O operations O such O as O prey O list O query O , O patch O request O and O ads O request O . O With O a O bit O of O luck O , O we O managed O to O find O logs O in O which O the O evidence O showed O “ O Agent B-Malware Smith I-Malware ’ O s O C O & O C O front O end O routinely O distributes O a O workload O between O “ O w.h B-Indicator * I-Indicator * I-Indicator * I-Indicator g.com I-Indicator ” O and O “ O tt.a B-Indicator * I-Indicator * I-Indicator * I-Indicator d.net I-Indicator ” O . O An O in-depth O understanding O of O the O “ O Agent B-Malware Smith I-Malware ’ O s O campaign O C O & O C O infrastructure O enabled O us O to O reach O the O conclusion O that O the O owner O of O “ B-Indicator i I-Indicator * I-Indicator * I-Indicator * I-Indicator e.com I-Indicator ” O , O “ O h B-Indicator * I-Indicator * I-Indicator * I-Indicator g.com I-Indicator ” O is O the O group O of O hackers O behind O “ O Agent B-Malware Smith I-Malware ” O . O Figure O 19 O : O C O & O C O infrastructure O diagram O The O Infection O Landscape O “ O Agent B-Malware Smith I-Malware ” O droppers O show O a O very O greedy O infection O tactic O . O It O ’ O s O not O enough O for O this O malware O family O to O swap O just O one O innocent O application O with O an O infected O double O . O It O does O so O for O each O and O every O app O on O the O device O as O long O as O the O package O names O are O on O its O prey O list O . O Over O time O , O this O campaign O will O also O infect O the O same O device O , O repeatedly O , O with O the O latest O malicious O patches O . O This O lead O us O to O estimate O there O to O be O over O 2.8 O billion O infections O in O total O , O on O around O 25 O Million O unique O devices O , O meaning O that O on O average O , O each O victim O would O have O suffered O roughly O 112 O swaps O of O innocent O applications O . O As O an O initial O attack O vector O , O “ O Agent B-Malware Smith I-Malware ” O abuses O the O 9Apps B-System market O – O with O over O 360 O different O dropper O variants O . O To O maximize O profit O , O variants O with O “ O MinSDK O ” O or O “ O OTA O ” O SDK O are O present O to O further O infect O victims O with O other O adware O families O . O The O majority O of O droppers O in O 9Apps B-System are O games O , O while O the O rest O fall O into O categories O of O adult O entertainment O , O media O player O , O photo O utilities O , O and O system O utilities O . O Figure O 20 O : O dropper O app O category O distribution O Among O the O vast O number O of O variants O , O the O top O 5 O most O infectious O droppers O alone O have O been O downloaded O more O than O 7.8 O million O times O of O the O infection O operations O against O innocent O applications O : O Figure O 21 O : O Top O 5 O most O infectious O droppers O The O “ O Agent B-Malware Smith I-Malware ” O campaign O is O primarily O targeted O at O Indian O users O , O who O represent O 59 O % O of O the O impacted O population O . O Unlike O previously O seen O non-GP O ( O Google B-System Play I-System ) O centric O malware O campaigns O , O “ O Agent B-Malware Smith I-Malware ” O has O a O significant O impact O upon O not O only O developing O countries O but O also O some O developed O countries O where O GP O is O readily O available O . O For O example O , O the O US O ( O with O around O 303k O infections O ) O , O Saudi O Arabia O ( O 245k O ) O , O Australia O ( O 141k O ) O and O the O UK O ( O 137k O ) O . O Figure O 22 O : O world O infection O heat O map O Considering O that O India O is O by O far O the O most O infected O county O by O “ O Agent B-Malware Smith I-Malware ” O , O overall O compromised O device O brand O distribution O is O heavily O influenced O by O brand O popularity O among O Indian O Android B-System users O : O Figure O 23 O : O infected O brand O distribution O While O most O infections O occurred O on O devices O running O Android B-System 5 I-System and I-System 6 I-System , O we O also O see O a O considerable O number O of O successful O attacks O against O newer O Android B-System versions O . O It O is O a O worrying O observation O . O AOSP O patched O the O Janus B-Vulnerability vulnerability O since O version O 7 O by O introducing O APK O Signature O Scheme O V2 O . O However O , O in O order O to O block O Janus B-Vulnerability abuse O , O app O developers O need O to O sign O their O apps O with O the O new O scheme O so O that O Android B-System framework O security O component O could O conduct O integrity O checks O with O enhanced O features O . O Figure O 25 O : O infected O Android B-System version O distribution O To O further O analyze O “ O Agent B-Malware Smith I-Malware ” O ’ O s O infection O landscape O , O we O dived O into O the O top O 10 O infected O countries O : O Country O Total O Devices O Total O Infection O Event O Count O Avg O . O App O Swap O Per O Device O Avg O . O Droppers O Per O Device O Avg O . O Months O Device O Remained O Infected O India O 15,230,123 O 2,017,873,249 O 2.6 O 1.7 O 2.1 O Bangladesh O 2,539,913 O 208,026,886 O 2.4 O 1.5 O 2.2 O Pakistan O 1,686,216 O 94,296,907 O 2.4 O 1.6 O 2 O Indonesia O 572,025 O 67,685,983 O 2 O 1.5 O 2.2 O Nepal O 469,274 O 44,961,341 O 2.4 O 1.6 O 2.4 O US O 302,852 O 19,327,093 O 1.7 O 1.4 O 1.8 O Nigeria O 287,167 O 21,278,498 O 2.4 O 1.3 O 2.3 O Hungary O 282,826 O 7,856,064 O 1.7 O 1.3 O 1.7 O Saudi O Arabia O 245,698 O 18,616,259 O 2.3 O 1.6 O 1.9 O Myanmar O 234,338 O 9,729,572 O 1.5 O 1.4 O 1.9 O “ O Agent B-Malware Smith I-Malware ” O Timeline O Early O signs O of O activity O from O the O actor O behind O “ O Agent O Smith O ” O can O be O traced O back O to O January O 2016 O . O We O classify O this O 40-month O period O into O three O main O stages O . O January O 2016 O – O May O 2018 O : O In O this O stage O , O “ O Agent B-Malware Smith I-Malware ” O hackers O started O to O try O out O 9Apps O as O a O distribution O channel O for O their O adware O . O During O this O period O , O malware O samples O display O some O typical O adware O characteristics O such O as O unnecessary O permission O requirements O and O pop-up O windows B-System . O During O this O time O , O “ O Agent B-Malware Smith I-Malware ” O hackers O eventually O built O up O a O vast O number O of O app O presence O on O 9Apps B-System , O which O later O would O serve O as O publication O channels O for O evolved O droppers O . O However O , O samples O don O ’ O t O have O key O capabilities O to O infect O innocent O apps O on O victim O devices O yet O . O May O 2018 O to O April O 2019 O : O This O is O the O actual O mature O stage O of O “ O Agent B-Malware Smith I-Malware ” O campaign O . O From O early O 2018 O prior O to O May O , O “ O Agent B-Malware Smith I-Malware ” O hackers O started O to O experiment O with O Bundle O Feng O Shui O , O the O key O tool O which O gives O “ O Agent B-Malware Smith I-Malware ” O malware O family O capabilities O to O infect O innocent O apps O on O the O device O . O A O series O of O pilot O runs O were O executed O . O After O some O major O upgrade O , O by O mid-June O , O the O “ O Agent B-Malware Smith I-Malware ” O campaign O reached O its O peak O . O Its O dropper O family O finished O integration O with O Bundle O Feng O Shui O and O campaign O C O & O C O infrastructure O was O shifted O to O AWS B-System cloud O . O The O Campaign O achieved O exponential O growth O from O June O to O December O 2018 O with O the O infection O number O staying O stable O into O early O 2019 O . O Post-April O 2019 O : O Starting O from O early O 2019 O , O the O new O infection O rate O of O “ O Agent B-Malware Smith I-Malware ” O dropped O significantly O . O From O early O April O , O hackers O started O to O build O a O new O major O update O to O the O “ O Agent B-Malware Smith I-Malware ” O campaign O under O the O name O “ O leechsdk O ” O . O Figure O 26 O : O “ O Agent B-Malware Smith I-Malware ” O Campaign O timeline O Greater O “ O Agent B-Malware Smith I-Malware ” O Campaign O Discovery O Orchestrating O a O successful O 9Apps B-System centric O malware O campaign O , O the O actor O behind O “ O Agent B-Malware Smith I-Malware ” O established O solid O strategies O in O malware O proliferation O and O payload O delivery O . O The O actor O also O built O solid O backend O infrastructures O which O can O handle O high O volume O concurrent O requests O . O During O our O extended O threat O hunting O , O we O uncovered O 11 O apps O on O the O Google B-System Play I-System store I-System that O contain O a O malicious O yet O dormant O SDK O related O to O “ O Agent B-Malware Smith I-Malware ” O actor O . O This O discovery O indicates O the O actor O ’ O s O ambition O in O expanding O operations O into O Google B-System Play I-System store O with O previous O success O experience O from O the O main O “ O Agent B-Malware Smith I-Malware ” O campaign O . O Instead O of O embedding O core O malware O payload O in O droppers O , O the O actor O switches O to O a O more O low-key O SDK O approach O . O In O the O dangerous O module O lies O a O kill O switch O logic O which O looks O for O the O keyword O “ O infect O ” O . O Once O the O keyword O is O present O , O the O SDK O will O switch O from O innocent O ads O server O to O malicious O payload O delivery O ones O . O Hence O , O we O name O this O new O spin-off O campaign O as O Jaguar O Kill O Switch O . O The O below O code O snippet O is O currently O isolated O and O dormant O . O In O the O future O , O it O will O be O invoked O by O malicious O SDK O during O banner O ads O display O . O Figure O 26 O : O the O kill O switch O code O snippet O Evidence O implies O that O the O “ O Agent B-Malware Smith I-Malware ” O actor O is O currently O laying O the O groundwork O , O increasing O its O Google B-System Play I-System penetration O rate O and O waiting O for O the O right O timing O to O kick O off O attacks O . O By O the O time O of O this O publication O , O two O Jaguar O Kill O Switch O infected O app O has O reached O 10 O million O downloads O while O others O are O still O in O their O early O stages O . O Check B-Organization Point I-Organization Research O reported O these O dangerous O apps O to O Google B-Organization upon O discovery O . O Currently O , O all O bespoke O apps O have O been O taken O down O from O the O Google B-System Play I-System store O . O Figure O 28 O : O Jaguar O Kill O Switch O infected O GP O apps O Peek O Into O the O Actor O Based O on O all O of O the O above O , O we O connected O “ O Agent B-Malware Smith I-Malware ” O campaign O to O a O Chinese O internet O company O located O in O Guangzhou O whose O front O end O legitimate O business O is O to O help O Chinese O Android B-System developers O publish O and O promote O their O apps O on O overseas O platforms O . O Various O recruitment O posts O on O Chinese O job O sites O and O Chinese B-System National I-System Enterprise I-System Credit I-System Information I-System Public I-System System I-System ( I-System NECIPS I-System ) I-System data O led O us O one O step O further O , O linking O the O actor O to O its O legal O entity O name O . O Interestingly O , O we O uncovered O several O expired O job O posting O of O Android B-System reverse O engineer O from O the O actor O ’ O s O front O business O published O in O 2018 O and O 2019 O . O It O seems O that O the O people O who O filled O these O roles O are O key O to O “ O Agent B-Malware Smith I-Malware ’ O s O success O , O yet O not O quite O necessary O for O actor O ’ O s O legitimate O side O of O business O . O With O a O better O understanding O of O the O “ O Agent B-Malware Smith I-Malware ” O actor O than O we O had O in O the O initial O phase O of O campaign O hunting O , O we O examined O the O list O of O target O innocent O apps O once O again O and O discovered O the O actor O ’ O s O unusual O practices O in O choosing O targets O . O It O seems O , O “ O Agent B-Malware Smith I-Malware ” O prey O list O does O not O only O have O popular O yet O Janus B-Vulnerability vulnerable O apps O to O ensure O high O proliferation O , O but O also O contain O competitor O apps O of O actor O ’ O s O legitimate O business O arm O to O suppress O competition O . O Conclusion O Although O the O actor O behind O “ O Agent B-Malware Smith I-Malware ” O decided O to O make O their O illegally O acquired O profit O by O exploiting O the O use O of O ads O , O another O actor O could O easily O take O a O more O intrusive O and O harmful O route O . O With O the O ability O to O hide O its O icon O from O the O launcher O and O hijack O popular O existing O apps O on O a O device O , O there O are O endless O possibilities O to O harm O a O user O ’ O s O digital O even O physical O security O . O Today O this O malware O shows O unwanted O ads O , O tomorrow O it O could O steal O sensitive O information O ; O from O private O messages O to O banking O credentials O and O much O more O . O The O “ O Agent B-Malware Smith I-Malware ” O campaign O serves O as O a O sharp O reminder O that O effort O from O system O developers O alone O is O not O enough O to O build O a O secure O Android B-System eco-system O . O It O requires O attention O and O action O from O system O developers O , O device O manufacturers O , O app O developers O , O and O users O , O so O that O vulnerability O fixes O are O patched O , O distributed O , O adopted O and O installed O in O time O . O It O is O also O another O example O for O why O organizations O and O consumers O alike O should O have O an O advanced O mobile O threat O prevention O solution O installed O on O the O device O to O protect O themselves O against O the O possibility O of O unknowingly O installing O malicious O apps O , O even O from O trusted O app O stores O . O Dvmap B-Malware : O the O first O Android B-System malware O with O code O injection O 08 O JUN O 2017 O In O April O 2017 O we O started O observing O new O rooting O malware O being O distributed O through O the O Google B-System Play I-System Store I-System . O Unlike O other O rooting O malware O , O this O Trojan O not O only O installs O its O modules O into O the O system O , O it O also O injects O malicious O code O into O the O system O runtime O libraries O . O Kaspersky B-Organization Lab I-Organization products O detect O it O as O Trojan.AndroidOS.Dvmap.a B-Indicator . O The O distribution O of O rooting O malware O through O Google B-System Play I-System is O not O a O new O thing O . O For O example O , O the O Ztorg B-Malware Trojan I-Malware has O been O uploaded O to O Google B-System Play I-System almost O 100 O times O since O September O 2016 O . O But O Dvmap B-Malware is O very O special O rooting O malware O . O It O uses O a O variety O of O new O techniques O , O but O the O most O interesting O thing O is O that O it O injects O malicious O code O into O the O system O libraries O – O libdmv.so B-Indicator or O libandroid_runtime.so B-Indicator . O This O makes O Dvmap B-Malware the O first O Android B-System malware O that O injects O malicious O code O into O the O system O libraries O in O runtime O , O and O it O has O been O downloaded O from O the O Google B-System Play I-System Store I-System more O than O 50,000 O times O . O Kaspersky B-Organization Lab I-Organization reported O the O Trojan O to O Google B-Organization , O and O it O has O now O been O removed O from O the O store O . O To O bypass O Google B-System Play I-System Store I-System security O checks O , O the O malware O creators O used O a O very O interesting O method O : O they O uploaded O a O clean O app O to O the O store O at O the O end O of O March O , O 2017 O , O and O would O then O update O it O with O a O malicious O version O for O short O period O of O time O . O Usually O they O would O upload O a O clean O version O back O on O Google B-System Play I-System the O very O same O day O . O They O did O this O at O least O 5 O times O between O 18 O April O and O 15 O May O . O All O the O malicious O Dvmap B-Malware apps O had O the O same O functionality O . O They O decrypt O several O archive O files O from O the O assets O folder O of O the O installation O package O , O and O launch O an O executable O file O from O them O with O the O name O “ O start. O ” O The O interesting O thing O is O that O the O Trojan O supports O even O the O 64-bit O version O of O Android B-System , O which O is O very O rare O . O All O encrypted O archives O can O be O divided O into O two O groups O : O the O first O comprises O Game321.res B-Indicator , O Game322.res B-Indicator , O Game323.res B-Indicator and O Game642.res B-Indicator – O and O these O are O used O in O the O initial O phase O of O infection O , O while O the O second O group O : O Game324.res B-Indicator and O Game644.res B-Indicator , O are O used O in O the O main O phase O . O Initial O phase O During O this O phase O , O the O Trojan O tries O to O gain O root O rights O on O the O device O and O to O install O some O modules O . O All O archives O from O this O phase O contain O the O same O files O except O for O one O called O “ O common O ” O . O This O is O a O local O root O exploit O pack O , O and O the O Trojan O uses O 4 O different O exploit O pack O files O , O 3 O for O 32-bit O systems O and O 1 O for O 64-bit-systems O . O If O these O files O successfully O gain O root O rights O , O the O Trojan O will O install O several O tools O into O the O system O . O It O will O also O install O the O malicious O app O “ O com.qualcmm.timeservices. B-Indicator ” O These O archives O contain O the O file O “ O .root.sh B-Indicator ” O which O has O some O comments O in O Chinese O : O Main O phase O In O this O phase O , O the O Trojan O launches O the O “ O start O ” O file O from O Game324.res B-Indicator or O Game644.res B-Indicator . O It O will O check O the O version O of O Android B-System installed O and O decide O which O library O should O be O patched O . O For O Android B-System 4.4.4 I-System and O older O , O the O Trojan O will O patch O method O _Z30dvmHeapSourceStartupBeforeForkv O from O libdvm.so B-Indicator , O and O for O Android B-System 5 O and O newer O it O will O patch O method O nativeForkAndSpecialize O from O libandroid_runtime.so B-Indicator . O Both O of O these O libraries O are O runtime O libraries O related O to O Dalvik B-System and O ART B-System runtime O environments O . O Before O patching O , O the O Trojan O will O backup O the O original O library O with O a O name O bak_ O { O original O name O } O . O During O patching O , O the O Trojan O will O overwrite O the O existing O code O with O malicious O code O so O that O all O it O can O do O is O execute O /system/bin/ip B-Indicator . O This O could O be O very O dangerous O and O cause O some O devices O to O crash O following O the O overwrite O . O Then O the O Trojan O will O put O the O patched O library O back O into O the O system O directory O . O After O that O , O the O Trojan O will O replace O the O original O /system/bin/ip B-Indicator with O a O malicious O one O from O the O archive O ( O Game324.res B-Indicator or O Game644.res B-Indicator ) O . O In O doing O so O , O the O Trojan O can O be O sure O that O its O malicious O module O will O be O executed O with O system O rights O . O But O the O malicious O ip O file O does O not O contain O any O methods O from O the O original O ip O file O . O This O means O that O all O apps O that O were O using O this O file O will O lose O some O functionality O or O even O start O crashing O . O Malicious O module O “ O ip O ” O This O file O will O be O executed O by O the O patched O system O library O . O It O can O turn O off O “ O VerifyApps O ” O and O enable O the O installation O of O apps O from O 3rd O party O stores O by O changing O system O settings O . O Furthermore O , O it O can O grant O the O “ O com.qualcmm.timeservices B-Indicator ” O app O Device O Administrator O rights O without O any O interaction O with O the O user O , O just O by O running O commands O . O It O is O a O very O unusual O way O to O get O Device O Administrator O rights O . O Malicious O app O com.qualcmm.timeservices B-Indicator As O I O mentioned O before O , O in O the O “ O initial O phase O ” O , O the O Trojan O will O install O the O “ O com.qualcmm.timeservices B-Indicator ” O app O . O Its O main O purpose O is O to O download O archives O and O execute O the O “ O start O ” O binary O from O them O . O During O the O investigation O , O this O app O was O able O to O successfully O connect O to O the O command O and O control O server O , O but O it O received O no O commands O . O So O I O don O ’ O t O know O what O kind O of O files O will O be O executed O , O but O they O could O be O malicious O or O advertising O files O . O Conclusions O This O Trojan O was O distributed O through O the O Google B-System Play I-System Store I-System and O uses O a O number O of O very O dangerous O techniques O , O including O patching O system O libraries O . O It O installs O malicious O modules O with O different O functionality O into O the O system O . O It O looks O like O its O main O purpose O is O to O get O into O the O system O and O execute O downloaded O files O with O root O rights O . O But O I O never O received O such O files O from O their O command O and O control O server O . O These O malicious O modules O report O to O the O attackers O about O every O step O they O are O going O to O make O . O So O I O think O that O the O authors O are O still O testing O this O malware O , O because O they O use O some O techniques O which O can O break O the O infected O devices O . O But O they O already O have O a O lot O of O infected O users O on O whom O to O test O their O methods O . O I O hope O that O by O uncovering O this O malware O at O such O an O early O stage O , O we O will O be O able O to O prevent O a O massive O and O dangerous O attack O when O the O attackers O are O ready O to O actively O use O their O methods O . O MD5 O 43680D1914F28E14C90436E1D42984E2 B-Indicator 20D4B9EB9377C499917C4D69BF4CCEBE B-Indicator First O widely O distributed O Android B-System bootkit O Malware O infects O more O than O 350,000 O Devices O January O 29 O , O 2014 O In O the O last O quarter O of O 2013 O , O sale O of O a O Smartphone O with O ANDROID B-System operating O system O has O increased O and O every O second O person O you O see O is O a O DROID B-System user O . O A O Russian O security O firm O 'Doctor O Web B-Organization ' O identified O the O first O mass O distributed O Android B-System bootkit O malware O called O 'Android.Oldboot O ' O , O a O piece O of O malware O that O 's O designed O to O re-infect O devices O after O reboot O , O even O if O you O delete O all O working O components O of O it O . O The O bootkit O Android.Oldboot B-Malware has O infected O more O than O 350,000 O android B-System users O in O China O , O Spain O , O Italy O , O Germany O , O Russia O , O Brazil O , O the O USA O and O some O Southeast O Asian O countries O . O China O seems O to O a O mass O victim O of O this O kind O of O malware O having O a O 92 O % O share O . O A O Bootkit O is O a O rootkit O malware O variant O which O infects O the O device O at O start-up O and O may O encrypt O disk O or O steal O data O , O remove O the O application O , O open O connection O for O Command O and O controller O . O A O very O unique O technique O is O being O used O to O inject O this O Trojan O into O an O Android B-System system O where O an O attacker O places O a O component O of O it O into O the O boot O partition O of O the O file O system O and O modify O the O 'init O ' O script O ( O initialize O the O operating O system O ) O to O re-load O the O malware O as O you O switch O on O your O android B-System . O When O you O start O your O device O , O this O script O loads O the O Trojan O 'imei_chk O ' O ( O detects O it O as O Android.Oldboot.1 B-Indicator ) O which O extract O two O files O libgooglekernel.so B-Indicator ( O Android.Oldboot.2 B-Indicator ) O and O GoogleKernel.apk B-Indicator ( O Android.Oldboot.1.origin B-Indicator ) O , O copy O them O respectively O in O /system/lib B-Indicator and I-Indicator /system/app I-Indicator . O Android.Oldboot B-Malware acts O as O a O system O service O and O connects O to O the O command-and-controller O server O using O libgooglekernel.so B-Indicator library O and O receives O commands O to O download O , O remove O installed O apps O , O and O install O malicious O apps O . O Since O it O becomes O a O part O of O the O boot O partition O , O formatting O the O device O will O not O solve O the O problem O . O The O researchers O believe O that O the O devices O somehow O had O the O malware O pre-loaded O at O the O time O of O shipping O from O the O manufacturer O , O or O was O likely O distributed O inside O modified O Android B-System firmware O . O So O , O users O should O beware O of O certain O modified O Android B-System firmware O . O Two O weeks O ago O , O Some O Chinese O Security O Researchers O have O also O detected O a O bootkit O called O 'Oldboot O ' O , O possibly O the O same O malware O or O another O variant O of O it O . O " O Due O to O the O special O RAM O disk O feature O of O Android B-System devices O ' O boot O partition O , O all O current O mobile O antivirus O products O in O the O world O ca O n't O completely O remove O this O Trojan O or O effectively O repair O the O system O . O '' O " O According O to O our O statistics O , O as O of O today O , O there O 're O more O than O 500 O , O 000 O Android B-System devices O infected O by O this O bootkit O in O China O in O last O six O months O . O The O Android B-System malware O Android.Oldboot B-Malware is O almost O impossible O to O remove O , O not O even O with O formatting O your O device O . O But O if O your O device O is O not O from O a O Chinese O manufacturer O , O then O chances O that O you O are O a O victim O of O it O , O are O very O less O . O This O bootkit O is O not O the O first O of O this O kind O . O Two O years O back O , O in O the O month O of O March O we O reported O , O NQ B-Organization Mobile I-Organization Security I-Organization Research O Center O uncovered O the O world O 's O first O Android B-System bootkit O malware O called O 'DKFBootKit O ' O , O that O replaces O certain O boot O processes O and O can O begin O running O even O before O the O system O is O completely O booted O up O . O But O Android.Oldboot B-Malware malware O is O a O bit O more O dangerous O because O even O if O you O remove O all O working O components O of O it O from O your O android B-System successfully O , O the O component O imei_chk B-Indicator will O persist O in O a O protected O boot O memory O area O and O hence O will O reinstall O itself O on O next O boot O and O continuously O infect O the O Smartphone O . O Users O are O recommended O to O install O apps O from O authorized O stores O such O as O Google B-System Play I-System , O disable O installation O of O apps O from O 'Unknown O Sources O ' O and O for O a O better O security O install O a O reputed O security O application O . O You O can O also O try O to O re-flash O your O device O with O its O original O ROM O . O After O flashing O , O the O bootkit O will O be O removed O . O FrozenCell B-Malware : O Multi-Platform O Surveillance O Campaign O Against O Palestinians O October O 5 O , O 2017 O FrozenCell B-Malware has O been O seen O masquerading O as O various O well O known O social O media O and O chat O applications O as O well O as O an O app O likely O only O used O by O Palestinian O or O Jordanian O students O sitting O their O 2016 O general O exams O . O Lookout B-Organization researchers O have O discovered O a O new O mobile O surveillanceware O family O , O FrozenCell B-Malware . O The O threat O is O likely O targeting O employees O of O various O Palestinian O government O agencies O , O security O services O , O Palestinian O students O , O and O those O affiliated O with O the O Fatah B-Organization political O party O . O FrozenCell B-Malware is O the O mobile O component O of O a O multi-platform O attack O we O 've O seen O a O threat O actor O known O as O " O Two-tailed B-Malware Scorpion/APT-C-23 I-Malware , O '' O use O to O spy O on O victims O through O compromised O mobile O devices O and O desktops O . O The O desktop O components O of O this O attack O , O previously O discovered O by O Palo B-Organization Alto I-Organization Network I-Organization , O are O known O as O KasperAgent B-Malware and O Micropsia B-Malware . O We O discovered O 561MB O of O exfiltrated O data O from O 24 O compromised O Android B-System devices O while O investigating O this O threat O . O More O data O is O appearing O daily O , O leading O us O to O believe O the O actors O are O still O highly O active O . O We O are O continuing O to O watch O it O closely O . O This O threat O is O another O proof O point O that O attackers O are O clearly O incorporating O the O mobile O device O into O their O surveillance O campaigns O as O a O primary O attack O vector O . O Government O agencies O and O enterprises O should O look O at O this O threat O as O an O example O of O the O kind O of O spying O that O is O now O possible O given O how O ubiquitous O mobile O devices O are O in O the O workplace O . O Attackers O are O keenly O aware O of O the O information O they O can O derive O from O these O devices O and O are O using O multi-stage O ( O phishing O + O an O executable O ) O , O multi-platform O ( O Android B-System + O desktop O ) O attacks O to O accomplish O their O spying O . O All O Lookout B-Organization customers O are O protected O from O this O threat O . O What O it O does O FrozenCell B-Malware masquerades O as O fake O updates O to O chat O applications O like O Facebook B-System , O WhatsApp B-System , O Messenger B-System , O LINE B-System , O and O LoveChat B-System . O We O also O detected O it O in O apps O targeted O toward O specific O Middle O Eastern O demographics O . O For O example O , O the O actors O behind O FrozenCell B-Malware used O a O spoofed O app O called O Tawjihi B-Indicator 2016 I-Indicator , O which O Jordanian O or O Palestinian O students O would O ordinarily O use O during O their O general O secondary O examination O . O Once O installed O on O a O device O FrozenCell B-Malware is O capable O of O : O Recording O calls O Retrieving O generic O phone O metadata O ( O e.g. O , O cell O location O , O mobile O country O code O , O mobile O network O code O ) O Geolocating O a O device O Extracting O SMS O messages O Retrieving O a O victim O 's O accounts O Exfiltrating O images O Downloading O and O installing O additional O applications O Searching O for O and O exfiltrating O pdf O , O doc O , O docx O , O ppt O , O pptx O , O xls O , O and O xlsx O file O types O Retrieving O contacts O The O graph O below O represents O a O split O of O the O types O of O data O from O only O one O misconfigured O command O and O control O server O ( O out O of O over O 37 O servers O ) O . O This O is O only O a O small O picture O of O the O threat O actor O 's O operations O . O Split O of O exfiltrated O data O Some O noteworthy O files O identified O in O content O taken O from O compromised O devices O include O passport O photos O , O audio O recordings O of O calls O , O other O images O , O and O a O PDF O document O with O data O on O 484 O individuals O . O The O PDF O lists O dates O of O birth O , O gender O , O passport O numbers O , O and O names O . O Potential O targets O The O actors O behind O FrozenCell B-Malware used O an O online O service O that O geolocates O mobile O devices O based O on O nearby O cell O towers O to O track O targets O . O This O data O shows O a O distinct O concentration O of O infected O devices O beaconing O from O Gaza O , O Palestine O . O Map O of O potential O targets O Early O samples O of O FrozenCell B-Malware used O an O online O service O for O storing O geolocation O information O of O infected O devices O . O Analysis O of O this O telemetry O shows O infected O devices O are O completely O based O in O Gaza O , O Palestine O . O It O has O not O been O confirmed O whether O these O are O from O test O devices O or O the O devices O of O victims O . O We O were O also O able O to O link O the O FrozenCell B-Malware 's O Android B-System infrastructure O to O numerous O desktop O samples O that O are O part O of O the O larger O multi-platform O attack O . O It O appears O the O attackers O sent O malicious O executables O though O phishing O campaigns O impersonating O individuals O associated O with O the O Palestinian B-Organization Security I-Organization Services I-Organization , O the O General B-Organization Directorate I-Organization of I-Organization Civil I-Organization Defence I-Organization - O Ministry B-Organization of I-Organization the I-Organization Interior I-Organization , O and O the O 7th O Fateh O Conference O of O the O Palestinian B-Organization National I-Organization Liberation I-Organization Front I-Organization ( O held O in O late O 2016 O ) O . O The O titles O and O contents O of O these O files O suggest O that O the O actor O targeted O individuals O affiliated O with O these O government O agencies O and O the O Fatah B-Organization political O party O . O Some O malicious O files O associated O with O these O samples O were O titled O the O following O : O Council_of_ministres_decision O Minutes O of O the O Geneva O Meeting O on O Troops O Summary O of O today O 's O meetings.doc.exe B-Indicator The O most O important O points O of O meeting O the O memory O of O the O late O President O Abu O Omar O may O Allah O have O mercy O on O him O - O Paper O No O . O 1 O Fadi O Alsalamin O scandal O with O an O Israeli O officer O - O exclusive O - O watched O before O the O deletion O - O Fadi O Elsalameen O The O details O of O the O assassination O of O President O Arafat_06-12-2016_docx O Quds.rar B-Indicator Many O of O these O executables O are O associated O with O various O short O links O created O using O Bit.ly B-System , O a O URL O shortening O service O . O After O analyzing O the O traffic O associated O with O these O short O links O , O we O determined O that O each O one O was O associated O with O a O referral O path O from O mail.mosa.pna.ps B-Indicator . O MOSA B-Organization is O the O Palestinian O Directorate O of O Social O Development O whose O mandate O is O to O achieve O comprehensive O development O , O social O security O , O and O economic O growth O for O Palestinian O families O , O according O to O publicly O available O information O on O this O ministry O . O Infrastructure O At O the O time O of O writing O the O following O domains O have O either O been O used O by O this O family O or O are O currently O active O . O We O expect O this O list O to O grow O given O that O this O actor O has O changed O its O infrastructure O numerous O times O in O 2017 O . O cecilia-gilbert B-Indicator [ I-Indicator . I-Indicator ] I-Indicator comgooogel I-Indicator [ B-Indicator . I-Indicator ] I-Indicator orgmary-crawley I-Indicator [ B-Indicator . I-Indicator ] I-Indicator commydriveweb I-Indicator [ B-Indicator . I-Indicator ] I-Indicator comrose-sturat I-Indicator [ B-Indicator . I-Indicator ] I-Indicator infokalisi I-Indicator [ B-Indicator . I-Indicator ] I-Indicator xyzdebra-morgan I-Indicator [ B-Indicator . I-Indicator ] I-Indicator comarnani I-Indicator [ B-Indicator . I-Indicator ] I-Indicator infoacount-manager I-Indicator [ B-Indicator . I-Indicator ] I-Indicator infogooogel-drive I-Indicator [ B-Indicator . I-Indicator ] I-Indicator commediauploader I-Indicator [ B-Indicator . I-Indicator ] I-Indicator meacount-manager I-Indicator [ B-Indicator . I-Indicator ] I-Indicator netupload404 I-Indicator [ B-Indicator . I-Indicator ] I-Indicator clubupload999 I-Indicator [ B-Indicator . I-Indicator ] I-Indicator infoal-amalhumandevelopment I-Indicator [ B-Indicator . I-Indicator ] I-Indicator commargaery I-Indicator [ B-Indicator . I-Indicator ] I-Indicator coupload202 I-Indicator [ B-Indicator . I-Indicator ] I-Indicator comgo-mail-accounts I-Indicator [ B-Indicator . I-Indicator ] I-Indicator comupload101 I-Indicator [ B-Indicator . I-Indicator ] I-Indicator netsybil-parks I-Indicator [ O . O ] O infodavos-seaworth O [ O . O ] O infoupload999 O [ O . O ] O orgacount-manager O [ O . O ] O comlila-tournai O [ O . O ] O comaccount-manager O [ O . O ] O orgmediauploader O [ O . O ] O infokalisi O [ O . O ] O orgaryastark O [ O . O ] O infomavis-dracula O [ O . O ] O comkalisi O [ O . O ] O infogoogle-support-team O [ O . O ] O com9oo91e O [ O . O ] O comuseraccount O [ O . O ] O websiteaccounts-fb B-Indicator [ I-Indicator . I-Indicator ] I-Indicator comakashipro I-Indicator [ I-Indicator . I-Indicator ] I-Indicator comfeteh-asefa I-Indicator [ I-Indicator . I-Indicator ] I-Indicator comlagertha-lothbrok I-Indicator [ I-Indicator . I-Indicator ] I-Indicator info I-Indicator OpSec O fails O and O use O of O cryptography O While O looking O at O this O infrastructure O , O we O identified O that O one O of O these O domains O has O directory O indexing O enabled O . O This O mistake O in O operational O security O allowed O us O to O gain O visibility O into O exfiltrated O content O for O a O number O of O devices O . O Continued O mirroring O suggests O it O is O likely O a O regularly O cleaned O staging O server O . O We O sourced O the O over O 561MB O of O exfiltrated O data O from O this O domain O alone O , O all O of O which O we O found O to O be O 7z O compressed O and O password O protected O . O Password O generation O for O compressed O files O takes O place O client-side O with O each O device O using O a O unique O key O in O most O scenarios O . O Key O information O consists O of O an O MD5 O hash O of O the O device O 's O Android B-System ID O , O the O device O manufacturer O , O and O the O device O model O with O each O separated O by O an O underscore O . O Visually O , O this O can O be O represented O as O follows O : O Android B-System ID O When O combined O with O our O analysis O of O indexed O directories O on O C2 O infrastructure O , O we O were O able O to O easily O automate O the O generation O of O the O password O used O by O each O device O and O , O in O turn O , O successfully O decompress O all O exfiltrated O content O from O compromised O devices O . O Indexed O directories O on O C2 O infrastructure O While O exfiltrated O content O is O encrypted O , O information O used O to O generate O the O password O is O plainly O visible O in O the O top O level O directories O for O each O device O . O Taking O this O information O from O directory O listings O , O like O the O one O shown O above O , O allowed O for O the O decryption O of O all O content O . O In O this O case O , O FrozenCell B-Malware has O primarily O netted O the O actors O behind O it O with O recorded O outbound O calls O followed O closely O by O images O and O recorded O incoming O calls O . O FrozenCell B-Malware is O part O of O a O very O successful O , O multi-platform O surveillance O campaign O . O Attackers O are O growing O smarter O , O targeting O individuals O through O the O devices O and O the O services O they O use O most O . O Government O agencies O and O enterprises O should O plan O to O be O hit O from O all O angles O - O cloud O services O , O mobile O devices O , O laptops O - O in O order O to O build O comprehensive O security O strategies O that O work O . O TUESDAY O , O MAY O 19 O , O 2020 O The O wolf O is O back O ... O NEWS O SUMMARY O Thai O Android B-System devices O and O users O are O being O targeted O by O a O modified O version O of O DenDroid B-Malware we O are O calling O " O WolfRAT B-Malware , O '' O now O targeting O messaging O apps O like O WhatsApp B-System , O Facebook B-System Messenger I-System and O Line B-System . O We O assess O with O high O confidence O that O this O modified O version O is O operated O by O the O infamous O Wolf B-Organization Research I-Organization . O This O actor O has O shown O a O surprising O level O of O amateur O actions O , O including O code O overlaps O , O open-source O project O copy/paste O , O classes O never O being O instanced O , O unstable O packages O and O unsecured O panels O . O EXECUTIVE O SUMMARY O Cisco B-Organization Talos I-Organization has O discovered O a O new O Android O malware O based O on O a O leak O of O the O DenDroid B-Malware malware O family O . O We O named O this O malware O " O WolfRAT B-Malware '' O due O to O strong O links O between O this O malware O ( O and O the O command O and O control O ( O C2 O ) O infrastructure O ) O and O Wolf B-Organization Research I-Organization , O an O infamous O organization O that O developed O interception O and O espionage-based O malware O and O was O publicly O described O by O CSIS O during O Virus O Bulletin O 2018 O . O We O identified O infrastructure O overlaps O and O string O references O to O previous O Wolf B-Organization Research I-Organization work O . O The O organization O appears O to O be O shut O down O , O but O the O threat O actors O are O still O very O active O . O We O identified O campaigns O targeting O Thai O users O and O their O devices O . O Some O of O the O C2 O servers O are O located O in O Thailand O . O The O panels O also O contain O Thai O JavaScript O comments O and O the O domain O names O also O contain O references O to O Thai O food O , O a O tactic O commonly O employed O to O entice O users O to O click/visit O these O C2 O panels O without O much O disruption O . O We O identified O a O notable O lack O of O sophistication O in O this O investigation O such O as O copy/paste O , O unstable O code O , O dead O code O and O panels O that O are O freely O open O . O What O 's O new O ? O WolfRAT B-Malware is O based O on O a O previously O leaked O malware O named O DenDroid B-Malware . O The O new O malware O appears O to O be O linked O to O the O infamous O Wolf B-Organization Research I-Organization organization O and O targets O Android B-System devices O located O in O Thailand O . O How O did O it O work O ? O The O malware O mimics O legit O services O such O as O Google B-Organization service O , O GooglePlay B-System or O Flash B-System update O . O The O malware O is O not O really O advanced O and O is O based O on O a O lot O of O copy/paste O from O public O sources O available O on O the O Internet O . O The O C2 O infrastructure O contains O a O lack O of O sophistication O such O as O open O panels O , O reuse O of O old O servers O publicly O tagged O as O malicious… O So O what O ? O After O being O publicly O denounced O by O CSIS B-Organization Group I-Organization — O a O threat O intelligence O company O in O Denmark O — O Wolf B-Organization Research I-Organization was O closed O and O a O new O organization O named O LokD B-Organization was O created O . O This O new O organization O seems O to O work O on O securing O Android B-Organization devices O . O However O , O thanks O to O the O infrastructure O sharing O and O forgotten O panel O names O , O we O assess O with O high O confidence O that O this O actor O is O still O active O , O it O is O still O developing O malware O and O has O been O using O it O from O mid-June O to O today O . O On O the O C2 O panel O , O we O found O a O potential O link O between O Wolf B-Organization Research I-Organization and O another O Cyprus O organization O named O Coralco B-Organization Tech I-Organization . O This O organization O is O also O working O on O interception O technology O . O LINKS O TO O WOLF O INTELLIGENCE O During O the O Virus O Bulletin O conference O in O 2018 O , O CSIS B-Organization researchers O Benoît O Ancel O and O Aleksejs O Kuprins O did O a O presentation O on O Wolf B-Organization Research I-Organization and O the O offensive O arsenal O developed O by O the O organization O . O They O mentioned O an O Android B-System , O iOS B-System and O Windows B-System remote O access O tool O ( O RAT O ) O . O Their O findings O showed O that O Wolf O is O headquartered O in O Germany O with O offices O in O Cyprus O , O Bulgaria O , O Romania O , O India O and O ( O possibly O ) O the O U.S O . O The O organization O was O closed O after O the O CSIS B-Organization presentation O . O However O , O the O director O created O a O new O organization O in O Cyprus O named O LokD B-Organization . O This O new O organization O proposed O the O creation O of O a O more O secure O Android B-System phone O . O Based O on O the O organization O website O , O it O also O proposes O services O and O developed O zero-day B-Vulnerability vulnerabilities I-Vulnerability to O test O their O own O products O : O Zero-day O research O from O lokd.com B-Organization We O can O see O that O the O organization O owner O still O has O an O interest O in O Android B-System devices O . O Based O on O infrastructure O overlaps O and O leaked O information O , O we O assess O with O high O confidence O that O the O malware O we O identified O and O present O in O this O paper O is O linked O to O Wolf B-Organization Research I-Organization . O One O of O the O samples O ( O e19823a1ba4a0e40cf459f4a0489fc257720cc0d71ecfb7ad94b3ca86fbd85d1 B-Indicator ) O uses O the O C2 O server O svcws B-Indicator [ I-Indicator . I-Indicator ] I-Indicator ponethus I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator . O Based O on O our O research O and O Benoît O Ancel O 's O tracker O , O this O C2 O was O used O by O Wolf B-Organization Intelligence I-Organization : O Additionally O , O we O identified O two O empty O panels O on O a O C2 O server O . O The O new O one O with O the O title O " O Coralco O Archimedes O , O '' O and O an O older O version O with O the O title O " O Wolf O Intelligence O : O '' O New O panel O Old O panel O The O new O panel O name O contains O " O Coralco O '' O in O its O name O . O Coralco B-Organization Tech I-Organization is O an O organization O located O in O Cyprus O and O providing O interception O tools O . O We O can O not O say O for O sure O if O Wolf B-Organization Research I-Organization and O Coralco B-Organization Tech I-Organization are O linked O , O but O this O panel O name O , O their O offerings O and O the O panel O layout O would O suggest O it O should O be O considered O suspiciously O linked O . O Coralco O Tech O 's O services O description O . O VICTIMOLOGY O ON O THE O IDENTIFIED O CAMPAIGNS O The O campaigns O we O analyzed O targeted O Android B-System devices O in O Thailand O . O The O C2 O server O domain O is O linked O to O Thai O food O : O Nampriknum B-Indicator [ I-Indicator . I-Indicator ] I-Indicator net I-Indicator : O Nam O Phrik O Num O Somtum B-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator : O Som O Tum O We O also O identified O comments O in O Thai O on O the O C2 O infrastructure O mentioned O in O the O previous O chapter O : O MALWARE O DenDroid B-Malware The O Android B-System malware O is O based O on O the O DenDroid B-Malware Android O malware O . O Several O analysis O reports O were O published O on O this O malware O in O 2014 O and O , O finally O , O the O source O code O was O leaked O in O 2015 O . O The O original O leak O is O no O longer O available O on O github.com O , O but O a O copy O can O be O found O here O . O The O table O below O shows O the O commands O available O to O the O operator O for O tasking O on O infected O devices O . O This O malware O is O simplistic O in O comparison O to O some O modern-day O Android B-System malware O . O The O best O example O of O that O is O that O it O does O n't O take O advantage O of O the O accessibility O framework O , O collecting O information O on O non-rooted O devices O . O The O commands O are O self-explanatory O and O show O the O features O included O in O the O malware O . O Some O of O them O like O takephoto O , O takevideo O , O recordaudio O , O getsentsms O and O uploadpictures O are O focused O on O espionage O activities O . O Others O like O transferbot O , O promptupdate O and O promptuninstall O are O meant O to O help O the O operator O manage O the O malware O . O Version O # O 1 O : O June O 2019 O — O Domain O : O databit B-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator During O our O investigation O , O we O identified O at O least O four O major O releases O of O the O RAT O . O The O permissions O on O the O first O version O of O the O malware O lay O out O the O foundations O of O a O spying O trojan O . O Permissions O The O package O name O follows O the O original O style O name O used O on O DenDroid B-Malware . O The O code O is O obfuscated O but O not O packed O . O This O malware O also O contains O a O screen O recorder O . O This O feature O is O implemented O using O another O open-source O software O package O that O can O be O found O here O . O The O service O is O implemented O in O the O class O com.serenegiant.service.ScreenRecorderService B-Indicator which O is O declared O in O the O package O manifest O . O During O our O analysis O of O this O sample O , O we O did O notice O that O the O class O itself O is O never O called O or O used O by O the O malware O . O It O remains O available O within O the O source O code O but O no O method O of O use O takes O place O . O Version O # O 2 O : O June O - O Aug. O 2019 O — O Domain O : O somtum B-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator This O is O the O first O version O that O shows O the O code O organization O evolution O that O will O continue O to O be O used O on O all O other O functions O throughout O this O malware O . O Code O structure O Obviously O , O this O code O is O not O obfuscated O when O compared O with O the O previous O version O it O becomes O clear O that O this O is O the O same O code O base O . O One O of O the O first O changes O that O stands O out O is O that O the O screen O recording O feature O mentioned O in O the O previous O sample O has O been O removed O . O A O new O class O was O added O called O com.utils.RestClient B-Indicator . O This O class O is O based O on O public O code O belonging O to O the O package O praeda.muzikmekan B-Indicator , O which O can O be O found O here O among O other O places O . O Just O like O in O previous O examples O , O the O malware O author O does O not O use O this O package O . O Missing O permissions O The O lack O of O the O READ_FRAME_BUFFER O permission O can O be O justified O by O the O removal O of O the O screen O record O feature O . O The O ACCESS_SUPERUSER O may O have O been O removed O because O it O was O deprecated O upon O the O release O of O Android B-System 5.0 I-System Lollipop B-System which O happened O in O 2014 O . O The O reality O is O that O the O RAT O permissions O can O be O implemented O just O with O the O permissions O declared O on O the O manifest O , O thus O there O is O no O need O for O higher O permissions O . O Version O # O 3 O : O Sept. O - O Dec. O 2019 O — O Domain O : O ponethus B-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator Given O that O there O is O some O overlap O in O the O previous O two O versions O , O it O came O as O no O surprise O to O us O that O we O finally O identified O a O sample O which O is O an O evolution O based O on O both O previous O versions O . O This O sample O is O clearly O a O mix O between O the O two O . O This O is O also O the O first O version O where O the O package O name O changes O into O something O that O a O less O aware O user O may O be O tricked O by O , O com.android.playup B-Indicator . O This O version O brings O back O the O ACCESS_SUPERUSER O and O READ_FRAME_BUFFER O permissions O . O However O , O this O time O , O the O permission O is O actually O used O . O WhatsApp B-System message O capture O The O service O com.serenegiant.service.ScreenRecorderService B-Indicator , O is O invoked O by O the O ScreenRecorderActivity O . O Upon O creation O , O this O activity O launches O a O thread O that O will O loop O on O a O 50-second O interval O . O In O the O first O iteration O , O the O screen O recording O is O started O and O will O only O stop O when O the O RAT O determines O that O WhatsApp B-System is O not O running O . O It O 's O restarted O in O the O next O cycle O independently O based O on O if O WhatsApp B-System is O running O . O In O this O version O , O the O developer O added O more O classes O from O the O same O package O . O Even O though O we O could O not O find O indications O of O being O in O use O , O two O stand O out O . O Bluetooth O — O which O allows O the O interaction O with O the O Bluetooth O interface O , O and O net/deacon O — O which O implements O a O beaconing O system O based O on O UDP O . O Android B-System shell O A O new O package O was O added O that O allows O the O execution O of O commands O in O the O Android B-System shell O . O Again O , O this O package O source O code O is O publicly O available O and O can O be O found O here O . O One O of O the O uses O the O malware O gives O to O this O package O is O the O execution O of O the O command O " O dumpsys O '' O to O determine O if O certain O activities O are O running O . O Check O if O chat O apps O are O running O In O the O above O example O , O the O malware O is O searching O for O Line O , O Facebook B-System Messenger I-System and O WhatsApp B-System activities O . O This O is O part O of O a O class O called O CaptureService O , O which O already O existed O in O the O previous O version O but O it O was O not O duly O implemented O . O Previous O version O The O capture O service O class O implements O the O chat O applications O interception O . O Upon O creation O the O class O will O start O to O take O screenshots O that O will O be O stopped O and O uploaded O to O the O C2 O once O the O service O ca O n't O find O the O targeted O applications O running O . O The O core O of O this O functionality O is O also O based O on O an O open-source O project O that O can O be O found O here O . O Another O novelty O is O a O VPN-related O package O , O which O is O based O on O OrbotVPN B-System . O Once O again O , O it O does O n't O seem O to O actually O be O in O use O . O The O same O happens O with O the O package O squareup.otto B-Indicator , O which O is O an O open-source O bus O implementation O focused O on O Android B-System implementation O . O Both O sources O can O be O found O here O and O here O . O Version O # O 4 O : O April O 2020 O — O Domain O : O nampriknum.net B-Indicator Following O the O same O pattern O , O this O version O has O some O added O features O and O others O , O which O were O not O in O use O , O removed O . O First O of O all O the O new O package O name O is O com.google.services B-Indicator , O which O can O easily O be O confused O with O a O legitimate O Google B-Organization service O . O The O VPN O package O is O no O longer O present O , O further O reinforcing O our O conclusion O that O it O was O not O in O use O . O WolfRAT B-Malware application O screen O The O Google B-System GMS I-System and O Firebase B-System service O has O been O added O , O however O , O no O configuration O has O been O found O , O even O though O services O seem O to O be O referenced O in O the O of O a O new O class O . O The O new O class O is O called O NotificationListener O and O extends O the O NotificationListenerService O class O . O This O would O allow O the O RAT O to O receive O system O notifications O . O Notification O handling O method O The O class O is O only O implemented O in O debug O mode O , O pushing O all O captured O information O into O the O log O . O The O usage O of O the O PlusShare B-System API O in O 2020 O denotes O some O unprofessional O development O , O since O this O is O the O API O to O access O Google+ B-Organization . O This O service O , O along O with O the O API O , O was O fully O decommissioned O in O March O 2019 O . O This O version O adds O one O significant O class O — O it O requests O DEVICE_ADMIN O privileges O . O Device O admin O policies O Looking O at O the O policy O 's O definition O , O we O can O see O that O it O lists O all O the O available O policies O even O if O most O of O them O are O deprecated O on O Android B-System 10.0 I-System and O their O usage O results O in O a O security O exception O . O The O code O implementation O again O seems O that O it O has O been O added O for O testing O purposes O only O . O Versions O overview O The O DenDroid B-Malware code O base O was O kept O to O such O an O extent O that O even O the O original O base64-encoded O password O was O kept O . O Original O password O The O main O service O follows O the O same O structure O as O the O first O version O , O the O anti-analysis O features O are O primitive O , O only O checking O the O emulator O environment O without O any O kind O of O packing O or O obfuscation O . O The O malware O will O start O the O main O service O if O all O the O requested O permissions O and O the O device O admin O privileges O are O granted O . O Otherwise O , O it O will O launch O an O ACTION_APPLICATION_SETTINGS O intent O trying O to O trick O the O user O to O grant O the O permissions O . O Each O sample O contains O a O userId O hardcoded O , O meaning O that O each O sample O can O only O be O used O in O a O victim O . O It O seems O , O however O , O if O the O same O victim O has O more O than O one O device O the O malware O can O be O reused O since O the O IMEI O is O sent O along O with O each O data O exfiltration O . O It O is O clear O that O this O RAT O is O under O intense O development O , O however O , O the O addition O and O removal O of O packages O , O along O with O the O huge O quantity O of O unused O code O and O usage O of O deprecated O and O old O techniques O denotes O an O amateur O development O methodology O . O CONCLUSION O We O witness O actors O continually O using O open-source O platforms O , O code O and O packages O to O create O their O own O software O . O Some O are O carried O out O well O , O others O , O like O WolfRAT B-Malware , O are O designed O with O an O overload O of O functionality O in O mind O as O opposed O to O factoring O any O sensible O approach O to O the O development O aspect O . O After O all O , O a O working O product O is O often O more O important O than O a O stable O product O . O We O watched O WolfRAT B-Malware evolve O through O various O iterations O which O shows O that O the O actor O wanted O to O ensure O functional O improvements O — O perhaps O they O had O deadlines O to O meet O for O their O customers O , O but O with O no O thought O given O to O removing O old O code O blocks O , O classes O , O etc O . O throughout O the O Android B-System package O . O WolfRAT B-Malware is O a O specifically O targeted O RAT O which O we O assess O to O be O aimed O at O Thai O individuals O and O , O based O on O previous O work O from O Wolf B-Organization Research I-Organization , I-Organization most O likely O used O as O an O intelligence-gathering O tool O or O interception O tool O . O This O can O be O packaged O and O " O sold O '' O in O many O different O ways O to O customers O . O A O " O Tracking O tool O '' O or O an O " O Admin O tool O '' O are O often O cited O for O these O kinds O of O tools O for O " O commercial O '' O or O " O enterprise O '' O usage O . O Wolf I-Malware Research I-Organization claimed O to O shut O down O their O operations O but O we O clearly O see O that O their O previous O work O continues O under O another O guise O . O The O ability O to O carry O out O these O types O of O intelligence-gathering O activities O on O phones O represents O a O huge O score O for O the O operator O . O The O chat O details O , O WhatsApp B-System records O , O messengers O and O SMSs O of O the O world O carry O some O sensitive O information O which O people O often O forget O when O communicating O with O their O devices O . O We O see O WolfRAT B-Malware specifically O targeting O a O highly O popular O encrypted O chat O app O in O Asia O , O Line B-System , O which O suggests O that O even O a O careful O user O with O some O awareness O around O end-to-end O encryption O chats O would O still O be O at O the O mercy O of O WolfRAT B-Malware and O it O 's O prying O eyes O . O IOCS O Hashes O 139edb1bc033725539b117f50786f3d3362ed45845c57fe1f82e7ed72b044367 B-Indicator e19823a1ba4a0e40cf459f4a0489fc257720cc0d71ecfb7ad94b3ca86fbd85d1 B-Indicator e19823a1ba4a0e40cf459f4a0489fc257720cc0d71ecfb7ad94b3ca86fbd85d1 B-Indicator e5f346d8f312cc1f93c2c6af611e2f50805c528934786ea173cabc6a39b14cda B-Indicator 1849a50a6ac9b3eec51492745eeb14765fe2e78488d476b0336d8e41c2c581d4 B-Indicator d328fca14c4340fcd4a15e47562a436085e6b1bb5376b5ebd83d3e7218db64e7 B-Indicator 59b9809dba857c5969f23f460a2bf0a337a71622a79671066675ec0acf89c810 B-Indicator 120474682ea439eb0b28274c495d9610a73d892a4b8feeff268c670570db97e2 B-Indicator ed234e61849dcb95223676abe2312e1378d6130c0b00851d82cda545b946ec83 B-Indicator 27410d4019251a70d38f0635277f931fb73f67ac9f2e1f3b475ce680ebfde12a B-Indicator 6e6c210535b414c5aa2dd9e67f5153feeb43a8ac8126d8e249e768f501323a3e B-Indicator 4a32ced20df7001da7d29edc31ca76e13eef0c9b355f62c44888853435e9794f B-Indicator ac5abaebd9f516b8b389450f7d27649801d746fb14963b848f9d6dad0a505e66 B-Indicator 3a45d7a16937d4108b5b48f44d72bb319be645cbe15f003dc9e77fd52f45c065 B-Indicator Domains O cvcws B-Indicator [ I-Indicator . I-Indicator ] I-Indicator ponethus I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator svc B-Indicator [ I-Indicator . I-Indicator ] I-Indicator ponethus I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator www B-Indicator [ I-Indicator . I-Indicator ] I-Indicator ponethus I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator webmail B-Indicator [ I-Indicator . I-Indicator ] I-Indicator ponethus I-Indicator [ I-Indicator . I-Indicator ] I-Indicator com I-Indicator nampriknum B-Indicator [ I-Indicator . I-Indicator ] I-Indicator net I-Indicator www B-Indicator [ I-Indicator . I-Indicator ] I-Indicator nampriknum I-Indicator [ I-Indicator . I-Indicator ] I-Indicator net I-Indicator svc B-Indicator [ I-Indicator . I-Indicator ] I-Indicator nampriknum I-Indicator [ I-Indicator . I-Indicator ] I-Indicator net I-Indicator svcws B-Indicator [ I-Indicator . I-Indicator ] I-Indicator nampriknum I-Indicator [ I-Indicator . I-Indicator ] I-Indicator net I-Indicator svc B-Indicator [ I-Indicator . I-Indicator ] I-Indicator somtum I-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator svcws B-Indicator [ I-Indicator . I-Indicator ] I-Indicator somtum I-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator www B-Indicator [ I-Indicator . I-Indicator ] I-Indicator somtum I-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator somtum B-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator shop B-Indicator [ I-Indicator . I-Indicator ] I-Indicator databit I-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator svc B-Indicator [ I-Indicator . I-Indicator ] I-Indicator databit I-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator test B-Indicator [ I-Indicator . I-Indicator ] I-Indicator databit I-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator www B-Indicator [ I-Indicator . I-Indicator ] I-Indicator databit I-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator admin B-Indicator [ I-Indicator .databit I-Indicator [ I-Indicator .today I-Indicator cendata B-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator svc B-Indicator [ I-Indicator . I-Indicator ] I-Indicator cendata I-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator svcws B-Indicator [ I-Indicator . I-Indicator ] I-Indicator cendata I-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator www B-Indicator [ I-Indicator . I-Indicator ] I-Indicator cendata I-Indicator [ I-Indicator . I-Indicator ] I-Indicator today I-Indicator PHA O Family O Highlights O : O Zen B-Malware and O its O cousins O January O 11 O , O 2019 O Google B-System Play I-System Protect I-System detects O Potentially O Harmful O Applications O ( O PHAs O ) O which O Google B-System Play I-System Protect I-System defines O as O any O mobile O app O that O poses O a O potential O security O risk O to O users O or O to O user O data—commonly O referred O to O as O " O malware O . O '' O in O a O variety O of O ways O , O such O as O static O analysis O , O dynamic O analysis O , O and O machine O learning O . O While O our O systems O are O great O at O automatically O detecting O and O protecting O against O PHAs O , O we O believe O the O best O security O comes O from O the O combination O of O automated O scanning O and O skilled O human O review O . O With O this O blog O series O we O will O be O sharing O our O research O analysis O with O the O research O and O broader O security O community O , O starting O with O the O PHA O family O , O Zen B-Malware . O Zen B-Malware uses O root O permissions O on O a O device O to O automatically O enable O a O service O that O creates O fake O Google B-Organization accounts O . O These O accounts O are O created O by O abusing O accessibility O services O . O Zen B-Malware apps O gain O access O to O root O permissions O from O a O rooting O trojan O in O its O infection O chain O . O In O this O blog O post O , O we O do O not O differentiate O between O the O rooting O component O and O the O component O that O abuses O root O : O we O refer O to O them O interchangeably O as O Zen B-Malware . O We O also O describe O apps O that O we O think O are O coming O from O the O same O author O or O a O group O of O authors O . O All O of O the O PHAs O that O are O mentioned O in O this O blog O post O were O detected O and O removed O by O Google B-System Play I-System Protect I-System . O Background O Uncovering O PHAs O takes O a O lot O of O detective O work O and O unraveling O the O mystery O of O how O they O 're O possibly O connected O to O other O apps O takes O even O more O . O PHA O authors O usually O try O to O hide O their O tracks O , O so O attribution O is O difficult O . O Sometimes O , O we O can O attribute O different O apps O to O the O same O author O based O on O a O small O , O unique O pieces O of O evidence O that O suggest O similarity O , O such O as O a O repetition O of O an O exceptionally O rare O code O snippet O , O asset O , O or O a O particular O string O in O the O debug O logs O . O Every O once O in O a O while O , O authors O leave O behind O a O trace O that O allows O us O to O attribute O not O only O similar O apps O , O but O also O multiple O different O PHA O families O to O the O same O group O or O person O . O However O , O the O actual O timeline O of O the O creation O of O different O variants O is O unclear O . O In O April O 2013 O , O we O saw O the O first O sample O , O which O made O heavy O use O of O dynamic O code O loading O ( O i.e. O , O fetching O executable O code O from O remote O sources O after O the O initial O app O is O installed O ) O . O Dynamic O code O loading O makes O it O impossible O to O state O what O kind O of O PHA O it O was O . O This O sample O displayed O ads O from O various O sources O . O More O recent O variants O blend O rooting O capabilities O and O click O fraud O . O As O rooting O exploits O on O Android B-System become O less O prevalent O and O lucrative O , O PHA O authors O adapt O their O abuse O or O monetization O strategy O to O focus O on O tactics O like O click O fraud O . O This O post O does O n't O follow O the O chronological O evolution O of O Zen B-Malware , O but O instead O covers O relevant O samples O from O least O to O most O complex O . O Apps O with O a O custom-made O advertisement O SDK O The O simplest O PHA O from O the O author O 's O portfolio O used O a O specially O crafted O advertisement O SDK O to O create O a O proxy O for O all O ads-related O network O traffic O . O By O proxying O all O requests O through O a O custom O server O , O the O real O source O of O ads O is O opaque O . O This O example O shows O one O possible O implementation O of O this O technique O . O This O approach O allows O the O authors O to O combine O ads O from O third-party O advertising O networks O with O ads O they O created O for O their O own O apps O . O It O may O even O allow O them O to O sell O ad O space O directly O to O application O developers O . O The O advertisement O SDK O also O collects O statistics O about O clicks O and O impressions O to O make O it O easier O to O track O revenue O . O Selling O the O ad O traffic O directly O or O displaying O ads O from O other O sources O in O a O very O large O volume O can O provide O direct O profit O to O the O app O author O from O the O advertisers O . O We O have O seen O two O types O of O apps O that O use O this O custom-made O SDK O . O The O first O are O games O of O very O low O quality O that O mimic O the O experience O of O popular O mobile O games O . O While O the O counterfeit O games O claim O to O provide O similar O functionality O to O the O popular O apps O , O they O are O simply O used O to O display O ads O through O a O custom O advertisement O SDK O . O The O second O type O of O apps O reveals O an O evolution O in O the O author O 's O tactics O . O Instead O of O implementing O very O basic O gameplay O , O the O authors O pirated O and O repackaged O the O original O game O in O their O app O and O bundled O with O it O their O advertisement O SDK O . O The O only O noticeable O difference O is O the O game O has O more O ads O , O including O ads O on O the O very O first O screen O . O In O all O cases O , O the O ads O are O used O to O convince O users O to O install O other O apps O from O different O developer O accounts O , O but O written O by O the O same O group O . O Those O apps O use O the O same O techniques O to O monetize O their O actions O . O Click O fraud O apps O The O authors O ' O tactics O evolved O from O advertisement O spam O to O real O PHA O ( O Click O Fraud O ) O . O Click O fraud O PHAs O simulate O user O clicks O on O ads O instead O of O simply O displaying O ads O and O waiting O for O users O to O click O them O . O This O allows O the O PHA O authors O to O monetize O their O apps O more O effectively O than O through O regular O advertising O . O This O behavior O negatively O impacts O advertisement O networks O and O their O clients O because O advertising O budget O is O spent O without O acquiring O real O customers O , O and O impacts O user O experience O by O consuming O their O data O plan O resources O . O The O click O fraud O PHA O requests O a O URL O to O the O advertising O network O directly O instead O of O proxying O it O through O an O additional O SDK O . O The O command O & O control O server O ( O C O & O C O server O ) O returns O the O URL O to O click O along O with O a O very O long O list O of O additional O parameters O in O JSON O format O . O After O rendering O the O ad O on O the O screen O , O the O app O tries O to O identify O the O part O of O the O advertisement O website O to O click O . O If O that O part O is O found O , O the O app O loads O Javascript O snippets O from O the O JSON O parameters O to O click O a O button O or O other O HTML O element O , O simulating O a O real O user O click O . O Because O a O user O interacting O with O an O ad O often O leads O to O a O higher O chance O of O the O user O purchasing O something O , O ad O networks O often O " O pay O per O click O '' O to O developers O who O host O their O ads O . O Therefore O , O by O simulating O fraudulent O clicks O , O these O developers O are O making O money O without O requiring O a O user O to O click O on O an O advertisement O . O This O example O code O shows O a O JSON O reply O returned O by O the O C O & O C O server O . O It O has O been O shortened O for O brevity O . O Based O on O this O JSON O reply O , O the O app O looks O for O an O HTML O snippet O that O corresponds O to O the O active O element O ( O show_hide O btnnext O ) O and O , O if O found O , O the O Javascript O snippet O tries O to O perform O a O click O ( O ) O method O on O it O . O Rooting O trojans O The O Zen B-Malware authors O have O also O created O a O rooting O trojan O . O Using O a O publicly O available O rooting O framework O , O the O PHA O attempts O to O root O devices O and O gain O persistence O on O them O by O reinstalling O itself O on O the O system O partition O of O rooted O device O . O Installing O apps O on O the O system O partition O makes O it O harder O for O the O user O to O remove O the O app O . O This O technique O only O works O for O unpatched O devices O running O Android B-System 4.3 I-System or O lower O . O Devices O running O Android B-System 4.4 I-System and O higher O are O protected O by O Verified O Boot O . O Zen B-Malware 's O rooting O trojan O apps O target O a O specific O device O model O with O a O very O specific O system O image O . O After O achieving O root O access O the O app O tries O to O replace O the O framework.jar B-Indicator file O on O the O system O partition O . O Replicating O framework.jar B-Indicator allows O the O app O to O intercept O and O modify O the O behavior O of O the O Android B-System standard O API O . O In O particular O , O these O apps O try O to O add O an O additional O method O called O statistics O ( O ) O into O the O Activity O class O . O When O inserted O , O this O method O runs O every O time O any O Activity O object O in O any O Android O app O is O created O . O This O happens O all O the O time O in O regular O Android B-System apps O , O as O Activity O is O one O of O the O fundamental O Android B-System UI O elements O . O The O only O purpose O of O this O method O is O to O connect O to O the O C O & O C O server O . O The O Zen B-Malware trojan O After O achieving O persistence O , O the O trojan O downloads O additional O payloads O , O including O another O trojan O called O Zen B-Malware . O Zen B-Malware requires O root O to O work O correctly O on O the O Android B-System operating O system O . O The O Zen B-Malware trojan O uses O its O root O privileges O to O turn O on O accessibility O service O ( O a O service O used O to O allow O Android B-System users O with O disabilities O to O use O their O devices O ) O for O itself O by O writing O to O a O system-wide O setting O value O enabled_accessibility_services O . O Zen B-Malware does O n't O even O check O for O the O root O privilege O : O it O just O assumes O it O has O it O . O This O leads O us O to O believe O that O Zen B-Malware is O just O part O of O a O larger O infection O chain O . O The O trojan O implements O three O accessibility O services O directed O at O different O Android B-System API I-System levels O and O uses O these O accessibility O services O , O chosen O by O checking O the O operating O system O version O , O to O create O new O Google B-Organization accounts O . O This O is O done O by O opening O the O Google B-Organization account O creation O process O and O parsing O the O current O view O . O The O app O then O clicks O the O appropriate O buttons O , O scrollbars O , O and O other O UI O elements O to O go O through O account O sign-up O without O user O intervention O . O During O the O account O sign-up O process O , O Google B-Organization may O flag O the O account O creation O attempt O as O suspicious O and O prompt O the O app O to O solve O a O CAPTCHA O . O To O get O around O this O , O the O app O then O uses O its O root O privilege O to O inject O code O into O the O Setup O Wizard O , O extract O the O CAPTCHA O image O , O and O sends O it O to O a O remote O server O to O try O to O solve O the O CAPTCHA O . O It O is O unclear O if O the O remote O server O is O capable O of O solving O the O CAPTCHA O image O automatically O or O if O this O is O done O manually O by O a O human O in O the O background O . O After O the O server O returns O the O solution O , O the O app O enters O it O into O the O appropriate O text O field O to O complete O the O CAPTCHA O challenge O . O The O Zen B-Malware trojan O does O not O implement O any O kind O of O obfuscation O except O for O one O string O that O is O encoded O using O Base64 O encoding O . O It O 's O one O of O the O strings O - O " O How O you O 'll O sign O in O '' O - O that O it O looks O for O during O the O account O creation O process O . O The O code O snippet O below O shows O part O of O the O screen O parsing O process O . O Apart O from O injecting O code O to O read O the O CAPTCHA O , O the O app O also O injects O its O own O code O into O the O system_server O process O , O which O requires O root O privileges O . O This O indicates O that O the O app O tries O to O hide O itself O from O any O anti-PHA O systems O that O look O for O a O specific O app O process O name O or O does O not O have O the O ability O to O scan O the O memory O of O the O system_server O process O . O The O app O also O creates O hooks O to O prevent O the O phone O from O rebooting O , O going O to O sleep O or O allowing O the O user O from O pressing O hardware O buttons O during O the O account O creation O process O . O These O hooks O are O created O using O the O root O access O and O a O custom O native O code O called O Lmt_INJECT O , O although O the O algorithm O for O this O is O well O known O . O First O , O the O app O has O to O turn O off O SELinux B-System protection O . O Then O the O app O finds O a O process O id O value O for O the O process O it O wants O to O inject O with O code O . O This O is O done O using O a O series O of O syscalls O as O outlined O below O . O The O " O source O process O '' O refers O to O the O Zen B-Malware trojan O running O as O root O , O while O the O " O target O process O '' O refers O to O the O process O to O which O the O code O is O injected O and O [ O pid O ] O refers O to O the O target O process O pid O value O . O The O source O process O checks O the O mapping O between O a O process O id O and O a O process O name O . O This O is O done O by O reading O the O /proc/ B-Indicator [ I-Indicator pid I-Indicator ] I-Indicator /cmdline I-Indicator file O . O This O very O first O step O fails O in O Android B-System 7.0 I-System and O higher O , O even O with O a O root O permission O . O The O /proc B-Indicator filesystem O is O now O mounted O with O a O hidepid=2 O parameter O , O which O means O that O the O process O can O not O access O other O process O /proc/ B-Indicator [ I-Indicator pid I-Indicator ] I-Indicator directory O . O A O ptrace_attach O syscall O is O called O . O This O allows O the O source O process O to O trace O the O target O . O The O source O process O looks O at O its O own O memory O to O calculate O the O offset O between O the O beginning O of O the O libc O library O and O the O mmap O address O . O The O source O process O reads O /proc/ B-Indicator [ I-Indicator pid I-Indicator ] I-Indicator /maps I-Indicator to O find O where O libc O is O located O in O the O target O process O memory O . O By O adding O the O previously O calculated O offset O , O it O can O get O the O address O of O the O mmap O function O in O the O target O process O memory O . O The O source O process O tries O to O determine O the O location O of O dlopen O , O dlsym O , O and O dlclose O functions O in O the O target O process O . O It O uses O the O same O technique O as O it O used O to O determine O the O offset O to O the O mmap O function O . O The O source O process O writes O the O native O shellcode O into O the O memory O region O allocated O by O mmap O . O Additionally O , O it O also O writes O addresses O of O dlopen O , O dlsym O , O and O dlclose O into O the O same O region O , O so O that O they O can O be O used O by O the O shellcode O . O Shellcode O simply O uses O dlopen O to O open O a O .so O file O within O the O target O process O and O then O dlsym O to O find O a O symbol B-Organization in O that O file O and O run O it O . O The O source O process O changes O the O registers O in O the O target O process O so O that O PC O register O points O directly O to O the O shellcode O . O This O is O done O using O the O ptrace O syscall O . O This O diagram O illustrates O the O whole O process O . O Summary O PHA O authors O go O to O great O lengths O to O come O up O with O increasingly O clever O ways O to O monetize O their O apps O . O Zen B-Malware family O PHA O authors O exhibit O a O wide O range O of O techniques O , O from O simply O inserting O an O advertising O SDK O to O a O sophisticated O trojan O . O The O app O that O resulted O in O the O largest O number O of O affected O users O was O the O click O fraud O version O , O which O was O installed O over O 170,000 O times O at O its O peak O in O February O 2018 O . O The O most O affected O countries O were O India O , O Brazil O , O and O Indonesia O . O In O most O cases O , O these O click O fraud O apps O were O uninstalled O by O the O users O , O probably O due O to O the O low O quality O of O the O apps O . O If O Google B-System Play I-System Protect I-System detects O one O of O these O apps O , O Google B-System Play I-System Protect I-System will O show O a O warning O to O users O . O We O are O constantly O on O the O lookout O for O new O threats O and O we O are O expanding O our O protections O . O Every O device O with O Google B-System Play I-System includes O Google B-System Play I-System Protect I-System and O all O apps O on O Google B-System Play I-System are O automatically O and O periodically O scanned O by O our O solutions O . O You O can O check O the O status O of O Google B-System Play I-System Protect I-System on O your O device O : O Open O your O Android O device O 's O Google B-System Play I-System Store I-System app O . O Tap O Menu O > O Play O Protect O . O Look O for O information O about O the O status O of O your O device O . O Hashes O of O samples O Type O Package O name O SHA256 O digest O Custom O ads O com.targetshoot.zombieapocalypse.sniper.zombieshootinggame B-Indicator 5d98d8a7a012a858f0fa4cf8d2ed3d5a82937b1a98ea2703d440307c63c6c928 B-Indicator Click O fraud O com.counterterrorist.cs.elite.combat.shootinggame B-Indicator 84672fb2f228ec749d3c3c1cb168a1c31f544970fd29136bea2a5b2cefac6d04 B-Indicator Rooting O trojan O com.android.world.news O bd233c1f5c477b0cc15d7f84392dab3a7a598243efa3154304327ff4580ae213 B-Indicator Zen B-Malware trojan O com.lmt.register B-Indicator eb12cd65589cbc6f9d3563576c304273cb6a78072b0c20a155a0951370476d8d B-Indicator Mobile O Campaign O ‘ O Bouncing B-Malware Golf I-Malware ’ O Affects O Middle O East O We O uncovered O a O cyberespionage O campaign O targeting O Middle O Eastern O countries O . O We O named O this O campaign O “ O Bouncing B-Malware Golf I-Malware ” O based O on O the O malware O ’ O s O code O in O the O package O named O “ O golf. O ” O June O 18 O , O 2019 O We O uncovered O a O cyberespionage O campaign O targeting O Middle O Eastern O countries O . O We O named O this O campaign O “ O Bouncing B-Malware Golf I-Malware ” O based O on O the O malware O ’ O s O code O in O the O package O named O “ O golf. O ” O The O malware O involved O , O which O Trend B-Organization Micro I-Organization detects O as O AndroidOS_GolfSpy.HRX B-Malware , O is O notable O for O its O wide O range O of O cyberespionage O capabilities O . O Malicious O codes O are O embedded O in O apps O that O the O operators O repackaged O from O legitimate O applications O . O Monitoring O the O command O and O control O ( O C O & O C O ) O servers O used O by O Bouncing B-Malware Golf I-Malware , O we O ’ O ve O so O far O observed O more O than O 660 O Android B-System devices O infected O with O GolfSpy B-Malware . O Much O of O the O information O being O stolen O appear O to O be O military-related O . O The O campaign O ’ O s O attack O vector O is O also O interesting O . O These O repackaged O , O malware-laden O apps O are O neither O on O Google B-System Play I-System nor O popular O third-party O app O marketplaces O , O and O we O only O saw O the O website O hosting O the O malicious O apps O being O promoted O on O social O media O when O we O followed O GolfSpy B-Malware ’ O s O trail O . O We O were O also O able O to O analyze O some O GolfSpy B-Malware samples O sourced O from O the O Trend B-Organization Micro I-Organization mobile O app O reputation O service O . O Also O of O note O is O Bouncing B-Malware Golf I-Malware ’ O s O possible O connection O to O a O previously O reported O mobile O cyberespionage O campaign O that O researchers O named O Domestic B-Malware Kitten I-Malware . O The O strings O of O code O , O for O one O , O are O similarly O structured O . O The O data O targeted O for O theft O also O have O similar O formats O . O Figure O 1 O . O GolfSpy B-Malware ’ O s O infection O chain O GolfSpy B-Malware 's O Potential O Impact O Given O GolfSpy B-Malware ’ O s O information-stealing O capabilities O , O this O malware O can O effectively O hijack O an O infected O Android B-System device O . O Here O is O a O list O of O information O that O GolfSpy B-Malware steals O : O Device O accounts O List O of O applications O installed O in O the O device O Device O ’ O s O current O running O processes O Battery O status O Bookmarks/Histories O of O the O device O ’ O s O default O browser O Call O logs O and O records O Clipboard O contents O Contacts O , O including O those O in O VCard O format O Mobile O operator O information O Files O stored O on O SDcard O Device O location O List O of O image O , O audio O , O and O video O files O stored O on O the O device O Storage O and O memory O information O Connection O information O Sensor O information O SMS O messages O Pictures O GolfSpy B-Malware also O has O a O function O that O lets O it O connect O to O a O remote O server O to O fetch O and O perform O commands O , O including O : O searching O for O , O listing O , O deleting O , O and O renaming O files O as O well O as O downloading O a O file O into O and O retrieving O a O file O from O the O device O ; O taking O screenshots O ; O installing O other O application O packages O ( O APK O ) O ; O recording O audio O and O video O ; O and O updating O the O malware O . O Technical O Analysis O The O repackaged O applications O are O embedded O with O malicious O code O , O which O can O be O found O in O the O com.golf B-Indicator package O . O These O repackaged O apps O pose O as O communication O , O news O , O lifestyle O , O book O , O and O reference O apps O popularly O used O in O the O Middle O East O . O The O GolfSpy B-Malware malware O embedded O in O the O apps O is O hardcoded O with O an O internal O name O used O by O the O attacker O . O Figure O 2 O . O Icons O of O the O apps O that O Bouncing B-Malware Golf I-Malware ’ O s O operators O repackaged O ( O top O ) O and O a O comparison O of O packages O between O the O original O legitimate O app O ( O bottom O left O ) O and O GolfSpy B-Malware ( O bottom O right O ) O Figure O 3 O . O GolfSpy B-Malware ’ O s O configurations O encoded O by O a O custom O algorithm O ( O right O ) O and O its O decoded O version O ( O left O ) O As O shown O in O Figure O 3 O , O GolfSpy B-Malware ’ O s O configurations O ( O e.g. O , O C O & O C O server O , O secret O keys O ) O are O encoded O by O a O customized O algorithm O . O After O it O is O launched O , O GolfSpy B-Malware will O generate O a O unique O ID O for O the O affected O device O and O then O collect O its O data O such O as O SMS O , O contact O list O , O location O , O and O accounts O in O this O format O : O “ O % O , O [ O ] O , O time O ” O ( O shown O in O Figure O 4 O ) O . O The O information O is O written O into O a O file O on O the O device O . O The O attacker O can O choose O the O data O types O to O collect O , O which O are O written O in O a O certain O format O . O Figure O 4 O . O Code O snippet O showing O GolfSpy B-Malware generating O UUID O The O value O of O % O is O in O the O range O of O 1-9 O or O a-j O . O Each O value O represents O a O different O type O of O data O to O steal O from O the O device O : O Value O Data O Type O 1 O Accounts O 2 O Installed O APP O list O 3 O Running O processes O list O 4 O Battery O status O 5 O Browser O bookmarks O and O histories O 6 O Call O logs O 7 O Clipboard O 8 O Contacts O 9 O Mobile O operator O information O a O File O list O on O SD O card O b O Location O c O Image O list O d O Audio O list O e O Video O list O f O Storage O and O memory O information O g O Connection O information O h O Sensors O information O i O SMS O messages O j O VCard O format O contacts O Table O 1 O . O The O type O of O data O corresponding O to O the O value O coded O in O GolfSpy B-Malware Figure O 5 O shows O the O code O snippets O that O are O involved O in O monitoring O and O recording O the O device O ’ O s O phone O call O . O It O will O also O take O a O photo O using O the O device O ’ O s O front O camera O when O the O user O wakes O the O device O . O Apart O from O collecting O the O above O data O , O the O spyware O monitors O users O ’ O phone O calls O , O records O them O , O and O saves O the O recorded O file O on O the O device O . O GolfSpy B-Malware encrypts O all O the O stolen O data O using O a O simple O XOR O operation O with O a O pre-configured O key O before O sending O it O to O the O C O & O C O server O using O the O HTTP O POST O method O . O Figure O 5 O . O Code O snippets O showing O how O GolfSpy B-Malware monitors O phone O calls O via O register O receiver O ( O top O left O ) O , O its O actions O when O the O device O is O woken O up O ( O top O right O ) O , O and O how O it O encrypts O the O stolen O data O ( O bottom O ) O The O malware O retrieves O commands O from O the O C O & O C O server O via O HTTP O , O and O attackers O can O steal O specific O files O on O the O infected O device O . O The O command O is O a O constructed O string O split O into O three O parts O using O " O " O as O a O separator O . O The O first O part O is O the O target O directory O , O the O second O is O a O regular O expression O used O to O match O specific O files O , O while O the O last O part O is O an O ID O . O Figure O 6 O . O Example O of O a O command O that O steals O specific O files O from O an O infected O device O ’ O s O application O ( O top O ) O , O and O GolfSpy B-Malware ’ O s O parse-and-perform O command O ( O bottom O ) O Apart O from O the O HTTP O POST O method O , O GolfSpy B-Malware also O creates O a O socket O connection O to O the O remote O C O & O C O server O in O order O to O receive O and O perform O additional O commands O . O Stolen O data O will O also O be O encrypted O and O sent O to O the O C O & O C O server O via O the O socket O connection O . O The O encryption O key O is O different O from O the O one O used O for O sending O stolen O data O via O HTTP O . O Figure O 7 O . O The O additional O commands O that O attackers O can O carry O out O via O a O socket O connection O ( O top O ) O and O the O key O used O to O encrypt O the O stolen O data O ( O bottom O ) O Correlating O Bouncing B-Malware Golf I-Malware 's O Activities O We O monitored O Bouncing B-Malware Golf I-Malware ’ O s O C O & O C-related O activities O and O saw O that O the O campaign O has O affected O more O than O 660 O devices O as O of O this O writing O . O The O small O or O limited O number O is O understandable O given O the O nature O of O this O campaign O , O but O we O also O expect O it O to O increase O or O even O diversify O in O terms O of O distribution O . O Most O of O the O affected O devices O were O located O in O the O Middle O East O , O and O many O of O the O stolen O data O we O saw O is O military-related O ( O e.g. O , O images O , O documents O ) O . O Bouncing B-Malware Golf I-Malware ’ O s O operators O also O try O to O cover O their O tracks O . O The O registrant O contact O details O of O the O C O & O C O domains O used O in O the O campaign O , O for O instance O , O were O masked O . O The O C O & O C O server O IP O addresses O used O also O appear O to O be O disparate O , O as O they O were O located O in O many O European O countries O like O Russia O , O France O , O Holland O , O and O Germany O . O It O ’ O s O not O a O definite O correlation O , O but O Bouncing B-Malware Golf I-Malware also O seems O to O have O a O connection O with O Domestic B-Malware Kitten I-Malware due O to O similarities O we O found O in O their O code O . O For O example O , O the O Android B-System malware O that O both O deploy O share O the O same O strings O of O code O for O their O decoding O algorithm O . O The O data O that O Domestic B-Malware Kitten I-Malware steals O follows O a O similar O format O with O Bouncing B-Malware Golf I-Malware ’ O s O , O with O each O type O of O data O having O a O unique O identifying O character O . O It O ’ O s O also O worth O noting O that O both O campaigns O repackage O apps O that O are O commonly O used O in O their O target O ’ O s O countries O , O such O as O Telegram B-System , O Kik B-System , O and O Plus B-System messaging O apps O . O Figure O 8 O . O Code O snippets O showing O : O the O decoding O algorithm O shared O by O both O Bouncing B-Malware Golf I-Malware and O Domestic B-Malware Kitten I-Malware ( O top O ) O , O the O format O of O data O that O Domestic B-Malware Kitten I-Malware ’ O s O malware O targets O to O steal O ( O center O ) O , O and O how O both O Bouncing B-Malware Golf I-Malware ( O bottom O left O ) O and O Domestic B-Malware Kitten I-Malware ( O bottom O right O ) O use O " O " O as O a O separator O in O their O command O strings O . O As O we O ’ O ve O seen O in O last O year O ’ O s O mobile O threat O landscape O , O we O expect O more O cyberespionage O campaigns O targeting O the O mobile O platform O given O its O ubiquity O , O employing O tried-and-tested O techniques O to O lure O unwitting O users O . O The O extent O of O information O that O these O kinds O of O threats O can O steal O is O also O significant O , O as O it O lets O attackers O virtually O take O over O a O compromised O device O . O Users O should O adopt O best O practices O , O while O organizations O should O ensure O that O they O balance O the O need O for O mobility O and O the O importance O of O security O . O End O users O and O enterprises O can O also O benefit O from O multilayered O mobile O security O solutions O such O as O Trend B-Organization Micro™ I-Organization Mobile O Security™ O . O Trend B-Organization Micro™ I-Organization Mobile B-System Security I-System for I-System Enterprise I-System provides O device O , O compliance O and O application O management O , O data O protection O , O and O configuration O provisioning O , O as O well O as O protects O devices O from O attacks O that O exploit O vulnerabilities O , O preventing O unauthorized O access O to O apps O , O and O detecting O and O blocking O malware O and O fraudulent O websites O . O Trend B-Organization Micro I-Organization ’ O s O Mobile B-System App I-System Reputation I-System Service I-System ( O MARS O ) O covers O Android B-System and O iOS B-System threats O using O leading O sandbox O and O machine O learning O technologies O , O protecting O devices O against O malware O , O zero-day O and O known O exploits O , O privacy O leaks O , O and O application O vulnerabilities O . O Several O weeks O ago O , O Check B-Organization Point I-Organization Mobile O Threat O Prevention O detected O and O quarantined O the O Android B-System device O of O an O unsuspecting O customer O employee O who O downloaded O and O installed O a O 0day O mobile O ransomware O from O Google B-System Play I-System dubbed O “ O Charger. B-Malware ” O This O incident O demonstrates O how O malware O can O be O a O dangerous O threat O to O your O business O , O and O how O advanced O behavioral O detection O fills O mobile O security O gaps O attackers O use O to O penetrate O entire O networks O . O Charger B-Malware was O found O embedded O in O an O app O called O EnergyRescue B-Malware . O The O infected O app O steals O contacts O and O SMS O messages O from O the O user O ’ O s O device O and O asks O for O admin O permissions O . O If O granted O , O the O ransomware O locks O the O device O and O displays O a O message O demanding O payment O : O You O need O to O pay O for O us O , O otherwise O we O will O sell O portion O of O your O personal O information O on O black O market O every O 30 O minutes O . O WE O GIVE O 100 O % O GUARANTEE O THAT O ALL O FILES O WILL O RESTORE O AFTER O WE O RECEIVE O PAYMENT O . O WE O WILL O UNLOCK O THE O MOBILE O DEVICE O AND O DELETE O ALL O YOUR O DATA O FROM O OUR O SERVER O ! O TURNING O OFF O YOUR O PHONE O IS O MEANINGLESS O , O ALL O YOUR O DATA O IS O ALREADY O STORED O ON O OUR O SERVERS O ! O WE O STILL O CAN O SELLING O IT O FOR O SPAM O , O FAKE O , O BANK O CRIME O etc… O We O collect O and O download O all O of O your O personal O data O . O All O information O about O your O social O networks O , O Bank O accounts O , O Credit O Cards O . O We O collect O all O data O about O your O friends O and O family O . O The O ransom O demand O for O 0.2 O Bitcoins O ( O roughly O $ O 180 O ) O is O a O much O higher O ransom O demand O than O has O been O seen O in O mobile O ransomware O so O far O . O By O comparison O , O the O DataLust B-Malware ransomware O demanded O merely O $ O 15 O . O Payments O are O made O to O a O specific O Bitcoin B-System account O , O but O we O haven O ’ O t O identified O any O payments O so O far O . O Adware O commonly O found O on O Play O collects O profits O from O ad O networks O , O but O mobile O ransomware O inflicts O direct O harm O to O users O . O Like O FakeDefender B-Malware and O DataLust B-Malware , O Charger B-Malware could O be O an O indicator O of O a O wider O effort O by O mobile O malware O developers O to O catch O up O with O their O PC O ransomware O cousins O . O Similar O to O other O malware O seen O in O the O past O , O Charger B-Malware checks O the O local O settings O of O the O device O and O does O not O run O its O malicious O logic O if O the O device O is O located O in O Ukraine O , O Russia O , O or O Belarus O . O This O is O likely O done O to O keep O the O developers O from O being O prosecuted O in O their O own O countries O or O being O extradited O between O countries O . O Most O malware O found O on O Google B-System Play I-System contains O only O a O dropper O that O later O downloads O the O real O malicious O components O to O the O device O . O Charger B-Malware , O however O , O uses O a O heavy O packing O approach O which O it O harder O for O the O malware O to O stay O hidden O , O so O it O must O compensate O with O other O means O . O The O developers O of O Charger B-Malware gave O it O everything O they O had O to O boost O its O evasion O capabilities O and O so O it O could O stay O hidden O on O Google B-System Play I-System for O as O long O as O possible O . O The O malware O uses O several O advanced O techniques O to O hide O its O real O intentions O and O makes O it O harder O to O detect O . O It O encodes O strings O into O binary O arrays O , O making O it O hard O to O inspect O them O . O It O loads O code O from O encrypted O resources O dynamically O , O which O most O detection O engines O can O not O penetrate O and O inspect O . O The O dynamically-loaded O code O is O also O flooded O with O meaningless O commands O that O mask O the O actual O commands O passing O through O . O It O checks O whether O it O is O being O run O in O an O emulator O before O it O starts O its O malicious O activity O . O PC O malware O first O introduced O this O technique O which O is O becoming O a O trend O in O mobile O malware O having O been O adopted O by O several O malware O families O including O Dendroid B-Malware . O Emulator O and O location O conditions O for O the O malware O ’ O s O activity O Check B-Organization Point I-Organization Mobile O Threat O Prevention O customers O are O protected O from O Charger B-Malware and O similar O malware O . O Check B-Organization Point I-Organization ’ O s O Analysis O and O Response O Team O ( O ART O ) O disclosed O the O finding O to O Android B-System ’ O s O Security O team O who O took O the O appropriate O security O steps O to O remove O the O infected O app O and O added O the O malware O to O Android B-System ’ O s O built-in O protection O mechanisms O . O Charger O SHA256 O hash O : O 58eb6c368e129b17559bdeacb3aed4d9a5d3596f774cf5ed3fdcf51775232ba0 B-Indicator Infostealer O , O Keylogger O , O and O Ransomware O in O One O : O Anubis B-Malware Targets O More O than O 250 O Android B-System Applications O October O 29 O , O 2021 O The O Cofense B-Organization Phishing I-Organization Defense I-Organization Center I-Organization uncovered O a O phishing O campaign O that O specifically O targets O users O of O Android B-System devices O that O could O result O in O compromise O if O unsigned O Android B-System applications O are O permitted O on O the O device O . O The O campaign O seeks O to O deliver O Anubis B-Malware , O a O particularly O nasty O piece O of O malware O that O was O originally O used O for O cyber O espionage O and O retooled O as O a O banking O trojan O . O Anubis B-Malware can O completely O hijack O an O Android B-System mobile O device O , O steal O data O , O record O phone O calls O , O and O even O hold O the O device O to O ransom O by O encrypting O the O victim O ’ O s O personal O files O . O With O mobile O devices O increasingly O used O in O the O corporate O environment O , O thanks O to O the O popularity O of O BYOD O policies O , O this O malware O has O the O potential O to O cause O serious O harm O , O mostly O to O consumers O , O and O businesses O that O allow O the O installation O of O unsigned O applications O . O Here O ’ O s O how O it O works O : O At O first O glance O , O the O email O shown O in O Figure O 1 O looks O like O any O other O phishing O email O that O asks O the O user O to O download O an O invoice O . O However O , O this O particular O email O downloads O an O Android B-System Package I-System Kit I-System ( O APK O ) O , O which O is O the O common O format O used O by O Android B-System to O distribute O and O install O applications O . O Let O ’ O s O take O a O closer O look O at O the O suspicious O file O . O Figure O 1 O – O Phishing O Email O When O the O email O link O is O opened O from O an O Android B-System device O , O an O APK O file O ( O Fattura002873.apk B-Indicator ) O , O is O downloaded O . O Upon O opening O the O file O , O the O user O is O asked O to O enable O “ O Google B-System Play I-System Protect O ” O as O shown O in O Figure O 2 O . O However O , O this O is O not O a O genuine O “ O Google B-System Play I-System Protect O ” O screen O ; O instead O it O gives O the O app O all O the O permissions O it O needs O while O simultaneously O disabling O the O actual O Google B-System Play I-System Protect I-System . O Figure O 2 O – O Granting O Permissions O The O following O permissions O are O granted O to O the O app O : O Figure O 3 O – O Permissions O Granted O to O App O A O closer O look O at O the O code O reveals O the O application O gathers O a O list O of O installed O applications O to O compare O the O results O against O a O list O of O targeted O applications O ( O Figure O 4 O ) O . O The O malware O mainly O targets O banking O and O financial O applications O , O but O also O looks O for O popular O shopping O apps O such O as O eBay B-Organization or O Amazon B-Organization . O A O full O list O of O targeted O applications O is O included O in O the O IOC O section O at O the O end O of O this O post O . O Once O an O application O has O been O identified O , O Anubis B-Malware overlays O the O original O application O with O a O fake O login O page O to O capture O the O user O ’ O s O credentials O . O Figure O 4 O – O Checking O for O installed O apps O Based O on O a O thorough O analysis O of O the O code O , O the O most O interesting O technical O capabilities O include O : O Capturing O screenshots O Enabling O or O changing O administration O settings O Opening O and O visiting O any O URL O Disabling O Play O Protect O Recording O audio O Making O phone O calls O Stealing O the O contact O list O Controlling O the O device O via O VNC O Sending O , O receiving O and O deleting O SMS O Locking O the O device O Encrypting O files O on O the O device O and O external O drives O Searching O for O files O Retrieving O the O GPS O location O Capturing O remote O control O commands O from O Twitter B-System and O Telegram B-System Pushing O overlays O Reading O the O device O ID O The O malware O includes O a O keylogger O that O works O in O every O app O installed O on O the O Android B-System device O . O However O , O the O keylogger O needs O to O be O specifically O enabled O by O a O command O sent O from O the O C2 O server O . O The O keylogger O can O track O three O different O events O ( O Figure O 5 O ) O : O TYPE_VIEW_CLICKED O Represents O the O event O of O clicking O on O a O View-like O Button O , O CompoundButton O , O etc O . O TYPE_VIEW_FOCUSED O Represents O the O event O of O setting O input O focus O of O a O View O . O TYPE_VIEW_TEXT_CHANGED O Represents O the O event O of O changing O the O text O of O an O EditText O . O Figure O 5 O – O Keylogger O component O Figure O 6 O shows O one O of O the O most O noteworthy O functions O of O Anubis B-Malware : O its O ransomware O module O . O The O malware O searches O both O internal O and O external O storage O and O encrypts O them O using O RC4 O . O It O adds O the O file O extension O .AnubisCrypt B-Indicator to O each O encrypted O file O and O sends O it O to O the O C2 O . O Figure O 6 O – O Ransomware O component O Anubis B-Malware has O been O known O to O utilize O Twitter B-Organization or O Telegram B-Organization to O retrieve O the O C2 O address O and O this O sample O is O no O exception O ( O Figure O 7 O ) O . O Figure O 7 O – O C2 O As O seen O in O Figure O 8 O , O this O version O of O Anubis B-Malware is O built O to O run O on O several O iterations O of O the O Android B-System operating O system O , O dating O back O to O version O 4.0.3 O , O which O was O released O in O 2012 O . O Figure O 8 O – O Android B-System requirements O Android B-System malware O has O been O around O for O many O years O and O will O be O with O us O for O the O foreseeable O future O . O Users O who O have O configured O their O Android B-System mobile O device O to O receive O work-related O emails O and O allow O installation O of O unsigned O applications O face O the O most O risk O of O compromise O . O APK O files O will O not O natively O open O in O an O environment O other O than O an O Android B-System device O . O With O the O increased O use O of O Android B-System phones O in O business O environments O , O it O is O important O to O defend O against O these O threats O by O ensuring O devices O are O kept O current O with O the O latest O updates O . O Limiting O app O installations O on O corporate O devices O , O as O well O as O ensuring O that O applications O are O created O by O trusted O developers O on O official O marketplaces O , O can O help O in O reducing O the O risk O of O infection O as O well O . O ViceLeaker B-Malware Operation O : O mobile O espionage O targeting O Middle O East O 26 O JUN O 2019 O In O May O 2018 O , O we O discovered O a O campaign O targeting O dozens O of O mobile O Android B-System devices O belonging O to O Israeli O citizens O . O Kaspersky B-Organization spyware O sensors O caught O the O signal O of O an O attack O from O the O device O of O one O of O the O victims O ; O and O a O hash O of O the O APK O involved O ( O Android B-System application O ) O was O tagged O in O our O sample O feed O for O inspection O . O Once O we O looked O into O the O file O , O we O quickly O found O out O that O the O inner-workings O of O the O APK O included O a O malicious O payload O , O embedded O in O the O original O code O of O the O application O . O This O was O an O original O spyware O program O , O designed O to O exfiltrate O almost O all O accessible O information O . O During O the O course O of O our O research O , O we O noticed O that O we O were O not O the O only O ones O to O have O found O the O operation O . O Researchers O from O Bitdefender B-System also O released O an O analysis O of O one O of O the O samples O in O a O blogpost O . O Although O something O had O already O been O published O , O we O decided O to O do O something O different O with O the O data O we O acquired O . O The O following O month O , O we O released O a O private O report O on O our O Threat O Intelligence O Portal O to O alert O our O clients O about O this O newly O discovered O operation O and O began O writing O YARA O rules O in O order O to O catch O more O samples O . O We O decided O to O call O the O operation O “ O ViceLeaker B-Malware ” O , O because O of O strings O and O variables O in O its O code O . O Mobile O ViceLeaker B-Malware The O following O table O shows O meta O information O on O the O observed O samples O , O including O compiler O timestamps O : O MD5 O Package O Compiler O C2 O 51df2597faa3fce38a4c5ae024f97b1c B-Indicator com.xapps.SexGameForAdults B-Indicator dexlib O 2.x O 188.165.28 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 251 I-Indicator 2d108ff3a735dea1d1fdfa430f37fab2 B-Indicator com.psiphon3 B-Indicator dexlib O 2.x O 188.165.49 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 205 I-Indicator 7ed754a802f0b6a1740a99683173db73 B-Indicator com.psiphon3 B-Indicator dexlib O 2.x O 188.165.49 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 205 I-Indicator 3b89e5cd49c05ce6dc681589e6c368d9 B-Indicator ir.abed.dastan B-Indicator dexlib O 2.x O 185.141.60 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 213 I-Indicator To O backdoor O legitimate O applications O , O attackers O used O a O Smali O injection O technique O – O a O type O of O injection O that O allows O attackers O to O disassemble O the O code O of O original O app O with O the O Baksmali O tool O , O add O their O malicious O code O , O and O assemble O it O with O Smali O . O As O a O result O , O due O to O such O an O unusual O compilation O process O , O there O were O signs O in O the O dex O file O that O point O to O dexlib O , O a O library O used O by O the O Smali O tool O to O assemble O dex O files O . O Original O code O of O the O APK O on O the O left O , O versus O injected O APK O on O the O right O The O analysis O of O the O APK O was O rather O interesting O , O because O some O of O the O actions O were O very O common O spyware O features O , O such O as O the O exfiltration O of O SMS O messages O , O call O logs O and O other O data O . O However O , O in O addition O to O the O traditional O functionality O , O there O were O also O backdoor O capabilities O such O as O upload O , O download O , O delete O files O , O camera O takeover O and O record O surrounding O audio O . O The O malware O uses O HTTP O for O communication O with O the O C2 O server O for O command O handling O and O data O exfiltration O . O Here O is O a O command O and O control O protocol O fragment O : O Commands O from O C2 O server O parsing O In O total O , O the O malicious O APK O handles O 16 O different O commands O : O Command O Endpoint O Description O 1 O reqsmscal.php B-Indicator Send O specified O SMS O message O 2 O reqsmscal.php B-Indicator Call O specified O number O 3 O reqsmscal.php B-Indicator Exfiltrate O device O info O , O such O as O phone O model O and O OS O version O 4 O reqsmscal.php B-Indicator Exfiltrate O a O list O of O all O installed O applications O 5 O reqsmscal.php B-Indicator Exfiltrate O default O browser O history O ( O limited O to O a O given O date O ) O 6 O reqsmscal.php B-Indicator Exfiltrate O Chrome O browser O history O ( O limited O to O a O given O date O ) O 7 O reqsmscal.php B-Indicator Exfiltrate O memory O card O file O structure O 8 O reqsmscal.php B-Indicator Record O surrounding O sound O for O 80 O seconds O 1 O reqcalllog.php B-Indicator Exfiltrate O all O call O logs O 2 O reqcalllog.php B-Indicator Exfiltrate O all O SMS O messages O 3 O reqcalllog.php B-Indicator Upload O specified O file O from O the O device O to O the O C2 O 4 O reqcalllog.php B-Indicator Download O file O from O specified O URL O and O save O on O device O 5 O reqcalllog.php B-Indicator Delete O specified O file O 6,7,8 O reqcalllog.php B-Indicator Commands O not O yet O implemented O 9 O reqcalllog.php B-Indicator Take O photo O ( O muted O audio O ) O with O rear O camera O , O send O to O C2 O 10 O reqcalllog.php B-Indicator Take O photo O ( O muted O audio O ) O with O front O camera O , O send O to O C2 O All O observed O samples O with O Smali O injections O were O signed O by O the O same O debug O certificate O ( O 0x936eacbe07f201df O ) O . O As O we O know O from O our O investigation O , O traces O of O the O first O development O activities O were O found O at O the O end O of O 2016 O , O but O the O main O distribution O campaign O began O in O 2018 O ( O end O of O 2017 O ) O . O Based O on O our O detection O statistics O , O the O main O infection O vector O is O the O spread O of O Trojanized O applications O directly O to O victims O via O Telegram O and O WhatsApp O messengers O . O There O are O the O following O relevant O detection O paths O ( O the O last O one O is O an O alternative O Telegram O client O – O “ O Telegram O X O “ O ) O : O Name O Detection O path O Sex O Game O For O Adults O 18.apk B-Indicator /storage/emulated/0/WhatsApp/Media/WhatsApp B-Indicator Documents/ I-Indicator 4_6032967490689041387.apk I-Indicator /storage/emulated/0/Telegram/Telegram I-Indicator Documents/ I-Indicator Psiphon-v91.apk B-Indicator /storage/emulated/0/Android/data/org.thunderdog.challegram/files/documents/ B-Indicator Backdoored O Open O Source O During O the O course O of O our O analysis O , O we O also O found O samples O sharing O code O with O the O ViceLeaker B-Malware malware O , O in O particular O they O shared O a O delimiter O that O was O used O in O both O cases O to O parse O commands O from O the O C2 O server O . O This O would O be O a O very O unusual O coincidence O . O Even O when O a O false O flag O might O also O be O a O possibility O , O we O consider O this O to O be O unlikely O . O The O samples O sharing O this O overlap O are O modified O versions O of O an O open O source O Jabber/XMPP B-System client O called O “ O Conversations O ” O with O some O code O additions O . O The O legitimate O version O of O this O app O is O also O available O on O Google B-System Play I-System . O The O Conversations O modified O samples O differ O from O the O original O one O in O the O getKnownHosts O method O that O was O modified O to O replace O the O main O XMPP B-System host O with O the O attackers O ’ O C2 O server O : O It O appears O that O the O attackers O were O using O a O specific O C2 O for O the O use O of O that O app O . O Another O important O modification O is O in O the O message O transfer O process O : O With O this O modification O , O an O application O sends O device O location O coordinates O with O every O message O . O There O are O also O many O other O modifications O , O fully O described O in O our O private O report O . O In O addition O , O we O did O not O see O traces O of O the O Smali O injection O . O In O this O case O we O found O traces O of O dx/dexmerge O compilers O , O which O means O that O , O this O time O , O the O attackers O just O imported O the O original O source O code O into O an O Android B-System IDE O ( O such O as O Android B-System Studio I-System , O for O instance O ) O and O compiled O it O with O their O own O modifications O . O In O addition O to O adding O the O code O , O the O attackers O also O changed O the O icon O and O package O name O . O We O do O not O know O why O , O but O we O suspect O that O it O was O an O attempt O to O hide O the O origin O of O the O application O . O Conversations-based O app O mimics O Telegram B-System messenger I-System Even O when O we O originally O thought O this O was O a O backdoored O version O of O the O Conversations O app O , O used O to O infect O victims O , O we O didn´t O discovered O anything O malicious O in O it O . O This O brought O to O us O the O hypothesis O that O this O might O be O a O version O used O by O the O group O behind O ViceLeaker B-Malware for O internal O communication O or O for O other O , O unclear O purposes O . O All O the O detections O of O this O backdoored O app O were O geolocated O in O Iran O . O Backdoored O Conversations O C2 O server O analysis O During O the O analysis O of O the O Smali O injected O apps O and O their O C2 O server O infrastructure O we O hadn O ’ O t O found O any O interesting O clues O , O but O things O changed O when O we O looked O at O the O C2 O server O of O the O linked O Conversations O messenger O . O It O uses O “ O 185.51.201 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator 133 I-Indicator ” O as O a O main O C2 O address O , O and O there O is O only O one O domain O that O is O hosted O on O this O dedicated O server O – O iliageram B-Indicator [ I-Indicator . I-Indicator ] I-Indicator ir I-Indicator . O Note O that O we O later O found O versions O that O used O the O domain O as O a O C2 O directly O instead O of O the O IP O address O . O The O record O contains O a O personal O email O address O : O WHOIS O records O of O C2 O server O exposing O the O attacker O ’ O s O email O address O We O were O aware O of O the O possibility O that O the O attackers O might O be O using O a O compromised O email O account O , O so O we O dug O deeper O to O find O more O information O related O to O this O email O address O . O A O quick O search O produced O results O about O a O personal O page O and O , O what O is O more O interesting O , O a O GitHub B-Organization account O that O contains O a O forked O Conversation O repository O . O Related O Github B-Organization account O contains O forked O Conversations O repository O Summarizing O all O the O found O clues O , O we O have O the O following O attribution O flow O : O Conclusion O The O operation O of O ViceLeaker B-Malware is O still O ongoing O , O as O is O our O research O . O The O attackers O have O taken O down O their O communication O channels O and O are O probably O looking O for O ways O to O assemble O their O tools O in O a O different O manner O . O Kaspersky B-Organization detects O and O blocks O samples O of O the O ViceLeaker B-Malware operation O using O the O following O verdict O : O Trojan-Spy.AndroidOS.ViceLeaker B-Indicator . I-Indicator * I-Indicator Actually O , O we O are O currently O investigating O whether O this O group O might O also O be O behind O a O large-scale O web-oriented O attack O at O the O end O of O 2018 O using O code O injection O and O exploiting O SQL B-Vulnerability vulnerabilities I-Vulnerability . O Even O when O this O would O not O be O directly O related O to O the O Android B-System malware O described O in O this O blogpost O , O it O would O be O an O indicator O of O wider O capabilities O and O objectives O of O this O actor O . O XLoader B-Malware Android B-System Spyware O and O Banking O Trojan O Distributed O via O DNS O Spoofing O We O have O been O detecting O a O new O wave O of O network O attacks O since O early O March O , O which O , O for O now O , O are O targeting O Japan O , O Korea O , O China O , O Taiwan O , O and O Hong O Kong O . O Trend B-Organization Micro I-Organization detects O these O as O ANDROIDOS_XLOADER.HRX B-Indicator . O By O : O Trend B-Organization Micro I-Organization April O 20 O , O 2018 O We O have O been O detecting O a O new O wave O of O network O attacks O since O early O March O , O which O , O for O now O , O are O targeting O Japan O , O Korea O , O China O , O Taiwan O , O and O Hong O Kong O . O The O attacks O use O Domain O Name O System O ( O DNS O ) O cache O poisoning/DNS O spoofing O , O possibly O through O infringement O techniques O such O as O brute-force O or O dictionary O attacks O , O to O distribute O and O install O malicious O Android B-System apps O . O Trend B-Organization Micro I-Organization detects O these O as O ANDROIDOS_XLOADER.HRX B-Indicator . O These O malware O pose O as O legitimate O Facebook B-System or O Chrome B-System applications O . O They O are O distributed O from O polluted O DNS O domains O that O send O a O notification O to O an O unknowing O victim O ’ O s O device O . O The O malicious O apps O can O steal O personally O identifiable O and O financial O data O and O install O additional O apps O . O XLoader B-Malware can O also O hijack O the O infected O device O ( O i.e. O , O send O SMSs O ) O and O sports O self-protection/persistence O mechanisms O through O device O administrator O privileges O . O Infection O Chain O As O with O our O earlier O reports O in O late O March O , O the O attack O chain O involves O diverting O internet O traffic O to O attacker-specified O domains O by O compromising O and O overwriting O the O router O ’ O s O DNS O settings O . O A O fake O alert O will O notify O and O urge O the O user O to O access O the O malicious O domain O and O download O XLoader B-Malware . O Technical O Analysis O XLoader B-Malware first O loads O the O encrypted O payload O from O Assets/db B-Indicator as O test.dex B-Indicator to O drop O the O necessary O modules O then O requests O for O device O administrator O privileges O . O Once O granted O permission O , O it O hides O its O icon O from O the O launcher O application O list O then O starts O a O service O that O it O keeps O running O in O the O background O . O The O background O service O uses O the O reflection O technique O ( O a O feature O that O allows O the O inspection O and O modification O of O Java-based O programs O ’ O internal O properties O ) O to O invoke O the O method O com.Loader.start B-Indicator in O the O payload O . O Monitoring O Broadcast O Events O XLoader B-Malware registers O many O broadcast O receivers O in O the O payload O dynamically O ( O to O monitor O broadcast O events O sent O between O system O and O applications O ) O . O Registering O broadcast O receivers O enable O XLoader B-Malware to O trigger O its O malicious O routines O . O Here O is O a O list O of O broadcast O actions O : O android.provider.Telephony.SMS_RECEIVED B-Indicator android.net.conn.CONNECTIVITY_CHANGE B-Indicator android.intent.action.BATTERY_CHANGED B-Indicator android.intent.action.USER_PRESENT B-Indicator android.intent.action.PHONE_STATE B-Indicator android.net.wifi.SCAN_RESULTS B-Indicator android.intent.action.PACKAGE_ADDED B-Indicator android.intent.action.PACKAGE_REMOVED B-Indicator android.intent.action.SCREEN_OFF B-Indicator android.intent.action.SCREEN_ON B-Indicator android.media.RINGER_MODE_CHANGED B-Indicator android.sms.msg.action.SMS_SEND B-Indicator android.sms.msg.action.SMS_DELIVERED B-Indicator Creating O a O Web O Server O to O Phish O XLoader B-Malware creates O a O provisional O web O server O to O receive O the O broadcast O events O . O It O can O also O create O a O simple O HTTP O server O on O the O infected O device O to O deceive O victims O . O It O shows O a O web O phishing O page O whenever O the O affected O device O receives O a O broadcast O event O ( O i.e. O , O if O a O new O package O is O installed O or O if O the O device O ’ O s O screen O is O on O ) O to O steal O personal O data O , O such O as O those O keyed O in O for O banking O apps O . O The O phishing O page O is O translated O in O Korean O , O Japanese O , O Chinese O , O and O English O , O which O are O hardcoded O in O the O payload O . O It O will O appear O differently O to O users O depending O on O the O language O set O on O the O device O . O XLoader B-Malware as O Spyware O and O Banking O Trojan O XLoader B-Indicator can O also O collect O information O related O to O usage O of O apps O installed O in O the O device O . O Its O data-stealing O capabilities O include O collecting O SMSs O after O receiving O an O SMS-related O broadcast O event O and O covertly O recording O phone O calls O . O XLoader B-Malware can O also O hijack O accounts O linked O to O financial O or O game-related O apps O installed O on O the O affected O device O . O XLoader B-Malware can O also O start O other O attacker-specified O packages O . O A O possible O attack O scenario O involves O replacing O legitimate O apps O with O repackaged O or O malicious O versions O . O By O monitoring O the O package O installation O broadcast O event O , O XLoader B-Malware can O start O their O packages O . O This O enables O it O to O launch O malicious O apps O without O the O user O ’ O s O awareness O and O explicit O consent O . O We O reverse O engineered O XLoader B-Malware and O found O that O it O appears O to O target O South O Korea-based O banks O and O game O development O companies O . O XLoader B-Malware also O prevents O victims O from O accessing O the O device O ’ O s O settings O or O using O a O known O antivirus O ( O AV O ) O app O in O the O country O . O XLoader B-Malware can O also O load O multiple O malicious O modules O to O receive O and O execute O commands O from O its O remote O command-and-control O ( O C O & O C O ) O server O , O as O shown O below O : O Here O ’ O s O a O list O of O the O modules O and O their O functions O : O sendSms O — O send O SMS/MMS O to O a O specified O address O setWifi O — O enable O or O disable O Wi-Fi O connection O gcont O — O collect O all O the O device O ’ O s O contacts O lock O — O currently O just O an O input O lock O status O in O the O settings O ( O pref O ) O file O , O but O may O be O used O as O a O screenlocking O ransomware O bc O — O collect O all O contacts O from O the O Android B-System device O and O SIM O card O setForward O — O currently O not O implemented O , O but O can O be O used O to O hijack O the O infected O device O getForward O — O currently O not O implemented O , O but O can O be O used O to O hijack O the O infected O device O hasPkg O — O check O the O device O whether O a O specified O app O is O installed O or O not O setRingerMode O — O set O the O device O ’ O s O ringer O mode O setRecEnable O — O set O the O device O ’ O s O ringer O mode O as O silent O reqState O — O get O a O detailed O phone O connection O status O , O which O includes O activated O network O and O Wi-Fi O ( O with O or O without O password O ) O showHome O — O force O the O device O ’ O s O back O to O the O home O screen O getnpki O : O get O files/content O from O the O folder O named O NPKI O ( O contains O certificates O related O to O financial O transactions O ) O http O — O access O a O specified O network O using O HttpURLConnection O onRecordAction O — O simulate O a O number-dialed O tone O call O — O call O a O specified O number O get_apps O — O get O all O the O apps O installed O on O the O device O show_fs_float_window O — O show O a O full-screen O window O for O phishing O Of O note O is O XLoader B-Malware ’ O s O abuse O of O the O WebSocket O protocol O ( O supported O in O many O browsers O and O web O applications O ) O via O ws O ( O WebSockets O ) O or O wss O ( O WebSockets O over O SSL/TLS O ) O to O communicate O with O its O C O & O C O servers O . O The O URLs O — O abused O as O part O of O XLoader B-Malware ’ O s O C O & O C O — O are O hidden O in O three O webpages O , O and O the O C O & O C O server O that O XLoader B-Malware connects O to O differ O per O region O . O The O abuse O of O the O WebSocket O protocol O provides O XLoader B-Malware with O a O persistent O connection O between O clients O and O servers O where O data O can O be O transported O any O time O . O XLoader B-Malware abuses O the O MessagePack O ( O a O data O interchange O format O ) O to O package O the O stolen O data O and O exfiltrate O it O via O the O WebSocket O protocol O for O faster O and O more O efficient O transmission O . O Mitigations O XLoader B-Malware will O not O download O malicious O apps O if O the O Android O device O uses O a O mobile O data O connection O . O Nevertheless O , O users O should O practice O proper O security O hygiene O to O mitigate O threats O that O may O take O advantage O of O a O home O or O business O router O ’ O s O security O gaps O . O Employ O stronger O credentials O , O for O instance O , O to O make O them O less O susceptible O to O unauthorized O access O . O Regularly O update O and O patch O the O router O ’ O s O software O and O firmware O to O prevent O exploits O , O and O enable O its O built-in O firewall O . O For O system O administrators O and O information O security O professionals O , O configuring O the O router O to O be O more O resistant O to O attacks O like O DNS O cache O poisoning O can O help O mitigate O similar O threats O . O Everyday O users O can O do O the O same O by O checking O the O router O ’ O s O DNS O settings O if O they O ’ O ve O been O modified O . O Even O threats O like O DNS O cache O poisoning O employ O social O engineering O , O so O users O should O also O be O more O prudent O against O suspicious O or O unknown O messages O that O have O telltale O signs O of O malware O . O We O have O worked O with O Google B-Organization and O they O ensure O that O Google B-System Play I-System Protect I-System proactively O catches O apps O of O this O nature O . O No O instances O of O these O apps O were O found O in O Google B-System Play I-System . O September O 08 O , O 2020 O TikTok B-System Spyware O A O detailed O analysis O of O spyware O masquerading O as O TikTok B-System A O recent O threat O to O ban O TikTok B-System in O the O United O States O has O taken O the O internet O by O storm O and O received O mixed O reactions O from O social O media O and O internet O users O . O U.S. O President O Donald O Trump O has O ordered O ByteDance B-Organization , O the O parent O company O of O TikTok B-System , O to O sell O its O U.S. O TikTok B-System assets O and O also O issued O executive O orders O that O would O ban O the O social O media O apps O TikTok B-System and O WeChat B-System from O operating O in O the O U.S. O if O the O sale O doesn O ’ O t O happen O in O the O next O few O weeks O . O On O the O other O side O , O ByteDance B-Organization has O filed O a O lawsuit O suing O the O Trump O administration O . O When O popular O applications O come O under O fire O and O are O featured O prominently O in O the O news O , O hackers O get O excited O as O these O newsworthy O apps O can O become O their O latest O target O . O And O TikTok B-System is O no O exception O . O Generally O , O after O an O application O gets O banned O from O an O official O app O store O , O such O as O Google B-System Play I-System , O users O try O to O find O alternative O ways O to O download O the O app O . O In O doing O so O , O users O can O become O victims O to O malicious O apps O portraying O themselves O as O the O original O app O . O Recently O there O was O a O huge O wave O of O SMS O messages O , O as O well O as O Whatsapp B-System messages O , O making O the O rounds O asking O users O to O download O the O latest O version O of O TikTok B-System at O hxxp B-Indicator : I-Indicator //tiny I-Indicator [ I-Indicator . I-Indicator ] I-Indicator cc/TiktokPro I-Indicator . O In O reality O , O this O downloaded O app O is O a O fake O app O that O asks O for O credentials O and O Android B-System permissions O ( O including O camera O and O phone O permissions O ) O , O resulting O in O the O user O being O bombarded O with O advertisements O . O Recently O , O we O have O come O across O another O variant O of O this O app O portraying O itself O as O TikTok B-System Pro I-System , O but O this O is O a O full-fledged O spyware O with O premium O features O to O spy O on O victim O with O ease O . O ( O Please O note O this O is O a O different O app O and O not O the O same O as O the O one O being O spread O by O hxxp B-Indicator : I-Indicator //tiny I-Indicator [ I-Indicator . I-Indicator ] I-Indicator cc/TiktokPro I-Indicator . I-Indicator ) I-Indicator Technical O Analysis O App O Name O : O TikTok B-System Pro I-System Hash O : O 9fed52ee7312e217bd10d6a156c8b988 B-Indicator Package O Name O : O com.example.dat.a8andoserverx B-Indicator Upon O installation O , O the O spyware O portrays O itself O as O TikTok B-System using O the O name O TikTok B-System Pro I-System . O As O soon O as O a O user O tries O to O open O the O app O , O it O launches O a O fake O notification O and O soon O the O notification O as O well O as O the O app O icon O disappears O . O This O fake O notification O tactic O is O used O to O redirect O the O user O 's O attention O , O meanwhile O the O app O hides O itself O , O making O the O user O believe O the O app O to O be O faulty O . O This O functionality O can O be O seen O in O Figure O 1 O . O App O Icon O Figure O 1 O : O App O icon O and O fake O notification O . O Behind O the O scenes O , O there O are O number O of O process O occurring O simultaneously O . O First O , O an O activity O named O MainActivity O fires O up O , O taking O care O of O hiding O the O icon O and O showing O the O fake O notification O . O It O also O starts O an O Android B-System service O named O MainService O . O The O spyware O also O appears O to O have O an O additional O payload O stored O under O the O /res/raw/ O directory O . O This O is O a O common O technique O used O by O malware O developers O to O bundle O the O main O payload O inside O the O Android B-System package O to O avoid O easy O detection O . O As O seen O in O Figure O 2 O , O the O app O tries O to O open O the O payload O from O the O /res/raw/ O directory O and O generate O an O additional O Android B-System Package I-System Kit I-System ( O APK O ) O named O .app.apk B-Indicator : O Decoy O Code O Figure O 2 O : O The O decoy O code O for O the O fake O TikTok B-System . O Upon O analysis O , O we O discovered O that O this O is O a O decoy O functionality O and O no O new O payload O is O generated O . O The O conditions O to O build O an O additional O payload O are O never O met O . O Going O one O step O further O , O we O rebuilt O the O malware O to O execute O the O apparent O functionality O of O generating O a O payload O , O but O discovered O that O the O APK O stored O in O the O /res/raw/ O directory O is O empty O . O The O placement O of O the O decoy O functionality O is O likely O designed O to O confuse O the O malware O researchers O . O It O is O also O possible O that O this O functionality O is O under O development O , O making O this O placeholder O code O incomplete O . O Coming O back O to O the O execution O flow O , O once O the O spyware O hides O itself O , O it O starts O an O Android B-System service O named O MainService O . O Android B-System services O are O components O that O can O be O made O to O execute O independently O in O the O background O without O the O victim O 's O knowledge O . O MainService O is O the O brain O of O this O spyware O and O controls O almost O everything—from O stealing O the O victim O 's O data O to O deleting O it O . O All O of O its O capabilities O are O discussed O later O in O this O blog O . O Hide O Icon O Figure O 3 O : O Code O showing O the O hiding O icon O and O starting O service O . O As O MainService O is O the O main O controller O , O the O developer O has O taken O the O appropriate O actions O to O keep O it O functional O and O running O at O all O times O . O The O malware O developer O uses O various O tactics O to O do O so O , O and O one O of O them O is O using O Android B-System 's O broadcast O receivers O . O Broadcast O receivers O are O components O that O allow O you O to O register O for O various O Android B-System events O . O In O this O case O , O it O registers O three O broadcast O receivers O : O MyReceiver O - O Triggers O when O the O device O is O booted O . O Intercept O Call O - O Triggers O on O incoming O and O outgoing O calls O . O AlarmReceiver O - O Triggers O every O three O minutes O . O MyReceiver O and O AlarmReceiver O start O the O MainService O whenever O appropriate O events O occur O . O This O tactic O is O very O common O among O malware O developers O to O ensure O the O malware O is O not O killed O by O the O Android B-System OS O or O by O any O other O means O . O Figure O 4 O shows O MyReceiver O in O action O where O it O eventually O calls O the O MainService O service O . O Broadcast O Receiver O Figure O 4 O : O MyReceiver O broadcast O receiver O . O The O InterceptCall O receiver O is O triggered O whenever O there O is O an O incoming O or O outgoing O call O . O It O sets O particular O parameters O in O relation O to O call O details O and O a O further O service O named O calls O takes O the O control O as O seen O in O Figure O 5 O . O Call O Service O Figure O 5 O : O Code O for O the O calls O service O As O seen O above O , O the O calls O service O stores O incoming O call O details O in O .mp3 O format O in O the O /sdcard/DCIM/.dat/ O directory O with O file O name O appended O with O " O In_ O '' O for O incoming O calls O and O " O Out_ O '' O for O outgoing O calls O . O How O these O recorded O calls O are O sent O to O the O command O and O control O server O ( O CnC O ) O is O taken O care O of O by O MainService O , O which O is O discussed O next O . O MainService O is O the O central O controller O of O this O spyware O . O It O controls O each O and O every O functionality O based O on O the O commands O sent O by O the O command O and O control O ( O C O & O C O ) O server O . O As O soon O as O this O service O is O started O , O it O creates O two O processes O that O take O care O of O connection O and O disconnection O to O the O C O & O C O server O . O This O functionality O can O be O seen O in O Figure O 6 O . O TimerTask O Figure O 6 O : O The O timer O task O . O MainService O has O the O following O capabilities O : O Steal O SMS O messages O Send O SMS O messages O Steal O the O victim O 's O location O Capture O photos O Execute O commands O Capture O screenshots O Call O phone O numbers O Initiate O other O apps O Steal O Facebook B-System credentials O , O etc O All O of O the O above O functionalities O take O place O on O the O basis O of O commands O sent O by O the O attacker O . O Stolen O data O is O stored O in O external O storage O under O the O /DCIM/ O directory O with O a O hidden O sub-directory O named O " O .dat O '' O . O Below O is O the O list O of O all O the O commands O catered O by O the O C O & O C O server O . O Command O Action O Unistxcr O Restart O the O app O dowsizetr O Send O the O file O stored O in O the O /sdcard/DCIM/.dat/ O directory O to O the O C O & O C O server O Caspylistx O Get O a O list O of O all O hidden O files O in O the O /DCIM/.dat/ O directory O spxcheck O Check O whether O call O details O are O collected O by O the O spyware O S8p8y0 O Delete O call O details O stored O by O the O spyware O screXmex O Take O screenshots O of O the O device O screen O Batrxiops O Check O battery O status O L4oclOCMAWS O Fetch O the O victim O 's O location O GUIFXB O Launch O the O fake O Facebook B-System login O page O IODBSSUEEZ O Send O a O file O containing O stolen O Facebook B-System credentials O to O the O C O & O C O server O FdelSRRT O Delete O files O containing O stolen O Facebook B-System credentials O chkstzeaw O Launch O Facebook B-System LUNAPXER O Launch O apps O according O to O the O package O name O sent O by O the O C O & O C O server O Gapxplister O Get O a O list O of O all O installed O applications O DOTRall8xxe O Zip O all O the O stolen O files O and O store O in O the O /DCIM/.dat/ O directory O Acouxacour O Get O a O list O of O accounts O on O the O victim O 's O device O Fimxmiisx O Open O the O camera O Scxreexcv4 O Capture O an O image O micmokmi8x O Capture O audio O Yufsssp O Get O latitude O and O longitude O GExCaalsss7 O Get O call O logs O PHOCAs7 O Call O phone O numbers O sent O by O the O C O & O C O server O Gxextsxms O Get O a O list O of O inbox O SMS O messages O Msppossag O Send O SMS O with O message O body O sent O by O the O C O & O C O server O Getconstactx O Get O a O list O of O all O contacts O Rinxgosa O Play O a O ringtone O bithsssp64 O Execute O commands O sent O by O the O C O & O C O server O DOWdeletx O Deletes O the O file O specified O by O the O C O & O C O server O Deldatall8 O Delete O all O files O stored O in O the O /sdcard/DCIM/.dat/ O directory O We O do O n't O have O the O space O to O cover O all O of O the O commands O , O but O let O 's O take O a O look O at O some O of O the O major O ones O . O Facebook B-System phishing O One O of O the O interesting O features O of O this O spyware O is O the O ability O to O steal O Facebook B-System credentials O using O a O fake O login O page O , O similar O to O phishing O . O Upon O receiving O the O command O GUIFXB O , O the O spyware O launches O a O fake O Facebook B-System login O page O . O As O soon O as O the O victim O tries O to O log O in O , O it O stores O the O victim O 's O credentials O in O /storage/0/DCIM/.fdat O Facebook B-System Login O Figure O 7 O : O Fake O Facebook B-System login O The O second O command O is O IODBSSUEEZ O , O which O further O sends O stolen O credentials O to O the O C O & O C O server O , O as O seen O in O Figure O 8 O . O Stolen O Data O Figure O 8 O : O Sending O data O to O the O attacker O . O This O functionality O can O be O easily O further O extended O to O steal O other O information O , O such O as O bank O credentials O , O although O we O did O not O see O any O banks O being O targeted O in O this O attack O . O Calling O functionality O Command O PHOCAs7 O initiates O calling O functionality O . O The O number O to O call O is O received O along O with O the O command O , O as O seen O in O Figure O 9 O . O Call O Command O Figure O 9 O : O The O calling O functionality O . O The O phone O number O is O fetched O from O a O response O from O the O C O & O C O server O and O is O stored O in O str3 O variable O , O which O further O is O utilized O using O the O tel O : O function O . O Stealing O SMS O The O Gxextsxms O command O is O responsible O for O fetching O all O the O SMS O messages O from O the O victim O 's O device O and O sending O it O over O to O the O C O & O C O server O . O Stealing O SMS O Figure O 10 O : O Stealing O SMS O messages O . O Similarly O , O there O are O many O crucial O commands O that O further O allow O this O spyware O to O perform O additional O functionality O , O such O as O executing O commands O sent O by O the O C O & O C O , O clicking O photos O , O capturing O screenshots O , O stealing O location O information O , O and O more O . O Further O analysis O Upon O further O research O , O we O found O this O spyware O to O be O developed O by O a O framework O similar O to O Spynote B-Malware and O Spymax B-Malware , O meaning O this O could O be O an O updated O version O of O these O Trojan O builders O , O which O allow O anyone O , O even O with O limited O knowledge O , O to O develop O full-fledged O spyware O . O Many O of O the O functionalities O seen O in O this O spyware O are O similar O to O Spynote B-Malware and O Spymax B-Malware based O on O the O samples O we O analyzed O with O some O modifications O . O This O spyware O sample O communicates O over O dynamic O DNS O . O By O doing O so O , O attackers O can O easily O set O up O the O Trojan O to O communicate O back O to O them O without O any O need O for O high-end O servers O . O Other O common O functionalities O include O executing O commands O received O from O the O attacker O , O taking O screenshots O of O the O victim O 's O device O , O fetching O locations O , O stealing O SMS O messages O and O most O common O features O that O every O spyware O may O poses O . O Stealing O Facebook B-Organization credentials O using O fake O Facebook B-Organization activity O is O something O we O did O n't O observe O in O Spynote/Spymax B-Malware versions O but O was O seen O in O this O spyware O . O This O framework O allows O anyone O to O develop O a O malicious O app O with O the O desired O icon O and O communication O address O . O Some O of O the O icons O used O can O be O seen O below O . O We O found O 280 O such O apps O in O the O past O three O months O . O A O complete O list O of O hashes O can O be O found O here O . O icons O Figure O 11 O : O Icons O used O to O pose O as O famous O apps O . O All O of O these O apps O are O developed O by O the O same O framework O and O hence O have O the O same O package O name O and O certificate O information O as O seen O in O Figure O 12. O certificate O Figure O 12 O : O Package O name O and O certificate O information O . O Conclusion O Due O to O the O ubiquitous O nature O of O mobile O devices O and O the O widespread O use O of O Android B-System , O it O is O very O easy O for O attackers O to O victimize O Android B-System users O . O In O such O situations O , O mobile O users O should O always O take O the O utmost O precautions O while O downloading O any O applications O from O the O internet O . O It O is O very O easy O to O trick O victims O to O fall O for O such O attacks O . O Users O looking O forward O to O using O the O TikTok B-System app O amidst O the O ban O might O look O for O alternative O methods O to O download O the O app O . O In O doing O so O , O users O can O mistakenly O install O malicious O apps O , O such O as O the O spyware O mentioned O in O this O blog O . O The O precautions O you O take O online O have O been O covered O extensively O in O almost O all O of O our O blogs O ; O even O so O , O we O believe O this O information O bears O repeating O . O Please O follow O these O basic O precautions O during O the O current O crisis—and O at O all O times O : O Install O apps O only O from O official O stores O , O such O as O Google B-System Play I-System . O Never O click O on O unknown O links O received O through O ads O , O SMS O messages O , O emails O , O or O the O like O . O Always O keep O the O " O Unknown O Sources O '' O option O disabled O in O the O Android B-System device O . O This O disallows O apps O to O be O installed O on O your O device O from O unknown O sources O . O We O would O also O like O to O mention O that O if O you O come O across O an O app O hiding O it O 's O icon O , O always O try O to O search O for O the O app O in O your O device O settings O ( O by O going O to O Settings O - O > O Apps O - O > O Search O for O icon O that O was O hidden O ) O . O In O the O case O of O this O spyware O , O search O for O app O named O TikTok B-System Pro I-System . O MITRE B-Organization TAGS O Action O Tag O ID O App O auto-start O at O device O boot O T1402 O Input O prompt O T1411 O Capture O SMS O messages O T1412 O Application O discovery O T1418 O Capture O audio O T1429 O Location O tracking O T1430 O Access O contact O list O T1432 O Access O call O log O T1433 O Commonly O used O port O T1436 O Standard O application O layer O protocol O T1437 O Masquerage O as O legitimate O application O T1444 O Suppress O application O icon O T1508 O Capture O camera O T1512 O Screen O capture O T1513 O Foreground O persistence O T1541 O DualToy B-Malware : O New O Windows B-System Trojan O Sideloads O Risky O Apps O to O Android B-System and O iOS B-System Devices O By O Claud O Xiao O September O 13 O , O 2016 O at O 5:00 O AM O Over O the O past O two O years O , O we O ’ O ve O observed O many O cases O of O Microsoft B-System Windows I-System and O Apple B-System iOS I-System malware O designed O to O attack O mobile O devices O . O This O attack O vector O is O increasingly O popular O with O malicious O actors O as O almost O everyone O on O the O planet O carries O at O least O one O mobile O device O they O interact O with O throughout O any O given O day O . O Thanks O to O a O relative O lack O of O security O controls O applied O to O mobile O devices O , O these O devices O have O become O very O attractive O targets O for O a O broad O range O of O malicious O actors O . O For O example O : O WireLurker B-Malware installed O malicious O apps O on O non-jailbroken O iPhones O Six O different O Trojan O , O Adware O and O HackTool B-Malware families I-Malware launched O “ O BackStab O ” O attacks O to O steal O backup O archives O of O iOS B-System and O BlackBerry B-System devices O The O HackingTeam B-Malware ’ O s O RCS B-Malware delivered O its O Spyware O from O infected O PCs O and O Macs O to O jailbroken O iOS B-System devices O and O BlackBerry B-System phones O Recently O , O we O discovered O another O Windows B-System Trojan O we O named O “ O DualToy B-Malware ” O which O side O loads O malicious O or O risky O apps O to O both O Android B-System and O iOS B-System devices O via O a O USB B-System connection O . O When O DualToy B-Malware began O to O spread O in O January O 2015 O , O it O was O only O capable O of O infecting O Android B-System devices O . O However O , O within O six O months O the O malicious O actors O added O the O capability O to O infect O iOS B-System devices O . O DualToy B-Malware is O still O active O and O we O have O detected O over O 8,000 O unique O samples O belonging O to O this O Trojan O family O to O date O . O It O mainly O targets O Chinese O users O , O but O has O also O successfully O affected O people O and O organizations O in O the O United O States O , O United O Kingdom O , O Thailand O , O Spain O , O and O Ireland O . O Credential O phishing O and O an O Android B-System banking O Trojan O combine O in O Austrian O mobile O attacks O NOVEMBER O 03 O , O 2017 O Overview O Credential O phishing O , O banking O Trojans O , O and O credit O card O phishing O schemes O are O common O threats O that O we O regularly O observe O both O at O scale O and O in O more O targeted O attacks O . O However O , O Proofpoint B-Organization researchers O have O recently O observed O phishing O attacks O that O incorporate O all O of O these O elements O in O a O single O , O multistep O scheme O involving O the O Marcher B-Malware Android O banking O Trojan O targeting O customers O of O large O Austrian O banks O . O Attacks O involving O Marcher B-Malware have O become O increasingly O sophisticated O , O with O documented O cases O involving O multiple O attack O vectors O and O a O variety O of O targeted O financial O services O and O communication O platforms O [ O 1 O ] O [ O 2 O ] O . O In O this O case O , O a O threat O actor O has O been O targeting O customers O of O Bank O Austria O , O Raiffeisen O Meine O Bank O , O and O Sparkasse O since O at O least O January O 2017 O . O The O attacks O described O here O begin O with O a O banking O credential O phishing O scheme O , O followed O by O an O attempt O to O trick O the O victim O into O installing O Marcher B-Malware , O and O finally O with O attempts O to O steal O credit O card O information O by O the O banking O Trojan O itself O . O Analysis O Marcher B-Malware is O frequently O distributed O via O SMS O , O but O in O this O case O , O victims O are O presented O with O a O link O in O an O email O . O Oftentimes O , O the O emailed O link O is O a O bit.ly O shortened O link O , O used O to O potentially O evade O detection O . O The O link O leads O to O a O phishing O page O that O asks O for O banking O login O credentials O or O an O account O number O and O PIN O . O Figure O 1 O shows O one O such O landing O page O using O stolen O branding O from O Bank O Austria O . O Figure O 1 O : O Landing O page O for O phishing O scheme O asking O for O the O victim O ’ O s O signatory O number O and O PIN O using O stolen O branding O from O Bank B-System Austria I-System Because O the O actor O delivered O phishing O links O using O the O bit.ly B-Indicator URL O shortener O , O we O can O access O delivery O statistics O for O this O particular O campaign O . O The O link O resolves O to O a O URL O designed O to O appear O legitimate O , O with O a O canonical O domain O of O sicher97140 B-Indicator [ I-Indicator . I-Indicator ] I-Indicator info I-Indicator including O the O “ O bankaustria O ” O brand O . O Figure O 2 O : O Bit.ly B-Indicator statistics O for O a O phishing O landing O page O targeting O Bank B-System Austria I-System customers O The O actor O appears O to O have O recently O begun O using O “ O .top O ” O top-level O domains O ( O TLDs O ) O for O their O phishing O landing O pages O and O have O implemented O a O consistent O naming O structure O as O shown O below O . O Earlier O this O year O , O the O actor O used O “ O .pw O ” O TLDs O while O the O Bank B-System Austria I-System scheme O highlighted O above O used O “ O .info O ” O . O Some O recent O campaigns O against O other O bank O customers O also O used O “ O .gdn O ” O TLDs O . O Other O attacks O on O Bank B-System Austria I-System customers O that O we O observed O resolved O to O the O following O .top O domains O : O Oct O 23 O , O 2017 O hxxp B-Indicator : I-Indicator //online.bankaustria.at.id8817062 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator top/ I-Indicator Oct O 23 O , O 2017 O hxxp B-Indicator : I-Indicator //online.bankaustria.at.id8817461 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator top/ I-Indicator Oct O 23 O , O 2017 O hxxp B-Indicator : I-Indicator //online.bankaustria.at.id8817465 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator top/ I-Indicator Oct O 23 O , O 2017 O hxxp B-Indicator : I-Indicator //online.bankaustria.at.id8817466 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator top/ I-Indicator Oct O 23 O , O 2017 O hxxp B-Indicator : I-Indicator //online.bankaustria.at.id8817469 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator top/ I-Indicator Oct O 17 O , O 2017 O hxxp B-Indicator : I-Indicator //online.bankaustria.at.id58712 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator top/ I-Indicator Oct O 17 O , O 2017 O hxxp B-Indicator : I-Indicator //online.bankaustria.at.id58717 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator top/ I-Indicator Oct O 17 O , O 2017 O hxxp B-Indicator : I-Indicator //online.bankaustria.at.id58729 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator top/ I-Indicator Oct O 17 O , O 2017 O hxxp B-Indicator : I-Indicator //online.bankaustria.at.id58729 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator top/ I-Indicator Oct O 17 O , O 2017 O hxxp B-Indicator : I-Indicator //online.bankaustria.at.id87721 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator top/ I-Indicator Oct O 17 O , O 2017 O hxxp B-Indicator : I-Indicator //online.bankaustria.at.id87726 I-Indicator [ I-Indicator . I-Indicator ] I-Indicator top/ I-Indicator These O permutations O of O TLDs O and O canonical O domains O incorporating O the O legitimate O domain O expected O by O the O targeted O banking O customers O exemplifies O recent O trends O in O social O engineering O by O threat O actors O . O Just O as O threat O actors O may O use O stolen O branding O in O their O email O lures O to O trick O potential O victims O , O they O reproduce O a O legitimate O domain O name O in O a O fraudulent O domain O that O is O not O controlled O by O the O bank O . O Once O the O victim O enters O their O account O information O on O the O landing O page O , O the O phishing O attack O then O requests O that O the O user O log O in O with O their O email O address O and O phone O number O . O Figure O 3 O : O Step O two O of O the O credential O phish O asking O for O the O victim O ’ O s O email O address O and O phone O number O Having O stolen O the O victim O ’ O s O account O and O personal O information O , O the O scammer O introduces O a O social O engineering O scheme O , O informing O users O that O they O currently O do O not O have O the O “ O Bank B-System Austria I-System Security I-System App I-System ” O installed O on O their O smartphone O and O must O download O it O to O proceed O . O Figure O 4 O shows O the O download O prompt O for O this O fake O app O ; O an O English O translation O follows O . O Figure O 4 O : O Alert O prompting O the O victim O to O download O an O Android B-System banking I-System app I-System ( O English O translation O below O ) O , O with O stolen O branding O and O fraudulent O copy O * O * O * O Translation O * O * O * O Dear O Customer O , O The O system O has O detected O that O the O Bank B-System Austria I-System Security I-System App I-System is O not O installed O on O your O smartphone O . O Due O to O new O EU B-Organization money O laundering O guidelines O , O the O new O Bank B-System Austria I-System security I-System app I-System is O mandatory O for O all O customers O who O have O a O mobile O phone O number O in O our O system O . O Please O install O the O app O immediately O to O avoid O blocking O your O account O . O Follow O the O instructions O at O the O bottom O of O this O page O . O Why O you O need O the O Bank B-System Austria I-System Security I-System App I-System : O Due O to O outdated O technology O of O the O mobile O network O important O data O such O as O mTan O SMS O and O online O banking O connections O are O transmitted O unencrypted O . O Our O security O app O allows O us O to O transmit O this O sensitive O data O encrypted O to O you O , O thus O increasing O the O security O that O you O will O not O suffer O any O financial O loss O . O Step O 1 O : O Download O Bank B-System Austria I-System Security I-System App I-System Download O the O Bank O Austria O security O app O to O your O Android O device O . O To O do O this O , O open O the O displayed O link O on O your O mobile O phone O by O typing O in O the O URL O field O of O your O browser O or O scan O the O displayed O QR O code O . O * O * O * O End O translation O * O * O * O The O phishing O template O then O presents O additional O instructions O for O installing O the O fake O security O application O ( O Figure O 5 O ) O : O Figure O 5 O : O Additional O instructions O telling O the O victim O to O give O the O app O the O requested O permissions O ( O English O translation O below O ) O , O with O stolen O branding O and O fraudulent O copy O * O * O * O Translation O * O * O * O Step O 2 O : O Allow O installation O Open O your O device O 's O settings O , O select O Security O or O Applications O ( O depending O on O the O device O ) O , O and O check O Unknown O sources O . O Step O 3 O : O Run O installation O Start O the O Bank B-System Austria I-System security I-System app I-System from O the O notifications O or O your O download O folder O , O tap O Install O . O After O successful O installation O , O tap O Open O and O enable O the O device O administrator O . O Finished O ! O * O * O * O End O translation O * O * O * O Referring O again O to O bit.ly B-Indicator , O we O can O see O click O statistics O for O this O campaign O ( O Figure O 6 O ) O . O Figure O 6 O : O bit.ly B-Indicator statistics O for O the O fake O Bank B-System Austria I-System Android I-System app I-System download O link O From O this O small O sample O , O we O see O that O 7 O % O of O visitors O clicked O through O to O download O the O application O , O which O is O actually O a O version O of O the O Marcher B-Malware banking I-Malware Trojan I-Malware named O “ O BankAustria.apk B-Indicator ” O , O continuing O the O fraudulent O use O of O the O bank O ’ O s O branding O to O fool O potential O victims O . O This O sample O is O similar O to O those O presented O in O other O recent O Marcher B-Malware analyses O [ O 1 O ] O [ O 2 O ] O . O This O particular O application O is O signed O with O a O fake O certificate O : O Owner O : O CN=Unknown O , O OU=Unknown O , O O=Unknown O , O L=Unknown O , O ST=Unknown O , O C=Unknown O Issuer O CN=Unknown O , O OU=Unknown O , O O=Unknown O , O L=Unknown O , O ST=Unknown O , O C=Unknown O Serial O : O 1c9157d7 O Validity O : O 11/02/2017 O 00:16:46 O 03/20/2045 O 00:16:46 O MD5 O Hash O : O A8:55:46:32:15 B-Indicator : I-Indicator A9 I-Indicator : I-Indicator D5:95 I-Indicator : I-Indicator A9:91 I-Indicator : I-Indicator C2:91:77:5D:30 I-Indicator : I-Indicator F6 I-Indicator SHA1 O Hash O : O 32:17 B-Indicator : I-Indicator E9:7E:06 I-Indicator : I-Indicator FE:5D:84 I-Indicator : I-Indicator BE:7C:14:0C I-Indicator : I-Indicator C6:2B:12:85 I-Indicator : I-Indicator E7:03:9A:5F I-Indicator The O app O requests O extensive O permissions O during O installation O that O enable O a O range O of O activities O supported O by O the O malware O . O Those O permission O shown O in O bold O below O are O the O most O problematic O : O Allows O an O application O to O write O to O external O storage O . O Allows O an O application O to O read O from O external O storage O . O Allows O an O application O to O use O SIP O service O . O Allows O an O application O to O collect O battery O statistics O Allows O an O app O to O access O precise O location O . O Allows O an O application O to O receive O SMS O messages O . O Allows O an O application O to O send O SMS O messages O . O Allows O an O application O to O read O SMS O messages O . O Allows O an O application O to O write O SMS O messages O . O Allows O an O application O to O initiate O a O phone O call O without O going O through O the O Dialer O user O interface O for O the O user O to O confirm O the O call O . O Allows O applications O to O access O information O about O networks O . O Allows O applications O to O open O network O sockets O . O Allows O an O application O to O read O the O user O 's O contacts O data O . O Allows O an O application O to O read O or O write O the O system O settings O . O Allows O an O application O to O force O the O device O to O lock O Allows O applications O to O access O information O about O Wi-Fi O networks O . O Allows O applications O to O change O Wi-Fi O connectivity O state O . O Allows O applications O to O change O network O connectivity O state O . O Analysis O of O the O malware O shows O that O it O uses O the O common O string O obfuscation O of O character O replacement O ( O Figure O 7 O ) O : O Figure O 7 O : O Encoded O Marcher B-Malware Strings O Figure O 8 O : O Decoded O Marcher B-Malware Strings O As O noted O , O the O application O requests O extensive O permissions O during O installation O ; O Figure O 9 O shows O the O request O to O act O as O device O administrator O , O a O particular O permission O that O should O very O rarely O be O granted O to O an O app O . O Figure O 9 O : O Prompt O for O application O permissions O upon O installation O Figures O 10 O and O 11 O show O the O other O permission O screens O for O the O app O : O Figure O 10 O Figure O 10 O : O Part O 1 O of O the O permission O screen O for O the O app O Figure O 11 O : O Part O 2 O of O the O permission O screen O for O the O app O Once O installed O the O app O will O place O a O legitimate O looking O icon O on O the O phone O ’ O s O home O screen O , O again O using O branding O stolen O from O the O bank O . O Figure O 12 O : O Fake B-System Bank I-System Austria I-System Security I-System application I-System icon O In O addition O to O operating O as O a O banking O Trojan O , O overlaying O a O legitimate O banking O app O with O an O indistinguishable O credential O theft O page O , O the O malware O also O asks O for O credit O card O information O from O the O user O when O they O open O applications O such O as O the O Google B-System Play I-System store O . O Figure O 13 O : O Popup O asking O for O a O credit O card O number O The O application O also O supports O stealing O credit O card O verification O information O ( O Figures O 14 O and O 15 O ) O . O Figure O 14 O : O Information O theft O via O fake O credit O card O verification O using O stolen O branding O Figure O 15 O : O Information O theft O via O fake O credit O card O verification O using O stolen O branding O Some O of O the O campaigns O appear O to O have O a O wider O reach O based O on O bit.ly B-Indicator statistics O like O this O one O from O October O 13 O , O 2017 O : O Figure O 16 O : O bit.ly B-Indicator statistics O for O an O October O 13 O , O 2017 O campaign O Over O several O days O during O the O last O three O months O , O Proofpoint B-Organization researchers O observed O campaigns O using O similar O techniques O targeting O the O banking O customers O of O Raffeisen O and O Sparkasse O . O A O review O of O the O bit.ly B-Indicator statistics O for O these O campaigns O shows O that O they O were O at O least O as O effective O in O driving O end-user O clicks O as O the O Bank B-System Austria I-System campaign O analyzed O above O . O Conclusion O As O our O computing O increasingly O crosses O multiple O screens O , O we O should O expect O to O see O threats O extending O across O mobile O and O desktop O environments O . O Moreover O , O as O we O use O mobile O devices O to O access O the O web O and O phishing O templates O extend O to O mobile O environments O , O we O should O expect O to O see O a O greater O variety O of O integrated O threats O like O the O scheme O we O detail O here O . O As O on O the O desktop O , O mobile O users O need O to O be O wary O of O installing O applications O from O outside O of O legitimate O app O stores O and O sources O and O be O on O the O lookout O for O bogus O banking O sites O that O ask O for O more O information O than O users O would O normally O provide O on O legitimate O sites O . O Unusual O domains O , O the O use O of O URL O shorteners O , O and O solicitations O that O do O not O come O from O verifiable O sources O are O also O red O flags O for O potential O phishing O and O malware O . O Ginp B-Malware - O A O malware O patchwork O borrowing O from O Anubis B-Malware November O 2019 O Intro O ThreatFabric B-System analysts O have O recently O investigated O an O interesting O new O strain O of O banking O malware O . O The O malware O was O first O spotted O by O Tatyana O Shishkova O from O Kaspersky B-Organization by O end O October O 2019 O , O but O actually O dates O back O to O June O 2019 O . O It O is O still O under O active O development O , O with O at O least O 5 O different O versions O of O the O Trojan O released O within O the O last O 5 O months O ( O June O - O November O 2019 O ) O . O What O makes O Ginp B-Malware stand O out O is O that O it O was O built O from O scratch O being O expanded O through O regular O updates O , O the O last O of O which O including O code O copied O from O the O infamous O Anubis B-Malware banking O Trojan O , O indicating O that O its O author O is O cherry-picking O the O most O relevant O functionality O for O its O malware O . O In O addition O , O its O original O target O list O is O extremely O narrow O and O seems O to O be O focused O on O Spanish O banks O . O Last O but O not O least O , O all O the O overlay O screens O ( O injects O ) O for O the O banks O include O two O steps O ; O first O stealing O the O victim O ’ O s O login O credentials O , O then O their O credit O card O details O . O Although O multi-step O overlays O are O not O something O new O , O their O usage O is O generally O limited O to O avoid O raising O suspicion O . O Evolution O The O initial O version O of O the O malware O dates O back O to O early O June O 2019 O , O masquerading O as O a O “ O Google B-System Play I-System Verificator I-System ” O app O . O At O that O time O , O Ginp B-Malware was O a O simple O SMS O stealer O whose O purpose O was O only O to O send O a O copy O of O incoming O and O outgoing O SMS O messages O to O the O C2 O server O . O A O couple O of O months O later O , O in O August O 2019 O , O a O new O version O was O released O with O additional O banking-specific O features O . O This O and O following O versions O were O masquerading O as O fake O “ O Adobe B-System Flash I-System Player I-System ” O apps O . O The O malware O was O able O to O perform O overlay O attacks O and O become O the O default O SMS O app O through O the O abuse O of O the O Accessibility O Service O . O The O overlay O consisted O of O a O generic O credit O card O grabber O targeting O social O and O utility O apps O , O such O as O Google B-System Play I-System , O Facebook B-System , O WhatsApp B-System , O Chrome B-System , O Skype B-System , O Instagram B-System and O Twitter B-System . O Although O early O versions O had O some O basic O code O and O string O obfuscation O , O protection O of O the O third O version O of O the O malware O was O enhanced O with O the O use O of O payload O obfuscation O . O The O capabilities O remained O unchanged O , O but O a O new O endpoint O was O added O to O the O Trojan O C2 O allowing O it O to O handle O the O generic O card O grabber O overlay O and O specific O target O overlays O ( O banking O apps O ) O separately O . O In O addition O , O the O credit O card O grabber O target O list O was O expanded O with O Snapchat B-System and O Viber B-System . O In O the O third O version O spotted O in O the O wild O , O the O author O introduced O parts O of O the O source O code O of O the O infamous O Anubis B-Malware Trojan O ( O which O was O leaked O earlier O in O 2019 O ) O . O This O change O came O hand O in O hand O with O a O new O overlay O target O list O , O no O longer O targeting O social O apps O , O but O focusing O on O banking O instead O . O A O remarkable O fact O is O that O all O the O targeted O apps O relate O to O Spanish O banks O , O including O targets O never O seen O before O in O any O other O Android B-System banking O Trojan O . O The O 24 O target O apps O belong O to O 7 O different O Spanish O banks O : O Caixa B-System bank I-System , O Bankinter B-System , O Bankia B-System , O BBVA B-System , O EVO B-System Banco I-System , O Kutxabank B-System and O Santander B-System . O The O specific O apps O can O be O found O in O the O target O list O in O the O appendix O . O The O most O recent O version O of O Ginp B-Malware ( O at O the O time O of O writing O ) O was O detected O at O the O end O of O November O 2019 O . O This O version O has O some O small O modifications O which O seems O to O be O unused O , O as O the O malware O behaviour O is O the O same O as O the O previous O version O . O The O author O has O introduced O the O capability O to O grant O the O app O the O device O admin O permission O . O Additionally O new O endpoint O was O added O that O seems O related O to O downloading O a O module O for O the O malware O , O probably O with O new O features O or O configuration O . O How O it O works O When O the O malware O is O first O started O on O the O device O it O will O begin O by O removing O its O icon O from O the O app O drawer O , O hiding O from O the O end O user O . O In O the O second O step O it O asks O the O victim O for O the O Accessibility O Service O privilege O as O visible O in O following O screenshot O : O Ginp B-Malware Accessibility O request O Once O the O user O grants O the O requested O Accessibility O Service O privilege O , O Ginp B-Malware starts O by O granting O itself O additional O permissions O , O such O as O ( O dynamic O ) O permissions O required O in O order O to O be O able O to O send O messages O and O make O calls O , O without O requiring O any O further O action O from O the O victim O . O When O done O , O the O bot O is O functional O and O ready O to O receive O commands O and O perform O overlay O attacks O . O The O commands O supported O by O the O most O recent O version O of O the O bot O are O listed O below O . O As O can O be O observed O , O the O possibilities O offered O by O the O bot O are O pretty O common O . O Command O Description O SEND_SMS O Send O an O SMS O from O the O bot O to O a O specific O number O NEW_URL O Update O the O C2 O URL O KILL O Disable O the O bot O PING_DELAY O Update O interval O between O each O ping O request O CLEAN_IGNORE_PKG O Empty O list O of O overlayed O apps O WRITE_INJECTS O Update O target O list O READ_INJECTS O Get O current O target O list O START_ADMIN O Request O Device O Admin O privileges O ALL_SMS O Get O all O SMS O messages O DISABLE_ACCESSIBILITY O Stop O preventing O user O from O disabling O the O accessibility O service O ENABLE_ACCESSIBILITY O Prevent O user O from O disabling O the O accessibility O service O ENABLE_HIDDEN_SMS O Set O malware O as O default O SMS O app O DISABLE_HIDDEN_SMS O Remove O malware O as O default O SMS O app O ENABLE_EXTENDED_INJECT O Enable O overlay O attacks O DISABLE_EXTENDED_INJECT O Disable O overlay O attacks O ENABLE_CC_GRABBER O Enable O the O Google B-System Play I-System overlay O DISABLE_CC_GRABBER O Disable O the O Google B-System Play I-System overlay O START_DEBUG O Enable O debugging O GET_LOGCAT O Get O logs O from O the O device O STOP_DEBUG O Disable O debugging O GET_APPS O Get O installed O applications O GET_CONTACTS O Get O contacts O SEND_BULK_SMS O Send O SMS O to O multiple O numbers O UPDATE_APK O Not O implemented O INJECT_PACKAGE O Add O new O overlay O target O CALL_FORWARD O Enable/disable O call O forwarding O START_PERMISSIONS O Starts O request O for O additional O permissions O ( O Accessibility O privileges O , O battery O optimizations O bypass O , O dynamic O permissions O ) O Features O The O most O recent O version O of O Ginp O has O the O same O capabilities O as O most O other O Android B-System banking O Trojans O , O such O as O the O use O of O overlay O attacks O , O SMS O control O and O contact O list O harvesting O . O Overall O , O it O has O a O fairly O common O feature O list O , O but O it O is O expected O to O expand O in O future O updates O . O Since O Ginp O is O already O using O some O code O from O the O Anubis B-Malware Trojan O , O it O is O quite O likely O that O other O , O more O advanced O features O from O Anubis B-System or O other O malware O , O such O as O a O back-connect O proxy O , O screen-streaming O and O RAT O will O also O be O added O in O the O future O . O Ginp B-Malware embeds O the O following O set O of O features O , O allowing O it O to O remain O under O the O radar O and O successfully O perform O attacks O : O Overlaying O : O Dynamic O ( O local O overlays O obtained O from O the O C2 O ) O SMS O harvesting O : O SMS O listing O SMS O harvesting O : O SMS O forwarding O Contact O list O collection O Application O listing O Overlaying O : O Targets O list O update O SMS O : O Sending O Calls O : O Call O forwarding O C2 O Resilience O : O Auxiliary O C2 O list O Self-protection O : O Hiding O the O App O icon O Self-protection O : O Preventing O removal O Self-protection O : O Emulation-detection O Update O 10/03/2020 O At O the O end O of O February O the O actors O behind O Ginp B-Malware added O screen O capture O capabilities O to O their O Trojan O . O Like O previously O added O functionality O , O the O code O is O borrowed O from O the O leaked O Anubis B-Malware Trojan O source O code O . O It O enables O the O bot O to O stream O screenshots O and O send O them O to O the O C2 O so O that O actors O can O see O what O is O happening O on O the O screen O of O the O infected O device O . O Overlay O attack O Ginp O uses O the O Accessibility O Service O to O check O which O application O runs O is O the O foreground O . O If O the O package O name O of O the O foreground O app O is O included O in O the O target O list O , O an O overlay O is O shown O . O The O WebView-based O overlay O is O loading O an O HTML O page O provided O by O the O C2 O in O response O to O the O package O name O provided O by O the O bot O . O Something O that O makes O Ginp B-Malware special O is O that O all O of O its O overlay O screens O for O banking O apps O are O consist O of O multiple O steps O , O first O stealing O the O victim O ’ O s O login O credentials O , O then O stealing O the O credit O card O details O ( O to O “ O validate O ” O the O user O identity O ) O , O as O shown O in O the O screenshots O hereafter O : O The O following O code O snippet O shows O that O after O the O second O overlay O is O filled-in O and O validated O , O it O disappears O and O the O targeted O application O is O added O to O the O list O of O packages O names O to O be O ignored O for O future O overlays O attacks O . O Targets O The O initial O version O of O Ginp B-Malware had O a O generic O credit O card O grabber O overlay O screen O used O for O all O targeted O applications O . O Still O included O in O the O last O versions O , O this O screen O is O only O used O to O overlay O the O official O Google B-System Play I-System Store I-System app O . O More O apps O could O be O added O to O the O grabber O target O list O in O the O future O , O such O as O the O ones O that O were O targeted O in O older O versions O : O Facebook B-System WhatsApp B-System Skype B-System Twitter B-System Chrome B-System Instagram B-System Snapchat B-System Viber B-System The O following O screenshot O shows O the O generic O card O grabber O overlay O screen O : O Ginp B-Malware generic O grabber O The O current O active O target O list O is O available O in O the O appendix O , O containing O a O total O of O 24 O unique O targets O . O The O following O screenshots O show O what O type O of O information O is O collected O in O both O steps O of O the O overlay O attack O : O Ginp B-Malware overlaysGinp O overlaysGinp O overlaysGinp O overlays O Based O on O Anubis B-Malware Once O the O Anubis B-Malware bot O code O got O leaked O , O it O was O just O a O matter O of O time O before O new O banking O Trojans O based O on O Anubis B-Malware would O surface O . O When O analyzing O the O Ginp B-Malware ’ O s O recent O samples O , O ThreatFabric B-System analysts O found O some O similarities O with O the O famous O Android O banking O Trojan O . O Based O on O the O evolution O of O Ginp B-Malware it O is O clear O that O it O isn O ’ O t O based O on O Anubis B-Malware , O but O rather O reuses O some O of O its O code O . O Below O are O some O of O the O elements O showing O the O relation O . O The O names O used O for O Android B-System components O are O similar O : O Similarities O with O AnubisSimilarities O with O Anubis B-Malware When O analyzing O these O components O , O similarities O were O found O in O the O code O of O both O malware O families O : O Similarities O with O Anubis B-System Another O major O change O that O indicated O that O the O actor O copied O code O from O the O Anubis B-Malware Trojan O is O the O way O of O handling O configuration O values O . O Previous O versions O were O storing O config O values O within O the O variables O of O a O class O , O while O the O latest O version O is O using O SharedPreferences O with O some O of O the O keys O being O identical O to O those O used O by O Anubis B-System : O isAccessibility O time_work O time_start_permission O url_inj O Conclusion O Ginp B-Malware is O a O simple O but O rather O efficient O banking O Trojan O providing O the O basic O functionality O to O be O able O to O trick O victims O into O delivering O personal O information O . O In O a O 5-month O timespan O , O actor O managed O to O create O a O Trojan O from O scratch O which O will O presumably O continue O evolving O offering O new O features O such O as O keylogging O , O back-connect O proxy O or O RAT O capabilities O . O Ginp B-Malware ’ O s O unusual O target O selection O is O not O just O about O its O focus O on O Spanish O banks O but O also O the O wide O selection O of O targeted O apps O per O bank O . O The O fact O that O the O overlay O screens O are O almost O identical O to O the O legitimate O banking O apps O suggests O that O the O actors O might O be O very O familiar O with O the O Spanish O banking O applications O and O might O even O be O accustomed O to O the O language O . O Although O the O current O target O list O is O limited O to O Spanish O apps O , O it O seems O that O the O actor O is O taking O into O account O that O the O bot O should O also O be O able O to O target O other O countries O , O seeing O that O the O path O used O in O the O inject O requests O contains O the O country O code O of O the O targeted O institution O . O This O could O indicate O that O actor O already O has O plans O in O expanding O the O targets O to O applications O from O different O countries O and O regions O . O Appendix O Samples O Some O of O the O latest O Ginp B-Malware samples O found O in O the O wild O : O App O name O Package O name O SHA-256 O hash O Google B-System Play I-System Verificator I-System sing.guide.false B-Indicator 0ee075219a2dfde018f17561467272633821d19420c08cba14322cc3b93bb5d5 B-Indicator Google B-System Play I-System Verificator I-System park.rather.dance B-System 087a3beea46f3d45649b7506073ef51c784036629ca78601a4593759b253d1b7 B-Indicator Adobe B-System Flash I-System Player I-System ethics.unknown.during B-Indicator 5ac6901b232c629bc246227b783867a0122f62f9e087ceb86d83d991e92dba2f B-Indicator Adobe B-System Flash I-System Player I-System solution.rail.forward B-Indicator 7eb239cc86e80e6e1866e2b3a132b5af94a13d0d24f92068a6d2e66cfe5c2cea B-Indicator Adobe B-System Flash I-System Player I-System com.pubhny.hekzhgjty B-Indicator 14a1b1dce69b742f7e258805594f07e0c5148b6963c12a8429d6e15ace3a503c B-Indicator Adobe B-System Flash I-System Player I-System sentence.fancy.humble B-Indicator 78557094dbabecdc17fb0edb4e3a94bae184e97b1b92801e4f8eb0f0626d6212 B-Indicator Target O list O The O current O list O of O apps O observed O to O be O targeted O by O Ginp B-Malware contains O a O total O of O 24 O unique O applications O as O seen O below O . O This O list O is O expected O to O grow O in O the O future O . O