{"docstore/metadata": {"/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py__Configuration_file_for__exclude_patterns._": {"doc_hash": "65424849dc26d8005aacb9bbd57a68b3d3fdaec4fc28056a9d6363073b2a0813"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py_generate_apidocs_generate_apidocs.subprocess_check_call_": {"doc_hash": "10a8ce9e198196367aa18a06320178578357ac476ce8abc0631470afa091b5d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py_setup_": {"doc_hash": "7847bda5448a3bd1a048e055422897ecc59142deae6ae27290cee7be16a09273"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/__init__.py_os_": {"doc_hash": "760b9381bfddaf91822efab337820ebb61386057e3ca91c1de27ecfd8051308e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py__This_file_helps_to_comp_sys": {"doc_hash": "ae5674c5e0be0b96a99d8bbee67455b7bf99dd4aace251466af628cbd40c962e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_keywords_get_keywords.return.keywords": {"doc_hash": "87b91a61467dec11a0f5dbd405a26ea6e941be28cf983d33435a27de60840d7f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_VersioneerConfig_register_vcs_handler.return.decorate": {"doc_hash": "e7b4c413420038d0ed1830f98eacb147e5e649aa3425a1a612424583dea78728"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_run_command_run_command.return.stdout_p_returncode": {"doc_hash": "2a25c770a5c8893ea679e20337afa6c11a943e350ae7c6492873045a356c33e3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root": {"doc_hash": "e47e525037bc2ce6193b5076ff665e346e55f7c0c9f068cb139e329946e70db1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_get_keywords_git_get_keywords.return.keywords": {"doc_hash": "bb13ca9fef81c111de6c05b5abcafb2fb4e1c6f8d44fc541af7762d7ad8dabd3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_versions_from_keywords_git_versions_from_keywords.return._version_0_unknown_": {"doc_hash": "bce2c8e56390e5ec5d2b067c92ec4fc9bf5747e95fa7fa57616af8cd70247bce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces": {"doc_hash": "9dfe87dc4569270b529e1894d38f40d29e872a0514807adecf83ce094beeb615"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_plus_or_dot_render_pep440.return.rendered": {"doc_hash": "179e54ddc2f68ab800a32ab8a3aa4824128450a9304cf1ff5cf0633b10b38146"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_old_render_pep440_old.return.rendered": {"doc_hash": "842e375e39745e7489a13633cac168542114a64242c56a8d10d440d430fe1a2a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_render_git_describe.return.rendered": {"doc_hash": "ca541fbf5be193f49c52a416bac7e1d201efd978e8208ed40a48b29431f0b56e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_long_render_git_describe_long.return.rendered": {"doc_hash": "b4ee82712caa15ee150826c967776c9a320b1219fe2c0a210345babe4ec42a0d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_render.return._version_rendered_fu": {"doc_hash": "0f4687c560f37254bb87c5c3a17afa33761af6a46c8e77a09c24b698b000c7fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_versions_": {"doc_hash": "5b12f0f654d66aa0ffa27265afb6e1ed67f3e40ddb691234d16678c9fc0083d9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset_DecathlonDataset._": {"doc_hash": "446688ca7a4e3b3ca48f24f23d854a819fcec5917d26938cfd3cbe9c13a2cde0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.resource_DecathlonDataset.md5._": {"doc_hash": "8b2a68f6db6d7808a53ed532e3f7c638409fbb60194f495e7887a6712ec45e73"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/__init__.py_CSVSaver_": {"doc_hash": "e6db489a5431cd2249c5a2024143fc4a53209cdd6537bca241db82683f0d3229"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_CSVSaver.save.self__cache_dict_save_key": {"doc_hash": "af328047ed3d0c55633dbcd7f4becacb57a4ad60994f1915dc5c94a8948e8524"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_batch_": {"doc_hash": "db2022c9ad9caa865118d6dd01e5d0d190d6e5cc5f280af08fad57d5757a1139"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_NiftiSaver.save_batch_": {"doc_hash": "8afb576b50f839e09e022de3cd020b3aee1bce1d960970492d74cda6ad7d6d81"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_from_typing_import_Option_write_nifti._": {"doc_hash": "16c49cd8ee2d037181ccabf6e6ccdf7d7ec60c4bd0939fe4882b331320250e9a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_write_nifti.if_data_ndim_3_mult_": {"doc_hash": "51c3efbf79ffec3e614eccee161ffd4c0b23421f638dc9a9cec0e5eee8d11a67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_PNGSaver.save_batch_": {"doc_hash": "3ad131fba7fdc30799ff70ed52f0b65c85846603429b6b144da8031ee8b09321"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_writer.py_from_typing_import_Option_": {"doc_hash": "95a0ee0bc4620a1ad992df0a82a9d7edb64e8dc43fb6a7e781a0fe065b52e071"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_from_typing_import_Option_create_test_image_2d.return.noisyimage_labels": {"doc_hash": "43ea67904c0f854cb5eac5e40bac68d3f6ae4314f6af346dc34648f18207604f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_create_test_image_3d_": {"doc_hash": "da540f8aa2e5573ee8eedf5f2072942d63887ff6d873e1a79be568fb527b5d0d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_slices_iter_patch_slices.for_position_in_product_.yield_tuple_slice_s_s_": {"doc_hash": "09adc8f4e58daea6dce225e9c42840a852e09fe7e201242e435e94f04f01ca60"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_iter_patch.if_copy_back_.arr_arrpad_slices_": {"doc_hash": "2bb272e862bfb1239fe3d7dbc4049e1f49c5bebd3f3cfa223a43d3c843c16262"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_valid_patch_size_get_valid_patch_size.return.tuple_min_ms_ps_or_ms_f": {"doc_hash": "35fe64943f900259d20a8956ca9cf3002209eadeeebfa11e12ae91a7894ab06d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_correct_nifti_header_if_necessary_correct_nifti_header_if_necessary.return.img_nii": {"doc_hash": "71d6c03268f650f0e1d60d3f72eca58182c0e311ec246bf03f3c2eb6d79a7610"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_rectify_header_sform_qform_rectify_header_sform_qform.return.img_nii": {"doc_hash": "bba57837a85dacfcfc3b2df0e0243a9de35b7ca5febc850ade70fb381c7887af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_zoom_affine_zoom_affine.return.new_affine": {"doc_hash": "f34340b26b5d96b8abfc72ace2613af12e8c263ec6cd68ff6296f7f02359fa69"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_compute_shape_offset_compute_shape_offset.return.out_shape_astype_int_of": {"doc_hash": "a572ca1eb500c486df0055ccf4ec10d9b1b26f37d4c6840c7803e210ab00ce07"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_to_affine_nd_to_affine_nd.return.new_affine": {"doc_hash": "77c1ade0e5a7a7383995cab43c005234bc422aeb4530667839cea372c15fb844"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_EnsembleEvaluator._iteration_": {"doc_hash": "1594e8088e36550e50726d4597955a3bbf73c4b9bc653abe7a33790ada545e95"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_trainer_create_multigpu_supervised_trainer.return.create_supervised_trainer": {"doc_hash": "912180221de1de21ff89a84443dd752d1e201bc05402a299d7212a67bb44c76b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_evaluator_": {"doc_hash": "51861ac58dad679fee117ea7fba629534bac9bc16c687b389d35196738ffa20e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_Trainer_Trainer.get_train_stats.return._total_epochs_self_sta": {"doc_hash": "5b688b79ae43b609f2f3bde7c8c3f5362c7ff9a74337b677ac022d5bf6f53224"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow_Workflow._": {"doc_hash": "d702b2a4dad58cdd3f6646d6493e3ee8a44c4018ada0c7cf2139a51af37bea40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/__init__.py_CheckpointLoader_": {"doc_hash": "48542aa5a0d334b796b169af0e69acb5b1788f8857ab0addab941a9d2d4baac6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver_CheckpointSaver._": {"doc_hash": "812cf498735b6d92f0192d1ee4ca9762e7ff40d660089c6f025b1216992484ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.attach_CheckpointSaver.attach.if_self__interval_checkpo.if_self_epoch_level_.else_.engine_add_event_handler_": {"doc_hash": "cebcb1dd467255ba80392a282d73ca2cd398a7ad1bc8d65b41bdd345f051c469"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_LrScheduleHandler_": {"doc_hash": "ac579b9215289a6fac628af996ed08a512cb06d6a7720d25473c84dc81a32a06"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_SegmentationSaver.attach_": {"doc_hash": "d312aaadd7fb2aa7d08ea3bbac74dba046849a9f8e2d6405ff330c47e0ccd90f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler_StatsHandler.__init__.if_logger_handler_is_not_.self_logger_addHandler_lo": {"doc_hash": "cb70c19564573e0c2e5347eb58047e6f81766ed70953f6d443013ff83d936a98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.attach_StatsHandler.attach.None_3.engine_add_event_handler_": {"doc_hash": "7d55afd0a799637cb76a410aa3f69ad84183de51cf3af240e22adf0ce1f03f82"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler._default_epoch_print_StatsHandler._default_epoch_print.None_1": {"doc_hash": "d249273b1c6443c06e6ca53fb7797fdf60abe358ddacfa06f7dc6b519235be1c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler._default_iteration_print_": {"doc_hash": "047dafdc756001495e889134313d6c8b4f7c4f8efd36bc7eefda0515b73cddbe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler_TensorBoardStatsHandler.__init__.self.tag_name.tag_name": {"doc_hash": "385e796d8bbb0072481f1511cafd8cb630c7e6111b5d923eb0bf35953765bbf2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.attach_TensorBoardStatsHandler.attach.None_1.engine_add_event_handler_": {"doc_hash": "0ce5a90f6c069e3abb6b4a4bf7adac4553e00121dc1a5b095b85fe52b46035ab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.epoch_completed_TensorBoardStatsHandler.iteration_completed.if_self_iteration_event_w.else_.self__default_iteration_w": {"doc_hash": "4ec78ab8da4916ee2787ef9705f927486901ce4e14af87fc5651f132779bbaca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_epoch_writer_TensorBoardStatsHandler._default_epoch_writer.writer_flush_": {"doc_hash": "cd5c84d3ec95b47d940cec2b312a77cfff4004e1f10bbbd83036bcd2e5eb0b13"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_iteration_writer_TensorBoardStatsHandler._default_iteration_writer.writer_flush_": {"doc_hash": "7596669a770b6272035989a5318a370d4921fab84cfed90016fe2e4ce66cb633"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/validation_handler.py_from_typing_import_TYPE_C_": {"doc_hash": "14d4d556e4205e0266cfc5c48b829aa27c074ca2c6dc9975ec1105a41e9e2a0f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py__get_scan_interval_": {"doc_hash": "78961b565bd42ad9bedede4b640448d7860fb4cfdeb6485cc6694bb73d55e7fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceLoss.forward_DiceLoss.forward.return.f": {"doc_hash": "25d63239c4f6bbbfd3603b8c57785d2c236d31ea2487bff29f6b1a41fb292235"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/tversky.py_TverskyLoss.forward_": {"doc_hash": "315b6e0ff64ab8eda6a101afe7acc974ffb0b53cb78f15a738159938cf2d9221"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/downsample.py_from_typing_import_Option_": {"doc_hash": "d4d49a9a8bcc64c5b87bf6f7089e66586f111c4c30c8ef727e6ce06bc28f28ea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_from_typing_import_Any_C_LayerFactory.add_factory_callable.self.__doc__._": {"doc_hash": "104876f74a1ad777bdd73e4d56e79b814edecdc462cb33c6ad22d4cf5a9b4196"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_LayerFactory.factory_function_LayerFactory.get_constructor.return.fact_args_": {"doc_hash": "642c4ff14bb7576a4dfa0a923a7ae85fdf24f68ace664d71e211b20f42e6efcd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_LayerFactory.__getitem___LayerFactory.__getattr__.return.super___getattribute___": {"doc_hash": "7f669f5b46fbdfa4fcdd5e7e7ec960fe524d60cca6f84bf2deb47ae2596abbd9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_from_typing_import_Option_Classifier.__init__.if_last_act_is_not_None_.self_final_add_module_la": {"doc_hash": "c9ad7fbec44242c8b868e1d9bfa477e755295291270a263a8100abbf388b8f4c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Discriminator_Discriminator.__init__.super___init___in_shape": {"doc_hash": "f7ccc05de4644310159d48b100ebfd1eafc2a5a5b7c0481e394e828d7a1a866c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Critic_": {"doc_hash": "8c0eebc31dc1f73c6d81eb0429789d8c1254473144b317eefe370e0a83625038"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__DenseBlock__DenseBlock.__init__.for_i_in_range_layers_.self_add_module_denselay": {"doc_hash": "de58d6a825da91f4ba9ac313d55438ecc0979bf9fbf867ccf5db5b5c6b84f967"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__Transition__Transition.__init__.self_add_module_pool_p": {"doc_hash": "6a10fef7cc8d79fb27c9e9a60321e802e000731cd14701b480cc8b33d34e03b9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet_DenseNet._": {"doc_hash": "324aedbac7abd20bbe25d295b01d3df50a27e03a4f2c11ab3f2469f750818ce8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet.__init___DenseNet.forward.return.x": {"doc_hash": "d05ff1d1ace3b824ebe1156e5d88e47456bef9d70f8f2a5104e65056357581cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_from_typing_import_Option_Generator._": {"doc_hash": "0b4b0e5f3e033d87e74010cbbd17e9b157514932cca6d305eca1d489672938bd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator.__init___Generator.__init__.for_i_c_s_in_enumerat.echannel.c": {"doc_hash": "52f2d39f0cd31601c71546bcafa251ed8779699703f9217871b1203a8e77898e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator._get_layer_": {"doc_hash": "90207e4cb3b260b52b0aac332b4935e2bd49922d175c3a89c7fe84173aa38f5f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet_HighResNet._": {"doc_hash": "1729e02d44165d7d82a9bca71c81bf6711011faf4985bfd890db829f9e2ec781"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet.__init___": {"doc_hash": "b47ff1851ce1dfd7557af043587ac051cf8711545032aab230bca0cbfe7dcbbc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regressor.py_from_typing_import_Option_Regressor.__init__.self.final.self__get_final_layer_ec": {"doc_hash": "1e0fee05b5d95ca1b0960cd5d38cae411f0e99483f2254d5fffa18185f0bbad6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regressor.py_Regressor._get_layer_": {"doc_hash": "ea77ddccc641443b4a808bc67407483a0970fe92238a6d917d118695e0e39ed6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_down_layer_UNet._get_bottom_layer.return.self__get_down_layer_in_c": {"doc_hash": "888e22701f8c8d602d631b7765812030e00ad6f06fadaafd6c954e29e121bbfc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_up_layer_": {"doc_hash": "d55ac29317ef503b41c6fc45548c4a272543c24ad235d2bb49fe1039d6179751"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normalize_transform_normalize_transform.return.norm": {"doc_hash": "a91f8ac1d3743447289da8bf2338daa420ef4904d4fc727de58e300f61a8af03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_adaptor._inner_adaptor.return._inner": {"doc_hash": "788a31a193a148e651e3512fdc2282edcb2b5afd893c4de187c735020f7fb7a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_apply_alias_to_kwargs.return._inner": {"doc_hash": "119b24a527ed62673608fd476b7c77e359e81d0902e36fe6dc721916ae135ee6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_FunctionSignature_": {"doc_hash": "2c76e35889050fac8b55cfabf89b58ee11623333d06e8e6f959149f9003e5fec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/__init__.py__": {"doc_hash": "c23c3b22e4a81f73f6cb3229b775eae033de918fd6d04619cce6fa6ee87e622a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_BorderPad_BorderPad.__init__.self.mode.NumpyPadMode_mode_": {"doc_hash": "9a0ade44ba35be00a4272ed94298d31611eaa65d5da928c9586e6e3b55c85292"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_BorderPad.__call___BorderPad.__call__.return.np_pad_": {"doc_hash": "24cc2bd2072c64fb663ddd28533a0da562db4a24d3cda639af9d4137cf99a001"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_DivisiblePad_DivisiblePad.__init__.self.mode.NumpyPadMode_mode_": {"doc_hash": "b0020f7b88be28c5a281d6452b73bf07f08b08fb23b860c1fe87796937fe4a99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_DivisiblePad.__call___DivisiblePad.__call__.return.spatial_pad_img_": {"doc_hash": "cb9a04b0a0e42c9b58196c66df37b4f48cb9bda101eb51ff66d776e56c688d3d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CenterSpatialCrop_CenterSpatialCrop.__call__.return.cropper_img_": {"doc_hash": "53c9b1c092eae2e45a458ade26c25be7a7478f5ece733fae252148dfe9c92b94"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCrop_RandSpatialCrop.__init__.self._slices.None": {"doc_hash": "51ae1bdf1242e1675f2f8a65cc87002439286e981580ef8769d85c617702b3b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCropSamples_RandSpatialCropSamples.__call__.return._self_cropper_img_for___": {"doc_hash": "bdf5b1ec04a08f5ab742ade7a1237752c42cbcbe79cf53cef1a43da9f3022150"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadd_SpatialPadd.__call__.return.d": {"doc_hash": "e270bd20cdede8ef749d47bf74218c9881636520bbf81e86fba61c781fa9261c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BorderPadd_BorderPadd.__call__.return.d": {"doc_hash": "48b77d65abc43f6a0b8ea1b13831e201d209f27261c1906d012f6e48bf0f9ba4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_DivisiblePadd_DivisiblePadd.__call__.return.d": {"doc_hash": "6ddeba8520b1c961e90fa4fd52ca3b8bd08944ebe011d9c1eaa2be325b40963a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialCropd_SpatialCropd.__call__.return.d": {"doc_hash": "e5bbb081ab4e7172f98e78029f19542a36dac54ccd3e0bcd38e3215809e4dd2d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterSpatialCropd_CenterSpatialCropd.__call__.return.d": {"doc_hash": "aab6b7b9950ce3127de35b8869c2ff0e22c9d7e060c02a814a66335ffea80079"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd_RandSpatialCropd.__init__.self._size.None": {"doc_hash": "375dea4f050ed14905040b046a094824ba500bfb4c092ee0f8dce793fde1f039"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.__call___RandCropByPosNegLabeld.__call__.return.results": {"doc_hash": "58f45740e6894c115fabbc53da816b762bfe2516441111e21c204a659d88f869"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadD_": {"doc_hash": "d6c04b49f8172ce5bbfb8df47ff49467bedba0172d10b0ce51d792872067f4ef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/__init__.py__": {"doc_hash": "bff2377319ba4065211f7fda928cea2b03eb3bd5ba0890e9b2401f81cf62030b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandScaleIntensity_RandScaleIntensity.__call__.return.scaler_img_": {"doc_hash": "ad9ce3d2624609edf32464b7dab924f25d9f2dcf47d846eb8f2459b717a41b46"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRange_ScaleIntensityRange.__init__.self.clip.clip": {"doc_hash": "a9c00efe8eeb4dea56284f89cd4b33114e40f6927e4fe6289b9aa7ba5e82b158"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRange.__call___ScaleIntensityRange.__call__.return.img": {"doc_hash": "1fe05b90afeed7cb071ffe5d1d85602b9d51ac524f8ba0688e6d50276019de57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_AdjustContrast_AdjustContrast.__call__.return.np_power_img_img_min_": {"doc_hash": "37f22d1982ca8af8ea8602b164f87f6a541dccfe040830596ab9519babfaddf3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandAdjustContrast_RandAdjustContrast.__call__.return.adjuster_img_": {"doc_hash": "47b2e7ab8982475291f6f1572488423a6b5ee554166fac36fce0ac9eccef308d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles_ScaleIntensityRangePercentiles._": {"doc_hash": "138d214c4d4ed40bbdedf475a9334379536f7ec93c0a76cda2764908289fa09b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles.__init___ScaleIntensityRangePercentiles.__init__.self.relative.relative": {"doc_hash": "4965b0ce3062856fdb2dbdb9145de1cd6c6e0eb5c1511a615252a5eee798f9fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles.__call___ScaleIntensityRangePercentiles.__call__.return.img": {"doc_hash": "e65a8e752b8de4350c712cab1a01bcda768e200b65799977fff944e8c888c0bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ShiftIntensityd_ShiftIntensityd.__call__.return.d": {"doc_hash": "2a6439c305d1d36cb18dcad096b370b492368adcc80a13da9bd232f08b98fa47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandShiftIntensityd_RandShiftIntensityd.__call__.return.d": {"doc_hash": "09c15129050732ddf2c1d7437fb0e77daf749aca30e626ef987aa5b83dcc4db4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityd_ScaleIntensityd.__call__.return.d": {"doc_hash": "1e79511a74d5dd0608f60a8d4bcd81232a49fa92185fcc05f43f2b1d3c2f66ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandScaleIntensityd_RandScaleIntensityd.__call__.return.d": {"doc_hash": "d7d88a6d576a6e5f08282b56a56ab2e8eb69c28503ad7659b02e9aa1dad17783"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_NormalizeIntensityd_NormalizeIntensityd.__call__.return.d": {"doc_hash": "bb2130aa627a8316c8be0a1d24018770eb0f4980ac045bfa01189d192b137e6c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ThresholdIntensityd_ThresholdIntensityd.__call__.return.d": {"doc_hash": "34550e50d315d0d5241e1fc1976984b3bcd0384f12cf91a244e20c5b748aa62f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRanged_ScaleIntensityRanged.__call__.return.d": {"doc_hash": "51455513948359084be1b0d62f3a4ddd91d4e4b8a6ac19d7c77695b751fa7a11"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_AdjustContrastd_AdjustContrastd.__call__.return.d": {"doc_hash": "888ee6d970762982165ebeb89aa8021ffdfe2dc6005a7c01fdd8dfc77190bd2e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandAdjustContrastd_RandAdjustContrastd.__call__.return.d": {"doc_hash": "f630f564f2abfc39c9ff2b6879ef7a1d029d3cb0428076434569da36bb83d3e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRangePercentilesd_ScaleIntensityRangePercentilesd.__call__.return.d": {"doc_hash": "de61ad18e4173f1e1c21007c909e54000733575c546ad51bcb1adade167aafda"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_MaskIntensityd_MaskIntensityd.__call__.return.d": {"doc_hash": "bab838def93a26849d1e7b94b1ff4632ae6b4f8a288535b0a2e3fc7f85d5db82"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianNoiseD_": {"doc_hash": "012d7a769e75e9608e0e80967b0b0e9d1f000720b69559c0cd6fcb90eed10032"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/__init__.py__": {"doc_hash": "c7ecd1fe880f43eda25bfb18254cee43f6a4517366d3dae055caf0f318c3164e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/__init__.py__": {"doc_hash": "2aa1cc63a079d41dac679a652f4c5730dde4f0a58beb7aafeff87a474f74429e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_Activations_Activations.__init__.self.other.other": {"doc_hash": "9f650e586c21947d5c241114bcbf47514fd00e862b0e54260aad33b020cac84f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_Activations.__call___Activations.__call__.return.img": {"doc_hash": "c5176ea4193ae7fb5f65b4528264f8faba046841fdc8cd434a38a9274dfdbc05"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_AsDiscrete_AsDiscrete.__init__.self.logit_thresh.logit_thresh": {"doc_hash": "1e17d5d7d7235745ee5fbc5d8c38e3050a16a5cccd4352cdb139651c2724d7e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_AsDiscrete.__call___AsDiscrete.__call__.return.img_float_": {"doc_hash": "d29b187b9fe6b8de0e915ea82026bc43ce59b784d84e2418bcb1866c663a6b96"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent_KeepLargestConnectedComponent._": {"doc_hash": "37e85d7c3a997e9f9cb9cefed5a97d05cb084a1c301aa50b3f5329f5d262f276"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent.__init___KeepLargestConnectedComponent.__init__.self.connectivity.connectivity": {"doc_hash": "b8295cbf9ff9312bc3afc3b43ed5ae633a07afbbe23432fc03d447990eebc35a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent.__call___KeepLargestConnectedComponent.__call__.return.output": {"doc_hash": "13d908937a6d2ae49ba51e8c5fb7b1bf458a61f3dce2fa1a33a953bb7e910f6a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelToContour_LabelToContour.__init__.self.kernel_type.kernel_type": {"doc_hash": "de5ecc0b7185aec4b08236336c5f81f0ff2377afcb6febb090b95cec1ebdbdae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelToContour.__call___LabelToContour.__call__.return.contour_img": {"doc_hash": "39bbebc071a029d0beb5949182bd12b8b9d8ae2de0a5ed4580611dc3e4cadbd9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_MeanEnsemble_MeanEnsemble.__init__.self.weights.torch_as_tensor_weights_": {"doc_hash": "8e3eb320591a5e30a48819a2b6b45c190cc3e640f4bb202c84f8f2324fbd9772"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Activationsd_Activationsd.__call__.return.d": {"doc_hash": "03508976623f0161755401c462ab1758c531c6012b12d49430603aff5e766cbb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_KeepLargestConnectedComponentd_KeepLargestConnectedComponentd.__call__.return.d": {"doc_hash": "1c4275e230981a16d377857db85931ebc2c382f43c9f364221794d8f779f7da9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_LabelToContourd_LabelToContourd.__call__.return.d": {"doc_hash": "c6314e2e9ee5cfc04b1246d3c1476620f1e0708ba5c611675f427afa1deec574"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/__init__.py__": {"doc_hash": "d0d3ad5174a0e484e778a51a7be7261e800006dcbf11cc0d8b40ca762ab4c65e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Spacing_Spacing.__init__.self.dtype.dtype": {"doc_hash": "22ba95bea7ae8d29684cd67a3f3fa07c06cb473889543e5924171e8cf55cb6fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Orientation_Orientation.__init__.self.labels.labels": {"doc_hash": "3178c69b74047cc9ea274a61460fe02e0959eed353a98bd680de3e2cf07e2b08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Orientation.__call___Orientation.__call__.return.data_array_affine_new_a": {"doc_hash": "bee36817ee801e6319b147893af918f54c7e1f7d971000a4c30a677bcad83dff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resize_Resize.__init__.self.align_corners.align_corners": {"doc_hash": "f692b94b9b5f56bc7c0cec3fbaab39b13abb31abf0d8c857ec066a8a68d56fe8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Zoom_Zoom.__init__.self.keep_size.keep_size": {"doc_hash": "169159026ecf8a7bf415fb691e9f473ffe10b88bc6fafcb2e19a6e872c0e3969"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Zoom.__call___Zoom.__call__.return.zoomed_tuple_slice_vec_": {"doc_hash": "d1dd92193989415c4733803ef04653c06f33de5d7db3514cb2510cee98237164"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate90_RandRotate90.__call__.return.rotator_img_": {"doc_hash": "59b830682c6075e525e8a7c96664a9b8b34af32480358279403ca0805de39d76"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandFlip_RandFlip.__call__.return.self_flipper_img_": {"doc_hash": "f568e9085323517b6c8449bcf242b16df7e649488af006ee2106bed59671e3ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid_RandDeformGrid.randomize.self.rand_mag.self_R_uniform_self_magni": {"doc_hash": "d22c7ae394e331faa418f21e6ae2b1b3cd961e6ea1c4200eca74804665241547"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid.__call___RandDeformGrid.__call__.return.control_grid": {"doc_hash": "e64cbf582d24868cdcb6b9c1eefbe4380c6121ce956a7a7ac692a0d78bf5d170"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resample_Resample.__init__.self.device.device": {"doc_hash": "fb4154af16cd0e96fb20fd79c8ae9c1f2666ee506818b4fa2e803f3851c9230a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Affine_Affine.__init__.self.padding_mode.GridSamplePadMode_padding": {"doc_hash": "440e3f68f47b11eeb770911b57181b404ff0d61f595c05f3a45af0109a8614cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic.set_random_state_Rand2DElastic.randomize.self_rand_affine_grid_ran": {"doc_hash": "df175e42a5099f5531e4473add263bd26ac0736d43e78e81b88ce00ea5d96db0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic.__call___Rand2DElastic.__call__.return.self_resampler_img_grid_": {"doc_hash": "705de2f279ba0ab96d847a0ac9a12931ba92812905848acd33d603f5c982dd96"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic_Rand3DElastic.__init__.self.sigma.1_0": {"doc_hash": "c6e51f03e061318bf8ba84c743a36526ce3bd32061ea10b07220014b0a004f04"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic.set_random_state_Rand3DElastic.randomize.self_rand_affine_grid_ran": {"doc_hash": "bf214188d828a5dabc282054a808c100b0841e5a9a636e85a2d442c7b665d73f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd.__call___Spacingd.__call__.return.d": {"doc_hash": "1c19850606541d744379a3cdf0d082bb8926a273d122c749ff115f43071312ae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotate90d_Rotate90d.__call__.return.d": {"doc_hash": "65bc9ec96563902ad38430e9496d1480a76ee650d856da9bdb5e1019e1bbee1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotate90d_RandRotate90d.__call__.return.d": {"doc_hash": "c6e8cc8e64921852a29f391b54d7578551a9eb3530657db6885b1b6b5a80ecce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined_RandAffined.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"doc_hash": "bf0d8eb099488c02370ba352a63ee9e062dee9f3203b246b7ef057adc68ffdcc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined.set_random_state_RandAffined.__call__.return.d": {"doc_hash": "9e6f76e55c490e08f8300b34bc4bf68487186045b8226e1c5a7eebb925dab3d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd_Rand2DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"doc_hash": "d1671a6dfa02be2f68cca410e493bfb58d5830c42fef9e433ddf230bd1139f4a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd.set_random_state_Rand2DElasticd.__call__.return.d": {"doc_hash": "85f32954f7f3893eb2ccb2a10ac2a5e9d61a1120ca488cc3176f13c0d7f4e175"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd_Rand3DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"doc_hash": "32e7eb4d1a70e08f07f83807c4d4fbfdc6581551a170801b46d0575a7b176dfc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd.set_random_state_Rand3DElasticd.__call__.return.d": {"doc_hash": "273d17c5c5956bfeaeb12afe93c7b6ec9f8a35f3a8b4cffa1932e890b2cdfad7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Flipd_Flipd.__call__.return.d": {"doc_hash": "138116c8f1d1f14cdb5cf4ed8bffd32245fcf2352d35769b328a8d9b6f68f9ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandFlipd_RandFlipd.__call__.return.d": {"doc_hash": "9140da8e12a2a6b2c1c5369ed8dbbbbb2734394d3a084297181532f523625c23"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated_RandRotated._": {"doc_hash": "b4b719a46eb03a6caa852e8f99c71d3a50f5a4383c17147ff7b1e056511b3f0a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.__init___RandRotated.randomize.self.z.self_R_uniform_low_self_r": {"doc_hash": "a1338d10cf8c17cb90256c7fe6c66d820f7a26e83cdaa8508ef0fe50ea6c0b1c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.__call___RandRotated.__call__.return.d": {"doc_hash": "18065b894180a5ed22da2f6f4e29a4229539ab70b4be19662ef28e8d981b3861"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_SpacingD_": {"doc_hash": "d08bf9ab5762072e12423cc7095bf1b97d0135113b1c8d6caf39c06e4a412225"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/__init__.py__": {"doc_hash": "cd2a264a38cdcbe3032b67d2af4c4c91d246a1a09f44c26ab577c069fc11f107"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AsChannelFirst_AsChannelFirst.__call__.return.np_moveaxis_img_self_cha": {"doc_hash": "34e30eb7930a04d4ea190b5ae34e4c059d89fd3f8abfb1fd337371d2be5df37d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AsChannelLast_AsChannelLast.__call__.return.np_moveaxis_img_self_cha": {"doc_hash": "0c5c143f4f0e7de9290e258d220c2dba428fbb5c1d76fe25278983235d1129b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddChannel_AddChannel.__call__.return.img_None_": {"doc_hash": "0c6f963e11939609f9578dbf40923081bf4d4ae9198a78588a800948e20e2208"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_RepeatChannel_RepeatChannel.__call__.return.np_repeat_img_self_repea": {"doc_hash": "32a5d69441f48fb80fd6cac188431278f8b94cdbb4864870b7080552dfab7b4a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_DataStats.__call___DataStats.__call__.return.img": {"doc_hash": "46dac02108d9cdbcfe9904d2e9dc6349269e23121865b30152ebf62f7acda773"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_SimulateDelay_SimulateDelay.__call__.return.img": {"doc_hash": "558f5209af5505403bf6b4874f6653d427e1dd35476bbaed2e2f35fd91874cda"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_LabelToMask_LabelToMask.__init__.self.merge_channels.merge_channels": {"doc_hash": "e22438c1c5edcf802e3afc7b42a02e00ac0f0fc4e01e933c375e1647620bc374"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_Identityd_Identityd.__call__.return.d": {"doc_hash": "237748e487fa4afd9146e174d6e668e51e4c63a0050aae026c184e1f3e5bda50"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelFirstd_AsChannelFirstd.__call__.return.d": {"doc_hash": "6a18a99698a40b5e04815a2eec72d697c7a81a8f3b754c81673d93e2184901ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelLastd_AsChannelLastd.__call__.return.d": {"doc_hash": "1d3f4b1bc0f4e1809e4f2ba090886fc898ee48829cf68d281c011851632f44fc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AddChanneld_AddChanneld.__call__.return.d": {"doc_hash": "473ffd9f7c3dfbd3f7ccf5f4a5a0bd773adc08e244c3c8eeccbbb3b1daba3aa3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RepeatChanneld_RepeatChanneld.__call__.return.d": {"doc_hash": "7cf208746c8aab1a057381acb55075cd2f4068e1237fb06e1a841a83a8897530"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_CastToTyped_CastToTyped.__call__.return.d": {"doc_hash": "ef4a5cbf2904c516c90c0a1b3240c148c58c71c926ec0e044d466c390d570142"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToNumpyd_ToNumpyd.__call__.return.d": {"doc_hash": "9ee43ca625b519c7c1d6617e883290c6c765d8ac162b4cbb56dc2dcd1522c494"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SqueezeDimd_SqueezeDimd.__call__.return.d": {"doc_hash": "eebbe6bee51e655c4ac460fb164b4383071eb48a26f62961ca8d7906b3c2edbb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SimulateDelayd_SimulateDelayd.__call__.return.d": {"doc_hash": "7dc0f26e250d26bbd7fc9310553513372b0e43eb288b047d26f414961b2bdda1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd_ConcatItemsd.__init__.self.dim.dim": {"doc_hash": "48c1ec96d2489c1f189b872f807915ee3e03fa92542b01b23fa204c620cb2c94"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd.__call___ConcatItemsd.__call__.return.d": {"doc_hash": "1b1953a69926bcbe2e8cd8799d0024b2a9367eda13c21080442cfdcddaa35fe9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_Lambdad_Lambdad.__call__.return.d": {"doc_hash": "a5f744a268b539836fbb4863b2d23766b8df282cb16c6d29cefa54b4670cf666"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_LabelToMaskd_LabelToMaskd.__call__.return.d": {"doc_hash": "19d0968ad3dd34d5b5b49a0cf2975b8cf42c7b43a34e1b10ccee23d16a053237"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_IdentityD_": {"doc_hash": "153a10184be406d14a87546ae916a016fffa3c2c32cd5a2c2a7e127cba9b7186"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_rescale_array_rescale_array._rescale_by_minv_and_max": {"doc_hash": "db2c2fe08a3d0ff92b75e2d47d4fed07c9859ecea70f8ef81748b9c10c6fbf54"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_copypaste_arrays_copypaste_arrays.return.tuple_srcslices_tuple_d": {"doc_hash": "088aa389124e3e91df7ac7c6fc4564a57fc471763b3c5be169de0b94348cc545"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_grid_create_grid.return.np_concatenate_coords_n": {"doc_hash": "6172980984d8f9734391d27b37a543e14770357727c0f89f7eb7ef4495cc15eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_control_grid_create_control_grid.return.create_grid_grid_shape_s": {"doc_hash": "c114daf815e4459bc7a520c138ffb2c326050fb6af7f5538b5eb796a8cdcc741"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_shear_create_shear.raise_NotImplementedError": {"doc_hash": "ddfdb5a89c386f984574e99920e60d1ec0452be9384b10f292d1c5171657796f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_spatial_bounding_box_generate_spatial_bounding_box.return.box_start_box_end": {"doc_hash": "00b4eca5145781cae662b26973d363287df274e1a88c01bc73c7896ee6b35886"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_resolve_name_": {"doc_hash": "c886a779bb1200bd53741b80841b9d2e62b03f68e939c82559d3cf49c778aa87"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_fall_back_tuple_fall_back_tuple.return.tuple_use_the_default": {"doc_hash": "bbe2c521d04567fa3488db7632d783383a77fef20b231bf9b88d77f6dfbcce50"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_is_scalar_tensor_get_seed.return._seed": {"doc_hash": "267070099ca2888d0a6ed9e5878524cf56b45578b992a7209dc3b8191f4cc7f9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_optional_import_optional_import.msg.descriptor_format_actual_": {"doc_hash": "b0f7d583b9b3c97db5d3fa9b6e832f2dcb781a490804f91a3260c7c5879a1748"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_make_animated_gif_summary_make_animated_gif_summary.return.summary_op": {"doc_hash": "f172785606ddd4fa777955f68d7c65e71732ff5346d938a7c87058b16fc98a2c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_add_animated_gif_add_animated_gif.writer__get_file_writer_": {"doc_hash": "4ffb703c2c5878b671111fd5da6dc7c6651d6990afe32132d4edf0eead8d3ce6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_add_animated_gif_no_channels_add_animated_gif_no_channels.writer__get_file_writer_": {"doc_hash": "772b98c68a510e03660bf386a4962e3a9b3d54992fe4ae3ba8721ddaa7585cc0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_plot_2d_or_3d_image_": {"doc_hash": "eb25b3e6b579a8c14343d29164814013a1256f501680d40cc6504af00d29f8c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/__init__.py_sys_": {"doc_hash": "b37e807e6619a0b2f7a1a6c198cb34607f180a2a1e1eff536484320d1aeb1c7e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activationsd.py_unittest_TEST_CASE_3._": {"doc_hash": "088ae3f00a9e3b3b9dd501f13d21fadf477531944c282f388f30994240c431af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activationsd.py_TestActivationsd_": {"doc_hash": "67f6691b77885e4a4a65492867810315cc1719295169b1e21d877c53f7f0e911"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_multi_in_single_out_TestAdaptors.test_multi_in_single_out.None_2.self_assertEqual_dres_lb": {"doc_hash": "26d9b3b8be0daebadcf5424eac739a9ea8adbd7f6688d5578fae19455c0f020a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_default_arg_single_out_TestAdaptors.test_dict_out.self_assertEqual_dres_b_": {"doc_hash": "a7c80dc0ab29bee80025d720f5933e32498f91a2c43c75a795393efc9c108ce7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestApplyAlias_": {"doc_hash": "fe6ddfa1c4a52a69452f45cc189680caf8d9500502b2a34a5878b3dadf1be28c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_channeld.py_unittest_": {"doc_hash": "c7d40e184132e887c18244c6946c91240fa75ced95b4ec7fee88d49f779a24b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrast.py_unittest_": {"doc_hash": "8057367f6dd6b93d7f8409562201f4c2e83dc61e92b613a90cbb4663d533641c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrastd.py_unittest_": {"doc_hash": "9eb87071c8a78da6e13358350193ca074813c4b86a4173a881780e2172f9623e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine.py_unittest_TEST_CASES._": {"doc_hash": "fecbe8d9e621505e6461f192805bc71b362e0ab34938b467a2808222e8d528ab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine.py_TestAffine_": {"doc_hash": "d6c6f12943d35c61f97b9439e1b74e1fb7dd136e80a6761296bd24e4338be777"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_grid.py_unittest_TEST_CASES._": {"doc_hash": "926fda71ae58d810dc1e04aff32c0b845c9fbb712d563fb2787d918bc7742a1b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_grid.py_TestAffineGrid_": {"doc_hash": "f03f73944d020c373006a58934ea4f4de8040bc016f64adc73df2bea081a0b40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_unittest_TEST_NORM_CASES._": {"doc_hash": "e48ba93f6040f4c15a4c29ebef42c1bdbaf96b35cbdd15ffba51e11745d4971b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TEST_TO_NORM_AFFINE_CASES_TEST_ILL_TO_NORM_AFFINE_CASES._": {"doc_hash": "d2072f01c545fe04b826e7add2f571a82f0416f0b4f40eb0ecfd175ec009b121"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestNormTransform_TestNormTransform.test_norm_xform.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "a98f83ec098f4478992746b00185f13b1f17fa78a31a29b1b76f51afc66f2c24"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine_TestToNormAffine.test_to_norm_affine.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "18f1da9302c7fb91a0579b12380816103c9c407e93b76c4385c0ddf548466786"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform_TestAffineTransform.test_affine_shift.np_testing_assert_allclos": {"doc_hash": "0d13680d8b1963bb5bc445a9f58f2cd608fe1023be26daa44253f643f702c03d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_1_TestAffineTransform.test_affine_shift_1.np_testing_assert_allclos": {"doc_hash": "9fd7e5f09bb8175cf7dc6277e6a8b859985250d35ff5162ad1e5aa2d151c6e37"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_2_TestAffineTransform.test_affine_shift_2.np_testing_assert_allclos": {"doc_hash": "26928cfa9b219e220b25e44c5041f40e35569cc210ea9997ccbf34582bf85224"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_TestAffineTransform.test_zoom.np_testing_assert_allclos": {"doc_hash": "df6289faedb5b48725e734f93866586c19aa1182733b6bce27d36ce9c08735ab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_1_TestAffineTransform.test_zoom_1.np_testing_assert_allclos": {"doc_hash": "6d4a36371f4558b530c1c47b7a841869a65251f9f49a25babaf8d4cddfa4e392"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_2_TestAffineTransform.test_zoom_2.np_testing_assert_allclos": {"doc_hash": "ed8ba16e6d72cb7c4c1cc8502d541fff0a0515c4f8c48a709dacdd19a17e8378"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_minimum_TestAffineTransform.test_affine_transform_minimum.np_testing_assert_allclos": {"doc_hash": "7dd10709bd2be20fd48863b8d3e1c1e019d5ab0c7b7e6c461d42b6fbde8dc73c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_2d_TestAffineTransform.test_affine_transform_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "80946492e237689743519042f79e4a6f507693a9116f37683c3d2f68bed1ebf4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d_TestAffineTransform.test_affine_transform_3d.np_testing_assert_allclos": {"doc_hash": "16f06eed852264cb5622ee2ec8510813c52c69ddccaa54be638ffcbf060672bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "ebf9515b1856a7e103b39450878cca2c01d0e625148e91d059803cf3434ea975"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_ill_affine_transform_TestAffineTransform.test_ill_affine_transform.None_3.xform_image_affine_": {"doc_hash": "ecd12f0dea315af2aa6ec18b7973d9041a48525fb8ba07bc36d11b8d13939e53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_2d_TestAffineTransform.test_forward_2d.None_5": {"doc_hash": "8573b6534153052ece55147242c140b0b00fa7e8bc03bf1c4673244b82170eac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_3d_": {"doc_hash": "b85c8b4b8709076acf578f156a94a57f25d70882c98e650ad6d8250793672093"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_first.py_unittest_": {"doc_hash": "785f89049dd335efcca6f3f20a161ca73933542b9d93bc9cce2d29bed6a9afe6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_firstd.py_unittest_TEST_CASE_3._keys_image_labe": {"doc_hash": "361ad8e307d5d6dc0cf2d6e324f43ac2f5620ec17ad5d7dc2eeed1d36f19a5a1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_firstd.py_TestAsChannelFirstd_": {"doc_hash": "2b89d109c1aafa6733ef45fb646787251cb73ca2b10d37ff652f1129817ef71a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_last.py_unittest_": {"doc_hash": "fb4153dfa933bc110bea8dab911e4197b0d460271c13ec08aea15753aa171308"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_lastd.py_unittest_TEST_CASE_3._keys_image_labe": {"doc_hash": "7c61bff95e70624885022f8eac0c43134ef7096db8a1273dc4f16405852e4b63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_lastd.py_TestAsChannelLastd_": {"doc_hash": "962451c788fafde0a7bc3e58a57a092f74de02f3398788d37d736fb166960455"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discrete.py_unittest_": {"doc_hash": "95241b9f889b4c1d90ca0b0bc8c34a7f24fecf3da2477477b4efe4a0cb3a57b7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discreted.py_unittest_TEST_CASE_3._": {"doc_hash": "11b4ab0410cbca9b5c40e46198cea229113b23bf4b8717f21adc74dbe23efa23"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discreted.py_TestAsDiscreted_": {"doc_hash": "de2ec18a5d07391757b4b05cc51556a6c364bce8f49e736ebeb223bcad9aae1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_pad.py_unittest_": {"doc_hash": "318e26b3378c951f5058dedff77a4ded60f775c58c5451782503231bea21607b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_padd.py_unittest_": {"doc_hash": "ec5796d6d76576a97ed81e27495eba61cf0d904f1d5b90eff5f27f396c14c4ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset_parallel.py_TestCacheDatasetParallel_": {"doc_hash": "d56f8d2a5d87da5d35ba32249d3c86db36b4e804996df4ca388811d62a62887e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cast_to_type.py_unittest_": {"doc_hash": "3874d5c19e9850acb445cb056296c09d1ade19ee2a0d11cbf196a5c8cfacf40b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cast_to_typed.py_unittest_": {"doc_hash": "c17f465a9a9eac1ecde64ddc987aa41f0a51218c13a956756350316b9b5678f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_crop.py_TestCenterSpatialCrop_": {"doc_hash": "e584aab1f2cbf4dae47abe5a5f7dfbe608db10be5cc43adc296db379a5e475ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_cropd.py_unittest_TEST_CASE_2._": {"doc_hash": "d6175485275484de30cab6749b06283530d7b0c8366732b43174e3986f2fd52d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_cropd.py_TestCenterSpatialCropd_": {"doc_hash": "a101ec3afb45d5d85417ee12a8e999e0fcc132ad494fbfe6c1373dec33820f30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_list_dict_compose_TestCompose.test_list_dict_compose.for_item_in_value_.self_assertDictEqual_item": {"doc_hash": "8cdc84a619cf2134542693c7da7be654537901a01d4a59a667174c4f8339c137"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TestComputeMeanDice.test_value_class_": {"doc_hash": "130551f820298d7477212e178ae48341ec00ff5b2e0e019e9e14a1a81455389b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_unittest_TestConcatItemsd.test_tensor_values.None_2": {"doc_hash": "b6c73a1584293328beb8b757ea5e89eced653a5dd8a38cd3a37d1778c88dfd8e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestResidualUnit2D_": {"doc_hash": "61d334d445fcbec195a3fa5260191ad7b8d6bcdd63fe629e30a31a18165a22d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_unittest_TEST_CASE_4._img_seg_2_img": {"doc_hash": "ecaf59ec4f9cb9653b11bf1c83f6c29a22a7b6581aacd8c2e92b59f275450971"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd.test_tensor_values_TestCopyItemsd.test_tensor_values.None_2": {"doc_hash": "0bcf889c029cf3ca3a1cde9f1e34bcccc00802356dfe59fdc09a187227a5714c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_unittest_TestCreateGrid.test_create_grid.g_13.create_grid_2_2_2_sp": {"doc_hash": "ac06c6470e643ebf94887df1d7d1e92248157ba75663cfd1611f78f0ea22cd7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_grid.expected_14_TestCreateGrid.test_create_grid.None_7": {"doc_hash": "ea0cf37951d799c88b511d843711b4fdfd9d925b43c22f8f278ff07855525048"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid_TestCreateGrid.test_create_control_grid.g_6.create_control_grid_2_0_": {"doc_hash": "3353897fdbce19ee7ce4cdea3442b970465c8b388da6580878a68bc556c393f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid.expected_7_TestCreateGrid.test_create_control_grid.g_8.create_control_grid_1_0_": {"doc_hash": "19d8fc6fa8f2fc207a37e551845b9569a73028b4dd26ed064276c08a3273bf7f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid.expected_9_test_assert.np_testing_assert_allclos": {"doc_hash": "f1feb896d9162bf61ab9a1e63d28925d79e2883956aca351e6e3cca4ed2ed624"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine_TestCreateAffine.test_create_rotate.None_4": {"doc_hash": "6f971b4c7f60022496d6b65ef4b860ff8bc2999dbc46781090cca0ad9fb2c047"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_shear_TestCreateAffine.test_create_shear.test_assert_": {"doc_hash": "a9800b20bd42f70e6d35e87b20f5691f2dec77e176c0ed06b06346523e07ad63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_scale_TestCreateAffine.test_create_scale.None_4": {"doc_hash": "69f6e71beb32818100b2f0415fa5e225d0f38117628fcb2cbc1088c1fde52e26"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_translate_": {"doc_hash": "c87d2eeb72911fda802f3dae80f61cdea1a37c3552d910d2e11602f5435ef889"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foregroundd.py_unittest_TEST_CASE_3._": {"doc_hash": "89b6cc98f0374c86af15607073e706b298ac5dfd77ee87774f8fa486d7f4da02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_stats.py_TestDataStats_": {"doc_hash": "00e933153dfefe1997dc4bd748404eb9d780bab04ed2b576f8f327e9c256ea67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_densenet.py_TestDENSENET_": {"doc_hash": "4d7dfd992b7b79bf6cac4ae8079ee835dd5690a37a68cc2758f23db67ec83310"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_unittest_TEST_CASES": {"doc_hash": "ce0949719e3c1ef9a4c680359bd150badb798e46b365efdaa4b04279adbcc87b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_opts.None_2.DiceLoss_reduction_None_": {"doc_hash": "e070729c0da0b4f75f62a28196fe0a3d3a2b55845e31c5e624bab89e885e03bc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss.test_input_warnings_": {"doc_hash": "73dd553a6c5dc13e2180082650c71393570edf09609bb0bb03f4d6070539305c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_divisible_pad.py_unittest_": {"doc_hash": "3fb883fbc498bf828fe679601f9d241362f79e33b52cd5bd58372fdbede6920e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_divisible_padd.py_unittest_": {"doc_hash": "398ea5bde6843254c7b8819dcc193aec47c610aa8524532052d719decc57ef65"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_downsample_block.py_unittest_": {"doc_hash": "409030bd0092ab157750fb407cccc111f3f8417175c8b5004142e11732976534"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_flip.py_unittest_": {"doc_hash": "ef17ec39f5d39709b5f2f49ddac5fbfe17b52828b613c5dd44b33273d71d9d48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_flipd.py_unittest_": {"doc_hash": "d8ed9bf49934300df754482ad7928c7adb9ff90535b324911153169081141e4e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_unittest_TestFocalLoss.test_consistency_with_cross_entropy_2d.self_assertAlmostEqual_ma": {"doc_hash": "2cab290d00399aa400dcda62fa45c112dcd5d9344fbd61ae45cce80f9650c264"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_consistency_with_cross_entropy_classification_TestFocalLoss.test_consistency_with_cross_entropy_classification.self_assertAlmostEqual_ma": {"doc_hash": "f2916eb7a9fc7ff22a655d29e6348c398372e91cc119cb9061e32ca14add0479"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_2d_TestFocalLoss.test_bin_seg_2d.self_assertAlmostEqual_fo": {"doc_hash": "f7bb0edb30d74d606a67d19246af08bed1a79d2a13b1ee52c7ab0fc4041c072a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_empty_class_2d_TestFocalLoss.test_empty_class_2d.self_assertAlmostEqual_fo": {"doc_hash": "c1cac849ae6497164941655af67d88e083343a51fa75e139182eff6e12ca05a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_multi_class_seg_2d_TestFocalLoss.test_multi_class_seg_2d.None_1": {"doc_hash": "674ddeae33276de78b1fd6dfb4eaedf922cfaa80a5aebdf67a4f1f6163885c72"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_3d_TestFocalLoss.test_bin_seg_3d.None_1": {"doc_hash": "9958803627dc718739da3a2f9b5be0cbe6561931aae6737c3c2c601bc05bf65c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_2d_GaussianFilterTestCase.test_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "89826ed9d6618f87e42c2d0b69cbfe1434420e0b542ea0a1525debdce19945d5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_GaussianFilterTestCase.test_3d.np_testing_assert_allclos": {"doc_hash": "b78212f0f7160dc9395d0be926b476d4f36018f12dd6085b74adfacdbe95ea6e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_sigmas_": {"doc_hash": "6583018c2fc411905c9b3a00e8eb0925a00ee13ffd0521f60713d9397eddd59a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_unittest_TEST_CASES": {"doc_hash": "d1cfae62dc4ea6168fd01e7c1c8d51666e6a96705deeb055afc2bd860bf8301e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss_TestGeneralizedDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_": {"doc_hash": "9a92420756e9c35982f141d11453e3919b3e75fe4f5eb6d2cfb54ea4a923d7ef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss.test_ill_opts_TestGeneralizedDiceLoss.test_ill_opts.None_2.GeneralizedDiceLoss_reduc": {"doc_hash": "8f314f22055cf461cd867706152abf8a774bb5e5fd2edc3b016a1411b66fd35e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss.test_input_warnings_": {"doc_hash": "848a1e54917479d0a6bd7f02af1e980c859dde94ed13fda168e2460a6477bf9a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_pos_neg_label_crop_centers.py_unittest_": {"doc_hash": "e2d1f678e9b20f674a596c36e03cb5a73f4d21fc9d83e656d532fb55559ac1a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_spatial_bounding_box.py_unittest_": {"doc_hash": "eebc71b4904b81298fe3ea9368c4c9254a479e6f7d201619ad38df201f1c8843"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_rocauc.py_unittest_": {"doc_hash": "3f140792b01e4dff3fc6cd53f96b0ce98d3a2214d248dadab510e58ca62faa88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_TestHandlerSegmentationSaver.test_save_resized_content_": {"doc_hash": "0ebb83f8042c09dc7b65521f22dbd79e23efb0307d1705ae088127005141d2f8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_print_TestHandlerStats.test_loss_print.for_idx_line_in_enumerat.if_grep_match_line_.if_idx_in_1_2_3_6_7_.self_assertTrue_has_key_w": {"doc_hash": "4c215efd41667901389a4aec0b492aab2855cf3cc00d5bd26edf0511a9c3edbd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_dict_TestHandlerStats.test_loss_dict.for_idx_line_in_enumerat.if_grep_match_line_.if_idx_in_1_2_3_6_7_.self_assertTrue_has_key_w": {"doc_hash": "2ca20bfa4a7d967123ec17a41ef8f3c1a107ed293dffde092d5d72585e255a5c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_file_": {"doc_hash": "fdb2d1adcb0beab4d572afbcc2a9f5cd38ce9440c1d3ea895b95e3218effd946"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_glob_TEST_CASES._20_20_2_20_20_": {"doc_hash": "0dfb8e2714c725a80b9f3d9d26bc6a18a3d6cf2d9b1b399833c7f5b5d589663a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_TestHandlerTBImage_": {"doc_hash": "0b7d80d88199e61b37d0fdaffe836ac6e04f95732929e2db29173e5ec1a84d8b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_TestHandlerTBStats.test_metrics_writer_": {"doc_hash": "8640ee9559d7f821c3736a2c8f595d6f30ac7832460627a0d2ac2218112eba18"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_validation.py_unittest_": {"doc_hash": "5f750b1c9e387cd2b494f32115c87e1cb217b25ba0ae3081afe64af8851ef001"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_unittest_TestCorrection.test_correct.np_testing_assert_allclos": {"doc_hash": "93cbe20008aa25c06a1dfbcb094fcdb63a67f15378e3ff27521e2995a172eaa8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_TestCorrection.test_affine_": {"doc_hash": "be2df905652f61cdf637b4262366af9a9265c10cf48b01a888366a5ff673f3c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identity.py_unittest_": {"doc_hash": "19a40849fdb212627b01e4884f3f41b37961bba4e063ee5a58d909197621eb2c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identityd.py_unittest_": {"doc_hash": "908502b8cd973d8e67ba2922c2dc616fa47c802886e7c582e4547d8cf08cad52"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_os_MedNISTDataset.__getitem__.return.self_transforms_self_imag": {"doc_hash": "c582a4524b2ce310572605f8b9ea8d9bea700ed1843bc0c7abcc36fa60b58fd4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_run_inference_test_run_inference_test.return.tps": {"doc_hash": "11e6a2431bb36bffd83ae5755709b2eba436d88e332553f34160c7179fd1014d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_IntegrationClassification2D.tearDown_": {"doc_hash": "28d01e7cb655565530ff7f3fdffea8a3b93f8876765338a69ba236d177a08fb3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_unittest_run_test._TestBatch.__len__.return.train_steps": {"doc_hash": "6903bc550e80d6085839481e84e6f818aae53eb4e3eb382ddd8b155577900a14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_run_test.net_run_test.return.epoch_loss_step": {"doc_hash": "5a22cf5eb4b83be6ab6078d2bfb7398a69f9f1d2d136cc43d2dcc6ad0aae1919"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_TestDeterminism_": {"doc_hash": "aaf04d13ebf07838e050dae17a8376289ef014e8194474d6e79f7ee73db41fd3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_IntegrationSegmentation3D_IntegrationSegmentation3D.tearDown.shutil_rmtree_self_data_d": {"doc_hash": "71e2b724a0a95c923296ee182e41cd42fec17f687f83328626c175e03528cbe2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_run_test_run_test.return.saved_name": {"doc_hash": "924de087feac084579424293be89c358f67449f0711671ffc039ae30de96c0c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_from___future___import_pr_STNBenchmark.forward.return.self_stn_x_": {"doc_hash": "cba2c60f6ed6c557f598ef09da2edf352c377d34f818f4732862b10761001987"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_compare_2d_compare_2d.return.model_img_a_detach_cpu": {"doc_hash": "1e344d42b8989a3de9f8aa2921be275c1a9cbabe8ade1de2607859ae605267d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_TestSpatialTransformerCore_": {"doc_hash": "a374cc357da01805ac8f85cf57dd8314ea7b94678b050f37e8ee33f290e84613"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_inference_test_run_inference_test.return.evaluator_state_best_metr": {"doc_hash": "d5c74404e7013d7a55b16ee55b468f8ca60998160b714ba71668cb1afebd6aa1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows_IntegrationWorkflows.tearDown.shutil_rmtree_self_data_d": {"doc_hash": "6005549b64ee9a35d61f57722ebea1c8741f7c1da38c68962fd870138e30af81"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows.test_training_": {"doc_hash": "8acfab30549f4c5e9c2b60b06fe57458ee53c50964615221afb36660c46e9303"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_unittest_grid_2.torch_tensor_0_0_0_": {"doc_hash": "00b89435a9a0893ddcf34dddf5050c1cefdc362963e6a1f700c4eae418661b6d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_grid_3_grid_3.torch_tensor_": {"doc_hash": "43a900334a7591ddf106a1dcff07dcb0999ae37a45150234add55123cafcb3a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_1_TEST_CASE_6._": {"doc_hash": "dd7a7fb0a12daf4f2dff1d6d2d440fea33f199fe5ccc4afb4b21a7b2ea83fe3c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_7_TEST_CASE_10._": {"doc_hash": "579a09659049b28ee2e268c848e7162df7ff7e14c33f626e1ed14af5f6cc4afa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_11_TEST_CASE_11._": {"doc_hash": "59cfd1af3b18c7e865388a321aa7ecec960cb5f1b0529f71a2f9bcc321228bbb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_12_TEST_CASE_12._": {"doc_hash": "318b0528a7b8406d19f984b82dccbc44c8e397c5babb756cc1e3c1ca979ed5f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_13_TEST_CASE_13._": {"doc_hash": "41538a0ddb7f8515f6d4feb743ace6b8b0712058f056262fe818f771a670f802"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_14_TEST_CASE_14._": {"doc_hash": "9513d43143f430bb9a759b2f378f16e4c2fbff49541441dabace61ca9c9f6590"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_15_TEST_CASE_15._": {"doc_hash": "445e34b006220312acb9edfa8b111184cd09f8993aa69193e888d0b7cd0c2cb5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_VALID_CASES_INVALID_CASES._ITEST_CASE_1_ITEST_CASE": {"doc_hash": "0519f5ad54c2ea2d5ece0b70381d033f66dd72aaffa21299b6b5f51d580fab0f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TestKeepLargestConnectedComponent_": {"doc_hash": "9e6c86a0aa7ffcd46f7746d95651d7461db5c4ddd60470bfb3087e95e17516b9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_unittest_grid_2._": {"doc_hash": "a0faba58eb022c0b0605b92e4678c665d9729add21dd7e2c89331d9b89daf921"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_grid_3_grid_3._": {"doc_hash": "8be83d6d11b2fecfbd1f97df5deb682c957972cb3c1ecd98a13cc7d06accf761"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_1_TEST_CASE_6._": {"doc_hash": "0dadbf13d6eb2d5d50748951662fd7e4d5e5f0d276ca4e9cd586641e1af29069"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_7_TEST_CASE_10._": {"doc_hash": "c83925bddfd029418437d3e8e245fe809566fc13bafcda5eab58542743b6a981"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_11_TEST_CASE_11._": {"doc_hash": "3987923c9f58ad831e491757e4e6c773f8cf88b2221107f5eaecb5e2c33aa513"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_12_TEST_CASE_12._": {"doc_hash": "b5caaaecc4a8bdeef4cdb7477863d4c024f6c62d97ae060646932e749cc12498"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_13_TEST_CASE_13._": {"doc_hash": "b396745f71c868fda0f4fa32a45d1aa6a4a7703d4d5872ff48fca16bc6cb30ff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_14_TEST_CASE_14._": {"doc_hash": "ef1e3541a6359e083ff7b8da42da43c858c2879e49851956e1764f3475b79930"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_15_TEST_CASE_15._": {"doc_hash": "8c0944548fd0b745300ddf4b0a2bedad009914c4093d2685ed99f1b07e6d884b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_VALID_CASES_INVALID_CASES._ITEST_CASE_1_ITEST_CASE": {"doc_hash": "a234bdb65f56c5b9b714c7d68d6b05cb0e552878960669a8dd2746dc148b6c3a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TestKeepLargestConnectedComponentd_": {"doc_hash": "27d81f14f7dafd5c3677602c878b4c36a140d41bfd58e1160d9886d340fb3ccd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_unittest_expected_output_for_cube": {"doc_hash": "bdf554f93bb83fd0a2d2d0b4148c563db39990c7fedf6333f57f932d7f24bb53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_gen_fixed_cube_gen_fixed_cube.return.cube_expected_output_for": {"doc_hash": "7b629ffee4dea9214e5bb21e592ea2c80ce5f74ad1cbf4ae403793a35f273d67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_": {"doc_hash": "42bba26a5877e4380e0c4479c27d03f35595b2650150fe87e0199b853d2cedda"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_TestContour_": {"doc_hash": "4e020e583fafbb564ef9cd7aa8fe2611e2b429b04596f075239d15cc4fb69ae1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_unittest_expected_output_for_cube": {"doc_hash": "2b38d605ec24002402dba51174973f26a531739fde7de4ed5ea40b5a6d6055c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_gen_fixed_cube_gen_fixed_cube.return.cube_expected_output_for": {"doc_hash": "2fe8f8caab5a687da08db9474e398a2342806436299be8329f3779d8371d7777"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_": {"doc_hash": "13023f92ad319442886deb243730bdea8f650d04d49b690c0ed741ec2dea2ad2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_TestContourd_": {"doc_hash": "7142618ad0c5e1af24197b61855ca9055b305b628893bfade4f4dc8e6271f868"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_mask.py_unittest_": {"doc_hash": "4fae35c910b35b22450badda3029e334c1d7ca609bd9778d04efb0ab54979731"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_maskd.py_unittest_": {"doc_hash": "959b8b79ce55d397d0aff4d4723e53ed873c8e3d47e09e2834bde39b24879563"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambda.py_unittest_": {"doc_hash": "c079e68f62501b6f8350f9129fb4fc610dfa9e9ae5d57b2241d3aa02d6e84c32"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambdad.py_unittest_": {"doc_hash": "7f96928b83777563c190cb66cc15cdb4688727cf83290ebd8ac3b1f2b52b5478"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_data_collate.py_unittest_": {"doc_hash": "ee4bd3ea12ddb291c3e6329a0f9d209af1fd1b6084f70acfcb5c09430c3f4291"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_os_TestLoadSpacingOrientation.test_load_spacingd.None_5": {"doc_hash": "e80bb6a82f1bb4a35400f7c64c1636e6235095f102d328be005d33c5015302c7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_TestLoadSpacingOrientation.test_load_spacingd_rotate.if_anatomical_not_in_fi.else_.np_testing_assert_allclos": {"doc_hash": "cf0ca0fb2c5b0e855bc6f004516507423ecd4caaaca2de6290d24f40a328d32b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_TestLoadSpacingOrientation.test_load_spacingd_non_diag.np_testing_assert_allclos": {"doc_hash": "5f854c3909246763e5ba7c91795a918ea22efacad7d8d589b75418f86a6ad0d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag.np_testing_assert_allclos": {"doc_hash": "f7d45d3b9b7b8f48697b5c8bcaaa36e33ae965191678fa536312639799bc6437"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt.np_testing_assert_allclos": {"doc_hash": "68782a8c95e5a274d97f06631f1d6252fc2c9dad0d7301b4fe15920ab4d967b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_ornt_": {"doc_hash": "41a6db3d1d775c3ad24644103f89b2f753444d0cd254bd8da6dce00f483b8019"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_transform.py_unittest_": {"doc_hash": "f901906da37659b7479b6bf768654388dd0ebb06c6b533364c50308f6f53c13e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mask_intensity.py_unittest_": {"doc_hash": "e6bd3b539ae0630510d6fcfa1347dc8ce780482405701a7e2070c1c5c5d11193"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_unittest_TEST_CASES": {"doc_hash": "2e80b64a9e6a9c669eb5bb8627616809fa26ef5e806c43513769d296f1517190"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_": {"doc_hash": "9a10dacd3c87ff66d71108cacce51c2b4550e0f9d993e2d0984cc193addc92f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_ill_opts_TestDiceLoss.test_ill_opts.None_2.MaskedDiceLoss_reduction_": {"doc_hash": "f6aae6ee3ce63654ce04fad035ef739434267de0272a457a66dc444f24a913f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_input_warnings_": {"doc_hash": "500897acc35cdf3c18f7c7a0a451e063d11614efc63e068c32a5ab617ab58057"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensemble.py_unittest_TEST_CASE_6._": {"doc_hash": "4e7d96f5f435be9fdabbf32f531956bad1371c84a562de508057528a44b4049e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensemble.py_TestMeanEnsemble_": {"doc_hash": "69731292576158a1c9597444dd2a9ba713218715791b79b0fbd74b80e6f25966"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensembled.py_unittest_TEST_CASE_6._": {"doc_hash": "1f5a02f3bea4a16d9b50b97aecb26e2a27b432adbc67fbf3b9a46d348d6f4360"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensembled.py_TestMeanEnsembled_": {"doc_hash": "b4fc3e366b4f3848105850b93143ed2c58e9d37520c45138add67b108f8aaa8a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_header_revise.py_unittest_": {"doc_hash": "afb68eff5e92578578f94d55e82df3d07ad17462db6717510a10e101ef1ec12b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_os_TEST_CASES._": {"doc_hash": "9711686cd689597778193395d3b793a3a38ee9e378173f85c6ea9341afbb766d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead_TestNiftiLoadRead.test_orientation.np_testing_assert_allclos": {"doc_hash": "cd719f32159ca305592ce60b2ca0507d9bc7293912dce10ba3d18aa499d2e2de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_5d_": {"doc_hash": "d4a5629e6fd9055c4b2b1d01aeae4dc3a158947e1e7203005d920aea4eeb55fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity_TestNormalizeIntensity.test_nonzero.np_testing_assert_allclos": {"doc_hash": "d15b17822120f63a92247b422a5ba3b2f72ef18a0d363b43783072320c196eef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_unittest_TEST_CASE_3._": {"doc_hash": "f5dcbc567ad75c56700713b4cb1dd3e256d4c558a1a4a3cb534f0eefe422be8e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_TestNormalizeIntensityd_TestNormalizeIntensityd.test_nonzero.np_testing_assert_allclos": {"doc_hash": "0b74516904f9283d95554f273343fbe7f220d3f8abfef0080ba8bdf700eb71ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_TestNormalizeIntensityd.test_channel_wise_": {"doc_hash": "9d765f853ceaae45ddfc396ef6c6594b003bf648e128753a58185adf34f11654"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_unittest_TestOptionalImport.test_import_wrong_number.None_2.print_my_module_randint_1": {"doc_hash": "dbf5690ee10001fab60702daa34aba0eb16ebf943892702f4b106a6350b54fc4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_good_number_TestOptionalImport.test_import_good_number.None_5": {"doc_hash": "494cfd606891dafef2826956fdd356353733fd17772cf76086e2dbd3cea6de70"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_exact_": {"doc_hash": "cddc54d3b868491642de3387187f1f4961d926776d5854aa8f54d00d6e5d14a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientation.py_unittest_TEST_CASES._": {"doc_hash": "02b35793b4eb42358560f6925c758b07aaf2449514403a2c0f0c927e6427af81"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientation.py_ILL_CASES_": {"doc_hash": "214e5f09711d35ec78242f47e76316733a433f9f145c23805c334c13a87ec710"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_unittest_TestOrientationdCase.test_orntd.self_assertEqual_code_": {"doc_hash": "948e8a4fdded8c51b27a00bb10efb2602fd0245cb9eb8b59a499188df2ba01e9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_3d_TestOrientationdCase.test_orntd_3d.None_3": {"doc_hash": "2dc638abd86325ec7716c6c769e1e0b873881955b51a06223a6707a24041e0e7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_2d_TestOrientationdCase.test_orntd_2d.None_2": {"doc_hash": "1f1607a521975acca7ad39c517072ee7b3bd748cb61fc5f36ad602d5192f5bdc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_1d_TestOrientationdCase.test_orntd_1d.None_2": {"doc_hash": "9d9747d6879423925012b82fc555ca3abdd7e90d2ef3eeca8001055598e9cc74"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_plot_2d_or_3d_image.py_glob_TEST_CASE_5._1_3_10_10_10_": {"doc_hash": "d9a1dae3663783b43e9341379ed38b38d8216b2f04ece15f88731e0cd8491647"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_plot_2d_or_3d_image.py_TestPlot2dOr3dImage_": {"doc_hash": "3cc600bd8e91cc696086617d4a64ca43e58f04b1aaf16028515a4c4d777f1b5a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_rw.py_os_": {"doc_hash": "1a9b73383e8e779a4d339aa10aaa6111432425b926f554225473202c29685cf1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_query_memory.py_unittest_": {"doc_hash": "08736eea0c19ab7279062412adc289aa4988081efbfe7db26ff2ad461b88543a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrast.py_unittest_": {"doc_hash": "adc4fa9caf249af05ec82ff93cacb15ef671e055205e2124e10c8afd625dd465"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrastd.py_unittest_": {"doc_hash": "7d98c4d49e281e353a5461ad0cd51ff274b1ca83562985699d54734aa26f78b4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine.py_unittest_TEST_CASES._": {"doc_hash": "85ef67b42e34ff9c914989ceff1d3e718f35c80f96a7217e469810fb5f656446"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine_grid.py_unittest_TEST_CASES": {"doc_hash": "fd73fb129123450edb1c817c266a334db20e54369a845996972c9eeb4fc40d70"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine_grid.py_TestRandAffineGrid_": {"doc_hash": "04f756feba30fe6be44ea2cd9ce93796ce57ffac482fde39a92b549bb29241a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_label.py_unittest_": {"doc_hash": "c13308dc4a5b6aaaf09b5259b4d8736f39f16c4280da803c447feeeb84b54783"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_labeld.py_unittest_TEST_CASE_2._": {"doc_hash": "31d5bd3f8616e7c5db2cdafae895d040808a2559f203913745c28300c77ebacb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_labeld.py_TestRandCropByPosNegLabeld_": {"doc_hash": "2851360cd7ebd7a874492ea29fa55589e5dbb53c4db53dc6003854993a9d4b97"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_deform_grid.py_unittest_TEST_CASES": {"doc_hash": "9dc91ec1f4c8a87410de372907480b7c056cd80a4ac3e4ac577bf335c55f4736"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_deform_grid.py_TestRandDeformGrid_": {"doc_hash": "b0fc4ca641e4ad8ca50aa363691f88e4326cd3e6b0025f0ae4dc97901c66cc8a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_2d.py_unittest_TEST_CASES._": {"doc_hash": "ad9cc3accd9a7c5366ac7b318296c5aa26adbd818a98ab87d48c73847a3f69df"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_2d.py_TestRand2DElastic_": {"doc_hash": "490d19ac0def3368dac8512504fc6de2871a545207a0aab8bccbab1b6d8951ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_3d.py_unittest_TEST_CASES._": {"doc_hash": "d59d8b1d0d98c6cc9ce627fed981002f4d094325f4c568726e08d3d4d85b8515"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_3d.py_TestRand3DElastic_": {"doc_hash": "358a37488163fb179407aad89776bb897d1a4bab083699527bf331b6fd28dd7f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_2d.py_unittest_TEST_CASES._": {"doc_hash": "247b4bc4c5dbdda4105173a8e04df6e77e1190fee843fee8dc09030d8173ceb5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_2d.py_TestRand2DElasticd_": {"doc_hash": "36b55bf1a0bb5306c43ee619c2bea5bd41a00b6882ed3e3b8dfb63634b8a1342"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_3d.py_unittest_TEST_CASES._": {"doc_hash": "24613c569b3dca406fe1534cfb2aa5cc93a09d86ee45360921024282d1ce4a5b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_3d.py_TestRand3DElasticd_": {"doc_hash": "74e7119d98c5a247afdce1a48ec30aca8f5c72014ef1cf0a32c1fe82f3ec1e1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flip.py_unittest_": {"doc_hash": "fbefdd318d0d5ea0c37211a545ce669376bd49629d43caf1c1f536df980162f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flipd.py_unittest_": {"doc_hash": "1fe6c4f3dce8859cd752efb2fb739055acb68cbd6e62afaa1d462b7f430ab6d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate.py_TestRandRotate3D_": {"doc_hash": "db9b2682f7f9b27c9dd142707a3c429ffcea3a462c94fadb7d350a2e0040bfb3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90.py_unittest_": {"doc_hash": "8e3b36660cbe7053f51ed6cb1f0879f17651c85ec499a3a077a4490c9ec305b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90d.py_unittest_TestRandRotate90d.test_spatial_axes.self_assertTrue_np_allclo": {"doc_hash": "011aac8000127d76ccd695dfab568a03335cd767a66d3a2c297d91e70cc68dd8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90d.py_TestRandRotate90d.test_prob_k_spatial_axes_": {"doc_hash": "7d9a2c6591d1a707cf86eec9845268149a97a8b90c1b7a5bc083b281d21901c8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotated.py_TestRandRotated3D_": {"doc_hash": "64b30b7f62579fafd21f1500182c74d08f280d8f8fa6bf241035eb226ff81e57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensity.py_unittest_": {"doc_hash": "604fabb0dbdcef750a5f04cd7a364c745cd3ec6e6b7cd1e80361ea5a1ae534ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensityd.py_unittest_": {"doc_hash": "4f004802cdfb93fc20ba17b8144abdad714d55cc3c4e393bb5c42b82f0bad8a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_shift_intensity.py_unittest_": {"doc_hash": "9515aa31b7dbc8ab539234d86d9b23bf504184a73b657e7bf684a20e9507eeee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_shift_intensityd.py_unittest_": {"doc_hash": "521117df25849daaa8b78991df01a1f9e54c1f0f5fe452236468fbefe61e3454"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop.py_TestRandSpatialCrop_": {"doc_hash": "343e3d24c525cf064318c376f43ac607de126acb24edfb5825c5197d537dd73e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_cropd.py_TestRandSpatialCropd_": {"doc_hash": "51051b46f2db37f58eecdf4bdf61378195d180f007d018a0720455f40fbba85a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_unittest_TestRandZoom.test_correct_results.np_testing_assert_allclos": {"doc_hash": "a6a7c36a0e0c527334ff2f83de5c869fcd0cfd921de20e5d975512b542b25044"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_TestRandZoom.test_keep_size_TestRandZoom.test_keep_size.None_2": {"doc_hash": "ef15738a6fd5d102b81d040d60454fee8f531a8385eaae98dd6966baa52688dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoomd.py_unittest_TestRandZoomd.test_correct_results.np_testing_assert_allclos": {"doc_hash": "d096d5893421eb46695d79f7b96ae6437017d109538acc57312c34ccbc545a1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randomizable.py_unittest_": {"doc_hash": "1023cca277e63a4d91461a6f31fdf7423611faed373798baf4ec11e5743961a5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channel.py_unittest_": {"doc_hash": "169acb328b139d0595a10a426ef1a0d9427a1d0673dd896e1c8508901549f9ec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channeld.py_unittest_": {"doc_hash": "20100ed0385a51b96c1e30d0c89b367e049c85a38bcb89d1c0804d7d9ddee587"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resampler.py_unittest_TEST_CASES._": {"doc_hash": "eb7d2e87d39ebd14dcdd54f91345796bd7b0233c0f7a07a08ed09dfeb716227b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resampler.py_TestResample_": {"doc_hash": "f4d82178d38d7e6aa71bcd457be26bba4cbc771adcada879d650b48da7d9d480"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize.py_unittest_": {"doc_hash": "e3bbcfaacd776012b06d79b93914d865fdb1842a70eee59d59fa77a7f4ced263"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resized.py_unittest_": {"doc_hash": "fac48b9ce2a3168001eb3ec58df621541d29667bcd1b7ccca5797ff34321f11f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_unittest_TEST_CASES_SHAPE_3D._": {"doc_hash": "2af266825b08364045f74ff4c753027e67be4efa13e958ad4864185c43263473"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_TestRotate3D.test_correct_shape_": {"doc_hash": "34432312568c81bc903985c590dc4cafa9874c36101664aa7f252ee190ebcafd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate90.py_unittest_": {"doc_hash": "21920b2bd9bfe23970ebdbd4e8ace54ec5dbcb3316e677ca742095831a927084"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate90d.py_unittest_": {"doc_hash": "dd1614be1fb0395a2ad247bfd57cdd03ca5d8cf83d864841519ca562ba3b9ebb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_unittest_TEST_CASES_3D._": {"doc_hash": "36d37762f3e4279699351c432e543d987f7458968197bffc62281b699a192555"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated2D_TestRotated2D.test_correct_results.self_assertLessEqual_np_c": {"doc_hash": "97d8e86b2d38df4ed3246fbbd9741052bca5d5007e5253753ac1493f40b74e91"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3D_TestRotated3D.test_correct_results.self_assertLessEqual_np_c": {"doc_hash": "449d0dbe09992a4dd191ff97329593e54924d6656e904b29bc44e4562def2d17"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3DXY_": {"doc_hash": "cf325fa10f5929cc0084a06fa89950246da0ab290405f889240c15fec27bbe73"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity.py_unittest_": {"doc_hash": "080d6a596041731a7d1b0fbd1048e0f181a6d232bd4c1dc632e901f28f54f508"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range.py_unittest_": {"doc_hash": "c8f1655ece9b01b24c0d8e66e482057412559d78de298d46faf0252bc7fa1317"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_unittest_TestScaleIntensityRangePercentiles.test_scaling.self_assertTrue_np_allclo": {"doc_hash": "a4cd0c3425abdb34e9ea522d1afe3440ee0d338e33f42eda402886ccd70e5125"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_TestScaleIntensityRangePercentiles.test_relative_scaling_TestScaleIntensityRangePercentiles.test_relative_scaling.self_assertTrue_np_allclo": {"doc_hash": "a801ad2bd2d33c93938eaca152603f226919971788e17dd1f4b18784f7630f42"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_TestScaleIntensityRangePercentiles.test_invalid_instantiation_": {"doc_hash": "f3da79e1032073fd0929835458ebc1ff1cc0df62c54e9d48016aab5a90d12d21"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_unittest_TestScaleIntensityRangePercentilesd.test_scaling.self_assertTrue_np_allclo": {"doc_hash": "577654f435cc6492c381b67df7741091055246acc9e99afe0e64e648cba83a80"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_TestScaleIntensityRangePercentilesd.test_relative_scaling_TestScaleIntensityRangePercentilesd.test_relative_scaling.self_assertTrue_np_allclo": {"doc_hash": "555c46fa1eb22984b64b4d26496d2c32e27334abf2a8dcc190d6f1ce0e63c4c7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_TestScaleIntensityRangePercentilesd.test_invalid_instantiation_": {"doc_hash": "801d0de8b2e7995e895305957a26df5369e8f158526470cf080982ca4820130f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_ranged.py_unittest_": {"doc_hash": "ff970a64f5c8d52d5f179e2ffc154419d989a6845eb137a8a5200567a9a278ed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensityd.py_unittest_": {"doc_hash": "825cba8ed4d0d835d45f55d78750d3dce51817b35cf2de8894d8094474c29b03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_unittest_for_type_1_in_.for_type_2_in_.TEST_CASES_3D_append_test": {"doc_hash": "6bfb7948ca22a671c068b9e2da3f6d3561748797af0d529e0b03a929e789316d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_TestSEBlockLayer_": {"doc_hash": "eedb8b4e108730515e2c945d40954a68ff7496cdd42b95a7d3bb9eb47de7031a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_unittest_TEST_CASES._": {"doc_hash": "9ba26fe2202eb8150efa5e4ff85bd6db21b9a0394c68007d43127dc74f6bc3a5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration_TestSegLossIntegration.test_convergence._define_a_one_layer_mode": {"doc_hash": "6338926272160b572203cd69a9584312f54afa00763756b4bb3b9334a47291ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence.OnelayerNet_TestSegLossIntegration.test_convergence.OnelayerNet.forward.return.x": {"doc_hash": "1a72a77faa759300292ee8cf695d55a639cf177a1b817134c618bcda85c83071"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence._initialise_the_network_": {"doc_hash": "36055777668c0b15c149a120824729f062ab9ed67b4ea1ea9c1894f19e54fa2d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_set_determinism.py_unittest_": {"doc_hash": "ca1406e76e6f3a4efbf74f13b043ba086830c5196bb93f115e0dcd76a09f48f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensity.py_unittest_": {"doc_hash": "eafcfe0ffa84f851d775de4ce015593b3658e1062cb38273ba8b338da7b32ee4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensityd.py_unittest_": {"doc_hash": "ce64070f3124c46bc0d833360c533654e7f9476efe6b1130a4ba71fe3893e752"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_unittest_TEST_ILL_CASES._": {"doc_hash": "8befdf3c6ed9e0907cd29c84eda060906e3345e51db394ee818957d8ce751bf0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_TestChannelSELayer_": {"doc_hash": "a8c17159c450b22f4eddf3264fb237157c6bf74f0458c44d8398124b0314d480"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacing.py_unittest_TEST_CASES": {"doc_hash": "276dba5da664c54359101ceff9ca61adee320ff8736c46e819fd6efb788189d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacing.py_TestSpacingCase_": {"doc_hash": "1e2a078a8598be26bccc6fe2837753aac91d4062bb09340b44ceee45dd2a40a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_unittest_TestSpacingDCase.test_spacingd_3d.None_2": {"doc_hash": "230a78eef6b7d175b2478a1b2e1421081c5c73d4b4cccf295aa039f26737fcf7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_TestSpacingDCase.test_spacingd_2d_TestSpacingDCase.test_spacingd_2d.None_2": {"doc_hash": "c1048af8a6a478f77b411d771799490c99693d42fe9c63cddae25efd0be0d19c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_TestSpacingDCase.test_interp_all_TestSpacingDCase.test_interp_all.None_2": {"doc_hash": "c0801ae0c94f248ab047b47738603808d57a2620377a16f12d1f619f4ab4541b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_TestSpacingDCase.test_interp_sep_": {"doc_hash": "4489bd03dcba1525560690554bdce03dc5201ca30f5f494f890f5e8b4d6c1438"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_cropd.py_unittest_": {"doc_hash": "b2faabd5b98cb5730fec5ce6b5e67caecb77c24f834fd358b39ea0e885ac2bf3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_pad.py_unittest_": {"doc_hash": "df61fac2fae4f7913a19c47ffa45edff34aaefbf57f4f14d2e414cbf327cd21d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_padd.py_unittest_": {"doc_hash": "77f9041461dbf4785e5cc33b4dbc96295d600516e82b7581b8adee870ed9e01c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channel.py_unittest_": {"doc_hash": "f160713cd61346a8b07c6a3dd5c15a78a390c84f93236bd76e4e615de0902fc4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channeld.py_unittest_": {"doc_hash": "8f7f55fd5a5da968f92ae40f84617de5a1c409488a554c382e457cbfda72033a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedim.py_TestSqueezeDim_": {"doc_hash": "44c0af1d49b45a8b3285cc6683a2c87402fc928c0b289fa1530ec17e11d3e72a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedimd.py_unittest_TEST_CASE_6._": {"doc_hash": "23db653c6a59bcb945b0f48e7a2500836205a03aa5054c7273c9ddd60b5e01ad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedimd.py_TestSqueezeDim_": {"doc_hash": "dafd8491cda6edaac7a92227fe4aecd6c1076bae4afb78d62def82fe1fb78b07"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensity.py_unittest_": {"doc_hash": "e79e4ba960fc33eff5c251dc18936ed295281ba9030c1e1ad9d61c45be09fee3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensityd.py_unittest_TEST_CASE_3._": {"doc_hash": "f9e2b7808eee0e25a6b0744d6b481e458dcedd1a643c312f0eba68f9a37d37cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensityd.py_TestThresholdIntensityd_": {"doc_hash": "4d88f713215646861a00b981f571d1f9e441cd6b9291ea2c0f6ab765fa1c384e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_numpy.py_unittest_": {"doc_hash": "d0e62d639f8ee52d3217e1ff523efb3c35c5f1e10aa4599f98bf50914876f8af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_unittest_TEST_CASE_4._no_channel_0D_batch": {"doc_hash": "f39b2da576e3c007e2302a2a9b08246184fc8a6578dd0be7ab14e7147ca683e7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_TestToOneHot_": {"doc_hash": "3a657d69562fd4cf3e3b3fbe7e82af9ad68eec651ee575f82ee848154ca1833c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss_TestTverskyLoss.test_ill_shape.None_2.TverskyLoss_reduction_Non": {"doc_hash": "263a13605a29548fa24916068acc28f94996c25c7f1793cb89669e3942e5c47d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss.test_input_warnings_": {"doc_hash": "c8ba71213081eb356cd4ea5c756dc02c59b0b3ce1ad1188a5fc61879b65dae03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_unittest_INVALID_CASES._None_None_bilinear": {"doc_hash": "01e77fd22239f60bb70e62fb607f2dae168d07a980bee5d6a5fe076444333483"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom_TestZoom.test_correct_results.np_testing_assert_allclos": {"doc_hash": "8ec0941bc7a4b43bfb23cd2a387e2745d0bfa29b11005c1b228ef165bf10f212"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_unittest_VALID_CASES._": {"doc_hash": "e0b96f6d1ed34b28ec0ecc8125906ca7f9b10c00c9abc59745bd16978337ceca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_DIAGONAL_CASES_DIAGONAL_CASES._": {"doc_hash": "8a8bd01afc5596687781fded052e0366e694eefe3b112075d2272137934f9b1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_TestZoomAffine_": {"doc_hash": "bb8fb4f6755eab54647c64234fccbc08a52816da71293d07c72478fb6997c520"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_unittest_INVALID_CASES._no_zoom_None_bilin": {"doc_hash": "57196f15633094b2368b4f3ad13141c112982b85f03eade8333b3d7f191c85c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_TestZoomd_TestZoomd.test_correct_results.np_testing_assert_allclos": {"doc_hash": "227aed112b4f317ecf14b08af0fb68e3b15a0a489a44760e699a16ac11c9c555"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_TestZoomd.test_keep_size_": {"doc_hash": "325c1caf645f717dd6d1ecc078fe56511effc2df291ef04b2e667deb1106338b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_make_nifti_image_make_nifti_image.return.image_name": {"doc_hash": "9aff81a921d77846bf73c9b99ed694af72e277eb8e585c6fead25386152f3002"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_NumpyImageTestCase2D_TorchImageTestCase2D.setUp.self.segn.torch_tensor_self_segn_": {"doc_hash": "588bffb4c26254305253faf110da2b324861d58a0cd1d1d4a3ec83679c9d378f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_query_memory_": {"doc_hash": "5d24842c5d28a29557ddfa9cda4d9d943d0bc26d9bc4d2e909524d6f4943924f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_config_from_root_get_config_from_root.return.cfg": {"doc_hash": "636bc04679b7c70a1fa18e7ac84773fc15772f0e8716aa4b69774539f08b0a97"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_NotThisMethod_register_vcs_handler.return.decorate": {"doc_hash": "37c56a26bfa3267b7ee4d7eb4b9f2825d576a46a924203ef084404ec204eb3a9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_run_command_run_command.return.stdout_p_returncode": {"doc_hash": "686989e23abae5b809b4c7229d942fb392850c570e837808fe58e06eade68363"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_get_keywords_git_get_keywords.return.keywords": {"doc_hash": "24589a0695cc6db686b17707d2ae846bb00b32afb520696f4ba33bdcef540ce7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_versions_from_keywords_git_versions_from_keywords.return._": {"doc_hash": "8e8f53330ccc17d402918cf8352ba39b12d06b3ba72330525d7752cf18238233"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces": {"doc_hash": "9340a2f5ae3766b743e79558e1c4892c28fe06a6b345fcd712d2a804f8368c77"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_vcs_install_do_vcs_install.run_command_GITS_add_": {"doc_hash": "ce6841ff519b17aa2d7473d5ad7ac0e07f12143a79c7f074763a9631c2fc7184"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root": {"doc_hash": "eb27147b4dca2b18020791f0e65c0fbf7aec6bd2532f6ea54436911b8190d4b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_SHORT_VERSION_PY_versions_from_file.return.json_loads_mo_group_1_": {"doc_hash": "829ef4bec48493276727c09a38f1d04cb9a3919a539c4da1d239fb522ea32147"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_write_to_version_file_plus_or_dot.return._": {"doc_hash": "75973a5ef462074580ea01f4ad51787ab7d7bc39ff5eda566ef9f40d05aeda5d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_post_render_pep440_post.return.rendered": {"doc_hash": "118807a5c2a97d74d8fe5f796e9018ac18aadcc9b3182b6181ecd25e8dcbd0d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_old_render_pep440_old.return.rendered": {"doc_hash": "97c87acb509ae5cbe63b80d324df13c6839f50c81c34d171697e57c312f2e180"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_render_git_describe.return.rendered": {"doc_hash": "a3d9b39392875e0334af8c64b46fe88c38f8d51c8b168839e4ae228db30b0daf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_long_render_git_describe_long.return.rendered": {"doc_hash": "cf56b90f4c7b7ac99479cdeafeebaf306a0ab42713bb536dffdfe85f0a8b1c00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_VersioneerBadRootError._The_project_root_direc": {"doc_hash": "8830b95a2390f35b59b15edddd77bdcb0dbc6a910169bd3a9f57b3c382046551"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_versions_get_versions.return._": {"doc_hash": "8c9846352af5fa04f4ae6f00259417363a735b385dc9858b46939a847d6928f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_version_get_cmdclass.from_distutils_core_impor": {"doc_hash": "1c049e56b5b17ba505fccb46547c16d5952097f16336fccd2dccb2548aa9bd98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_version_get_cmdclass.cmd_version.run.if_vers_error_.print_error_s_vers": {"doc_hash": "bf8482b590feaed74741d6cb9ac691b8bfd55f50f0717591038782e486f88099"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_sdist_get_cmdclass.return.cmds": {"doc_hash": "015db1e8482c2e175440634d93bd5281420a7f6cbc8ef3e10a0658e88e5f4a73"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_CONFIG_ERROR_INIT_PY_SNIPPET._": {"doc_hash": "d06ca46b62d1ae35674a46018618ee9c434fbfd9d1553dd0feba30be65ed1f96"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_setup_do_setup.return.0": {"doc_hash": "e8fcf2f3b4250714449e5c758c79747c92bef475be869d16721af41a42935536"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_scan_setup_py_": {"doc_hash": "e06f36e2fe2775a2e960e356ddf105fb556e2ab136048f23c6fde564ced2eb1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/type_definitions.py_from_typing_import_Collec_": {"doc_hash": "5a1bc552ca538a9acdf2ca866e87ff72b1dff3eb380f03d64d4b5bcd2e46aa1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_from_typing_import_Dict__PNGSaver.__init__.self._data_index.0": {"doc_hash": "4f10f6d29bcf0efabc871b54b0f8e08e867358c8b22c0a06e0096d37f488d341"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_from_typing_import_TYPE_C__default_eval_transform.return.y_pred_y": {"doc_hash": "cffb25c8c7c5af2d4b1b9853102bc7f6bf4e22a8803e9763252e504649c68d40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer_GanTrainer._": {"doc_hash": "ea46783e20e47346751cedb4a2711117431f11eba3c0caa8c2d95a1f61bdc57f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer.__init___GanTrainer.__init__.self.g_update_latents.g_update_latents": {"doc_hash": "56c75f260b54bb3c274701180e986d3c8a201d23828436da536cec0e64b7d40f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer._iteration_": {"doc_hash": "34b4b81dbd06dce11bcefb63fed6700ab35e3f17c6fe1b51795287dafa639f06"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "1f9953cbe9e0d3ef2b67374f1b2f9adf6a9f02ecf27e566a07682bd62efb6ea7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader_CheckpointLoader.attach.engine_add_event_handler_": {"doc_hash": "154f03acc2e4da05f61071d7f73029eac111ff14fa62d6095dcf9dd8cf8acf3e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader.__call___": {"doc_hash": "a2d73ad3e71522e9e86293da36e80c5c7d048cf6a6340a601fa663b83e4c10bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.exception_raised_CheckpointSaver.exception_raised.raise_e": {"doc_hash": "ac0c560e42c984b41f7bc0ad89d7c79a5b1a9749785943d6c205d7404881d24b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.metrics_completed_": {"doc_hash": "6a673d3250d2e08ab72380df3b5f075a86630ba8f4ee7c243b6478d0f264a61e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "f9e93e0cf7a56870636858f73b578209216cbb3f194d0dba1ced6819d722b059"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "a40b54039bffe55c1460b06425817aab9c21cd3ae43bcb8a33dbdde094f68145"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_logging_DEFAULT_TAG._Loss_": {"doc_hash": "532ec08d5af5493a8ba8ddf0968a76647ac153cc33b76e2a5ff5f703b7ab2b8a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.epoch_completed_StatsHandler.iteration_completed.if_self_iteration_print_l.else_.self__default_iteration_p": {"doc_hash": "872f4268df2dd0e53f5ebd3cd165cab11a81e51aafe97e5a94c1476e3e463381"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.exception_raised_StatsHandler.exception_raised.raise_e": {"doc_hash": "4f77bd6c5794dff36021c30679355817996bc20524f3e80c9b6d108f57952bd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_warnings_DEFAULT_TAG._Loss_": {"doc_hash": "60a0d7b55c4a53dfed52771f478b5bd2a93c6adc03cd7164ba5783569e4cba28"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_warnings_DiceLoss._": {"doc_hash": "52502039872f154cf734ee9a34aad6095fe0ab0060b4f2b663c33b99de0d7f5e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedDiceLoss.forward_GeneralizedDiceLoss.forward.return.f": {"doc_hash": "3a70c3944ded92fe0a5befe57f81877efd62790cf91425a75c52a5fbcd155de1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss.wasserstein_distance_map_GeneralizedWassersteinDiceLoss.wasserstein_distance_map.return.wasserstein_map": {"doc_hash": "bb7b6e798da164fc8c46bf2aca6fffc70ae7cfadb1ee489c91bdd89341c10656"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_from_typing_import_Option_Convolution._": {"doc_hash": "790c0bff2bd7ab0c45e52c47adf75b226a735caf675a94b58f9aba7975b0e68e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit_ResidualUnit._": {"doc_hash": "282a03841315eb196d03eab67d3ddf7da2ba9e312622bb3f26d42f155422fc12"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit.__init___": {"doc_hash": "ddb9b219511ccaddea50053483e59e547a4572664ec189dfe946d303d992fe20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_from_typing_import_Type_GCN.forward.return.x": {"doc_hash": "cc4bea2741cc4506fe65801c2939900ed7e2c45da1dfad8b4a1941b67fb21780"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_Refine_Refine.forward.return.out": {"doc_hash": "64fad06897eabc2b8c7e918554219367d7ea3d564d2e11d2c4ef7728c07b2fc7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_FCN_FCN.__init__.if_self_upsample_mode_.self.up_conv.UpSample_": {"doc_hash": "42a6a1a4ba7af8c8180bba2b0de22203725f3e88cc18aed4ca4a48faaba5f676"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_FCN.forward_FCN.forward.return.out": {"doc_hash": "e7355dc03778c29ae76c7b07e1712d2db6cb9b78540bb932c539cfacce526c89"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_MCFCN_": {"doc_hash": "bc8dbbe3d6a01ab3072c28efaa9e788c6508fb323304ed1f70724c264c816841"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/segresnet_block.py_ResBlock_": {"doc_hash": "448217d324abeaaafc3dcbcdec6836a4fcc4c90002ac26d7f967908196f26aae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEBottleneck_SEBottleneck.__init__.super_SEBottleneck_self_": {"doc_hash": "6676fcf0c6b446cde200f51f23efe0de813e11e8a20a02c5b97a1320836c83cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEResNetBottleneck_SEResNetBottleneck.__init__.super_SEResNetBottleneck_": {"doc_hash": "8948988429b8627954706cc725af49b4fd257dd4e7dbdd52e7a4f9cf31cbf72b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEResNeXtBottleneck_": {"doc_hash": "24c0a56fd5530790f05d71877527aac2caaa4b7d3c6c38f34b15c5f0e69f2b13"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_calculate_out_shape_calculate_out_shape.return.out_shape_if_len_out_shap": {"doc_hash": "2f7fc082bde8ce84222c9bacfaf84095be9dce50c1bd38b24ba0bc9a0a777dcf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTMFunction_LLTMFunction.backward.return.d_input_d_weights_d_bia": {"doc_hash": "b74aa2dd300073e30d9cbde4e3626c09843f96a400a6807b8848efc73e3a6eb6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTM_": {"doc_hash": "8beb7974cd465385d9c664f2336ef6c6eda6ebb9d957e5f97bc229271d49a516"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_math_Bottleneck3x3x1.__init__.self.pool.pool_type_kernel_size_1_": {"doc_hash": "d6e4b969fce9c29329b03430c80e96063d0e8b8d22cb7af69ad259085cb82d80"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Bottleneck3x3x1.forward_Bottleneck3x3x1.forward.return.out": {"doc_hash": "1b0102c31efcc220393815798521f4633a01db2295ae54b324867abe4ad03ab6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Projection_Projection.__init__.self_add_module_conv_c": {"doc_hash": "43e8c4c588e3a03608835d468b10f538c0d9ae07edd5dc973fcbd33a1968488c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_DenseBlock_DenseBlock.__init__.for_i_in_range_num_layers.self_add_module_denselay": {"doc_hash": "38205f4c566797c2266a3547869aa47f2d7606aa2a96716106711c26180574ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_UpTransition_UpTransition.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_": {"doc_hash": "2f2f2472e670878d82c93fd7c2fa93b313fd0dfd0b0831f0abc8d43d3e33c9f4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Final_Final.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_": {"doc_hash": "e09ac00eb6ea2344443bfb77643661f489fe4b25949a3dcc22cebf4c8112df7e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer_Pseudo3DLayer.__init__.self.dropout_prob.dropout_prob": {"doc_hash": "928f9cdfe5ef3f55f3adebedb0a470822ef0fb509731b92c53ec61500c043f8c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer.forward_Pseudo3DLayer.forward.return.torch_cat_inx_new_featu": {"doc_hash": "aa405664fa773cee91a41b41763eb059f3803e2d418c9934bea9275d16b82221"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_PSP.forward_PSP.forward.return.x": {"doc_hash": "920eb23a4fd1172496239fad1262a432d0ea2a00d9ad5fb7af1c4763c3248d67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet_AHNet._": {"doc_hash": "59a0772d963aa73ac5f34fe43af8bff683249b4e293dbd42da1d250a1219680e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet._make_layer_AHNet._make_layer.return.nn_Sequential_layers_": {"doc_hash": "1da5127fa74153fe5675d8e8cee36e8a865d5b8c1e2e11fdd2ae055e9989672c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.forward_AHNet.forward.return.self_final_x_": {"doc_hash": "d18ccd430d83130a0cd494ebeb792524a3477ba4dc8b22b03af981797a72537d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_from_typing_import_Dict__DEFAULT_LAYER_PARAMS_3D._": {"doc_hash": "e6b58bdb6851f8a0b4526e0be8ffe11f7fa84c01cf767a7949c22470ac94e775"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_from_typing_import_Sequen_UNet.__init__.self.model._create_block_in_channels": {"doc_hash": "843e0b741dd0e545ba34f31d2b50a6a2df0a3fd6245729d1972a3795cd46eadf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_from_typing_import_Dict__get_acti_layer.return.act_type_act_args_": {"doc_hash": "01171fcde1a0fdbd719d1ac43d6f2419fcdb4e637142cf25e63e4810d283cb32"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_LUConv__make_nconv.return.nn_Sequential_layers_": {"doc_hash": "6420e4fbe4d80e39eec59b322b9171029d98130f4a337c48868b2ec297039e0e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_InputTransition_InputTransition.forward.return.out": {"doc_hash": "a81c23ceddc3c38ddad13e6459c0d76afd8c9b3972d4df65ac195e994708eef1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_DownTransition_DownTransition.forward.return.out": {"doc_hash": "0dfc9931d799031c2b549adfc7466e30feff59fc6a429b65cd36d81a78fa69f5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_UpTransition_UpTransition.forward.return.out": {"doc_hash": "cc07d55c3b9cd0dde08e8b70eb25b92d367b37bcd53fad3a9a486f97ac5b5c24"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_OutputTransition_OutputTransition.forward.return.out": {"doc_hash": "6aeb84c428641e451538371951c3ebb6d775d84138f83cbc8f0e63cf1ed02be6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet_VNet.__init__.self.out_tr.OutputTransition_spatial_": {"doc_hash": "d1f631f264265a18f706dcab86ad5c7d3f53f6e0e67fcbac046e30a0581f8994"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet.forward_": {"doc_hash": "4768544f0ae8b416c2e6880dc36ca0d9911ea500695c4046139a7b10bbeb7d47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normal_init_normal_init.if_getattr_m_weight_N.elif_cname_find_BatchNor.nn_init_constant__m_bias_": {"doc_hash": "fe91485b445b2a78ae6a1252b156a3553b016e24e92d48a9d2512c26e59efdfa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_icnr_init_icnr_init.conv_weight_data_copy__ke": {"doc_hash": "01bffed4129fbbde7349e2502ad3c5b1ce6628aa1867c38b2984d3d7a584ad7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_from_typing_import_Callab_adaptor.map_only_names.return._v_ditems_k_for_k_v_in": {"doc_hash": "4d29ec5de78e077b173ecd46a02af570734e4483db91e5dc9f5681ad03f1793f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.randomize_RandSpatialCropd.randomize.if_self_random_center_.self._slices._slice_None_get_rand": {"doc_hash": "5b663ad6f0184a75276c97fe9fc8f9881f5907c91da93df31f57dae62e5805ea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.__call___RandSpatialCropd.__call__.return.d": {"doc_hash": "a73cee00a073b6298786992e024a468fc959cd8a284105ebb2d933807615a2ed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensity_ScaleIntensity.__init__.self.factor.factor": {"doc_hash": "e3d00697d2a11cb61b06222559122422489c843f2e0df4f4370b344aa2850f55"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_MaskIntensity_MaskIntensity.__init__.self.mask_data.mask_data": {"doc_hash": "0e5e8100f875cc6a06a45b4e25ce0e26bb67341af481a515440ef4a94b56c81c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSmooth_GaussianSmooth.__call__.return.gaussian_filter_input_dat": {"doc_hash": "c03d05d3674076bc3db78d0246256598e8cdb8d5578fb8b168848a7a6c8a8100"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSmooth_RandGaussianSmooth.__call__.return.GaussianSmooth_sigma_sigm": {"doc_hash": "3d6f86f85fdcfdc13f6675a28d83c759bbcd55760002bf98f6bed933cfd9588e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSharpen.__call___GaussianSharpen.__call__.return._blurred_f_self_alpha_": {"doc_hash": "17762272adc36162ab374e6dad6c7217a982e93dec865ac36e1fa828e9a8183e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.randomize_RandGaussianSharpen.randomize.self.a.self_R_uniform_low_self_a": {"doc_hash": "43e07b61ca38ab55a66bdd560eab99dda4bb76fa8b7936a352c3ab62d5ee2234"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSmoothd_GaussianSmoothd.__call__.return.d": {"doc_hash": "de3e57cbc3367b3a13d2808d0819a330a3529f7b6686d169203f49e12106992d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSmoothd_RandGaussianSmoothd.__call__.return.d": {"doc_hash": "ae4ac9f89d6be72fb5c48cbfa584d1d269f8caf5c9369846f1e580fde35950ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSharpend_GaussianSharpend.__call__.return.d": {"doc_hash": "6d3fff5832812830ad0dce51ae74ad8d9766baa9fd506f11099d8bb19ff931e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSharpend.randomize_RandGaussianSharpend.randomize.self.a.self_R_uniform_low_self_a": {"doc_hash": "0a9afe59800967bdd6bbfb8f2549a9ea21d04cf7cc0304d0e727e913a1c04c84"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSharpend.__call___RandGaussianSharpend.__call__.return.d": {"doc_hash": "2af905e86ce0ef2a1c587dc472ef1e0479f494bf412af8d6f142ee5d1a7765a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_MeanEnsemble.__call___MeanEnsemble.__call__.return.torch_mean_img__dim_0_": {"doc_hash": "c042e246bec273a952c3e6c7136b20b2949d84590a748d8039ac1363509cc042"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_VoteEnsemble_VoteEnsemble.__init__.self.num_classes.num_classes": {"doc_hash": "05d79fad8b2ac2e52d4ebb4de1ed7e116e48e0d9da24d868e80fe55ab7b7f71f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Ensembled_Ensembled.__call__.return.d": {"doc_hash": "08c1649766c5957030de1b42f3e0a5c911851349305169b4b4b2595d09df15d0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_MeanEnsembled_MeanEnsembled.__init__.super___init___keys_en": {"doc_hash": "5452b6848214a0d2b04c5d2821690e9acb1933d605dfda54b28280df934666b9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate_RandRotate.__init__.self.z.0_0": {"doc_hash": "c4ca9972fca69e467c9bae2ae118399359293f2854720adf80b340c8b4ff4005"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd_Spacingd._": {"doc_hash": "f6390e1b606884b9c145084fcb17d5eea0358885e2dab67fce1a3c88a7d5feaf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Orientationd.__call___Orientationd.__call__.return.d": {"doc_hash": "c81a7e5ba7bac35712e6cc55ef97682c10f706b444fcecc1ba0de06ceb5e0010"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_logging_Identity.__call__.return.np_asanyarray_img_": {"doc_hash": "fd399d9b2c937be05a6f221248a5498923891ea3d42fe159e13b7e345046edf2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_Lambda_Lambda.__init__.self.func.func": {"doc_hash": "bfc418f114ad75439f76e887d6e3d36bbee2a4fd86219b49fa10c9076863e9e3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_rotate_create_rotate.raise_ValueError_f_Unsupp": {"doc_hash": "dfbaeaec2e1efeee554198c80749e54a1beccf497c852b84c27291aba5dcc977"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_importlib_alias.return._outer": {"doc_hash": "8f904e998bb3e55dc7a762c1b99a780a941194b142f914438fb72366f9e2547e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_collections.abc_ensure_tuple_size.return.tuple_tup_dim_": {"doc_hash": "3a3eaa168d5a7fc45fef6c9e695ad6ef6657c94a09bd505af4970962a15da2f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_ensure_tuple_rep_ensure_tuple_rep.raise_ValueError_f_Sequen": {"doc_hash": "5757e4d9adae76c0faa59482f94741c61b3fd85e8f46d1cd6ed75c41c36392d0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py__image3_animated_gif__image3_animated_gif.return.Summary_value_image_summ": {"doc_hash": "5b92b495f9d57ca2f05bf8bc41c96155ea334ced1d136d263c399134c1ee46f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_itertools_TestAdaptors.test_single_in_single_out.None_4": {"doc_hash": "4b24f84b2c5da28cbf0631f80106ca066879e35bb2864966145d9f6e1f63c056"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine.test_to_norm_affine_ill_TestToNormAffine.test_to_norm_affine_ill.with_self_assertRaises_Va.to_norm_affine_affine_sr": {"doc_hash": "860e5aab62199adb26a0d6d1c124577538fd42a1638331d3b1926697040472b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset_TestArrayDataset.test_shape.with_tempfile_TemporaryDi.None_13": {"doc_hash": "b069cf6b9c0721930850269363811c970a1cd93b142512c511989199fc349239"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_default_none_TestArrayDataset.test_default_none.with_tempfile_TemporaryDi.np_testing_assert_allclos": {"doc_hash": "3ed7e0f15f78a727944dda70b4973d70cb8e0bc45d783a0d46278d5a15bbc77e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_TestArrayDataset.test_dataloading_img.with_tempfile_TemporaryDi.None_6": {"doc_hash": "ceba66a5ad1b2b061f8af22f09991bfca74850ba05a4fe057b4925a39169eb4e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_label_": {"doc_hash": "6e68d8fde09cc0a532a88ec4a682d96f626d5e7fec562cc60961f2a2f6514766"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_roc_auc.py_unittest_TEST_CASE_7._": {"doc_hash": "53b157da089bf4a47ce50adf6f26d37f57a0f5ef4adcce9481afb821798d6f46"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_saver.py_csv_": {"doc_hash": "513d041e18f2f473405b42bbe36d44913f777fe38c4d399631e8be1bc826ab5e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_statsd.py_logging_TEST_CASE_6._": {"doc_hash": "9cbcda0f7e098909563933b0312842910ce19973518776a0ca056aaeda492464"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataset.py_os_": {"doc_hash": "4bb870784cc034495532e0a382f3b3a9015a9af5135c36216ebb480f165aa3a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decathlondataset.py_os_": {"doc_hash": "366c001bea6d450075cd51c120e99a6cf4ffac41f08ad31da49e37e01b166421"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_delete_itemsd.py_sys_": {"doc_hash": "3f715daf127b0471980cc3c945ae04547e55d02ad62574471056717771cd9980"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensemble_evaluator.py_unittest_": {"doc_hash": "29c8cedc04a177647de797a1001ca18375dbec7ef0629a6dd2482bdc25bbbaea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpen.py_unittest_": {"doc_hash": "91ac5a994289a03b03389950b2a713a91ccabf61e31cc941da9728bc59eefcfd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpend.py_unittest_": {"doc_hash": "2f526b10984f772fa97abf1bf577caedf91b1788b3846ed787ce7dd69f0e90e3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smooth.py_unittest_": {"doc_hash": "5ad301e736bf16dc1e71cfe8a0d05f7180bed3e236ac37ee3ee771dc1adfd3ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smoothd.py_unittest_": {"doc_hash": "25e97ed6f7a9dc7db45d5100e02e1e8b31ef2d094140c0445a97b2b6250cc755"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_two_save_one_load_TestHandlerCheckpointLoader.test_two_save_one_load.with_tempfile_TemporaryDi.torch_testing_assert_allc": {"doc_hash": "3d7423719802826cd0159fb789a0c8d54934c448d73f28f8d46344a334e0b786"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_TestHandlerCheckpointSaver_TestHandlerCheckpointSaver.test_file.with_tempfile_TemporaryDi.for_filename_in_filenames.self_assertTrue_os_path_e": {"doc_hash": "cdfcf86d801efe13e5ef80af8a43629a371a16d06b77138e9451accfdb56ce99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_classification_saver.py_csv_": {"doc_hash": "c150c7182ef86100ff40d53ccb1c0b9f94112d71133abf4641e1ea924ce62822"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_lr_scheduler.py_logging_": {"doc_hash": "e65853e99b78a75edc28cbe231b7f99aaabc138f8bc9ddc6ca7fb63f6609ebcf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_os_TestHandlerSegmentationSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "6751cdbc7fc6e6f8003af9cda194b5f96730a17204dd42aacaf92d8924db4d4f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_logging_TestHandlerStats.test_metrics_print.for_idx_line_in_enumerat.if_grep_match_line_.if_idx_in_5_10_.self_assertTrue_has_key_w": {"doc_hash": "45300a02213f4119f622f420606c829d0ce85d9c795b8f6365a5b3e30b654495"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_glob_TestHandlerTBStats.test_metrics_print.with_tempfile_TemporaryDi.self_assertTrue_len_glob_": {"doc_hash": "ea531bfc35eb40a9e30cb5ffbd63188859b1a7d3a8653bef2a1d1fb473ae75cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_img2tensorboard.py_unittest_": {"doc_hash": "f33e08e5a858de42f9da71eb6ec1e4c4740ad154c35328f8f57927938f49c91a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_run_training_test_run_training_test.return.trainer_state": {"doc_hash": "d3eae47020312076e374364a8b3d137ac84da167eadde8d36575be8516f7ccae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_IntegrationWorkflowsGAN_": {"doc_hash": "5f993f31ba5d9d568e066edbcedfe104affbd9d5914288412b82d2af151e5882"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_to_dict.py_unittest_": {"doc_hash": "9f5d4c471ac1aba7bce8e991b587d2814446ed4fca665753b69afa67f121a361"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_unittest_TEST_CASE_1._": {"doc_hash": "cbc43f6b31061ed3f9eec3e5050bec2c408a5fc39720bd2e8610518be4356d5c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM_TestLLTM.test_value.None_3": {"doc_hash": "76a8a69548e6a707e3c86c372d7da62eb762dbc8945609c5b2c8f7778f215dce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM.test_value_cuda_": {"doc_hash": "675808b8df4bc2325b5fab39c71cab1a859bc7d28ff5e9dd7e3831fd847483ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mednistdataset.py_os_": {"doc_hash": "9d8b0e4428fae1fc52c00c8afc7b32f12198339fc5a5f548b057e9dfbfa5b2f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_2d_TestNiftiLoadRead.test_write_2d.with_tempfile_TemporaryDi.None_5": {"doc_hash": "2752947fc53c72ea49910bef82fdf1da559782610d49c712c3eab5ef418d088a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_3d_TestNiftiLoadRead.test_write_3d.with_tempfile_TemporaryDi.None_5": {"doc_hash": "292a1e0ec91df9bf9c2e7c6d7ab61e067e1514cd96b3c02360b66e0b77cd8844"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_4d_TestNiftiLoadRead.test_write_4d.with_tempfile_TemporaryDi.None_5": {"doc_hash": "b92183ed5c9f20b0bd0901a63bea750b629aec41a916df99eaa6913d9e9abf0e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_os_TestNiftiSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "a6f5e1d06a7004b0b9c3e2d9ad0b9c5fbedc164683493161cbf3a5a32df10b17"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_TestNiftiSaver.test_saved_resize_content_TestNiftiSaver.test_saved_resize_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "cb06752762a4b5c2beef2dd4fb8dd21cdfe1c65499a7f6e06d826e5d2f7d00c7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_os_TestPNGSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "d9e66d7bb6391b380c870ca5d1bf0c556d6db9ea20a2c49aca526e79db18982f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_TestPNGSaver.test_saved_content_three_channel_TestPNGSaver.test_saved_content_three_channel.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "393a9f2830e02146c2b21b67b052b09c88abac405bcaeae37cce8e8805b29bfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpen.py_unittest_TEST_CASE_2._": {"doc_hash": "1b9204ac44f0049f56ef7903e016c5dd181c099c10457c6f801d4bde43354520"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpen.py_TEST_CASE_3_": {"doc_hash": "b1a4c6668bdc721e0717782467277823be4c1ee51ba8702d81ecdf74665f22fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpend.py_unittest_TEST_CASE_2._": {"doc_hash": "e3a21708fc50a7cc61642a9a3f5ad1060665114a07bbba640eead24f2ac048cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpend.py_TEST_CASE_3_": {"doc_hash": "74795d736384c03dd923277185e77ee8592be6d2e5b12eec0cd2407953611a2f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smooth.py_unittest_": {"doc_hash": "480324caf2ecfbecd12b0812cab0253865774d2ddbfeb0878cab6ef9dab50d0f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_unittest_for_spatial_dims_in_range.for_in_channels_in_range_.for_kernel_size_in_1_3_.TEST_CASE_RESBLOCK_append": {"doc_hash": "b0e576f85f47eae4177469ffaafd570800b7633be338fd712847b05a567dadd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_TestResBlock_": {"doc_hash": "54e752837fbb272f36370d29f8d9b6c7b782fb4b91ff2c91fb1326d3f0cd762c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelay.py_time_": {"doc_hash": "b2ccf1f26142c91a873463983b2662ed184dbea8f739a20bb2dd0f23759546bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelayd.py_time_": {"doc_hash": "77af87875b52e1a337609b10d82adb559ed7c0925be2dee09691bb0f72be8d57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedim.py_unittest_TEST_CASE_6._TypeError_dim_0_5_": {"doc_hash": "09055449c38d36386992a3251aded809b446b8a0cfa79ace6ae9e854a6fc1ec5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_subpixel_upsample.py_unittest_": {"doc_hash": "abae2e9ccff105b35e21e527432da1578d23ce0dbdc699717e3b295ad18838f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_unittest_TEST_CASES": {"doc_hash": "62e0c005f7aad5a5f7efe1c3b0084bc4680ee297d93587d49d4e8fbcede836b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_unittest_TEST_CASE_VNET_3D_3._": {"doc_hash": "4848281718d42d40c7cb34ac2705eb9c5998e59bfcdfd163e89e3da6ed818f8b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_TestVNet_": {"doc_hash": "20d91bbe687993b77799581475e5f4e0ec3db634717e66d63f4beeb10aaca296"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensemble.py_unittest_TEST_CASE_5._": {"doc_hash": "a8e7b184578fbcfcf423dd125e381ac3c93eba26cf027ea41a7812ca0126524f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensemble.py_TestVoteEnsemble_": {"doc_hash": "a589eec99bc313d609d1bc0137d350d6050ca217e27e7e58fcb2908934bd9b7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensembled.py_unittest_TEST_CASE_5._": {"doc_hash": "deee61d060ab7b2f04cf6893621ba1cece37c2eefbed28a99ba51bb2cc431fae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensembled.py_TestVoteEnsembled_": {"doc_hash": "f03f3215db9623ba1ef2bcc0fd759f93dd2dc5f6e5fc578556094472336c9786"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_check_hash_check_hash.return.True": {"doc_hash": "44ca27b66df406b90af8bc1c26e7f0fdc628b8887f4e036519d85329d0960c09"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_os_get_config_values.return.output": {"doc_hash": "0c674f5023677fd4aba177ac5099e9628b7d3dd687032d933254e8bb5df9829d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_get_optional_config_values_get_optional_config_values.return.output": {"doc_hash": "d6a3ad26fb699b860a5450ed6196228feee24efdf1f220df7f33846e82f22ece"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset_SmartCacheDataset._": {"doc_hash": "6bf8c912907169fad553b21f69d6912db27b6b64360990fe182f36bf92894b37"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.__init___SmartCacheDataset._restart.self__replace_mgr_start_": {"doc_hash": "7e8aba448bc7e9d02fd93446d790e80e8269e6705d3f32eee5027f4085a595da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.update_cache_SmartCacheDataset.__len__.return.self_cache_num": {"doc_hash": "b0e5f15faddfba23c190155243fa6ed929ebdc8dcf6d478df1ef9cda05248ca4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py__append_paths__append_paths.return.items": {"doc_hash": "57deccbc1be72231882cac92e321b961047c8795b3f5c8e99392e701b5e9ee19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_load_decathlon_datalist_load_decathlon_datalist.return._append_paths_base_dir_i": {"doc_hash": "e85271f57471c49f9a539af0bb00fc00de2441aa834fdf1a193c293b27c29be3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_load_decathlon_properties_": {"doc_hash": "20e188836d07b184e2d42dde32d058cac8173c26727373ca2a891afb4c9a2c97"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_PatchDataset_PatchDataset.__len__.return.len_self_data_self_sam": {"doc_hash": "dc0092d5f79e2cb1fc5ce0c5d3a55028cf61da552fc05ee81e43c4af17bfa54b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ImageReader_ImageReader.verify_suffix.raise_NotImplementedError": {"doc_hash": "86a83333edaabe217c67f8dfd769ad3a31fc4eb4cb81e6e66e740c5c214b110b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ImageReader.read_ImageReader.get_data.raise_NotImplementedError": {"doc_hash": "a905d2c815837259fd0c9878d277ca0198e2a76f2a3b1d4e836a17f4e456a012"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader.read_ITKReader.read.return.img__if_len_filenames_": {"doc_hash": "ec8a877d4e416f281489281e52b55341e7037835c3c2bc9fe6e65a83ea2b9f54"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader._get_meta_dict_ITKReader._get_meta_dict.return.meta_dict": {"doc_hash": "8e110afdd934fe1dd8c0774d045a8b20796f1f86a7962d0321619c5ba706cf1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader.read_NibabelReader.read.return.img__if_len_filenames_": {"doc_hash": "5638900635e95d5b341040ca7a7552652681f5c64d45817204607e4039783a49"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader_NumpyReader.verify_suffix.return.is_supported_format_filen": {"doc_hash": "65649d4cc36639055c55bc3003b7b8db1b6aff97144641be3162bdee4cf47214"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader.read_NumpyReader.read.return.img__if_len_img__1_els": {"doc_hash": "2baa55365d4d6c74b564e5aaa7903e1b6ec11b4ead4c45ed5d54ade82f773f5f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader.read_PILReader.read.return.img__if_len_filenames_": {"doc_hash": "7303a25969b18408ea94b878778e3e81de2ce3cc83b08d42670b9734d88b425a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_random_patch_get_random_patch.return.tuple_slice_mc_mc_ps_": {"doc_hash": "446a949aff51d98b033d9acd957f915cd3f5ca7832b70fb88ce6ce50d0246c83"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_compute_importance_map_compute_importance_map.return.importance_map": {"doc_hash": "ed59086d957c0330d61484cac12920c1f886747da0bf31a58472a1d2d8164206"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/smartcache_handler.py_from_typing_import_TYPE_C_": {"doc_hash": "f01c41cda6fba526400a87bac25f2187958fafaa3daf4fd1d2822b9e1e796e85"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_compute_percent_hausdorff_distance_": {"doc_hash": "d62a18425109208b3ac2cb6078fe469723f6f841f11945051fb93bdf8722acb4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_get_mask_edges_get_mask_edges.return._edges_pred_edges_gt_": {"doc_hash": "71b9fe6264e9bcf311f1def9c461949669d3e5895b13bef0760e6056d7ba9996"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_get_surface_distance_": {"doc_hash": "974da9796e444ff53d924606d3e706ea54bb65178f88495839f8e1bec38db259"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetBasicBlock_UnetBasicBlock.forward.return.out": {"doc_hash": "7812712717c13601b1e987d1209b4743deb72d95189ec26723967e6d76647f14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetUpBlock_UnetUpBlock.forward.return.out": {"doc_hash": "4802ad3853f5be6e47cdbd493a99393880e40c3add13237f3c1a1b98a4f58a43"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_padding_get_padding.return.padding_if_len_padding_": {"doc_hash": "b7cd787d4e7a0f9dec0321ddada05b3a291dd4f259fbead79702f938ccfab0ef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_output_padding_": {"doc_hash": "9e18d678d131e16c193b6ba9bfbe53b7ca08a2402ebbbb4ed71b785be4b24224"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_from_typing_import_Option_UpSample._": {"doc_hash": "d180187fb4e1912437decb333c1801edd47adc2f5f34b7df191ca7c31acb1ac1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_UpSample.__init___UpSample.__init__.if_up_mode_UpsampleMod.else_.raise_NotImplementedError": {"doc_hash": "5b0857049f719165f99fc59bef64caaea91de652cc5adb05953f90d0260aa49f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample_SubpixelUpsample._": {"doc_hash": "84a74811cb4e9ae35e3680bd2d029d43a15829751da8052c4317e51c150b7404"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.__init___SubpixelUpsample.__init__.if_apply_pad_pool_.self.pad_pool.nn_Sequential_": {"doc_hash": "958e7fdc4a6d3a5bdfce4930ed27fb058a7b4c739d39b14b2879db20c8eeba36"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.forward_": {"doc_hash": "f7a99ff63c3bc29942135027efaa64cef1f00498ad8839eba087f08f5c8779a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_from_typing_import_List__same_padding.return.padding_if_len_padding_": {"doc_hash": "c283d6dca67b34f0f7fa52e9b016fb13f5ce5427a73d2491b55d5aa322e69c30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_stride_minus_kernel_padding_stride_minus_kernel_padding.return.out_padding_if_len_out_pa": {"doc_hash": "06ff87118324485fcbe3e1a4231c8dacdf045131f33b1c8115708a3f8f3a853c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_gaussian_1d_gaussian_1d._type_ignore": {"doc_hash": "d28d374e8e8f3285a32a90419ccabd3bfb8b2e3d6d494f469bfc0fe78c317ba9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_polyval_polyval._type_ignore": {"doc_hash": "1236f41ab6f04cc3c0fcdf05e119e782f609af4fbb7609e6ee95f2fa146465ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_0__modified_bessel_0.return.polyval__coef_y_torch": {"doc_hash": "b3ba14f54b6a7bd18af4ae492971b6073ae8786a43e293a7ee9d8672d807c00b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_1__modified_bessel_1.return._ans_if_x_0_0_else_ans": {"doc_hash": "7d8015613f7924e5a99c829f1d253f71f32f2e5a9e22b2b5f5d9c959aafbe72b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_i_": {"doc_hash": "efe26237e698f73f0823472daf5c9a9d499512187fbe050420af276662c60070"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_GaussianFilter_GaussianFilter.forward.return.separable_filtering_x_x_": {"doc_hash": "374e16cd3309d31cafc1391c3a3f6299518947f14cf86e9bf337fb90c671f432"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_pull_grid_pull.return._GridPull_apply_input_gr": {"doc_hash": "57386c6316a2ed789e39dff6911736cab29ddc7be5c2dfc71ddbada36ee1802c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_count_grid_count.return._GridCount_apply_grid_sh": {"doc_hash": "ce8b67d04ef7de08163285b243ffba11588977ad5f6917493bcb2948edb46a02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_grad_grid_grad.return._GridGrad_apply_input_gr": {"doc_hash": "af94b58d90e46d413c38452f0941f8b45db0e7da549080821440a77f9ed944c6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_AffineTransform_AffineTransform.__init__.self.reverse_indexing.reverse_indexing": {"doc_hash": "79afb969ebad2111d97300aec0b999f688fd8a929d7ab13d82e49f033f70daf1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.__init___AHNet.__init__.if_pretrained_.self_copy_from_net2d_": {"doc_hash": "c66da9e4a60e88e9f8bfeacd496a68a0e3af1e92809347c0a6a5529271129f59"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_module_list_DynUNet.get_module_list.return.nn_ModuleList_layers_": {"doc_hash": "df43e668083b13e2d85eba72a63c244fe62f02121ab9012f36852713c4652cdd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_deep_supervision_heads_": {"doc_hash": "1a548468c053a3b4693b927f39164856d1c75437a3d443d419c20fcc3529d1fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_from_typing_import_Callab_Novograd.__setstate__.for_group_in_self_param_g.group_setdefault_amsgrad": {"doc_hash": "88cc957525d8b003bd2ac0bd6e40846d99e259fd375d9455a95bed9244a51c4f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_Novograd.step_": {"doc_hash": "dad26db0230cd3487dc8b84fa5e7491860d4b4aa10b0eff5cc6a3ecc591328ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel_RandCropByPosNegLabel._": {"doc_hash": "a731d6bdb2021dbc842f20264057fceb3ec2f461d0ff94dca386b31a838f6d13"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.__init___RandCropByPosNegLabel.__init__.self.bg_indices.bg_indices": {"doc_hash": "8b2bd489d3d901d587cce62b295de04ec3c6f0ebcab352f30c1df1eecadfaa3a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.randomize_RandCropByPosNegLabel.randomize.self.centers.generate_pos_neg_label_cr": {"doc_hash": "99619c72112d513d19dd13d91e3178b897f8fd5e80604777553731fd764469c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.__call___RandCropByPosNegLabel.__call__.return.results": {"doc_hash": "b4c035b794d5b5766fc8d6162ee06453b20a1bf0313fd1e1e271d31471dc2b04"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_ResizeWithPadOrCrop_ResizeWithPadOrCrop.__init__.self.cropper.CenterSpatialCrop_roi_siz": {"doc_hash": "91a8d306510bd90b2f2622d342b6fd6cfe61c1a5f0bdc0e441d95c5ffd16ce3b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld_RandCropByPosNegLabeld._": {"doc_hash": "fad979d07544b565fc8faf7adab2e78e94edd414b326f7328323fd5b7efd649a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.__init___RandCropByPosNegLabeld.__init__.self.centers.None": {"doc_hash": "6f37beba5c9740ed1f070be529491001160ebd15047cbab20eb9050f8c931b43"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.randomize_RandCropByPosNegLabeld.randomize.self.centers.generate_pos_neg_label_cr": {"doc_hash": "8e0691827908ac451150ccf18cdc2d6822a47262360d6466f62487306ff5e515"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_NormalizeIntensity._normalize_NormalizeIntensity._normalize.return.img": {"doc_hash": "6dbb596dd43e400c77a307131fcea879b83f9417f7c67791a57262dd6187b6c8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSharpen_GaussianSharpen.__init__.self.approx.approx": {"doc_hash": "6f8cc7cda877068ca38635f6b71d777de76e79195a34dcf1bd64247f1e026351"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.__call___RandGaussianSharpen.__call__.return.GaussianSharpen_sigma1_si": {"doc_hash": "b6912a947f3d787c750f4a9b28247cc464246dbac652898f9128cc313ce33fc7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandHistogramShift.randomize_RandHistogramShift.randomize.for_i_in_range_1_num_con.self_floating_control_poi": {"doc_hash": "69f4e6a8f18f3340088e1f844406ac7a699f6cb03586f20151413cde4c422242"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandHistogramShiftd.randomize_RandHistogramShiftd.randomize.for_i_in_range_1_num_con.self_floating_control_poi": {"doc_hash": "99096fa892da7ff89409723424686581915a75262ffcca1cdab0f1a8acbfbbca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandHistogramShiftd.__call___RandHistogramShiftd.__call__.return.d": {"doc_hash": "38aa80eefcbb0eaeb2582031c0faebabb9ebc4f38ed9b6794f44e6a82c6772cc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_LoadImage.__call___LoadImage.__call__.return.img_array_meta_data": {"doc_hash": "a14aa7c542bcb037b5ef7d625c8cecf85f2f8edc732562893490467ef1d2c2fc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_LoadImaged.__call___LoadImaged.__call__.return.d": {"doc_hash": "8401c7d14df0856d5b28b0780c708e7d37762a23ac5cb1e720e544ea8abbd5a1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_LabelToMask.__call___LabelToMask.__call__.return.np_any_data_axis_0_keep": {"doc_hash": "1eb528527e7157ad7923d4cb63317e1ffe1af7ec3736673808e53ca201db1c2d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_FgBgToIndices_FgBgToIndices.__init__.self.output_shape.output_shape": {"doc_hash": "5d461fe29c1b235e2186bbf30659b7a4f356b76ab8186fff4755af77e03dab48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_FgBgToIndicesd_FgBgToIndicesd.__call__.return.d": {"doc_hash": "c7d87ad44149fedec77922ee947774b76925e72a26c635d42dd4b2c10765689c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_map_binary_to_indices_map_binary_to_indices.return.fg_indices_bg_indices": {"doc_hash": "b87c523648c34a6fe84c28745eacfb5b7fe6760a676eb62b5ca291862659f4e2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_pos_neg_label_crop_centers_generate_pos_neg_label_crop_centers.return.centers": {"doc_hash": "00cffb759b4d0530ce115c4da91819c4f10ce332a77ed9520978997f7c182cc8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_set_determinism_set_determinism.if_seed_is_not_None_.else_restore_the_orig.torch.backends.cudnn.benchmark._flag_cudnn_benchmark": {"doc_hash": "1d8dc6788eed614d78582577a80dc1c35762f2ae2fd48e31c06bd111055c64de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_load_submodules_load_submodules.return.submodules_err_mod": {"doc_hash": "7f3ab646f79f142da160448aeda23c0e1e02a2c8f1e51772eb279568c4f6d233"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_glob_try_.finally_.print_f_BUILD_MONAI_CPP_": {"doc_hash": "8d453dadd4ac1b10ad4a8c6cb3236b729a0b83e9f7afa7e86a90d5f20ea7a072"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_torch_parallel_backend_omp_flags.return._fopenmp_": {"doc_hash": "4dc79ca5b20e2736d059f38302bca60bc6c32a89b19ed43625f26ff04281d9da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_os_CLANG_FORMAT_PATH.os_path_join_CLANG_FORMAT": {"doc_hash": "fd373a1066c6f88b5463a9ceced662c2654aedbdfab85a3b05b6d018fc5fc9b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_get_and_check_clang_format_": {"doc_hash": "aac29657bc644b410bf51bfa01c61ab993b485e9e0c59509556579686d144a62"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/min_tests.py_if___name_____main____": {"doc_hash": "9810ec74878878ef503ec5da45a3992c0101755c14de8ebef0bfd6d314759e81"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_os_TEST_CASE_5._b4dc3c246b298eae37cefdf": {"doc_hash": "3b95f1b2d4fb385423ad7fa3295fb356e19c202f509bccc4f2a0283ad86ea9a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_TestCheckMD5_": {"doc_hash": "aab10397daeb9753726e918b32842d7368c0a091803a31cd7e4a2cef58118cb1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_sys_TestCompose.test_dict_compose.self_assertDictEqual_c_": {"doc_hash": "d3a6a52a8852709b0be5ff205ae82879722449fbd7e29f682c810569a9196390"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_random_compose_TestCompose.test_err_msg.with_self_assertRaisesReg.transforms_42_1_": {"doc_hash": "2485d3f2ed220eb85a0edd5cfe97470b7a0cb186cf71907a5e9bb5f3e41d1b4a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_data_loader_TestCompose.test_data_loader.set_determinism_None_": {"doc_hash": "d8e86b3f059287eb29542891ca5ada2e8cba052eb35d6e659874b2da94b1b2e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_unittest_TestConvolution2D.test_transpose2.self_assertEqual_out_shap": {"doc_hash": "cf14830971fbd1eeeb8de1092a980c45797fc88decc4278e1cc7afee69b82e68"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D_TestConvolution3D.test_conv_only1.self_assertEqual_out_shap": {"doc_hash": "07c2326bd20d06c09a8315432b759242edcfda891d7a8ba1dbad203b238d3701"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_stride1_TestConvolution3D.test_stride1.for_strides_in_2_2_2_.self_assertEqual_out_shap": {"doc_hash": "865b420626de39c1d79e1bb55cfffa11faf028eedc356aa3977ecfa5863ac41d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_dilation1_TestConvolution3D.test_transpose2.self_assertEqual_out_shap": {"doc_hash": "ff2d7525765c03de93404d28fb18da114101822440549f0842bdc6eb1b3afa4f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foreground.py_unittest_TEST_CASE_4._": {"doc_hash": "fc4ee2459b19412f11247ba910e9d872d5507ae5e5ede4166b7e39a23437abbe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet.py_unittest_TEST_CASE_DEEP_SUPERVISION._": {"doc_hash": "d6c39c7d095414719e73170783ad00cb2e27b348fd6d083b41aadff1ee1c2ac3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet_block.py_unittest_None_1.for_kernel_size_in_1_3_.for_stride_in_1_2_.for_norm_name_in_batch_.for_in_size_in_15_16_.TEST_UP_BLOCK_append_test": {"doc_hash": "870c9fab77837d871f2f0dc882dfbb617d6ff3c4032700b18cf800f4d15cd149"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indices.py_unittest_TEST_CASE_5._": {"doc_hash": "9f39024bc7d4aa7caaa279fd76fdb31b773bce3a5d4b0a31a6c9a8bc1fd43ab8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indices.py_TestFgBgToIndices_": {"doc_hash": "e7b2be66ae66dd1a3481f2218fa675d9568214669aa8b51adc0f293a2a1b1333"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indicesd.py_unittest_TEST_CASE_5._": {"doc_hash": "1daa07aa36769f5300db71f7532916298408317500faece960f4f17aa8b0bc7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indicesd.py_TestFgBgToIndicesd_": {"doc_hash": "444b49e3bde1b9ffd642334b753afa5d050066155594ff98606c064bccd0fcfd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_unittest_TEST_CASES_NORM_F": {"doc_hash": "60884e489cf69562bb14ac0a506be7be7337c0cc7bf3cd1a26c612f5bd549586"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d_TestGaussian1d.test_gaussian.None_2": {"doc_hash": "26fb036e2e206f9f5660bad88615e35c44ec9e64c5aa99c526202be4b0167acc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_scalespace_gaussian_TestGaussian1d.test_scalespace_gaussian.None_3": {"doc_hash": "1281f47f99436b0b12d3daadc97df6a7f6b703641019ff1444f29c2dd0d50789"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_norm_false_": {"doc_hash": "154d7967035c9b87e8deb0f8f314e865ac32bd6e3e71f2d594efe8c8393c6f27"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase_GaussianFilterTestCase.test_1d.np_testing_assert_allclos": {"doc_hash": "d91ef843228182c8e4468c48c467040f1130fcd671118e4565400b615ef5bd03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_unittest_create_spherical_seg_3d.return.image": {"doc_hash": "81d79d881bc54b18b53c4f8d1e5c2867b300e6c6c54533cf9d076d740273cced"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_is_supported_format.py_unittest_": {"doc_hash": "9aa6a26e5f59af34b0028f679b3e46201b6560ad7a6a03d5238e0c4bb6dd3fda"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_json_TestLoadDecathlonDatalist.test_seg_values.with_tempfile_TemporaryDi.None_1": {"doc_hash": "39fd8cb0eb5b089cdf71da4063ca63d0cbcadec1e8b61225d22f49767f21b1be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_cls_values_TestLoadDecathlonDatalist.test_cls_values.with_tempfile_TemporaryDi.None_1": {"doc_hash": "ee9d54840a10548ab4c97b92073c06c5e59eae2e00a8c6d9284183978ae7663c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_seg_no_basedir_TestLoadDecathlonDatalist.test_seg_no_basedir.with_tempfile_TemporaryDi.None_1": {"doc_hash": "c1b28ba1510c11011c19f2d64231aa870b34acbd01b3871cf8c7d5e4f216e03b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage_TestLoadImage.test_nibabel_reader.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"doc_hash": "047291d0b361a1bf483fda0e9ee901a88f5da04aa2b1c3c3b340dfe66433a22f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_reader_TestLoadImage.test_itk_reader.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"doc_hash": "0d9fc409fefb9ff53c4d7466c9486745eec0edd37f72c5616c88f7320620e913"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_dicom_series_reader_TestLoadImage.test_itk_dicom_series_reader.self_assertTupleEqual_tup": {"doc_hash": "0156546c2d5bb18ec8e2b4a134b33a8fb10004494041c8cdd29542ca0506be34"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_register_TestLoadImage.test_register.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"doc_hash": "ec3f349b416136cadacf3d32b1287ab8d19f7f20ae2653a83a09daba64419db8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_kwargs_": {"doc_hash": "6e6c6f90b773cc2d40302ee4bdbe6f9a625417be29f9e2c6bad3c135276053a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_TestLoadImaged.test_register_": {"doc_hash": "43109bc01da8fcda3ac58247a851b586c03937c016100cd8f0d4a5824479aa6b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_binary_to_indices.py_unittest_": {"doc_hash": "36f02ef7feea2decb4620ff44ec413dbab5096f34fbdbb30267cf11848373ea2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_unittest_TEST_CASES._": {"doc_hash": "f2cfdec05d91df1fc868b0c8c7743f5dec70c456eabaf2e3235d7c71a7b883d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity.test_channel_wise_TestNormalizeIntensity.test_channel_wise.np_testing_assert_allclos": {"doc_hash": "7f29e537dddb6f899c12da2fab30e52a4f671422a9aaa3040342b182bc25036c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity.test_value_errors_": {"doc_hash": "67b6f954862ce48c340aaa4a0b359c6f452edee18e646cacee33477f0819ad76"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_os_TestNumpyReader.test_npy.np_testing_assert_allclos": {"doc_hash": "54efd80cb87381edf9734e1872eb993c3f4270fc8228508cbdfb2f043de11a20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz1_TestNumpyReader.test_npz1.np_testing_assert_allclos": {"doc_hash": "ac19d4e641176d0cbc1e40ce28a74c7d818d5988ea38634bb3604051b54613fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz2_TestNumpyReader.test_npz2.np_testing_assert_allclos": {"doc_hash": "c38cc1c21964f91985753d3522e8bf8facb3fdff77bea02dd19b5af85e2e659c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz3_TestNumpyReader.test_npz3.np_testing_assert_allclos": {"doc_hash": "aae09936f4450c67dec4cb99cf98a3130817f46c9130a150e2bcedca8a29d2c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npy_pickle_TestNumpyReader.test_npy_pickle.np_testing_assert_allclos": {"doc_hash": "fe9d116790703712d280849dde0035cdf9fc60aa1832b3678e60b2d7babac039"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_kwargs_": {"doc_hash": "47e8150080368064bc151f657f88bb8e1f1e7bb7ca46b2c18ff58507d679b565"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_unittest_build_test_cases.return.test_cases": {"doc_hash": "f6280697235f584768840e772782ec548a2ff18bec76ff62f797377611d94f47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TEST_CASES_ALL_if_torch_cuda_device_coun.TEST_CASES_ALL_build_t": {"doc_hash": "3244468cf616e86cd150beaecf7360bda2291f2cd383a3db8a54c9cc7134f245"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd_TestNovograd.test_step.self_assertLess_fn_item": {"doc_hash": "4eceeffe3916bbbd203a2b1f0b02b1fde8ad9f858f30006ac4374da0ffbb5f22"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd.test_ill_arg_": {"doc_hash": "576f810224f2f4253b9379c8e2da401366c579e79e57c63ce4c9611a0975ecd6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_unittest_TestParallelExecution.test_single_gpu.trainer_run_fake_data_str": {"doc_hash": "4d6d616e54250dd4bd14d8fcf37494edba3a09ed13c1da190420ba87e8edc999"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_TestParallelExecution.test_multi_gpu_": {"doc_hash": "198483bdc3b3ad6d94a3840ab39fab49d790c143b974f0490c14422b56c21cca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_sys_TestPatchDataset.test_shape.self_assertEqual_output_": {"doc_hash": "3f672cb2df7c02e5d785feaa7fa97813e7fce75c9087054ad754aaa74bb7b740"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_TestPatchDataset.test_loading_array_": {"doc_hash": "3d2f4ce15cf4dc4e878575bfd75d9a2711a082bc09711ef9f16b8aa3f11137d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_os_TEST_CASE_7._128_128_3_test_im": {"doc_hash": "b521820d36e3032646abf41ce0cf46a8e052d7279a5bd4481d8e97ebc478355b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader_TestPNGReader.test_shape_value.if_result_0_shape_tes.else_.np_testing_assert_allclos": {"doc_hash": "469b633744b7d84b9dcbcaa9b480c09086eee40993e111f0091d04878921400e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader.test_converter_": {"doc_hash": "ae4cebc8e64ca41007534a58afb82b36e042099495d71aff0bd1a779ad78bdc6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_unittest_TEST_CASES._": {"doc_hash": "c3dc08a059582677b83251189066938271bcd1262746d3471fd005f1f3d5a373"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_TestPolyval_": {"doc_hash": "21c0d1f7d4c1f225f1180b86f4604b0e4b1e53a4f0769bdbe3763f72788e5464"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smoothd.py_unittest_TEST_CASE_2._": {"doc_hash": "033eeda86078db12f85bdce8e9fadf82694f9c223f85af0437409c783d37e6d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smoothd.py_TEST_CASE_3_": {"doc_hash": "c8d8e6a1fe70d8aa8b65e6b6d758fb8566fb4202958e6e63c61050aa6d05ee2b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shift.py_unittest_": {"doc_hash": "6ecc866894e6c08d0a99c0018689827c487899712f181c9edc4d560b78ec930d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shiftd.py_unittest_TEST_CASES._": {"doc_hash": "bc1f54bf3b2377cf5ea685f0c0a02b9714cecf030167400f4d3050564c062ee5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shiftd.py_TestRandHistogramShiftD_": {"doc_hash": "6c0397ce13526c2c658ffdd4e1946e55df4caff1a3f67712c8b499ba9d6ca601"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_unittest_TEST_CASE_1._": {"doc_hash": "ee3bb8b85db0e443a9e7804832b4f3d46dc54dbc5336f7c87922e00cccde1257"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TEST_CASE_2_TEST_CASE_2._": {"doc_hash": "4fa2ffcb3e0adc4f68b65fc94f9f2e02517e040953dc1b9d0301cdba9486c856"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TestRandSpatialCropSamples_": {"doc_hash": "ee2c17492692f1133d50b98bf3b11c49759e93f10d784d56deb7cc16ab808532"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_unittest_TEST_CASE_1._": {"doc_hash": "020e4520e56223846f19055102506657063982ee4839a49014cfe0f83a2eb558"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_TEST_CASE_2_TEST_CASE_2._": {"doc_hash": "de024b043735aa5297ecb5c03d1b38fcbaa10aba3593eacce016163452b7cfcb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize_with_pad_or_cropd.py_unittest_": {"doc_hash": "9a96ba190dcee67ad100a4329a58ad23c04242e55c336a81c4afc4739e3e5e28"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_senet.py_TestPretrainedSENET_": {"doc_hash": "c4852b8bfa390d0f109af3b496d59b20e51c873f6589917393824bf48957faf3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_unittest_TEST_CASES._": {"doc_hash": "272ef66d15af92b4c108e7db6b0a893eb1c263175aa6818b59ff4ae4c741c1b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference_TestSlidingWindowInference.test_sliding_window_default.None_3": {"doc_hash": "210539bc196cc8c753488326d61b63d48e407e223d0329fffbcd3f255e2908be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_default_device_TestSlidingWindowInference.test_default_device.np_testing_assert_allclos": {"doc_hash": "50d262b29cbc943cd7c75390a52d14dd115b3843b5c18ffc589dd180a4019a96"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma_TestSlidingWindowInference.test_sigma.result_6.sliding_window_inference_": {"doc_hash": "6f9df54b079a44a7bdf231090fcfad4587b75402213c68e113ec213b2c436305"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma.expected_7_TestSlidingWindowInference.test_sigma.None_3": {"doc_hash": "420c113b08dec69b22172a989ec24e7d68eaca2f523ac2f912003e10280b842d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_unittest_create_spherical_seg_3d.return.image": {"doc_hash": "7144c1d7319a8b9c4c3d052c9d7d8378e3897d9492e45f5dfc9c674aca7b7e26"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom.test_keep_size_TestZoom.test_invalid_inputs.with_self_assertRaises_ra.zoom_fn_self_imt_0_": {"doc_hash": "ef104c2589bc5c57ce981a44854ef38182e7ecdeaa89edd7bc02b552fa1921ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom.test_padding_mode_": {"doc_hash": "6dc9b2a935fba654edb73a6cabd772d7075e2c7eb738c1a48277f47518ba17d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_pre_render_pep440_pre.return.rendered": {"doc_hash": "63a806c3f81301b906859105a3d68df9a7dc14e614c39edc6264b8b0aa9448a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_post_render_pep440_post.return.rendered": {"doc_hash": "935b462cffa34a1800c0d952ae8b061e8a5f4a304dc06ae969e2dfe80d2fe01c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/__init__.py_CrossValidation_": {"doc_hash": "b23f67b4947a8abd8ce0e0a6070cd14e972d1bfe513f7ffa8f27ac691a4c3de4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_os___all__._MedNISTDataset_Decat": {"doc_hash": "2560edb183cf998166aa1eacd145106df664fca0e67114de74c0a4cebc51af59"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_MedNISTDataset_MedNISTDataset.randomize.self_R_shuffle_data_": {"doc_hash": "e9aeedc3cc93c4f82b7d2b9d557b08270c2232fca0bf9418911a5da6ccf9c5f0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_MedNISTDataset.get_num_classes_MedNISTDataset._generate_data_list.return.data": {"doc_hash": "2b4a7155e1e7e5de68c371958afc9a83a3a28805ad75a68299f61e569975465f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.__init___DecathlonDataset._split_datalist.return._datalist_i_for_i_in_sel": {"doc_hash": "0bf976eb7159c30e25e1b19acbf3e2c24e516a9821815938d9c9f494c6ffaa2b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation_CrossValidation.__init__.self.dataset_params.dataset_params": {"doc_hash": "1465e295c8cb58d19c2eb85cc3a909e8e51136b8676a383278bacc1d9c8b82d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation.get_dataset_": {"doc_hash": "dbf9328b81fc4b3723e1be3004437f99f5453794dba249a60b1b696c1e1e30f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/__init__.py__": {"doc_hash": "a7945525415783e16b1f915e01a13899df488942373ffccbf12a9f8884db378c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py_logging_create_dataset.new_datalist._": {"doc_hash": "c54385e156ed86f265f797c59bee159994399bca5facb27701208598db7a4945"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py_create_dataset.for_idx_in_range_len_data_create_dataset.return.new_datalist": {"doc_hash": "f230be101780ef0f7fd81de6c6e4b032c837902e100f6089cc2c48b1d4d646e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py__default_transforms__default_transforms.return.Compose_": {"doc_hash": "f7623ae781ea04322a74c3b762d850c51319e810986d2c710b9279e11ff698fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py__save_data_2d__save_data_2d.return.data_list": {"doc_hash": "acfa69652e831a0bd5c8dea38d34fbc3a0a32713c83c5cb6fe744cc9d65a5dc9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py__save_data_3d_": {"doc_hash": "03465f880fa38a265808985ba37b91556f680564d8e2d5b0dd7d6a5b1a34603a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/interaction.py_Interaction.__call___": {"doc_hash": "48f1323f0b016c7f171d3d28d71cab612eb680d4ab88231f484cf196111e347e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_from_typing_import_Callab_distance_transform_cdt__": {"doc_hash": "422d3b24edafaf57984c308ccf9879d395fbb86366c2dde1c0d143631785e50f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py__Transforms_to_support_T_FindAllValidSlicesd.__call__.return.d": {"doc_hash": "afe5091062d972af0702edfd59d04af553ce4d086801129eee76be1005c4ed31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddInitialSeedPointd_AddInitialSeedPointd.randomize.self.sid.sid": {"doc_hash": "2e00da1a8ad3937fa67a9807ffe757f596a43531bbca965ed2b299feae7c972a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddInitialSeedPointd._apply_AddInitialSeedPointd.__call__.return.d": {"doc_hash": "aed5f7a0ecdc62875aa188b16b62273ee4358e4cb65ca4a91b9ded018306f31b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddGuidanceSignald_AddGuidanceSignald.__init__.self.batched.batched": {"doc_hash": "4e2ff26d9ddb36fd9ecf7a02f4a298485d790340f8dcf0e8038ab7190afcf9ab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddGuidanceSignald._get_signal_AddGuidanceSignald._get_signal.return.signal": {"doc_hash": "9879f0e5a73f3f16105aaf5550134ad7f23ef9dc0f8a7072b9ee6e443ef98abe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddGuidanceSignald._apply_AddGuidanceSignald.__call__.return.d": {"doc_hash": "2333df47a31f9d81a4388adcc514a950b8f0ad3720e4a92b982d90c7c7a20ef4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_FindDiscrepancyRegionsd_FindDiscrepancyRegionsd.__call__.return.d": {"doc_hash": "aef5fbb04e7752f6ed096f4069a50c6eac14f3eea9cd2eb8f7898623ae9df66c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddRandomGuidanced_AddRandomGuidanced.randomize.if_not_self_batched_.else_.for_p_in_probability_.self__will_interact_appen": {"doc_hash": "16479d2eab970d06a59cf6fc71678563ca432c902944d85c0f0f34c3c9554bd0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddRandomGuidanced.find_guidance_AddRandomGuidanced.find_guidance.return.None": {"doc_hash": "fd9ad21c17d40c445571ee60d6334b6c5f8148dd7c8804b6d724d9e667943a31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddRandomGuidanced.add_guidance_AddRandomGuidanced.add_guidance.return.None_None": {"doc_hash": "8a7f8539a757eaa66abd10974baa2c0a171e8b733dd5670fd0b6d697657e137b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddRandomGuidanced._apply_AddRandomGuidanced.__call__.return.d": {"doc_hash": "9553c821e426c0c6d405cb24b5767f3ca20fa556637d8deb2c5ede913308c4fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropForegroundd_SpatialCropForegroundd._": {"doc_hash": "5cf15f3440502845e7709e071593dc04b650c2dbefad5b98417a069c0dc07e98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropForegroundd.__init___SpatialCropForegroundd.__init__.self.cropped_shape_key.cropped_shape_key": {"doc_hash": "1676e7e2233bc72a5e8d92904c9b56ecfaa342fb04eaaeb0fd8dc4ac66edc77d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropForegroundd.__call___SpatialCropForegroundd.__call__.return.d": {"doc_hash": "59c1cc40f0940a16cde5480a3f835a5f2e1fc1dbc04b06e0ce07a46fba8da20b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py__Transforms_to_support_I_AddGuidanceFromPointsd.__init__.self.meta_key_postfix.meta_key_postfix": {"doc_hash": "fa444c0619cefbbd36d880a384eae74734d0a4f99fb8088ed4f325855c614545"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddGuidanceFromPointsd._apply_AddGuidanceFromPointsd._apply.return.guidance": {"doc_hash": "ad469f67f1a1c9eaa3ffe6c30aa1d46a7a3280b7f35fcf0be3d6e4c9be8c9e90"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddGuidanceFromPointsd.__call___AddGuidanceFromPointsd.__call__.return.d": {"doc_hash": "8e58d0f3913faa68d10351032e6637247e7ec2d381bdc7ef3b5cbd04af785aed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropGuidanced_SpatialCropGuidanced.__init__.self.cropped_shape_key.cropped_shape_key": {"doc_hash": "2ced0a10963f1439f665455118306e8695558eb564e293f6d44b28e064f106ed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropGuidanced.bounding_box_SpatialCropGuidanced.bounding_box.return.box_start_box_end": {"doc_hash": "2d16b9ddb035dd9f352d070301740f1627bfea779f9f5240a67ab55cdb8ff5ad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropGuidanced.__call___SpatialCropGuidanced.__call__.return.d": {"doc_hash": "aa1c740006f9cf673f1b4040da6cf977532a79af2e8424fd5786fa679f5cca18"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_ResizeGuidanced_ResizeGuidanced.__init__.self.cropped_shape_key.cropped_shape_key": {"doc_hash": "4d2374e4d8e8c4b6255a89509ddea7d904820ca38a26c020b8ab75c99ad79372"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_ResizeGuidanced.__call___ResizeGuidanced.__call__.return.d": {"doc_hash": "a84c005a959044bd40f3d718947511db7e70cb8e1d334065bbf83edfb9bdc476"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_RestoreLabeld_RestoreLabeld._": {"doc_hash": "db7c37dbaad120762040937bc18aa083899e8a11aba7abf3d112edb7adfc3799"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_RestoreLabeld.__init___RestoreLabeld.__init__.self.cropped_shape_key.cropped_shape_key": {"doc_hash": "bb636e923057728eaa1b9f7f0085823ddf316895530edbf4d1a60f7f1281c429"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_RestoreLabeld.__call___RestoreLabeld.__call__.return.d": {"doc_hash": "0dbf26f3efa089685a92a24899ae22cba4c0adce1848830b8638863a8b09958e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/__init__.py_MaskedInferenceWSIDataset_": {"doc_hash": "8a0ab6ba7d54a3eedd602c8801929c2bfc080d0889f4e40e1ff5cdcd94999031"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/datasets.py_os_PatchWSIDataset._fetch_wsi_objects.for_image_path_in_self_im.self_wsi_object_dict_imag": {"doc_hash": "a6d6f2426b207431862f4753e7ec13f8617381a11eb7b43f16ccdec42eb015c8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/datasets.py_PatchWSIDataset.__getitem___PatchWSIDataset.__getitem__.return.patches": {"doc_hash": "3926e2e8d7f0f5f279af283aa906d2dd6b06120654fd750a7f76c808cb56d59c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/datasets.py_SmartCachePatchWSIDataset_SmartCachePatchWSIDataset.__init__.super___init___": {"doc_hash": "5d12c5daf1628e37cbe9766b85417f9100a6e29220f6fbf39f8e33b63abd2691"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/datasets.py_MaskedInferenceWSIDataset_MaskedInferenceWSIDataset._prepare_data.return.prepared_data": {"doc_hash": "71ba71c0e45eee5cfea644ad9c23a4cdf73a2b29d548e07c7476cbd9dc1c34c1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/datasets.py_MaskedInferenceWSIDataset._prepare_a_sample_MaskedInferenceWSIDataset._prepare_a_sample.return._": {"doc_hash": "b02a749facc3c1d8edc563e31c7571138fdd2527cc0f951cd78489e843d8184c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/datasets.py_MaskedInferenceWSIDataset._calculate_mask_level_MaskedInferenceWSIDataset._calculate_mask_level.return.int_level_ratios_0_": {"doc_hash": "65e1024921d6d1d08d10d6c2f6aee6e2a1774c298aa1260335f41940162d7b92"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/datasets.py_MaskedInferenceWSIDataset._load_a_patch_": {"doc_hash": "9b518ce517296001b05fcb05506b57f573378c079d8a50dff781dff3fed0f5a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/handlers.py_logging_ProbMapProducer.__init__.self.num_images.0": {"doc_hash": "d7f529c448c111e2d2770b5515cd63dccffb37a2d0a32c7d14b1ca7c79c92f97"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/handlers.py_ProbMapProducer.attach_ProbMapProducer.attach.None_3.engine_add_event_handler_": {"doc_hash": "69761e86fb4acd014237e894b294052e7b62fd43d93ba2694e2f14f164e7cf34"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/handlers.py_ProbMapProducer.__call___ProbMapProducer.__call__.for_i_name_in_enumerate_.if_self_counter_name_.self_save_prob_map_name_": {"doc_hash": "e0aee043e95acb62123952471af1134614581448eea5d17f40c1ad14bd7c2ab2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/handlers.py_ProbMapProducer.save_prob_map_": {"doc_hash": "76db6a3cc391560d822b134e9278ff6b3bfeb6b92bf4976b383cb32f6054e34d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics.py_from_typing_import_TYPE_C_if_not_has_tqdm_.tqdm.return.x": {"doc_hash": "f657558440b55cfa9d94dc077e4ac98ab057d3e985a6c1633c82b0af018ae256"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics.py_LesionFROC_LesionFROC.__init__.self.nms.PathologyProbNMS_": {"doc_hash": "6b1d3a23885a6faba149c4950265957b00b29365da42c268008684cff73028c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics.py_LesionFROC.prepare_inference_result_LesionFROC.prepare_inference_result.return.np_array_probs_np_array": {"doc_hash": "908e3af627284985869580d63f96dd571a8dca775fecfb129c5b51b428c51694"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics.py_LesionFROC.prepare_ground_truth_LesionFROC.prepare_ground_truth.return.tumor_mask_itc_labels": {"doc_hash": "71a59499c52b7a3270b6320ee5ddd489bd652621d9e7378d66dc7df49cd5ffe7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics.py_LesionFROC.compute_fp_tp_LesionFROC.compute_fp_tp.return._": {"doc_hash": "5f2945338dab8f7d9704f1f4f47e756415322c5bf8ad09db4404848a79205824"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics.py_LesionFROC.evaluate_": {"doc_hash": "863e66a7fce182652a645ed139583668d8af08e3b4323ac54402a19dca64f766"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/utils.py_from_typing_import_List__compute_multi_instance_mask.return.multi_instance_mask": {"doc_hash": "4399c7da0a7ac9146d60be409dea6e5da6602c7574a8c480be9bf249c22b4697"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/utils.py_compute_isolated_tumor_cells_compute_isolated_tumor_cells.return.itc_list": {"doc_hash": "40ff093a31ecbd569afc5c4923c1320cb065168ed96fbb23345f510b273ccac2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/utils.py_PathologyProbNMS_": {"doc_hash": "c96f8f96ad04542e3d662bb4b25d7d099012e8a505e0df6d4a84869106d338b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_download_url_download_url.if_not_check_hash_filepat.raise_RuntimeError_": {"doc_hash": "a834d3a86d3c75cd5e1dbd5c7e5f1138dc6bfb6a90b8daaca4ba8324eb23ee35"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_download_and_extract_": {"doc_hash": "348bb7cad0194f5050716aa79c80863ea9d485fd43285d9cfecff1fca467bee4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/__init__.py_USE_COMPILED_": {"doc_hash": "a9cde9a42d2a6dda3e6f2dbfc9c4803184cb118ae2766e2be2b8b6aa9c62ec31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_print_config__dict_append.try_.except_BaseException_.in_dict_key_UNKNOWN_f": {"doc_hash": "f0545e752868644b1d20f9a586cf086817331a5e1050d791a3340ee10d791763"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_get_system_info_get_system_info.return.output": {"doc_hash": "b178d8a6705402cd12a6030ed07caf67314add94e997e05821ac03ebb6058620"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_print_system_info_print_system_info.if_not_has_psutil_.else_.for_k_v_in_get_system_in.print_f_k_v_file_f": {"doc_hash": "3f6eeb652631a87e6dc58bbf3d47b4a00d11c42b384307e8ce1f576434a8613a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_get_gpu_info_get_gpu_info.return.output": {"doc_hash": "85c381be4ab40b84f1b14be00c2cb9c079c97988f62cc24a9ae07b10c9488632"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_print_gpu_info_": {"doc_hash": "b9ca013fcea92c76b04db88f85a2fec13f054ad4093a5857582183d781ad8314"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataloader.py_torch_": {"doc_hash": "8ae5fea27591a936dc01ff49827526fe2c6dc3911a4cd7f68004357d6bad7ac3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_Dataset_Dataset._transform.return.apply_transform_self_tran": {"doc_hash": "801ae8ee339386e1335ce8ef1cdd5e76224b8dde38810c7b270f8f26f6b4f326"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_Dataset.__getitem___Dataset.__getitem__.return.self__transform_index_": {"doc_hash": "521b7153ee416cfd3c4ee2e32606e718cad0458829c1557e83f01f237cd986bd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_PersistentDataset_PersistentDataset._": {"doc_hash": "17b28a318170f349d2de6d509e484b16ad46014c2b1a01fdd80de45c8aa08bd1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_PersistentDataset.__init___PersistentDataset.__init__.if_self_cache_dir_is_not_.if_not_self_cache_dir_is_.raise_ValueError_cache_d": {"doc_hash": "4221d5c2c538ee4ccc59836a3ad13cff6286bc48a11193efbcde4f8ffb44bedf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_PersistentDataset._pre_transform_PersistentDataset._pre_transform.return.item_transformed": {"doc_hash": "a75a7e1ee8272eae8208b8f3a7e61eef5afb88ebc500bd198f2a69ee433f4859"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_PersistentDataset._post_transform_PersistentDataset._post_transform.return.item_transformed": {"doc_hash": "1380c391f24daeef3f09e2fbc69e11914eb408de2c5d23a72e01d6d13a11ad32"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_PersistentDataset._cachecheck_PersistentDataset._transform.return.self__post_transform_pre_": {"doc_hash": "9ae84902a464bf211f41eb632df3d0f3f4511f82976b08d2c463a851c410e836"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheNTransDataset_CacheNTransDataset.__init__.self.cache_n_trans.cache_n_trans": {"doc_hash": "148661ea3fe2c901730be3e28cd27d0f012941d05e7b922fe7ecf7f188056d4b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheNTransDataset._pre_transform_CacheNTransDataset._pre_transform.return.item_transformed": {"doc_hash": "558d2e1cdda407f6fc80750d3835469e4f2b41bd82e28e8dad2df292c85808ec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheNTransDataset._post_transform_CacheNTransDataset._post_transform.return.item_transformed": {"doc_hash": "64a36d4d42064c51c8c8361ca8bfaf0b62715ed71833d7fbee22a8af71a233bd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_LMDBDataset_LMDBDataset.__init__.print_f_Accessing_lmdb_fi": {"doc_hash": "6334f02b7a60814e3647011432e89a445083afdbe876e7d020eeea7b582480e9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_LMDBDataset._fill_cache_start_reader_LMDBDataset._fill_cache_start_reader.return.lmdb_open_path_f_self_db": {"doc_hash": "5dcbe85eba8b566721073c43d3ea86bdc3152e1b60796a123e91d3a5c3fb49c7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_LMDBDataset._cachecheck_LMDBDataset.info.return.out": {"doc_hash": "59767880273d2cd04aa7d82b6837bcaedd245a394cf49a4adeeb41b16f593f9f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheDataset._fill_cache_CacheDataset._fill_cache.with_ThreadPool_self_num_.return.list_p_imap_self__load_ca": {"doc_hash": "37e209fe44f1a9aca5d5568e7c3446c379972e9a660cb25a6981c62c31c9bc34"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheDataset._load_cache_item_CacheDataset._load_cache_item.return.item": {"doc_hash": "145f661af744b119cbd26504a12633116f8215e038225331eb52ad795d9d174a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheDataset._transform_CacheDataset._transform.return.data": {"doc_hash": "29ab70ea3694d031f717479d574e933bb3d0e0ace8e228ab611318590258590a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset._try_update_cache_SmartCacheDataset._try_update_cache.with_self__update_lock_.return.True": {"doc_hash": "7d994136ffec33b61983020be80a0b18f9521fa947f3b70e458569feae7d31c4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_ZipDataset_ZipDataset._transform.return.tuple_data_": {"doc_hash": "5976af1869916c2a556dceb25f63902d429cf2ed909c11901f6cec5d49502c66"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_ArrayDataset_ArrayDataset.__getitem__.return.self_dataset_index_": {"doc_hash": "0361b2bc8157804063550cc08c4ac16b7bd85b9c191ccd8297461bd356a9e7cc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_json__compute_path_2.return.element": {"doc_hash": "c5f2ca00d11e8dd2fa66389dea7d635f9ee4e92188d5cdedfa4da282271b8e61"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_from_typing_import_Callab_PatchIter.__call__.yield_from_iter_patch_": {"doc_hash": "6d7944d3f9abaacfe6e0b701a4a7ad77b38d5b890a72dad7c66f87bbda143667"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_GridPatchDataset_GridPatchDataset.__init__.self.with_coordinates.with_coordinates": {"doc_hash": "49b77aab8d1ea513592bb104b31c24be44dba77452aeb644f22802624e4dc89d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_GridPatchDataset.__iter___GridPatchDataset.__iter__.for_index_in_range_iter_s.if_not_self_with_coordina.else_.for_patch_slices___in_.yield_out_patch_slices": {"doc_hash": "f7245402624a58dc8a341db572d082ba0baa33de5337ff4e18c1501b90f509af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_PatchDataset._transform_": {"doc_hash": "a2915ce3079a38248199e57931644666b62e62d7784cceac55596b4dfe9adf31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_dataset.py_from_typing_import_Any_C_ImageDataset.randomize.self._seed.self_R_randint_MAX_SEED_": {"doc_hash": "c42a341350ab5b92ab8c3dfaf9bed1f6e43259062555440651057760af9c2019"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_dataset.py_ImageDataset.__getitem___": {"doc_hash": "d7419e33454731c55473c60993f2606c4af8955b535b069afbdf5488f2e21740"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_os___all__._ImageReader_ITKReade": {"doc_hash": "5a49defc8b47a7d8c5822901a94a0788cec23a5b90e8e4a567059d9a34e7f202"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py__copy_compatible_dict__stack_images.return.img_array": {"doc_hash": "af6f92ade7ff9f65ad3c628772d5ec5a8e76f103c4f15218b0eebac2223017f5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader_ITKReader.verify_suffix.return.has_itk": {"doc_hash": "a3bfc7d01252c9d698fa9d94003582738b16634d10d2411a8f3032406d71320e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader.get_data_ITKReader.get_data.return._stack_images_img_array_": {"doc_hash": "5c570ebf51473b028db4418c17b411fcbbcaa3a401cab42f90530e7927de582c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader._get_affine_ITKReader._get_spatial_shape.return.np_asarray_shape_": {"doc_hash": "02d68eaa7ea8307b77eff6d7525b63267c9b923076a56f2d345e05fe4a4d81e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader._get_array_data_ITKReader._get_array_data.return.np_moveaxis_arr_source_": {"doc_hash": "5add6978185de36d790a031cdd82265c4f76ee2fe9c0cd7547568e82c9ff76da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader_NibabelReader.verify_suffix.return.has_nib_and_is_supported_": {"doc_hash": "914ab9123489e0692efd17aa540ee0e1ce87c72a02edf53ee7891be83280a3f8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader.get_data_NibabelReader.get_data.return._stack_images_img_array_": {"doc_hash": "26999b7ed80cbe1d2ed36a574b28852e5b83e7c8fed9d5f6355dd8206f601a84"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader.get_data_NumpyReader.get_data.return._stack_images_img_array_": {"doc_hash": "b221a256d1642032b853bd0e3e0b30106cce3ff9ed83647b6e11eff7c2f252f8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader_PILReader.verify_suffix.return.has_pil_and_is_supported_": {"doc_hash": "278b93c1fdd4727d997cc776abdcb2dfe976a91f965c42eb5712d7bb1d436eec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader.get_data_PILReader.get_data.return._stack_images_img_array_": {"doc_hash": "89de987147925c6eb062438aa507e74601178c48e22220458e64b2b676b11b86"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader._get_meta_dict_PILReader._get_spatial_shape.return.np_asarray_img_width_im": {"doc_hash": "c3c9f76e359bc15aeeb87b897d97b3b1010d7cbdfca4404d874e09d52f1778c1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader_WSIReader.verify_suffix.return.is_supported_format_filen": {"doc_hash": "8f056643e53ae851b4a8e78bc7a193bacaffa658510679ea0ecb5b0df200fff3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader.read_WSIReader.read.return.img__if_len_filenames_": {"doc_hash": "c615860e5b384b7d6ed4d3135d4d5797170d56d95ead4d2bbfb20a7570e2198e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader.get_data_WSIReader.get_data.return.patches_metadata": {"doc_hash": "4c89b286a360e899e28355ee24c5b2e60a5dfe9cae8dc6193f9a8929ff77f575"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader._extract_region_WSIReader._extract_region.return.region": {"doc_hash": "a1a84db1d807a7d21c6091a3a0f52c421b62162097c2da373146958454dd6b1b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader.convert_to_rgb_array_WSIReader.convert_to_rgb_array.return.raw_region": {"doc_hash": "60a2618ce4d6c29dd6969c6f5ac2a432d9b08ba6ac8a4161216e790f46a3bb70"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader._extract_patches_": {"doc_hash": "8ae1221a0f922ff8d11066264762425833e489803b68b1e18bcb639f0b6863e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_write_nifti.if_not_isinstance_data_n_write_nifti.output_spatial_shape_.list_output_spatial_shape": {"doc_hash": "391503d5321957ac2fdeaeb4fb6a497e2e785a1638b029407ec6e4efecc0a615"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/samplers.py_from_typing_import_Option_DistributedSampler.__init__.if_not_even_divisible_.self.total_size.data_len": {"doc_hash": "98f5a782a87fd28ea0074eef230eb0fc7be54c7987da1ec48a57f03e04d64447"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/samplers.py_DistributedWeightedRandomSampler_": {"doc_hash": "c2cefcbcdff700fd0f1c32f07e61e20c3fa76baba85d21b79033aa92f1c8aee4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/test_time_augmentation.py_from_typing_import_TYPE_C___all__._TestTimeAugmentation_": {"doc_hash": "90fa30a6400df134e0af320fbdc0a0219e156e991512ed8635d5cbed2d0076f9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/test_time_augmentation.py_TestTimeAugmentation_TestTimeAugmentation._": {"doc_hash": "de6060e379a5de3f08c5d85a7efa2b6b29d190e24022ae5b16e08e314a140e53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/test_time_augmentation.py_TestTimeAugmentation.__init___TestTimeAugmentation.__init__.self__check_transforms_": {"doc_hash": "d1fc99b20e4e24a66ecf14edf472ac3a28d43fdcee1e5596d52c762b4573d6c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/test_time_augmentation.py_TestTimeAugmentation._check_transforms_TestTimeAugmentation._check_transforms.for_r_i_in_zip_randoms_.if_r_and_not_i_.raise_RuntimeError_": {"doc_hash": "5b7354c2499a78258cfc5690487c392b953edd0431384d164780ad6d8a8140a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/test_time_augmentation.py_TestTimeAugmentation.__call___": {"doc_hash": "1fc7ee1153cab914a6414c96be474b055b2374b820f085568926ebfd005d6c52"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/thread_buffer.py_from_queue_import_Empty__ThreadBuffer.__iter__.try_.finally_._ensure_thread_completio": {"doc_hash": "a1c607155634ad67ce6233481dc048775ca0377df8b07da1e801025dd6da69b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/thread_buffer.py_ThreadDataLoader_": {"doc_hash": "25923978a95aa90d1481161d43addfbde0eeee63341219b3d30df315d0d039e9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_hashlib___all__._": {"doc_hash": "285eb0bda8d33f0388f68f699201fbd4b8274c204c76eb21d4fba837771ba837"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_dense_patch_slices_dense_patch_slices.return._tuple_slice_s_s_patch": {"doc_hash": "9aa64f8acb5a6b93d1993de2975a6a0a1e60bec1ef59ea9a6604eff8aa49b57a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_list_data_collate_list_data_collate.try_.except_TypeError_as_re_.raise_TypeError_re_str_": {"doc_hash": "1d65cd9d2035d1957ffa6378f4b1d3345f033f1cccbf0b8c9b6261b80ec5ebc2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_pad_list_data_collate_pad_list_data_collate.return.PadListDataCollate_method": {"doc_hash": "5c505444d087bdd2b842abbba8ee42e4778e202228a8c6e350d3cef9dd07b49c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_no_collation_set_rnd.return.seed": {"doc_hash": "36f4ea89b3064f57fae7ae81b446e9182b05c2e2aaf96b051329a3bc52da0495"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_create_file_basename_create_file_basename.return.os_path_abspath_output_": {"doc_hash": "da4871cadbd9419844deeeea46e535fa2926f87b8b893c6a6da868caf125af08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_is_supported_format_is_supported_format.return.True": {"doc_hash": "78a0f48f00cb1662707efca2f9bfdda2c07ef986660f7b53cf61ae3fba1e7d6f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_partition_dataset_classes_partition_dataset_classes.return.datasets": {"doc_hash": "2a6a0d3f41e9f08c183a5a364696329f8a9637b4f1b10d1d12d09182b1171151"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_select_cross_validation_folds_select_cross_validation_folds.return._data_item_for_fold_id_in": {"doc_hash": "7e4feb2d7d5808306cdece5b3662e2b6432b0d6a709cf7eec86e0cf14384fbfa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/__init__.py_EnsembleEvaluator_": {"doc_hash": "44de58a71be3a43f18971dcf3612783a4e10acda5fd5fe7dc4d8c7fbdc4032fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_from_typing_import_TYPE_C___all__._Evaluator_Supervised": {"doc_hash": "e49f4d06da8184f9d1a4f96d1f4dc26d8d939c2aa9199897e0e110d1a20eacd3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_Evaluator_Evaluator._": {"doc_hash": "83dcded1c5aecf6f9fe9d7e2bd2728ccebabe27ddbbbbcb8090a62f9ac2a9be0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_Evaluator.__init___Evaluator.get_validation_stats.return._best_validation_metric_": {"doc_hash": "d8f14a93c37c2a701ff619860d2ec3377021d9e1b2b2cde7e7cc407ff821b73f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_SupervisedEvaluator_SupervisedEvaluator._": {"doc_hash": "e0e4f5f17ff95c7cd6ceacda7047cf9f3eeb737626991f0513b0f598c47af63c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_SupervisedEvaluator.__init___SupervisedEvaluator.__init__.self.inferer.SimpleInferer_if_infere": {"doc_hash": "a3157bb67bd54ae1d30407f7864d973a05b30c3c4674ad2538ec479284e748b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_SupervisedEvaluator._iteration_SupervisedEvaluator._iteration.return.engine_state_output": {"doc_hash": "c2dee47c7b8e445cc32e23b966621136228a0030b42867e0d3c62d13fea08fde"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_EnsembleEvaluator_EnsembleEvaluator._": {"doc_hash": "9b2328feca80d02d6ab3b1936f866c238b886d0f3c64dd299a0f509b4e69cf87"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_EnsembleEvaluator.__init___EnsembleEvaluator.__init__.self.inferer.SimpleInferer_if_infere": {"doc_hash": "5c49b5a2cb6e493fae276d2ff6f971814f000eef28ddb781a0e51b44057d99ff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_from_typing_import_TYPE_C___all__._Trainer_SupervisedTr": {"doc_hash": "18c85aa8b87b459023f2eca334ec075581f0777a7197f6860defb46fe0a6c70a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_SupervisedTrainer_SupervisedTrainer._": {"doc_hash": "980ab75b2ea0ce8beb6005a5fdf69a025155ae5c90314d37d39ea5b145b9f4b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_SupervisedTrainer.__init___SupervisedTrainer.__init__.self.inferer.SimpleInferer_if_infere": {"doc_hash": "cf455caf9258d854c7c5ceafaa99b70b1311c80202ae006ca82be4bf04e5d578"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_SupervisedTrainer._iteration_SupervisedTrainer._iteration.return.engine_state_output": {"doc_hash": "3f82764eba7682406aaafbdcbf8504d1af9cd48c2e6267a5d008662ed1c485a1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_from_typing_import_TYPE_C___all__._": {"doc_hash": "1729c5ba36276ad05f7a9533342b4b1d9969314746dad92f1af69fbf96b62b12"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_from_typing_import_TYPE_C_if_TYPE_CHECKING_.else_.EventEnum___optional_i": {"doc_hash": "562016c3cac37faed64dddfdb4ae391d80a1468cb98b118088cccef404e9c951"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow._register_metrics_Workflow._register_metrics._compare_metrics.if_engine_state_key_metri.if_current_val_metric_e.engine.state.best_metric_epoch.engine_state_epoch": {"doc_hash": "7f9f82df39a7c38acfe6cd075379997bc56f3a97c17ceb44523f010d58be7bf8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow._register_handlers_": {"doc_hash": "7ac66d56b1223fe724566136dbc00cd90ec57f4c8e13e42446c05a1a159a2c55"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_logging_if_TYPE_CHECKING_.else_.DiskSaver___optional_i": {"doc_hash": "91e218eee76d8ceba56cd0ece020f405bfd474ae189209d311724a6771cc6cd6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.__init___CheckpointSaver.__init__.if_save_interval_0_.self._interval_checkpoint.Checkpoint_": {"doc_hash": "3a6a921d2ad38ebeb182ea68742b045a6e14cfa8cfc2f21f9a92623be61b3391"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.load_state_dict_CheckpointSaver.load_state_dict.if_self__key_metric_check.else_.warnings_warn_no_key_met": {"doc_hash": "31477a69477fea982b5a0d68eed1f1d51d7ac4a2a8781f966566b671500c4b1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver._delete_previous_final_ckpt_CheckpointSaver.completed.self_logger_info_f_Train_": {"doc_hash": "a876bcb71e5664a1192e4590db2096d35718810994862fcf54203cce1ca0e8a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/classification_saver.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "46048c6d9eb2a4b87034fb9b5fa3f013d046022eb33971fddbbaeaea8e5b96b9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/earlystop_handler.py_from_typing_import_TYPE_C_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "0a645a564fc2474baa39cafb2ba9158247fca2d97a327f83afd252e850a27021"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/earlystop_handler.py_EarlyStopHandler_": {"doc_hash": "7615b3fe7cff3f5ea98e5e59da56e70455c24c14ccba4c41bd74fd5978e59efb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/garbage_collector.py_gc_GarbageCollector.attach.if_not_engine_has_event_h.engine_add_event_handler_": {"doc_hash": "4b17bb82477e01b0819cc2fe7420956e6344cc8cbb8db5105f5570866125985b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/garbage_collector.py_GarbageCollector.__call___": {"doc_hash": "02c21c4f63878e2b9ac3695cd81fb47790fe423eea371a8623b134881b83ddcb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/hausdorff_distance.py_from_typing_import_Callab_": {"doc_hash": "22ea3e28c0276742c54b73746e74fa0801ac99e9f4b6369b17a8d34c5aa95512"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/mean_dice.py_from_typing_import_Callab_": {"doc_hash": "93c9a71ab514d6b00cf504604927cf9028a5919562607abe773877c91c848468"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metric_logger.py_from_collections_import_d_MetricLoggerKeys.LOSS._Loss_": {"doc_hash": "d28321706028217eb08a6442748bf05382df3a1adab5110e521879fd6f21da8f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metric_logger.py_MetricLogger_": {"doc_hash": "9309565f550c1c15e92759cd68a1aac616a914cfbbb7d5720d59874a46eb260c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metrics_saver.py_from_typing_import_TYPE_C_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "81a5935d9230b1b984f94a8fd2d6fe62b3c738fa8388d62570a5adbc9d663063"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metrics_saver.py_MetricsSaver.__call___": {"doc_hash": "dc35a1bbb6bdc066093730d297dc91e540f095a8fbde149270dbf47ebf55fb75"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/parameter_scheduler.py_logging_ParamSchedulerHandler.attach.engine_add_event_handler_": {"doc_hash": "c2beb039cb5f0b21db76a3120ee3af521ec442a2710b056863577c3301fa9445"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/parameter_scheduler.py_ParamSchedulerHandler._linear_ParamSchedulerHandler._linear.return.initial_value_delta": {"doc_hash": "6edd3943f38226dd63eef6c66840439b2f087e06ea7042f7d8b15ac888964946"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/parameter_scheduler.py_ParamSchedulerHandler._exponential_ParamSchedulerHandler._exponential.return.initial_value_gamma_": {"doc_hash": "163ee21bd25a7c6650503a507f9a43af6edf9cad7630153b9ab6135712659711"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/parameter_scheduler.py_ParamSchedulerHandler._step_ParamSchedulerHandler._step.return.initial_value_gamma_": {"doc_hash": "e9d44bb37177f355a9960e9e7c6d2904526bfd79e0c37bebdb9dd30d7b7d7a4f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/parameter_scheduler.py_ParamSchedulerHandler._multistep_": {"doc_hash": "138549fbf21e521086f37cce01dfa97d64cf879ddc5f63cbf13546640ca27078"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/surface_distance.py_from_typing_import_Callab_": {"doc_hash": "34ba8d99cecd1574b78ba39b090113540c3f94886cd17e4c5ba5ef6db11155e9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardHandler_TensorBoardHandler.close.if_self_internal_writer_.self__writer_close_": {"doc_hash": "41deed307049397689582e3e15377e96f59f7f12579a827d3bdfb8ff26488d4b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/transform_inverter.py_TransformInverter.attach_": {"doc_hash": "98786bda80ccbcac480173ed742757127be4d4c97a0eb0efd1bf2e4ee5f93ed3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/utils.py_os_stopping_fn_from_loss.return.stopping_fn": {"doc_hash": "7a8249b16bfdaf83176131c32b7d66e48d137f4a296e4045d93afd933f6b634e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/utils.py_evenly_divisible_all_gather_evenly_divisible_all_gather.return.torch_cat_data_i_max_l": {"doc_hash": "cc8f860ce639e877ff5f4bdd2d1ce66fe5010997ddce0582b8ac3c1253f96a2c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/utils.py_string_list_all_gather_string_list_all_gather.return._i_for_k_in_result_for_i_": {"doc_hash": "49cf52aab07a1ccb43e6f7115ae110dcaf3adbabcd2b28e01fe0dba9ecf079c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/__init__.py_Inferer_": {"doc_hash": "237e37b6b13e3d8780fbad6394789e67d1e0780ae44a997d51e113c1bbfa571e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_from_abc_import_ABC_abst_Inferer._": {"doc_hash": "1ba092a08b4252f581f88c48da3822904701ae0d8dcff40550d1a5e3af4473c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_Inferer.__call___Inferer.__call__.raise_NotImplementedError": {"doc_hash": "a9469854562bc2a24d597fbf123db0eb1a2a92f845e43ee65991b6ad06366300"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SimpleInferer_SimpleInferer.__call__.return.network_inputs_args_": {"doc_hash": "13fef84aa007b53f1625f979035b9a00b5e6ba45f5e4a1a958fa3b8b5307edd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SlidingWindowInferer_SlidingWindowInferer._": {"doc_hash": "dd8f08dc7ea6dbb71eecee7bf93ac7423ed865a81dc5b0ee1ea7a88b3c3a58e9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SlidingWindowInferer.__init___SlidingWindowInferer.__init__.self.device.device": {"doc_hash": "e84856f32e51e8bf2df131da21c368491af1d8a473ced1f806fd1d3e425e6c96"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SlidingWindowInferer.__call___SlidingWindowInferer.__call__.return.sliding_window_inference_": {"doc_hash": "a05756187d791372236ab3548ff4e15144180aaa80c7ddcd30482129fb2c79e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SaliencyInferer_SaliencyInferer.__init__.self.kwargs.kwargs": {"doc_hash": "30dfbbebcf4c2063e5ac18019b7acce6129382faff4721b84fb5a7de67702f40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SaliencyInferer.__call___": {"doc_hash": "d5044f789c40cb9d87d9035ed5c68dc884407505f3e648e86e770040cbb75e03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py_from_typing_import_Any_C_sliding_window_inference._": {"doc_hash": "9dc7fa1f2b9ecc12ff153a6f9365d9abdbec3a6f4086ccba3bbf5bc0b1fc267f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py_sliding_window_inference.num_spatial_dims_sliding_window_inference._initialized.False": {"doc_hash": "08d7f01c19491913cdb9a2fd6f7e4f6b183ab5268e26b9116e8ea876858853b2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py_sliding_window_inference.for_slice_g_in_range_0_t_sliding_window_inference.return.output_image_final_slicin": {"doc_hash": "671e5276a094a23457b62e2e65b61aa06d816000a49fdb5d7cb3176427c921f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/__init__.py_BendingEnergyLoss_": {"doc_hash": "84e45ee6b11ff397b40f5c2cf09e999436541fcbf847544d3e203b0307cf950d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/deform.py_from_typing_import_Union_spatial_gradient.return._x_slicing_s_x_slicing": {"doc_hash": "9585c71e39601d49be12df6ef8733777bca5c9ded9ee7d78d1daefc3cb1251ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/deform.py_BendingEnergyLoss_BendingEnergyLoss.__init__.super_BendingEnergyLoss_": {"doc_hash": "bc52bcd853d6daf88eec6b3acabd38463ed5add56ee9beb6ff16014b2a3411ed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/deform.py_BendingEnergyLoss.forward_": {"doc_hash": "8fcd2e2fab8cf61b4a76f60a83191f43cb5cd47f3a3bbc0243dd8ce2607baae1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceLoss.__init___DiceLoss.__init__.self.batch.batch": {"doc_hash": "fddc96284c539571724b9a3af5233149836b1d24691a8e0d417f3822cccf1dd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedDiceLoss_GeneralizedDiceLoss.w_func.return.torch_ones_like_grnd_": {"doc_hash": "72f87a346f5e3bc7e45c13929d54cc79d010a0839e0b57323696e00fec283f1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss_GeneralizedWassersteinDiceLoss._": {"doc_hash": "76e59f493431d181becc4549edd85c6f500ead37f9e6be62fdefa88c05149351"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss.__init___GeneralizedWassersteinDiceLoss.__init__.self.smooth_dr.float_smooth_dr_": {"doc_hash": "d0f819f269b9375e62e9861a281d3704fa8235f93b7e58607b310389c08ea45c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss.forward_GeneralizedWassersteinDiceLoss.forward.return.wass_dice_loss": {"doc_hash": "e826a92ae4fc58be6c7b78f0829edf4f89ece14dfe06d90604af9ecd4dd4fc3c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss._compute_generalized_true_positive_GeneralizedWassersteinDiceLoss._compute_generalized_true_positive.return.generalized_true_pos": {"doc_hash": "2ad55dc4f24ad8687e6d7dfbf0cdeef611f1077a664fde533e9c8e6cc5c81f55"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss._compute_denominator_GeneralizedWassersteinDiceLoss._compute_denominator.return.generalized_true_pos": {"doc_hash": "3e0062fa978d046fcb760a0b742025f9bb7a1918f4952455dcda402ccc1103dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss._compute_alpha_generalized_true_positives_GeneralizedWassersteinDiceLoss._compute_alpha_generalized_true_positives.return.alpha": {"doc_hash": "c2b2f1934218110d953f47c6a336ab698050f24f2e18e2b89fcdca8e34a47321"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceCELoss_DiceCELoss.__init__.self.lambda_ce.lambda_ce": {"doc_hash": "beda407078b0bf650b59ba4b3f15ff5c9226c661fda74a89f8f62fc9d6b52d58"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceCELoss.forward_DiceCELoss.forward.return.total_loss": {"doc_hash": "429f595f2ed834a5447bc9235620964cdc44ca55d2cfb89d17aba9732dd40200"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceFocalLoss_DiceFocalLoss.__init__.self.lambda_focal.lambda_focal": {"doc_hash": "9ef43d1c3f297bd762c31ada63e9226d53b1e2043418b09bd97cf2e78dbdcead"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceFocalLoss.forward_": {"doc_hash": "ff9f5cd01940fa571d7930e15d15387496631611a58bc7d1acc0a78ca81df73d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/focal_loss.py_warnings_FocalLoss.__init__.self.weight.weight": {"doc_hash": "923ca567958039029bb3a0f3f34d905c5da9db521df56d0b7b6dd234d462f626"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/focal_loss.py_FocalLoss.forward_": {"doc_hash": "f6fd83a2069237de66e7c343677badcffaef3b3c70ddfb468207702874f7139c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_from_typing_import_Tuple__kernel_dict._": {"doc_hash": "27ee4e8ae754967e37dfa9939d38a67e03cb9afbcf843cc8e77a1020bb105107"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_LocalNormalizedCrossCorrelationLoss_LocalNormalizedCrossCorrelationLoss.get_kernel_vol.return.torch_sum_vol_": {"doc_hash": "3918236aa2f2d06d6431165f9a6eee043985870053123061c2f93069150e1775"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_LocalNormalizedCrossCorrelationLoss.forward_LocalNormalizedCrossCorrelationLoss.forward.raise_ValueError_f_Unsupp": {"doc_hash": "b8d118eaaf0889668d7e07eb4381591fc93e14a0c90df1b04726e2a84d0848e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_GlobalMutualInformationLoss_GlobalMutualInformationLoss.__init__.self.smooth_dr.float_smooth_dr_": {"doc_hash": "9cba9f6afcd940258d31b90314ff414c748f66663d8e9d21bc95c6749e94c5d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_GlobalMutualInformationLoss.parzen_windowing_GlobalMutualInformationLoss.parzen_windowing.return.weight_probability": {"doc_hash": "2d240ddc750542fa9cd7da5a9153f7bf9d88cc92d93a597bd310815c7f59bb20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_GlobalMutualInformationLoss.forward_": {"doc_hash": "76f4af1563b59d91830a3460cd60b3f1afb8f14ddedf03ffe87e793c7582edc1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/multi_scale.py_from_typing_import_List__kernel_fn_dict._": {"doc_hash": "453aa4a629eec78c9a39de714b86cf95584b5808d167c6a700bf4f712eac900d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/multi_scale.py_MultiScaleLoss_MultiScaleLoss.__init__.self.scales.scales": {"doc_hash": "63d6e11a69762dc8d2b9409aaeb0e7201715ce9977eba38e71203c4691e55d44"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/multi_scale.py_MultiScaleLoss.forward_": {"doc_hash": "699a789071547f73ccfdca4a393698deac4fe69d764637c989a628a68fdc3b56"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/tversky.py_warnings_TverskyLoss.__init__.self.batch.batch": {"doc_hash": "104d80af7c8b092c4d51688ebc24949d0afcfcbda122f0926191ac7a47f6cf76"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/__init__.py_ConfusionMatrixMetric_": {"doc_hash": "e7308abe9a1c97d9d0da9e1d2e860737f3b9855fe546e8d438fda6ec6a506fbf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_get_confusion_matrix_get_confusion_matrix.return.torch_stack_tp_fp_tn_": {"doc_hash": "64e96308c9908e13d09c9a7e42c757a2bb132c1fa609cf1f8337ba2af5fa6aef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_compute_confusion_matrix_metric_compute_confusion_matrix_metric.nan_tensor.torch_tensor_float_nan_": {"doc_hash": "b2b811860d71413b6a889813fd7fa51cfaffc1de6283da4dc231d9714e41670a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_compute_confusion_matrix_metric.if_metric_tpr__compute_confusion_matrix_metric.return.numerator_denominator": {"doc_hash": "a6e93a7d7741c9fbacdfd03f5141fa8723c35cf3f76066a7f360fe76d420b350"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_check_confusion_matrix_metric_name_": {"doc_hash": "fcc156fbb857f9e0939b087a66866b8a483ce4877ca83a6e8f154c7f3a43028b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/froc.py_from_typing_import_List__compute_fp_tp_probs.return.fp_probs_tp_probs_num_t": {"doc_hash": "749e651c07ad000a45d13277984de51b7180cd92ce879646b536182cfad126ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/froc.py_compute_froc_curve_data_compute_froc_curve_data.return.fps_per_image_total_sens": {"doc_hash": "6ae9187bd01112a2bcd30afbc047fa70e6eb8ed23509879424385829dfd6e9a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/froc.py_compute_froc_score_": {"doc_hash": "4169847d69842fdba1388925f640d3d5a9cefbfe4f2d3b08c0b5d0d546ce4813"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_compute_hausdorff_distance_compute_hausdorff_distance.return.torch_from_numpy_hd_": {"doc_hash": "473fb388c966902b75f641c59e13ed8b299bbd739a254c1050955d1f2db0d100"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/meandice.py_compute_meandice_": {"doc_hash": "07bc70871faccac56abcdc0e7e5bb48a639e5a25df926effa244958e54e170d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/rocauc.py_compute_roc_auc_": {"doc_hash": "cce4645eabc4278ba64a67d758f45b6376fce46fa6d7dbc89a6733707ddf308c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/surface_distance.py_compute_average_surface_distance_": {"doc_hash": "3252f769692f822564bf98cf58f181e32f88e04e278812b4e23692391b345eea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_ignore_background_ignore_background.return.y_pred_y": {"doc_hash": "decf2a57e03934952760323bbc9289c2bf9b4c076487b660921e46b95529c641"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_do_metric_reduction_do_metric_reduction.return.f_not_nans": {"doc_hash": "eff9a9fa22aed672116c66b985632abbed9636faff1e34851f44fd80a2200f77"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/__init__.py_ADN_": {"doc_hash": "a8dfb8bfb2a544714572aaabe99e572cc9703a2aeed1173937f3af6fc1940104"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/acti_norm.py_from_typing_import_Option_ADN._": {"doc_hash": "b7bdc53c27d06278fdff90973800255b7d14eb59443d197a7d2889d1b2154a14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/acti_norm.py_ADN.__init___": {"doc_hash": "cba63cf43fd1d3ae98a50e27c0ab55805a3e8c6b7cf4dfd158edb731a520c952"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/activation.py_torch_Swish.forward.return.input_torch_sigmoid_sel": {"doc_hash": "0613cba29e1ad9a4bbd2d194db7a0fdb8a72e2d8767a323ffe70cac5c0fe77f9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/activation.py_SwishImplementation_SwishImplementation.backward.return.grad_output_sigmoid_in": {"doc_hash": "35f11877e62f493ef7b32fa298fe0f4e97406d04adc9511cf3e68fa61b495e68"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/activation.py_MemoryEfficientSwish_MemoryEfficientSwish.forward.return.SwishImplementation_apply": {"doc_hash": "be32ec0d0cd7dc821b5cac58e5dc0961b9e48ebc6d0896db667f21c4713abddc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/activation.py_Mish_": {"doc_hash": "6abbd81b0ff1e346160d96c820a96ab5d364d43b3eac8e5005d75420476af432"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_Convolution.__init___Convolution.__init__.if_not_conv_only_.self_add_module_": {"doc_hash": "3d86c5c81b78f49f803809e4b1158fdfa52363bceaafe54ff78ab9395ed6e8c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_from_typing_import_Option_get_conv_block.return.Convolution_": {"doc_hash": "1deb90ae2719d69653bc0f8d75d49a9812bd0f011decd54b69037f54ca264fe2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_get_conv_layer_get_deconv_block.return.Convolution_": {"doc_hash": "7b4f4b154c54fb54ab57b654fce0a6e691f0ed1055af9c9265c77a9a4a44731a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_ResidualBlock_ResidualBlock.forward.return.out": {"doc_hash": "6164b84e90724c68633231715ebb132fd29f420207b288c1204b2c482ff12c64"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetResidualBlock_LocalNetResidualBlock.forward.return.out": {"doc_hash": "d4dc65aabec5dd677f4d2a466c47bdfc77b29f5d5bf2e1eed93af81f4e5fa1e3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetDownSampleBlock_LocalNetDownSampleBlock.__init__.self.max_pool.Pool_Pool_MAX_spatial_di": {"doc_hash": "7adf4ad15e39999143be5b5403d92ba41fb49515942fef0fa71727b0f24efa59"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetDownSampleBlock.forward_LocalNetDownSampleBlock.forward.return.x_mid": {"doc_hash": "0769757010b13aa7a178c2f0591e925f7dcaaaa40504acfa9148a8f820a570a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetUpSampleBlock_LocalNetUpSampleBlock.addictive_upsampling.return.out": {"doc_hash": "00b4792369012dc930a29d307051c7cddb5048d4f0891e1858561c279be3d0f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetUpSampleBlock.forward_LocalNetUpSampleBlock.forward.return.out": {"doc_hash": "352d57f44daa33e3991f97747dd5eb1f6b6bf0f8badfe07b42939583c13b6282"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetFeatureExtractorBlock_": {"doc_hash": "94a0689a7aca371fd1eea2e892d4abec03b83630e0c79a4d5527007e3b7a06f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_from_typing_import_List__get_conv_block.return.conv_block": {"doc_hash": "6b70a2db2b49d1a709a680fd53352a4b2bcc844062cd12b08f128afcd02e39de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_get_conv_layer_RegistrationResidualConvBlock.__init__.self.acts.nn_ModuleList_nn_ReLU_": {"doc_hash": "986a4849d7ce62c57430489b397a6b741e396fed48c027a2811192d66d45576c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_RegistrationResidualConvBlock.forward_RegistrationResidualConvBlock.forward.return.x": {"doc_hash": "091b8754ed749ee28f85822a865d8f86028044eb78cdb91b0a008aebd9c11412"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_RegistrationDownSampleBlock_RegistrationDownSampleBlock.__init__.if_pooling_.else_.self.layer.get_conv_block_": {"doc_hash": "23603dbf9465265d9d2c977b12452f4ff26d2d7695e993a21730d9588941851f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_RegistrationDownSampleBlock.forward_get_deconv_block.return.Convolution_": {"doc_hash": "243ba5a6e4a162ab5bb04eaa45af8800d97cc6e1501b5c11d8b95a399a1c6185"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_RegistrationExtractionBlock_RegistrationExtractionBlock.__init__.self.layers.nn_ModuleList_": {"doc_hash": "32b943c07ded55b060e8c2b68823bbcafb72178570434637a503c42c0b95dc0d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_RegistrationExtractionBlock.forward_": {"doc_hash": "e3a1740f7cc214d82cfd4308a343f2c63372aa50cdce442a3ca3f8bff1687c45"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_math_ChannelSELayer.__init__.self.fc.nn_Sequential_": {"doc_hash": "5e6e1e960343520e14400203bcb7ee2bdc67560c3b5462f9b45b7b01ff2ac1df"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_ChannelSELayer.forward_ChannelSELayer.forward.return.result": {"doc_hash": "11c7c86b1f309e75c2a4c324e6459f7294e3576f53fe5c63580d1ef7f15ff383"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_ResidualSELayer_ResidualSELayer.__init__.super___init___": {"doc_hash": "0a9e62d7e613bcc1a23894c105cf6ff3f75a31bbec12231d3badaebbbdee5ecd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEBlock_SEBlock.forward.return.x": {"doc_hash": "274bbe964a5b75d0d47711e74fc132a337ce57622ed97618831657bf5e90df50"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/warp.py_warnings_Warp.get_reference_grid.return.grid": {"doc_hash": "057af7675db1d85d1ccd1360d721adbe207b8b9adacdf55ca13ec1aaa79290ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/warp.py_Warp.forward_Warp.forward.return.grid_pull_": {"doc_hash": "fb0f40267c20664d795f97c4e7aee06f66dd1fe0d1626cdc92c3e6eedb5b396c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/warp.py_DVF2DDF_": {"doc_hash": "a08acce846f50adfc592d6e341903d0f6f6561b1e64b277b86a363a7a7d42033"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/__init__.py_calculate_out_shape_": {"doc_hash": "bb7039afee48266dc2d0146a4aeabf32c20083e4e47c5fc56201116a10908fe5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_split_args_split_args.return.name_obj_name_args": {"doc_hash": "651ef947c5d229a027e93ff8a05555909ff699d134ec765ea0245dc3fc58159c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py__Define_factories_for_th_convtrans_factory.return.types_dim_1_": {"doc_hash": "5ec6fb449969b144910bc1b1460d7778e0c58ec8f15efa6a88a55c60967c7079"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_maxpooling_factory_": {"doc_hash": "564cee47bca9af8063a6285834a0bc6139e309a0cd09185af707f51096434285"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/filtering.py_torch_BilateralFilter.backward.return.grad_input_None_None_N": {"doc_hash": "8f692c5da8d0ba3a54fb3301bc6b85c9119dcd1f58d0af6029b80471efe0b5e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/filtering.py_PHLFilter_": {"doc_hash": "20b1d08077d1ae391235c4a418ccee151c95dfe31700fb11d2e5a3955d7379e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_math___all__._": {"doc_hash": "d9c94578bdd8820627213d6a800671093afa29025566ea22b09070f36f6d84c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_ChannelPad_ChannelPad.forward.return.x": {"doc_hash": "4321627d1847d96e141302aafb8a47b484300d84d10df68fc4e7dac5af7ba9fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_SkipConnection_SkipConnection.forward.raise_NotImplementedError": {"doc_hash": "8190ddef5dfa23334b52888fe5dd2162bc34f2a5a903d79067976ce163f0081a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_Flatten_Reshape.forward.return.x_reshape_shape_": {"doc_hash": "d0701ac3e21e2197bac13ef963c47f5c2c27fe4208c2ecd98ad2d1d81ad68204"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py__separable_filtering_conv__separable_filtering_conv.return.conv_type_": {"doc_hash": "970b1dc6dedfaac6a9bc8e6123d8335ffc317eb9030eb6ee7bbdc2a8199f7dd2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_separable_filtering_separable_filtering.return._separable_filtering_conv": {"doc_hash": "d2d56882265a44e4e04ce954ace8f0c31c0aa8ab119681d2a62edef583957cad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_SavitzkyGolayFilter_SavitzkyGolayFilter.__init__.self.coeffs.self__make_coeffs_window_": {"doc_hash": "a4a706414018190281d90cecfd18d0ba1a8b68ec8c6d876e6f1a1fb152c2a3c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_SavitzkyGolayFilter.forward_SavitzkyGolayFilter.forward.return.separable_filtering_x_ke": {"doc_hash": "e7f5f525df70cfc45f29aa621828dc8d8081cf16b1eebf7a0242b939bcec4e54"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_SavitzkyGolayFilter._make_coeffs_SavitzkyGolayFilter._make_coeffs.return.torch_lstsq_y_a_solutio": {"doc_hash": "9a7cdf35a0db0ed5eae3d90bed874c5530680c206a428560c076478b2fdd75dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_HilbertTransform_HilbertTransform.__init__.self.n.n": {"doc_hash": "8a953c67a61a9ee43fb101779102054571730ae5c2712fc45ebb6bca446585c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_HilbertTransform.forward_HilbertTransform.forward.return.torch_as_tensor_ht_devic": {"doc_hash": "353973f792d6e25055501610195fc9e07b20bda3574f2a5d047923be178d193d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_from_typing_import_Option__GridPull.backward.if_ctx_needs_input_grad_1.return.None_grads_0_None_Non": {"doc_hash": "546732c949ee5b8a182e6daa75c2809d4ee191f7cc99c56ddfc40b6bf722cd2a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py__GridPush__GridPush.backward.if_ctx_needs_input_grad_1.return.None_grads_0_None_Non": {"doc_hash": "4f5c3c53de5829a956252df1cc9b5ffeb5170f6494ba7558a307c8ee8ddfcb02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_push_grid_push._Convert_parameters": {"doc_hash": "a83ded6679d26f9b4a14bdd97e43041cabc646e82e7f9038af1a4d472af52e42"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_push.bound_grid_push.return._GridPush_apply_input_gr": {"doc_hash": "2accff9ccaec5ec30880cd645ed27d6309e4fcdb0cfb620257749a0acffa4fa8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py__GridCount__GridCount.backward.return.None_None_None_None_N": {"doc_hash": "9253c7926b92d55eebdb0eed741970bc421891270aacbd9b86d2799979320025"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py__GridGrad__GridGrad.backward.if_ctx_needs_input_grad_1.return.None_grads_0_None_Non": {"doc_hash": "2ddd10e40748af04c4444504afa4716dd90c852da0778322f8be8e4ba837f39b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_AffineTransform.forward_AffineTransform.forward.src_size.tuple_src_shape_": {"doc_hash": "6aac4cc0b91ae9940ced1a9193a69746ebc8198dd96a67ff6ebea7807d44c9d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_AffineTransform.forward.dst_size_": {"doc_hash": "85e507181fd035f87388b165fb721dced12e80d35e04ffde0a08175cd12c08ad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/__init__.py_AHnet_": {"doc_hash": "68ca8c3ebc37e916e8fc56f80fb4a7990c4c7493f05a385367cc2376942b410a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_PSP_PSP.__init__.if_self_upsample_mode_.for_i_in_range_psp_block_.self_up_modules_append_": {"doc_hash": "ca1ad11ce8cd00fbb962da76ca8a5d3e8ebd70e2e9f20cc123b4845c35297639"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.copy_from_AHNet.copy_from.for_i_in_range_1_5_.for_m1_m2_in_zip_layer_2.if_isinstance_m1_self_no.copy_bn_param_m1_m2_": {"doc_hash": "f016fc751565a85257939208b749ecf3223e27b7e96205e211d0eb2bce9ea713"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_copy_conv_param_": {"doc_hash": "5b5f5582fddf34418a783ce6ddb0154f74139390f1e5ef71a474550a05fa8a7e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_from_typing_import_Any_O_AutoEncoder._get_encode_module.return.encode_layer_channels": {"doc_hash": "ffd9a5d63333aa25fe7e90b888f05380bcb685c2968627e70ef18211e2def985"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_AutoEncoder._get_intermediate_module_AutoEncoder._get_intermediate_module.return.intermediate_layer_chann": {"doc_hash": "29c1b3777830f476813985994afb1eaca208cf5c55cceabacc6beaf54ef096d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_AutoEncoder._get_decode_module_AutoEncoder._get_decode_module.return.decode_layer_channels": {"doc_hash": "c807f8bc97552c59d3890915d7ecf8622797d038f2387470f325a6754a95a2cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_AutoEncoder._get_encode_layer_AutoEncoder._get_encode_layer.return.Convolution_": {"doc_hash": "6bd57cb97c41a13b98621f8e398551d81a949d0ecd3f1b4805f1738888b73371"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_AutoEncoder._get_decode_layer_": {"doc_hash": "f870d59e7435f6d9e89a540a5d7e6999a8a37a5f7e5af5a66ff5caaad4133b57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_from_typing_import_Sequen_TwoConv.__init__.self_add_module_conv_1_": {"doc_hash": "260fab7a59fc1c01b1ee0611264189b563790cd5302be2fc1e94af01085a4c00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_Down_Down.__init__.self_add_module_convs_": {"doc_hash": "7a56e2bed9a7c881e5b4d0e849edbd75e71f61f8d8da8cf6b38be9b5ae1f1a1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_UpCat_UpCat.__init__.self.convs.TwoConv_dim_cat_chns_u": {"doc_hash": "95cdb7706d3a39f41af0b0355136161a8076fe09f5412b3103311ff9f36d99f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_UpCat.forward_UpCat.forward.return.x": {"doc_hash": "a04729e1536a85d3f318c18c6653a0f457691a565a99de27f9dbc4f61f8ae0bc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_BasicUNet_BasicUNet.__init__.self.final_conv.Conv_conv_dimensions_": {"doc_hash": "7853c90e1bef8eb777c27fb27929d86f1b4331efbd00e4cf0543da2f5301a58b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_BasicUNet.forward_": {"doc_hash": "35fdf34c2179c5f3885be77f80df8f30d7ccdf8f6d4b3c23029f464112423a57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__load_state_dict__load_state_dict.model_load_state_dict_mod": {"doc_hash": "186566dbd9bd97c625c666451553b3c7f5900797ca7ca5c6dc54ba7329656ef8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet121_DenseNet121.__init__.if_pretrained_._load_state_dict_self_d": {"doc_hash": "5ec44a1d197c01925a140f21b3cbd465d653dae0bada6642c76a5b5213b1f757"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet169_DenseNet169.__init__.if_pretrained_._load_state_dict_self_d": {"doc_hash": "3bb89b75e62a9816ff7d2af4025038f01db1fbb8ac57b3deda7f74ebfc9a6a80"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet201_DenseNet201.__init__.if_pretrained_._load_state_dict_self_d": {"doc_hash": "3af83433ba971ee9b6687bf94dd5d88faca8677b882097cb4f9b5799e665f416"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet264_": {"doc_hash": "afb0da24ef831504393364dac5688f3ec27099e5bc4e68f5b44aad19bab30030"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_from_typing_import_List__DynUNetSkipLayer.forward.return.upout": {"doc_hash": "f8ca52d20e55687aa0cf0e976665713e059bf339225476e3c9b37b535df552c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet_DynUNet._": {"doc_hash": "b3ef16dbc1d620cdfedcdf94b843a48266a57d579085aaa17c6ca861442f44d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.__init___DynUNet.__init__.self.skip_layers.create_skips_": {"doc_hash": "b8e4799afc58e8f2c967b463889460b718944a9630f4fd7d8c61cfe13bdaf377"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.check_deep_supr_num_DynUNet.get_upsamples.return.self_get_module_list_inp_": {"doc_hash": "087d2ec41f93c4ce65a57b491003cc2d30dd88bdb1c37dc79a92886b4eeca546"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_math_efficientnet_params._": {"doc_hash": "1ab9951463dbc540c38cb8b51ec2edc6bf027b5ae3c41415e9ff67a35a88287d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_MBConvBlock_MBConvBlock.__init__.self._swish.Act_memswish_": {"doc_hash": "0a148341683f0fc3f37b711580d69f8c48a8b16b2afee1ec44394bdbd58e69f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_MBConvBlock.forward_MBConvBlock.set_swish.self._swish.Act_memswish_if_memo": {"doc_hash": "470824d803befeb173168e762f8ed1d49df355a59940290aa8664a078e368630"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNet.set_swish_EfficientNet.set_swish.for_block_in_self__blocks.block_set_swish_memory_ef": {"doc_hash": "9846a2ac8894736486034fbc0cf93875b7c871c8b55192b1cd9c38eec5439129"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNet.forward_EfficientNet.forward.return.x": {"doc_hash": "b3574826f88a78a2de7daf71d70c8c366ccc9841fd8a5def9ca28f6a9830990e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNet._initialize_weights_EfficientNet._initialize_weights.for___m_in_self_named_mo.if_isinstance_m_nn_Conv.elif_isinstance_m_nn_Lin.m_bias_data_zero__": {"doc_hash": "da68408a73e47e11629096559261703c08a034aaba5075e48f0f6d58e58b551e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNetBN_EfficientNetBN.__init__.if_loadable_from_file_.else_.print_": {"doc_hash": "bfb711e42c07901226789fa2ed68e4a2a3f12e6416ba0e3a7e875de1f56f91f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_get_efficientnet_image_size_get_efficientnet_image_size.return.res": {"doc_hash": "14ef23eeedbc833812f964d1d904c9664352235d2703e31ec3afa3f24998cfbf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_drop_connect_drop_connect.return.output": {"doc_hash": "3bd4fe9790e303b2d6bbc694d0e480e574bd6cc60a7817cad2eb2058da77aa72"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__load_state_dict__load_state_dict.if_ret_unexpected_keys_.raise_ValueError_Missing": {"doc_hash": "673fcf743f1119df994e4020151253789a67253d9a7f5ddfb25ba74743edccf9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__get_same_padding_conv_nd__get_same_padding_conv_nd.return._paddings_ret": {"doc_hash": "fc42ab96fe7c208ad61beefe7a8db3248e5381ed59be43c2015fa22e56267198"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__round_filters__round_filters.return.int_new_filters_": {"doc_hash": "3ba129f5a8e745caee11954a83c239e761f03b27506db827666c9908c3874c83"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__round_repeats__round_repeats.return.int_math_ceil_depth_coeff": {"doc_hash": "1253f81b05cea6c3d7ee7c900e95a4cef9c31c4ebd1e38f748dbd11a3cd7e133"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__calculate_output_image_size__calculate_output_image_size.return._int_math_ceil_im_sz_st": {"doc_hash": "8efd6a9df34652d721689be45602e39ae47966d1bdf80df3739ee40c2866e3e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/fullyconnectednet.py_from_typing_import_Option__get_adn_layer.return.ADN_act_act_dropout_drop": {"doc_hash": "d7780b51c0a6009328ee58c792184f4f663cc55cc8021730830167042b6e9609"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/fullyconnectednet.py_FullyConnectedNet_FullyConnectedNet._get_layer.return.seq": {"doc_hash": "b748b6002b69c308341b851f6a5dab319dade1c21312dd3140d4367f2823983d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/fullyconnectednet.py_VarFullyConnectedNet_": {"doc_hash": "dfdf9b9897d5d8ef2011f80aa9372963952ba5e63a4d1acecc366f7e08eb6e88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResBlock_HighResBlock.forward.return.x_conv_torch_as_tensor_": {"doc_hash": "1db19dda34c9aa4712e2fc5e6701884d736b2917dc407fb029a3059cd534d3cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_from_typing_import_List__RegUNet.build_layers.self_build_decode_layers_": {"doc_hash": "05a5084696cc761320ffcec4a339068bb01a178e9831e930e30717e38e1a0a74"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_RegUNet.build_encode_layers_RegUNet.build_encode_layers.self.bottom_block.self_build_bottom_block_": {"doc_hash": "cb7cc4afb8f6f4739bd7f8e4862984e8abb175a9f2065cb0d0cd2e2dcae174ed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_RegUNet.build_conv_block_RegUNet.build_bottom_block.return.nn_Sequential_": {"doc_hash": "ee6e93e0040d8aa0b674bb547e7f89e565f9ec837d9ae1d2bb7b2ad2e7577c2c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_RegUNet.build_decode_layers_RegUNet.build_decode_layers.self.output_block.self_build_output_block_": {"doc_hash": "243be43415066d57825b054c4494f5f1a29cb33ece2c196da7b814f0ba24788d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_RegUNet.build_up_sampling_block_RegUNet.build_output_block.return.RegistrationExtractionBlo": {"doc_hash": "277b2963e00bec7b4e8d3f130fce0f0dbe88b78f646294423916dbe143dbbc29"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_RegUNet.forward_RegUNet.forward.return.out": {"doc_hash": "f2047e0ae0e1e6de31003a9b7f37e016bf5b9f1202ad941fcb3e18be8ae28deb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_AffineHead_AffineHead.get_reference_grid.return.grid_to_dtype_torch_float": {"doc_hash": "37ad7e7f872e846f7a7c701a26f7a7086acbdb71f2a1e8d448c80a2f8f04c620"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_AffineHead.affine_transform_AffineHead.forward.return.out": {"doc_hash": "175511a2807ea45822ab890f021083f5be80f2d6db39dd64f74a3baaf0bcb974"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_GlobalNet_GlobalNet.build_output_block.return.AffineHead_": {"doc_hash": "3aba1d29c73a23e7e2d032f05e2c33ea3d004fbe419ac0d8513cd2af7d45cafe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_AdditiveUpSampleBlock_AdditiveUpSampleBlock.forward.return.out": {"doc_hash": "0799ba2c8346a65c65c6582365cb0d16344bde0bb57e5014d2e163d72dd52295"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_LocalNet_": {"doc_hash": "ca8c050a0cb80487757e12934f4239bdef08ff0b4224a9ddfef52f3dee423430"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNet._make_down_layers_SegResNet._make_down_layers.return.down_layers": {"doc_hash": "8a98adc14b5839b0c9ba262976fc1f3df8f291f956db75b7c4eec257ad909f89"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNet._make_up_layers_SegResNet._make_up_layers.return.up_layers_up_samples": {"doc_hash": "c5d53985bc7a30936e9b9e461372a5177d7f874b2bea2767c85c2c6cd597f208"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNet._make_final_conv_SegResNet.forward.return.x": {"doc_hash": "637cb6b11d7f0f905c76562e7960c08a88e97f9e57b02f64dc3ba2c21f7e68e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNetVAE_SegResNetVAE._": {"doc_hash": "8707bc15e5ea718cd05276176a37ab3bb85244d641e25fd2efd05246fe161ecc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNetVAE.__init___SegResNetVAE.__init__.self.vae_conv_final.self__make_final_conv_in_": {"doc_hash": "ccebc59654e9cebc1083bedd725b20438b5fed95c1bcfd3f81dd27e37f537250"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNetVAE._prepare_vae_modules_SegResNetVAE._prepare_vae_modules.self.vae_fc_up_sample.nn_Sequential_": {"doc_hash": "fedaf1254945c4193675e4028e649f8f5318b520a2f8c535539d62ab7c2d4e70"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNetVAE._get_vae_loss_SegResNetVAE._get_vae_loss.return.vae_loss": {"doc_hash": "5ced13a4e71f1f4d3f7db62c9c98da68cb32d5bd27c824716af5757656042faf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNetVAE.forward_": {"doc_hash": "c5c83bfb1e330164cf5fa63506a85e5aa2f35cbb0d7f5fc2b0fff4e26bc6f6bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SENet_SENet._": {"doc_hash": "2aba69707f6b380ebab261f739032b12c30bfedca49ef55f1956b2b8bb2f3f8c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SENet.__init___SENet.__init__.for_m_in_self_modules_.if_isinstance_m_conv_typ.elif_isinstance_m_nn_Lin.nn_init_constant__torch_a": {"doc_hash": "5aa6c8ce3fd0fcf1337a2c8890fc6104d3a7bbbdb3978f7f27031bb09803ae63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SENet._make_layer_SENet._make_layer.return.nn_Sequential_layers_": {"doc_hash": "ec0410f4ad8a881b64822658601759ebb4d6d76910602b46a811609359070c05"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SENet.features_SENet.forward.return.x": {"doc_hash": "edc0b671223ae08961ab19b4f05490701370a68d2240ab4748139ccba2feda68"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py__load_state_dict__load_state_dict.model_load_state_dict_mod": {"doc_hash": "15d5a57046edfeaaf5dd68d2270d6b3f8fa4c8a4837c483309e99ba7fb68b577"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SENet154_SENet154.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "4e4573ae31d0ea8dd948529c5e214eb58d3c7eda580fbb393a5f079c580689d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEResNet50_SEResNet50.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "780acf907f84513aca2bf09b6601926e39c2c35aba37b35f7e9127ac6c2c1f2a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEResNet101_SEResNet101.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "1bf77fc15bdca5963fca70c854afdfa0894277f4f819850ad1668dd0fbd52eee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEResNet152_SEResNet152.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "cae8ecadd9cad3b5b8860707d147c142920b2defb2a8da800639378dc08c5051"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEResNext50_SEResNext50.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "af11cc7fc92f0eaa70fdb2069be9b05ebabf6ab13c55b2506f69dd951770b5f5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEResNext101_SEResNext101.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "6eced2b852bd87ea92f8c1c2b47ae9d0c2911d553ca90d3df8a59b64cf378e62"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEnet_": {"doc_hash": "9998a4087b50053e0a2d7508c9b1bdda69399f6f4a265b5b981aab8d87f0686f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/varautoencoder.py_from_typing_import_Option_": {"doc_hash": "e9c09d6721a6b9c163e8ec02d8f2575fcabaad7e67d39fb2f2d6758f492fec29"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_slice_channels_predict_segmentation.return.logits_argmax_1_keepdim_": {"doc_hash": "1ff0cfbfe7817de216742fc6277015564be83b3ddc0f6557ae3c02af3a1d9d07"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_to_norm_affine_to_norm_affine.return.src_xform_affine_torc": {"doc_hash": "ab63889711332fc353306e135c2ba98f470b4dcd7daf253abc4b687aa1385789"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_pixelshuffle_pixelshuffle.return.x": {"doc_hash": "e937ce3a99fee223ebc1b6c5f3b04e87fe3b287baf4520e2f99634bd2207bbec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_eval_mode_eval_mode.try_.finally_.for_n_in_training_.n_train_": {"doc_hash": "908471833007b507d22b929395564f4ead79a81ee3c0e172186ce041b063f4e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/__init__.py_LearningRateFinder_": {"doc_hash": "c03b7d50600fc653e75ecb999cf37f2f4dd2f90eed5ece2495e750edbe62cb40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_warnings___all__._LearningRateFinder_": {"doc_hash": "0676b9415f7ca9e7648ef7f1dfcd4454d5e787eb07f3a3ff99791da0dcf9cfd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_DataLoaderIter_DataLoaderIter.__next__.return.self_inputs_labels_from_b": {"doc_hash": "0913d44b0a0d9b21d62b29190f0adcb92edfd8611609b26c18fc6c7ecc6c92d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_TrainDataLoaderIter_TrainDataLoaderIter.__next__.return.inputs_labels": {"doc_hash": "f7f0e8ac220f336177bb0a2c1affe4bac85349cc95858064271ee6bd342b156b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_ValDataLoaderIter_default_label_extractor.return.out": {"doc_hash": "cf6f8057b72914cb4c77659a4ca9255f9c8bb11979ef508353f6303da09ce1fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder_LearningRateFinder._Learning_rate_range_te": {"doc_hash": "2c061cf3a02ba920ff2262f2e7f96c118e67b0e68f03be5e653d44a6c68b1ca8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.__init___LearningRateFinder.reset.self_model_to_self_model_": {"doc_hash": "33a602c88c52e11f23d3a4c497c9503ad1b60adae8b1841f4a37eac2533b9f78"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.range_test_LearningRateFinder.range_test.trange": {"doc_hash": "011d398e683adfc0d3cc2640cfb2005d887a437e625383a87e36a6b54971b4bc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.range_test.if_self_verbose_and_has_t_LearningRateFinder.range_test.if_auto_reset_.self_reset_": {"doc_hash": "e2ebfbca49c4e2657d98feabd0a8d9a78b0ca9855ce22ab1fe8f4f3a2ef11e93"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder._set_learning_rate_LearningRateFinder._check_for_scheduler.for_param_group_in_self_o.if_initial_lr_in_param_.raise_RuntimeError_Optim": {"doc_hash": "100f4ce315d9e73bda5134d813b7011d01a8d66ac9693cb57caab1d5d1ad05e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder._train_batch_LearningRateFinder._train_batch.return.total_loss": {"doc_hash": "9f21a26671ce2bd8101a0c22630ebd95718972e5076871c114634bb97a21e2e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder._validate_LearningRateFinder._validate.return.running_loss_len_val_it": {"doc_hash": "121ce6b0d59c892a1cd6ad9668e25e247d06175cd674d64612d2a36f42d30417"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.get_lrs_and_losses_LearningRateFinder.get_lrs_and_losses.return.lrs_losses": {"doc_hash": "43400276dd523732ccdd14efe1b48d45cdbddedfc996f2d8b91cfa5de2f24e30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.get_steepest_gradient_LearningRateFinder.get_steepest_gradient.try_.except_ValueError_.return.None_None": {"doc_hash": "75552e1187858db2fa7c906ee99db58b773fa8d82c47b1714721507cb68ee6fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.plot_": {"doc_hash": "4da2b8ff167b698404b4cd0727db27bf102d8760e5cef9b1b22d42a920ac893a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_scheduler.py_from_torch_optim_import_O__LRSchedulerMONAI.__init__.super__LRSchedulerMONAI_": {"doc_hash": "5afb97ea294662b81e21f48e8c47852a40ee3fecdd4df8ae39b1ee6abb03ac48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_scheduler.py_LinearLR_": {"doc_hash": "b916ced1fed5f3137f6e6dfa2a6c3d99b9fb6a53b169b129bff2496021407d7f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/utils.py_from_typing_import_Callab_": {"doc_hash": "125bed9790ca140095764dcd4d1309f745e557a0ffc84adbf49bae5e1bf97db9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/__init__.py_FunctionSignature_AdjustContrast": {"doc_hash": "8f1e7240bc24703d4f08ecaa83ae7c6c9002951840a3b92729cfeb13b792d178"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/__init__.py_AddChanneld_": {"doc_hash": "5a146851973d6307ab210dbc81653f46ac7c1b014aa4f9af7012b6cc400d503e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_warnings___all__._Compose_": {"doc_hash": "964dd3c1c256b39c48da673e6c1d3290dbf7c11d3e7dd623b429da4c05a5de12"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_Compose.flatten_Compose.flatten.return.Compose_new_transforms_": {"doc_hash": "60d2a17610d09c7aa18bbf2b2f8f78061953589ff4d4ebe830bf8be169a032c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_Compose.__len___": {"doc_hash": "3c636604830af15acafce240c7590fc73c41547a26a2b7898fbcc436c2ae655a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_SpatialPad_SpatialPad.__init__.self.mode.NumpyPadMode_mode_": {"doc_hash": "e0e16a6fa66a8818e130e5244a563323913e692341b6966858a791c132a27a70"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_SpatialPad.__call___SpatialPad.__call__.return.img": {"doc_hash": "1c655590a586917007fd53b63e6ecded6ceb3bd6411855de98c2bcc41fcd34f5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_SpatialCrop_SpatialCrop.__call__.return.img_tuple_slices_": {"doc_hash": "0ee960953545ae2b27f3c033a5c96768ccd63290b4c2b4423cd80ee3f295ce26"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCrop.randomize_RandSpatialCrop.__call__.return.cropper_img_": {"doc_hash": "08e24c191eb2608e38f8893d5bdcc27d80b423c58eb6cd459d3341f5d89293cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandWeightedCrop_RandWeightedCrop.randomize._using_only_the_first_ch": {"doc_hash": "22e94736f0b649f7510f1ecf4ccd17041378aae72d08b3535b62e3df9bf0493c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandWeightedCrop.__call___RandWeightedCrop.__call__.return.results": {"doc_hash": "fd8773c627a32e91e9e745f72d96eae29d4a54706186563841e3b81f552b54d5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_ResizeWithPadOrCrop.__call___ResizeWithPadOrCrop.__call__.return.self_padder_self_cropper_": {"doc_hash": "e31c496a6b36c9b25af8429a1aa712e87f9573e9e107c25d0245ba3757967b21"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_BoundingRect_": {"doc_hash": "8b4f7da440bd0ed267eb5d6869a0d343908a2dd638a49906a4173c335a7ec442"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/batch.py_from_copy_import_deepcopy_replace_element.return.batch": {"doc_hash": "09716086bceb5f14e6047031c2233c580a30a28367001b48415da5cf1a596aab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/batch.py_PadListDataCollate_PadListDataCollate.__init__.self.mode.mode": {"doc_hash": "4bd13210e1bbedd873bfa1e6e6543476f94103dfdc2ba1ffdb0b7f875f5a45e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/batch.py_PadListDataCollate.__call___PadListDataCollate.__call__.return.list_data_collate_batch_": {"doc_hash": "7d5037431b0385aa5e3825d897ee89b7674e61b48eee0521ced5474d646ab2e2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/batch.py_PadListDataCollate.inverse_": {"doc_hash": "347cec3768570422d8319ae0ae32a606ad0897a5bd42ac77d1d766a624e4de57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadd.inverse_SpatialPadd.inverse.return.d": {"doc_hash": "ad90acecf8230d35b7eb0f324eca875c5988e1741382dc9b68da34e3397d404d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BorderPadd.inverse_BorderPadd.inverse.return.d": {"doc_hash": "8a7775e781bfb86df039c78b77ee124df4057832fe958657a60361e086793348"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_DivisiblePadd.inverse_DivisiblePadd.inverse.return.d": {"doc_hash": "387fda87dedcad6c88e4349e67e0396df18a30255ba2b3498e122b003c70b66d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialCropd.inverse_SpatialCropd.inverse.return.d": {"doc_hash": "a57ab0bbd80365fea8dad17c160dabe05784c8de251439fb7d657b89d740631c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterSpatialCropd.inverse_CenterSpatialCropd.inverse.return.d": {"doc_hash": "9233ac821183a151648f0a4ced27c3c6c60eae3b5d0622c6143f4f75110e9058"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.inverse_RandSpatialCropd.inverse.return.d": {"doc_hash": "ca51adf52e98afb393cf7462e2c88045f9426113ac0e2e20fdb31c3390efd3bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropSamplesd.__call___RandSpatialCropSamplesd.__call__.return.ret": {"doc_hash": "cccc2ec111378d0f6f85fb7095e392a1d0074091fa3b97d77255b9e6014e303e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CropForegroundd.__call___CropForegroundd.__call__.return.d": {"doc_hash": "c97cf54b621b1c571d13190daa8c11e6b1e7884716c97b49d13a5fca6e97fe28"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CropForegroundd.inverse_CropForegroundd.inverse.return.d": {"doc_hash": "4ba36589ec515084ca4e7a490b4117af1613cc4f13a104a7a265119cd41ffb76"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandWeightedCropd_RandWeightedCropd.randomize.self.centers.weighted_patch_samples_": {"doc_hash": "460e69c8915bf6cb3b21d711971ad5515c56cb6559f05c482b9ad3988edbd037"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandWeightedCropd.__call___RandWeightedCropd.__call__.return.results": {"doc_hash": "82534738a019f476bbd84d799424e2895c359de8f103ed212c663a5124f214cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_ResizeWithPadOrCropd_ResizeWithPadOrCropd.__init__.self.padcropper.ResizeWithPadOrCrop_spati": {"doc_hash": "a8806b0fd24b4457db3273229bbf62e5c1877d2311d74f2dff6ff0eb96a28b7b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_ResizeWithPadOrCropd.__call___ResizeWithPadOrCropd.__call__.return.d": {"doc_hash": "2b686f8567755dab182838611d25c02df3a8a9a34aea48c48f319b38bccb2638"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_ResizeWithPadOrCropd.inverse_ResizeWithPadOrCropd.inverse.return.d": {"doc_hash": "d46bb1bb20677014fced36ea5db3c778f7256ef2e59dcc9b5abeb0bc2097cde8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BoundingRectd_BoundingRectd.__init__.self.bbox_key_postfix.bbox_key_postfix": {"doc_hash": "44799662fcb896b455ed292e511457c49559526f8ee77f96a41c67defa582059"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BoundingRectd.__call___BoundingRectd.__call__.return.d": {"doc_hash": "f94977f633d381c90b202d7fd381b10ea9a6696e86e6f63b43f6c12b2cf70ee4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_from_collections_abc_impo___all__._": {"doc_hash": "2f7bfd95b4f4058ed724fe205ee495ea264bad12cd37525797be9a54de418436"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandShiftIntensity_RandShiftIntensity.__call__.return.shifter_img_": {"doc_hash": "4eed2f8a7633c7bf4c497776fc5c908ddba751c5b93d132e8eefcdbb6f3d7722"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_StdShiftIntensity_StdShiftIntensity.__call__.return.img": {"doc_hash": "b8377ccbf761df3413bdab75ed2598fd5a6c28d98ddc09f7e31cf77b8d46d092"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandStdShiftIntensity_RandStdShiftIntensity.__call__.return.shifter_img_": {"doc_hash": "b1ba7faf35eaf7d82877c0dd80c603fa196dd59b1a48cb3856d9558ec6e7a491"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensity.__call___ScaleIntensity.__call__.raise_ValueError_Incompa": {"doc_hash": "9d067ce8793927e7edca397dfa72661a62e34e240a25b66f690ba5acf005811d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandBiasField_RandBiasField.__init__.self.dtype.dtype": {"doc_hash": "adbc74282f28177e028c8090ebbe26db7409688c9b6e7d1f33bf3f4c63e164fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandBiasField._generate_random_field_RandBiasField._generate_random_field.return.field": {"doc_hash": "734cce74c536d8ff4d614144c2b9c219122d81f4209fb4ce63b2ee718aec6237"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandBiasField.randomize_RandBiasField.__call__.return._img__bias_fields_asty": {"doc_hash": "48b38b32176a0609e80a07545d9eabfd80707512fbbc20a37ffb7b066e0e8cff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_NormalizeIntensity_NormalizeIntensity.__init__.self.dtype.dtype": {"doc_hash": "92264077dfe17a918bd4ac4ce71e5e4aecdc8a25fd85a3f2d7acd754e303359b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_NormalizeIntensity.__call___NormalizeIntensity.__call__.return.img_astype_self_dtype_": {"doc_hash": "61890df37e955d37ebf43440916ea7287f4c46735297fe407c94dac8eac2c7e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ThresholdIntensity_ThresholdIntensity.__call__.return.np_asarray_": {"doc_hash": "daab3650b5c2dcb251d883d36a21dd371a53be0ccd39d349cc5dac03090cab7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_MaskIntensity.__call___MaskIntensity.__call__.return.np_asarray_img_mask_dat": {"doc_hash": "0d54934e90462b88bdc8ad514eff50934ba34c5276537221af3c6ccbed0b8d14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_SavitzkyGolaySmooth_SavitzkyGolaySmooth.__init__.self.mode.mode": {"doc_hash": "4a32caa37b760eccc2e4e9070f68e8af6e037f906f9e5a84721cd48d60ace9e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_SavitzkyGolaySmooth.__call___SavitzkyGolaySmooth.__call__.return.savgol_filter_input_data_": {"doc_hash": "6c8eeac4a95d28464a424abd5fdd72aa9d2db9baeaa2458cce1a9cbc1d676c14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_DetectEnvelope_DetectEnvelope.__init__.self.n.n": {"doc_hash": "70283512bd53eb7bb224e43f92a93f2a6eb562c24239b90a2f497d547bf04377"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_DetectEnvelope.__call___DetectEnvelope.__call__.return.np_abs_hilbert_transform_": {"doc_hash": "24f0ed84546ce0e26e7737eb9e6f3c6a03e81693386b6df7dd9d108c6e6848fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen_RandGaussianSharpen.__init__.self.approx.approx": {"doc_hash": "b16ed2735344548f9a1335b71c26d61818fe1ccc0d17424420237d91770daff2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandHistogramShift_RandHistogramShift.__init__.if_isinstance_num_control.else_.self.num_control_points._min_num_control_points_": {"doc_hash": "42b4d01634c52eb712292f8d949ac6e8ba7ee7f474d94e6a500833442ad6288c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_from_collections_abc_impo___all__._": {"doc_hash": "c620408c81bc3a59c9990f3a37955c3232fbca5439dcfd47d03542354d4581b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianNoised_RandGaussianNoised.randomize.for_m_in_self_mean_.self__noise_append_self_R": {"doc_hash": "5e04f12ae6f2809603571fbdb37ba3b5da82c083b88871fdb0989769e53f2ae6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianNoised.__call___RandGaussianNoised.__call__.return.d": {"doc_hash": "d733d41a4aaa7cc7c28d9f1523173573c79843ec4839e5970abc40c4b09a49e3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_StdShiftIntensityd_StdShiftIntensityd.__call__.return.d": {"doc_hash": "d280fe07f5eb463b358ca0688a2cdcc01259f8bc135343c3109e86b94a4a0cfa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandStdShiftIntensityd_RandStdShiftIntensityd.__call__.return.d": {"doc_hash": "add5cb9a18a4490a47cfc13205b7feb0d0b03ad0e080a46cb874371c5d0fbde0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandBiasFieldd_RandBiasFieldd.__call__.return.d": {"doc_hash": "be69ff41be00dcb29a84febb8cf7bd276c3b80d1fc95c843a1b85fd64cb41e18"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSharpend_RandGaussianSharpend.__init__.self.approx.approx": {"doc_hash": "072a71588691ee0aef6be013b235c6c639d73dc2a5c2ddfdc75a7b2f01ad909b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandHistogramShiftd_RandHistogramShiftd.__init__.if_isinstance_num_control.else_.self.num_control_points._min_num_control_points_": {"doc_hash": "4f5fc31346349b7cb8b2c63add4de546b002429e3bec1c5525771828d42f5b9b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse.py_from_typing_import_Dict__InvertibleTransform._Classes_for_invertible": {"doc_hash": "4d2741b987f8f6b3b193932bccdd40ac6edea818051db6ba9d32a426af57e155"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse.py_InvertibleTransform.push_transform_InvertibleTransform.push_transform.data_key_transform_appen": {"doc_hash": "3eb556325622c05bc96a78701486f3bcd4f16832d068fe179cc0c19b01523b81"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse.py_InvertibleTransform.check_transforms_match_InvertibleTransform.check_transforms_match.raise_RuntimeError_Shoul": {"doc_hash": "2621f9324f2cd9f7c8ee9b2aa596b8630a2fbe1b874e2110c72ca30beb6c8368"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse.py_InvertibleTransform.get_most_recent_transform_": {"doc_hash": "0d8fba91306b1ab3ec7e4c8becdd8092cc7c4e8550dae830b116f6038e733deb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_switch_endianness_switch_endianness.return.data": {"doc_hash": "ec5a8c77f3d0602d89ee7fafc27fbe92358ac6734c410c77a6ce67d232ac7c5b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_LoadImage_LoadImage.__init__.self.dtype.dtype": {"doc_hash": "c0bd663f3650eeb7939a27922e0b785fd373d0fdc8cfd96d331ad27b2f88e6f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_LoadImage.register_LoadImage.register.return.self_readers": {"doc_hash": "b8f8fc6cb76b4b062b389007576fb523096c87cdeb500b35df34f53a852eab98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_SaveImage_SaveImage._": {"doc_hash": "1b383f88e59df9c25d26a7f76aef19d10b2ebd45ad26dbca0f3729e0aec02bff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_from_typing_import_Option___all__._": {"doc_hash": "7a77956ebfeb28ee39bec95f58f982abf21f37538a6a2d6271b4c672ca64064d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_SaveImaged_SaveImaged._": {"doc_hash": "f0ddabaf1567b07dae228da556b6dbc520fd82802cfea23db807f5490eff296c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_SaveImaged.__init___": {"doc_hash": "6b135ed96f454f1c62c1f1c52118ceeadc195dd17fa4003a30f213c70623f42a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_warnings___all__._": {"doc_hash": "f0d90b71641dcda4214923a5b6fc457a368e992aa3c032aa409741a0fd2080b9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_VoteEnsemble.__call___VoteEnsemble.__call__.return.torch_round_img__": {"doc_hash": "f14e0944b8ed299bf29531c7d9e9ddafd9ae0cee45385069b334bd923d167973"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_ProbNMS_ProbNMS.__init__.self.box_upper_bd.self_box_size_self_box_": {"doc_hash": "7911a37f93c367ce117a4e18568276619f4f077a668b9bffee684b4c04c06621"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_ProbNMS.__call___": {"doc_hash": "765428c15baa65ddc4d63f5f719cc78d2510ceea767516ff6280b731a6734afd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_AsDiscreted_AsDiscreted.__init__.self.converter.AsDiscrete_": {"doc_hash": "06323d01e39c2f5e0f6abcb2210534397e937c2ed0035669e6bdb601050f9695"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_AsDiscreted.__call___AsDiscreted.__call__.return.d": {"doc_hash": "c3f57b87a6df1f0da28590b4d9fac713dd7135053d9f2286d15bac87a1882c78"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_VoteEnsembled_VoteEnsembled.__init__.super___init___keys_en": {"doc_hash": "be9901d1264826902a44b5aac5a65468b1aca92e5e446e81dbef90c8da2f2948"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_ProbNMSd_ProbNMSd.__call__.return.d": {"doc_hash": "6542602d1f35cdd28ca182faaf3d1a73244f6735199a08b12642a640cdf0342b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_ActivationsD_": {"doc_hash": "da926b33c2e181b0b0e25f143b156a21505159000dd19f5fd560f2f97aea20d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_warnings_RandRange.Optional_Union_Sequence_U": {"doc_hash": "9c7d9b4123b916de03b2efdf978991b2b29c764482f61b3b91dd7c52f56a88ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Flip_Flip.__call__.return.result_astype_img_dtype_": {"doc_hash": "21cddc8ac4d089fbd2e3fdd95d4580b57e829c7d133fba2290939d0809c1600c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resize.__call___Resize.__call__.return.np_asarray_resized_": {"doc_hash": "106bc49855792cecd608b1e310efa7491ed137bf6000ba64a57644322fec0f33"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rotate90_Rotate90.__call__.return.result_astype_img_dtype_": {"doc_hash": "89722ab1e1f414d7f3e7ef71acef608feee5addbbfffb320366a973f79e7885b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate.randomize_RandRotate.__call__.return.np_array_rotator_img_": {"doc_hash": "dcbdefc1bbc37a3e53cc5d06c72354b266f5d535e856c1ac3aa1a46650d38401"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAxisFlip_RandAxisFlip.__call__.return.flipper_img_": {"doc_hash": "997445161c3896ecac7024af8f32c985ed2a83bfde5fbd41fa8d6e438bb53d2a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandZoom_RandZoom.randomize.self._zoom._self_R_uniform_l_h_for": {"doc_hash": "4504276b22a11a5aee5fa11f2be26694b8655c7af834209292773bac836304e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandZoom.__call___RandZoom.__call__.return.np_asarray_": {"doc_hash": "2f5094fd405a9b61abe32fedd476a8fdf9a8f70fe070a087cace105f35f75a7e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_AffineGrid_AffineGrid.__init__.self.affine.affine": {"doc_hash": "a80e08fcb1306c3ecb8f574cb3bae67900fe939faf477171c8541bce0b2df75a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_AffineGrid.__call___AffineGrid.__call__.return.grid_if_self_as_tensor_ou": {"doc_hash": "cfd303d649c6b9723003b166da915e92cf4a85aed30536c974271b614499be6d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffineGrid_RandAffineGrid.__init__.self.affine.None": {"doc_hash": "7062a574f8102a4b43e8f9f79cba245ac493493bb822134b43c4010d672021a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffineGrid._get_rand_param_RandAffineGrid.randomize.self.scale_params.self__get_rand_param_self": {"doc_hash": "255f805046fb578a3ca178f59352b4e64fca458def82f6806ffb0ae8ff11e297"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffineGrid.__call___RandAffineGrid.get_transformation_matrix.return.self_affine": {"doc_hash": "ea92fd6aee1f36a5ee5d45f6aa754fc307752b3d686267fed00c3ee8c5243c25"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resample.__call___Resample.__call__.return.np_asarray_out_cpu_nump": {"doc_hash": "7d157b3f33ccf450436491105199ddcba0646dd4c9ef7abeb5fbd2de61dede2e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffine_RandAffine.__init__.self.padding_mode.GridSamplePadMode_padding": {"doc_hash": "0187e4f65f586a840f94811333d0d045ce146500358c09cfe12accbe1e9960dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic_Rand2DElastic.__init__.self.padding_mode.GridSamplePadMode_padding": {"doc_hash": "2425c5239d90b01fef0ceab2eb1c846bf5b319c973a3a7797951f2cac64682f0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_from_copy_import_deepcopy_NumpyPadModeSequence.Union_Sequence_Union_Nump": {"doc_hash": "89a92ff8e2c410c2dde0466d8b1789d2a39bcef306f7a65a60342b54decc1c89"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd.inverse_Spacingd.inverse.return.d": {"doc_hash": "b6f018ac69f1a571189c6793cf76176ecb8b5562ed8e015fb62c1fbbeecae2b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Orientationd.inverse_Orientationd.inverse.return.d": {"doc_hash": "cef312724facefb1ebf7c0103856e27981f099f0069494a23e019600e30fded9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotate90d.inverse_Rotate90d.inverse.return.d": {"doc_hash": "debac3ae183da65d462d245aa73497001e38a359ab901655e28ed2701febcee8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotate90d.inverse_RandRotate90d.inverse.return.d": {"doc_hash": "08356fd10ad013655eb698b2900ae30e5333e05850fc8e98cf3a50529e92d94e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Resized_Resized.__init__.self.resizer.Resize_spatial_size_spati": {"doc_hash": "f17fe82955ae6d053f8054d5978e60446ebf718d6795087808bdd767a4440e41"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Resized.__call___Resized.__call__.return.d": {"doc_hash": "56bbb603489dc666eaed60e189f68c5f43855852dabe661916dde3740fff771a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Resized.inverse_Resized.inverse.return.d": {"doc_hash": "2a805f7941a6e8e5746887fdcc09ab604806d8539cb0d2b3a578b53e24189054"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Affined_Affined.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"doc_hash": "b0f0b91effdb63b7f19e9a420135b17aeb873bac73a2626faa8b66f44ce6ae95"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Affined.__call___Affined.__call__.return.d": {"doc_hash": "35896088433307e4cf4a1f634c4b62b4029e31c6fb8db39d41bc2af04913f09f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Affined.inverse_Affined.inverse.return.d": {"doc_hash": "fe35b39bbb1258bfd5d1b8941a737eef5aa296c260c4b0781e07bb1ecffa2ff6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined.inverse_RandAffined.inverse.return.d": {"doc_hash": "d425ebdaf8c6d5b50b0ac83ea5659561024ac48b65d5fc8491a8eee4519146da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Flipd.inverse_Flipd.inverse.return.d": {"doc_hash": "2081ff3081374503945fdc26cb628aadf39f77c3880b8f281a26623e2181e2fc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandFlipd.inverse_RandFlipd.inverse.return.d": {"doc_hash": "d4ef39663b9f0568ad333efbc8ccf673aadd42d1bf7678395a1b17f63fe4be5e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAxisFlipd_RandAxisFlipd.__call__.return.d": {"doc_hash": "4e8502b17b6e9c6553f803d3808f823fda5a305de68b10def6344fc9d96e28f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAxisFlipd.inverse_RandAxisFlipd.inverse.return.d": {"doc_hash": "bcf21868999069ee172573d0896da4df820ae4d84b9a398530c9b651b6bd6223"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotated_Rotated.__init__.self.dtype.ensure_tuple_rep_dtype_l": {"doc_hash": "266a3c4b096c8a41fa732128adbea6a0e729743ad53d64d0f1e71d029bd5e2a1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotated.__call___Rotated.__call__.return.d": {"doc_hash": "2ef0ab604159237608275780c989dc4dd362feacb3d35f3cdeb8bc9f743cffe2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotated.inverse_Rotated.inverse.return.d": {"doc_hash": "82aa7b85bb954bcbba81c0245b103c82420c6db35f4c89f4b4d0d2d1707b1337"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.inverse_RandRotated.inverse.return.d": {"doc_hash": "2af5579eea3e88f10ca75a9e7c76001738be8da9e04b4376357437f1db76049c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Zoomd_Zoomd.__init__.self.zoomer.Zoom_zoom_zoom_keep_size": {"doc_hash": "2faac55ac416f99ef0e610ab5d3407203f37529d0b2627960f1f6bbc7105ecc3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Zoomd.__call___Zoomd.__call__.return.d": {"doc_hash": "5e66b1fb51a4bb3d3c037e8e4d016220d2cfe139c1e282128d778f4c9a70cf93"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Zoomd.inverse_Zoomd.inverse.return.d": {"doc_hash": "69450bbd8d652d09f01ba2e542972f8f20f24fdb2e27e2c31306450d7b62685c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandZoomd_RandZoomd._": {"doc_hash": "d4c8a0c83540322be8d39062ff895d50b6d367981fbfa946b251bbed8de5baaf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandZoomd.__init___RandZoomd.randomize.self._zoom._self_R_uniform_l_h_for": {"doc_hash": "9bf9d0f6fbbce3ee53f40ed662c54d7c76f4430d696beeda00c64c1ded765a77"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandZoomd.__call___RandZoomd.__call__.return.d": {"doc_hash": "3626876dce7963970f15e6a9023ee893f6807b0d5278262ef7e5b51896e578fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandZoomd.inverse_RandZoomd.inverse.return.d": {"doc_hash": "c8281cb8776d9c45a0b3f57041b97b6d5a191e3232d7b9cd1d69c812ab189562"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_Randomizable.randomize_Randomizable.randomize.raise_NotImplementedError": {"doc_hash": "9ad5059a5b25dc99203c35e4d08ae7623dce6f90c686d715432515b838c74afc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_Transform_Transform._": {"doc_hash": "9d37e3ca3ba8d70d33bc0d4544d5001546a2dc7e8dc38d0e64c8f9a9ca9f2241"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_Transform.__call___Transform.__call__.raise_NotImplementedError": {"doc_hash": "b4b56a70d93e9a45a60c1e2fe3ba771ba28954224b71b3f78ed169f9e3cb8461"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_RandomizableTransform_RandomizableTransform.__init__.self.prob.min_max_prob_0_0_1_0_": {"doc_hash": "5e9ef281ee1ac270b14fd890c8895e8f0d3ac02b6bd75e9a88ead32a166d7f25"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_RandomizableTransform.randomize_RandomizableTransform.randomize.self._do_transform.self_R_rand_self_prob": {"doc_hash": "0a1fd5b6f876067d84f370f51f7bd310fc7052f8b240eaf99ac26fdf80379d62"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_MapTransform_MapTransform.__init__.for_key_in_self_keys_.if_not_isinstance_key_Ha.raise_TypeError_f_keys_mu": {"doc_hash": "6c236b0d29af7f9556cfc017eecad896301071ae2c6579dcc2e1c729c4ad5135"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_MapTransform.__call___MapTransform.__call__.raise_NotImplementedError": {"doc_hash": "e412292d99b98aa3f7bcfa762abd16cddc6f7f84b5a674364b46308b398f9af4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_MapTransform.key_iterator_": {"doc_hash": "a88b924c6b618e183dbf143eecd35ec082fa31f8f75498abf65939d966e0616b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_RemoveRepeatedChannel_RemoveRepeatedChannel.__call__.return.np_array_img_self_repe": {"doc_hash": "8236654a77525febeee244b51feb9cec51f7c50a06d927ab3a4bdf20b1f14a0d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_SplitChannel_SplitChannel.__init__.self.channel_dim.channel_dim": {"doc_hash": "87fe3b0a6e1e88c198e178ff9a364f57309305af96817f85c5cb4f5b22a43db3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_SplitChannel.__call___SplitChannel.__call__.return.outputs": {"doc_hash": "3de3eab1001e1ba1ca7bc3b40f605478dd5c01227a05920ecdbab99f91b7db44"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_CastToType_CastToType.__call__.raise_TypeError_f_img_mus": {"doc_hash": "d77153478566bcfaa491e1298c7bc713b05db0be70f78bcf0aa35b02817dd2a9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_SqueezeDim_SqueezeDim.__call__._type_ignore": {"doc_hash": "5a475a625c5031075292a1be362b110ebbd0445c486067e273b1def15479ac3f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_Lambda.__call___Lambda.__call__.raise_ValueError_Incompa": {"doc_hash": "6c68c242a60117bef0d6daeae26e05d3f185ddbe99637f090b247a46d202cad2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_FgBgToIndices.__call___FgBgToIndices.__call__.return.fg_indices_bg_indices": {"doc_hash": "f58ea66695ee4376d2d3063a6e85a0c88e017b9534db72f80e9f3ced3ae4b782"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_ConvertToMultiChannelBasedOnBratsClasses_ConvertToMultiChannelBasedOnBratsClasses.__call__.return.np_stack_result_axis_0_": {"doc_hash": "5d16fbe6b20538c274c624401adfb1ed734727d4c89d23ff9363cccde0897cb2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddExtremePointsChannel_AddExtremePointsChannel.randomize.self._points.get_extreme_points_label_": {"doc_hash": "df8af8bfea72362fca3132ae23bb7f9bff42a7cbc58a1e3055796b6b1b915965"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddExtremePointsChannel.__call___AddExtremePointsChannel.__call__.return.np_concatenate_img_poin": {"doc_hash": "13441812ebac7f89fbb08a3b8becc5dccbb9cd9462ecb38f1d618f4dea2eac4a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_TorchVision_TorchVision.__call__.return.self_trans_img_": {"doc_hash": "0b54c05154879d8ff18d377cbb82c9226cdd79fe5d5b88646c346aab0884ac89"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_MapLabelValue_MapLabelValue.__init__.self.dtype.dtype": {"doc_hash": "307623c30aefda9ab23ec53e19e7cce1936fe4f89a65b9329041460238b88e21"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_MapLabelValue.__call___": {"doc_hash": "4cfc099be724664ad8b3d948e2dbf0ac0b5ad6155f14b0d0e2e4056f693c5679"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py___all_____all__._": {"doc_hash": "051975b3d8909416a8ee4424046e07d992e223c989f01ab7ef8611431eb107bd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_EnsureChannelFirstd_EnsureChannelFirstd.__call__.return.d": {"doc_hash": "0df73efcce946d1c9edef881db5b8f4463a6bedec1bb238471fe246dcd536e1b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RemoveRepeatedChanneld_RemoveRepeatedChanneld.__call__.return.d": {"doc_hash": "4f6eaf07a118173a59f833df9753226fb20abb26820c2bea8a769502d2d4bf22"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SplitChanneld_SplitChanneld.__init__.self.splitter.SplitChannel_channel_dim_": {"doc_hash": "d1f6c204dd9fbc2ab2295192e7e78ae61b72b1fe228a016f6bf95d6e28231103"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SplitChanneld.__call___SplitChanneld.__call__.return.d": {"doc_hash": "e83e1f4b1391c63f1477d337f352006c7f7affdaa44f8fb3a9d152aa542f97cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToTensord_ToTensord.inverse.return.d": {"doc_hash": "cc111329bdd5ad38a3822bce5c4563b6b3066b991232cc820e96b71233306551"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToPILd_ToPILd.__call__.return.d": {"doc_hash": "3a1b2e21233c596da9339dda7d89fcb763551af98a65f83a9dfd803f2909cd94"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_DeleteItemsd_SelectItemsd.__call__.return.result": {"doc_hash": "f734d39bca93174d63b2208b4ccd23609556e5ee8386d6039be127ff0438bdcb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_DataStatsd_DataStatsd.__init__.self.printer.DataStats_logger_handler_": {"doc_hash": "fec56ef262b87dbf84f16d564c9c87bd77a0085c5973962745c124e8471ccf9f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_DataStatsd.__call___DataStatsd.__call__.return.d": {"doc_hash": "047319f78e2c91fb65e520dd8a4ebcd5ad445663d431a06ab809417555be41c3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_CopyItemsd_CopyItemsd.__init__.self.names.names": {"doc_hash": "8270f1c48321def92a551386a255bb463627dab643213184874144d884dcb783"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_CopyItemsd.__call___CopyItemsd.__call__.return.d": {"doc_hash": "003e4aa8d5ea60b534f6d71001178a51f4e0b7b810179243b17b7435621bf6d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RandLambdad_RandLambdad.randomize.pass": {"doc_hash": "8a663c713d6978d483a9043b4fc7bcdd9efe2c06dc1522224d4ebf25ab48459f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConvertToMultiChannelBasedOnBratsClassesd_ConvertToMultiChannelBasedOnBratsClassesd.__call__.return.d": {"doc_hash": "fa8ab3dbb1a95d685f346cd34441d9e2ca5ef7d509bc261035755a6baa93bf7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AddExtremePointsChanneld_AddExtremePointsChanneld.randomize.self.points.get_extreme_points_label_": {"doc_hash": "167f804a67e9c767158a5e8727067401cee76940e09a7d8fb2855933fd48cb91"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AddExtremePointsChanneld.__call___AddExtremePointsChanneld.__call__.return.d": {"doc_hash": "171cd15a1beffbc15821ca04ab48c3920b2162167b586b7b2071e9b8451ebda3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_TorchVisiond_TorchVisiond.__call__.return.d": {"doc_hash": "dbe70c9fd2e104afd9cca7005be55a7adaabafec7d2eba9be4f77c9a6792b78e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RandTorchVisiond_RandTorchVisiond.__call__.return.d": {"doc_hash": "0457ca97030d829850a2c1e4cd8f3d89cbbc57fbc5adcdf32cb79e2ce71d6a8d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_MapLabelValued_MapLabelValued.__call__.return.d": {"doc_hash": "9cf4b91b8c07538ee4b1e301d091a47e71bbe8f34d9c2d56e7d30f38c131070d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_itertools_zero_margins.return.not_np_any_img_margin": {"doc_hash": "0a8e0d7c1b9fd449ed848de104204cc9055a2b946f16c910aafb3bec5245351f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_rescale_instance_array_rescale_array_int_max.return.np_asarray_rescale_array_": {"doc_hash": "9a22fc53440e48ae62a99198ab939bfa6fed63a435c203214decab9a53d7fd40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_resize_center_resize_center.return.img_srcslices_": {"doc_hash": "6025aa33a57a64acb518b1f96026581ece15be5cea9fa0485cb3fac69f1079bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_weighted_patch_samples_weighted_patch_samples.return._np_unravel_index_i_v_si": {"doc_hash": "853bd6347806c5d1e77055f0f485b0c356b946e2534525ce55c8e8a7f97eb021"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_scale_create_translate.return.np_asarray_affine_": {"doc_hash": "f09041ac3e071b2aea123866772aa562b2973921d93e6bfc9c645207afa1dbd6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_get_largest_connected_component_mask_get_largest_connected_component_mask.return.torch_as_tensor_largest_c": {"doc_hash": "e70813750298044d0d06f2ab4ae7688486bd550bcbf84d95733ecbc71503ffa6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_get_extreme_points_get_extreme_points.if_np_size_indices_0_.raise_ValueError_get_ext": {"doc_hash": "8efdddec9a914dab0cd94cacf3b0824ed4b162818b46a49ea078dea34d5caa58"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_get_extreme_points._get_point_get_extreme_points.return.points": {"doc_hash": "6c334e16cf5657ad5f55cbbfb3adc645c18c7c4b087f820e3a466fde7da13a83"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_extreme_points_to_image_extreme_points_to_image.return.points_image": {"doc_hash": "7cbad6cd1f399a9cede555dbce1e817bd63c733074389e50a046a67c49e3308b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_map_spatial_axes_map_spatial_axes.return.spatial_axes_": {"doc_hash": "401674ece6c75a6a63bb76094ab1cd7c2c8f817a6fffb709e7c3b020437f8f49"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_allow_missing_keys_mode_allow_missing_keys_mode.try_.finally_.for_t_o_s_in_zip_transfo.t.allow_missing_keys.o_s": {"doc_hash": "bd773f6278991c309f9eb17ca98bd8e1c117e2a19ffdecca3df70a664dcf8ffd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/__init__.py_alias_": {"doc_hash": "cbdfea23df811cda8043a956795febbfd9685f327964061efd0dadb881772888"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/decorators.py_from_functools_import_wra_": {"doc_hash": "a1bffb82352f4ced8704caf80bbd43be2a5b23a8631e52de1e7b8205a9b5eaa1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_from_enum_import_Enum___all__._": {"doc_hash": "12e6ad86107831bc51f49cb72e7ab5bf26f40804e445ff261b54f083c224bfdf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_NumpyPadMode_NumpyPadMode.EMPTY._empty_": {"doc_hash": "f1a1cc2228b7313c42b6d113ca1a7a39c2d1cf611afb192d47e67ec04569656e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_GridSampleMode_GridSampleMode.BICUBIC._bicubic_": {"doc_hash": "44e83d5b5369361cbfb8087e2f48a11d9dd6efd736e0c8d3c4fe9f4ddf658333"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_InterpolateMode_ChannelMatching.PROJECT._project_": {"doc_hash": "0dc8d9f16dd52e913f157880da6f9f5a8a5abe524c0d21673aef65c1b5b4c023"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_SkipMode_InverseKeys.KEY_SUFFIX.__transforms_": {"doc_hash": "f01225d2aed3860bd24b4d4d45936ba37989175a84e4809790a6a5be3acf66be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_CommonKeys_": {"doc_hash": "cc457bc76036cd77293350d7ae0bc95372459cd438333e1325c52b398caacced"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_from_enum_import_Enum_plot_metric_graph.ax_xaxis_set_major_locato": {"doc_hash": "cc1bab461b3d713e2df0c36a0029edc63ca4055d8d44e329771d14dee66b346a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_plot_metric_images_plot_metric_images.return.axes": {"doc_hash": "9c0af12dd66610336e39a279978d3b72960493f025d93c9526d7898ae100238a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_tensor_to_images_tensor_to_images.return._": {"doc_hash": "39dce084a6d9fa9969da8a476b9bed2b4cc1a92d5dffa2e79891e42d7bbedf0e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_plot_engine_status_plot_engine_status.return.fig_axes": {"doc_hash": "a259f8bb0b01531bdfcfb43bda412032a7f4078ffba1b7b350c59b7c2e535fb3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py__get_loss_from_output_StatusMembers.LOSS._Loss_": {"doc_hash": "ff9fe6a9fa1ba472d063ab74d48c277dabea36ad6b602af4f0658c538375bb7b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_ThreadContainer_ThreadContainer.stop.self_join_": {"doc_hash": "15ca131e1ba5f2e418956d2d8a2e1acbb1e93274c798197556f5b3eb4ada207e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_ThreadContainer._update_status_ThreadContainer._update_status.with_self_lock_.self__status_dict_update_": {"doc_hash": "8c16841716a82c6e260843a11d2c37a05ab2a28d65e5261ea66d5f432119263b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_ThreadContainer.status_dict_ThreadContainer.status.return._join_msgs_": {"doc_hash": "7fe00d67591cad83fc6c6678ee30ddca7b38761f00ea413faaa3772e37e4cce5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_ThreadContainer.plot_status_": {"doc_hash": "1a826536bf9a2f19c492ab5657b732a3dc7e4e7b16ec2e184f635064cbd5729d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_list_to_dict_list_to_dict.return.d": {"doc_hash": "08ab8a815be21eb58429ab13ac0fa97932c798ce319fb78bfe3cded727906400"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py__torch_to_np_dtype_dtype_numpy_to_torch.return._np_to_torch_dtype_dtype_": {"doc_hash": "5fbf8999cfe5e7c302c2a39a68ba77116f3f54152c7121a367e8c4ff1d05bb5b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_inspect___all__._": {"doc_hash": "eb67d6ba854cd5e535a9cc28b7884fb42c91ce4f44aed53e78d0065485be4c48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_export_export.return._inner": {"doc_hash": "e883d6e9af40f9ec5dcea8c01b0540448a28fe3c2fe6ad0c90b3a2277346b9f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_get_full_type_name_min_version.return.mod_version_required": {"doc_hash": "3f0c12811a4e3e4d06a705b28f27f15ee695581033ce67a5ebd1d8cc2b5d0a2c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_exact_version_OptionalImportError._": {"doc_hash": "74ead79fe2423efc9f181f7c0f7240d3371f0c85641464b57628e8aa7a9dd442"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_optional_import.if_version_and_tb_is_None_optional_import.return._LazyRaise_False": {"doc_hash": "9b45b21f970cfe69498fc089deba68f0027e99bd554bb07cf11e3db4311a3629"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_has_option_": {"doc_hash": "34c462001d406616347b3f34de804a0445da7ebf090ff2d4a3a587c4a304d89d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/profiling.py_time_torch_profiler_full.return.wrapper": {"doc_hash": "7394c6792a6abb6167cc1cadf60768e3635d7f9bc71d67a74b3fca32b7cd8a4c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/profiling.py_torch_profiler_time_cpu_gpu_torch_profiler_time_cpu_gpu.return.wrapper": {"doc_hash": "b972a5f7065d7adf9ce1ef79a3d2444d898a30da37a44ef1960cd26ba8b0570e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/profiling.py_torch_profiler_time_end_to_end_torch_profiler_time_end_to_end.return.wrapper": {"doc_hash": "c34354fcaf5bfa493dd3596ab838969627fa5ee86e91f1e3ca8bd00611223fd7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/profiling.py_PerfContext_": {"doc_hash": "c37f83a0a69f0e755691c43da66e2d9dfb53c1031543016f24654aa665034d39"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/state_cacher.py_copy_StateCacher.__init__.self.cached._": {"doc_hash": "38d37b51965394c977c4771c5b2f8e3195799b4cc198726debd08cdbd7595562"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/state_cacher.py_StateCacher.store_StateCacher.store.if_self_in_memory_.else_.if_hasattr_data_obj_dev.self_cached_key_device_": {"doc_hash": "e18be937bf8b310e0189241572d4e7d7e1d9e240f901a7a92ce3395223c1ecaf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/state_cacher.py_StateCacher.retrieve_": {"doc_hash": "010bef2e0457eedf2a52fd8df94b54be23aaa65d3d4f7e8f73c1a0aa4cd6b7cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/__init__.py_CAM_": {"doc_hash": "2f3198246bd7f28a97c75ee4a8313b1b82beb35f65ab365d3a7c764254736c13"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_ModelWithHooks_ModelWithHooks.forward_hook.return._hook": {"doc_hash": "9b911886f99a587e92132508b05f596c937b278525c6a2baf999e3ba9079f1c8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_ModelWithHooks.get_layer_ModelWithHooks.class_score.return.logits_class_idx_sque": {"doc_hash": "0b5124338be12bbcb1cc0e15c30ade430419b1255a26538b6c2be096e4acd5e6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_ModelWithHooks.__call___ModelWithHooks.get_wrapped_net.return.self_model": {"doc_hash": "e832cdea3e7e946bce9fe74d10756bc54b83183b9fec771ec0913f45afdddb63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAMBase_CAMBase.__init__.self.postprocessing.postprocessing": {"doc_hash": "eeabd5808cc33ad8abbbd6f42d564158e27129221b84bbf62fddb8c0f1bbb254"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAMBase.feature_map_size_CAMBase.feature_map_size.return.self_compute_map_torch_ze": {"doc_hash": "3e566ae150f59394c34789fca062c3250230fbbacf3a329b0ea5a98c17229979"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAMBase.compute_map_CAMBase.__call__.raise_NotImplementedError": {"doc_hash": "0082cf7a2ce1c8faedf68f82c150c66f6e575ad7838ef730e08cba97b6f9e6d5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAM_CAM.__init__.self.fc_layers.fc_layers": {"doc_hash": "ef1a51b76100f3b7dd938f38099238150da4e5a7d4f3270db56249acf0d623c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAM.compute_map_CAM.compute_map._resume_the_spatial_dims": {"doc_hash": "2f931fb217a9cc1b1178703de0f98032da60c8ec3bebc76faf61cbfe065eaec6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAM.__call___CAM.__call__.return.self__upsample_and_post_p": {"doc_hash": "b444c105ebe410d0d269c96a5bca3e1545fdadd92bde96195ebf4b9ddb719d65"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_GradCAM_GradCAM._": {"doc_hash": "d414bb89365e064ba2e883c5b8e01d8abc5a8037b3fda21dab594d095225c87f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_GradCAM.compute_map_GradCAM.compute_map.return.F_relu_acti_map_": {"doc_hash": "c8f4b0524893cd78f4ee033e951551e6a586bfb33e951f9d24df5f55e06c4f29"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_GradCAM.__call___GradCAM.__call__.return.self__upsample_and_post_p": {"doc_hash": "a456adbb807489895098613f588a9914e49742c223de93273eb620fa28692f72"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_GradCAMpp_": {"doc_hash": "60f5e927262263c9f44972f4ba95424d679966bc9e8ae22bc7c8b5b174d6e27b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_from_typing_import_TYPE_C___all__._make_animated_gif_summa": {"doc_hash": "ac120468672a2a0cff45b71fc65c577d36c4a5207a21ba1a7d573486fba02a6a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_from_collections_abc_impo__check_input_image.if_image_shape_0_1_.raise_RuntimeError_Expec": {"doc_hash": "da3b99080a2f99c856a753570534521d5f098d87220cc176bf94389d65e5b892"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py__check_input_bounding_box__check_input_bounding_box.return.b_box_min_b_box_max": {"doc_hash": "591043d1e2e08538092fe19c9a8ce913185dedc87eaf39b7e3acf142fbc483f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py__append_to_sensitivity_ims__get_as_np_array.return.out": {"doc_hash": "30bff1af47f08056777f3d8218b66dae031f6c36d8d2dc57daea32634729571c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_OcclusionSensitivity_OcclusionSensitivity._": {"doc_hash": "50ba1347ecb9ee3e59edb556846f4da090f450baa7648a1d8ba9c10e6ebff095"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_OcclusionSensitivity.__init___OcclusionSensitivity.__init__.self.verbose.verbose": {"doc_hash": "c8dcffb0ccf608925e76531576f651271265fb3a189a00db9a7b90d148da9cab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_OcclusionSensitivity._compute_occlusion_sensitivity_OcclusionSensitivity._compute_occlusion_sensitivity.verbose_range.trange_if_self_verbose_el": {"doc_hash": "47b9fedd819b89e17d931394ae649f065afa5296a291893423bb219bb6c8a318"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_OcclusionSensitivity._compute_occlusion_sensitivity.for_i_in_verbose_range_nu_OcclusionSensitivity._compute_occlusion_sensitivity.return.sensitivity_ims_output_i": {"doc_hash": "a8fff341d9677dc03d4c9fd92081e9cd65c2255b49a4e3c0da37a3d4a52c8b39"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_OcclusionSensitivity.__call___": {"doc_hash": "533c4b02c9dd242a0aabf3a75f0684e28a2c8ca739e0588aee8e52c4578020ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/visualizer.py_from_typing_import_Callab_": {"doc_hash": "60f5f1aaa7bb59fce599092ca32fc1ff67ad3b5935f4ed6bc3c60c82c39acb6a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/runner.py_argparse_TimeLoggingTestResult.stopTest.super_stopTest_test_": {"doc_hash": "e03de69287e6e50c36383cd13491755d00e1786428d890152106bd4d322608b7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/runner.py_print_results_print_results.print_Remember_to_check_": {"doc_hash": "45fb95fd43502826c953cb71e9e17be236b33bc411e684e5d1f2c28974be77b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/runner.py_parse_args_parse_args.return.args": {"doc_hash": "034c55366badf38ae1f39c4e80251cdde4fc08a962be2d245e74a5d7a06f81e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/runner.py_get_default_pattern_": {"doc_hash": "9180f675def6ad59c3218cf9bbca478a5db9fa9808d06267dbadc01ded655e8c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activations.py_unittest_TEST_CASE_5._": {"doc_hash": "0cc6a1746a3b3c2e9a295bd76a822885c04fc882d839b79e443ec88eec7adaf6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activations.py_TEST_CASE_6_TEST_CASE_6._": {"doc_hash": "343e787acc30226ac89cd77d36a146c63b2921664aad35f08900d92c9f66540e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activations.py_TestActivations_": {"doc_hash": "f31dd90f7c88c370faaef7b59a220a1c8130a2491d14acb7cb07474a64a1b4f4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_extreme_points_channel.py_unittest_": {"doc_hash": "b183af5e2c193c63d94b6092d8c6b2a9ce62c2c13f39d7fb6568e205a477c88f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_extreme_points_channeld.py_unittest_TEST_CASE_2._": {"doc_hash": "21ffb87984677b4f17f1ed9c76c73240fd3dea417a54de247530dd52da045dd8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_extreme_points_channeld.py_TestAddExtremePointsChanneld_": {"doc_hash": "c49b4f04f2c368a3f9cfd2f224a40bb66aba408a7ac185f7903bed8c80b8e6cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adn.py_unittest_TEST_CASES_3D._": {"doc_hash": "63512f1619c3a62fddcb457740a665cbd99e7cbb9a4ad85344b3eea62b09d547"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adn.py_TestADN2D_TestADN2D.test_no_input.with_self_assertRaises_Va.ADN_norm_instance_": {"doc_hash": "5f7188468be46901dd97e99183375ab449dba676e4ff5dbea11bd69081152cc5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adn.py_TestADN3D_": {"doc_hash": "a1fa29e9cda63a54d60629cc621ae7686761607a26d6ae3fffa51c9ce0689757"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affined.py_unittest_": {"doc_hash": "903e5c281d7bb8b17ce5e6644ad6966178f38ea0c2710e7ae1be9c0f3456d527"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_unittest_TEST_CASE_MCFCN_WITH_PRETRAIN_1._batch_5": {"doc_hash": "17f29015996aab874a7ba7815c10b8dff084fd1a0bd9b1c1cd39d0bbc9ee6b0a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TEST_CASE_MCFCN_WITH_PRETRAIN_2_TEST_CASE_AHNET_3D_WITH_PRETRAIN_2._": {"doc_hash": "0b879c752ab02b2a539a48a20412ef8a975a3d55f12fb840adb775498b86c2b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TEST_CASE_AHNET_3D_WITH_PRETRAIN_3_TestMCFCNWithPretrain.test_mcfcn_shape.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "cf01523dd311a76f019d8d19a188b6241b9ef3160e6722eaa944ce6be63faf11"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TestAHNET_TestAHNET.test_ahnet_shape_2d.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "0396a14fb47f96126a074929e50a68ce542c12b9c47eda6ca62e81e6b18e6c07"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TestAHNET.test_ahnet_shape_3d_TestAHNET.test_ahnet_shape_3d.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "36425d7f55f5259aa3069743e87fd0793e9894fe2999bbaa88c812867b9e0dfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TestAHNET.test_script_TestAHNET.test_script.None_1": {"doc_hash": "174623bc0d8b7959f686c8a8153c2ba510e67bfeed9fc4a1e43478559bfaa5e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TestAHNETWithPretrain_TestAHNETWithPretrain.test_ahnet_shape.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "c91706a1cc283c2d9a382fd80ae148a560ec275cabe30feefabf4573c0af22ec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TestAHNETWithPretrain.test_initialize_pretrained_": {"doc_hash": "276fa30c0ae157dd4d9546a54612ea380f3bcba2e677390b64e805d71678532f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_os_TEST_CASE_4._Compose_LoadImage_image": {"doc_hash": "c509e37e3c69ff4f0566e3bbaf32f3328c7a696b68895a797bdcf1735c591282"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_autoencoder.py_unittest_TEST_CASE_FAIL._2_channel_2D_should": {"doc_hash": "46acedd8d090a0cc5bca2f29695940ec11f8aadb6662281028fb2e0b1caf7473"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_autoencoder.py_TestAutoEncoder_": {"doc_hash": "4f95ed132894140fe04f92c6ee95547032238557800aac6e70808b411716e154"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_basic_unet.py_unittest_CASES_3D._": {"doc_hash": "e092d0e33bf78ff8cf3b10eb4cb58eba089e40417abc74d4fbcaee51bbbddc11"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_basic_unet.py_TestBasicUNET_": {"doc_hash": "4ecc64def24893b534aa269af5b5cb0df282df645d19d48b894585c6351fece9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bending_energy.py_unittest_TEST_CASES._": {"doc_hash": "81500d6910ebc1fc666cfa6b0dced5224b718b4eb9bc4e77d9bb0ef4effbb828"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bending_energy.py_TestBendingEnergy_": {"doc_hash": "702b2869ed6620da24f9044554321f70ca94842279feb4902343ffbc037bbb2b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cpu.py_unittest_TEST_CASES": {"doc_hash": "8409a9af264de3c2091853535e634e27245c9dc2f0c90b10dc359e9a38527d6f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cpu.py_BilateralFilterTestCaseCpuApprox_BilateralFilterTestCaseCpuApprox.test_cpu_approx.np_testing_assert_allclos": {"doc_hash": "64513b1b873d112bde7d39977941b273a51d20919a0d14123452ef0be0dd5d04"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cpu.py_BilateralFilterTestCaseCpuApprox.test_cpu_approx_backwards_": {"doc_hash": "f5bab8fcc2ebd83632fc5ac91a4046179dc93661e01a30f6c5c5beb2eac7dd7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cuda.py_unittest_TEST_CASES": {"doc_hash": "2dd0c4f23de741d12c607c3aef460b51d676391426ed7cf33a6b4cac46746fba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cuda.py_BilateralFilterTestCaseCudaApprox_BilateralFilterTestCaseCudaApprox.test_cuda_approx.np_testing_assert_allclos": {"doc_hash": "d4f847d4081baf43629cca1636304ff55ca32be8a0ff32106855a67608d49d0c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cuda.py_BilateralFilterTestCaseCudaApprox.test_cpu_approx_backwards_": {"doc_hash": "5166551f74cdb0374c952619eaf9b14eb867b5ce61cc3df63418a230aed9e06d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_precise.py_unittest_TEST_CASES": {"doc_hash": "19bd757e329604494fb14731780a104993976323e68945fa1cf52b62f41a47d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_precise.py_BilateralFilterTestCaseCpuPrecise_BilateralFilterTestCaseCpuPrecise.test_cpu_precise.np_testing_assert_allclos": {"doc_hash": "c56a955bc5d99bb2b1dbd15d10eee2b2e07818770ec723a091a0017235307736"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_precise.py_BilateralFilterTestCaseCpuPrecise.test_cpu_precise_backwards_BilateralFilterTestCaseCpuPrecise.test_cpu_precise_backwards.gradcheck_BilateralFilter": {"doc_hash": "6287540b76d54ca5ebce06d04b066b500d0c8cb952c7ff26057f41029abba398"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_precise.py_BilateralFilterTestCaseCudaPrecise_BilateralFilterTestCaseCudaPrecise.test_cuda_precise.np_testing_assert_allclos": {"doc_hash": "cfcf10f2388150015514c1cdb9be8059af991a129692ab78b04db8747521d719"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_precise.py_BilateralFilterTestCaseCudaPrecise.test_cuda_precise_backwards_": {"doc_hash": "5e38a307eb72c87dcf916b300ad3767f8c08ba77c75c4b24bc952b14ab447c2c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bounding_rect.py_unittest_TEST_CASE_3._2_16_20_18_0_16": {"doc_hash": "fbd24e281abc07c66536d267b1f05f99658508aae3f8dc6a690100d88021dfdb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bounding_rect.py_TestBoundingRect_": {"doc_hash": "991d37874b31e6ebbd53ad11f7ee5a404f8a4fa35c843e241519f564434f9c7b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bounding_rectd.py_unittest_TEST_CASE_3._2_16_20_18_0_16": {"doc_hash": "9fdc52d4275bd16a9187b0cc79fcc6881ee675244ed7ee13fa81880b680c4211"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bounding_rectd.py_TestBoundingRectD_": {"doc_hash": "5c1e796963925d50f6035ec9843c40c9dd6270789f42ee2e4089eafb1b8ebc5d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset_parallel.py_os_TEST_CASE_3._4_5_None_": {"doc_hash": "d9980ea0a094e1a03225c61d2e1f98f194057632e0d2a53a90e87a48257a5a19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachentransdataset.py_os_TEST_CASE_1._": {"doc_hash": "4f7d522052e1dcbf2ef5096cb959ff06ddc77192597217a5ff2fd7290166d0f9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachentransdataset.py_TestCacheNTransDataset_": {"doc_hash": "aa35c28fae74895210a496ab4269a5a6564baa03e1c2382b8d967ce60346683e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_crop.py_unittest_TEST_CASE_3._": {"doc_hash": "90b3917fbea1aa2b38e5bb800d6aa409170cf1aefc1be31c24d5a95d2f0a5ac3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_channel_pad.py_unittest_": {"doc_hash": "da05df37d647d0a60f3b115ce4c9ad79e88eed101ab7a6ae6772552607ac5d2e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_data_loader_2_TestCompose.test_data_loader_2.set_determinism_None_": {"doc_hash": "120d86d13d778424aeaa08dc0692ee40e22ea316eaf756eb681cf9545802ee9c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_flatten_and_len_": {"doc_hash": "ba0a329aaf44d6ec521dec17f8f1e639b8743a4d51eea57a0c0640411efb5c82"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_unittest_data._": {"doc_hash": "8a4f8c65f3861367ec7fac8195a23b560955384304fa72b6f3a28c9b96bbb533"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_froc.py_unittest_TEST_CASE_5._": {"doc_hash": "70427c8438fe764edfa14ede95753c86fe407f52d7e1d49ac0e47677bd45cf35"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_froc.py_TestComputeFpTp_TestComputeFpTp.test_value.np_testing_assert_equal_n": {"doc_hash": "cbbe76c8fd6998e918e1b930f5db7cd098bba71d84ea15aed5ac1e2ad481bbf9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_froc.py_TestComputeFrocScore_": {"doc_hash": "515ff4594e69adbe9e50565f063fdd512c4b06b5f53e1a513e422bfbc46bfb7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_unittest__should_return_Nan_for_a": {"doc_hash": "ae4845513561748106337616e02fabeda7164276f15545bff8d24893e377a758"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TEST_CASE_3_TEST_CASE_4._": {"doc_hash": "45e8594adc77385f53ecc8e7a028138f70f14c3b8e3b5416dcf6f5882cebb83d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TEST_CASE_5_TEST_CASE_6._": {"doc_hash": "6a7e27adeb03e1f49ce17bca480ab68dedb9a8278b0f7d89004187f821e89e31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TEST_CASE_7_TEST_CASE_9._": {"doc_hash": "2da9d03752a26a2037052142e13595b95e28ec6872d468987dc99a3b463434b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_TestConcatItemsd.test_numpy_values_TestConcatItemsd.test_numpy_values.None_2": {"doc_hash": "eb8c9b20e98f523f78a35accc8d5f8ae17a3b16cc7eb9a0ef614c3135ee8afdb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_TestConcatItemsd.test_single_numpy_TestConcatItemsd.test_single_numpy.None_1": {"doc_hash": "216834c086ebfb7c8eb7cdfc959b1d78628af5e2d5a1f8a0a8cd96e16b8f916a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_TestConcatItemsd.test_single_tensor_": {"doc_hash": "aa42c2d69a60918c0308c86f5c4812f989528b66a84a57f0cac8297d0f6ad3dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convert_to_multi_channel.py_unittest_": {"doc_hash": "3716aa38760b036b770e0eff07269a1c847c8116f3b6c9acbd6969b234c64576"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convert_to_multi_channeld.py_unittest_": {"doc_hash": "d46d6bb2f88b69ab79ca48cffd97eb772d0b15f7d4c8033f7b499df33cadf1fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd.test_array_values_TestCopyItemsd.test_array_values.None_2": {"doc_hash": "086fe39aed3159055907659b645c07d205aac09d4ff9e04b604861717bd9ddb0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd.test_graph_tensor_values_": {"doc_hash": "25ef74fd0f95229880c2105425a728832a702fe520fefc7665b2e96bfc1e1c20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crf_cpu.py_unittest_TEST_CASES": {"doc_hash": "ef90ec450e5f6deefa57dd184803629868d7c917627fc46c9e8ded390acc6466"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crf_cpu.py_CRFTestCaseCpu_": {"doc_hash": "155e43d67dab8a1a944a1d7f7c155f9d1f85e0ec358bfa3ad23ce6b059a9c987"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crf_cuda.py_unittest_TEST_CASES": {"doc_hash": "90ad35b5113a9fd589bd359ff6b2bfcad515cdf72cf3e156002f2d17bef7d68b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crf_cuda.py_CRFTestCaseCuda_": {"doc_hash": "02e317bc0165a976e1efb538a81a493db0904aaf620d6b5e9ebd836fb94147f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foreground.py_TestCropForeground_": {"doc_hash": "e286e77de03126ce8499381c474978f0d12582657b592fe666cea7ce756d2ade"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foregroundd.py_TestCropForegroundd_": {"doc_hash": "74aef9a06f9366a780d42e184d118fd5aa5f901ce99d5d54fff1521f6ef445c4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cross_validation.py_os_": {"doc_hash": "cefb19043c777f6a7e6b675d49d75a6c52d3a272972ea4ad79edb0e0fb58d8e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cuimage_reader.py_os_TEST_CASE_RGB_1._": {"doc_hash": "0b17ece2d80face5fe7ee639e096f15919bdb90873f777decf606b7850c37c58"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cuimage_reader.py_TestCuCIMReader_TestCuCIMReader.test_read_patches.self_assertIsNone_assert_": {"doc_hash": "0960268ae0d7db3048d0da20b5053fff461ad288ae815e149ccc305abbdf4432"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cuimage_reader.py_TestCuCIMReader.test_read_rgba_TestCuCIMReader.test_read_rgba.None_1": {"doc_hash": "800107c8dbb217900f0939a55d5246ba71e8c84ae6ea7657421322b0ff740aa5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cuimage_reader.py_TestCuCIMReader.create_rgba_image_": {"doc_hash": "c4e1696d428a9bfdd694adb300321aeb4027ebe814982e2507d10c0fa46fbc79"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_stats.py_logging_TEST_CASE_6._": {"doc_hash": "1d4e91067921d98e3f43e053f3b17b912e085dcd4e496396af4d00ff4018cf74"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_stats.py_TEST_CASE_7_TEST_CASE_8._": {"doc_hash": "9290f92a86e257f607bd7e25dba04306e11f8301e0c21d860c5c5d1cf020cc34"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_statsd.py_TEST_CASE_7_TEST_CASE_9._": {"doc_hash": "ae830adf764c385b48493f4bc5c23da645a7f2862d65da5c88f0f3fcf243f16e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataloader.py_sys_TEST_CASE_2._": {"doc_hash": "6254d8e01283d796e08ec0635a0a39b53f9a5c14087e42f3a042d046a5edbd51"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decollate.py_TestDeCollate_TestDeCollate.check_match.if_isinstance_in1_dict_.else_.raise_RuntimeError_f_Not_": {"doc_hash": "d2aec20da82224519877b2e58e316fdb811537414f0cea5dd2b79cfc835f26b2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_dataset.py_os_TEST_CASE_8._": {"doc_hash": "79849522d6bbb10b8810f092a3cccfdfe555906771cd256e59eec01017f97ef0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_dataset.py_TestCreateDataset_TestCreateDataset._create_data.return.datalist": {"doc_hash": "5da54030bf8ce548661604527b3a1896c7fedc6452f120a15a647a57f4b67fd0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_dataset.py_TestCreateDataset.test_create_dataset_TestCreateDataset.test_create_dataset.if_expected_region_is_not.self_assertEqual_deepgrow": {"doc_hash": "737d601f213d0b30ce8101a6f36eb23f52a99c047ae8d872500caaba55861f5f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_dataset.py_TestCreateDataset.test_invalid_dim_": {"doc_hash": "d0d7ccd647b63c78082eed3e12f1d115924a1dc53cc77bda014958944fed0a30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_interaction.py_unittest_": {"doc_hash": "b34d341a46b0decaf4b906380c7c7011d3b1550be38a5cdedc5cdc9d50c81ab7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_unittest_DATA_1._": {"doc_hash": "a76c8c89d408a61fd085f4653f59804b894481b0f94e1ff317d93634c11105a1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_DATA_2_DATA_4._": {"doc_hash": "e89b70983bc6a0f46a11bbc0d7bbb08584ce0b5c3f51b8d462173dda9ed14ef4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_DATA_5_DATA_10._": {"doc_hash": "9a5173b7eca09c7a4869b6b7e0165ccd004454da08aa302924431b4c54f28ff1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_DATA_11_ADD_INITIAL_POINT_TEST_CASE_1._": {"doc_hash": "337db715b16f69d56183dbbb9d1eda7a30b81ec445d0bb719a1ed9042f6170fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_ADD_GUIDANCE_TEST_CASE_1_ADD_GUIDANCE_TEST_CASE_1._": {"doc_hash": "9d6ec555eaa00b5ed222b5bb5029e4a2aa59d81a3d3449a5826f772944f21ab9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_FIND_DISCREPANCY_TEST_CASE_1_ADD_GUIDANCE_FROM_POINTS_TEST_CASE_6._": {"doc_hash": "89c51649390ac79e6b92b23461f639e0260c0b93ed34afd197934306d146fd62"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_SPATIAL_CROP_GUIDANCE_TEST_CASE_1_RESULT.np_zeros_10_20_20_": {"doc_hash": "30c74d4caedd24eabe4a4c93f4272186dd1ecd3ab89c6afc156bbd342cc28996"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_RESULT_4_8_4_8_4_8_n_TestFindAllValidSlicesd.test_correct_results.np_testing_assert_allclos": {"doc_hash": "5591679585514252a90d7706c4bbe24266446f75249c68de55d6c831cf40969f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_TestAddInitialSeedPointd_TestAddRandomGuidanced.test_correct_results.np_testing_assert_allclos": {"doc_hash": "942b7dc96e127cc2ef4cfbf0deadb8e7d181ec5ef1282ef2431a678ce5d51e87"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_TestAddGuidanceFromPointsd_TestAddGuidanceFromPointsd.test_correct_results.None_1": {"doc_hash": "71f29d9215129e59cf9979dd2eb837a598dccc4623dc518c2ff612a3c4f5ff5f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_TestSpatialCropGuidanced_": {"doc_hash": "8aa9efce22106450d5600c9abf4dd8882028db76edf20d8cb6793406f5bcc3f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_densenet.py_unittest_TEST_PRETRAINED_2D_CASE_3._": {"doc_hash": "e2c1b332fed4c09ccb4848b6e9b29edb29d191f1e7888f5dee1380375c03e935"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_densenet.py_TestPretrainedDENSENET_TestPretrainedDENSENET.test_pretrain_consistency.self_assertTrue_torch_all": {"doc_hash": "d4d6f455bd382f3789138bb2159dfbdd26b8eec3199f25369b8e0919f84daf81"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_detect_envelope.py_unittest__MULTI_CHANNEL_VALUE_TES": {"doc_hash": "eb0ace45346d0784338a55cde16de45d33d8d2a8847038ba575ca570825930a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_detect_envelope.py_TEST_CASE_2_CHAN_3D_SINE_TEST_CASE_INVALID_OBJ._a_string___call_": {"doc_hash": "ea91aa8bdee945d471ee33787dc67339d9371eeaaba17f2a69d83b47419c30ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_detect_envelope.py__method_expected_to_rais_TestDetectEnvelope.test_value.np_testing_assert_allclos": {"doc_hash": "25948980d7c5c0e85ac32e564088864062039ab95433defe0a4acb0e9e131b20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_detect_envelope.py_TestDetectEnvelope.test_value_error_TestDetectEnvelope.test_value_error.if_method___init___.else_.raise_ValueError_Expecte": {"doc_hash": "8f081ca438cecc198fafd24069b36fdd4cc3089c01bcccb3f155e12ca989b1eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_detect_envelope.py_TestHilbertTransformNoFFTMod_": {"doc_hash": "079feea90e86b848dd3dd182ce5a6435cd4d5e169916b3d2cd9f84c59313f22e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_ce_loss.py_unittest_TEST_CASES._": {"doc_hash": "53478ec28947c804d70c4327ed5efc84fb6f105a6c3b5cddfceb841bdfde39f8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_ce_loss.py_TestDiceCELoss_": {"doc_hash": "4fc416812ac08833e39a331a9dbe2b81b23fe7b0d6527d911591488917f70e78"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_focal_loss.py_unittest_TestDiceFocalLoss.test_result_onehot_target_include_bg.for_reduction_in_sum_.for_focal_weight_in_None.for_lambda_focal_in_0_5_.np_testing_assert_allclos": {"doc_hash": "4355dd2d81ca5622daa02231a7e85efcba9083b418c02e0021678c7c4907406d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_focal_loss.py_TestDiceFocalLoss.test_result_no_onehot_no_bg_TestDiceFocalLoss.test_result_no_onehot_no_bg.for_reduction_in_sum_.for_focal_weight_in_2_0_.for_lambda_focal_in_0_5_.np_testing_assert_allclos": {"doc_hash": "c0a68a06792bad78a980562c944e23911fdb56826fa53647013e99e057160648"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_focal_loss.py_TestDiceFocalLoss.test_ill_shape_": {"doc_hash": "8419eb5f5323f1a88c2636ac892b7f73d90c0b8516fcdf3b2dc233fb2a9ca7f9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_discriminator.py_unittest_CASES._TEST_CASE_0_TEST_CASE_1": {"doc_hash": "817be37c362e0de355c165905acf6e6fb01d8938fa4d9c5312a21b8e0aef9dad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_discriminator.py_TestDiscriminator_": {"doc_hash": "9f7bf0f8a6aadb4872736d55ad84a0419e47cc7434aa0784bdd6f6f7b74a8877"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_distcall.py_unittest_": {"doc_hash": "34e940a513ea6baa47bd0a4a47b744ebbeafd0ab348e2a3d7ea72723aaccd8d0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_distributed_sampler.py_unittest_DistributedSamplerTest.test_even.if_dist_get_rank_1_.np_testing_assert_allclos": {"doc_hash": "24bd0b32a9ed1904c39edd93fb4a69f3523579b7ffc60cec4ed39171cb583225"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_distributed_sampler.py_DistributedSamplerTest.test_uneven_": {"doc_hash": "7e43e8bb1259a8b357793b4486aaa023521416513c7a61fc94c7e908f7120d5a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_distributed_weighted_random_sampler.py_unittest_DistributedWeightedRandomSamplerTest.test_sampling.if_dist_get_rank_1_.np_testing_assert_allclos": {"doc_hash": "ee20a93e0adbef665a00fa65ca1e7057f3970fa506ad2be29779197e357d7d4c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_distributed_weighted_random_sampler.py_DistributedWeightedRandomSamplerTest.test_num_samples_": {"doc_hash": "b5fa50d5a31aa15f5086c99dd5418d31dcfd3462cc024702541477bc6ace99e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dvf2ddf.py_unittest_TEST_CASES._": {"doc_hash": "a29324dac815f31824d6a9862db6c5b346e08a6afa2c1a37764e22b749461c07"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dvf2ddf.py_TestDVF2DDF_": {"doc_hash": "995f6e4abbe8ca2548b1015b8adf923e89956cf4ce2324c55132a04c17671231"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet.py_for_spatial_dims_in_2_3_for_spatial_dims_in_2_3.for_res_block_in_True_F.for_deep_supr_num_in_1_.for_strides_in_1_2_1_.TEST_CASE_DEEP_SUPERVISIO": {"doc_hash": "056f580cd7f0f4e24f9156468f91573974ec003741be7a5e187ef6ef19eb9189"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet.py_TestDynUNet_": {"doc_hash": "329d61e5b0dc2374aefaf274736e95e4cadf945e02c41c7b6c7ce144cfeff39b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet_block.py_TestResBasicBlock_TestResBasicBlock.test_script.for_net_type_in_UnetResB.test_script_save_net_tes": {"doc_hash": "64314c917604b020960fc667be57fec2dd5d31496301396d8b660f8d61ce05e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet_block.py_TestUpBlock_": {"doc_hash": "31f8ba4f22985a2b7de60f3f704163a73178962baf4eb938bad8de8cda12dcdf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_os_get_model_names.return._efficientnet_b_forma": {"doc_hash": "1a854caed99bc91b5f0f90d51ef4d394485c4976639444add1e9c2c70a264c50"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_get_expected_model_shape_get_expected_model_shape.return.model_input_shapes_model_": {"doc_hash": "b4059cd6302e4dded310512b7b4bffea3d56da4699998007088daf8098f5cfe0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_make_shape_cases_make_shape_cases.return.ret_tests": {"doc_hash": "19450c2509dcaf8431527ddca569411bc6a1041b1d42df0ab9d273536925b1b7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py__create_list_of_selected_None_28": {"doc_hash": "d65e262339c57bfe6b3cbf96ca5223ad42b3e10eacf4cd779867e6121ad61a7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_None_3_None_4": {"doc_hash": "efe2517dc37266539aec8564e6d80b1209d29f7c84a88d516cb9f3d242c11c9e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_TestEFFICIENTNET_TestEFFICIENTNET.test_shape.self_assertEqual_result_s": {"doc_hash": "e539fd8b44978a7e57854212d1684390f50e853ac5f20f58dbc273155e3c6c6d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_TestEFFICIENTNET.test_non_default_shapes_TestEFFICIENTNET.test_non_default_shapes.for_candidate_size_in_non.self_assertEqual_result_s": {"doc_hash": "8e8c557d45b1af11b36601819fe25c307ac4aba9687a30b33072110bba2aa36f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_TestEFFICIENTNET.test_kitty_pretrained_TestEFFICIENTNET.test_kitty_pretrained.self_assertEqual_pred_lab": {"doc_hash": "33ba71f29f3f4545bbe4f4b0305e53d0b7a45d33ca116e41e02b9cf8bcb61d86"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_TestEFFICIENTNET.test_drop_connect_layer_TestEFFICIENTNET.test_drop_connect_layer.for_rand_tensor_shape_in_.None_1.self_assertTrue_abs_p_cal": {"doc_hash": "996c3dd89f97defe6f9343ac43abbd6b6d8eb5ab0a40eb4cb43503f0b2c9d643"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_first.py_os_TEST_CASE_7._": {"doc_hash": "7215e8802fd0b5ff6dd9b2d59a9c410de334f22a14e41a5841356700209d4fed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_first.py_TestEnsureChannelFirst_TestEnsureChannelFirst.test_load_nifti.with_tempfile_TemporaryDi.self_assertEqual_result_s": {"doc_hash": "430a6446a6a4596cd36b8e727572dea9a533105a4f7673a8637ff1e04e150be9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_firstd.py_os_TEST_CASE_3._": {"doc_hash": "1e45b4f6035d361e56adb5dafe521ac00bfdd99c131615fe4b738565a574b909"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_firstd.py_TestEnsureChannelFirstd_TestEnsureChannelFirstd.test_load_nifti.with_tempfile_TemporaryDi.self_assertEqual_result_": {"doc_hash": "5eca47f6efa93c16c411f5eef2d5e36a9664dc36667a94733b37c848e76faa20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_enum_bound_interp.py_unittest_TestEnumBoundInterp.test_bound.self_assertEqual_int_b_ze": {"doc_hash": "c63883a1b38b761a80f257bafe87f88810fe4314f3c1c4ff5a5847f5a568280d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_enum_bound_interp.py_TestEnumBoundInterp.test_interp_": {"doc_hash": "d185320bf2a410f3f50471dd7564447f0dc0033d066c6b62959916f424308cfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_eval_mode.py_unittest_": {"doc_hash": "afb089157622c0988787481ef83c348a399709a630e2ac4d5fd5620745a205de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_evenly_divisible_all_gather_dist.py_unittest_": {"doc_hash": "f0b593ca063cca94af1b8c867693c590a22b7c69d31dee9041861a1074207255"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_file_basename.py_os_": {"doc_hash": "6475dade6350a7cc0828f83afd71b9c6eaa785bdb6a9c8a2d4a13aa25f1b29b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_consistency_with_cross_entropy_2d_onehot_label_TestFocalLoss.test_consistency_with_cross_entropy_2d_onehot_label.self_assertAlmostEqual_ma": {"doc_hash": "16e7792b17f2a91092432188849df41d95ce0a806f597c01dfa89c4da841f01d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_ill_opts_TestFocalLoss.test_ill_shape.with_self_assertRaisesReg.FocalLoss_reduction_mean": {"doc_hash": "7323e18a5ec9d15f911050fe68b1f938c20dc8146550c0f6e784f7e8349b4d91"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_ill_class_weight_": {"doc_hash": "9d3ade0370a6ab151e4b7dd179b3e9f709d4142c3ca0e7cc325d1f9960797b33"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fullyconnectednet.py_unittest_VFC_CASES._VFC_TEST_CASE_0_": {"doc_hash": "dbd49b0b25937fd82bc4174b3aa155cfe0f941663fdb386912751996a241dd85"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fullyconnectednet.py_TestFullyConnectedNet_": {"doc_hash": "4760da3cb06f52e528166a3e9078df7b1e538a5a2e7ad50f028da625c73630a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_unittest_TEST_CASES_SLOW._": {"doc_hash": "dadb586ac171bdf60a061139d0dd7d07fec4adf94ed19631bbf7207244843550"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_TestGaussianFilterBackprop_TestGaussianFilterBackprop.test_train_slow.self_code_to_run_input_ar": {"doc_hash": "e0bdd17b4bc817dd390f9de12d84389cba73e9ed7fbbc3a55224d302f6e14f1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_unittest_TestGeneralizedWassersteinDiceLoss.test_bin_seg_2d.for_weight_mode_in_defa.None_2": {"doc_hash": "23989a8bd7d5c7b15db4a364e7a9747a6753643a7f985b200ecee86529797ecb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_TestGeneralizedWassersteinDiceLoss.test_different_target_data_type_TestGeneralizedWassersteinDiceLoss.test_different_target_data_type.for_w_mode_in_default_.for_t_in_target_list_.self_assertAlmostEqual_lo": {"doc_hash": "15f62c9635fcb84d165688fd1f46dcc3942b00e6df8050d706ac0af653da9a9d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_TestGeneralizedWassersteinDiceLoss.test_empty_class_2d_TestGeneralizedWassersteinDiceLoss.test_empty_class_2d.for_w_mode_in_default_.None_1": {"doc_hash": "317991eb6d1f3e2b79d3d0db35e5e4dbbf8656f4334a6fbd016920597551b188"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_TestGeneralizedWassersteinDiceLoss.test_bin_seg_3d_TestGeneralizedWassersteinDiceLoss.test_bin_seg_3d.for_w_mode_in_default_.None_1": {"doc_hash": "90f41cbb4209db4c16bb924bc58e0d3524bd6e293be2f4f9a712379058919d4c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_TestGeneralizedWassersteinDiceLoss.test_convergence_TestGeneralizedWassersteinDiceLoss.test_convergence.for_w_mode_in_default_.self_assertGreater_diff_s": {"doc_hash": "2779d299eb498bb2cc831e65fa9ac566c5575704637b9c99da52f853532176ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_TestGeneralizedWassersteinDiceLoss.test_script_": {"doc_hash": "c705ee5e223e0621d65957e2c1b1ebb121f51d983162ee01ef19cef187a8b3a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_param_groups.py_TestGenerateParamGroups.test_wrong_": {"doc_hash": "6162a49b21214d1a6bbd71f7218b98dd5a67d4cfa364e50ba68279eaf0a3efd1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generator.py_unittest_CASES._TEST_CASE_0_TEST_CASE_1": {"doc_hash": "c1ea74f8af7c44a214236913477f1669ec613789b7665e57d433887569ab7bdb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generator.py_TestGenerator_": {"doc_hash": "316b71698d0a8248b0132bed6014e5cd53877d1d45df40f6d0e77d319276b148"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_get_extreme_points.py_unittest_": {"doc_hash": "fbfcc8ce9ce39c772b0b860369b7cbe95353e2fcbb82fd11211ee0c8406d94ec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_get_package_version.py_unittest_": {"doc_hash": "f09e3a8f061d1291fdb1747fef687321a2d28206fb01e4cfce322f24e4586581"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_global_mutual_information_loss.py_unittest_TEST_CASES._": {"doc_hash": "b0f3674896af843f5c9bbfeed94cd328948602e4851c88dd883f76397a7ae924"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_global_mutual_information_loss.py_TestGlobalMutualInformationLoss_TestGlobalMutualInformationLoss.test_ill_shape.None_1.loss_forward_torch_ones_": {"doc_hash": "fea207ce48d91545549f2a77f02bb20e2d683466018ca629f969e158b244fd63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_global_mutual_information_loss.py_TestGlobalMutualInformationLoss.test_ill_opts_": {"doc_hash": "3197bfbcea5b0627101c13fc135395225f09e150603758371284c2f1e3f1c893"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_globalnet.py_unittest_device._cuda_if_torch_cuda_is_a": {"doc_hash": "6ea4065cc0d311e1fe6966fe1390bd5a28a24d3abf041c3b2a698b4e52cdde93"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_globalnet.py_TestGlobalNet_": {"doc_hash": "39a2113372bb12674630d36de0d07964c14f7a92efe09fc981bb47e1eedde623"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_grid_dataset.py_sys_TestGridPatchDataset.test_shape.self_assertEqual_len_j": {"doc_hash": "fd852b2c28da21643f1a873302cc629dc73fcf05e1e1285f8c669f87780b90a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_grid_dataset.py_TestGridPatchDataset.test_loading_array_": {"doc_hash": "73d4a0cf3544b98969adb7e7dfe9970ce034460cdb1bc509aa1bcbd232a185cc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_grid_pull.py_unittest_for_bound_in_bounds_.for_interp_in_interps_.for_input_g_in_True_Fal.for_grid_g_in_True_Fals.TEST_1D_GP_append_test_ca": {"doc_hash": "3cc104f4a295ce5512fd6c12e0aa0675b737eb38947691aecb8b7703bb23e44a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_grid_pull.py_TestGridPull_": {"doc_hash": "f9bff9e6076245730b20b33b00dd6e216779a8a3158428f191cb5882a359d8dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_logging_TestHandlerCheckpointLoader.test_one_save_one_load.with_tempfile_TemporaryDi.try_.except_ValueError_.None_1": {"doc_hash": "d19c811bfb071710327d34040bc3f45494fa90087fb6c4e2d7fe745bfc71d03a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_save_single_device_load_multi_devices_TestHandlerCheckpointLoader.test_save_single_device_load_multi_devices.with_tempfile_TemporaryDi.torch_testing_assert_allc": {"doc_hash": "60119581d4b2c802b5bbfd6021e5e497f77583425b7ff023ad987d547a044fe5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_partial_under_load_TestHandlerCheckpointLoader.test_partial_under_load.with_tempfile_TemporaryDi.torch_testing_assert_allc": {"doc_hash": "a99dd85d272a656a53ecbb84bcc475f09c973c581788ac3714ea6e175ce10288"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_partial_over_load_TestHandlerCheckpointLoader.test_partial_over_load.with_tempfile_TemporaryDi.torch_testing_assert_allc": {"doc_hash": "566ed305f697820b43c2cc8f409a591b918d9158dedc4de109464f48be2a89eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_strict_shape_": {"doc_hash": "c19979ba7a60f077a5c8a8b30a6445f0db4a8636780e8176e874f49e2cfe0e3b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_logging_TEST_CASE_8._False_None_True_val_": {"doc_hash": "8a67c01f10ebdabb2640a39d695f9eb5392164adb5a8486583c89a25aae5280a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_TestHandlerCheckpointSaver.test_exception_TestHandlerCheckpointSaver.test_exception.with_tempfile_TemporaryDi.self_assertTrue_os_path_e": {"doc_hash": "d7cf1dca11596522c146af99418624bd07e6fa6b02f9817712b88d005a416cfc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_TestHandlerCheckpointSaver.test_load_state_dict_": {"doc_hash": "8fe658e6f1f5fcef38dc4440c22c0375c591b35eb782070bf839904f0e730c5c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_classification_saver_dist.py_csv_": {"doc_hash": "1a34c68baa80add794a1dd04eef8553800c7b129aef1418b5bc05ac77e3fe053"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_confusion_matrix.py_unittest_data_2._": {"doc_hash": "32516b203d341eb3f86004ec1b48784e0c84f2e0456d85c53fddb47dc8917105"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_confusion_matrix.py_TestHandlerConfusionMatrix_TestHandlerConfusionMatrix.test_compute.self_assertAlmostEqual_av": {"doc_hash": "239e66fbe22c7ae25d64f6c8d08f8ef34a396d1ee72ddf9730bae389e2fd46ed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_confusion_matrix.py_TestHandlerConfusionMatrix.test_compute_seg_TestHandlerConfusionMatrix.test_compute_seg.self_assertAlmostEqual_av": {"doc_hash": "67deb538dc86c52dc31829717a8b03ed0cc37e3d3b52a52347ae4189ddc17a1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_confusion_matrix.py_TestHandlerConfusionMatrix.test_shape_mismatch_": {"doc_hash": "e514b09a6585fb2832d9f3d844a607243b7400d41b02d610aecf631970a4ae20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_confusion_matrix_dist.py_unittest_": {"doc_hash": "f31a1c5233f4ed36cdabba6751f80fb1927284f70029caab7effa43cce669d30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_early_stop.py_unittest_TestHandlerEarlyStop.test_early_stop_train_loss.None_3": {"doc_hash": "cfb5e75b7c77c59294d12a671479d55da676a407f4b7fcd3ec19944fdc010e84"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_early_stop.py_TestHandlerEarlyStop.test_early_stop_val_metric_": {"doc_hash": "708f6d0b28d8bb9d0612a4efb9be0c8f0ad237a93a95b8229d785299d232a380"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_garbage_collector.py_gc_TEST_CASE_2._0_1_2_Events_EPOCH_": {"doc_hash": "3876108e72653ed12a6e5ff0cb9f26177b6620d97108223c672c3cd6932ad2d5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_garbage_collector.py_TestHandlerGarbageCollector_": {"doc_hash": "2e26ea8e7c78f122345be87eec09b789b2b930517f725348b04e7dd9e153d190"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_hausdorff_distance.py_unittest_create_spherical_seg_3d.return.image": {"doc_hash": "1fa3018aaea3484c4c6e91bf5e615153eeef30405857b5da5ddf8a7eeb9a3373"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_hausdorff_distance.py_sampler_sphere_TEST_SAMPLE_4._sampler_sphere_zeros_sa": {"doc_hash": "718c0a4f41f99786fb25e5a380c69113f12ac32ccc61965ee35a43f7ec82d710"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_hausdorff_distance.py_TestHandlerHausdorffDistance_": {"doc_hash": "926b5b587451ad85b5487942af9091f16b457a2d7c3c928d029f121ebeacb401"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_mean_dice.py_TestHandlerMeanDice.test_shape_mismatch_": {"doc_hash": "84a2d616415c504ac05de8234d618f6e7d15079b9e89e34bb50fb6cf96f0edd8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_metric_logger.py_unittest_": {"doc_hash": "625f490d0e1fc8bd29eccc46b21d637e61f65320231aa4777d95bd7449ba6aa1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_metrics_saver.py_csv_": {"doc_hash": "a200c85e9ccdbbf696df705e6a1354da444e5f4660aa10c04e2a7e873edfa16b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_metrics_saver_dist.py_csv_DistributedMetricsSaver._run.engine_run_data_max_epoc": {"doc_hash": "fa2d6ebcac0c17e485040ee1bd4d6431474a24cc4545516e274a47b353c2b95e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_metrics_saver_dist.py_DistributedMetricsSaver._run.None_2_": {"doc_hash": "b1eb3308c875e8c96e7a408b4bcac2045c6a732c9782e6993f02c2a087af9d6a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_parameter_scheduler.py_unittest_TestHandlerParameterScheduler.test_linear_scheduler.None_8": {"doc_hash": "a30237b607e4696544acb7fa41b965f14f23e5d6d19c10e9348f939beba07894"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_parameter_scheduler.py_TestHandlerParameterScheduler.test_exponential_scheduler_TestHandlerParameterScheduler.test_exponential_scheduler.torch_testing_assert_allc": {"doc_hash": "fda4ab2707e75b1794425587c25d7cd8a623a4330effd0f691cd4db3084a0361"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_parameter_scheduler.py_TestHandlerParameterScheduler.test_step_scheduler_TestHandlerParameterScheduler.test_step_scheduler.torch_testing_assert_allc": {"doc_hash": "819381223fdf1d4a3fc39cc14fe971bf2159310726a0355a79049bf506750bad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_parameter_scheduler.py_TestHandlerParameterScheduler.test_multistep_scheduler_TestHandlerParameterScheduler.test_multistep_scheduler.torch_testing_assert_allc": {"doc_hash": "91c80da20175da576eed01191e1798f166d10eb2a037ce353895e6bf552f3ce5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_parameter_scheduler.py_TestHandlerParameterScheduler.test_custom_scheduler_": {"doc_hash": "2f1483fe5a87a6c8591d471117af05bce9e0229296c934c64118836ee4e9fe67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_prob_map_producer.py_os_TEST_CASE_2._temp_image_inference_ou": {"doc_hash": "0c8224ed6904f6b27a2ffa8359a25a8b7d900ed746fd0f0e34246006d18d01c7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_prob_map_producer.py_TestDataset_TestEvaluator._iteration.return.batchdata": {"doc_hash": "c7a1074b81fbf46a811f85eeef725620e6cbaa319595b50db9eb67b87e0c2fd9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_prob_map_producer.py_TestHandlerProbMapGenerator_": {"doc_hash": "8d76338422fcfac35b01652daee07bde02cdb0b7494199119e28b1772894c8bc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_rocauc_dist.py_unittest_": {"doc_hash": "fc8fb50d5293258d5abe0b5f01fc90a1c714ce184378a3370339c48cd9cb3908"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_surface_distance.py_unittest_create_spherical_seg_3d.return.image": {"doc_hash": "979342b9ca24d68a3a4ee63053d5fd4737b8db985c56782e2418c0af9e44b81d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_surface_distance.py_sampler_sphere_TEST_SAMPLE_4._sampler_sphere_zeros_sa": {"doc_hash": "b98cdb1309189c7ab0beb67b5a4eab1292145181d274d7be3d805929e4db991e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_surface_distance.py_TestHandlerSurfaceDistance_": {"doc_hash": "3c01d61124f44771f1c43e6dde5deb6dc2727d545a647e19c5732e5ae70af2a1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_transform_inverter.py_sys_KEYS._image_label_": {"doc_hash": "cc1ef7483c8b5e3ef70c64faf816e9893a4635e724bb6dd92306fffe8a2a36f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hashing.py_unittest_": {"doc_hash": "a23e7c14f26ddcb1b27aa0924aa351b70e9e775d73daf8694155d139a7029864"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_TEST_CASES_TEST_CASES_NANS._": {"doc_hash": "246751121ca383bbcd21293c533550b0f04a32062ad20afd319cb116d3c1a4cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_TestHausdorffDistance_TestHausdorffDistance.test_value.for_metric_in_euclidean.for_directed_in_True_Fa.ct_1": {"doc_hash": "ceaef5e04247af907e3768f82091c2d86319d4d7bde669c9d1f285692dace479"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_TestHausdorffDistance.test_nans_": {"doc_hash": "65a7edbd5368350892545240f9cf913cba0364a00b812808525db79d037fe529"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_highresnet.py_unittest_TEST_CASE_4._4_channel_1D_batch_": {"doc_hash": "cd32c08a754182330baf36ca23740d2fe28341c534461f6bb311369f2302e817"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_highresnet.py_TestHighResNet_": {"doc_hash": "324a75ea6635ff25f6a7cc5d0656ab65b5c0e3b8aca57adb690ca1553dcf9d5c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py_unittest_create_expected_numpy_output.return.ht": {"doc_hash": "bca4decdd04f7ba518044c96e643e3b546a9b6d8bbcd4975d09a7ee0e14cda37"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py_cpu__GPU_TEST_DATA": {"doc_hash": "6229c9fe2df632739bf84b88e0d6398a53eec817e7187889216d4bc3de83e28c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py_if_torch_cuda_is_availabl_if_torch_cuda_is_availabl.TEST_CASE_2D_2CH_SINE_GPU._": {"doc_hash": "78ff870f733849bd2c32134bafcde2756ff4ac8b091e1311a37c5ab9326da660"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py__TESTS_CHECKING_PADDING__TestHilbertTransformCPU.test_value.np_testing_assert_allclos": {"doc_hash": "508e73fbc72108efd52de29f5b84182a4cbcaa7e801a439559b83ac54b62ab28"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py_TestHilbertTransformGPU_TestHilbertTransformGPU.test_value.np_testing_assert_allclos": {"doc_hash": "00e13709d30866edc78e87f29afdbd6eb6190a342acf60753b4ae8001d6cbde2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py_TestHilbertTransformNoFFTMod_": {"doc_hash": "0bbcf6297b8c260b78a8ebc817c1c83221cb5cb9a478dea7f72bbb3957a3d027"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_init_reader.py_unittest_": {"doc_hash": "4048a93218ca7bc53cc7bd823507ee6982a7ab836b4585c5a8f2c4ff614f8e0d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_run_training_test_run_training_test.model_filename.os_path_join_root_dir_b": {"doc_hash": "f45d4fc9ba1db5426c25bc146244eb01c9270780f7d94016a9e5812e5a013161"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_run_training_test.for_epoch_in_range_epoch__run_training_test.return.epoch_loss_values_best_m": {"doc_hash": "5fe3130e0dbc24d07dc4612c7198da99601a50ca02d9a3228bea6680ed1711d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_IntegrationClassification2D_IntegrationClassification2D.setUp.self.device._cuda_0_if_torch_cuda_is": {"doc_hash": "4a6aaccc4275d31ad4e22fdac5ba09772370fb12dcac912f8d7856daeb89a2c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_os_TASK._integration_segmentation": {"doc_hash": "29f9c7ab1ca7a4b2c92af1846c3a3624dee686fcd1786ee298a0aa2ee56b534d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_run_training_test_run_training_test._create_UNet_DiceLoss_a": {"doc_hash": "205d364003dc2df349b0b9e0d3b58320082a660035abc167721084dcfe2f3879"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_run_training_test.model_run_training_test.return.epoch_loss_values_best_m": {"doc_hash": "373fd6bdb36e5575ec4064e5a550e87f5fd6ed023ba24c786d5740a1064ca065"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_IntegrationSegmentation3D.train_and_infer_": {"doc_hash": "6a2e97c19f171e1c6bbdc35b9e20d601d15a3479353662960b3de6cad215bd65"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_os_from_tests_utils_import_D": {"doc_hash": "6f40b88b8862b1b701f5f3e43b5bb75e0dd0a7b5be662016f252121820261a41"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_TestIntegrationSlidingWindow_TestIntegrationSlidingWindow.tearDown.if_os_path_exists_self_se.os_remove_self_seg_name_": {"doc_hash": "2b1a7002f5e77a2eaf588adebb3c970ce4875e1dca27daaf6334a84689cdac1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_TestIntegrationSlidingWindow.test_training_": {"doc_hash": "efc7e8b93ab102f10818cb54d739d65b96708f59e1efb8d4c61e1b5f3639dc7b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_unet_2d.py_unittest_run_test.return.loss": {"doc_hash": "6071e888947c694cefa3ff19d4c8998e4bd2a30efde2be33d77f0431bff83b0d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_unet_2d.py_TestIntegrationUnet2D_": {"doc_hash": "a3b39035d36da9469ac671225ce197dd1c8dd38a033cb0243aac2122cbeb8aa9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_logging_TASK._integration_workflows_": {"doc_hash": "6d77bd1ce2410b43756fc1e89629612f05f765b5ee922d390690f37eed6fbebc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_training_test_run_training_test._TestEvalIterEvents._forward_completed.pass": {"doc_hash": "eebba9597d3b809689a369939921308fd3e4eaef05fe68404df4402b875b4bf4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_training_test.val_handlers_run_training_test.train_post_transforms.Compose_": {"doc_hash": "cdf61675bd5697e77dff954142ce1f2878575ad1e2a11d5a6da1f7a3fb51f9d4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_training_test._TestTrainIterEvents_run_training_test._TestTrainIterEvents._model_completed.pass": {"doc_hash": "67b92c7be4dd4d66043625f323daa9accfe69b988edfb309def519cf16168dfa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_training_test.train_handlers_run_training_test.return.evaluator_state_best_metr": {"doc_hash": "a9bdc12a09ae32912e6441f3fd9734da4cd6cc64e5a3bbb7303664d718a3ea69"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_logging_from_tests_utils_import_D": {"doc_hash": "da4c310e15728c7aaa288e01c78602a0edf63838388e0139f37bd59845f18c99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_random__non_sensical_tests_cro": {"doc_hash": "a63c3dfbf3b98649497f9f408c949f4797a37c521fbeb006b1862470ecf83e17"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_for_t_in__None_11": {"doc_hash": "65c06bfab09bc5931a4cb67e347f0396811f165a0d4ef37548656c32d04301d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_None_12_None_28": {"doc_hash": "57910350a67a7f2c5f38fd1a05031445fea4a471ce8431aa72d58ec2a0171bb7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse_TestInverse._Test_inverse_methods_": {"doc_hash": "27ccd996e30251b1f6c204d14aaf11680a12cdd450b0e516a4594b8b1e5d45d9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse.setUp_TestInverse.setUp.self_all_data_3D_loa": {"doc_hash": "cfb4316945bf9377ea5c594e3bb5f36e0e412816fa80cf23c46ea8667b42236b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse.tearDown_TestInverse.check_inverse.for_key_in_keys_.if_isinstance_orig_np_nd.try_.except_AssertionError_.raise": {"doc_hash": "ebb78a971196ba25f20281752a860f96781e94245b463f2d1fa63445e8a0421a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse._skip_this_test_if_multi_TestInverse.test_fail.with_self_assertRaises_Ru.t2_inverse_data_": {"doc_hash": "d63ddabea256bdb371b246208c4703a71cce1b4324f996b4e91b0e69000d9020"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse.test_inverse_inferred_seg_": {"doc_hash": "a91b05116ddeb2e5f2f3432d7a79afff83390a52403be41abcc7aa91715b5d04"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse_collation.py_sys_TESTS_2D._": {"doc_hash": "893305e27120a96f461972a5bd1b7a2247339390424acdf10df33a4862a29eae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse_collation.py_TestInverseCollation_TestInverseCollation.setUp.self.batch_size.7": {"doc_hash": "e888a0f81e71d1cd5d5223748bf0cdd83c15e68b6add2ed0b2c989ff18ea5a9b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse_collation.py_TestInverseCollation.tearDown_": {"doc_hash": "835f4a9b8540f6bdec464ec6b99a9d6cc6acf0be68586a39cf3bf0576d4312bc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_iterable_dataset.py_os_": {"doc_hash": "2a7730d17d86ff17cf51973fe5c5509ceead953158783ddbfa5e43b9f497ddb1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lesion_froc.py_os_WIDTH.800": {"doc_hash": "d40bf2fee4b2dc13f0234b45c86cac56636653ae0934c3aba4c9e4d45d945f3f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lesion_froc.py_prepare_test_data_prepare_test_data.None_10": {"doc_hash": "8fd6f368aedd7adb18d04a42de4c30c3e16721aea7db27a265ceb80e63b1d32e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lesion_froc.py_TEST_CASE_0_TEST_CASE_6._": {"doc_hash": "c75caf7e5311f0d5c4ebc4df11d1cd879330076d184354f7bc4e8b838c3c701c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lesion_froc.py_TEST_CASE_7_TEST_CASE_9._": {"doc_hash": "8f711baeed491098a49c278ca727fbc328bc95783dbb323c1fdb198a2267783e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lesion_froc.py_TestEvaluateTumorFROC_": {"doc_hash": "47e40465769a0ce603d3370d1ec788ea146e45de5ad543eec93d1b41b8d46baf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lmdbdataset.py_TestLMDBDataset_TestLMDBDataset.test_cache.self_assertTrue_isinstanc": {"doc_hash": "9935f0eae8ffb62e02d73ffc16cd517ec66cc375d31666d837d07d38db0df308"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lmdbdataset.py_TestLMDBDataset.test_shape_TestLMDBDataset.test_shape.with_tempfile_TemporaryDi.data2_postcached.dataset_postcached_1_": {"doc_hash": "81dd8fbdd55cdf4302191b8266d9bbfd58fb49fa12d79ff823430092e97c9069"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_seg_no_labels_TestLoadDecathlonDatalist.test_seg_no_labels.with_tempfile_TemporaryDi.self_assertEqual_result_0": {"doc_hash": "0b714702338233dccb5a782ffa03c479301f48abf711a19bca0bf3818d0aaa22"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_additional_items_": {"doc_hash": "fe5d9e512e502134ce5a448ed68739fd89f411086a2b9d79a03ef9a189400fa4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_os_TEST_CASE_11._": {"doc_hash": "8ec013bfa99a14a8793280282fdd85f96e5ebc2ef679c22ceb3603cde504c2ea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_reader_multichannel_TestLoadImage.test_itk_reader_multichannel.with_tempfile_TemporaryDi.None_4": {"doc_hash": "4bb50f5bfe3d913e9a30a06e17931476873e27856dd73ade88e53741a329a1ea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_load_png_TestLoadImage.test_load_png.with_tempfile_TemporaryDi.np_testing_assert_allclos": {"doc_hash": "c8d4f0a7cfd1ca8b1866364645835b9db1216e37d59b36aedd12d791da77116f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_os_TEST_CASE_2._keys_KEYS_reader_": {"doc_hash": "25c793abebec6bf41a69da2a4bd9a85d92ca08276985361e76b9c659e6d142d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_TestLoadImaged_TestLoadImaged.test_shape.for_key_in_KEYS_.self_assertTupleEqual_res": {"doc_hash": "58abc7f066c382909ed8c18e1aa2abf0daac0d082a509394533a26753faf4904"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_local_normalized_cross_correlation_loss.py_unittest_TEST_CASES._": {"doc_hash": "e32b707dadd736b2e0f4a95169679fcfaa98d5a02864132ba7c47b7ee1aa21dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_local_normalized_cross_correlation_loss.py_TestLocalNormalizedCrossCorrelationLoss_TestLocalNormalizedCrossCorrelationLoss.test_ill_shape.None_1.loss_forward_": {"doc_hash": "9a62d106ceae051881053bd1bda50edc3b804138f5ba2bed1afa337458021c8b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_local_normalized_cross_correlation_loss.py_TestLocalNormalizedCrossCorrelationLoss.test_ill_opts_": {"doc_hash": "e93ec8d796c599c9a9c2e2ccce76d20a85b580ea8f9ce16ba1e2a773df84acab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet.py_unittest_TEST_CASE_LOCALNET_3D._": {"doc_hash": "e454b3f70076169d7d4f2c0c4496716ab72483f5a34da7a8a59802b2e5488333"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet.py_TestLocalNet_": {"doc_hash": "d7f6f8e2fbe5adfbaee99c822bb2a91f23a4db20b9e1bb910551e5cef92beb95"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_unittest_in_size.4": {"doc_hash": "1c29e4d7536462f5d3cc316a6f134f119ca9e11cbb37e872069047c6a191786f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_TestLocalNetDownSampleBlock_TestLocalNetDownSampleBlock.test_shape.with_eval_mode_net_.self_assertEqual_mid_shap": {"doc_hash": "07db2b298135e70524ee98abf2089d8bfb2ee8b3d91de660c8221e9c40e05e40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_TestLocalNetDownSampleBlock.test_ill_arg_TestLocalNetDownSampleBlock.test_ill_shape.with_self_assertRaises_Va.with_eval_mode_net_.net_torch_randn_input_sha": {"doc_hash": "a1f8c5a9f8de111055c5a01a3e7530eb766c2fa93d126e25d74fa0f79e1998ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_TestLocalNetUpSampleBlock_TestLocalNetUpSampleBlock.test_shape.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "6c05d0f0b7dc547069a1d3b27dfb46874e6ec21df7114fd8a2d2049824cbb4bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_TestLocalNetUpSampleBlock.test_ill_arg_TestLocalNetUpSampleBlock.test_ill_shape.with_self_assertRaises_Va.with_eval_mode_net_.net_torch_randn_input_sha": {"doc_hash": "c883f5c9907e5b434ec67f068ebd3f189d5d8927b3ce57c0926b30c0e77bfe7c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_TestExtractBlock_": {"doc_hash": "98b6606ac4ae28fb9fe1f73e748078742acf7bd931d0521f2d2462a1c9b016ef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lr_finder.py_os_device._cuda_if_torch_cuda_is_a": {"doc_hash": "959dc9325887cb53668a9cb7aa630012899e2af36e7bc72c674ec945df70c2de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lr_finder.py_TestLRFinder_": {"doc_hash": "82eb899ac9f075f82baa63f48dca6ef006a8b37ea4ef1d8fd663eeb612661b7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_label_value.py_unittest_TEST_CASE_8._": {"doc_hash": "4b86f5904e7783209b243406e7c72d5dd32f527d3e6041d57375b369ae23cfe5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_label_value.py_TestMapLabelValue_": {"doc_hash": "0e9019b6d4987386b2c431c4c4fd6d5b926487b2658f19ad4348a6a740906d1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_label_valued.py_unittest_TEST_CASE_7._": {"doc_hash": "7061ab4386567796a9b3afbbd57c8638b12d95decd8e6189cdcd5cfb734b5dac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_label_valued.py_TestMapLabelValued_": {"doc_hash": "b2fe6dc48affbbcbd4adc2ff1c71473a9e0fb8fb44faa070f6d13fe971c59640"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mask_intensityd.py_unittest_TEST_CASE_3._": {"doc_hash": "e83ff25801c5412a3f55a9a321f64368647769a5879368778290b6ecfa2b5640"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mask_intensityd.py_TEST_CASE_4_": {"doc_hash": "f5c58d7e9e51eee3c47320853faba4167bb31f4216f87142836349fba4a24717"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_inference_wsi_dataset.py_os_TEST_CASE_1._": {"doc_hash": "543ea44609069d7a29bf8211687d1c7d8482067fb4621bf4a6726a9579575d30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_inference_wsi_dataset.py_TEST_CASE_2_TEST_CASE_OPENSLIDE_0._": {"doc_hash": "37c4b01765f58defed0c2aca3c9b732b52a3a7223e9f1871a8027c292e42ebf0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_inference_wsi_dataset.py_TEST_CASE_OPENSLIDE_1_TEST_CASE_OPENSLIDE_1._": {"doc_hash": "b2100fcb5e7bd1d66b56b525d42688a393e4af4bb0ce6030c7bcde6979e8e3eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_inference_wsi_dataset.py_TestMaskedInferenceWSIDataset_": {"doc_hash": "75c4267f9b79c6b57ca4883853b93fcaeeeb1a1a3ede4ba93cd184754d5fe0cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_module_list.py_glob_": {"doc_hash": "d9c1fbe1339bb8afdd54eb521947cf42d4981e6b415afdb83fced097b7b00262"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_multi_scale.py_unittest_TEST_CASES._": {"doc_hash": "9ebbb5a5745d457119113a83a2c78f870d7d8ae1b41e45c9f111edd934a1e70f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_multi_scale.py_TestMultiScale_": {"doc_hash": "c9378de5c41c73d12ec94cc761759490877a7d820ea822467755995e2970524b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_endianness.py_os_for_endianness_in_.for_use_array_in_True_F.for_image_only_in_True_.TESTS_append_endianness_": {"doc_hash": "1b020624ca06cf945b63d8ee94049c5e43750cbb5edb684a341c8e28ae70d8d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_endianness.py_TestNiftiEndianness.test_switch_": {"doc_hash": "abd89d9d75de4844332de35455088bdbb0889b61d8a305d08535c761fb6961d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_TestNiftiSaver.test_saved_3d_resize_content_TestNiftiSaver.test_saved_3d_resize_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "e61b22ea37a838c256c63a69c579aa642c6c2f665aa7afa072471aada4e4cd09"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_TestNiftiSaver.test_squeeze_end_dims_": {"doc_hash": "888e093c56333b43484ff77c052b16d33da45a85640d1434dda689fc65166fa3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_npzdictitemdataset.py_TestNPZDictItemDataset.test_load_file_": {"doc_hash": "655c94150c2c8eb81e5c5d74cddd67480ea4c4e998248d01f20cccc0e985bbfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_occlusion_sensitivity.py_unittest_TEST_CASE_FAIL_1._2D_should_fail_sinc": {"doc_hash": "b60fa9326815580d6a9382bbfc342fc8a1d66513f583319dfb448bd94d70853a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_occlusion_sensitivity.py_TestComputeOcclusionSensitivity_": {"doc_hash": "d91c650a5bafe2d4d90d0729c0b20d71bfadcf2d0a53f0516d533ab7fe0b1c33"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_openslide_reader.py_os_TEST_CASE_4._": {"doc_hash": "394baab6dc7a8736a6cbb18d9ea15e4b1808d699ed443c3cf3289cb1d3bcdc9a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_openslide_reader.py_TestOpenSlideReader_": {"doc_hash": "f83f9cc00460bd4d2a179c8f92d452f1910e820a2c61b2ac524fe38087b32a36"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pad_collation.py_random__Dataset.__getitem__.return.self_transforms_self_imag": {"doc_hash": "0e8d13f63882ff57e5abe4a79a9adc13052493ab9c2a8b1fcce048ea1ff67a53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pad_collation.py_TestPadCollation_TestPadCollation.tearDown.set_determinism_None_": {"doc_hash": "3a50d8ba848d74879035d81e1ed475a5259d1a6a69d5406a9f40e4044fb8a6dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pad_collation.py_TestPadCollation.test_pad_collation_": {"doc_hash": "e237e49e39b0d014ab9122ed6a0dfd234a555e9cf3d3a60cf6642e1011245f88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_partition_dataset.py_unittest_TEST_CASE_8._": {"doc_hash": "76bebcaf3efb1f91086f7f5faf60f4007af5682c2d19905245bb5e4507c8a41b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_partition_dataset.py_TestPartitionDataset_": {"doc_hash": "de06d2fd26edafa2f19ce6d1ebe736d28a780968c2816f96464b0b01d170e4bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_partition_dataset_classes.py_unittest_TEST_CASE_3._": {"doc_hash": "6b1e6ad30a4c05bdeb1b00798b79d1aaa954774504eda9f5ea4fe7685e7dda99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_partition_dataset_classes.py_TEST_CASE_4_": {"doc_hash": "ba90b77a1e638f4fa2073e9581115f67c886db8df7127aeb6c350bc38cac307e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_wsi_dataset.py_os_TEST_CASE_3._": {"doc_hash": "5e0d154349eccb6df1c501ddbab2a347d186ea0345ac6c76673900f86c3f8c02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_wsi_dataset.py_TEST_CASE_OPENSLIDE_0_TEST_CASE_OPENSLIDE_1._": {"doc_hash": "403bb80b8f81ef7cd2a86cbdef52a0906a714a911d64a6a2d17eadf09bcd6325"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_wsi_dataset.py_TestPatchWSIDataset_TestPatchWSIDataset.test_read_patches_cucim.for_i_in_range_len_sample.None_3": {"doc_hash": "41804d562ac2fb1358d8f82bd05f4ae42b8320aa19b9f764718f78397777fe45"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_wsi_dataset.py_TestPatchWSIDataset.test_read_patches_openslide_": {"doc_hash": "1f11466fb29afa34ad3816aa8cd8362cc1a7b920a14b82020b9a66c2cc4485a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_prob_nms.py_unittest_": {"doc_hash": "09707ddd886b8ed0cb29ebf368658d5d42c3aa6ca6ad4b433665f55087ccbf7f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_persistentdataset.py_TestDataset_TestDataset.test_cache.with_tempfile_TemporaryDi.None_5": {"doc_hash": "f5b2137c4249b298c0e163dabe0dbd6e036eaf681a6052e63c21912742cad5a9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_persistentdataset.py_TestDataset.test_shape_": {"doc_hash": "aab209f2e936b4f8a5a35150e8430f12bcb9d1f7a1d01ea94b8141923dc7c373"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_phl_cpu.py_unittest_TEST_CASES": {"doc_hash": "369a3b1b76844af58d41d725860f2a4b724fdd105c4d0215f0f45c613683b2ea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_phl_cpu.py_PHLFilterTestCaseCpu_": {"doc_hash": "52467a8ab5acc2f5fbf3566ec6e46367d58fbca328351935d6f5c391579ca262"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_phl_cuda.py_unittest_TEST_CASES._": {"doc_hash": "5c708251ae6268589f4c142a18a4b010dcebf9b9197dd25531f1cc1fd1b8813f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_phl_cuda.py_PHLFilterTestCaseCuda_": {"doc_hash": "e0ec7426f421210b6a0ec75943ccc4de6944df1d36ee39c40ba2a1657720357e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_TestPNGSaver.test_saved_content_spatial_size_TestPNGSaver.test_saved_content_spatial_size.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "f73a35d03c6978863407cd911d934b38fcd7633658be1392ee6f02e2325ae96e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_TestPNGSaver.test_saved_specified_root_": {"doc_hash": "8f09d20c559be663120a8f064e2afa32cb2310828f63e5087a8a028c6d0ac643"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_print_info.py_unittest_": {"doc_hash": "752f0a7590e0aac73dddca14268a8f2454a49713487de5eaea202caab09ad417"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_probnms.py_unittest_expected_7._0_9_66_66_0_7_33_": {"doc_hash": "c7ebaeed5e72283eca84f2f211d6a75d3f355d37af4fc0da7aa713ee92fa3a64"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_probnms.py_TEST_CASES_2D_7_TEST_CASES_3D._": {"doc_hash": "89dc38652f7820219eb715f443bdeaad57bf463e35f89f264b59940ad92c3baf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_probnms.py_TestProbNMS_": {"doc_hash": "5426fccce7ccac2ae343f66cda0a9b07cb9f21cd811f12e5a28b52615ffc635f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_probnmsd.py_unittest_if_torch_cuda_is_availabl.probs_map_7.probs_map_7_cuda_": {"doc_hash": "dc03d6423a60eaf2b3f11f0f14fc1c2d5241d47fa02ac098fa9a640d91a6ba48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_probnmsd.py_expected_7_TEST_CASES_3D._": {"doc_hash": "bf1a19a1dfe1bc52b1189f8ecd00ccbea9f232040524d05a27644357895ce140"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_probnmsd.py_TestProbNMS_": {"doc_hash": "86ceedfc35418dfd4b2b09570d75db6f6a68c970dd01ae1b67b297d11d017795"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_axis_flip.py_unittest_": {"doc_hash": "e341c6278ce29b60b2b67cb49a5d63d314d839607118c9e6bd2b064fec3fe97d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_axis_flipd.py_unittest_": {"doc_hash": "98ad43f980d7776c3e7db8ebf39a84ca151c34f1cb15c2bd12d9c560e97c45f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_noise.py_unittest_TestRandGaussianNoise.test_correct_results.np_testing_assert_allclos": {"doc_hash": "362525adc0ba3ccd38db8340565a92e6c2d365fdd0bb7544b70d6964c407ebf4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_noise.py_TestRandGaussianNoiseTorch_": {"doc_hash": "3c362e6b79859dc5e85014f180b3f5f42e168e1a7b1fbde7759e172e237d96b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_noised.py_unittest_seed.0": {"doc_hash": "5b350ff1bf71a14e298f34d8ade80c223b72b74d5765a44704aaacbe0e772532"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_noised.py_test_numpy_or_torch_test_numpy_or_torch.for_k_in_keys_.np_testing_assert_allclos": {"doc_hash": "4186eb2d9c8d87cd64673642143103ae0702b119bb813a173d0d6ac15e12bb63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_noised.py__Test_with_numpy_": {"doc_hash": "80286336b0280df2bdf334d76d4c1f8ea60d0141f578779ce067e378a9dee8d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_lambdad.py_unittest_": {"doc_hash": "c56b3a5f8bc7361ae71518db11143a34255e69ecad2f82d9b755518c03a13317"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate.py_unittest_TestRandRotate2D.test_correct_results.self_assertLessEqual_np_a": {"doc_hash": "4792cdcb4599594a08907e8bb042409e1edb4fe0a439d43e87e9a2a8e2d51a36"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotated.py_unittest_TestRandRotated2D.test_correct_results.self_assertLessEqual_np_a": {"doc_hash": "729278a6f3f8b16dfc183b513a94bb493cc0a8ab69bb1a236935a12be83a1295"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_std_shift_intensity.py_unittest_": {"doc_hash": "42f7f91d3af1a61f2daad36c6bbb0159f2660d97c89eaf9eb7b830503333120e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_std_shift_intensityd.py_unittest_": {"doc_hash": "19eba7a7218d09f6252d22beb0c7e174f0b70291844520909c72cb51ffaa83f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_crop.py_unittest_TestRandWeightedCrop2D.test_rand_weighted_crop_small_roi.None_3": {"doc_hash": "574be95edc048c5ef501ffcaa0ad5c44f589b317ff59854a9080abae1c9dd44b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_crop.py_TestRandWeightedCrop2D.test_rand_weighted_crop_default_roi_TestRandWeightedCrop2D.test_rand_weighted_crop_default_roi.None_3": {"doc_hash": "fb99ccb0d3847344bbeac7016438a1e7fd2666ece28cdcc1e8ac64ffbd626188"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_crop.py_TestRandWeightedCrop2D.test_rand_weighted_crop_large_roi_TestRandWeightedCrop2D.test_rand_weighted_crop_large_roi.for_res_in_result_.np_testing_assert_allclos": {"doc_hash": "85e0a947fc3c215e29fb9a2dfab8f3ade7c282c3317456464ccc5751d80dbfea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_crop.py_TestRandWeightedCrop2D.test_rand_weighted_crop_bad_w_TestRandWeightedCrop2D.test_rand_weighted_crop_bad_w.None_3": {"doc_hash": "850d5b426e3dedf6e98803bc7da133717ef09f3e0b9880439b646730e71802d4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_crop.py_TestRandWeightedCrop_TestRandWeightedCrop.test_rand_weighted_crop_small_roi.None_3": {"doc_hash": "927d9d5acb686f830df5509f6178bc18a36427c1da04c76c28652e3a9c8c2e88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_crop.py_TestRandWeightedCrop.test_rand_weighted_crop_default_roi_TestRandWeightedCrop.test_rand_weighted_crop_default_roi.None_3": {"doc_hash": "441bb6baffb7527360161d7d96a6afdb1b05cffd718eba4b08a27827e7393031"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_crop.py_TestRandWeightedCrop.test_rand_weighted_crop_large_roi_TestRandWeightedCrop.test_rand_weighted_crop_large_roi.for_res_in_result_.np_testing_assert_allclos": {"doc_hash": "07873cc014a1584023e0448ca80d1613575bd5eabcc7b82ee735f9b09c5e5dc3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_crop.py_TestRandWeightedCrop.test_rand_weighted_crop_bad_w_": {"doc_hash": "6d5c26ca344a163e8f1d2d25ec74a1c55a11c627abb1b401eaab795d039abe1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_unittest_TestRandWeightedCrop.test_rand_weighted_crop_small_roi.None_3": {"doc_hash": "4aec65e1aa324f63a81ac84fc33bdb9e3ef1ec88535b05a34be12605b4ee9d30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop.test_rand_weighted_crop_default_roi_TestRandWeightedCrop.test_rand_weighted_crop_default_roi.None_4": {"doc_hash": "9a715fb4501d2efe54f94c963db931ec566cb22025a4f96be1b4d3238cc1e14b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop.test_rand_weighted_crop_large_roi_TestRandWeightedCrop.test_rand_weighted_crop_large_roi.None_5": {"doc_hash": "05687061b1456b95e8baca6efda6e29435a1f8d8557c2cc32e7943c55e5c9dbc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop.test_rand_weighted_crop_bad_w_TestRandWeightedCrop.test_rand_weighted_crop_bad_w.None_4": {"doc_hash": "5cf875c6e582d5bfbd093cb6f7928c62348f0c31f974f749a007ce50481694a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop3D_TestRandWeightedCrop3D.test_rand_weighted_crop_small_roi.None_3": {"doc_hash": "41980900aa0b230110f5e678a3cd79f214be77f04a25a9299e5105754eac2f00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop3D.test_rand_weighted_crop_default_roi_TestRandWeightedCrop3D.test_rand_weighted_crop_default_roi.None_4": {"doc_hash": "24128f181db46da331dfec30fb2b6a97b2ef9562586e34c63494c089cf1cf511"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop3D.test_rand_weighted_crop_large_roi_TestRandWeightedCrop3D.test_rand_weighted_crop_large_roi.None_3": {"doc_hash": "6efc5035d9f1c977ce438937379df09cdb2e4ea55f46340068eaddc8dc55d190"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_TestRandZoom.test_invalid_inputs_TestRandZoom.test_invalid_inputs.with_self_assertRaises_ra.random_zoom_self_imt_0_": {"doc_hash": "9c037ecb3a06c5a5423a172967d4022ad3866148702fc1674f1221da2b86c588"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_TestRandZoom.test_auto_expand_3d_": {"doc_hash": "c76b4a5a6dd5c22c4767083bf2ea2c28647966dc85e1ab2bb324814c2d92c5b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoomd.py_TestRandZoomd.test_keep_size_TestRandZoomd.test_invalid_inputs.with_self_assertRaises_ra.random_zoom_key_self_im": {"doc_hash": "24476b42d3406b29c363bc8a3aa9bc081ea4fa6956de2d2ddabf09eb75194d68"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoomd.py_TestRandZoomd.test_auto_expand_3d_": {"doc_hash": "1f99b35a170bc97c741491cd4bd6732205d0e3ff96c316d9834fce6caad05188"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_random_bias_field.py_unittest_TEST_CASES_2D_ONES._coeff_range_1_0_1_": {"doc_hash": "154f32b8c2f0a5454a01439215a1b8963cbc7d61de7b6c2126d2219e4c0816ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_random_bias_field.py_TestRandBiasField_TestRandBiasField.test_output_shape.for_degree_in_1_2_3_.None_2": {"doc_hash": "0e1820636077e49c6a94db66f259d4980bc596e824febbcf2b45329d26fb2ad9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_random_bias_field.py_TestRandBiasField.test_zero_range_": {"doc_hash": "2f906ee941e0dff21fd2345d2b54d38cbbdd6df9a5011909c2a088ab800c5f5c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_random_bias_fieldd.py_unittest_TEST_CASES_2D_ONES._coeff_range_1_0_1_": {"doc_hash": "cf1fb76316fd02131204aa2c510da8da961f70a59213e2b9ba08c707b5247ccb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_random_bias_fieldd.py_TestRandBiasFieldd_TestRandBiasFieldd.test_output_shape.None_1": {"doc_hash": "3189c93a37618fa4d3f67cbb29a889a0153d3f7f8053bbfc22e57512ad8c427a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_random_bias_fieldd.py_TestRandBiasFieldd.test_zero_range_": {"doc_hash": "5e96f4bd71d0e116b2db2aa3aea2b55b4265abd945b4ce3047c9dba8eb533a9f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randtorchvisiond.py_unittest_TEST_CASE_2._": {"doc_hash": "065c45b24e07e3d3b958010bb317199243481c2d5755f74423a874e7c1a15c9b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randtorchvisiond.py_TEST_CASE_3_TEST_CASE_3._": {"doc_hash": "a9f5010e184282cd091ec29e28b8f0b95d33ea76fd515754ed71bb5953a5df67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randtorchvisiond.py_TestRandTorchVisiond_": {"doc_hash": "c537137a4b771d017afa8f094c07613c1d4d203e886c1ac429192d875b80470f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_reg_loss_integration.py_unittest_TEST_CASES._": {"doc_hash": "ea3241349ffd346d4cbbac975546d13866618e8200b2ea53447aaad97604279a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_reg_loss_integration.py_TestRegLossIntegration_": {"doc_hash": "b69bc39358ec55d1b96bb86d2f5822b6ca8cab7088711b895981ce868fa235c1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_regunet.py_unittest_TEST_CASE_REGUNET_3D._": {"doc_hash": "7efbc6d5cf56b39a4cfc0231a4f95d4db7bb4c35d588374373b36f77ac4b3488"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_regunet.py_TestREGUNET_": {"doc_hash": "6317f924a722aae974ab13fb630abb746403ebe111ade5e2c162c40ac6c29c6b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_regunet_block.py_unittest_TestRegistrationResidualConvBlock.test_shape.with_eval_mode_net_.self_assertEqual_x_shape_": {"doc_hash": "f8fe762e7f5c4f170fc3c4f247b613c69edbbfd7840aa03495424e171649142f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_regunet_block.py_TestRegistrationDownSampleBlock_": {"doc_hash": "79c2fe1fa14feb094a064420a88bb11fc71b1811b658453b33f6c1ae57e39260"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_remove_repeated_channel.py_unittest_": {"doc_hash": "1f9714e9b9d5fa4ceb243e94e727694879141cd781eace6c66a7355ca55d5f55"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_remove_repeated_channeld.py_unittest_": {"doc_hash": "eb8db3ee33edc7105b779e9a250e0497d278702a0f6d5a7604803c3c49dfd1e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize_with_pad_or_crop.py_unittest_": {"doc_hash": "7c277fa99a81871a265b42c25065c44394a6bdcf26f4ce1fb536320a445f4b10"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_TestRotate2D_TestRotate2D.test_correct_results.self_assertLessEqual_np_a": {"doc_hash": "290dd7ef7a660d5d642bd87bfe1d297da34e55c3c5c245bfcf60b2e7fe2bf4fc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_TestRotate3D_TestRotate3D.test_correct_results.self_assertLessEqual_expe": {"doc_hash": "b00e61771d957e7f7f0c52d50b90c27bb516523b3d5960ff1cdf84fe8c034ae6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_saliency_inferer.py_unittest_": {"doc_hash": "8de9d438f70b775db80e0297bbb0019d2b784d9a45faf69546acdfd49e320b75"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_save_image.py_TestSaveImage_": {"doc_hash": "264658a0a43aba348a7c8678f859a3bfa0f7a18ee9ca75dfc935de9cb536578f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_save_imaged.py_os_TEST_CASE_6._": {"doc_hash": "4a20c960f0fbf5c11dfd4146b49c136fb0b527142722ad33c00a9c6020a596e7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_save_imaged.py_TestSaveImaged_": {"doc_hash": "4d77fa58600d927bf0b6fb56c2bf6d19a7582efa49e8b514876f2e5f07b87b92"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_unittest_TEST_CASE_SINGLE_VALUE_REP._": {"doc_hash": "6aad2e8ff585594fbafa688c104b58bc4439fee6f146063c25607f4890c4f86f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_TEST_CASE_1D_REP_TEST_CASE_SINE_SMOOTH._": {"doc_hash": "e06d3a27a28e5929aba1370d87466c812c830ee05e0904070988e3bf15638351"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_TestSavitzkyGolayCPU_TestSavitzkyGolayCPU.test_value.np_testing_assert_allclos": {"doc_hash": "312260a191f583a2eb785b7dcc7fb8c9bd12add046fd08ea4669b48f322e3350"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_TestSavitzkyGolayCPUREP_TestSavitzkyGolayCPUREP.test_value.np_testing_assert_allclos": {"doc_hash": "8031772b742a87f53aab2591679c9838269918146728c71e5cdc00f1be48d776"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_TestSavitzkyGolayGPU_TestSavitzkyGolayGPU.test_value.np_testing_assert_allclos": {"doc_hash": "739f1e32fbbb6eacc66e285c0524b98e82e7352b61131c88934efa63cbea40d9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_TestSavitzkyGolayGPUREP_": {"doc_hash": "58fbcb153bf8d5abffb0d5a806d9e9556aeffc983a45f7af35dab6e373e48517"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_smooth.py_unittest_": {"doc_hash": "ddb55d871ca2aa6c8ff39a3957dfba28a207d8afb4822195fe016dbd9365b431"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_blocks.py_unittest_for_type_1_in_relu_r.for_type_2_in_prelu_.TEST_CASES_3D_append_test": {"doc_hash": "d84a8fdb28de400c839b9d8318b7b138a696959692f5a9e8f3d67d0d3dfa5d1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_blocks.py_TestChannelSELayer_TestChannelSELayer.test_ill_arg.with_self_assertRaises_Va.ChannelSELayer_spatial_di": {"doc_hash": "6206a83458b452327041a4f86ae2b1793fe03fcccab608d1f672821d12465a20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_blocks.py_TestResidualSELayer_": {"doc_hash": "e66cc40a6fa1958edabc63d223b805cf3264e18d9d1cddd446f16f8ffb768841"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet.py_unittest_None_2.for_init_filters_in_8_1.for_out_channels_in_range.for_upsample_mode_in_Upsa.TEST_CASE_SEGRESNET_VAE_a": {"doc_hash": "95c44e36c7e753e2d1160941ca6c9b0e57c1db5f5f3c18d4189f7052e002f66f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet.py_TestResNet_TestResNet.test_script.test_script_save_net_tes": {"doc_hash": "49caa1e519c86ce15578241b2d782395095b87975464d8d98a0ed89d6037b0ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet.py_TestResNetVAE_": {"doc_hash": "bf7f8276b87e029dbd01a7f44e87cdbb1d1538d82c3273512901c42cbdc60073"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_select_cross_validation_folds.py_unittest_TEST_CASE_2._": {"doc_hash": "b149b35e4b3b8330d64ed0a7cd1d323f6ffc72580069578e8e267d5f7f93e63f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_select_cross_validation_folds.py_TestSelectCrossValidationFolds_": {"doc_hash": "76d5f48a453862eaca2a1a33b3db2a17e2b2d4fabc06780834661d3628d8d12e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_select_itemsd.py_sys_": {"doc_hash": "34f463d4731a6f33073dcf850551a913d3e6c1ab3818c77bdabf9f9f2d13f4dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_senet.py_unittest_TEST_CASE_PRETRAINED_1._SEResNet50_spatial_di": {"doc_hash": "f0abbfd691979a74dc9bebdfda5ad98a515787bc5c65494d8eb3fb6f6fddc8f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_senet.py_TestSENET_TestSENET.test_script.test_script_save_net_inp": {"doc_hash": "0c1e26f00756fc0c47ae4205b89d831f9c55a52ba9030cf08bfcf9dd4f486283"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_skip_connection.py_unittest_for_type_1_in_cat_ad.TEST_CASES_3D_append_test": {"doc_hash": "fb038aa66aac0a3f520f92a4b575addfdba70a9801746858d91688aeaba24909"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_skip_connection.py_TestSkipConnection_": {"doc_hash": "1a064f9dbd9ec78f5bda6eb43b1675747813e997b796f8c8dcdb14438c79233f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sw_device_TestSlidingWindowInference.test_sw_device.np_testing_assert_allclos": {"doc_hash": "fc36ce1cc8c61e7f8ef117aa3576f4c352895744b0709787be6e0bafa70086bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_cval_TestSlidingWindowInference.test_cval.None_1": {"doc_hash": "6877029f5f97ff8441c2152c9a1429411ccabdcbe63d564117e6555b387b2f7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_args_kwargs_": {"doc_hash": "088be45d5ad4ec06b28cb020492e13939587e231e6a215c92cfdb1f749fdd314"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcache_patch_wsi_dataset.py_os_TEST_CASE_0._": {"doc_hash": "1b9598522f94a9cf55235190c3ef446977d2da3f8f01e6eb99c35313ba370945"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcache_patch_wsi_dataset.py_TEST_CASE_1_TEST_CASE_1._": {"doc_hash": "694d12692c22d9a0af80b09648a555558401876294fbc90369475cfc378a914e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcache_patch_wsi_dataset.py_TEST_CASE_2_TEST_CASE_2._": {"doc_hash": "812568d73d1e305e852d31e1d0371491ea2e95a163bd84f9577d1805120288fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcache_patch_wsi_dataset.py_TestSmartCachePatchWSIDataset_": {"doc_hash": "fc568e3c48add339317b59ddd552f1956aa7fd73c9eb6e9d56d089345153775c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcachedataset.py_TestSmartCacheDataset_TestSmartCacheDataset.test_shape.with_tempfile_TemporaryDi.for___in_range_2_.dataset_shutdown_": {"doc_hash": "238967922d5e188337fb99e3683e79c499a93a0a27868a0842d30c4ed64979d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcachedataset.py_TestSmartCacheDataset.test_shuffle_": {"doc_hash": "92a36d356541714365c195930b5ec038a1260d06ac56b3ac4e01e884403f1388"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_crop.py_unittest_TEST_ERRORS._": {"doc_hash": "d03c226120ea47e4acd2d0497cc2976fd5f13d39a137189fa5e6d96c76fc6135"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_crop.py_TestSpatialCrop_": {"doc_hash": "1d8f24588be9f16b49b04bb1275938f9761ce2f0ca665bb10fb81c4fcc83c164"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_state_cacher.py_unittest_TEST_CASES._TEST_CASE_0_TEST_CASE_1": {"doc_hash": "bb982edd6fbfa07c38eee1a4fc739c60909e04b69586d739ce6156360beb6781"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_state_cacher.py_TestStateCacher_": {"doc_hash": "762b6e2ecbc68da32b93cdae20037ed288404258705d3c7aa70450b986b58d55"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensity.py_unittest_TestStdShiftIntensity.test_zerostd.for_nonzero_in_True_Fal.for_channel_wise_in_True.np_testing_assert_allclos": {"doc_hash": "04d225a00e794a245be530c1fb8c97a23cdd2f9e8377801e295a6517b6c969b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensity.py_TestStdShiftIntensity.test_nonzero_TestStdShiftIntensity.test_nonzero.np_testing_assert_allclos": {"doc_hash": "834740f6f378e92b206367519b792ccce2f6d6aaf7e6184e09c6fe08b0a6b657"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensity.py_TestStdShiftIntensity.test_channel_wise_": {"doc_hash": "ef675d4d23cd785cac402dbdacc346cc77c97279ee1f3ff689891bada2aff8ea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensityd.py_unittest_TestStdShiftIntensityd.test_zerostd.for_nonzero_in_True_Fal.for_channel_wise_in_True.np_testing_assert_allclos": {"doc_hash": "3a4c6bc82070b1d79bf0ddf6aa75327ced42ecffa1d20cb25ee94338c4c3bf7e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensityd.py_TestStdShiftIntensityd.test_nonzero_TestStdShiftIntensityd.test_nonzero.np_testing_assert_allclos": {"doc_hash": "a7738fb22774d599d0cd56ee38fea68fdd76ade91adad2a9aff136164a455a14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensityd.py_TestStdShiftIntensityd.test_channel_wise_": {"doc_hash": "561a412fa3bd9c220cd8f1c2d8f783f2583bca3fe61cbe471b46432d97e3e877"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_TEST_CASES_TEST_CASES_NANS._": {"doc_hash": "ec2f7eea5f8b29c9d4213f1e63f90b70290c7f53f4438d0b4421425b82a2e499"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_TestAllSurfaceMetrics_TestAllSurfaceMetrics.test_value.for_symmetric_in_True_F.ct_1": {"doc_hash": "0f3ca323f4e7148a538dcb2a191fda6d803240f5c6e096b24ff9e84b8a09f53d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_TestAllSurfaceMetrics.test_nans_": {"doc_hash": "a7c10d8972444253cc57611fc5ca373a4a4a75a8e8421e877aac35243aaa8f48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_testtimeaugmentation.py_unittest_trange.partial_tqdm_trange_desc": {"doc_hash": "2067b10bf7b73e03325fdcd117f87059d4a67830e94624f1c0cf8b592d83881e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_testtimeaugmentation.py_TestTestTimeAugmentation_TestTestTimeAugmentation.tearDown.set_determinism_None_": {"doc_hash": "1bdb5d261580ee31ebdbaf478fac074214adf05be7a6337b7486749b405c9f22"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_testtimeaugmentation.py_TestTestTimeAugmentation.test_test_time_augmentation_TestTestTimeAugmentation.test_test_time_augmentation.self_assertIsInstance_vvc": {"doc_hash": "520c28d56c684dcee7644c37558c7f4fd919c8f257675ca6ca5b0475355fc8b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_testtimeaugmentation.py_TestTestTimeAugmentation.test_fail_non_random_": {"doc_hash": "df1289b6bbdd6529c47515fe250e6279d6047f8c2a0502206135abc3d02d7193"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_thread_buffer.py_sys_TestDataLoader.test_values.for_d_in_tbuffer_.None_3": {"doc_hash": "cde67ff2975a408896e4eeb512148a6e160672d86b143b6044dbf507b1fef283"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_thread_buffer.py_TestDataLoader.test_dataloader_TestDataLoader.test_dataloader.for_d_in_dataloader_.None_3": {"doc_hash": "9cb8534774d52e96fc2a15c8caf931c34ae9a792651287937c8e5cea5ded99d9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_thread_buffer.py_TestDataLoader.test_time_": {"doc_hash": "09a961bac5fa0e0d840ed97ae4a3e5ac5a263bedb7e9b58095f93119cfbe45b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threadcontainer.py_os_compare_images___optio": {"doc_hash": "c67d8f9f5980354daffc52b45b9a0514638684c62c33f69d8bb4cb3c8842d74b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threadcontainer.py_TestThreadContainer_TestThreadContainer.test_container.con_join_": {"doc_hash": "20b8a45506f11de2031de2fd395129df3ee81b1740d5b0bbb31f1a78a8784f36"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threadcontainer.py_TestThreadContainer.test_plot_": {"doc_hash": "994196d81c41f0027164ad5fec13acbb9db3950df360a7b235bbccccb54870aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_timedcall.py_multiprocessing_case_1_seconds_bad.assert_0_1_wrong_cas": {"doc_hash": "0f538ab8db6c79ef9e1f7bcef72bd3849c00af458f68cab4355c49c7b0934988"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_timedcall.py_TestTimedCall_": {"doc_hash": "d5948cba40592fce94e4a7a8dcaaa1870918cf716f419355c34889a5f31e5624"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_pil.py_unittest_TEST_CASE_TENSOR_1._torch_tensor_1_0_2_0_": {"doc_hash": "0dfbc00503c692c47202369be21f7d50a7d0c596db9e7b462443f3f313d24c20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_pil.py_TestToPIL_": {"doc_hash": "d9c4c52f699675a4ffe0d1e8f9896895c758e95d20df6dd69499b7877bbf6b57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_pild.py_unittest_TEST_CASE__TENSOR_1._keys_image_ima": {"doc_hash": "3ad4da7cf2c69efc4e31662215438c9e6b4405b0038fa7dee14da9a6ae06bc3d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_pild.py_TestToPIL_TestToPIL.test_tensor_input.np_testing_assert_allclos": {"doc_hash": "ad28716ec5b80b4a0a3a22936651036f33d2daab5d52ccae1097f71cb79f9492"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_pild.py_TestToPIL.test_pil_input_": {"doc_hash": "2780437bac8e9802fc4dc74a27ca58f88857bab33faccef4fc2225ff7a0fc2ed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision.py_unittest_TEST_CASE_2._": {"doc_hash": "dc4bc7d495478852e6edde5baa53c43459989522eca9720d7b0a10d4659e7440"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision.py_TEST_CASE_3_": {"doc_hash": "6d7f9b012009f82c363ac7a1ccca3534f7b2b25530e629eaeb2b2010669a5aba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvisiond.py_unittest_TEST_CASE_2._": {"doc_hash": "bdc63f7250f4f366422b581daa533a098e30c46fce71b5f4ab7367931fa2c67c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvisiond.py_TEST_CASE_3_": {"doc_hash": "5deb853e83f18e5a71996b6d1479f8d8727a32301d3ef1fad96c40e3f27f3d4e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_train_mode.py_unittest_": {"doc_hash": "3f10953c62c270fb2b45ec568fecb5479a817272f5f094882476a775ec246122"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unet.py_unittest_TEST_CASE_4._4_channel_3D_batch_": {"doc_hash": "bad68263db80900e36f9c9c0cd14529b9993325a7ebf794d3ee16dddb8de152a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unet.py_TEST_CASE_5_CASES._TEST_CASE_0_TEST_CASE_1": {"doc_hash": "0b473b1a72bb68521ccb4492f82d6270279890718598445b13343ad44225e98a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unet.py_TestUNET_": {"doc_hash": "5bb1778b12e3340cc89a3f05f181a52d82295bf3fe1abf4ba14d7d13493d475b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_varautoencoder.py_unittest_CASES._TEST_CASE_0_TEST_CASE_1": {"doc_hash": "3f03437038ceb215e7317b0fc5ca9d6e4f7e93c0a7b76ccd511960fa89c04053"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_varautoencoder.py_TestVarAutoEncoder_": {"doc_hash": "f6be8516f699725c0e385422dabac763d2afa39ba498f77e1db17d83c74560d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_cam.py_unittest_TEST_CASE_3._": {"doc_hash": "c8642f36015efef5e5160ab7e746b1520d7d246cb641383240ea4991778da21c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_cam.py_TestClassActivationMap_": {"doc_hash": "067165446db50106b9a08a85d8729e583ca0ac35fe77e5388e7799c7660c3e7b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_gradcam.py_unittest_TEST_CASE_3._": {"doc_hash": "0b6c6b9eb7027aba242e3bd074b903726634d4270e3e34a5ced36e23ce7e5ea1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_gradcam.py_TestGradientClassActivationMap_": {"doc_hash": "850afa955bd51b763357b43840e8f5ed01c2de543c57bdd2b6495c2f8af94c1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_gradcampp.py_unittest_TEST_CASE_3._": {"doc_hash": "c4e4243fff9c48d6020a0b535d207054e702d70455a216dd56a7dc97010139c4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_gradcampp.py_TestGradientClassActivationMapPP_": {"doc_hash": "8dbb22693511f989f3c4f5d42ed9c75a62096f685a336609b603c1876208e6e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_unittest_LOW_POWER_TEST_CASES._run_with_BUILD_MONAI": {"doc_hash": "1e2664b24b7708d5ca737cbd12ae8dde70bbdcd4e9eafa16758e4360a31bfe03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_CPP_TEST_CASES_if_USE_COMPILED_.TEST_CASES_CPP_TEST_CA": {"doc_hash": "dbc7f149329cfd6552f0fa71669fa8888c8e1984cfc45ed11aa47279e0fbc0e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_TestWarp_TestWarp.test_ill_shape.None_2.warp_layer_image_torch_ar": {"doc_hash": "6e156427697cf44527a49368222f8a1355190cdb595795f5788aa1fb79460883"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_TestWarp.test_grad_": {"doc_hash": "d59c983cfc4db6a2718d012ea6e0e210d8bc8e6b7c7b28b79c87e12422e7aeae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_with_allow_missing_keys.py_unittest_TestWithAllowMissingKeysMode.test_map_transform.for_amk_in_True_False_.if_not_amk_.with_self_assertRaises_Ke._.t_self_data_": {"doc_hash": "cb6e61dfbd73314b75ef3aad892a97758e6fd51a72e7e18dd3b24b7d82c12165"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_with_allow_missing_keys.py_TestWithAllowMissingKeysMode.test_compose_TestWithAllowMissingKeysMode.test_compose.with_self_assertRaises_K._.t_self_data_": {"doc_hash": "01139a1baf93b9ea91196f793432cf9df0a3895521ce480d951db9f541ca9797"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_with_allow_missing_keys.py_TestWithAllowMissingKeysMode.test_array_transform_": {"doc_hash": "7290de0092561db42c9578e32a78cd87bc620f1f640e6cd22bad98931d06f730"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_write_metrics_reports.py_csv_": {"doc_hash": "01833e4776dfdfb983e92ec991b5c5f2e994b924b3c6572bcd3e70671f521068"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zipdataset.py_unittest_TEST_CASE_4._": {"doc_hash": "08b6e70cbf62bb27769403b53079c3b32f704ed3b25cbe53a8bd905e37e8f67f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zipdataset.py_TestZipDataset_": {"doc_hash": "21c11b983f9239b4112a6fa7468776fd07f28d59e8cce446a7c20732e07db217"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/testing_data/cpp_resample_answers.py_csv_": {"doc_hash": "3c125b69d19234655b9315edd696cbebf6223524ddc2959317bdd0e949193dd0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/testing_data/integration_answers.py_np_": {"doc_hash": "68599a3bf457bee442a1938052b75b4a98c4cc464c0478294d3a3d82ac1c6bbc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_datetime_skip_if_windows.return.unittest_skipIf_sys_platf": {"doc_hash": "9891be69c911e786f41b9ef39d71e2961acf0179cd5e34e040a63f1347277e57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_SkipIfBeforePyTorchVersion_SkipIfBeforePyTorchVersion.__call__.return.unittest_skipIf_": {"doc_hash": "e7841bf863d727961afb1e29cb61d78d26cd798526f3c154eca28c41b1c903b4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_SkipIfAtLeastPyTorchVersion_SkipIfAtLeastPyTorchVersion.__call__.return.unittest_skipIf_": {"doc_hash": "6e36d188fef3ed64b754a8d21b7e1c4c34ba104a2e69c14f7f4437d5901974d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_make_rand_affine_DistTestCase.__setstate__.self___dict___update_data": {"doc_hash": "aa137aa5ac5903ca44cafd1c5c958fefa15e3f24e3e56f0b4dd6f3e36882fde6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_DistCall_DistCall.__init__.self.verbose.verbose": {"doc_hash": "2c17f3f6161e67d2f71e6cb9033d346590707c6376f708b1689f83e0020f3808"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_DistCall.run_process_DistCall.run_process.try_.finally_.try_.except_RuntimeError_as_e_.warnings_warn_f_While_clo": {"doc_hash": "711645cf666f04c59419c035979296ac678aa57febb9f1b9f66ab005ddbd2082"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_DistCall.__call___DistCall.__call__.return._wrapper": {"doc_hash": "05f2c58619ec4104a6d5d5484eaba39ea274307a72c8bfa5911e1cb7f68ab1dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_TimedCall_TimedCall.run_process.try_.except_Exception_as_e_.results_put_e_": {"doc_hash": "8f845775de00b72f7e813fa9ccea2609bdf8aec0f0ac31b81f52ef793e270f09"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_TimedCall.__call___TimedCall.__call__.return._wrapper": {"doc_hash": "10741bf3038517aff6c510770cf3b9a1fbbf0659a1b40fe02f85e7ff8561e5fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py__original_funcs__call_original_func.return.f_args_kwargs_": {"doc_hash": "fdda1408485cddcc3d504624d59a34ad4c609f7ee66c73fb2e2bd64de1a93cc0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_NumpyImageTestCase3D_TorchImageTestCase3D.setUp.self.segn.torch_tensor_self_segn_": {"doc_hash": "814f4806b84977f0b7f7a9cd7d5d24037c3e19b6ea492726c7387cc80e7107f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_test_script_save_test_script_save.for_i_r1_r2_in_enumer.if_None_not_in_r1_r2_.np_testing_assert_allclos": {"doc_hash": "bd6ab193339b9a2b69c97fd063ac20c4f3e7ddc82236b9bd73967cc55b773412"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py__Version_0_19_get_root.return.root": {"doc_hash": "82fa0c85cbc7c0384e0e0ba382598cf66a92347c0a0cc89580af4a77d00fee25"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_render_pep440.return.rendered": {"doc_hash": "01c58b16a9d2f48e661b642e5765298512fe65731c12944e3d8aa7eec9436b43"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_pre_render_pep440_pre.return.rendered": {"doc_hash": "068e049023aaab824be0d73855e398d30258feb5e3bb632365748c5e1a4e90eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmds_version_cmd_ver_get_cmdclass.if_setuptools_in_sys_mo.else_.from_distutils_command_bu": {"doc_hash": "c8e402f8dc78bf342b152a6b691e971e8aa2717b30c5601f2bd7bd281d42ec3a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_build_ext_get_cmdclass.cmd_build_ext.run.write_to_version_file_tar": {"doc_hash": "f905a223aa951770fd030bd6e05830c702d1e3e81832360427986c65dca9723d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmds_build_ext_cmd_b_get_cmdclass.if_sdist_in_cmds_.else_.from_distutils_command_sd": {"doc_hash": "6f1cc06e745b451d11be008b4389e0bfb92b446b3e6c8217c2908620314cfa15"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_extensions/__init__.py_load_module_": {"doc_hash": "6ec454f48e81b85d01f6f84fa55c4504b9d74600e556ce5a7522ec574e12dc54"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_extensions/loader.py_platform_timeout.try_.finally_.if_timer_is_not_None_.try_.finally_.pass": {"doc_hash": "ac93059b3de98a8626777fcbbd17a0cea40dcf477ed3ca70927c34081c409811"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_extensions/loader.py_load_module_": {"doc_hash": "7dd85282f8bb4d96427b04277ce9870fe61d2f02a094b59020ca0c8f0d65ac24"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/interaction.py_from_typing_import_Callab_Interaction.__init__.self.key_probability.key_probability": {"doc_hash": "c5b813a1305a3efb477dd4109dfafdd58b2c1a37c0e0d2fee9b224869b4e5449"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_Fetch2DSliced_Fetch2DSliced._apply.return.image_idx_idx": {"doc_hash": "a724d4f1b0bdea0bb75270252cc33b285f62fc6e53306a451289528777dfa0cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_Fetch2DSliced.__call___": {"doc_hash": "215b0ba06eb3b470f9705c1e3a455484f11681b6a72b8e883c798575f8b04358"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/__init__.py_download_mmar_": {"doc_hash": "ada1c93d38cdaac6e022b6acd42fdf173f6de16e992ae2d24a4886227474134e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py_json__get_model_spec.raise_ValueError_f_Unknow": {"doc_hash": "29885bd1e6165bea74019d38fc74e59fb8c3b332f7fb61011d239aa531a069ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py_download_mmar_download_mmar.return.model_dir": {"doc_hash": "07687d59875046a1a0694b97c96c1f47564b4d9166ff90668bcfab846bba7a48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py_load_from_mmar_load_from_mmar._parse_model_config_fo": {"doc_hash": "ff9682059b192dba059fbfdc0b69f7c28c8d9954846571ce9e4f8368270d28d9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py_load_from_mmar.if_model_config_get_name_load_from_mmar.return.model_inst": {"doc_hash": "9809e355bde48be8e5e8b7d96eaaa091292ce24fe933b5f1a3a6417a1439379c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py__get_val_": {"doc_hash": "fb291d3bf64be37c4a6ad67b660a8dea1112c845b6c3adb8068f4d6790b6bad0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_hashlib__basename.return.os_path_basename_p_rstrip": {"doc_hash": "086afc8d9c3bd5eef5e1ebc36adead366a07d202492896f7338c3cb8ab5dec80"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py__download_with_progress__download_with_progress.try_.except_URLError_HTTPErr.raise_e": {"doc_hash": "0a3081ab0cc01bdb25bdf82d7deb084ca7fb0e99ef9a523533b585e81db4bf64"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_extractall_extractall.raise_NotImplementedError": {"doc_hash": "d273d55843673543322ba10631ed5906005f6587e9192dea60c0f154fe37cd5c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_os_CSVSaver.finalize.self_reset_cache_": {"doc_hash": "32cd24bf52ff96f9c7a15b517edb537638b9c54d4582650cb790ebe599a156f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_collections.abc_pd___optional_import_": {"doc_hash": "d4f44ebcf35a6c5ef4694912d306dc54e2c89388c805fe30b7aa8b18e3d1ef38"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheDataset_CacheDataset._": {"doc_hash": "cbe1d6f33bbe7ee628da2b9940ef06c1d322f4dde48098bd572342fd4ec7769d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheDataset.__init___CacheDataset.__init__.self._cache.self__fill_cache_": {"doc_hash": "102fb1dc658a425623dc9b0d0df624d56c7bd4a543e442ccddc4eaa8dc1f6aae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_NPZDictItemDataset_NPZDictItemDataset._transform.raise_AssertionError_Wit": {"doc_hash": "6175e365ef2df8e2b1a1db726b49dc85a15ad166bbd21514455f686be500bf02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CSVDataset_CSVDataset._": {"doc_hash": "1abcda0baeb564b647237b8090fafe1e3911c08d51dcc8b350ca8d74e13724d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CSVDataset.__init___": {"doc_hash": "9c698601e1a6cb199e98eb45b4a8afa51bb4e363e4211e45578484c3f10db119"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader._get_meta_dict_NibabelReader._get_affine.return.np_array_img_affine_copy": {"doc_hash": "abe68909a394a911ce3c5737e2f123fdce214cb80d15d4c4f115b3d68295a989"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader._get_spatial_shape_NibabelReader._get_array_data.return._array": {"doc_hash": "ffdea9efe269b22284435278edc8009b99068627e01b39251e14c403558767c8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_math_IterableDataset.__iter__.for_data_in_self_source_.yield_data": {"doc_hash": "438aa9036fe6b5ce88f49aa761e151e02813294e6715a71ca57b7ad4e959b0b4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_CSVIterableDataset_CSVIterableDataset._": {"doc_hash": "47b02aed6c245ddc485f9b154b1ab6cc24cc4e648ebd039e74e48ecf4643552c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_CSVIterableDataset.__init___CSVIterableDataset.reset.return.self_iters": {"doc_hash": "592a9175c2b54a3423c8ee01f3ca7bdad8bd9cadf85bf1033e8601d48748fdb8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_CSVIterableDataset.__iter___": {"doc_hash": "d0e0038c82eeb42ddeef516a29d822435909f6775500387de952e47db78898b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_from_typing_import_Dict__NiftiSaver._": {"doc_hash": "86f2e4880bd21a33ada6231945c363bf57e741a17df8f7e2d5e50cef5a6bb11f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_NiftiSaver.__init___NiftiSaver.__init__.self.print_log.print_log": {"doc_hash": "e384de29882ec1f0afa1b695c32ebbff3c9305892de058bf54659e748ab7021b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_NiftiSaver.save_NiftiSaver.save.if_self_print_log_.print_f_file_written_pa": {"doc_hash": "0a1c2e3ed2d718cee07d0d561e5711ac9dc8f37a6cf8bdee89152b4a1a20da76"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_PNGSaver.save_PNGSaver.save.if_self_print_log_.print_f_file_written_pa": {"doc_hash": "703b0835c47c30a2f4111efc8c9fea2fa979d03032cef63cb5ae8fbf43c17cfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_decollate_batch_decollate_batch.if_isinstance_batch_Mapp.return._dict_zip__dict_list_ite": {"doc_hash": "53fb8376bb38ed5dbeed3b8ccc3641cea53b0a389c21254e7ecb93236c3c4a19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_decollate_batch.if_isinstance_batch_Iter_decollate_batch.raise_NotImplementedError": {"doc_hash": "6c3d051014d42093ef76b54f0029a29cbf356d958b29ce91158cf8843977990e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_partition_dataset_partition_dataset.if_shuffle_.rs_shuffle_indices_": {"doc_hash": "2d8dc737bae18833039eddd060222d0e32a369d4e8cdc17b2ef1660375f58763"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_partition_dataset.if_ratios__partition_dataset.return.datasets": {"doc_hash": "d4bd76b298a4a185c87ca99104f38e49bd2165a076a0b7ff7d8019f3e83543a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_json_hashing_sorted_dict.return._k_sorted_dict_v_if_isi": {"doc_hash": "a9dda6994f12bd84460d376be08901557fef52ae210c8fc5e86e7b8dbf69f481"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_convert_tables_to_dicts_convert_tables_to_dicts.data_.df_loc_rows_if_col_names": {"doc_hash": "3f1be9de5c7ebd1008903662bf26f5369ad5e79a629fe1e1c69c7c074e099f92"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_convert_tables_to_dicts.if_isinstance_col_types__": {"doc_hash": "edbd0a5cf81a9ef6841af82dab3a58044c722c41b0e2c4a4a463ba3b44a33686"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_IterationEvents_IterationEvents.INNER_ITERATION_COMPLETED._inner_iteration_complete": {"doc_hash": "5095dc203858ada566d41f6bf3e96e568a384e7cb87c4020066690f77e9fb12d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_GanKeys_get_devices_spec.return.devices": {"doc_hash": "8cac0e2b1c099d9c34671ffb0b859824e02811f26abf80d4a5a2aa83d96651e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_default_prepare_batch_default_prepare_batch.return.batchdata_CommonKeys_IMAG": {"doc_hash": "3931ae37aba28eb45d31fb7e1db58cffb4da44198e7a9d8c8384a535d23e4b2e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_default_make_latent_": {"doc_hash": "c947a08a3e04ce6ba602190b109e4ff54a165f0a38999f483898ddba100dbba1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow.__init___Workflow._register_post_transforms.run_post_transform.engine_state_batch_engin": {"doc_hash": "344c2cb3d86aa5a1005e1e4bebd299bc2aee1a4405415a519a47e592e51ad4fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/classification_saver.py_ClassificationSaver_ClassificationSaver.__init__.self._filenames._": {"doc_hash": "654316e442d6e089ad11146b224284f5bb6802f571333eaba6bda56eb9e79b71"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/classification_saver.py_ClassificationSaver.attach_ClassificationSaver.attach.None_3.engine_add_event_handler_": {"doc_hash": "6a737d6bd089e294151b558d2232cc242169b5a92cfcd0803ed2085272b7ec71"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/classification_saver.py_ClassificationSaver._started_ClassificationSaver.__call__.if_outputs_is_not_None_.self__outputs_append_outp": {"doc_hash": "cc94cac1de1bf025fad0a5e00e66c1a72d6f64b9fc1e6b982afc762eac38088b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/classification_saver.py_ClassificationSaver._finalize_": {"doc_hash": "c0ebe5c0206010d8fbe72ebd5f5e5d71b1c0f67060a3e7c357c81fd4f812f0e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/confusion_matrix.py_from_typing_import_Callab_": {"doc_hash": "2370b55912c20663c3dbf7f3dbb3eb7f54f93d24ad3593cafd2a649d7f19caa4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/ignite_metric.py_warnings_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "c634516bb693b7c0ee196ab456d864c04ee8ac52b0b9dfe1a2f47759bfb1d8e2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/ignite_metric.py_IgniteMetric_IgniteMetric.reset.self_metric_fn_reset_": {"doc_hash": "b2a38c654086dbcc40d40fb0c3a9cf844c0638373d2e15446600b7eed436987c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/ignite_metric.py_IgniteMetric.update_IgniteMetric.update.self_metric_fn_y_pred_y_": {"doc_hash": "3b14d2746b45ac55e7a4bc11fe5d1c46d3afeb70d815c31c6100ad35c2bc3c40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/ignite_metric.py_IgniteMetric.compute_IgniteMetric.compute.return.result_item_if_isinstan": {"doc_hash": "39dbba417f8add7c33e4886b33598487eaf7ebfa27c081752ac4514e40e8337c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/ignite_metric.py_IgniteMetric.attach_": {"doc_hash": "b5d3cb01759fd46886b092cc5498d3421684839de9d9627f99f94de4ac84b74a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metrics_saver.py_MetricsSaver_MetricsSaver._": {"doc_hash": "49c0788ec9e6e2a975fcf4f1a467af1e442dbb0e6b4c4c3c44204d8681c83fcc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metrics_saver.py_MetricsSaver.__init___MetricsSaver._get_filenames.if_self_metric_details_is.if_issequenceiterable_fil.self__filenames_extend_fi": {"doc_hash": "39a5f3d67b0ffe1e59435ff03d0a0ace12cdec76a7465b8d8e5169669c1c5574"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/post_processing.py_from_typing_import_TYPE_C_": {"doc_hash": "c64cfc871a62a51769971647cc8649068f208fce6f2c466718d50e20c8ba64bc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/regression_metrics.py_from_typing_import_Callab_MeanSquaredError.__init__.super___init___": {"doc_hash": "39cfb9d60e876de9c5f3422cd2628775f411894cf7e13cc1cb6984f202cdce11"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/regression_metrics.py_MeanAbsoluteError_MeanAbsoluteError.__init__.super___init___": {"doc_hash": "ea3630f2ebdc729fe81360e947d56f7ba693f0af2a9021dfa326d7f8f3778d38"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/regression_metrics.py_RootMeanSquaredError_RootMeanSquaredError.__init__.super___init___": {"doc_hash": "07e773cb1ff79e8209b1b44e6b409840580161ccfdf75804671ee68455d44b75"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/regression_metrics.py_PeakSignalToNoiseRatio_": {"doc_hash": "60b48bd22f666018df664095cd09a60002727935b30859ac02ff498ef53bface"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/roc_auc.py_from_typing_import_Callab_": {"doc_hash": "bf59990879021389a77df4b821e7336558659b556c6723df0e32fc3971d35711"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_SegmentationSaver_SegmentationSaver._": {"doc_hash": "3eac5b3ddfd68fb21d8c3340b84ac435066a5763cb523a08d11c815a9e66fe0e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_SegmentationSaver.__init___SegmentationSaver.__init__.self._name.name": {"doc_hash": "84a7675982c6723fe280e693583148eb533f74ca24135d398451837ff802b03b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardImageHandler_TensorBoardImageHandler._": {"doc_hash": "04c894e0cff2550955f621ae073fff24953cb081d96ca533776e7fe4eaad3253"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardImageHandler.__init___TensorBoardImageHandler.attach.if_self_epoch_level_.else_.engine_add_event_handler_": {"doc_hash": "866b4b0c9260644d5012d236a64141b087cf2138d6a15ad54cd474b36d7116bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardImageHandler.__call___": {"doc_hash": "ddf76ca216e13fb681bac4db956312d6badc05370c9100547dc71ca3dd215515"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/transform_inverter.py_from_typing_import_TYPE_C_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "1086a6b662016a1692c083611c4546dc4abb4db1c827f1be09ff95549f4b1280"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/transform_inverter.py_TransformInverter_TransformInverter._": {"doc_hash": "0d4b5d1c4c264b12206c31596e44db4fa4545de3a4a16d804cba26681584aca6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/transform_inverter.py_TransformInverter.__init___TransformInverter.__init__.self.meta_key_postfix.ensure_tuple_rep_meta_key": {"doc_hash": "75c1d78f9b2f0c43eff4a916cd646af789c0ac8213bc37a3b487cee5cd9cfdd2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/utils.py_write_metrics_reports_write_metrics_reports.if_not_os_path_exists_sav.os_makedirs_save_dir_": {"doc_hash": "d552364cc26d2ab6ae25f3294c6bd6e7190e086a14837fa6ea6159faa283b2eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/utils.py_write_metrics_reports.if_metrics_is_not_None_an_write_metrics_reports.if_metric_details_is_not_.for_k_v_in_metric_detail.if_summary_ops_is_not_Non.with_open_os_path_join_sa.for_i_c_in_enumerate_np_.f_write_f_class_labels_i": {"doc_hash": "af5554cb4cbcc74ce513ec9cc8a988e48d2ab8c57d28421846e322600775340a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/utils.py_from_engine_": {"doc_hash": "61e83fb9c4d1b33e5087d9af81e2c8a54a3f1dbc3bad3bc0052c823f4ad866fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_MaskedDiceLoss_MaskedDiceLoss.forward.return.self_spatial_weighted_inp": {"doc_hash": "947cb5051882f63dea98846b1680d30b2f1019b3a1cbd875b7d75d565928a636"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/spatial_mask.py_inspect_MaskedLoss.__init__.if_not_callable_self_loss.raise_ValueError_The_los": {"doc_hash": "5f4e06134940c88ee94e0d778c35c72f38167c2b52615a6f06fb8b341aedf649"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/spatial_mask.py_MaskedLoss.forward_": {"doc_hash": "bab7b03e232276b4316f372a40c13b68b14154697b2f6e085a7c343e1e2bfc4a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_warnings_ConfusionMatrixMetric._": {"doc_hash": "62741888e1a931798b78c867cd04674819bd7c19dc0430c864fcbb409db37841"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_ConfusionMatrixMetric.__init___ConfusionMatrixMetric.__init__.self.get_not_nans.get_not_nans": {"doc_hash": "c036de823fe87bc31c7267ae7439abd2742d21799355dbb3b547c6d28d6e1cfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_ConfusionMatrixMetric._compute_tensor_ConfusionMatrixMetric._compute_tensor.return.get_confusion_matrix_": {"doc_hash": "b906fbf04cce4cc61351d91abd48fd0c0bc4b6ad1f82012538e81b162fc8f455"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_ConfusionMatrixMetric.aggregate_ConfusionMatrixMetric.aggregate.return.results": {"doc_hash": "b1befc04afd4e614a1afbbe458e76b7038be830798df91f207b29ca87d60d856"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_warnings_HausdorffDistanceMetric.__init__.self.get_not_nans.get_not_nans": {"doc_hash": "a58884af76b6448fa328a5a6ffd4cf0bfa61399679c2aa8a869e4dfdde75db7c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_HausdorffDistanceMetric._compute_tensor_HausdorffDistanceMetric.aggregate.return._f_not_nans_if_self_get": {"doc_hash": "b48dde4904b674b19b33a7966d4bf29ca0f3a900b17948d9a7e53469de17c358"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/meandice.py_warnings_DiceMetric.__init__.self.get_not_nans.get_not_nans": {"doc_hash": "985ed5dd5b6a9a07e00a7d929bb7d6fe751b07ad58bd070a52764226ff2c23f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/meandice.py_DiceMetric._compute_tensor_DiceMetric.aggregate.return._f_not_nans_if_self_get": {"doc_hash": "7f3cd7d968c62a768220cd0dd36fef372d51d825648e119edf6ab86a61535e41"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_from_abc_import_ABC_abst_Metric.__call__.raise_NotImplementedError": {"doc_hash": "4c9e8ba2151bed410adc0e1068e31ae0e9b4d5d17f5963301bdc783f0ed30b3b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_IterationMetric_IterationMetric.__call__.return.ret": {"doc_hash": "f60996d2f519ae25afbb69bbc4d9bd2f90ef4722c7aa1d7f662d2d89a38f2d48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_IterationMetric._compute_list_IterationMetric._compute_tensor.raise_NotImplementedError": {"doc_hash": "f70a26294a0f6c3bbd72a59f580e011023783767060a538255c80d84abed18dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_Cumulative_Cumulative.reset.self._synced.False": {"doc_hash": "10bd4dc43e64c5d7c3e0454125004ef7a433cc0544d152a8aeb09ecb35fb7581"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_Cumulative.add_Cumulative.add.self._synced.False": {"doc_hash": "79e3cc130cca1ad7390982f7a1caa6787e2fb4e6f6ad34cc9f896c9960681b78"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_Cumulative.aggregate_Cumulative.get_buffer.return.self__synced_tensors_0_i": {"doc_hash": "a65a0fda1ba50c56063ca804d60e4348a330ca3cd0f4b3d73d387f1b1d65fae4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_CumulativeIterationMetric_": {"doc_hash": "50569f5f2e8584803b3c1a842f95ec1e7de2b66fe54ec2ba3b70c07e108f9d47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_math_RegressionMetric.aggregate.return._f_not_nans_if_self_get": {"doc_hash": "aa09a666415076449b96e4f8168adc082a9b7caef44284d42527381ba9b1f79a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_RegressionMetric._check_shape_RegressionMetric._check_shape.if_len_y_pred_shape_2_.raise_ValueError_either_": {"doc_hash": "4fb40e1e4ef14de006dee6a707458c7663343f1aa2e351a8360d5dc0c6dd8d8a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_RegressionMetric._compute_metric_RegressionMetric._compute_tensor.return.self__compute_metric_y_pr": {"doc_hash": "504be40481343cb014cc854260a1e2ed3392c920e3f760cde1fd6ec17a743867"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_MSEMetric_MSEMetric._compute_metric.return.mse_out": {"doc_hash": "731564eae4bdd66c1dfb80fc792d0e95409a3c13717531216d59bea26e9a9d98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_MAEMetric_MAEMetric._compute_metric.return.mae_out": {"doc_hash": "34cdc1176d0b4c5cc81930cd45f9b344859f1d622ae7d0bf2a40887c330682f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_RMSEMetric_RMSEMetric._compute_metric.return.rmse_out": {"doc_hash": "6524f27d9aab24861b56b18ce68951487041916df70b63e51605dec24dc0a5c1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_PSNRMetric_": {"doc_hash": "bf792ebeb768f909f3c1ae40ab8a533bb4b172f6651febf1bbaffd9ea96d608e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/rocauc.py_from_typing_import_Union__ROCAUCMetric._compute_tensor.return.y_pred_y": {"doc_hash": "97f81be69e12e8d56c4546a50d58499ba401d70fb0e3173a441b2dac0769e577"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/rocauc.py_ROCAUCMetric.aggregate_ROCAUCMetric.aggregate.return.compute_roc_auc_y_pred_y_": {"doc_hash": "e21f095c22d5f3e802730c12fdbee8fb6f112ff31758748548049ba7ee599d38"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/rocauc.py__calculate__calculate.return.auc_nneg_n_nneg_": {"doc_hash": "44efb826ce6b0493db889860d38f2d349fc5f1633ea75dde0b12089ce9eeb7cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/surface_distance.py_warnings_SurfaceDistanceMetric.__init__.self.get_not_nans.get_not_nans": {"doc_hash": "aca98448e6acd3174544e2302824fcf683589ffbf4e4c79161241de15c2f4a67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/surface_distance.py_SurfaceDistanceMetric._compute_tensor_SurfaceDistanceMetric.aggregate.return._f_not_nans_if_self_get": {"doc_hash": "10bf98e415926878a2e07b771d45040fdaf70caa3ccae4cdb9a83671d9020a98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_warnings___all__._ignore_background_do": {"doc_hash": "15b20f55531247cba3986aa7110ffad680eeb0c095298a19285982f7671c5b86"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/__init__.py_copy_model_state_": {"doc_hash": "6bf954279ef961d332ea99c0ffcf465c0cab8d9ce4ac21099b04fc9a4c7f23f4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/aspp.py_from_typing_import_Option_": {"doc_hash": "6bea2195a122a61282c9aee7f6d3525c3e8689e24bd87851d2f8ce8166d193a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/crf.py_from_typing_import_Option_CRF.__init__.self.compatibility_matrix.compatibility_matrix": {"doc_hash": "545354a29436ec8f713e61160fe04bfadfce3ed907f0ca74d1112205b302ff4c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/crf.py_CRF.forward_": {"doc_hash": "8076bf8fc50a0a1515f8bc686a89e3b617dd41ba08591ea891784ed975c58b6c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_from_typing_import_Option_UnetResBlock.forward.return.out": {"doc_hash": "33389949c61deba556c891ea8a74ad1bee392c5a2591fc79bdfe5a832752736e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetOutBlock_get_conv_layer.return.Convolution_": {"doc_hash": "15b4048f2b6461d15cbd40703f37ae42ae58f1d96767079c901244aa6a0bde02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/segresnet_block.py_from_typing_import_Tuple__get_upsample_layer.return.UpSample_": {"doc_hash": "ac651ac4365829883a19841623322b4a4681faf0247f7dc8c76aed7c04cc9655"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/gmm.py_torch_": {"doc_hash": "5e8d4d4cbcacf5d2797a60ebe850ba0ef05143b676487c06c4b082bd518249bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/utils.py_from_typing_import_Option_get_norm_layer.return.norm_type_kw_args_": {"doc_hash": "45b9288933dea40ea990249dfc75753e86b11afafc74b3e0bb86c75deecfd767"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/utils.py_get_act_layer_get_act_layer.return.act_type_act_args_": {"doc_hash": "4ec3d5e0d862dd5acdc8fde169c431434c4eb967d7f9f6f8c3e4b2cb52a20abb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/utils.py_get_dropout_layer_get_dropout_layer.return.drop_type_drop_args_": {"doc_hash": "b3244584df5afb39c9fbd70f5c4e44506c44a294ceae57de629d939f5cf73fd4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/utils.py_get_pool_layer_": {"doc_hash": "c5e0eeff698728c6b9e87dd0039c2a5c5703b02d9b683c2695128cec0402c469"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_re___all__._": {"doc_hash": "5c5eebecfcca814a5513da36ac354cf60b65dd34aed0f311e6ff3bde43d48742"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__DenseLayer__DenseLayer.forward.return.torch_cat_x_new_feature": {"doc_hash": "783f1d351a8d4be037d5c49ce18244d89058043dd432aba66f3716b61255bba4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.check_kernel_stride_DynUNet.check_kernel_stride.for_idx_k_i_in_enumerate.if_not_isinstance_stride_.if_len_stride_self_sp.raise_AssertionError_erro": {"doc_hash": "682b6c0a29bbfd33c1da1c28d02f3afb1d04093b6465b68fdba706eb819bd6b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNet_EfficientNet.__init__": {"doc_hash": "970eff5c39e5aaddac9e92df2640cda2ba28e26807aeb9ab0efc37ab29c397ea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNet.__init__.__EfficientNet.__init__.self__initialize_weights_": {"doc_hash": "0f8077309b1d9783e51a6f744d5444723c350992bee9eaa291f5885161462bf5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__make_same_padder__make_same_padder.return.nn_Identity_": {"doc_hash": "d8b91a2f959c7efbc3aa4867c14a91134d800a9dfbd143449f8f9c12f8512f91"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_BlockArgs_BlockArgs.from_string.return.BlockArgs_": {"doc_hash": "5f989fcdf4266f17a6c98a899a1e08ab7a4eaa5d675d4031d94c6f0b69d572e1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_BlockArgs.to_string_": {"doc_hash": "0efe39e2d82eeca7135295fa247e3e7e59b83aacbf90584df3888257e5e807d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/netadapter.py_from_typing_import_Any_D_": {"doc_hash": "f4f38df9f2e9e6ba27c5cd5fab8b16b3487d0ee384203497a3f79e84705cc787"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_from_functools_import_par_get_avgpool.return._0_1_1_1_1_1_": {"doc_hash": "3dc38fa7837dc0f8ceb0dde8c60c652025765815a3e307929b3389ba32e6dc47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_get_conv1_get_conv1.return._": {"doc_hash": "04ab90ecf597888b18f2feb7ef361f873cc82ed40b7f26b467841bc2656be0f0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNetBlock_ResNetBlock.forward.return.out": {"doc_hash": "818fcd5be4baa0db47214d11ba780085c7e84ec03d0149f11bb259a86b4d6991"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNetBottleneck_ResNetBottleneck.__init__.self.stride.stride": {"doc_hash": "f2325def3ba0498719dba7b954baaad4e9257171c6bf655c1b3191ae89b24115"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNetBottleneck.forward_ResNetBottleneck.forward.return.out": {"doc_hash": "00becb3f5a022af518e3ee86310e1c4530c3b91e92b405edefe4947d0f656a15"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNet_ResNet._": {"doc_hash": "fd34ccc2e10e617b73252471cfe6a2131e5ed5ab8d1bb24ddd9c4cd1855490cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNet.__init___ResNet.__init__.for_m_in_self_modules_.if_isinstance_m_conv_typ.elif_isinstance_m_nn_Lin.nn_init_constant__torch_a": {"doc_hash": "93a2b1b20c198bf7892d8580f70a17fa6710d59b90edf4116300b17e6ccc6cc1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNet._downsample_basic_block_ResNet._downsample_basic_block.return.out": {"doc_hash": "98fc4385fca0a395f3e60da7f964dd518f9b47d17bd3d1152ffabfe080825def"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNet._make_layer_ResNet._make_layer.return.nn_Sequential_layers_": {"doc_hash": "0bd6d07b3cd6b17505d202def8515df12cc6ecdc747ea0ab745d499db41fe9be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNet.forward_ResNet.forward.return.x": {"doc_hash": "29f84290a75fb406bfe499295dcdc4c1df51c301f4c1a7e8648a7d098df48bd1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py__resnet__resnet.return.model": {"doc_hash": "ea5bf7ca63d569fa3d6300dd03fb73b9e46ede1cd5c4b0525984198ea965b0cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet10_resnet10.return._resnet_resnet10_ResNe": {"doc_hash": "d1a0573ffa062674117fd1c7524bb36f0e91a01a7183b746a06c92106d1bad63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet18_resnet18.return._resnet_resnet18_ResNe": {"doc_hash": "308e35c938516c27c576d441a890f8eeb19aa2f373fec44c6993990fd936abd2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet34_resnet34.return._resnet_resnet34_ResNe": {"doc_hash": "4407091e4ed30f69165e4363e21bd6edf809905161a98ac6a17a29a9bf444291"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet50_resnet50.return._resnet_resnet50_ResNe": {"doc_hash": "51160f5a29696aa9d6a18463c3b5c8643633df2648db43beb71cf34cbc0bdf08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet101_resnet101.return._resnet_resnet101_ResN": {"doc_hash": "4bddb50207d212995d82d1465edba7e437bcdf6042d35f4f3ba7194266582f86"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet152_resnet152.return._resnet_resnet152_ResN": {"doc_hash": "e411e0d179add1f787884f38fae399f11f9210d93db6f13e8f69781db08487fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet200_": {"doc_hash": "d1a7689c488b87645d88a7ab845222c77d10002c4adb12a98ae3aa711ab851b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_from_typing_import_Option_SegResNet._": {"doc_hash": "a68ebc50b5dd132cb33f0929742232e924c37e38f92c00264854a53b2a91d373"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNet.__init___SegResNet.__init__.if_dropout_prob_is_not_No.self.dropout.Dropout_Dropout_DROPOUT_": {"doc_hash": "ec0eaa6ea28d3b009a0f617de3421f4f63885e8decdb50bb62756dd6140ddbc9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_re___all__._SENet_SENet154_SE": {"doc_hash": "be9f6d2a984649270f2b783f1aad24651341b035be9f45a91ef536a47af4fa04"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/torchvision_fc.py_from_typing_import_Any_D_TorchVisionFCModel.__init__.super___init___": {"doc_hash": "81376a4be66f77fe7b7b9bf39eaa739d186859b74e65d5cc756737d439074ee2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/torchvision_fc.py_TorchVisionFullyConvModel_": {"doc_hash": "d008c5a945adffb46f4e19bbd4268dccab05eadc5ceeda8fa28e176491f70a64"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_re___all__._": {"doc_hash": "d594d6079b2a0323fe5538fa39a42bea768795ab7ee0ff046df88a17ba5275ff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_one_hot_one_hot.return.labels": {"doc_hash": "3bcdd6747009b6bc89d0a07b59a610154ec38c43b8263dbe30c4de886f4c15e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_train_mode_train_mode.try_.finally_.for_n_in_eval_list_.n_eval_": {"doc_hash": "d3beee49d8528e17e4a8836668d531765f17b71d1a2473741b68e17f068547d4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_copy_model_state_copy_model_state.for_s_val_in_src_dict_it.if_dst_key_in_dst_dict_an.updated_keys_append_dst_k": {"doc_hash": "857770fe8e7c660bb278b82ce2faa63666f2a2ad3b90b64513fa53aba839d263"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_copy_model_state.for_s_in_mapping_if_mappi_": {"doc_hash": "45e93d23d46713fad7a530a84bc289ef9f1ce28735be814e4e982e832de2a892"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/__init__.py_AdjustContrastd_Activations": {"doc_hash": "64bd68e76eca1c09f0cbce208e8fd1c844c9050371a8e140c93cdccb09dbafd0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/__init__.py_Activationsd_AddChannel": {"doc_hash": "443a2ca920b79c84ef668d477d242a17d13d98020796f5d7a1c7baa45a96e82a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_Compose_Compose._": {"doc_hash": "cb076263595f937631655e43ae44096914c464737b9f38c2d360db7efa8900f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_Compose.__init___Compose.randomize.for__transform_in_self_tr.try_.except_TypeError_as_type_.warnings_warn_": {"doc_hash": "434ea76e0ffc60b9d4adc592424787540249d8bfa8303fe332cfd18b4bcc4a2d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_from_itertools_import_cha___all__._": {"doc_hash": "0b1e117dba34a7cb3aa3cbb56ec7f1038aaecff9d3df2e946d8aee7200c5acdd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_SpatialPad._determine_data_pad_width_SpatialPad._determine_data_pad_width.return._0_max_sp_i_data_shap": {"doc_hash": "5210c77cfffa937a18772680ade3481986323ad235c486316af4a7cbf718f630"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CenterScaleCrop_CenterScaleCrop.__call__.return.sp_crop_img_img_": {"doc_hash": "e1dcada4bba0526c3dc5a3cacee9ec0f01de5b47774b26383e3b2a1a2c3093b9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandScaleCrop_RandScaleCrop.__init__.self.max_roi_scale.max_roi_scale": {"doc_hash": "f2be0492423656a131c397184d12a645351f4766913fe077da0ddee46dd732a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandScaleCrop.__call___RandScaleCrop.__call__.return.super___call___img_img_": {"doc_hash": "09c9a193b0da12c300a47ad2bab72922836f70caf85e758ae4ef4bf142b5f730"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CropForeground_CropForeground.__init__.self.mode.NumpyPadMode_mode_": {"doc_hash": "e3ef1c17fddd94d10c5dc76ec8d495d4ea7bc3514248df29e047af740985fe13"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CropForeground.compute_bounding_box_CropForeground.compute_bounding_box.return.box_start__box_end_": {"doc_hash": "bbaabf8fcbd7a9e70a7e7bf703cbc7046dbfc75424d2c668da99fbeada270d30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CropForeground.crop_pad_CropForeground.__call__.return.cropped": {"doc_hash": "3b8b301206a47f67fa1004e5bf956cac05ed8da2f4d3c616599bd1d4976750ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_contextlib_NumpyPadModeSequence.Union_Sequence_Union_Nump": {"doc_hash": "777362201afcdd2ffcad06c687a802d42da9e0cf590dd1f7d6a73afd36cef6e2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterScaleCropd_CenterScaleCropd.__init__.self.roi_scale.roi_scale": {"doc_hash": "70b148b5c9873456f10706cbcd7ae8232abaae387a50803debe8a7716f085c64"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterScaleCropd.__call___CenterScaleCropd.__call__.return.d": {"doc_hash": "3d8b285a9d026b219dca674f6dc3f929d9c26bb6d6a06b6b1199925785549ed4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterScaleCropd.inverse_CenterScaleCropd.inverse.return.d": {"doc_hash": "143a516cc105f050a0369709dbfdd94c201c06536076fd35eb6625794df6e7df"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandScaleCropd_RandScaleCropd.__init__.self.max_roi_scale.max_roi_scale": {"doc_hash": "3d4dc7c1f24ad90efca57ad9b99a82722fd97eebfa0858df9cd9ac6e73899237"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandScaleCropd.__call____nullcontext.yield_x": {"doc_hash": "9fc713268d8cc083043521ef7acf1def04232243cccd2afe00de834120772924"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropSamplesd_RandSpatialCropSamplesd._": {"doc_hash": "2292e8241073d9f75eec4e1645e69145f084253e6a63ddd0be7b3aa2cfd15706"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropSamplesd.__init___RandSpatialCropSamplesd.randomize.pass": {"doc_hash": "48ef11850c964284bd997fabbc42b0951cdd6c58d64428624a5b83991a3b65ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropSamplesd.inverse_RandSpatialCropSamplesd.inverse.with_context_manager_self.return.self_cropper_inverse_d_": {"doc_hash": "8a74c6f96e0035198a20bbc97a17f1f64d8a2c35c8278c9edc1cc9ca6fc18f08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CropForegroundd_CropForegroundd.__init__.self.cropper.CropForeground_": {"doc_hash": "800f8546825a9a9743a4033746bd022a0bfdaa7d88fe308e8c4b525e1ee49020"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandWeightedCropd.inverse_RandWeightedCropd.inverse.return.d": {"doc_hash": "96894622bbf63ecd0188b559a822f21e550d3dd57b65f69c9d7611c32196dca5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.inverse_RandCropByPosNegLabeld.inverse.return.d": {"doc_hash": "f459cab86a23b49d6bfe358db8df03c8ca25a219c9e7b83608d8f7d568464928"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianNoise_RandGaussianNoise.__call__.return.img_self__noise_astype_": {"doc_hash": "fa4153763c3541b3a3686613b223c4d4c4d29be061fb1818b380c25be56d05de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandRicianNoise_RandRicianNoise.__init__.self._noise2": {"doc_hash": "187b344babd7766a7344151aee782da9288cef3a47aa36d24751dc812e8d7270"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandRicianNoise._add_noise_RandRicianNoise._add_noise.return.np_sqrt_img_self__nois": {"doc_hash": "a5b7ecd1a6ce1a1844e4babafae2752e76e1c12d4ee91833283bcd33fbf3bcbd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandRicianNoise.__call___ShiftIntensity.__call__.return.np_asarray_img_self_of": {"doc_hash": "6235a2814f26f6a2eecade8e0754b8000295df32eed02290ca8c9c596a3a4eba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandHistogramShift.__call___RandHistogramShift.__call__.return.np_asarray_": {"doc_hash": "280dfab53c75c8a5a92792d17b722afd59067fb89f3c1d3b7ebbdfa40c1ccd82"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGibbsNoise_RandGibbsNoise.__init__.RandomizableTransform___i": {"doc_hash": "11629581874549c75537d76c870478bd80ebccdedad6fe0b1013a6c62d19edef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGibbsNoise.__call___RandGibbsNoise._randomize.self.sampled_alpha.self_R_uniform_self_alpha": {"doc_hash": "b825f863b2186cbda334efccb7778b964fde16f62f6b17be7ddc99c9ef70e7e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GibbsNoise_GibbsNoise.__init__.self._device.torch_device_cpu_": {"doc_hash": "8f08010dd5732824a945047336d25efdadd192f1699ce2ec72633929287e2c0d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GibbsNoise.__call___GibbsNoise.__call__.return.torch_Tensor_img_to__dev": {"doc_hash": "ecd8f33589cb1b670c396127542a162e2a741d92be05e373f5371cf696db8ef4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GibbsNoise._shift_fourier_GibbsNoise._inv_shift_fourier.return.out": {"doc_hash": "60b5504cd279fee5354d5084f2a041a12a00e631a940aeef6f91a1133cab19e9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GibbsNoise._apply_mask_GibbsNoise._apply_mask.return.k_masked": {"doc_hash": "5998d98b8684736a928e9098f562ece6d492aefd63b42254888d1c1b302d71b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_KSpaceSpikeNoise_KSpaceSpikeNoise.__init__.if_isinstance_self_loc_0_.if_not_isinstance_self_k_.raise_AssertionError_The": {"doc_hash": "d3aa3e67948b8215fe68756cf3827179ad19df6b10ce41e4c001273427c14cff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_KSpaceSpikeNoise.__call___KSpaceSpikeNoise.__call__.return.torch_Tensor_img_device_": {"doc_hash": "ccbf313585803aa0969a2e2556dd2ba47d87608a380e0f9086133bd19f303c1b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_KSpaceSpikeNoise._check_indices_KSpaceSpikeNoise._check_indices.for_i_in_range_len_img_sh.if_img_shape_i_max_x.raise_AssertionError_": {"doc_hash": "ba7165fe1ccae57248d893e73effb97a603b3e8d0041411114c9932eaff27805"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_KSpaceSpikeNoise._set_spike_KSpaceSpikeNoise._set_spike.if_len_k_shape_len_id.elif_len_k_shape_3_an.k_idx_0_idx_1_va": {"doc_hash": "ce8d48922b3867b1d20d74702d53dd0b53574bf3f748620605146164248d9561"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_KSpaceSpikeNoise._shift_fourier_KSpaceSpikeNoise._inv_shift_fourier.return.out": {"doc_hash": "7d63f8e9f33420537f8d2b225065d43457958d1cd0bf3d5afee55128603c2617"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandKSpaceSpikeNoise_RandKSpaceSpikeNoise.__init__.super___init___prob_": {"doc_hash": "6019574d716648e5bafcfe0634d18b1fac65162405bd76f6287b90fe156fe182"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandKSpaceSpikeNoise.__call___RandKSpaceSpikeNoise.__call__.return.torch_Tensor_x_device_de": {"doc_hash": "f510ee1c63613d53e68750614e3967cfcdccce4890c772b3cc90bff653bbed35"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandKSpaceSpikeNoise._randomize_RandKSpaceSpikeNoise._randomize.if_self_channel_wise_.else_.if_self__do_transform_.if_isinstance_intensity_r.else_._type_ignore": {"doc_hash": "fb68704729c3f7a41f4f456bcde5c41c4233b00f14f94dc3a5a86b89f5abdfec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandKSpaceSpikeNoise._make_sequence_RandKSpaceSpikeNoise._make_sequence.if_self_intensity_range_i.else_.return.self__set_default_range_x": {"doc_hash": "6bb446ec38dda1d38e9f8f78ba0e55cbacbe71d12a295abed0b2d6f761a5da84"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandKSpaceSpikeNoise._set_default_range_": {"doc_hash": "25698bae2e0056f4f6a59831efb73955c8ca1aad8e77af977a319bfca547cdfe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandRicianNoised_RandRicianNoised.__call__.return.d": {"doc_hash": "7a2b1c7257ecb340aaad0b04480f76d0b1fab353a519fb15b171d8790414c416"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGibbsNoised_RandGibbsNoised.__init__.self.as_tensor_output.as_tensor_output": {"doc_hash": "92b2beb011f16fdaa916c36c07e721395f66e52f965e7d1d41bd309c72323ccc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGibbsNoised.__call___RandGibbsNoised.__call__.return.d": {"doc_hash": "52a94cf9cd35a9a092baffc22aac4aaae654668631593ef75a929f6a374e4cd6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGibbsNoised._randomize_RandGibbsNoised._to_numpy.return.d_numpy": {"doc_hash": "2c7ef817cb82c41539b59cf76449fdf17e49ef84dd206588f2f89cebd97a31cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GibbsNoised_GibbsNoised.__call__.return.d": {"doc_hash": "2aa47e8b23bc8c05c27fd9f4f322680d9cd09a4e7d7e445a32a7896eb4841e19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_KSpaceSpikeNoised_KSpaceSpikeNoised.__init__.self.transform.KSpaceSpikeNoise_loc_k_i": {"doc_hash": "0961b1142adf52c62b2709d9704656bc0bcd5130b7cac33452725c0a85f5941b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_KSpaceSpikeNoised.__call___KSpaceSpikeNoised.__call__.return.d": {"doc_hash": "e85878e9057b6d9d9709974f55987be39bfe42bb8592afb5f0c31f5d3e5d91ad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandKSpaceSpikeNoised_RandKSpaceSpikeNoised._": {"doc_hash": "f9d4e328c15eca843165eee90ec9e6b6416822392fab8662a1a7601196d7eb6f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandKSpaceSpikeNoised.__init___RandKSpaceSpikeNoised.__init__.self.t_label.RandKSpaceSpikeNoise_prob": {"doc_hash": "1ce5a11ebcd594056b2b918e2ee78d6afe623c95117356c7e84e06b5750d4031"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandKSpaceSpikeNoised.__call___RandKSpaceSpikeNoised.__call__.return.d": {"doc_hash": "d488e270e5c2aa7c3b6e8fccb6fd4c1ac75bd8a524a6df7f8452f00659ac774b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandKSpaceSpikeNoised.set_rand_state_RandKSpaceSpikeNoised._to_numpy.return.d_numpy": {"doc_hash": "b7703087f734664026b30b39ae7c727112078375fee0a3514a4458411e5ad520"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse_batch_transform.py_warnings___all__._BatchInverseTransform_": {"doc_hash": "f49b70d8257d356ff97eedb7f52f18f983a542743806222ccdc5421f8983f680"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse_batch_transform.py__BatchInverseDataset__BatchInverseDataset.__len__.return.len_self_data_": {"doc_hash": "cb637a9d77ec3679854a58c63d3b650f0ed856978dfe7c1e40859bde2e60cae9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse_batch_transform.py_BatchInverseTransform_BatchInverseTransform.__init__.self.pad_collation_used.loader_collate_fn___doc__": {"doc_hash": "0a8df0a8d34fb0492a0c4b344a86d3c3c5adfeb1e815fb9f44636c73257bba76"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse_batch_transform.py_BatchInverseTransform.__call___": {"doc_hash": "5ce34771a2404d690eb08701741472da6d98f2b85669408288958691edc9e651"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_sys___all__._LoadImage_SaveImage_": {"doc_hash": "438af4879b2a44eb42d65de206f39349e7363d4c57253dcc3f718713ebf15ffc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_SaveImage.__init___SaveImage.__init__.self.save_batch.save_batch": {"doc_hash": "4b54d7f943b7d0da44636c09bea57dfbbaa200ca7d61b77eb1f66bf5738ef946"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_SaveImage.__call___": {"doc_hash": "8c030f305a458b48d24d221435ae805f7e2465075f8b31e0b55edb2597896e6c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_LoadImaged_LoadImaged._": {"doc_hash": "04698ab82b476d80a69c057ead697543d678663d1ef943e17e0705f4dfbec56f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_LoadImaged.__init___LoadImaged.register.self__loader_register_rea": {"doc_hash": "6b8c4dfad8ecc8da43f503e04d376a024ee21a06c5f1bd2e023709f200cf6560"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_warnings___all__._": {"doc_hash": "0a4b41febd4397a919ed0015d99578ca227e9345a9555fa850cc942d3d4f6588"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Decollated_Decollated.__call__.return.decollate_batch_data_det": {"doc_hash": "f73fc6db06c092cd4b437482a4cf4648d8305d162629b04c37256cb33def47c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Invertd_Invertd._": {"doc_hash": "5a3c4491b4a551fa21541c27a1850cf6f15668cdc039a8ad2a7ef04b9039e786"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Invertd.__init___Invertd.__init__.self._totensor.ToTensor_": {"doc_hash": "41eae4738d0df6b691237192787c20092c8f51702ef78f1cf8e24d65cb06fcb0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Invertd.__call___Invertd.__call__.return.d": {"doc_hash": "562fefca80579ba626f64ca926fb6cd2903aa8ee4d5503df5b8a0021533bb93c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_SaveClassificationd_SaveClassificationd.get_saver.return.self_saver": {"doc_hash": "b21604a0036b3f4e883ff5a31e51c228410047ce8f88fb550643013869339457"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Spacing.__call___Spacing.__call__._resample": {"doc_hash": "3ffb65c49b0f12f26b68fe4b32f167c37dbe870d6923bed3037159ab44cc32cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Spacing.__call__.affine_xform_Spacing.__call__.return.output_data_affine_new_": {"doc_hash": "d99f659c1dcdaa4b97e0873eaf412ca0a754b71e3d1b53efed5d4b9269f736f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rotate_Rotate.__init__.self._rotation_matrix.None": {"doc_hash": "071eee1f218f93d0edbbfee278cbde6f55798412ed793f518d65e9d3f7267e1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rotate.__call___Rotate.get_rotation_matrix.return.self__rotation_matrix": {"doc_hash": "de8a2e319657c62452a547a3da134b022a5a8d9e4d97c4bd8bd00b7ecbd38134"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Affine.__call___Affine.__call__.return.ret_if_self_image_only_el": {"doc_hash": "ddd4637a3fd48bc9a9eb7268c0aa53dbb2ed02d7db15d3d95a7fc1ff0bb57afa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffine._init_identity_cache_RandAffine._init_identity_cache.return.torch_tensor_create_grid_": {"doc_hash": "216e0a47180958adedf8a91d5279b440b509b89695d28e9debb5dc749d6a6e9a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffine.get_identity_grid_RandAffine.randomize.self_rand_affine_grid_ran": {"doc_hash": "72b5aa26f6a76dff4b92cb304393db1adb74796f8d8f89c841d300ab49c54c1c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffine.__call___RandAffine.__call__.return.self_resampler_": {"doc_hash": "7a5678a8951d4b9c903f9ba2d5bee2217d645fcffcf25f410dbfef7093173488"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic.__call___Rand3DElastic.__call__.return.self_resampler_img_grid_": {"doc_hash": "167d8661838767ef3f70f2a70a95417b5fa474d59216b7e06e3383975a345acd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_AddCoordinateChannels_AddCoordinateChannels.__init__.self.spatial_channels.spatial_channels": {"doc_hash": "03405a25c11687edb09d1bd60bd48624d5b541fc2088513b8f0a89321c668bbe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_AddCoordinateChannels.__call___": {"doc_hash": "0c58c748e34a5988859d21e3fb2f243ddbcdbe52104998c1651c0f8410abfe38"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd.__init___Spacingd.__init__.self.meta_key_postfix.ensure_tuple_rep_meta_key": {"doc_hash": "4560dbe46616e257abcf0f3c013e5fc8d52e3c6aa019abcd1caf469f37a6e25b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Orientationd_Orientationd.__init__.self.meta_key_postfix.ensure_tuple_rep_meta_key": {"doc_hash": "cc5fbaec2f1027fba316849ac86f1eec6bc26c5922f497ad636efef79849d546"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_AddCoordinateChannelsd_AddCoordinateChannelsd.__call__.return.d": {"doc_hash": "93f4567b140c00e7419e06b02a8f2ee88de6ff3bd0a9592aa3bacaf8e443a0b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_logging__apply_transform.return.transform_parameters_": {"doc_hash": "3569c66bd09cc47b0c2b758dc05bd7f1b7c1b4e6e3337800a2593503736a801a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_apply_transform_apply_transform.try_.except_Exception_as_e_.raise_RuntimeError_f_appl": {"doc_hash": "70f0de629aeaf12edcf4d6160f42125d614419c877f01a8a8988f9ee7fa7dc1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_ThreadUnsafe_Randomizable.R.np_random_RandomState_": {"doc_hash": "94df816717498ec45f1f8bcf50e9b79b766cd51cf870284e7f6c2689b3692b19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_Randomizable.set_random_state_Randomizable.set_random_state.return.self": {"doc_hash": "c5c2a8467e39f878f786a23b8f8703d906a6770d05ecc0dae1c85102f743ee92"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_EnsureChannelFirst_EnsureChannelFirst.__init__.self.strict_check.strict_check": {"doc_hash": "28afd24bbdacb11681af0b419086f5bac6cf0417ac69837111cb16c80205b4ae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_EnsureChannelFirst.__call___EnsureChannelFirst.__call__.return.AsChannelFirst_channel_di": {"doc_hash": "4b1abef3b937250b2a7643232f753427123376f33db1212d5e8736bf03b06da5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_ToTensor_ToNumpy.__call__.return.np_ascontiguousarray_img_": {"doc_hash": "0eaaec9f266fd10efedaa3afd60cb7c08381b797872bb1787d3a195cd7418764"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_ToCupy_Transpose.__call__._type_ignore": {"doc_hash": "20fe6e600a55b01923420ff345e80caa4d5c3e5aed7d0313ed3c8856cb521d5b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_DataStats_DataStats.__init__.if_logger_handler_is_not_._logger_addHandler_logger": {"doc_hash": "202269a71b5e0646cf35f30940c8f96ee9d549b563e3a322a27a5fc719447569"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_copy_from_monai_utils_enums_im": {"doc_hash": "f4c45ee00503a93be3c1b49c4c8315713f5c55ba98ebd1b71fea1988c3637b11"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToCupyd_ToCupyd.__call__.return.d": {"doc_hash": "97bb9aa571f37f36712c297f62ff94da363a9e3f830985fe253c6b01daf25e95"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_Transposed_Transposed.__call__.return.d": {"doc_hash": "912967dd67b527bc1b4c850667435f10269167775b18c1e065b715073582b53e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_Transposed.inverse_Transposed.inverse.return.d": {"doc_hash": "bf0d04480a383106795800c9575f109c08b475a158087a0a58c2d627e0ce3bba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_convert_inverse_interp_mode_convert_inverse_interp_mode.return.trans_info": {"doc_hash": "558a615d1971931e2f3e06ef85a81fde838575c0fc5e5f94eef51160609a8f84"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_compute_divisible_spatial_size_": {"doc_hash": "b3ea70589bce8c00025186f4d3ec933ac41b2d325176263f569b85982ab8faab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/deprecated.py_inspect_warn_deprecated.if_obj_not_in_warned_set_.warnings_warn_msg_catego": {"doc_hash": "591c6abadfb478eb573f9dbb79651119fe6618a7855d086c845eb51a22d49979"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/deprecated.py_version_leq_version_leq.return.True": {"doc_hash": "8fb4074c9b13f62c69af1582e802a6a07f921aae76d6008719fb6c9a47292e93"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/deprecated.py_deprecated_deprecated.is_removed.removed_is_not_None_and_v": {"doc_hash": "a62028a57c8952172fb905e9bf172d34424cf1314ceef3477b455ea1f81f23d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/deprecated.py_deprecated._decorator_deprecated.return._decorator": {"doc_hash": "222fabc8d4685ae660b66b4f70f73ffadf6f76b8fe1970de5133083b17a31b1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/deprecated.py_deprecated_arg_deprecated_arg.is_removed.removed_is_not_None_and_v": {"doc_hash": "a746ea4b6e382e22119f24ab34b34f59bb5124d1913bf9b262362851a4334d09"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/deprecated.py_deprecated_arg._decorator_": {"doc_hash": "efbb946da5869765e43d32d925051df2e3b2c0c47f5cd973ae92f09ca6f9789a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_copy_to_device_copy_to_device.return.obj": {"doc_hash": "ac82d92f2d5d18bb2190104a07716a02bdb6f86e0411127043a6c7bbb9fe8bc8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_get_dist_device_get_dist_device.return.None": {"doc_hash": "4f18a967e06f6354f6db88ddf35ec3dac281a15cbd530a942cac35403e6bad82"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_evenly_divisible_all_gather_evenly_divisible_all_gather.return.torch_cat_output_dim_0_": {"doc_hash": "ffc93b4c54ab8d307031a1253b9cc86785e997bd47474de805a9c383e27f2167"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_string_list_all_gather_": {"doc_hash": "7d9f40031c0dea0c2416f4f07a9250bb31074944c9f1860979f6f9d5d943fe3c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_warnings_default_normalizer.return._compute_x_": {"doc_hash": "d989cb20e982063acec7e40600e827abf597b36b659af011c4cf2194c4d74835"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_get_extensions_get_extensions.return.ext_modules": {"doc_hash": "4db1ec555640cf7324f9b07eccd17accf3684ea5763f53218e3b3bbd6a904699"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_get_cmds_": {"doc_hash": "a33861eb4f0fdc108a48aefeb2fef8f621937a5c9fa08dd6abe8a24fe3c6c545"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/min_tests.py_glob_run_testsuit.exclude_cases._these_cases_use_exte": {"doc_hash": "065814d60e18616b04c5c97e2f3dbacfc0105faade38945aee2239d2aba84819"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/min_tests.py_run_testsuit.assert_sorted_exclude_cas_run_testsuit.return.test_suite": {"doc_hash": "dfda98cc933b901998f5c0b3f64177d11150317f084f01ea9ce6cbe7638ad301"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_coordinate_channels.py_unittest_TEST_CASE_ERROR_4._spatial_channels_0_": {"doc_hash": "7b05dd998a8371d84c3abf493aa9572c7b420adf91c250a520b2d988ac23435a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_coordinate_channels.py_TestAddCoordinateChannels_": {"doc_hash": "e596071ca38c2215f7544ccf646f7dba8e06510b414221a22429ec6055db922a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_coordinate_channelsd.py_unittest_TEST_CASE_ERROR_4._spatial_channels_0_": {"doc_hash": "cd9b2499be28be99f7f177a842321bb2466cce1388974385c4cfdb6a2e24b6c3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_coordinate_channelsd.py_TestAddCoordinateChannels_": {"doc_hash": "4ebe8d37f1ed173ab81b9a5772364f95e0b3ed6faad39cdaa8802f8d40e47453"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_ill_affine_transform.with_self_assertRaises_Ru_TestAffineTransform.test_ill_affine_transform.None_6.AffineTransform_1_2_i": {"doc_hash": "4b482a44cb39bcaf08121a355430e3d6286587dffc236b3dd58e891f41e91894"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset.py_os_for_c_in_0_1_2_.if_sys_platform_not_in_.for_l_in_1_2_.TEST_DS_append_True_c_": {"doc_hash": "b5179dee8196d91296a13d180358ca21da0668e6512b5b34e96ab803158adfb0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset.py_TestCacheDataset__StatefulTransform.__call__.return.data_100_self_propert": {"doc_hash": "38331e87a9848a601f68aa5f83dfb0465e37b03096ad775e3a596b3721238226"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset.py_TestCacheThread_": {"doc_hash": "2b58c1a83da04cce95c0f0e385f8fc0334b817b32bf5b52d652c9003a65ec849"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset_persistent_workers.py_unittest_": {"doc_hash": "ec528e7ffa35230b40d22158ad35f51e17019c3651f0c673a246017081bd9cdf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_scale_crop.py_unittest_TEST_CASE_3._": {"doc_hash": "e1b0700ec795e3602cf6e5e6bbf4194e899b2059c19da0246a23c8df603d0603"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_scale_crop.py_TestCenterScaleCrop_": {"doc_hash": "eb3a624b8d74b023f02920856e995c2615262037e38a66b02abca4595f0211bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_scale_cropd.py_unittest_TEST_CASE_3._": {"doc_hash": "955271b8f7961161d7a32216491358abbf9644f4ec3f9cb318e94f90f5478044"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_scale_cropd.py_TestCenterScaleCropd_": {"doc_hash": "78c696c93bc4c44da65d2db929a597e1884f5b72039b73b7620fb7d1a4bc9797"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_non_dict_compose_with_unpack_TestCompose.test_list_non_dict_compose_with_unpack.self_assertEqual_c_": {"doc_hash": "8e9f9ddcc44fc25d5158824a7c57bccbff8838b2021d0b67c5bec1a78cb96748"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_list_dict_compose_no_map_TestCompose.test_list_dict_compose_no_map.for_item_in_value_.self_assertDictEqual_item": {"doc_hash": "b0025ee6d32f5c6f47f24cfdeca4d0ee96899a0e4f7505757eb89e6a7456f6a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_data_nan__2_test_metric_with_com": {"doc_hash": "3329c7971506120a1254320eeb6fd69a5b25beaa33d675ff8ef1219f1fc2f04b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TEST_CASES_COMPUTE_SAMPLE_result.None": {"doc_hash": "ff285a6366e6d3308a9b798d75d72eae205229ccf81bfb0db4ef7e9b5d629857"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_for_idx_in_range_len_metr_TEST_CASES_CLF._data_clf_copy_result_": {"doc_hash": "e76cce2e512b2b66a0d27684dc6afb71cdbab210698bc261bcc8bd4a41566836"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TestConfusionMatrix_TestConfusionMatrix.test_value.None_1": {"doc_hash": "09fd0eaf0ad818ff58d0511ff51bceb1c47a27f9427c94a4a52ac6501330618e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TestConfusionMatrix.test_compute_sample_TestConfusionMatrix.test_compute_sample.np_testing_assert_allclos": {"doc_hash": "062cfa9bef43176fa89ae3f7ae87fe745583ca9a584acc62f4c1b96cc4362370"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TestConfusionMatrix.test_compute_sample_multiple_metrics_TestConfusionMatrix.test_compute_sample_multiple_metrics.for_idx_in_range_len_resu.np_testing_assert_allclos": {"doc_hash": "0d33f6b2db37f78dbf22ea4165545766581db2c00da981c9da0b7eaccc8519fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TestConfusionMatrix.test_compute_sample_with_nan_TestConfusionMatrix.test_compute_sample_with_nan.None_2": {"doc_hash": "a10d6547105a80976f945ab7590a987217cd288ce6a892d764c11de65b9d6a88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TestConfusionMatrix.test_clf_with_nan_": {"doc_hash": "9c55a3fcd2781ad5e8ac48f2bf991093f63f399a8a450ebe53394a4612f5b191"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TEST_CASE_10_TestComputeMeanDice._DiceMetric_class_tests": {"doc_hash": "89aa30ce6dcb49c92690fb6867b9bc337ef487d3bfeada131fb5d4d0329fb643"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_unittest_psnrmetric_np.return.np_mean_20_np_log10_max": {"doc_hash": "779347eef772ae5ded45f9da41f3fec29ae255cd52816506c05c75dc87158918"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_TestRegressionMetrics_TestRegressionMetrics.test_shape_reduction.for_batch_in_batch_dims_.for_spatial_in_spatial_di.for_base_in_base_dims_.for_mt_fn_in_metrics_.None_7": {"doc_hash": "2a7a6c47298a5d7cecfd1dc7de6d29ae4a595b7289501cc318da0085c15159d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_TestRegressionMetrics.test_compare_numpy_TestRegressionMetrics.test_compare_numpy.for_batch_in_batch_dims_.for_spatial_in_spatial_di.for_base_in_base_dims_.for_mt_fn_mt_fn_np_in_zi.np_testing_assert_allclos": {"doc_hash": "6e5033deb15c748c8b04d8f4012ea308981dc9f03c7019f8a2f8ce2e73ab7e07"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_TestRegressionMetrics.test_ill_shape_TestRegressionMetrics.test_ill_shape.None_1.for_mt_fn_in_metrics_.mt_fn_y_pred_in_tensor_": {"doc_hash": "13bc8fa3bc29ace6314ba0f0969fb5f4c123e6617ca4c02f245ddf948ccd1da6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_TestRegressionMetrics.test_same_input_TestRegressionMetrics.test_same_input.for_batch_in_batch_dims_.for_spatial_in_spatial_di.for_base_in_base_dims_.for_mt_fn_rs_in_zip_metr.np_testing_assert_allclos": {"doc_hash": "885694bdc6750cd413a365e1673a5d515ad382a1fac2ce93f198ab76901ee5c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_TestRegressionMetrics.test_diff_input_": {"doc_hash": "d6ef8045c2c72d053f0d9e77269561a5fe37143b39c707a8b16486816738a954"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_roc_auc.py_TestComputeROCAUC_TestComputeROCAUC.test_value.np_testing_assert_allclos": {"doc_hash": "3551d3e3f8a3c108613fa352e91f98a06f5b2313547e5c70083f10253f41be5c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_roc_auc.py_TestComputeROCAUC.test_class_value_": {"doc_hash": "f5ce9597ae997d04e3f9040b8b722a7e7d6c666bcb7133a278c8f590a4df66e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd_TestCopyItemsd.test_numpy_values.None_1": {"doc_hash": "495dc7c1d4ea4b284e6ed5b9084b14b8dd73f574d8a28a06288946a60b7c4e5d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_unittest__TestModelOne.forward.return.x": {"doc_hash": "17413caf642c3f77c53cfbdbcffa841ccebf18ed6d2dff88a17466f06816338a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py__TestModelTwo_for__x_in___devices_.for__y_in___devices_.TEST_CASES_append__x__y": {"doc_hash": "102e7256901d467fb56af8c088130f02923659e264de409a700bcd02215e0824"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_TestModuleState_TestModuleState.test_set_state.self_assertEqual_len_unch": {"doc_hash": "3c23aec5c0ec88d46d28d88ecf008b3e1d7368a106ab5875962237e9c8401901"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_TestModuleState.test_set_full_state_TestModuleState.test_set_full_state.self_assertEqual_len_unch": {"doc_hash": "2ab1c6ed3a00f5b2615bf714a2205dd26604193f646cc9805fee5c4c6db338ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_TestModuleState.test_set_exclude_vars_TestModuleState.test_set_exclude_vars.self_assertEqual_len_unch": {"doc_hash": "c568f7aafc6837d8ed23cd7ea22a9f2d7ee33b8644bd5585356c133cf0aaa7a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_TestModuleState.test_set_map_across_TestModuleState.test_set_map_across.self_assertEqual_len_unch": {"doc_hash": "be635b46ea60e3dbf2877b0cb694df6e257337d6a71343089208d310322e1f95"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_TestModuleState.test_set_prefix_": {"doc_hash": "5c5ea94ffa1cf92bedcb5faf8744aac0dcb28d432e1d2679e037c53685158aba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foreground.py_TEST_CASE_5_TEST_CASE_7._": {"doc_hash": "5e7ad22994587f9f7054a9ef484a96d16e312bd1c198b87dc22542b3dbe771ff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foregroundd.py_TEST_CASE_4_TEST_CASE_6._": {"doc_hash": "4c524c47ae6a83386e159396454c0fa7aa3ecf702a914204f91aa4df47d661d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_dataset.py_os_TestCSVDataset.test_values.with_tempfile_TemporaryDi._test_group_columns": {"doc_hash": "25a9bce2ddea7abe3fd6bef4717dd816aa9ad62c1acff9dad36e445e5488d02b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_dataset.py_TestCSVDataset.test_values.with_tempfile_TemporaryDi.dataset_9_": {"doc_hash": "88047c301933917328013933560191fbb5b3c07a2a3326d3d31fa99e1a8f1ea1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_iterable_dataset.py_os_TestCSVIterableDataset.test_values.with_tempfile_TemporaryDi._test_group_columns": {"doc_hash": "3afd8cd44df1847910f7207468ede6ed5f2722895278119dad1857aea48c1bcd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_iterable_dataset.py_TestCSVIterableDataset.test_values.with_tempfile_TemporaryDi.dataset_9_": {"doc_hash": "9b3d02edf64dcb2be32e8ed7df0d8eddc1d826e958cb74232aba4abba25f7206"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_statsd.py_TestDataStatsd_TestDataStatsd.test_value._self_assertEqual_transf": {"doc_hash": "8899b3c78c66e8e63a1684c31c2e9e18b8d1be473fde5dbe55a0ee87089b2b03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_statsd.py_TestDataStatsd.test_file_": {"doc_hash": "d9a9a57f88b1195fb30d4a0e7efcf112e55a47e09d8fb797a18c0f49b2b624e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataloader.py_TestDataLoader_TestDataLoader.test_exception.with_self_assertRaisesReg.for___in_dataloader_.pass": {"doc_hash": "961c6d0158f216fccc7162bae653a668d4fb3b57f12673990c377987a0b9767e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataloader.py__RandomDataset_": {"doc_hash": "d6915a1bcea406dbac2884e098fbf115a098107f5506f692b8eddbe9722c69ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decollate.py_sys__ListCompose.__call__.return.img_metadata": {"doc_hash": "69c986e551d54c6b3fc098f69c31185966b8a040a21d4a08b2d25cab7ce14444"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decollate.py_TestDeCollate.check_decollate_TestDeCollate.check_decollate.for_b_batch_data_in_enum.for_decollated_in_decoll.for_i_d_in_enumerate_dec.self_check_match_dataset_": {"doc_hash": "f20ff5e01ef8a9f4192b2211d05061f95eebca2baadb610c4a5ab7cf20889868"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decollate.py_TestDeCollate.test_decollation_dict_TestDeCollate.test_decollation_list.self_check_decollate_data": {"doc_hash": "0b31cc7e1697acadb894aaf6b3f59f44bbf41764fb3481e01a8a9f811c2ca7b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decollate.py_TestBasicDeCollate_": {"doc_hash": "d46d6cce69419c17bbde142a3c4ea65a0563b4273da37bc0cffe52687779f1c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_TestSpatialCropForegroundd_TestSpatialCropForegroundd.test_correct_shape.np_testing_assert_equal_r": {"doc_hash": "4d051552fd9dc9d3b79a348ba7b1718082a7f1f611c5489555b3c46c746e6d47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_TestSpatialCropForegroundd.test_foreground_position_TestSpatialCropForegroundd.test_foreground_position.None_3": {"doc_hash": "65ec46546a17b9854c285ef7a7d0e4db52b276a82437ed4f0dc2cf170d1c8d48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_unittest_TestDeprecated.test_arg_warn1.self_assertWarns_Deprecat": {"doc_hash": "33e37c24768fc1f70aa5466fa30d1155c5f559756bfc60da1f0f191cfe4fbb25"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_TestDeprecated.test_arg_warn2_TestDeprecated.test_arg_except2.self_assertRaises_Depreca": {"doc_hash": "337d803cdab0031b707c1814803f3429262f0d9a8e6a5498d09af5a916e5ed4f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_TestDeprecated.test_2arg_warn1_": {"doc_hash": "22acc3bb92b61a52a12db9fde64836cf286c2d99af37df5ddf96f2cfc9f116bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_download_and_extract.py_os_TestDownloadAndExtract.test_actions.None_2.except_RuntimeError_as_e_.self_assertTrue_str_e_st": {"doc_hash": "a43f914e23f59dcbf40d5158f792db01754774420e3019b33040cafad6ca2e2f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_download_and_extract.py_TestDownloadAndExtract.test_default_": {"doc_hash": "c8e879e47ce2512d2bae52f852b4298ef2f32bad42e7cf36608abe4c74f893af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_get_block_args_get_block_args.return._": {"doc_hash": "6028bfb277bd2dfd3dd8b06a4cc034dcf0fb9e780fe8f80086cb1ab01197436c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_TestEFFICIENTNET.test_block_args_decode_": {"doc_hash": "07a80da9e30a06206a9a140ad2419d61e3823495494af9536d7ed7c0807a7241"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_first.py_TestEnsureChannelFirst.test_itk_dicom_series_reader_TestEnsureChannelFirst.test_load_png.with_tempfile_TemporaryDi.self_assertEqual_result_s": {"doc_hash": "7693f6f810af0492b181b8dd0aaddf3dc472ee4de87fe503911a9a589f43ca00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_first.py_TestEnsureChannelFirst.test_check_": {"doc_hash": "308ca13515a7a017a642e42d3e059583a69345626623e78253e6d8c9f1c261d4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_firstd.py_TestEnsureChannelFirstd.test_load_png_TestEnsureChannelFirstd.test_load_png.with_tempfile_TemporaryDi.self_assertEqual_result_": {"doc_hash": "54ccfd524f36abf27f7d7137f87ce74d975b73f6d93989fdbd42b51ec56ce7eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_firstd.py_TestEnsureChannelFirstd.test_exceptions_": {"doc_hash": "4b3f6ddb9a660c618f0180e66c891a92cc544816410275ffcbe4d45894240577"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_param_groups.py_unittest_TEST_CASE_6._": {"doc_hash": "e98528e03dbe74aa3af181871f2343d81b3c6b6b8f19a4812922c855f7548fe1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_param_groups.py_TestGenerateParamGroups_TestGenerateParamGroups.test_lr_values.self_assertListEqual_n_e": {"doc_hash": "e537b385419da198057dcc30154dbe71a23d0841d82df18daa26390d44fa794e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_get_layers.py_unittest_TEST_CASE_DROPOUT._": {"doc_hash": "44718fee3941cd33aeccf3b70d283611ecf9981f1baa0b6803441c6a405df0fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_get_layers.py_TestGetLayers_": {"doc_hash": "ad6d02bc49915415d564db844b1253f5757d61c5f48969e9363b6892ba1a4b52"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noise.py_unittest_for_shape_in_128_64_.for_as_tensor_output_in_.for_as_tensor_input_in_T.TEST_CASES_append_shape_": {"doc_hash": "f054fe7208b8c59efab8ace6113f5cde7fd2805987e8b833d26d4be3f6400263"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noise.py_TestGibbsNoise_": {"doc_hash": "0930ebb10cd8b499fd3e275d4196ccdc30db43992016d6c9e9e439fc850bb29f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noised.py_unittest_KEYS._im_label_": {"doc_hash": "ba3e59b40eb1ddeaa287b95ffde28e60a4042e9b2d5f8a603fbed8f5a33fb83f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noised.py_TestGibbsNoised_TestGibbsNoised.get_data.return._k_v_for_k_v_in_zip_KEY": {"doc_hash": "a7ce2f9cb490d66d0f38d5444399fa4b49d343094f8cd84c3b762d358447011c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noised.py_TestGibbsNoised.test_same_result_TestGibbsNoised.test_same_result.for_k_in_KEYS_.self_assertIsInstance_out": {"doc_hash": "1b35dff2dc58bb58b389fc12331d67def57656dd97bbba2253f9068c435a8175"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noised.py_TestGibbsNoised.test_identity_TestGibbsNoised.test_alpha_1.for_k_in_KEYS_.np_testing_assert_allclos": {"doc_hash": "e0c57a2521d6fdcd96daedadf825d4754a2062b3b7e6b201061c622f119d9f1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noised.py_TestGibbsNoised.test_dict_matches_": {"doc_hash": "e687ae7734c020527bbdc3623ede45ee9a938ac4b30a18e88fe69a6ef5dc0e31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gmm.py_os_TEST_CASES": {"doc_hash": "c8fdcb5f8e90f37612b24b454b5b41ad7fe83eb7dca1573d2341ad44985b97ae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gmm.py_GMMTestCase_": {"doc_hash": "e99187021e4415df1d448b74f311cb6e3a76fa81ff8cfb53536a80feb8f93c12"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_mean_dice.py_unittest_TEST_CASE_2._include_background_F": {"doc_hash": "d6623d94bbacb966acafa21f5e62013524d4259e8e1d61522a89a54081f12679"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_mean_dice.py_TestHandlerMeanDice_TestHandlerMeanDice.test_compute.self_assertTupleEqual_tup": {"doc_hash": "693d0b52907a0dd7feb86f310fc97c2ec5a30413b7ebdb04463b9f84262fd3ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_post_processing.py_unittest_TEST_CASE_2._": {"doc_hash": "e009a3abeb3a60cba8da846b3ebc6660548a48a4d72c6ef71e5ea6c31add8aed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_post_processing.py_TestHandlerPostProcessing_": {"doc_hash": "bde1f4a0a9df1b9bb2c0b2183ac8ead7f769d98084c5130e78d5305f4b30d123"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics.py_unittest_psnrmetric_np.return.np_mean_20_np_log10_max": {"doc_hash": "b15b6a5a9974e8abe32c51bbef3fd4de4f6997df48c951a2140cbe3855a3b47c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics.py_TestHandlerRegressionMetrics_TestHandlerRegressionMetrics.test_compute.for_mt_fn_mt_fn_np_in_zi.for_batch_in_batch_dims_.for_spatial_in_spatial_di.for_base_in_base_dims_.np_testing_assert_allclos": {"doc_hash": "90b5fab6694dd5efa3e83b5793a8dca63adc96f4d5776707ef25c610b04a6091"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics.py_TestHandlerRegressionMetrics.test_compute_engine_TestHandlerRegressionMetrics.test_compute_engine.for_mt_fn_name_mt_fn_mt.for_batch_in_batch_dims_.for_spatial_in_spatial_di.for_base_in_base_dims_.np_testing_assert_allclos": {"doc_hash": "1dd5cf76f752c332d628e5d992dae89513a7e650b23aa22f010278e9ce80c10b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics.py_TestHandlerRegressionMetrics.test_ill_shape_": {"doc_hash": "3e84782aca2d81274fc27411a664a53cdd07a40445e89370445a39dcd125ac48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics_dist.py_unittest_SPATIAL_DIM.3": {"doc_hash": "3840477a13330df4ec79189f307353f06e2db784c73cb6ccab5c70b713b6b0da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics_dist.py_DistributedMeanSquaredError_DistributedMeanSquaredError._compute.np_testing_assert_allclos": {"doc_hash": "b991298cc3046a4c9bf7d2e2623c1646883ebad0efbe5d4bdaf6586f26b0e471"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics_dist.py_DistributedMeanAbsoluteError_DistributedMeanAbsoluteError._compute.np_testing_assert_allclos": {"doc_hash": "c23ec0f1a34daeec8c09afec9ca388d70a813959cb0972f4f0df13354f971499"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics_dist.py_DistributedRootMeanSquaredError_DistributedRootMeanSquaredError._compute.np_testing_assert_allclos": {"doc_hash": "0d577680ef1341288a41579dd60aac7612933557e5162cd521855712ba9d578d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics_dist.py_DistributedPeakSignalToNoiseRatio_": {"doc_hash": "c942eaef572418018de09881e64193199d222976bab283f9224ae1b8a025a70e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_smartcache.py_sys_": {"doc_hash": "b0f33ada086c69f728114be312080da956c7508f84caff56aaefa7d0c26497cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_transform_inverter.py_TestTransformInverter_TestTransformInverter.test_invert._test_different_nearest_": {"doc_hash": "5e61cbc0ba24b0a395191da665e7d87d36782faccbcae2bd64e83d3f05a74c42"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_transform_inverter.py_TestTransformInverter.test_invert.None_3_": {"doc_hash": "1fce5f59061831417acc6bb6e6a5cf4a67b2da4f4ec9dcda6869b5ceeca255fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_image_dataset.py_os__TestCompose.__call__.return.data_meta": {"doc_hash": "1c23a0b53e24855336c90e7688ad721840cbef3c933e73d20b336c188f511e5d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_image_dataset.py_TestImageDataset_TestImageDataset.test_use_case.with_tempfile_TemporaryDi.None_3": {"doc_hash": "df08c8db904e69c038fac6c971aae190d9220d93cb788a6c3f1ba35e92269029"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_image_dataset.py_TestImageDataset.test_dataset_": {"doc_hash": "cc4babbc4731c59d717b6cb32ba1b0de2452ec9210ecbe9a7345a0e3ca4e420e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_run_inference_test_run_inference_test.return.dice_metric_aggregate_i": {"doc_hash": "c8a33a542748b66a4051ca26b4f6056b1a2cb779257bb1eb12a414ea9270f524"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows.train_and_infer_IntegrationWorkflows.train_and_infer.results_append_infer_metr": {"doc_hash": "e163b7341a62eb73c8d8650467041e405fc0c3c34bae96f47ab18be409a6d6cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows.train_and_infer._test_saved_files_IntegrationWorkflows.train_and_infer.return.results": {"doc_hash": "3aea5d19308327f192368c3eec441b5df3429f626d43648b251d0ea83f65fca9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_None_29_None_39": {"doc_hash": "4330f5e05e3c9619e1fec920414f5fdbe648213cf67a69329bd2cfd40644e54f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_None_40_no_collation.return.x": {"doc_hash": "a709edc001e4f41dc12bd400ba44447b31170ac77ae94e71aba8ed98aebb14be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse.test_inverse_TestInverse.test_inverse.for_i_t_in_enumerate_rev.if_isinstance_t_Invertib.if_isinstance_fwd_bck_li.else_.self_check_inverse_name_": {"doc_hash": "25a9767cec533f96ebd649ad84afba66b6449daf81637561c5b3c50d1c204625"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_invertd.py_sys_KEYS._image_label_": {"doc_hash": "2766bcd2fc4d47198d3501af0b8a56191628737ce99f840f170559e46dbd8da4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_invertd.py_TestInvertd_": {"doc_hash": "05dbcf440cfb5d9a0ed536b476920ca9eacd0b5d9276292866c39ff55a28bf40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noise.py_unittest_for_shape_in_128_64_.for_as_tensor_output_in_.for_as_tensor_input_in_T.TEST_CASES_append_shape_": {"doc_hash": "d71fa757bb5b6614fd1a8a1195c2c3e5ff09aa1df1337e90398cd40ce69186dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noise.py_TestKSpaceSpikeNoise_TestKSpaceSpikeNoise.get_data.return.torch_Tensor_im_if_as_te": {"doc_hash": "9ea88b80f2ca52d105dd5a0f0207894cb7e43192ab7dfaaab88744b3f99e63dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noise.py_TestKSpaceSpikeNoise.test_same_result_TestKSpaceSpikeNoise.test_same_result.self_assertIsInstance_out": {"doc_hash": "3e4405c288fd70d50c42cc2abd30a7ee3147a9ba0eaf54acb789ade308b25ba5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noise.py_TestKSpaceSpikeNoise.test_highlighted_kspace_pixel_": {"doc_hash": "eea08e7380072b6c811efcbf7fc32119627415539182d1f2c5e438ce9a6ee353"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noised.py_unittest_KEYS._image_label_": {"doc_hash": "7d848668198fe12040583f1abaa733e769ab1aad27c969250bd447dd83bc47ff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noised.py_TestKSpaceSpikeNoised_TestKSpaceSpikeNoised.get_data.return._k_v_for_k_v_in_zip_KEY": {"doc_hash": "eacf3a975df5563326bd95611e2b835403cc6d633e08978b76a8e79925302f94"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_same_result_TestKSpaceSpikeNoised.test_same_result.for_k_in_KEYS_.self_assertIsInstance_out": {"doc_hash": "7b8837e72a8f31baf8068cdb4808465a54911fe84407d01f40543a58a8e083bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_highlighted_kspace_pixel_TestKSpaceSpikeNoised.test_highlighted_kspace_pixel.for_k_in_KEYS_.np_testing_assert_allclos": {"doc_hash": "bb4ec6f8ecb5e887e5fbd1ad943a24c10a61d162433f77d29696fea94550fa0c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_dict_matches_": {"doc_hash": "8f486158436422563a55cc50c6756c61fe4270cb2323db8431b726bee1168505"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lmdbdataset.py_os__InplaceXform.__call__.return.data": {"doc_hash": "064cc30cb450319972ae90e7457fe5c414929b29cf3f5657c2b9a441c8f3922e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lmdbdataset.py_TestLMDBDataset.test_shape.if_transform_is_None__TestLMDBDataset.test_shape.if_transform_is_None_.else_.None_11": {"doc_hash": "8129dd8504009f81bbd0f941d4783cd06631ce95b0633c2c0ca6663ec5b050d0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lmdbdataset.py_TestMPLMDBDataset_": {"doc_hash": "4f24f17d81763fb75298cf953a8e6421af0dfe09bbbe4934f266b7eba95b0655"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_loss.py_unittest_TEST_CASES._": {"doc_hash": "2687ca233929108db6a4a0c9a11a72e44645d230a9444865ac93ec059ab7459a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_loss.py_TestMaskedLoss_TestMaskedLoss.test_shape.None_2": {"doc_hash": "6a0b2b3c5c21178ed6848da6d7bc1eb481e5c4c9fdb72dc6c32b52abd3c7c82e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_loss.py_TestMaskedLoss.test_ill_opts_TestMaskedLoss.test_ill_opts.None_2.masked_input_torch_zeros_": {"doc_hash": "6bb196573c6e7931ba0cdf1cf6eee75e9370d63905aefefdcd15cfcf50eb00b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_loss.py_TestMaskedLoss.test_script_": {"doc_hash": "e1dd7cb6e36a14ca2a7ac5148551721ef3565cc30187b03e542e87eb91732294"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mmar_download.py_os_TEST_CASES._clara_pt_prostate_mri_": {"doc_hash": "5b8d6848f4eb76d4725ae3769d5e9a503b2784be25afd2b69f5847a012a95f52"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mmar_download.py_TEST_EXTRACT_CASES_TEST_EXTRACT_CASES._": {"doc_hash": "834449f7d90b07d61846361460a5c02dca1fc3977c0d61e5b6c5bdc9d07ea786"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mmar_download.py_TestMMMARDownload_TestMMMARDownload.test_download.try_.except_ContentTooShortEr._skipping_this_test_due_": {"doc_hash": "4ba5a52f90b5ce765d10406b7f12252ff4c32ca9d0159d66af7d1c198c2aa633"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mmar_download.py_TestMMMARDownload.test_load_ckpt_TestMMMARDownload.test_load_ckpt.np_testing_assert_allclos": {"doc_hash": "b197205ca8602c8a4d331435cc5f8e2b43ecd74b2c8a81022a08fb490115b456"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mmar_download.py_TestMMMARDownload.test_unique_": {"doc_hash": "dfc9c8c00611b4bbcbfc105352d626290cba2c4f08af940b9f502113113d53dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_net_adapter.py_unittest_TEST_CASE_4._": {"doc_hash": "730d366ad1e3a2be3ffcdb1c117c4b54a65d5bea37a1c3828d23b47f1e124600"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_net_adapter.py_TestNetAdapter_": {"doc_hash": "92becccf5db1b52ad5b5d03774571fee2bc01af83bb4a3207406587a30a370cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_network_consistency.py_json_if_extra_test_data_dir_is.for_data_path_in_glob_os_.TESTS_append_net_name_d": {"doc_hash": "118b2be553d16192c3d282f5529db01219879b702e9e0308e5d6cd9f64940295"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_network_consistency.py_TestNetworkConsistency_": {"doc_hash": "1e1de67908670238314c2c0ec9d52a3ee8a450216498e537965e6679beb32719"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_endianness.py_TestNiftiEndianness_TestNiftiEndianness.test_endianness.if_isinstance_ret_dict_.np_testing_assert_allclos": {"doc_hash": "0ac099c12a2455c967201df0f896b014872d6661cebbc6761248de1962b858cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_consistency_TestNiftiLoadRead.test_consistency.None_3.os_remove_test_image_": {"doc_hash": "e40c37121d2e5708d815bb98ed0de9ef4bcad1a568c3f92d73626c549072a526"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_npzdictitemdataset.py_tempfile_TestNPZDictItemDataset.test_load_stream.None_3": {"doc_hash": "fa3714ff3288acf360fdc13f982cc18aaa551bc90a3ac9478a10e66c419a2770"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_canonical_TestOrientationdCase.test_orntd_canonical.None_3": {"doc_hash": "bc8d84b07f468ebf5a7c334a5ff57b4f4f5b1cd0324178df2ddf8a2f1efa0b7c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_no_metadata_": {"doc_hash": "97a2820ac35fb7f94f9592b2f2db0f8b9323b4ee6dd97e8da9dadc5c6778cfe3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_persistentdataset.py_os__InplaceXform.__call__.return.data": {"doc_hash": "62bc28c1de3e12435b5e0b032ac2fb1d3ebe617b9417476a7e6eb91aec1e821b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_persistentdataset_dist.py_os_TestDistDataset.test_mp_dataset.None_6": {"doc_hash": "35a34989a395bae815274c90bc31c987d62b0e6e3c19e47d856d17f22e6f4ffb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_persistentdataset_dist.py_TestDistCreateDataset_": {"doc_hash": "42f4af036f7e7722ad6f2985be5f12613d6bbf623480aab89c416cd0684eb17a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine.py_ARR_NUMPY_for_im_in_ARR_NUMPY_ARR.for_as_tensor_output_in_.for_in_dtype_is_int_in_T.TEST_CASES_SKIPPED_CONSIS": {"doc_hash": "e51ca9f50e2f174047cb3f2e27110625cf64e46c47f895731769b1928067ca42"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine.py_TestRandAffine_TestRandAffine.test_ill_cache.None_1.RandAffine_cache_grid_Tru": {"doc_hash": "9cd00c1c91590a828949bf07406fbb38cffb16643cc7519a078731f86b6ad2b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine.py_TestRandAffine.test_skipped_transform_consistency_": {"doc_hash": "44cce05f2919861a51bb50a7ff495804d04e8ad4360dda0e257336968f694549"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affined.py_unittest_TEST_CASES": {"doc_hash": "6928d95016a7605c7453dc9336f8c9dfee5908d8a5cda7928f5d1f5d2ac3ce18"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affined.py_TestRandAffined_TestRandAffined.test_rand_affined.for_key_in_res_.if_isinstance_result_tor.else_.np_testing_assert_allclos": {"doc_hash": "d6e820a5315c829d4046b2b3fb887cdb84def13d612f274e54f708d43c5ea617"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affined.py_TestRandAffined.test_ill_cache_": {"doc_hash": "d8cd3cc17c329d3dc92688c7c6e9f08c256c8cf49cd2324b4c68c239bfc999aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noise.py_unittest_for_shape_in_128_64_.for_as_tensor_output_in_.for_as_tensor_input_in_T.TEST_CASES_append_shape_": {"doc_hash": "6318f3fb239b43f050b53126266faf43b6527b2c892c3ba1d73316ccf8fc5346"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noise.py_TestRandGibbsNoise_TestRandGibbsNoise.test_0_prob.np_testing_assert_allclos": {"doc_hash": "7141e69c1fcffadd7f18b714131f93fa5dd41088a11cc341e3df4b351cb1c6ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noise.py_TestRandGibbsNoise.test_same_result_TestRandGibbsNoise.test_same_result.self_assertIsInstance_out": {"doc_hash": "9751a1844019d50d1622347ccab4cc0547a05903037660857dbaee6d6bdfcdaa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noise.py_TestRandGibbsNoise.test_identity_": {"doc_hash": "f0876bb4ac5b206138619f7b0c60414d3c171a47c9c42e91cb31d7bae4755ca3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_unittest_KEYS._im_label_": {"doc_hash": "1476ce4db7e8ab07021fe0b1e891b0ed72a2d19efae3cb286ac2dd59fffcf387"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_TestRandGibbsNoised_TestRandGibbsNoised.test_0_prob.for_k_in_KEYS_.np_testing_assert_allclos": {"doc_hash": "df01a88acdd4c4ad186409abd60d9179e19deacbc1b47427652a6a24203d7298"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_TestRandGibbsNoised.test_same_result_TestRandGibbsNoised.test_same_result.for_k_in_KEYS_.self_assertIsInstance_out": {"doc_hash": "d7d3eec0e32570d8d7809d153e854873fc0871c28f78cb3835642d00149afa50"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_TestRandGibbsNoised.test_identity_TestRandGibbsNoised.test_alpha_1.for_k_in_KEYS_.np_testing_assert_allclos": {"doc_hash": "ebb4eeb0edc76407985a862b701976a3bac7880226baac8ef1a57626da7144ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_TestRandGibbsNoised.test_dict_matches_TestRandGibbsNoised.test_dict_matches.np_testing_assert_allclos": {"doc_hash": "6c30db4ec0d0b3a87a836c24445ce57c288718876fbac788b3e72d88d88605de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_TestRandGibbsNoised.test_alpha_": {"doc_hash": "748e06d699f10b7fa849d5bb5fa5bd02e0b692274112fc349e268a7556fa1149"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noise.py_unittest_for_shape_in_128_64_.for_as_tensor_output_in_.for_as_tensor_input_in_T.for_channel_wise_in_True.TEST_CASES_append_shape_": {"doc_hash": "95ebd48532e83d2c541a81bd9483aafd19109a3f94c040d9303bb95fe3e125a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noise.py_TestRandKSpaceSpikeNoise_TestRandKSpaceSpikeNoise.test_0_prob.np_testing_assert_allclos": {"doc_hash": "f6566e9eb9db616e9b3a812345b1140426331b91d6f5009f39a6aff4ab5e74a1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noise.py_TestRandKSpaceSpikeNoise.test_1_prob_TestRandKSpaceSpikeNoise.test_1_prob.np_testing_assert_allclos": {"doc_hash": "1d82cbd274fd0ab128ab9b5a3ba2d735d43d1291d7c75905498be50be0d9ab65"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noise.py_TestRandKSpaceSpikeNoise.test_same_result_TestRandKSpaceSpikeNoise.test_same_result.self_assertIsInstance_out": {"doc_hash": "f7a3aeb867c30b9ab9ab22f966b8881a5ad3e7491660f61b6543d5c84e5a3122"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noise.py_TestRandKSpaceSpikeNoise.test_intensity_": {"doc_hash": "40f4359d7e0eef44a685d62353e2456c186d521a65b9d3f3ac600991f6933344"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noised.py_unittest_KEYS._image_label_": {"doc_hash": "27324ce798d571c66798b13d4741b620aba37f3a31b75d018394df95c666efad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noised.py_TestKSpaceSpikeNoised_TestKSpaceSpikeNoised.get_data.return._k_v_for_k_v_in_zip_KEY": {"doc_hash": "bd55d41b53d61009d4d21495562425fd23f1753c03b8cb3e44427a8321fc4032"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_same_result_TestKSpaceSpikeNoised.test_same_result.for_k_in_KEYS_.self_assertIsInstance_out": {"doc_hash": "7fa069264f442fa139bb844d6e9db2f5a5150a5f05de509518656c8790d4fda1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_0_prob_TestKSpaceSpikeNoised.test_0_prob.for_k_in_KEYS_.None_1": {"doc_hash": "3e3e242bfa518cc98a95ec0f766140dc596ab316ad064d8051c59a3762c1698f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_intensity_TestKSpaceSpikeNoised.test_intensity.None_3": {"doc_hash": "bd3267c7df51f4b9178e397b2673921d76e895358a4d6fe4f75def7999b17ff5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_same_transformation_": {"doc_hash": "3e3e7503615971275010065b6408456163bda3d80dafa529b4a32fb431351262"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rician_noise.py_unittest_TestRandRicianNoise.test_correct_results.np_testing_assert_allclos": {"doc_hash": "40200cce086eb6c9bf9e8f50e1fd9b1217ad7e7fd2e190fece05d78ea560bde0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rician_noise.py_TestRandRicianNoiseTorch_": {"doc_hash": "19d66d12f695c00b1ff0f949c86f88997e72501d659fead66c5f8e513e697fb6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rician_noised.py_unittest_seed.0": {"doc_hash": "e4416a90ca99b6a217daa25fec1aad4b8e63287157c53619e716ddf3daeb8299"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rician_noised.py_test_numpy_or_torch_test_numpy_or_torch.for_k_in_keys_.np_testing_assert_allclos": {"doc_hash": "62940dfa97c43b3374c2328a36c6990644f7ab43017b624ec96863472092bbb4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rician_noised.py__Test_with_numpy_": {"doc_hash": "17228e9c90c55bcaee39761e136b6850885a918fb862aee325d01e55b7d4929a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_crop.py_unittest_TEST_CASE_6._": {"doc_hash": "3a235132c28ec3d88b0044820f624b794673aab753cc9a086904e3d85ad03ffd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_crop.py_TestRandScaleCrop_": {"doc_hash": "229b229d0f31705098fe951e27e722f55aa2f48732fe36a7784375d49bbad563"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_cropd.py_unittest_TEST_CASE_6._": {"doc_hash": "a2d9faeb81c263af2a8c2fd713c52138bccbe3fcd113d720076e32ddc104f594"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_cropd.py_TestRandScaleCropd_": {"doc_hash": "0d6461c551fc2f3f51b56f57b251af0f344045cd0c3af3d844b69d33af8df160"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop.py_unittest_TEST_CASE_5._": {"doc_hash": "23d7ff8ba1d854529182d75f98c0b58734b14b198493649f149643e14fc51a1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_TestRandSpatialCropSamplesd_TestRandSpatialCropSamplesd.test_shape.None_2": {"doc_hash": "525e44c57fab4ca3538acdfab3ca09ab730eb450dfd3456e055991cb3d316a00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_TestRandSpatialCropSamplesd.test_deep_copy_": {"doc_hash": "3baa9d5e6a400d39d09e9ccb2c4c68a215ddace9b54dde8f20fbeda8a8b26e37"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_cropd.py_unittest_TEST_CASE_5._": {"doc_hash": "d8dd30d5d608bdf3fbcfd2b9e25a6a1720ea7c18dda248f719b7e7b0ee2666ec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop3D.test_rand_weighted_crop_bad_w_TestRandWeightedCrop3D.test_rand_weighted_crop_bad_w.None_4": {"doc_hash": "afcd8ad7dc8f9c68c22dc1422ea4bc2f83c63e0eda38f5235104c80388ff295c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop3D.test_rand_weighted_crop_patch_index_": {"doc_hash": "58807a6ab4634ee6abeaf9d29cef4e23b88cf89412464f7147a132f4e18b3b44"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resnet.py_unittest_TEST_SCRIPT_CASES._": {"doc_hash": "fcb73c7cbc9c6fda49a831626342916a1d2146e6b92dbf109f35907bfac397ec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resnet.py_TestResNet_": {"doc_hash": "d8df3d31c7f395a1f6ae1ec6ffb0a69be4dcd23b4fb666dd58ec5ce25d4484f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_save_classificationd.py_csv_": {"doc_hash": "1f309c33ece60381a176c2af717e03d6a773ff48c484ccc53d56f3ed287085c8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_save_image.py_os_TEST_CASE_8._": {"doc_hash": "2d9f10960a57c435e0aba100088c463d84713680eb598434db4123c51cd95f92"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_save_imaged.py_TEST_CASE_7_TEST_CASE_7._": {"doc_hash": "f56093172a17c0f732df580b274c55a2d9feb6fb3c975ec22507ed5d121c2eb2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_set_visible_devices.py_os_": {"doc_hash": "d6b0359ea09d5420d01b84713d7dbbeb21f19d9451076069894bc20548a2e0c6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcachedataset.py_copy_TEST_CASE_5._0_5_2_Compose_LoadIma": {"doc_hash": "e0e14403fa63f4b56e2755c11f73634aca76d927d628cabc49e11900857bb13e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcachedataset.py_TestSmartCacheDataset.test_update_cache_TestSmartCacheDataset.test_update_cache.for_string_new_string_re.assert_string_new_stri": {"doc_hash": "0d6d1b78b85a5221ef957947c7a94038d8e5fa53e4770d305d5e3c08172c0bb5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_TestSpacingDCase.test_spacingd_2d_no_metadata_TestSpacingDCase.test_spacingd_2d_no_metadata.None_2": {"doc_hash": "3e4c0eaf13ebcd16002b366e5e2183ee7e08166b520b9953bb693ae3fdfb0172"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupy.py_unittest_": {"doc_hash": "9a965833a78528be3092afd2e8712183082f9ad9800c2a55038358083328ea1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupyd.py_unittest_TestToCupyd.test_cumpy_input.cp_testing_assert_allclos": {"doc_hash": "fc3ecbe254498b5cb4f06fdd1712f8997bd787921fbe125eb8d2ad8cdeb8cce6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupyd.py_TestToCupyd.test_numpy_input_TestToCupyd.test_numpy_input.cp_testing_assert_allclos": {"doc_hash": "9c90c395ecf9dffbf185259108c8c3881deeb6d0b8063864b53199b3cfef40f5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupyd.py_TestToCupyd.test_tensor_input_TestToCupyd.test_tensor_input.cp_testing_assert_allclos": {"doc_hash": "36342915ec7d86e4528914dca716cd2060de12050c551ccf81a286685cc3ab96"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupyd.py_TestToCupyd.test_list_tuple_": {"doc_hash": "fa8841fac122f55460e88fe0790ec6a8252884afe154a2b1ba20fa6862c00713"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_numpyd.py_unittest_TestToNumpyd.test_cumpy_input.np_testing_assert_allclos": {"doc_hash": "aa2b6722530b506ecdf8d7909161e7ed3738c1057bc0441b1645b39d73e382f4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_numpyd.py_TestToNumpyd.test_numpy_input_": {"doc_hash": "6e2d62c2cc27bd3b2c91b091577f0c16307125d2eb1bad9a06d576e8a645aa9e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fc_model.py_unittest_TEST_CASE_PRETRAINED_1._": {"doc_hash": "a80ee2da200195e352caa7e5699bd887ec12ebd38785fe426feea3d8654480ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fc_model.py_TEST_CASE_PRETRAINED_2_TEST_CASE_PRETRAINED_5._": {"doc_hash": "504d9afaae0218f9d2ab73d2caa07b0f88aa6a878410760d0b548b10a0c7dca6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fc_model.py_TestTorchVisionFCModel_TestTorchVisionFCModel.test_without_pretrained.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "a164bcb5743ada94e8154b0f4282459d420ecc0eeb793d8585c8b290e9ababd9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fc_model.py_TestTorchVisionFCModel.test_with_pretrained_": {"doc_hash": "0af9531ce7c5f83402446e6f855a8ea0ebb26ef7f6d2c89f7898e1d9c214ab58"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fully_conv_model.py_unittest_TEST_CASE_PRETRAINED_2._": {"doc_hash": "2e43b369eb2e95fd8b1d8548d0f6fbc067aafb3e5fca1364e7430c29eb850431"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fully_conv_model.py_TestTorchVisionFullyConvModel_TestTorchVisionFullyConvModel.test_without_pretrained.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "b0e7f8b505d6a79a1649f6f015bc5902fd5ebc88834d22fe98a7976fe8265cdc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fully_conv_model.py_TestTorchVisionFullyConvModel.test_with_pretrained_": {"doc_hash": "07ad920bab7019e4945ba7589e83deeb4bbfa3acfd7fecef1b62cd126c6659bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_transpose.py_unittest_": {"doc_hash": "a7b30b44e1a3ee2b3e5c94872106f3d02ccbb581dbe3e7b0b93ce66e71117993"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_transposed.py_unittest_TEST_CASES._TEST_CASE_0_TEST_CASE_1": {"doc_hash": "f7aa6266a4d32870b5de3082818abaf796fd3ebc32a099faccf06f9bd064c552"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_transposed.py_TestTranspose_": {"doc_hash": "114858bae330fec0bd1b748358e729ef88f90d6f5c43bd417acd47040d0b7947"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_upsample_block.py_unittest_TEST_CASES._": {"doc_hash": "13b3adc9061708beb317bcf3b24974e1ad2684272c3be1ec7707e77238c97016"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_upsample_block.py_TEST_CASES_EQ_": {"doc_hash": "f6a40dd821263b39f9e380b990a7840c51367902e037b6f93053891e6acecdd6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py__get_all_ngc_models__get_ngc_url.return.f_https_api_ngc_nvidia_": {"doc_hash": "e223d5dffec7a324409a7bb16e174a0c27fa94b5ee55c6657b96ccbd413b8a1c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/model_desc.py_os_": {"doc_hash": "5a5ac4db02c4a06d73b4d6497e44dcfa7640de1d3474ed0db4b4fccf9f9fdf75"}}, "docstore/data": {"/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py__Configuration_file_for__exclude_patterns._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py__Configuration_file_for__exclude_patterns._", "embedding": null, "metadata": {"file_path": "docs/source/conf.py", "file_name": "conf.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1, "end_line": 50, "span_ids": ["docstring"], "tokens": 331}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "# Configuration file for the Sphinx documentation builder.\n#\n# This file only contains a selection of the most common options. For a full\n# list see the documentation:\n# https://www.sphinx-doc.org/en/master/usage/configuration.html\n\n# -- Path setup --------------------------------------------------------------\n\n# If extensions (or modules to document with autodoc) are in another directory,\n# add these directories to sys.path here. If the directory is relative to the\n# documentation root, use os.path.abspath to make it absolute, like shown here.\n#\nimport os\nimport sys\nimport subprocess\n\nsys.path.insert(0, os.path.abspath(\"..\"))\nsys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), \"..\", \"..\")))\nprint(sys.path)\n\nimport monai # noqa: E402\n\n# -- Project information -----------------------------------------------------\nproject = \"MONAI\"\ncopyright = \"2020 - 2021 MONAI Consortium\"\nauthor = \"MONAI Contributors\"\n\n# The full version, including alpha/beta/rc tags\nshort_version = monai.__version__.split(\"+\")[0]\nrelease = short_version\nversion = short_version\n\n# List of patterns, relative to source directory, that match files and\n# directories to ignore when looking for source files.\n# This pattern also affects html_static_path and html_extra_path.\nexclude_patterns = [\n \"transforms\",\n \"networks\",\n \"metrics\",\n \"engines\",\n \"data\",\n \"apps\",\n \"config\",\n \"handlers\",\n \"losses\",\n \"visualize\",\n \"utils\",\n \"inferers\",\n \"optimizers\",\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py_generate_apidocs_generate_apidocs.subprocess_check_call_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py_generate_apidocs_generate_apidocs.subprocess_check_call_", "embedding": null, "metadata": {"file_path": "docs/source/conf.py", "file_name": "conf.py", "file_type": "text/x-python", "category": "implementation", "start_line": 52, "end_line": 67, "span_ids": ["generate_apidocs"], "tokens": 205}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def generate_apidocs(*args):\n \"\"\"Generate API docs automatically by trawling the available modules\"\"\"\n module_path = os.path.abspath(os.path.join(os.path.dirname(__file__), \"..\", \"..\", \"monai\"))\n output_path = os.path.abspath(os.path.join(os.path.dirname(__file__), \"apidocs\"))\n apidoc_command_path = \"sphinx-apidoc\"\n if hasattr(sys, \"real_prefix\"): # called from a virtualenv\n apidoc_command_path = os.path.join(sys.prefix, \"bin\", \"sphinx-apidoc\")\n apidoc_command_path = os.path.abspath(apidoc_command_path)\n print(f\"output_path {output_path}\")\n print(f\"module_path {module_path}\")\n subprocess.check_call(\n [apidoc_command_path, \"-e\"]\n + [\"-o\", output_path]\n + [module_path]\n + [os.path.join(module_path, p) for p in exclude_patterns]\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py_setup_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py_setup_", "embedding": null, "metadata": {"file_path": "docs/source/conf.py", "file_name": "conf.py", "file_type": "text/x-python", "category": "implementation", "start_line": 71, "end_line": 135, "span_ids": ["impl:18", "setup"], "tokens": 530}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def setup(app):\n # Hook to allow for automatic generation of API docs\n # before doc deployment begins.\n app.connect(\"builder-inited\", generate_apidocs)\n\n\n# -- General configuration ---------------------------------------------------\n\n# Add any Sphinx extension module names here, as strings. They can be\n# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom\n# ones.\nsource_suffix = {\".rst\": \"restructuredtext\", \".txt\": \"restructuredtext\", \".md\": \"markdown\"}\n\nextensions = [\n \"recommonmark\",\n \"sphinx.ext.intersphinx\",\n \"sphinx.ext.mathjax\",\n \"sphinx.ext.napoleon\",\n \"sphinx.ext.autodoc\",\n \"sphinx.ext.viewcode\",\n \"sphinx.ext.autosectionlabel\",\n \"sphinx_autodoc_typehints\",\n]\n\nautoclass_content = \"both\"\nadd_module_names = True\nautosectionlabel_prefix_document = True\nnapoleon_use_param = True\nset_type_checking_flag = True\n\n# Add any paths that contain templates here, relative to this directory.\ntemplates_path = [\"_templates\"]\n\n# -- Options for HTML output -------------------------------------------------\n\n# The theme to use for HTML and HTML Help pages. See the documentation for\n# a list of builtin themes.\n#\nhtml_theme = \"sphinx_rtd_theme\"\n# html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]\nhtml_theme_options = {\n \"collapse_navigation\": True,\n \"display_version\": True,\n \"sticky_navigation\": True, # Set to False to disable the sticky nav while scrolling.\n \"logo_only\": True, # if we have a html_logo below, this shows /only/ the logo with no title text\n \"style_nav_header_background\": \"#FBFBFB\",\n}\nhtml_context = {\n \"display_github\": True,\n \"github_user\": \"Project-MONAI\",\n \"github_repo\": \"MONAI\",\n \"github_version\": \"dev\",\n \"conf_py_path\": \"/docs/\",\n}\nhtml_scaled_image_link = False\nhtml_show_sourcelink = True\nhtml_favicon = \"../images/favicon.ico\"\nhtml_logo = \"../images/MONAI-logo-color.png\"\n\n# Add any paths that contain custom static files (such as style sheets) here,\n# relative to this directory. They are copied after the builtin static files,\n# so a file named \"default.css\" will overwrite the builtin \"default.css\".\nhtml_static_path = [\"../_static\"]\nhtml_css_files = [\"custom.css\"]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/__init__.py_os_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/__init__.py_os_", "embedding": null, "metadata": {"file_path": "monai/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 63, "span_ids": ["docstring"], "tokens": 352}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport sys\n\nfrom ._version import get_versions\n\nPY_REQUIRED_MAJOR = 3\nPY_REQUIRED_MINOR = 6\n\nversion_dict = get_versions()\n__version__ = version_dict.get(\"version\", \"0+unknown\")\n__revision_id__ = version_dict.get(\"full-revisionid\")\ndel get_versions, version_dict\n\n__copyright__ = \"(c) 2020 - 2021 MONAI Consortium\"\n\n__basedir__ = os.path.dirname(__file__)\n\nif not (sys.version_info.major == PY_REQUIRED_MAJOR and sys.version_info.minor >= PY_REQUIRED_MINOR):\n raise RuntimeError(\n \"MONAI requires Python {}.{} or higher. But the current Python is: {}\".format(\n PY_REQUIRED_MAJOR, PY_REQUIRED_MINOR, sys.version\n ),\n )\n\nfrom .utils.module import load_submodules # noqa: E402\n\n# handlers_* have some external decorators the users may not have installed\n# *.so files and folder \"_C\" may not exist when the cpp extensions are not compiled\nexcludes = \"(^(monai.handlers))|((\\\\.so)$)|(^(monai._C))\"\n\n# load directory modules only, skip loading individual files\nload_submodules(sys.modules[__name__], False, exclude_pattern=excludes)\n\n# load all modules, this will trigger all export decorations\nload_submodules(sys.modules[__name__], True, exclude_pattern=excludes)\n\n__all__ = [\n \"apps\",\n \"config\",\n \"data\",\n \"engines\",\n \"handlers\",\n \"inferers\",\n \"losses\",\n \"metrics\",\n \"networks\",\n \"optimizers\",\n \"transforms\",\n \"utils\",\n \"visualize\",\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py__This_file_helps_to_comp_sys": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py__This_file_helps_to_comp_sys", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 2, "end_line": 17, "span_ids": ["docstring"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "# This file helps to compute a version number in source trees obtained from\n# git-archive tarball (such as those provided by githubs download-from-tag\n# feature). Distribution tarballs (built by setup.py sdist) and build\n# directories (produced by setup.py build) will contain a much shorter file\n# that just contains the computed version number.\n\n# This file is released into the public domain. Generated by\n# versioneer-0.19 (https://github.com/python-versioneer/python-versioneer)\n\n\"\"\"Git implementation of _version.py.\"\"\"\n\nimport errno\nimport os\nimport re\nimport subprocess\nimport sys", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_keywords_get_keywords.return.keywords": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_keywords_get_keywords.return.keywords", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 19, "end_line": 29, "span_ids": ["get_keywords"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_keywords():\n \"\"\"Get the keywords needed to look up the version information.\"\"\"\n # these strings will be replaced by git during git-archive.\n # setup.py/versioneer.py will grep for the variable names, so they must\n # each be defined on a line of their own. _version.py will just call\n # get_keywords().\n git_refnames = \"$Format:%d$\"\n git_full = \"$Format:%H$\"\n git_date = \"$Format:%ci$\"\n keywords = {\"refnames\": git_refnames, \"full\": git_full, \"date\": git_date}\n return keywords", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_VersioneerConfig_register_vcs_handler.return.decorate": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_VersioneerConfig_register_vcs_handler.return.decorate", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 33, "end_line": 67, "span_ids": ["VersioneerConfig", "impl", "NotThisMethod", "register_vcs_handler", "get_config"], "tokens": 234}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class VersioneerConfig:\n \"\"\"Container for Versioneer configuration parameters.\"\"\"\n\n\ndef get_config():\n \"\"\"Create, populate and return the VersioneerConfig() object.\"\"\"\n # these strings are filled in when 'setup.py versioneer' creates\n # _version.py\n cfg = VersioneerConfig()\n cfg.VCS = \"git\"\n cfg.style = \"pep440\"\n cfg.tag_prefix = \"\"\n cfg.parentdir_prefix = \"\"\n cfg.versionfile_source = \"monai/_version.py\"\n cfg.verbose = False\n return cfg\n\n\nclass NotThisMethod(Exception):\n \"\"\"Exception raised if a method is not valid for the current scenario.\"\"\"\n\n\nLONG_VERSION_PY = {}\nHANDLERS = {}\n\n\ndef register_vcs_handler(vcs, method): # decorator\n \"\"\"Create decorator to mark a method as the handler of a VCS.\"\"\"\n def decorate(f):\n \"\"\"Store f in HANDLERS[vcs][method].\"\"\"\n if vcs not in HANDLERS:\n HANDLERS[vcs] = {}\n HANDLERS[vcs][method] = f\n return f\n return decorate", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_run_command_run_command.return.stdout_p_returncode": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_run_command_run_command.return.stdout_p_returncode", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 70, "end_line": 102, "span_ids": ["run_command"], "tokens": 274}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False,\n env=None):\n \"\"\"Call the given command(s).\"\"\"\n assert isinstance(commands, list)\n p = None\n for c in commands:\n try:\n dispcmd = str([c] + args)\n # remember shell=False, so use git.cmd on windows, not just git\n p = subprocess.Popen([c] + args, cwd=cwd, env=env,\n stdout=subprocess.PIPE,\n stderr=(subprocess.PIPE if hide_stderr\n else None))\n break\n except EnvironmentError:\n e = sys.exc_info()[1]\n if e.errno == errno.ENOENT:\n continue\n if verbose:\n print(\"unable to run %s\" % dispcmd)\n print(e)\n return None, None\n else:\n if verbose:\n print(\"unable to find command, tried %s\" % (commands,))\n return None, None\n stdout = p.communicate()[0].strip().decode()\n if p.returncode != 0:\n if verbose:\n print(\"unable to run %s (error)\" % dispcmd)\n print(\"stdout was %s\" % stdout)\n return None, p.returncode\n return stdout, p.returncode", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 106, "end_line": 128, "span_ids": ["versions_from_parentdir"], "tokens": 205}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def versions_from_parentdir(parentdir_prefix, root, verbose):\n \"\"\"Try to determine the version from the parent directory name.\n\n Source tarballs conventionally unpack into a directory that includes both\n the project name and a version string. We will also support searching up\n two directory levels for an appropriately named parent directory\n \"\"\"\n rootdirs = []\n\n for i in range(3):\n dirname = os.path.basename(root)\n if dirname.startswith(parentdir_prefix):\n return {\"version\": dirname[len(parentdir_prefix):],\n \"full-revisionid\": None,\n \"dirty\": False, \"error\": None, \"date\": None}\n else:\n rootdirs.append(root)\n root = os.path.dirname(root) # up a level\n\n if verbose:\n print(\"Tried directories %s but none started with prefix %s\" %\n (str(rootdirs), parentdir_prefix))\n raise NotThisMethod(\"rootdir doesn't start with parentdir_prefix\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_get_keywords_git_get_keywords.return.keywords": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_get_keywords_git_get_keywords.return.keywords", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 131, "end_line": 157, "span_ids": ["git_get_keywords"], "tokens": 255}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"get_keywords\")\ndef git_get_keywords(versionfile_abs):\n \"\"\"Extract version information from the given file.\"\"\"\n # the code embedded in _version.py can just fetch the value of these\n # keywords. When used from setup.py, we don't want to import _version.py,\n # so we do it with a regexp instead. This function is not used from\n # _version.py.\n keywords = {}\n try:\n f = open(versionfile_abs, \"r\")\n for line in f.readlines():\n if line.strip().startswith(\"git_refnames =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"refnames\"] = mo.group(1)\n if line.strip().startswith(\"git_full =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"full\"] = mo.group(1)\n if line.strip().startswith(\"git_date =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"date\"] = mo.group(1)\n f.close()\n except EnvironmentError:\n pass\n return keywords", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_versions_from_keywords_git_versions_from_keywords.return._version_0_unknown_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_versions_from_keywords_git_versions_from_keywords.return._version_0_unknown_", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 159, "end_line": 215, "span_ids": ["git_versions_from_keywords"], "tokens": 745}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"keywords\")\ndef git_versions_from_keywords(keywords, tag_prefix, verbose):\n \"\"\"Get version information from git keywords.\"\"\"\n if not keywords:\n raise NotThisMethod(\"no keywords at all, weird\")\n date = keywords.get(\"date\")\n if date is not None:\n # Use only the last line. Previous lines may contain GPG signature\n # information.\n date = date.splitlines()[-1]\n\n # git-2.2.0 added \"%cI\", which expands to an ISO-8601 -compliant\n # datestamp. However we prefer \"%ci\" (which expands to an \"ISO-8601\n # -like\" string, which we must then edit to make compliant), because\n # it's been around since git-1.5.3, and it's too difficult to\n # discover which version we're using, or to work around using an\n # older one.\n date = date.strip().replace(\" \", \"T\", 1).replace(\" \", \"\", 1)\n refnames = keywords[\"refnames\"].strip()\n if refnames.startswith(\"$Format\"):\n if verbose:\n print(\"keywords are unexpanded, not using\")\n raise NotThisMethod(\"unexpanded keywords, not a git-archive tarball\")\n refs = set([r.strip() for r in refnames.strip(\"()\").split(\",\")])\n # starting in git-1.8.3, tags are listed as \"tag: foo-1.0\" instead of\n # just \"foo-1.0\". If we see a \"tag: \" prefix, prefer those.\n TAG = \"tag: \"\n tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)])\n if not tags:\n # Either we're using git < 1.8.3, or there really are no tags. We use\n # a heuristic: assume all version tags have a digit. The old git %d\n # expansion behaves like git log --decorate=short and strips out the\n # refs/heads/ and refs/tags/ prefixes that would let us distinguish\n # between branches and tags. By ignoring refnames without digits, we\n # filter out many common branch names like \"release\" and\n # \"stabilization\", as well as \"HEAD\" and \"master\".\n tags = set([r for r in refs if re.search(r'\\d', r)])\n if verbose:\n print(\"discarding '%s', no digits\" % \",\".join(refs - tags))\n if verbose:\n print(\"likely tags: %s\" % \",\".join(sorted(tags)))\n for ref in sorted(tags):\n # sorting will prefer e.g. \"2.0\" over \"2.0rc1\"\n if ref.startswith(tag_prefix):\n r = ref[len(tag_prefix):]\n if verbose:\n print(\"picking %s\" % r)\n return {\"version\": r,\n \"full-revisionid\": keywords[\"full\"].strip(),\n \"dirty\": False, \"error\": None,\n \"date\": date}\n # no suitable tags, so version is \"0+unknown\", but full hex is still there\n if verbose:\n print(\"no suitable tags, using unknown + full revision id\")\n return {\"version\": \"0+unknown\",\n \"full-revisionid\": keywords[\"full\"].strip(),\n \"dirty\": False, \"error\": \"no suitable tags\", \"date\": None}", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 218, "end_line": 310, "span_ids": ["git_pieces_from_vcs"], "tokens": 905}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"pieces_from_vcs\")\ndef git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command):\n \"\"\"Get version from 'git describe' in the root of the source tree.\n\n This only gets called if the git-archive 'subst' keywords were *not*\n expanded, and _version.py hasn't already been rewritten with a short\n version string, meaning we're inside a checked out source tree.\n \"\"\"\n GITS = [\"git\"]\n if sys.platform == \"win32\":\n GITS = [\"git.cmd\", \"git.exe\"]\n\n out, rc = run_command(GITS, [\"rev-parse\", \"--git-dir\"], cwd=root,\n hide_stderr=True)\n if rc != 0:\n if verbose:\n print(\"Directory %s not under git control\" % root)\n raise NotThisMethod(\"'git rev-parse --git-dir' returned error\")\n\n # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty]\n # if there isn't one, this yields HEX[-dirty] (no NUM)\n describe_out, rc = run_command(GITS, [\"describe\", \"--tags\", \"--dirty\",\n \"--always\", \"--long\",\n \"--match\", \"%s*\" % tag_prefix],\n cwd=root)\n # --long was added in git-1.5.5\n if describe_out is None:\n raise NotThisMethod(\"'git describe' failed\")\n describe_out = describe_out.strip()\n full_out, rc = run_command(GITS, [\"rev-parse\", \"HEAD\"], cwd=root)\n if full_out is None:\n raise NotThisMethod(\"'git rev-parse' failed\")\n full_out = full_out.strip()\n\n pieces = {}\n pieces[\"long\"] = full_out\n pieces[\"short\"] = full_out[:7] # maybe improved later\n pieces[\"error\"] = None\n\n # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty]\n # TAG might have hyphens.\n git_describe = describe_out\n\n # look for -dirty suffix\n dirty = git_describe.endswith(\"-dirty\")\n pieces[\"dirty\"] = dirty\n if dirty:\n git_describe = git_describe[:git_describe.rindex(\"-dirty\")]\n\n # now we have TAG-NUM-gHEX or HEX\n\n if \"-\" in git_describe:\n # TAG-NUM-gHEX\n mo = re.search(r'^(.+)-(\\d+)-g([0-9a-f]+)$', git_describe)\n if not mo:\n # unparseable. Maybe git-describe is misbehaving?\n pieces[\"error\"] = (\"unable to parse git-describe output: '%s'\"\n % describe_out)\n return pieces\n\n # tag\n full_tag = mo.group(1)\n if not full_tag.startswith(tag_prefix):\n if verbose:\n fmt = \"tag '%s' doesn't start with prefix '%s'\"\n print(fmt % (full_tag, tag_prefix))\n pieces[\"error\"] = (\"tag '%s' doesn't start with prefix '%s'\"\n % (full_tag, tag_prefix))\n return pieces\n pieces[\"closest-tag\"] = full_tag[len(tag_prefix):]\n\n # distance: number of commits since tag\n pieces[\"distance\"] = int(mo.group(2))\n\n # commit: short hex revision ID\n pieces[\"short\"] = mo.group(3)\n\n else:\n # HEX: no tags\n pieces[\"closest-tag\"] = None\n count_out, rc = run_command(GITS, [\"rev-list\", \"HEAD\", \"--count\"],\n cwd=root)\n pieces[\"distance\"] = int(count_out) # total number of commits\n\n # commit date: see ISO-8601 comment in git_versions_from_keywords()\n date = run_command(GITS, [\"show\", \"-s\", \"--format=%ci\", \"HEAD\"],\n cwd=root)[0].strip()\n # Use only the last line. Previous lines may contain GPG signature\n # information.\n date = date.splitlines()[-1]\n pieces[\"date\"] = date.strip().replace(\" \", \"T\", 1).replace(\" \", \"\", 1)\n\n return pieces", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_plus_or_dot_render_pep440.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_plus_or_dot_render_pep440.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 307, "end_line": 336, "span_ids": ["plus_or_dot", "render_pep440"], "tokens": 258}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def plus_or_dot(pieces):\n \"\"\"Return a + if we don't already have one, else return a .\"\"\"\n if \"+\" in pieces.get(\"closest-tag\", \"\"):\n return \".\"\n return \"+\"\n\n\ndef render_pep440(pieces):\n \"\"\"Build up version string, with post-release \"local version identifier\".\n\n Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you\n get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty\n\n Exceptions:\n 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty]\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"] or pieces[\"dirty\"]:\n rendered += plus_or_dot(pieces)\n rendered += \"%d.g%s\" % (pieces[\"distance\"], pieces[\"short\"])\n if pieces[\"dirty\"]:\n rendered += \".dirty\"\n else:\n # exception #1\n rendered = \"0+untagged.%d.g%s\" % (pieces[\"distance\"],\n pieces[\"short\"])\n if pieces[\"dirty\"]:\n rendered += \".dirty\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_old_render_pep440_old.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_old_render_pep440_old.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 382, "end_line": 401, "span_ids": ["render_pep440_old"], "tokens": 143}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_pep440_old(pieces):\n \"\"\"TAG[.postDISTANCE[.dev0]] .\n\n The \".dev0\" means dirty.\n\n Exceptions:\n 1: no tags. 0.postDISTANCE[.dev0]\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"] or pieces[\"dirty\"]:\n rendered += \".post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n else:\n # exception #1\n rendered = \"0.post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_render_git_describe.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_render_git_describe.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 404, "end_line": 421, "span_ids": ["render_git_describe"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_git_describe(pieces):\n \"\"\"TAG[-DISTANCE-gHEX][-dirty].\n\n Like 'git describe --tags --dirty --always'.\n\n Exceptions:\n 1: no tags. HEX[-dirty] (note: no 'g' prefix)\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"]:\n rendered += \"-%d-g%s\" % (pieces[\"distance\"], pieces[\"short\"])\n else:\n # exception #1\n rendered = pieces[\"short\"]\n if pieces[\"dirty\"]:\n rendered += \"-dirty\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_long_render_git_describe_long.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_long_render_git_describe_long.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 424, "end_line": 441, "span_ids": ["render_git_describe_long"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_git_describe_long(pieces):\n \"\"\"TAG-DISTANCE-gHEX[-dirty].\n\n Like 'git describe --tags --dirty --always -long'.\n The distance/hash is unconditional.\n\n Exceptions:\n 1: no tags. HEX[-dirty] (note: no 'g' prefix)\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n rendered += \"-%d-g%s\" % (pieces[\"distance\"], pieces[\"short\"])\n else:\n # exception #1\n rendered = pieces[\"short\"]\n if pieces[\"dirty\"]:\n rendered += \"-dirty\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_render.return._version_rendered_fu": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_render.return._version_rendered_fu", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 444, "end_line": 473, "span_ids": ["render"], "tokens": 264}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render(pieces, style):\n \"\"\"Render the given version pieces into the requested style.\"\"\"\n if pieces[\"error\"]:\n return {\"version\": \"unknown\",\n \"full-revisionid\": pieces.get(\"long\"),\n \"dirty\": None,\n \"error\": pieces[\"error\"],\n \"date\": None}\n\n if not style or style == \"default\":\n style = \"pep440\" # the default\n\n if style == \"pep440\":\n rendered = render_pep440(pieces)\n elif style == \"pep440-pre\":\n rendered = render_pep440_pre(pieces)\n elif style == \"pep440-post\":\n rendered = render_pep440_post(pieces)\n elif style == \"pep440-old\":\n rendered = render_pep440_old(pieces)\n elif style == \"git-describe\":\n rendered = render_git_describe(pieces)\n elif style == \"git-describe-long\":\n rendered = render_git_describe_long(pieces)\n else:\n raise ValueError(\"unknown style '%s'\" % style)\n\n return {\"version\": rendered, \"full-revisionid\": pieces[\"long\"],\n \"dirty\": pieces[\"dirty\"], \"error\": None,\n \"date\": pieces.get(\"date\")}", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_versions_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_versions_", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 482, "end_line": 526, "span_ids": ["get_versions"], "tokens": 365}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_versions():\n \"\"\"Get version information or return default if unable to do so.\"\"\"\n # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have\n # __file__, we can work backwards from there to the root. Some\n # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which\n # case we can only use expanded keywords.\n\n cfg = get_config()\n verbose = cfg.verbose\n\n try:\n return git_versions_from_keywords(get_keywords(), cfg.tag_prefix,\n verbose)\n except NotThisMethod:\n pass\n\n try:\n root = os.path.realpath(__file__)\n # versionfile_source is the relative path from the top of the source\n # tree (where the .git directory might live) to this file. Invert\n # this to find the root from __file__.\n for i in cfg.versionfile_source.split('/'):\n root = os.path.dirname(root)\n except NameError:\n return {\"version\": \"0+unknown\", \"full-revisionid\": None,\n \"dirty\": None,\n \"error\": \"unable to find root of source tree\",\n \"date\": None}\n\n try:\n pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose)\n return render(pieces, cfg.style)\n except NotThisMethod:\n pass\n\n try:\n if cfg.parentdir_prefix:\n return versions_from_parentdir(cfg.parentdir_prefix, root, verbose)\n except NotThisMethod:\n pass\n\n return {\"version\": \"0+unknown\", \"full-revisionid\": None,\n \"dirty\": None,\n \"error\": \"unable to compute version\", \"date\": None}", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset_DecathlonDataset._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset_DecathlonDataset._", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 158, "end_line": 211, "span_ids": ["DecathlonDataset"], "tokens": 723}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DecathlonDataset(Randomizable, CacheDataset):\n \"\"\"\n The Dataset to automatically download the data of Medical Segmentation Decathlon challenge\n (http://medicaldecathlon.com/) and generate items for training, validation or test.\n It will also load these properties from the JSON config file of dataset. user can call `get_properties()`\n to get specified properties or all the properties loaded.\n It's based on :py:class:`monai.data.CacheDataset` to accelerate the training process.\n\n Args:\n root_dir: user's local directory for caching and loading the MSD datasets.\n task: which task to download and execute: one of list (\"Task01_BrainTumour\", \"Task02_Heart\",\n \"Task03_Liver\", \"Task04_Hippocampus\", \"Task05_Prostate\", \"Task06_Lung\", \"Task07_Pancreas\",\n \"Task08_HepaticVessel\", \"Task09_Spleen\", \"Task10_Colon\").\n section: expected data section, can be: `training`, `validation` or `test`.\n transform: transforms to execute operations on input data.\n for further usage, use `AddChanneld` or `AsChannelFirstd` to convert the shape to [C, H, W, D].\n download: whether to download and extract the Decathlon from resource link, default is False.\n if expected file already exists, skip downloading even set it to True.\n val_frac: percentage of of validation fraction in the whole dataset, default is 0.2.\n user can manually copy tar file or dataset folder to the root directory.\n seed: random seed to randomly shuffle the datalist before splitting into training and validation, default is 0.\n note to set same seed for `training` and `validation` sections.\n cache_num: number of items to be cached. Default is `sys.maxsize`.\n will take the minimum of (cache_num, data_length x cache_rate, data_length).\n cache_rate: percentage of cached data in total, default is 1.0 (cache all).\n will take the minimum of (cache_num, data_length x cache_rate, data_length).\n num_workers: the number of worker threads to use.\n if 0 a single thread will be used. Default is 0.\n\n Raises:\n ValueError: When ``root_dir`` is not a directory.\n ValueError: When ``task`` is not one of [\"Task01_BrainTumour\", \"Task02_Heart\",\n \"Task03_Liver\", \"Task04_Hippocampus\", \"Task05_Prostate\", \"Task06_Lung\", \"Task07_Pancreas\",\n \"Task08_HepaticVessel\", \"Task09_Spleen\", \"Task10_Colon\"].\n RuntimeError: When ``dataset_dir`` doesn't exist and downloading is not selected (``download=False``).\n\n Example::\n\n transform = Compose(\n [\n LoadImaged(keys=[\"image\", \"label\"]),\n AddChanneld(keys=[\"image\", \"label\"]),\n ScaleIntensityd(keys=\"image\"),\n ToTensord(keys=[\"image\", \"label\"]),\n ]\n )\n\n val_data = DecathlonDataset(\n root_dir=\"./\", task=\"Task09_Spleen\", transform=transform, section=\"validation\", seed=12345, download=True\n )\n\n print(val_data[0][\"image\"], val_data[0][\"label\"])\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.resource_DecathlonDataset.md5._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.resource_DecathlonDataset.md5._", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 193, "end_line": 216, "span_ids": ["DecathlonDataset"], "tokens": 628}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DecathlonDataset(Randomizable, CacheDataset):\n\n resource = {\n \"Task01_BrainTumour\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task01_BrainTumour.tar\",\n \"Task02_Heart\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task02_Heart.tar\",\n \"Task03_Liver\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task03_Liver.tar\",\n \"Task04_Hippocampus\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task04_Hippocampus.tar\",\n \"Task05_Prostate\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task05_Prostate.tar\",\n \"Task06_Lung\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task06_Lung.tar\",\n \"Task07_Pancreas\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task07_Pancreas.tar\",\n \"Task08_HepaticVessel\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task08_HepaticVessel.tar\",\n \"Task09_Spleen\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task09_Spleen.tar\",\n \"Task10_Colon\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task10_Colon.tar\",\n }\n md5 = {\n \"Task01_BrainTumour\": \"240a19d752f0d9e9101544901065d872\",\n \"Task02_Heart\": \"06ee59366e1e5124267b774dbd654057\",\n \"Task03_Liver\": \"a90ec6c4aa7f6a3d087205e23d4e6397\",\n \"Task04_Hippocampus\": \"9d24dba78a72977dbd1d2e110310f31b\",\n \"Task05_Prostate\": \"35138f08b1efaef89d7424d2bcc928db\",\n \"Task06_Lung\": \"8afd997733c7fc0432f71255ba4e52dc\",\n \"Task07_Pancreas\": \"4f7080cfca169fa8066d17ce6eb061e4\",\n \"Task08_HepaticVessel\": \"641d79e80ec66453921d997fbf12a29c\",\n \"Task09_Spleen\": \"410d4a301da4e5b2f6f86ec3ddba524e\",\n \"Task10_Colon\": \"bad7a188931dc2f6acf72b08eb6202d0\",\n }", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/__init__.py_CSVSaver_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/__init__.py_CSVSaver_", "embedding": null, "metadata": {"file_path": "monai/data/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 66, "span_ids": ["imports:17", "docstring"], "tokens": 402}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from .csv_saver import CSVSaver\nfrom .dataloader import DataLoader\nfrom .dataset import (\n ArrayDataset,\n CacheDataset,\n CacheNTransDataset,\n CSVDataset,\n Dataset,\n LMDBDataset,\n NPZDictItemDataset,\n PersistentDataset,\n SmartCacheDataset,\n ZipDataset,\n)\nfrom .decathlon_datalist import load_decathlon_datalist, load_decathlon_properties\nfrom .grid_dataset import GridPatchDataset, PatchDataset, PatchIter\nfrom .image_dataset import ImageDataset\nfrom .image_reader import ImageReader, ITKReader, NibabelReader, NumpyReader, PILReader, WSIReader\nfrom .iterable_dataset import CSVIterableDataset, IterableDataset\nfrom .nifti_saver import NiftiSaver\nfrom .nifti_writer import write_nifti\nfrom .png_saver import PNGSaver\nfrom .png_writer import write_png\nfrom .samplers import DistributedSampler, DistributedWeightedRandomSampler\nfrom .synthetic import create_test_image_2d, create_test_image_3d\nfrom .test_time_augmentation import TestTimeAugmentation\nfrom .thread_buffer import ThreadBuffer, ThreadDataLoader\nfrom .utils import (\n compute_importance_map,\n compute_shape_offset,\n convert_tables_to_dicts,\n correct_nifti_header_if_necessary,\n create_file_basename,\n decollate_batch,\n dense_patch_slices,\n get_random_patch,\n get_valid_patch_size,\n is_supported_format,\n iter_patch,\n iter_patch_slices,\n json_hashing,\n list_data_collate,\n pad_list_data_collate,\n partition_dataset,\n partition_dataset_classes,\n pickle_hashing,\n rectify_header_sform_qform,\n select_cross_validation_folds,\n set_rnd,\n sorted_dict,\n to_affine_nd,\n worker_init_fn,\n zoom_affine,\n)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_CSVSaver.save.self__cache_dict_save_key": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_CSVSaver.save.self__cache_dict_save_key", "embedding": null, "metadata": {"file_path": "monai/data/csv_saver.py", "file_name": "csv_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 68, "end_line": 84, "span_ids": ["CSVSaver.save"], "tokens": 197}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CSVSaver:\n\n def save(self, data: Union[torch.Tensor, np.ndarray], meta_data: Optional[Dict] = None) -> None:\n \"\"\"Save data into the cache dictionary. The metadata should have the following key:\n - ``'filename_or_obj'`` -- save the data corresponding to file name or object.\n If meta_data is None, use the default index from 0 to save data instead.\n\n Args:\n data: target data content that save into cache.\n meta_data: the meta data information corresponding to the data.\n\n \"\"\"\n save_key = meta_data[Key.FILENAME_OR_OBJ] if meta_data else str(self._data_index)\n self._data_index += 1\n if isinstance(data, torch.Tensor):\n data = data.detach().cpu().numpy()\n if not isinstance(data, np.ndarray):\n raise AssertionError\n self._cache_dict[save_key] = data.astype(np.float32)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_batch_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_batch_", "embedding": null, "metadata": {"file_path": "monai/data/csv_saver.py", "file_name": "csv_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 96, "end_line": 118, "span_ids": ["CSVSaver.get_cache", "CSVSaver.save_batch", "CSVSaver.reset_cache"], "tokens": 196}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CSVSaver:\n\n def save_batch(self, batch_data: Union[torch.Tensor, np.ndarray], meta_data: Optional[Dict] = None) -> None:\n \"\"\"Save a batch of data into the cache dictionary.\n\n Args:\n batch_data: target batch data content that save into cache.\n meta_data: every key-value in the meta_data is corresponding to 1 batch of data.\n\n \"\"\"\n for i, data in enumerate(batch_data): # save a batch of files\n self.save(data, {k: meta_data[k][i] for k in meta_data} if meta_data else None)\n\n if self.flush:\n self.finalize()\n\n def get_cache(self) -> OrderedDict:\n \"\"\"Get the cache dictionary, key is filename and value is the corresponding data\"\"\"\n\n return self._cache_dict\n\n def reset_cache(self) -> None:\n \"\"\"Clear the cache dictionary content\"\"\"\n self._cache_dict.clear()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_NiftiSaver.save_batch_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_NiftiSaver.save_batch_", "embedding": null, "metadata": {"file_path": "monai/data/nifti_saver.py", "file_name": "nifti_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 157, "end_line": 178, "span_ids": ["NiftiSaver.save_batch"], "tokens": 297}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NiftiSaver:\n\n def save_batch(self, batch_data: Union[torch.Tensor, np.ndarray], meta_data: Optional[Dict] = None) -> None:\n \"\"\"\n Save a batch of data into Nifti format files.\n\n Spatially it supports up to three dimensions, that is, H, HW, HWD for\n 1D, 2D, 3D respectively (with resampling supports for 2D and 3D only).\n\n When saving multiple time steps or multiple channels `batch_data`,\n time and/or modality axes should be appended after the batch dimensions.\n For example, the shape of a batch of 2D eight-class\n segmentation probabilities to be saved could be `(batch, 8, 64, 64)`;\n in this case each item in the batch will be saved as (64, 64, 1, 8)\n NIfTI file (the third dimension is reserved as a spatial dimension).\n\n Args:\n batch_data: target batch data content that save into NIfTI format.\n meta_data: every key-value in the meta_data is corresponding to a batch of data.\n\n \"\"\"\n for i, data in enumerate(batch_data): # save a batch of files\n self.save(data=data, meta_data={k: meta_data[k][i] for k in meta_data} if meta_data is not None else None)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_from_typing_import_Option_write_nifti._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_from_typing_import_Option_write_nifti._", "embedding": null, "metadata": {"file_path": "monai/data/nifti_writer.py", "file_name": "nifti_writer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 98, "span_ids": ["write_nifti", "docstring"], "tokens": 1190}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Union\n\nimport numpy as np\nimport torch\n\nfrom monai.config import DtypeLike\nfrom monai.data.utils import compute_shape_offset, to_affine_nd\nfrom monai.networks.layers import AffineTransform\nfrom monai.utils import GridSampleMode, GridSamplePadMode, optional_import\n\nnib, _ = optional_import(\"nibabel\")\n\n\ndef write_nifti(\n data: np.ndarray,\n file_name: str,\n affine: Optional[np.ndarray] = None,\n target_affine: Optional[np.ndarray] = None,\n resample: bool = True,\n output_spatial_shape: Union[Sequence[int], np.ndarray, None] = None,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,\n align_corners: bool = False,\n dtype: DtypeLike = np.float64,\n output_dtype: DtypeLike = np.float32,\n) -> None:\n \"\"\"\n Write numpy data into NIfTI files to disk. This function converts data\n into the coordinate system defined by `target_affine` when `target_affine`\n is specified.\n\n If the coordinate transform between `affine` and `target_affine` could be\n achieved by simply transposing and flipping `data`, no resampling will\n happen. otherwise this function will resample `data` using the coordinate\n transform computed from `affine` and `target_affine`. Note that the shape\n of the resampled `data` may subject to some rounding errors. For example,\n resampling a 20x20 pixel image from pixel size (1.5, 1.5)-mm to (3.0,\n 3.0)-mm space will return a 10x10-pixel image. However, resampling a\n 20x20-pixel image from pixel size (2.0, 2.0)-mm to (3.0, 3.0)-mma space\n will output a 14x14-pixel image, where the image shape is rounded from\n 13.333x13.333 pixels. In this case `output_spatial_shape` could be specified so\n that this function writes image data to a designated shape.\n\n The saved `affine` matrix follows:\n - If `affine` equals to `target_affine`, save the data with `target_affine`.\n - If `resample=False`, transform `affine` to `new_affine` based on the orientation\n of `target_affine` and save the data with `new_affine`.\n - If `resample=True`, save the data with `target_affine`, if explicitly specify\n the `output_spatial_shape`, the shape of saved data is not computed by `target_affine`.\n - If `target_affine` is None, set `target_affine=affine` and save.\n - If `affine` and `target_affine` are None, the data will be saved with an identity\n matrix as the image affine.\n\n This function assumes the NIfTI dimension notations.\n Spatially it supports up to three dimensions, that is, H, HW, HWD for\n 1D, 2D, 3D respectively.\n When saving multiple time steps or multiple channels `data`, time and/or\n modality axes should be appended after the first three dimensions. For\n example, shape of 2D eight-class segmentation probabilities to be saved\n could be `(64, 64, 1, 8)`. Also, data in shape (64, 64, 8), (64, 64, 8, 1)\n will be considered as a single-channel 3D image.\n\n Args:\n data: input data to write to file.\n file_name: expected file name that saved on disk.\n affine: the current affine of `data`. Defaults to `np.eye(4)`\n target_affine: before saving\n the (`data`, `affine`) as a Nifti1Image,\n transform the data into the coordinates defined by `target_affine`.\n resample: whether to run resampling when the target affine\n could not be achieved by swapping/flipping data axes.\n output_spatial_shape: spatial shape of the output image.\n This option is used when resample = True.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n This option is used when ``resample = True``.\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n This option is used when ``resample = True``.\n Padding mode for outside grid values. Defaults to ``\"border\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n align_corners: Geometrically, we consider the pixels of the input as squares rather than points.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n dtype: data type for resampling computation. Defaults to ``np.float64`` for best precision.\n If None, use the data type of input data.\n output_dtype: data type for saving data. Defaults to ``np.float32``.\n \"\"\"\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_write_nifti.if_data_ndim_3_mult_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_write_nifti.if_data_ndim_3_mult_", "embedding": null, "metadata": {"file_path": "monai/data/nifti_writer.py", "file_name": "nifti_writer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 130, "end_line": 157, "span_ids": ["write_nifti"], "tokens": 526}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def write_nifti(\n data: np.ndarray,\n file_name: str,\n affine: Optional[np.ndarray] = None,\n target_affine: Optional[np.ndarray] = None,\n resample: bool = True,\n output_spatial_shape: Union[Sequence[int], np.ndarray, None] = None,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,\n align_corners: bool = False,\n dtype: DtypeLike = np.float64,\n output_dtype: DtypeLike = np.float32,\n) -> None:\n # ... other code\n if data.ndim > 3: # multi channel, resampling each channel\n while len(output_spatial_shape_) < 3:\n output_spatial_shape_ = output_spatial_shape_ + [1]\n spatial_shape, channel_shape = data.shape[:3], data.shape[3:]\n data_np = data.reshape(list(spatial_shape) + [-1])\n data_np = np.moveaxis(data_np, -1, 0) # channel first for pytorch\n data_torch = affine_xform(\n torch.as_tensor(np.ascontiguousarray(data_np).astype(dtype)).unsqueeze(0),\n torch.as_tensor(np.ascontiguousarray(transform).astype(dtype)),\n spatial_size=output_spatial_shape_[:3],\n )\n data_np = data_torch.squeeze(0).detach().cpu().numpy()\n data_np = np.moveaxis(data_np, 0, -1) # channel last for nifti\n data_np = data_np.reshape(list(data_np.shape[:3]) + list(channel_shape))\n else: # single channel image, need to expand to have batch and channel\n while len(output_spatial_shape_) < len(data.shape):\n output_spatial_shape_ = output_spatial_shape_ + [1]\n data_torch = affine_xform(\n torch.as_tensor(np.ascontiguousarray(data).astype(dtype)[None, None]),\n torch.as_tensor(np.ascontiguousarray(transform).astype(dtype)),\n spatial_size=output_spatial_shape_[: len(data.shape)],\n )\n data_np = data_torch.squeeze(0).squeeze(0).detach().cpu().numpy()\n\n results_img = nib.Nifti1Image(data_np.astype(output_dtype), to_affine_nd(3, target_affine))\n nib.save(results_img, file_name)\n return", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_PNGSaver.save_batch_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_PNGSaver.save_batch_", "embedding": null, "metadata": {"file_path": "monai/data/png_saver.py", "file_name": "png_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 125, "end_line": 135, "span_ids": ["PNGSaver.save_batch"], "tokens": 135}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class PNGSaver:\n\n def save_batch(self, batch_data: Union[torch.Tensor, np.ndarray], meta_data: Optional[Dict] = None) -> None:\n \"\"\"Save a batch of data into png format files.\n\n Args:\n batch_data: target batch data content that save into png format.\n meta_data: every key-value in the meta_data is corresponding to a batch of data.\n\n \"\"\"\n for i, data in enumerate(batch_data): # save a batch of files\n self.save(data=data, meta_data={k: meta_data[k][i] for k in meta_data} if meta_data is not None else None)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_writer.py_from_typing_import_Option_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_writer.py_from_typing_import_Option_", "embedding": null, "metadata": {"file_path": "monai/data/png_writer.py", "file_name": "png_writer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 86, "span_ids": ["write_png", "docstring"], "tokens": 861}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Union\n\nimport numpy as np\n\nfrom monai.transforms.spatial.array import Resize\nfrom monai.utils import InterpolateMode, ensure_tuple_rep, optional_import\n\nImage, _ = optional_import(\"PIL\", name=\"Image\")\n\n\ndef write_png(\n data: np.ndarray,\n file_name: str,\n output_spatial_shape: Optional[Sequence[int]] = None,\n mode: Union[InterpolateMode, str] = InterpolateMode.BICUBIC,\n scale: Optional[int] = None,\n) -> None:\n \"\"\"\n Write numpy data into png files to disk.\n Spatially it supports HW for 2D.(H,W) or (H,W,3) or (H,W,4).\n If `scale` is None, expect the input data in `np.uint8` or `np.uint16` type.\n It's based on the Image module in PIL library:\n https://pillow.readthedocs.io/en/stable/reference/Image.html\n\n Args:\n data: input data to write to file.\n file_name: expected file name that saved on disk.\n output_spatial_shape: spatial shape of the output image.\n mode: {``\"nearest\"``, ``\"linear\"``, ``\"bilinear\"``, ``\"bicubic\"``, ``\"trilinear\"``, ``\"area\"``}\n The interpolation mode. Defaults to ``\"bicubic\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n scale: {``255``, ``65535``} postprocess data by clipping to [0, 1] and scaling to\n [0, 255] (uint8) or [0, 65535] (uint16). Default is None to disable scaling.\n\n Raises:\n ValueError: When ``scale`` is not one of [255, 65535].\n\n \"\"\"\n if not isinstance(data, np.ndarray):\n raise AssertionError(\"input data must be numpy array.\")\n if len(data.shape) == 3 and data.shape[2] == 1: # PIL Image can't save image with 1 channel\n data = data.squeeze(2)\n if output_spatial_shape is not None:\n output_spatial_shape_ = ensure_tuple_rep(output_spatial_shape, 2)\n mode = InterpolateMode(mode)\n align_corners = None if mode in (InterpolateMode.NEAREST, InterpolateMode.AREA) else False\n xform = Resize(spatial_size=output_spatial_shape_, mode=mode, align_corners=align_corners)\n _min, _max = np.min(data), np.max(data)\n if len(data.shape) == 3:\n data = np.moveaxis(data, -1, 0) # to channel first\n data = xform(data)\n data = np.moveaxis(data, 0, -1)\n else: # (H, W)\n data = np.expand_dims(data, 0) # make a channel\n data = xform(data)[0] # first channel\n if mode != InterpolateMode.NEAREST:\n data = np.clip(data, _min, _max) # type: ignore\n\n if scale is not None:\n data = np.clip(data, 0.0, 1.0) # type: ignore # png writer only can scale data in range [0, 1]\n if scale == np.iinfo(np.uint8).max:\n data = (scale * data).astype(np.uint8)\n elif scale == np.iinfo(np.uint16).max:\n data = (scale * data).astype(np.uint16)\n else:\n raise ValueError(f\"Unsupported scale: {scale}, available options are [255, 65535]\")\n\n # PNG data must be int number\n if data.dtype not in (np.uint8, np.uint16): # type: ignore\n data = data.astype(np.uint8)\n\n img = Image.fromarray(data)\n img.save(file_name, \"PNG\")\n return", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_from_typing_import_Option_create_test_image_2d.return.noisyimage_labels": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_from_typing_import_Option_create_test_image_2d.return.noisyimage_labels", "embedding": null, "metadata": {"file_path": "monai/data/synthetic.py", "file_name": "synthetic.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 80, "span_ids": ["create_test_image_2d", "docstring"], "tokens": 731}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Tuple\n\nimport numpy as np\n\nfrom monai.transforms.utils import rescale_array\n\n__all__ = [\"create_test_image_2d\", \"create_test_image_3d\"]\n\n\ndef create_test_image_2d(\n width: int,\n height: int,\n num_objs: int = 12,\n rad_max: int = 30,\n noise_max: float = 0.0,\n num_seg_classes: int = 5,\n channel_dim: Optional[int] = None,\n random_state: Optional[np.random.RandomState] = None,\n) -> Tuple[np.ndarray, np.ndarray]:\n \"\"\"\n Return a noisy 2D image with `num_objs` circles and a 2D mask image. The maximum radius of the circles is given as\n `rad_max`. The mask will have `num_seg_classes` number of classes for segmentations labeled sequentially from 1, plus a\n background class represented as 0. If `noise_max` is greater than 0 then noise will be added to the image taken from\n the uniform distribution on range `[0,noise_max)`. If `channel_dim` is None, will create an image without channel\n dimension, otherwise create an image with channel dimension as first dim or last dim.\n\n Args:\n width: width of the image.\n height: height of the image.\n num_objs: number of circles to generate. Defaults to `12`.\n rad_max: maximum circle radius. Defaults to `30`.\n noise_max: if greater than 0 then noise will be added to the image taken from\n the uniform distribution on range `[0,noise_max)`. Defaults to `0`.\n num_seg_classes: number of classes for segmentations. Defaults to `5`.\n channel_dim: if None, create an image without channel dimension, otherwise create\n an image with channel dimension as first dim or last dim. Defaults to `None`.\n random_state: the random generator to use. Defaults to `np.random`.\n \"\"\"\n image = np.zeros((width, height))\n rs: np.random.RandomState = np.random.random.__self__ if random_state is None else random_state # type: ignore\n\n for _ in range(num_objs):\n x = rs.randint(rad_max, width - rad_max)\n y = rs.randint(rad_max, height - rad_max)\n rad = rs.randint(5, rad_max)\n spy, spx = np.ogrid[-x : width - x, -y : height - y]\n circle = (spx * spx + spy * spy) <= rad * rad\n\n if num_seg_classes > 1:\n image[circle] = np.ceil(rs.random() * num_seg_classes)\n else:\n image[circle] = rs.random() * 0.5 + 0.5\n\n labels = np.ceil(image).astype(np.int32)\n\n norm = rs.uniform(0, num_seg_classes * noise_max, size=image.shape)\n noisyimage = rescale_array(np.maximum(image, norm))\n\n if channel_dim is not None:\n if not (isinstance(channel_dim, int) and channel_dim in (-1, 0, 2)):\n raise AssertionError(\"invalid channel dim.\")\n if channel_dim == 0:\n noisyimage = noisyimage[None]\n labels = labels[None]\n else:\n noisyimage = noisyimage[..., None]\n labels = labels[..., None]\n\n return noisyimage, labels", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_create_test_image_3d_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_create_test_image_3d_", "embedding": null, "metadata": {"file_path": "monai/data/synthetic.py", "file_name": "synthetic.py", "file_type": "text/x-python", "category": "implementation", "start_line": 83, "end_line": 142, "span_ids": ["create_test_image_3d"], "tokens": 621}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def create_test_image_3d(\n height: int,\n width: int,\n depth: int,\n num_objs: int = 12,\n rad_max: int = 30,\n noise_max: float = 0.0,\n num_seg_classes: int = 5,\n channel_dim: Optional[int] = None,\n random_state: Optional[np.random.RandomState] = None,\n) -> Tuple[np.ndarray, np.ndarray]:\n \"\"\"\n Return a noisy 3D image and segmentation.\n\n Args:\n height: height of the image.\n width: width of the image.\n depth: depth of the image.\n num_objs: number of circles to generate. Defaults to `12`.\n rad_max: maximum circle radius. Defaults to `30`.\n noise_max: if greater than 0 then noise will be added to the image taken from\n the uniform distribution on range `[0,noise_max)`. Defaults to `0`.\n num_seg_classes: number of classes for segmentations. Defaults to `5`.\n channel_dim: if None, create an image without channel dimension, otherwise create\n an image with channel dimension as first dim or last dim. Defaults to `None`.\n random_state: the random generator to use. Defaults to `np.random`.\n\n See also:\n :py:meth:`~create_test_image_2d`\n \"\"\"\n image = np.zeros((width, height, depth))\n rs: np.random.RandomState = np.random.random.__self__ if random_state is None else random_state # type: ignore\n\n for _ in range(num_objs):\n x = rs.randint(rad_max, width - rad_max)\n y = rs.randint(rad_max, height - rad_max)\n z = rs.randint(rad_max, depth - rad_max)\n rad = rs.randint(5, rad_max)\n spy, spx, spz = np.ogrid[-x : width - x, -y : height - y, -z : depth - z]\n circle = (spx * spx + spy * spy + spz * spz) <= rad * rad\n\n if num_seg_classes > 1:\n image[circle] = np.ceil(rs.random() * num_seg_classes)\n else:\n image[circle] = rs.random() * 0.5 + 0.5\n\n labels = np.ceil(image).astype(np.int32)\n\n norm = rs.uniform(0, num_seg_classes * noise_max, size=image.shape)\n noisyimage = rescale_array(np.maximum(image, norm))\n\n if channel_dim is not None:\n if not (isinstance(channel_dim, int) and channel_dim in (-1, 0, 3)):\n raise AssertionError(\"invalid channel dim.\")\n noisyimage, labels = (\n (noisyimage[None], labels[None]) if channel_dim == 0 else (noisyimage[..., None], labels[..., None])\n )\n\n return noisyimage, labels", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_slices_iter_patch_slices.for_position_in_product_.yield_tuple_slice_s_s_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_slices_iter_patch_slices.for_position_in_product_.yield_tuple_slice_s_s_", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 53, "end_line": 80, "span_ids": ["iter_patch_slices"], "tokens": 313}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def iter_patch_slices(\n dims: Sequence[int], patch_size: Union[Sequence[int], int], start_pos: Sequence[int] = ()\n) -> Generator[Tuple[slice, ...], None, None]:\n \"\"\"\n Yield successive tuples of slices defining patches of size `patch_size` from an array of dimensions `dims`. The\n iteration starts from position `start_pos` in the array, or starting at the origin if this isn't provided. Each\n patch is chosen in a contiguous grid using a first dimension as least significant ordering.\n\n Args:\n dims: dimensions of array to iterate over\n patch_size: size of patches to generate slices for, 0 or None selects whole dimension\n start_pos: starting position in the array, default is 0 for each dimension\n\n Yields:\n Tuples of slice objects defining each patch\n \"\"\"\n\n # ensure patchSize and startPos are the right length\n ndim = len(dims)\n patch_size_ = get_valid_patch_size(dims, patch_size)\n start_pos = ensure_tuple_size(start_pos, ndim)\n\n # collect the ranges to step over each dimension\n ranges = tuple(starmap(range, zip(start_pos, dims, patch_size_)))\n\n # choose patches by applying product to the ranges\n for position in product(*ranges[::-1]): # reverse ranges order to iterate in index order\n yield tuple(slice(s, s + p) for s, p in zip(position[::-1], patch_size_))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_iter_patch.if_copy_back_.arr_arrpad_slices_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_iter_patch.if_copy_back_.arr_arrpad_slices_", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 169, "end_line": 228, "span_ids": ["iter_patch"], "tokens": 746}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def iter_patch(\n arr: np.ndarray,\n patch_size: Union[Sequence[int], int] = 0,\n start_pos: Sequence[int] = (),\n copy_back: bool = True,\n mode: Union[NumpyPadMode, str] = NumpyPadMode.WRAP,\n **pad_opts: Dict,\n):\n \"\"\"\n Yield successive patches from `arr` of size `patch_size`. The iteration can start from position `start_pos` in `arr`\n but drawing from a padded array extended by the `patch_size` in each dimension (so these coordinates can be negative\n to start in the padded region). If `copy_back` is True the values from each patch are written back to `arr`.\n\n Args:\n arr: array to iterate over\n patch_size: size of patches to generate slices for, 0 or None selects whole dimension\n start_pos: starting position in the array, default is 0 for each dimension\n copy_back: if True data from the yielded patches is copied back to `arr` once the generator completes\n mode: {``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``, ``\"mean\"``,\n ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n One of the listed string values or a user supplied function. Defaults to ``\"wrap\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n pad_opts: padding options, see `numpy.pad`\n\n Yields:\n Patches of array data from `arr` which are views into a padded array which can be modified, if `copy_back` is\n True these changes will be reflected in `arr` once the iteration completes.\n\n Note:\n coordinate format is:\n\n [1st_dim_start, 1st_dim_end,\n 2nd_dim_start, 2nd_dim_end,\n ...,\n Nth_dim_start, Nth_dim_end]]\n\n \"\"\"\n # ensure patchSize and startPos are the right length\n patch_size_ = get_valid_patch_size(arr.shape, patch_size)\n start_pos = ensure_tuple_size(start_pos, arr.ndim)\n\n # pad image by maximum values needed to ensure patches are taken from inside an image\n arrpad = np.pad(arr, tuple((p, p) for p in patch_size_), NumpyPadMode(mode).value, **pad_opts)\n\n # choose a start position in the padded image\n start_pos_padded = tuple(s + p for s, p in zip(start_pos, patch_size_))\n\n # choose a size to iterate over which is smaller than the actual padded image to prevent producing\n # patches which are only in the padded regions\n iter_size = tuple(s + p for s, p in zip(arr.shape, patch_size_))\n\n for slices in iter_patch_slices(iter_size, patch_size_, start_pos_padded):\n # compensate original image padding\n coords_no_pad = tuple((coord.start - p, coord.stop - p) for coord, p in zip(slices, patch_size_))\n yield arrpad[slices], np.asarray(coords_no_pad) # data and coords (in numpy; works with torch loader)\n\n # copy back data from the padded image if required\n if copy_back:\n slices = tuple(slice(p, p + s) for p, s in zip(patch_size_, arr.shape))\n arr[...] = arrpad[slices]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_valid_patch_size_get_valid_patch_size.return.tuple_min_ms_ps_or_ms_f": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_valid_patch_size_get_valid_patch_size.return.tuple_min_ms_ps_or_ms_f", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 198, "end_line": 209, "span_ids": ["get_valid_patch_size"], "tokens": 211}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_valid_patch_size(image_size: Sequence[int], patch_size: Union[Sequence[int], int]) -> Tuple[int, ...]:\n \"\"\"\n Given an image of dimensions `image_size`, return a patch size tuple taking the dimension from `patch_size` if this is\n not 0/None. Otherwise, or if `patch_size` is shorter than `image_size`, the dimension from `image_size` is taken. This ensures\n the returned patch size is within the bounds of `image_size`. If `patch_size` is a single number this is interpreted as a\n patch of the same dimensionality of `image_size` with that size in each dimension.\n \"\"\"\n ndim = len(image_size)\n patch_size_ = ensure_tuple_size(patch_size, ndim)\n\n # ensure patch size dimensions are not larger than image dimension, if a dimension is None or 0 use whole dimension\n return tuple(min(ms, ps or ms) for ms, ps in zip(image_size, patch_size_))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_correct_nifti_header_if_necessary_correct_nifti_header_if_necessary.return.img_nii": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_correct_nifti_header_if_necessary_correct_nifti_header_if_necessary.return.img_nii", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 238, "end_line": 256, "span_ids": ["correct_nifti_header_if_necessary"], "tokens": 192}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def correct_nifti_header_if_necessary(img_nii):\n \"\"\"\n Check nifti object header's format, update the header if needed.\n In the updated image pixdim matches the affine.\n\n Args:\n img_nii: nifti image object\n \"\"\"\n dim = img_nii.header[\"dim\"][0]\n if dim >= 5:\n return img_nii # do nothing for high-dimensional array\n # check that affine matches zooms\n pixdim = np.asarray(img_nii.header.get_zooms())[:dim]\n norm_affine = np.sqrt(np.sum(np.square(img_nii.affine[:dim, :dim]), 0))\n if np.allclose(pixdim, norm_affine):\n return img_nii\n if hasattr(img_nii, \"get_sform\"):\n return rectify_header_sform_qform(img_nii)\n return img_nii", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_rectify_header_sform_qform_rectify_header_sform_qform.return.img_nii": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_rectify_header_sform_qform_rectify_header_sform_qform.return.img_nii", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 259, "end_line": 294, "span_ids": ["rectify_header_sform_qform"], "tokens": 388}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def rectify_header_sform_qform(img_nii):\n \"\"\"\n Look at the sform and qform of the nifti object and correct it if any\n incompatibilities with pixel dimensions\n\n Adapted from https://github.com/NifTK/NiftyNet/blob/v0.6.0/niftynet/io/misc_io.py\n\n Args:\n img_nii: nifti image object\n \"\"\"\n d = img_nii.header[\"dim\"][0]\n pixdim = np.asarray(img_nii.header.get_zooms())[:d]\n sform, qform = img_nii.get_sform(), img_nii.get_qform()\n norm_sform = np.sqrt(np.sum(np.square(sform[:d, :d]), 0))\n norm_qform = np.sqrt(np.sum(np.square(qform[:d, :d]), 0))\n sform_mismatch = not np.allclose(norm_sform, pixdim)\n qform_mismatch = not np.allclose(norm_qform, pixdim)\n\n if img_nii.header[\"sform_code\"] != 0:\n if not sform_mismatch:\n return img_nii\n if not qform_mismatch:\n img_nii.set_sform(img_nii.get_qform())\n return img_nii\n if img_nii.header[\"qform_code\"] != 0:\n if not qform_mismatch:\n return img_nii\n if not sform_mismatch:\n img_nii.set_qform(img_nii.get_sform())\n return img_nii\n\n norm = np.sqrt(np.sum(np.square(img_nii.affine[:d, :d]), 0))\n warnings.warn(f\"Modifying image pixdim from {pixdim} to {norm}\")\n\n img_nii.header.set_zooms(norm)\n return img_nii", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_zoom_affine_zoom_affine.return.new_affine": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_zoom_affine_zoom_affine.return.new_affine", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 492, "end_line": 541, "span_ids": ["zoom_affine"], "tokens": 563}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def zoom_affine(affine: np.ndarray, scale: Sequence[float], diagonal: bool = True):\n \"\"\"\n To make column norm of `affine` the same as `scale`. If diagonal is False,\n returns an affine that combines orthogonal rotation and the new scale.\n This is done by first decomposing `affine`, then setting the zoom factors to\n `scale`, and composing a new affine; the shearing factors are removed. If\n diagonal is True, returns a diagonal matrix, the scaling factors are set\n to the diagonal elements. This function always return an affine with zero\n translations.\n\n Args:\n affine (nxn matrix): a square matrix.\n scale: new scaling factor along each dimension. if the components of the `scale` are non-positive values,\n will use the corresponding components of the origial pixdim, which is computed from the `affine`.\n diagonal: whether to return a diagonal scaling matrix.\n Defaults to True.\n\n Raises:\n ValueError: When ``affine`` is not a square matrix.\n ValueError: When ``scale`` contains a nonpositive scalar.\n\n Returns:\n the updated `n x n` affine.\n\n \"\"\"\n\n affine = np.array(affine, dtype=float, copy=True)\n if len(affine) != len(affine[0]):\n raise ValueError(f\"affine must be n x n, got {len(affine)} x {len(affine[0])}.\")\n scale_np = np.array(scale, dtype=float, copy=True)\n\n d = len(affine) - 1\n # compute original pixdim\n norm = np.sqrt(np.sum(np.square(affine), 0))[:-1]\n if len(scale_np) < d: # defaults based on affine\n scale_np = np.append(scale_np, norm[len(scale_np) :])\n scale_np = scale_np[:d]\n scale_np = np.asarray(fall_back_tuple(scale_np, norm))\n\n scale_np[scale_np == 0] = 1.0\n if diagonal:\n return np.diag(np.append(scale_np, [1.0]))\n rzs = affine[:-1, :-1] # rotation zoom scale\n zs = np.linalg.cholesky(rzs.T @ rzs).T\n rotation = rzs @ np.linalg.inv(zs)\n s = np.sign(np.diag(zs)) * np.abs(scale_np)\n # construct new affine with rotation and zoom\n new_affine = np.eye(len(affine))\n new_affine[:-1, :-1] = rotation @ np.diag(s)\n return new_affine", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_compute_shape_offset_compute_shape_offset.return.out_shape_astype_int_of": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_compute_shape_offset_compute_shape_offset.return.out_shape_astype_int_of", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 527, "end_line": 560, "span_ids": ["compute_shape_offset"], "tokens": 406}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def compute_shape_offset(\n spatial_shape: Union[np.ndarray, Sequence[int]], in_affine: np.ndarray, out_affine: np.ndarray\n) -> Tuple[np.ndarray, np.ndarray]:\n \"\"\"\n Given input and output affine, compute appropriate shapes\n in the output space based on the input array's shape.\n This function also returns the offset to put the shape\n in a good position with respect to the world coordinate system.\n\n Args:\n spatial_shape: input array's shape\n in_affine (matrix): 2D affine matrix\n out_affine (matrix): 2D affine matrix\n \"\"\"\n shape = np.array(spatial_shape, copy=True, dtype=float)\n sr = len(shape)\n in_affine = to_affine_nd(sr, in_affine)\n out_affine = to_affine_nd(sr, out_affine)\n in_coords = [(0.0, dim - 1.0) for dim in shape]\n corners = np.asarray(np.meshgrid(*in_coords, indexing=\"ij\")).reshape((len(shape), -1))\n corners = np.concatenate((corners, np.ones_like(corners[:1])))\n corners = in_affine @ corners\n corners_out = np.linalg.inv(out_affine) @ corners\n corners_out = corners_out[:-1] / corners_out[-1]\n out_shape = np.round(corners_out.ptp(axis=1) + 1.0)\n if np.allclose(nib.io_orientation(in_affine), nib.io_orientation(out_affine)):\n # same orientation, get translate from the origin\n offset = in_affine @ ([0] * sr + [1])\n offset = offset[:-1] / offset[-1]\n else:\n # different orientation, the min is the origin\n corners = corners[:-1] / corners[-1]\n offset = np.min(corners, 1)\n return out_shape.astype(int), offset", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_to_affine_nd_to_affine_nd.return.new_affine": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_to_affine_nd_to_affine_nd.return.new_affine", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 580, "end_line": 620, "span_ids": ["to_affine_nd"], "tokens": 505}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def to_affine_nd(r: Union[np.ndarray, int], affine: np.ndarray) -> np.ndarray:\n \"\"\"\n Using elements from affine, to create a new affine matrix by\n assigning the rotation/zoom/scaling matrix and the translation vector.\n\n when ``r`` is an integer, output is an (r+1)x(r+1) matrix,\n where the top left kxk elements are copied from ``affine``,\n the last column of the output affine is copied from ``affine``'s last column.\n `k` is determined by `min(r, len(affine) - 1)`.\n\n when ``r`` is an affine matrix, the output has the same as ``r``,\n the top left kxk elements are copied from ``affine``,\n the last column of the output affine is copied from ``affine``'s last column.\n `k` is determined by `min(len(r) - 1, len(affine) - 1)`.\n\n Args:\n r (int or matrix): number of spatial dimensions or an output affine to be filled.\n affine (matrix): 2D affine matrix\n\n Raises:\n ValueError: When ``affine`` dimensions is not 2.\n ValueError: When ``r`` is nonpositive.\n\n Returns:\n an (r+1) x (r+1) matrix\n\n \"\"\"\n affine_np = np.array(affine, dtype=np.float64)\n if affine_np.ndim != 2:\n raise ValueError(f\"affine must have 2 dimensions, got {affine_np.ndim}.\")\n new_affine = np.array(r, dtype=np.float64, copy=True)\n if new_affine.ndim == 0:\n sr: int = int(new_affine.astype(np.uint))\n if not np.isfinite(sr) or sr < 0:\n raise ValueError(f\"r must be positive, got {sr}.\")\n new_affine = np.eye(sr + 1, dtype=np.float64)\n d = max(min(len(new_affine) - 1, len(affine_np) - 1), 1)\n new_affine[:d, :d] = affine_np[:d, :d]\n if d > 1:\n new_affine[:d, -1] = affine_np[:d, -1]\n return new_affine", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_EnsembleEvaluator._iteration_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_EnsembleEvaluator._iteration_", "embedding": null, "metadata": {"file_path": "monai/engines/evaluator.py", "file_name": "evaluator.py", "file_type": "text/x-python", "category": "implementation", "start_line": 318, "end_line": 362, "span_ids": ["EnsembleEvaluator._iteration"], "tokens": 415}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class EnsembleEvaluator(Evaluator):\n\n def _iteration(self, engine: Engine, batchdata: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:\n \"\"\"\n callback function for the Supervised Evaluation processing logic of 1 iteration in Ignite Engine.\n Return below items in a dictionary:\n - IMAGE: image Tensor data for model input, already moved to device.\n - LABEL: label Tensor data corresponding to the image, already moved to device.\n - pred_keys[0]: prediction result of network 0.\n - pred_keys[1]: prediction result of network 1.\n - ... ...\n - pred_keys[N]: prediction result of network N.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data.\n\n Raises:\n ValueError: When ``batchdata`` is None.\n\n \"\"\"\n if batchdata is None:\n raise ValueError(\"Must provide batch data for current iteration.\")\n batch = self.prepare_batch(batchdata, engine.state.device, engine.non_blocking)\n if len(batch) == 2:\n inputs, targets = batch\n args: Tuple = ()\n kwargs: Dict = {}\n else:\n inputs, targets, args, kwargs = batch\n\n # put iteration outputs into engine.state\n engine.state.output = {Keys.IMAGE: inputs, Keys.LABEL: targets}\n for idx, network in enumerate(self.networks):\n with self.mode(network):\n if self.amp:\n with torch.cuda.amp.autocast():\n engine.state.output.update(\n {self.pred_keys[idx]: self.inferer(inputs, network, *args, **kwargs)}\n )\n else:\n engine.state.output.update({self.pred_keys[idx]: self.inferer(inputs, network, *args, **kwargs)})\n engine.fire_event(IterationEvents.FORWARD_COMPLETED)\n engine.fire_event(IterationEvents.MODEL_COMPLETED)\n\n return engine.state.output", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_trainer_create_multigpu_supervised_trainer.return.create_supervised_trainer": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_trainer_create_multigpu_supervised_trainer.return.create_supervised_trainer", "embedding": null, "metadata": {"file_path": "monai/engines/multi_gpu_supervised_trainer.py", "file_name": "multi_gpu_supervised_trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 43, "end_line": 89, "span_ids": ["create_multigpu_supervised_trainer"], "tokens": 437}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def create_multigpu_supervised_trainer(\n net: torch.nn.Module,\n optimizer: Optimizer,\n loss_fn: Callable,\n devices: Optional[Sequence[torch.device]] = None,\n non_blocking: bool = False,\n prepare_batch: Callable = _prepare_batch,\n output_transform: Callable = _default_transform,\n distributed: bool = False,\n) -> Engine:\n \"\"\"\n Derived from `create_supervised_trainer` in Ignite.\n\n Factory function for creating a trainer for supervised models.\n\n Args:\n net: the network to train.\n optimizer: the optimizer to use.\n loss_fn: the loss function to use.\n devices: device(s) type specification (default: None).\n Applies to both model and batches. None is all devices used, empty list is CPU only.\n non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously\n with respect to the host. For other cases, this argument has no effect.\n prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs\n tuple of tensors `(batch_x, batch_y)`.\n output_transform: function that receives 'x', 'y', 'y_pred', 'loss' and returns value\n to be assigned to engine's state.output after each iteration. Default is returning `loss.item()`.\n distributed: whether convert model to `DistributedDataParallel`, if have multiple devices, use\n the first device as output device.\n\n Returns:\n Engine: a trainer engine with supervised update function.\n\n Note:\n `engine.state.output` for this engine is defined by `output_transform` parameter and is the loss\n of the processed batch by default.\n \"\"\"\n\n devices_ = get_devices_spec(devices)\n if distributed:\n net = DistributedDataParallel(net, device_ids=devices_)\n elif len(devices_) > 1:\n net = DataParallel(net)\n\n return create_supervised_trainer(\n net, optimizer, loss_fn, devices_[0], non_blocking, prepare_batch, output_transform\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_evaluator_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_evaluator_", "embedding": null, "metadata": {"file_path": "monai/engines/multi_gpu_supervised_trainer.py", "file_name": "multi_gpu_supervised_trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 92, "end_line": 137, "span_ids": ["create_multigpu_supervised_evaluator"], "tokens": 450}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def create_multigpu_supervised_evaluator(\n net: torch.nn.Module,\n metrics: Optional[Dict[str, Metric]] = None,\n devices: Optional[Sequence[torch.device]] = None,\n non_blocking: bool = False,\n prepare_batch: Callable = _prepare_batch,\n output_transform: Callable = _default_eval_transform,\n distributed: bool = False,\n) -> Engine:\n \"\"\"\n Derived from `create_supervised_evaluator` in Ignite.\n\n Factory function for creating an evaluator for supervised models.\n\n Args:\n net: the model to train.\n metrics: a map of metric names to Metrics.\n devices: device(s) type specification (default: None).\n Applies to both model and batches. None is all devices used, empty list is CPU only.\n non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously\n with respect to the host. For other cases, this argument has no effect.\n prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs\n tuple of tensors `(batch_x, batch_y)`.\n output_transform: function that receives 'x', 'y', 'y_pred' and returns value\n to be assigned to engine's state.output after each iteration. Default is returning `(y_pred, y,)`\n which fits output expected by metrics. If you change it you should use `output_transform` in metrics.\n distributed: whether convert model to `DistributedDataParallel`, if have multiple devices, use\n the first device as output device.\n\n Note:\n `engine.state.output` for this engine is defined by `output_transform` parameter and is\n a tuple of `(batch_pred, batch_y)` by default.\n\n Returns:\n Engine: an evaluator engine with supervised inference function.\n \"\"\"\n\n devices_ = get_devices_spec(devices)\n\n if distributed:\n net = DistributedDataParallel(net, device_ids=devices_)\n elif len(devices_) > 1:\n net = DataParallel(net)\n\n return create_supervised_evaluator(net, metrics, devices_[0], non_blocking, prepare_batch, output_transform)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_Trainer_Trainer.get_train_stats.return._total_epochs_self_sta": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_Trainer_Trainer.get_train_stats.return._total_epochs_self_sta", "embedding": null, "metadata": {"file_path": "monai/engines/trainer.py", "file_name": "trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 33, "end_line": 49, "span_ids": ["Trainer.run", "Trainer.get_train_stats", "Trainer"], "tokens": 118}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Trainer(Workflow):\n \"\"\"\n Base class for all kinds of trainers, inherits from Workflow.\n\n \"\"\"\n\n def run(self) -> None:\n \"\"\"\n Execute training based on Ignite Engine.\n If call this function multiple times, it will continuously run from the previous state.\n\n \"\"\"\n self.scaler = torch.cuda.amp.GradScaler() if self.amp else None\n super().run()\n\n def get_train_stats(self) -> Dict[str, float]:\n return {\"total_epochs\": self.state.max_epochs, \"total_iterations\": self.state.epoch_length}", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow_Workflow._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow_Workflow._", "embedding": null, "metadata": {"file_path": "monai/engines/workflow.py", "file_name": "workflow.py", "file_type": "text/x-python", "category": "implementation", "start_line": 36, "end_line": 76, "span_ids": ["Workflow"], "tokens": 597}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Workflow(IgniteEngine): # type: ignore[valid-type, misc] # due to optional_import\n \"\"\"\n Workflow defines the core work process inheriting from Ignite engine.\n All trainer, validator and evaluator share this same workflow as base class,\n because they all can be treated as same Ignite engine loops.\n It initializes all the sharable data in Ignite engine.state.\n And attach additional processing logics to Ignite engine based on Event-Handler mechanism.\n\n Users should consider to inherit from `trainer` or `evaluator` to develop more trainers or evaluators.\n\n Args:\n device: an object representing the device on which to run.\n max_epochs: the total epoch number for engine to run, validator and evaluator have only 1 epoch.\n data_loader: Ignite engine use data_loader to run, must be Iterable or torch.DataLoader.\n epoch_length: number of iterations for one epoch, default to `len(data_loader)`.\n non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously\n with respect to the host. For other cases, this argument has no effect.\n prepare_batch: function to parse image and label for every iteration.\n iteration_update: the callable function for every iteration, expect to accept `engine`\n and `batchdata` as input parameters. if not provided, use `self._iteration()` instead.\n post_transform: execute additional transformation for the model output data.\n Typically, several Tensor based transforms composed by `Compose`.\n key_metric: compute metric when every iteration completed, and save average value to\n engine.state.metrics when epoch completed. key_metric is the main metric to compare and save the\n checkpoint into files.\n additional_metrics: more Ignite metrics that also attach to Ignite Engine.\n handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like:\n CheckpointHandler, StatsHandler, SegmentationSaver, etc.\n amp: whether to enable auto-mixed-precision training or inference, default is False.\n event_names: additional custom ignite events that will register to the engine.\n new events can be a list of str or `ignite.engine.events.EventEnum`.\n event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`.\n for more details, check: https://github.com/pytorch/ignite/blob/v0.4.4.post1/ignite/engine/engine.py#L160\n\n Raises:\n TypeError: When ``device`` is not a ``torch.Device``.\n TypeError: When ``data_loader`` is not a ``torch.utils.data.DataLoader``.\n TypeError: When ``key_metric`` is not a ``Optional[dict]``.\n TypeError: When ``additional_metrics`` is not a ``Optional[dict]``.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/__init__.py_CheckpointLoader_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/__init__.py_CheckpointLoader_", "embedding": null, "metadata": {"file_path": "monai/handlers/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 43, "span_ids": ["docstring"], "tokens": 293}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from .checkpoint_loader import CheckpointLoader\nfrom .checkpoint_saver import CheckpointSaver\nfrom .classification_saver import ClassificationSaver\nfrom .confusion_matrix import ConfusionMatrix\nfrom .earlystop_handler import EarlyStopHandler\nfrom .garbage_collector import GarbageCollector\nfrom .hausdorff_distance import HausdorffDistance\nfrom .ignite_metric import IgniteMetric\nfrom .lr_schedule_handler import LrScheduleHandler\nfrom .mean_dice import MeanDice\nfrom .metric_logger import MetricLogger, MetricLoggerKeys\nfrom .metrics_saver import MetricsSaver\nfrom .parameter_scheduler import ParamSchedulerHandler\nfrom .post_processing import PostProcessing\nfrom .regression_metrics import MeanAbsoluteError, MeanSquaredError, PeakSignalToNoiseRatio, RootMeanSquaredError\nfrom .roc_auc import ROCAUC\nfrom .segmentation_saver import SegmentationSaver\nfrom .smartcache_handler import SmartCacheHandler\nfrom .stats_handler import StatsHandler\nfrom .surface_distance import SurfaceDistance\nfrom .tensorboard_handlers import TensorBoardHandler, TensorBoardImageHandler, TensorBoardStatsHandler\nfrom .transform_inverter import TransformInverter\nfrom .utils import (\n evenly_divisible_all_gather,\n from_engine,\n stopping_fn_from_loss,\n stopping_fn_from_metric,\n string_list_all_gather,\n write_metrics_reports,\n)\nfrom .validation_handler import ValidationHandler", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver_CheckpointSaver._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver_CheckpointSaver._", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_saver.py", "file_name": "checkpoint_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 29, "end_line": 79, "span_ids": ["CheckpointSaver"], "tokens": 646}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointSaver:\n \"\"\"\n CheckpointSaver acts as an Ignite handler to save checkpoint data into files.\n It supports to save according to metrics result, epoch number, iteration number\n and last model or exception.\n\n Args:\n save_dir: the target directory to save the checkpoints.\n save_dict: source objects that save to the checkpoint. examples::\n\n {'network': net, 'optimizer': optimizer, 'lr_scheduler': lr_scheduler}\n\n name: identifier of logging.logger to use, if None, defaulting to ``engine.logger``.\n file_prefix: prefix for the filenames to which objects will be saved.\n save_final: whether to save checkpoint or session at final iteration or exception.\n If checkpoints are to be saved when an exception is raised, put this handler before\n `StatsHandler` in the handler list, because the logic with Ignite can only trigger\n the first attached handler for `EXCEPTION_RAISED` event.\n final_filename: set a fixed filename to save the final model if `save_final=True`.\n If None, default to `checkpoint_final_iteration=N.pt`.\n save_key_metric: whether to save checkpoint or session when the value of key_metric is\n higher than all the previous values during training.keep 4 decimal places of metric,\n checkpoint name is: {file_prefix}_key_metric=0.XXXX.pth.\n key_metric_name: the name of key_metric in ignite metrics dictionary.\n If None, use `engine.state.key_metric` instead.\n key_metric_n_saved: save top N checkpoints or sessions, sorted by the value of key\n metric in descending order.\n key_metric_filename: set a fixed filename to set the best metric model, if not None,\n `key_metric_n_saved` should be 1 and only keep the best metric model.\n key_metric_save_state: whether to save the tracking list of key metric in the checkpoint file.\n if `True`, then will save an object in the checkpoint file with key `checkpointer` to be consistent\n with ignite: https://github.com/pytorch/ignite/blob/master/ignite/handlers/checkpoint.py#L99.\n typically, it's used to resume training and compare current metric with previous N values.\n key_metric_greater_or_equal: if `True`, the latest equally scored model is stored. Otherwise,\n save the the first equally scored model. default to `False`.\n epoch_level: save checkpoint during training for every N epochs or every N iterations.\n `True` is epoch level, `False` is iteration level.\n save_interval: save checkpoint every N epochs, default is 0 to save no checkpoint.\n n_saved: save latest N checkpoints of epoch level or iteration level, 'None' is to save all.\n\n Note:\n CheckpointHandler can be used during training, validation or evaluation.\n example of saved files:\n\n - checkpoint_iteration=400.pt\n - checkpoint_iteration=800.pt\n - checkpoint_epoch=1.pt\n - checkpoint_final_iteration=1000.pt\n - checkpoint_key_metric=0.9387.pt\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.attach_CheckpointSaver.attach.if_self__interval_checkpo.if_self_epoch_level_.else_.engine_add_event_handler_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.attach_CheckpointSaver.attach.if_self__interval_checkpo.if_self_epoch_level_.else_.engine_add_event_handler_", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_saver.py", "file_name": "checkpoint_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 141, "end_line": 157, "span_ids": ["CheckpointSaver.attach"], "tokens": 183}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointSaver:\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n if self._final_checkpoint is not None:\n engine.add_event_handler(Events.COMPLETED, self.completed)\n engine.add_event_handler(Events.EXCEPTION_RAISED, self.exception_raised)\n if self._key_metric_checkpoint is not None:\n engine.add_event_handler(Events.EPOCH_COMPLETED, self.metrics_completed)\n if self._interval_checkpoint is not None:\n if self.epoch_level:\n engine.add_event_handler(Events.EPOCH_COMPLETED(every=self.save_interval), self.interval_completed)\n else:\n engine.add_event_handler(Events.ITERATION_COMPLETED(every=self.save_interval), self.interval_completed)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_LrScheduleHandler_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_LrScheduleHandler_", "embedding": null, "metadata": {"file_path": "monai/handlers/lr_schedule_handler.py", "file_name": "lr_schedule_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 26, "end_line": 85, "span_ids": ["LrScheduleHandler.__init__", "LrScheduleHandler", "LrScheduleHandler.__call__", "LrScheduleHandler.attach"], "tokens": 510}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LrScheduleHandler:\n \"\"\"\n Ignite handler to update the Learning Rate based on PyTorch LR scheduler.\n \"\"\"\n\n def __init__(\n self,\n lr_scheduler: Union[_LRScheduler, ReduceLROnPlateau],\n print_lr: bool = True,\n name: Optional[str] = None,\n epoch_level: bool = True,\n step_transform: Callable[[Engine], Any] = lambda engine: (),\n ) -> None:\n \"\"\"\n Args:\n lr_scheduler: typically, lr_scheduler should be PyTorch\n lr_scheduler object. If customized version, must have `step` and `get_last_lr` methods.\n print_lr: whether to print out the latest learning rate with logging.\n name: identifier of logging.logger to use, if None, defaulting to ``engine.logger``.\n epoch_level: execute lr_scheduler.step() after every epoch or every iteration.\n `True` is epoch level, `False` is iteration level.\n step_transform: a callable that is used to transform the information from `engine`\n to expected input data of lr_scheduler.step() function if necessary.\n\n Raises:\n TypeError: When ``step_transform`` is not ``callable``.\n\n \"\"\"\n self.lr_scheduler = lr_scheduler\n self.print_lr = print_lr\n self.logger = logging.getLogger(name)\n self.epoch_level = epoch_level\n if not callable(step_transform):\n raise TypeError(f\"step_transform must be callable but is {type(step_transform).__name__}.\")\n self.step_transform = step_transform\n\n self._name = name\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n if self.epoch_level:\n engine.add_event_handler(Events.EPOCH_COMPLETED, self)\n else:\n engine.add_event_handler(Events.ITERATION_COMPLETED, self)\n\n def __call__(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n args = ensure_tuple(self.step_transform(engine))\n self.lr_scheduler.step(*args)\n if self.print_lr:\n self.logger.info(f\"Current learning rate: {self.lr_scheduler._last_lr[0]}\") # type: ignore[union-attr]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_SegmentationSaver.attach_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_SegmentationSaver.attach_", "embedding": null, "metadata": {"file_path": "monai/handlers/segmentation_saver.py", "file_name": "segmentation_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 133, "end_line": 155, "span_ids": ["SegmentationSaver.__call__", "SegmentationSaver.attach"], "tokens": 197}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SegmentationSaver:\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n if not engine.has_event_handler(self, Events.ITERATION_COMPLETED):\n engine.add_event_handler(Events.ITERATION_COMPLETED, self)\n\n def __call__(self, engine: Engine) -> None:\n \"\"\"\n This method assumes self.batch_transform will extract metadata from the input batch.\n Output file datatype is determined from ``engine.state.output.dtype``.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n meta_data = self.batch_transform(engine.state.batch)\n engine_output = self.output_transform(engine.state.output)\n self._saver(engine_output, meta_data)\n self.logger.info(\"model outputs saved into files.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler_StatsHandler.__init__.if_logger_handler_is_not_.self_logger_addHandler_lo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler_StatsHandler.__init__.if_logger_handler_is_not_.self_logger_addHandler_lo", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 30, "end_line": 86, "span_ids": ["StatsHandler.__init__", "StatsHandler"], "tokens": 582}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class StatsHandler:\n \"\"\"\n StatsHandler defines a set of Ignite Event-handlers for all the log printing logics.\n It's can be used for any Ignite Engine(trainer, validator and evaluator).\n And it can support logging for epoch level and iteration level with pre-defined loggers.\n\n Default behaviors:\n - When EPOCH_COMPLETED, logs ``engine.state.metrics`` using ``self.logger``.\n - When ITERATION_COMPLETED, logs\n ``self.output_transform(engine.state.output)`` using ``self.logger``.\n\n \"\"\"\n\n def __init__(\n self,\n epoch_print_logger: Optional[Callable[[Engine], Any]] = None,\n iteration_print_logger: Optional[Callable[[Engine], Any]] = None,\n output_transform: Callable = lambda x: x,\n global_epoch_transform: Callable = lambda x: x,\n name: Optional[str] = None,\n tag_name: str = DEFAULT_TAG,\n key_var_format: str = DEFAULT_KEY_VAL_FORMAT,\n logger_handler: Optional[logging.Handler] = None,\n ) -> None:\n \"\"\"\n\n Args:\n epoch_print_logger: customized callable printer for epoch level logging.\n Must accept parameter \"engine\", use default printer if None.\n iteration_print_logger: customized callable printer for iteration level logging.\n Must accept parameter \"engine\", use default printer if None.\n output_transform: a callable that is used to transform the\n ``ignite.engine.state.output`` into a scalar to print, or a dictionary of {key: scalar}.\n In the latter case, the output string will be formatted as key: value.\n By default this value logging happens when every iteration completed.\n global_epoch_transform: a callable that is used to customize global epoch number.\n For example, in evaluation, the evaluator engine might want to print synced epoch number\n with the trainer engine.\n name: identifier of logging.logger to use, defaulting to ``engine.logger``.\n tag_name: when iteration output is a scalar, tag_name is used to print\n tag_name: scalar_value to logger. Defaults to ``'Loss'``.\n key_var_format: a formatting string to control the output string format of key: value.\n logger_handler: add additional handler to handle the stats data: save to file, etc.\n Add existing python logging handlers: https://docs.python.org/3/library/logging.handlers.html\n \"\"\"\n\n self.epoch_print_logger = epoch_print_logger\n self.iteration_print_logger = iteration_print_logger\n self.output_transform = output_transform\n self.global_epoch_transform = global_epoch_transform\n self.logger = logging.getLogger(name)\n self._name = name\n\n self.tag_name = tag_name\n self.key_var_format = key_var_format\n if logger_handler is not None:\n self.logger.addHandler(logger_handler)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.attach_StatsHandler.attach.None_3.engine_add_event_handler_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.attach_StatsHandler.attach.None_3.engine_add_event_handler_", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 88, "end_line": 103, "span_ids": ["StatsHandler.attach"], "tokens": 173}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class StatsHandler:\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Register a set of Ignite Event-Handlers to a specified Ignite engine.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n if not engine.has_event_handler(self.iteration_completed, Events.ITERATION_COMPLETED):\n engine.add_event_handler(Events.ITERATION_COMPLETED, self.iteration_completed)\n if not engine.has_event_handler(self.epoch_completed, Events.EPOCH_COMPLETED):\n engine.add_event_handler(Events.EPOCH_COMPLETED, self.epoch_completed)\n if not engine.has_event_handler(self.exception_raised, Events.EXCEPTION_RAISED):\n engine.add_event_handler(Events.EXCEPTION_RAISED, self.exception_raised)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler._default_epoch_print_StatsHandler._default_epoch_print.None_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler._default_epoch_print_StatsHandler._default_epoch_print.None_1", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 147, "end_line": 171, "span_ids": ["StatsHandler._default_epoch_print"], "tokens": 227}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class StatsHandler:\n\n def _default_epoch_print(self, engine: Engine) -> None:\n \"\"\"\n Execute epoch level log operation based on Ignite engine.state data.\n print the values from Ignite state.metrics dict.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n prints_dict = engine.state.metrics\n if not prints_dict:\n return\n current_epoch = self.global_epoch_transform(engine.state.epoch)\n\n out_str = f\"Epoch[{current_epoch}] Metrics -- \"\n for name in sorted(prints_dict):\n value = prints_dict[name]\n out_str += self.key_var_format.format(name, value)\n self.logger.info(out_str)\n\n if hasattr(engine.state, \"key_metric_name\"):\n if hasattr(engine.state, \"best_metric\") and hasattr(engine.state, \"best_metric_epoch\"):\n out_str = f\"Key metric: {engine.state.key_metric_name} \"\n out_str += f\"best value: {engine.state.best_metric} at epoch: {engine.state.best_metric_epoch}\"\n self.logger.info(out_str)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler._default_iteration_print_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler._default_iteration_print_", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 173, "end_line": 224, "span_ids": ["StatsHandler._default_iteration_print"], "tokens": 452}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class StatsHandler:\n\n def _default_iteration_print(self, engine: Engine) -> None:\n \"\"\"\n Execute iteration log operation based on Ignite engine.state data.\n Print the values from Ignite state.logs dict.\n Default behavior is to print loss from output[1], skip if output[1] is not loss.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n loss = self.output_transform(engine.state.output)\n if loss is None:\n return # no printing if the output is empty\n\n out_str = \"\"\n if isinstance(loss, dict): # print dictionary items\n for name in sorted(loss):\n value = loss[name]\n if not is_scalar(value):\n warnings.warn(\n \"ignoring non-scalar output in StatsHandler,\"\n \" make sure `output_transform(engine.state.output)` returns\"\n \" a scalar or dictionary of key and scalar pairs to avoid this warning.\"\n \" {}:{}\".format(name, type(value))\n )\n continue # not printing multi dimensional output\n out_str += self.key_var_format.format(name, value.item() if isinstance(value, torch.Tensor) else value)\n else:\n if is_scalar(loss): # not printing multi dimensional output\n out_str += self.key_var_format.format(\n self.tag_name, loss.item() if isinstance(loss, torch.Tensor) else loss\n )\n else:\n warnings.warn(\n \"ignoring non-scalar output in StatsHandler,\"\n \" make sure `output_transform(engine.state.output)` returns\"\n \" a scalar or a dictionary of key and scalar pairs to avoid this warning.\"\n \" {}\".format(type(loss))\n )\n\n if not out_str:\n return # no value to print\n\n num_iterations = engine.state.epoch_length\n current_iteration = (engine.state.iteration - 1) % num_iterations + 1\n current_epoch = engine.state.epoch\n num_epochs = engine.state.max_epochs\n\n base_str = f\"Epoch: {current_epoch}/{num_epochs}, Iter: {current_iteration}/{num_iterations} --\"\n\n self.logger.info(\" \".join([base_str, out_str]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler_TensorBoardStatsHandler.__init__.self.tag_name.tag_name": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler_TensorBoardStatsHandler.__init__.self.tag_name.tag_name", "embedding": null, "metadata": {"file_path": "monai/handlers/tensorboard_handlers.py", "file_name": "tensorboard_handlers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 63, "end_line": 116, "span_ids": ["TensorBoardStatsHandler.__init__", "TensorBoardStatsHandler"], "tokens": 638}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TensorBoardStatsHandler(TensorBoardHandler):\n \"\"\"\n TensorBoardStatsHandler defines a set of Ignite Event-handlers for all the TensorBoard logics.\n It's can be used for any Ignite Engine(trainer, validator and evaluator).\n And it can support both epoch level and iteration level with pre-defined TensorBoard event writer.\n The expected data source is Ignite ``engine.state.output`` and ``engine.state.metrics``.\n\n Default behaviors:\n - When EPOCH_COMPLETED, write each dictionary item in\n ``engine.state.metrics`` to TensorBoard.\n - When ITERATION_COMPLETED, write each dictionary item in\n ``self.output_transform(engine.state.output)`` to TensorBoard.\n \"\"\"\n\n def __init__(\n self,\n summary_writer: Optional[SummaryWriter] = None,\n log_dir: str = \"./runs\",\n epoch_event_writer: Optional[Callable[[Engine, SummaryWriter], Any]] = None,\n epoch_interval: int = 1,\n iteration_event_writer: Optional[Callable[[Engine, SummaryWriter], Any]] = None,\n iteration_interval: int = 1,\n output_transform: Callable = lambda x: x,\n global_epoch_transform: Callable = lambda x: x,\n tag_name: str = DEFAULT_TAG,\n ) -> None:\n \"\"\"\n Args:\n summary_writer: user can specify TensorBoard SummaryWriter,\n default to create a new writer.\n log_dir: if using default SummaryWriter, write logs to this directory, default is `./runs`.\n epoch_event_writer: customized callable TensorBoard writer for epoch level.\n Must accept parameter \"engine\" and \"summary_writer\", use default event writer if None.\n epoch_interval: the epoch interval at which the epoch_event_writer is called. Defaults to 1.\n iteration_event_writer: customized callable TensorBoard writer for iteration level.\n Must accept parameter \"engine\" and \"summary_writer\", use default event writer if None.\n iteration_interval: the iteration interval at which the iteration_event_writer is called. Defaults to 1.\n output_transform: a callable that is used to transform the\n ``ignite.engine.state.output`` into a scalar to plot, or a dictionary of {key: scalar}.\n In the latter case, the output string will be formatted as key: value.\n By default this value plotting happens when every iteration completed.\n global_epoch_transform: a callable that is used to customize global epoch number.\n For example, in evaluation, the evaluator engine might want to use trainer engines epoch number\n when plotting epoch vs metric curves.\n tag_name: when iteration output is a scalar, tag_name is used to plot, defaults to ``'Loss'``.\n \"\"\"\n super().__init__(summary_writer=summary_writer, log_dir=log_dir)\n self.epoch_event_writer = epoch_event_writer\n self.epoch_interval = epoch_interval\n self.iteration_event_writer = iteration_event_writer\n self.iteration_interval = iteration_interval\n self.output_transform = output_transform\n self.global_epoch_transform = global_epoch_transform\n self.tag_name = tag_name", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.attach_TensorBoardStatsHandler.attach.None_1.engine_add_event_handler_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.attach_TensorBoardStatsHandler.attach.None_1.engine_add_event_handler_", "embedding": null, "metadata": {"file_path": "monai/handlers/tensorboard_handlers.py", "file_name": "tensorboard_handlers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 118, "end_line": 131, "span_ids": ["TensorBoardStatsHandler.attach"], "tokens": 143}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TensorBoardStatsHandler(TensorBoardHandler):\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Register a set of Ignite Event-Handlers to a specified Ignite engine.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if not engine.has_event_handler(self.iteration_completed, Events.ITERATION_COMPLETED):\n engine.add_event_handler(\n Events.ITERATION_COMPLETED(every=self.iteration_interval), self.iteration_completed\n )\n if not engine.has_event_handler(self.epoch_completed, Events.EPOCH_COMPLETED):\n engine.add_event_handler(Events.EPOCH_COMPLETED(every=self.epoch_interval), self.epoch_completed)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.epoch_completed_TensorBoardStatsHandler.iteration_completed.if_self_iteration_event_w.else_.self__default_iteration_w": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.epoch_completed_TensorBoardStatsHandler.iteration_completed.if_self_iteration_event_w.else_.self__default_iteration_w", "embedding": null, "metadata": {"file_path": "monai/handlers/tensorboard_handlers.py", "file_name": "tensorboard_handlers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 133, "end_line": 159, "span_ids": ["TensorBoardStatsHandler.iteration_completed", "TensorBoardStatsHandler.epoch_completed"], "tokens": 214}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TensorBoardStatsHandler(TensorBoardHandler):\n\n def epoch_completed(self, engine: Engine) -> None:\n \"\"\"\n Handler for train or validation/evaluation epoch completed Event.\n Write epoch level events, default values are from Ignite state.metrics dict.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if self.epoch_event_writer is not None:\n self.epoch_event_writer(engine, self._writer)\n else:\n self._default_epoch_writer(engine, self._writer)\n\n def iteration_completed(self, engine: Engine) -> None:\n \"\"\"\n Handler for train or validation/evaluation iteration completed Event.\n Write iteration level events, default values are from Ignite state.logs dict.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if self.iteration_event_writer is not None:\n self.iteration_event_writer(engine, self._writer)\n else:\n self._default_iteration_writer(engine, self._writer)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_epoch_writer_TensorBoardStatsHandler._default_epoch_writer.writer_flush_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_epoch_writer_TensorBoardStatsHandler._default_epoch_writer.writer_flush_", "embedding": null, "metadata": {"file_path": "monai/handlers/tensorboard_handlers.py", "file_name": "tensorboard_handlers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 161, "end_line": 175, "span_ids": ["TensorBoardStatsHandler._default_epoch_writer"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TensorBoardStatsHandler(TensorBoardHandler):\n\n def _default_epoch_writer(self, engine: Engine, writer: SummaryWriter) -> None:\n \"\"\"\n Execute epoch level event write operation based on Ignite engine.state data.\n Default is to write the values from Ignite state.metrics dict.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n writer: TensorBoard writer, created in TensorBoardHandler.\n\n \"\"\"\n current_epoch = self.global_epoch_transform(engine.state.epoch)\n summary_dict = engine.state.metrics\n for name, value in summary_dict.items():\n writer.add_scalar(name, value, current_epoch)\n writer.flush()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_iteration_writer_TensorBoardStatsHandler._default_iteration_writer.writer_flush_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_iteration_writer_TensorBoardStatsHandler._default_iteration_writer.writer_flush_", "embedding": null, "metadata": {"file_path": "monai/handlers/tensorboard_handlers.py", "file_name": "tensorboard_handlers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 177, "end_line": 215, "span_ids": ["TensorBoardStatsHandler._default_iteration_writer"], "tokens": 353}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TensorBoardStatsHandler(TensorBoardHandler):\n\n def _default_iteration_writer(self, engine: Engine, writer: SummaryWriter) -> None:\n \"\"\"\n Execute iteration level event write operation based on Ignite engine.state data.\n Default is to write the loss value of current iteration.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n writer: TensorBoard writer, created in TensorBoardHandler.\n\n \"\"\"\n loss = self.output_transform(engine.state.output)\n if loss is None:\n return # do nothing if output is empty\n if isinstance(loss, dict):\n for name in sorted(loss):\n value = loss[name]\n if not is_scalar(value):\n warnings.warn(\n \"ignoring non-scalar output in TensorBoardStatsHandler,\"\n \" make sure `output_transform(engine.state.output)` returns\"\n \" a scalar or dictionary of key and scalar pairs to avoid this warning.\"\n \" {}:{}\".format(name, type(value))\n )\n continue # not plot multi dimensional output\n writer.add_scalar(\n name, value.item() if isinstance(value, torch.Tensor) else value, engine.state.iteration\n )\n elif is_scalar(loss): # not printing multi dimensional output\n writer.add_scalar(\n self.tag_name, loss.item() if isinstance(loss, torch.Tensor) else loss, engine.state.iteration\n )\n else:\n warnings.warn(\n \"ignoring non-scalar output in TensorBoardStatsHandler,\"\n \" make sure `output_transform(engine.state.output)` returns\"\n \" a scalar or a dictionary of key and scalar pairs to avoid this warning.\"\n \" {}\".format(type(loss))\n )\n writer.flush()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/validation_handler.py_from_typing_import_TYPE_C_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/validation_handler.py_from_typing_import_TYPE_C_", "embedding": null, "metadata": {"file_path": "monai/handlers/validation_handler.py", "file_name": "validation_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 76, "span_ids": ["ValidationHandler.__init__", "ValidationHandler.set_validator", "ValidationHandler.__call__", "docstring", "ValidationHandler.attach", "ValidationHandler"], "tokens": 546}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import TYPE_CHECKING, Optional\n\nfrom monai.engines.evaluator import Evaluator\nfrom monai.utils import exact_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Events\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Engine\")\n\n\nclass ValidationHandler:\n \"\"\"\n Attach validator to the trainer engine in Ignite.\n It can support to execute validation every N epochs or every N iterations.\n\n \"\"\"\n\n def __init__(self, interval: int, validator: Optional[Evaluator] = None, epoch_level: bool = True) -> None:\n \"\"\"\n Args:\n interval: do validation every N epochs or every N iterations during training.\n validator: run the validator when trigger validation, suppose to be Evaluator.\n if None, should call `set_validator()` before training.\n epoch_level: execute validation every N epochs or N iterations.\n `True` is epoch level, `False` is iteration level.\n\n Raises:\n TypeError: When ``validator`` is not a ``monai.engines.evaluator.Evaluator``.\n\n \"\"\"\n if validator is not None and not isinstance(validator, Evaluator):\n raise TypeError(f\"validator must be a monai.engines.evaluator.Evaluator but is {type(validator).__name__}.\")\n self.validator = validator\n self.interval = interval\n self.epoch_level = epoch_level\n\n def set_validator(self, validator: Evaluator):\n \"\"\"\n Set validator if not setting in the __init__().\n \"\"\"\n if not isinstance(validator, Evaluator):\n raise TypeError(f\"validator must be a monai.engines.evaluator.Evaluator but is {type(validator).__name__}.\")\n self.validator = validator\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self.epoch_level:\n engine.add_event_handler(Events.EPOCH_COMPLETED(every=self.interval), self)\n else:\n engine.add_event_handler(Events.ITERATION_COMPLETED(every=self.interval), self)\n\n def __call__(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self.validator is None:\n raise RuntimeError(\"please set validator in __init__() or call `set_validator()` before training.\")\n self.validator.run(engine.state.epoch)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py__get_scan_interval_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py__get_scan_interval_", "embedding": null, "metadata": {"file_path": "monai/inferers/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 144, "end_line": 166, "span_ids": ["_get_scan_interval"], "tokens": 212}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def _get_scan_interval(\n image_size: Sequence[int], roi_size: Sequence[int], num_spatial_dims: int, overlap: float\n) -> Tuple[int, ...]:\n \"\"\"\n Compute scan interval according to the image size, roi size and overlap.\n Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0,\n use 1 instead to make sure sliding window works.\n\n \"\"\"\n if len(image_size) != num_spatial_dims:\n raise ValueError(\"image coord different from spatial dims.\")\n if len(roi_size) != num_spatial_dims:\n raise ValueError(\"roi coord different from spatial dims.\")\n\n scan_interval = []\n for i in range(num_spatial_dims):\n if roi_size[i] == image_size[i]:\n scan_interval.append(int(roi_size[i]))\n else:\n interval = int(roi_size[i] * (1 - overlap))\n scan_interval.append(interval if interval > 0 else 1)\n return tuple(scan_interval)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceLoss.forward_DiceLoss.forward.return.f": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceLoss.forward_DiceLoss.forward.return.f", "embedding": null, "metadata": {"file_path": "monai/losses/dice.py", "file_name": "dice.py", "file_type": "text/x-python", "category": "implementation", "start_line": 102, "end_line": 175, "span_ids": ["DiceLoss.forward"], "tokens": 646}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DiceLoss(_Loss):\n\n def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n input: the shape should be BNH[WD], where N is the number of classes.\n target: the shape should be BNH[WD] or B1H[WD], where N is the number of classes.\n\n Raises:\n AssertionError: When input and target (after one hot transform if setted)\n have different shapes.\n ValueError: When ``self.reduction`` is not one of [\"mean\", \"sum\", \"none\"].\n\n \"\"\"\n if self.sigmoid:\n input = torch.sigmoid(input)\n\n n_pred_ch = input.shape[1]\n if self.softmax:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `softmax=True` ignored.\")\n else:\n input = torch.softmax(input, 1)\n\n if self.other_act is not None:\n input = self.other_act(input)\n\n if self.to_onehot_y:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `to_onehot_y=True` ignored.\")\n else:\n target = one_hot(target, num_classes=n_pred_ch)\n\n if not self.include_background:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `include_background=False` ignored.\")\n else:\n # if skipping background, removing first channel\n target = target[:, 1:]\n input = input[:, 1:]\n\n if target.shape != input.shape:\n raise AssertionError(f\"ground truth has different shape ({target.shape}) from input ({input.shape})\")\n\n # reducing only spatial dimensions (not batch nor channels)\n reduce_axis: List[int] = torch.arange(2, len(input.shape)).tolist()\n if self.batch:\n # reducing spatial dimensions and batch\n reduce_axis = [0] + reduce_axis\n\n intersection = torch.sum(target * input, dim=reduce_axis)\n\n if self.squared_pred:\n target = torch.pow(target, 2)\n input = torch.pow(input, 2)\n\n ground_o = torch.sum(target, dim=reduce_axis)\n pred_o = torch.sum(input, dim=reduce_axis)\n\n denominator = ground_o + pred_o\n\n if self.jaccard:\n denominator = 2.0 * (denominator - intersection)\n\n f: torch.Tensor = 1.0 - (2.0 * intersection + self.smooth_nr) / (denominator + self.smooth_dr)\n\n if self.reduction == LossReduction.MEAN.value:\n f = torch.mean(f) # the batch and channel average\n elif self.reduction == LossReduction.SUM.value:\n f = torch.sum(f) # sum over the batch and channel dims\n elif self.reduction == LossReduction.NONE.value:\n pass # returns [N, n_classes] losses\n else:\n raise ValueError(f'Unsupported reduction: {self.reduction}, available options are [\"mean\", \"sum\", \"none\"].')\n\n return f", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/tversky.py_TverskyLoss.forward_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/tversky.py_TverskyLoss.forward_", "embedding": null, "metadata": {"file_path": "monai/losses/tversky.py", "file_name": "tversky.py", "file_type": "text/x-python", "category": "implementation", "start_line": 96, "end_line": 162, "span_ids": ["TverskyLoss.forward"], "tokens": 578}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TverskyLoss(_Loss):\n\n def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n input: the shape should be BNH[WD].\n target: the shape should be BNH[WD].\n\n Raises:\n ValueError: When ``self.reduction`` is not one of [\"mean\", \"sum\", \"none\"].\n\n \"\"\"\n if self.sigmoid:\n input = torch.sigmoid(input)\n\n n_pred_ch = input.shape[1]\n if self.softmax:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `softmax=True` ignored.\")\n else:\n input = torch.softmax(input, 1)\n\n if self.other_act is not None:\n input = self.other_act(input)\n\n if self.to_onehot_y:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `to_onehot_y=True` ignored.\")\n else:\n target = one_hot(target, num_classes=n_pred_ch)\n\n if not self.include_background:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `include_background=False` ignored.\")\n else:\n # if skipping background, removing first channel\n target = target[:, 1:]\n input = input[:, 1:]\n\n if target.shape != input.shape:\n raise AssertionError(f\"ground truth has differing shape ({target.shape}) from input ({input.shape})\")\n\n p0 = input\n p1 = 1 - p0\n g0 = target\n g1 = 1 - g0\n\n # reducing only spatial dimensions (not batch nor channels)\n reduce_axis: List[int] = torch.arange(2, len(input.shape)).tolist()\n if self.batch:\n # reducing spatial dimensions and batch\n reduce_axis = [0] + reduce_axis\n\n tp = torch.sum(p0 * g0, reduce_axis)\n fp = self.alpha * torch.sum(p0 * g1, reduce_axis)\n fn = self.beta * torch.sum(p1 * g0, reduce_axis)\n numerator = tp + self.smooth_nr\n denominator = tp + fp + fn + self.smooth_dr\n\n score: torch.Tensor = 1.0 - numerator / denominator\n\n if self.reduction == LossReduction.SUM.value:\n return torch.sum(score) # sum over the batch and channel dims\n if self.reduction == LossReduction.NONE.value:\n return score # returns [N, n_classes] losses\n if self.reduction == LossReduction.MEAN.value:\n return torch.mean(score)\n raise ValueError(f'Unsupported reduction: {self.reduction}, available options are [\"mean\", \"sum\", \"none\"].')", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/downsample.py_from_typing_import_Option_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/downsample.py_from_typing_import_Option_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/downsample.py", "file_name": "downsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 63, "span_ids": ["MaxAvgPool", "MaxAvgPool.__init__", "MaxAvgPool.forward", "docstring"], "tokens": 418}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Union\n\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.layers.factories import Pool\nfrom monai.utils import ensure_tuple_rep\n\n\nclass MaxAvgPool(nn.Module):\n \"\"\"\n Downsample with both maxpooling and avgpooling,\n double the channel size by concatenating the downsampled feature maps.\n \"\"\"\n\n def __init__(\n self,\n spatial_dims: int,\n kernel_size: Union[Sequence[int], int],\n stride: Optional[Union[Sequence[int], int]] = None,\n padding: Union[Sequence[int], int] = 0,\n ceil_mode: bool = False,\n ) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n kernel_size: the kernel size of both pooling operations.\n stride: the stride of the window. Default value is `kernel_size`.\n padding: implicit zero padding to be added to both pooling operations.\n ceil_mode: when True, will use ceil instead of floor to compute the output shape.\n \"\"\"\n super().__init__()\n _params = {\n \"kernel_size\": ensure_tuple_rep(kernel_size, spatial_dims),\n \"stride\": None if stride is None else ensure_tuple_rep(stride, spatial_dims),\n \"padding\": ensure_tuple_rep(padding, spatial_dims),\n \"ceil_mode\": ceil_mode,\n }\n self.max_pool = Pool[Pool.MAX, spatial_dims](**_params)\n self.avg_pool = Pool[Pool.AVG, spatial_dims](**_params)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n x: Tensor in shape (batch, channel, spatial_1[, spatial_2, ...]).\n\n Returns:\n Tensor in shape (batch, 2*channel, spatial_1[, spatial_2, ...]).\n \"\"\"\n x_d = torch.cat([self.max_pool(x), self.avg_pool(x)], dim=1)\n return x_d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_from_typing_import_Any_C_LayerFactory.add_factory_callable.self.__doc__._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_from_typing_import_Any_C_LayerFactory.add_factory_callable.self.__doc__._", "embedding": null, "metadata": {"file_path": "monai/networks/layers/factories.py", "file_name": "factories.py", "file_type": "text/x-python", "category": "implementation", "start_line": 63, "end_line": 98, "span_ids": ["LayerFactory", "LayerFactory.add_factory_callable", "docstring:11", "LayerFactory.__init__", "LayerFactory.names"], "tokens": 278}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Any, Callable, Dict, Tuple, Type, Union\n\nimport torch.nn as nn\n\n__all__ = [\"LayerFactory\", \"Dropout\", \"Norm\", \"Act\", \"Conv\", \"Pool\", \"Pad\", \"split_args\"]\n\n\nclass LayerFactory:\n \"\"\"\n Factory object for creating layers, this uses given factory functions to actually produce the types or constructing\n callables. These functions are referred to by name and can be added at any time.\n \"\"\"\n\n def __init__(self) -> None:\n self.factories: Dict[str, Callable] = {}\n\n @property\n def names(self) -> Tuple[str, ...]:\n \"\"\"\n Produces all factory names.\n \"\"\"\n\n return tuple(self.factories)\n\n def add_factory_callable(self, name: str, func: Callable) -> None:\n \"\"\"\n Add the factory function to this object under the given name.\n \"\"\"\n\n self.factories[name.upper()] = func\n self.__doc__ = (\n \"The supported member\"\n + (\"s are: \" if len(self.names) > 1 else \" is: \")\n + \", \".join(f\"``{name}``\" for name in self.names)\n + \".\\nPlease see :py:class:`monai.networks.layers.split_args` for additional args parsing.\"\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_LayerFactory.factory_function_LayerFactory.get_constructor.return.fact_args_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_LayerFactory.factory_function_LayerFactory.get_constructor.return.fact_args_", "embedding": null, "metadata": {"file_path": "monai/networks/layers/factories.py", "file_name": "factories.py", "file_type": "text/x-python", "category": "implementation", "start_line": 100, "end_line": 124, "span_ids": ["LayerFactory.get_constructor", "LayerFactory.factory_function"], "tokens": 161}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LayerFactory:\n\n def factory_function(self, name: str) -> Callable:\n \"\"\"\n Decorator for adding a factory function with the given name.\n \"\"\"\n\n def _add(func: Callable) -> Callable:\n self.add_factory_callable(name, func)\n return func\n\n return _add\n\n def get_constructor(self, factory_name: str, *args) -> Any:\n \"\"\"\n Get the constructor for the given factory name and arguments.\n\n Raises:\n TypeError: When ``factory_name`` is not a ``str``.\n\n \"\"\"\n\n if not isinstance(factory_name, str):\n raise TypeError(f\"factory_name must a str but is {type(factory_name).__name__}.\")\n\n fact = self.factories[factory_name.upper()]\n return fact(*args)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_LayerFactory.__getitem___LayerFactory.__getattr__.return.super___getattribute___": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_LayerFactory.__getitem___LayerFactory.__getattr__.return.super___getattribute___", "embedding": null, "metadata": {"file_path": "monai/networks/layers/factories.py", "file_name": "factories.py", "file_type": "text/x-python", "category": "implementation", "start_line": 126, "end_line": 153, "span_ids": ["LayerFactory.__getitem__", "LayerFactory.__getattr__"], "tokens": 228}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LayerFactory:\n\n def __getitem__(self, args) -> Any:\n \"\"\"\n Get the given name or name/arguments pair. If `args` is a callable it is assumed to be the constructor\n itself and is returned, otherwise it should be the factory name or a pair containing the name and arguments.\n \"\"\"\n\n # `args[0]` is actually a type or constructor\n if callable(args):\n return args\n\n # `args` is a factory name or a name with arguments\n if isinstance(args, str):\n name_obj, args = args, ()\n else:\n name_obj, *args = args\n\n return self.get_constructor(name_obj, *args)\n\n def __getattr__(self, key):\n \"\"\"\n If `key` is a factory name, return it, otherwise behave as inherited. This allows referring to factory names\n as if they were constants, eg. `Fact.FOO` for a factory Fact with factory function foo.\n \"\"\"\n\n if key in self.factories:\n return key\n\n return super().__getattribute__(key)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_from_typing_import_Option_Classifier.__init__.if_last_act_is_not_None_.self_final_add_module_la": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_from_typing_import_Option_Classifier.__init__.if_last_act_is_not_None_.self_final_add_module_la", "embedding": null, "metadata": {"file_path": "monai/networks/nets/classifier.py", "file_name": "classifier.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 64, "span_ids": ["Classifier.__init__", "Classifier", "docstring"], "tokens": 485}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Union\n\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.layers.factories import Act, Norm, split_args\nfrom monai.networks.nets.regressor import Regressor\n\n__all__ = [\"Classifier\", \"Discriminator\", \"Critic\"]\n\n\nclass Classifier(Regressor):\n \"\"\"\n Defines a classification network from Regressor by specifying the output shape as a single dimensional tensor\n with size equal to the number of classes to predict. The final activation function can also be specified, eg.\n softmax or sigmoid.\n \"\"\"\n\n def __init__(\n self,\n in_shape: Sequence[int],\n classes: int,\n channels: Sequence[int],\n strides: Sequence[int],\n kernel_size: Union[Sequence[int], int] = 3,\n num_res_units: int = 2,\n act=Act.PRELU,\n norm=Norm.INSTANCE,\n dropout: Optional[float] = None,\n bias: bool = True,\n last_act: Optional[str] = None,\n ) -> None:\n \"\"\"\n Args:\n in_shape: tuple of integers stating the dimension of the input tensor (minus batch dimension)\n classes: integer stating the dimension of the final output tensor\n channels: tuple of integers stating the output channels of each convolutional layer\n strides: tuple of integers stating the stride (downscale factor) of each convolutional layer\n kernel_size: integer or tuple of integers stating size of convolutional kernels\n num_res_units: integer stating number of convolutions in residual units, 0 means no residual units\n act: name or type defining activation layers\n norm: name or type defining normalization layers\n dropout: optional float value in range [0, 1] stating dropout probability for layers, None for no dropout\n bias: boolean stating if convolution layers should have a bias component\n last_act: name defining the last activation layer\n \"\"\"\n super().__init__(in_shape, (classes,), channels, strides, kernel_size, num_res_units, act, norm, dropout, bias)\n\n if last_act is not None:\n last_act_name, last_act_args = split_args(last_act)\n last_act_type = Act[last_act_name]\n\n self.final.add_module(\"lastact\", last_act_type(**last_act_args))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Discriminator_Discriminator.__init__.super___init___in_shape": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Discriminator_Discriminator.__init__.super___init___in_shape", "embedding": null, "metadata": {"file_path": "monai/networks/nets/classifier.py", "file_name": "classifier.py", "file_type": "text/x-python", "category": "implementation", "start_line": 65, "end_line": 97, "span_ids": ["Discriminator.__init__", "Discriminator"], "tokens": 350}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Discriminator(Classifier):\n \"\"\"\n Defines a discriminator network from Classifier with a single output value and sigmoid activation by default. This\n is meant for use with GANs or other applications requiring a generic discriminator network.\n \"\"\"\n\n def __init__(\n self,\n in_shape: Sequence[int],\n channels: Sequence[int],\n strides: Sequence[int],\n kernel_size: Union[Sequence[int], int] = 3,\n num_res_units: int = 2,\n act=Act.PRELU,\n norm=Norm.INSTANCE,\n dropout: Optional[float] = 0.25,\n bias: bool = True,\n last_act=Act.SIGMOID,\n ) -> None:\n \"\"\"\n Args:\n in_shape: tuple of integers stating the dimension of the input tensor (minus batch dimension)\n channels: tuple of integers stating the output channels of each convolutional layer\n strides: tuple of integers stating the stride (downscale factor) of each convolutional layer\n kernel_size: integer or tuple of integers stating size of convolutional kernels\n num_res_units: integer stating number of convolutions in residual units, 0 means no residual units\n act: name or type defining activation layers\n norm: name or type defining normalization layers\n dropout: optional float value in range [0, 1] stating dropout probability for layers, None for no dropout\n bias: boolean stating if convolution layers should have a bias component\n last_act: name defining the last activation layer\n \"\"\"\n super().__init__(in_shape, 1, channels, strides, kernel_size, num_res_units, act, norm, dropout, bias, last_act)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Critic_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Critic_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/classifier.py", "file_name": "classifier.py", "file_type": "text/x-python", "category": "implementation", "start_line": 100, "end_line": 141, "span_ids": ["Critic", "Critic.forward", "Critic.__init__", "Critic._get_final_layer"], "tokens": 422}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Critic(Classifier):\n \"\"\"\n Defines a critic network from Classifier with a single output value and no final activation. The final layer is\n `nn.Flatten` instead of `nn.Linear`, the final result is computed as the mean over the first dimension. This is\n meant to be used with Wasserstein GANs.\n \"\"\"\n\n def __init__(\n self,\n in_shape: Sequence[int],\n channels: Sequence[int],\n strides: Sequence[int],\n kernel_size: Union[Sequence[int], int] = 3,\n num_res_units: int = 2,\n act=Act.PRELU,\n norm=Norm.INSTANCE,\n dropout: Optional[float] = 0.25,\n bias: bool = True,\n ) -> None:\n \"\"\"\n Args:\n in_shape: tuple of integers stating the dimension of the input tensor (minus batch dimension)\n channels: tuple of integers stating the output channels of each convolutional layer\n strides: tuple of integers stating the stride (downscale factor) of each convolutional layer\n kernel_size: integer or tuple of integers stating size of convolutional kernels\n num_res_units: integer stating number of convolutions in residual units, 0 means no residual units\n act: name or type defining activation layers\n norm: name or type defining normalization layers\n dropout: optional float value in range [0, 1] stating dropout probability for layers, None for no dropout\n bias: boolean stating if convolution layers should have a bias component\n \"\"\"\n super().__init__(in_shape, 1, channels, strides, kernel_size, num_res_units, act, norm, dropout, bias, None)\n\n def _get_final_layer(self, in_shape: Sequence[int]):\n return nn.Flatten()\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n x = self.net(x)\n x = self.final(x)\n x = x.mean(1)\n return x.view((x.shape[0], -1))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__DenseBlock__DenseBlock.__init__.for_i_in_range_layers_.self_add_module_denselay": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__DenseBlock__DenseBlock.__init__.for_i_in_range_layers_.self_add_module_denselay", "embedding": null, "metadata": {"file_path": "monai/networks/nets/densenet.py", "file_name": "densenet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 57, "end_line": 75, "span_ids": ["_DenseBlock.__init__", "_DenseBlock"], "tokens": 213}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class _DenseBlock(nn.Sequential):\n def __init__(\n self, spatial_dims: int, layers: int, in_channels: int, bn_size: int, growth_rate: int, dropout_prob: float\n ) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n layers: number of layers in the block.\n in_channels: number of the input channel.\n bn_size: multiplicative factor for number of bottle neck layers.\n (i.e. bn_size * k features in the bottleneck layer)\n growth_rate: how many filters to add each layer (k in paper).\n dropout_prob: dropout rate after each dense layer.\n \"\"\"\n super(_DenseBlock, self).__init__()\n for i in range(layers):\n layer = _DenseLayer(spatial_dims, in_channels, growth_rate, bn_size, dropout_prob)\n in_channels += growth_rate\n self.add_module(\"denselayer%d\" % (i + 1), layer)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__Transition__Transition.__init__.self_add_module_pool_p": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__Transition__Transition.__init__.self_add_module_pool_p", "embedding": null, "metadata": {"file_path": "monai/networks/nets/densenet.py", "file_name": "densenet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 78, "end_line": 95, "span_ids": ["_Transition", "_Transition.__init__"], "tokens": 190}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class _Transition(nn.Sequential):\n def __init__(self, spatial_dims: int, in_channels: int, out_channels: int) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n in_channels: number of the input channel.\n out_channels: number of the output classes.\n \"\"\"\n super(_Transition, self).__init__()\n\n conv_type: Callable = Conv[Conv.CONV, spatial_dims]\n norm_type: Callable = Norm[Norm.BATCH, spatial_dims]\n pool_type: Callable = Pool[Pool.AVG, spatial_dims]\n\n self.add_module(\"norm\", norm_type(in_channels))\n self.add_module(\"relu\", nn.ReLU(inplace=True))\n self.add_module(\"conv\", conv_type(in_channels, out_channels, kernel_size=1, bias=False))\n self.add_module(\"pool\", pool_type(kernel_size=2, stride=2))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet_DenseNet._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet_DenseNet._", "embedding": null, "metadata": {"file_path": "monai/networks/nets/densenet.py", "file_name": "densenet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 100, "end_line": 116, "span_ids": ["DenseNet"], "tokens": 196}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DenseNet(nn.Module):\n \"\"\"\n Densenet based on: `Densely Connected Convolutional Networks `_.\n Adapted from `PyTorch Hub 2D version\n `_.\n\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n in_channels: number of the input channel.\n out_channels: number of the output classes.\n init_features: number of filters in the first convolution layer.\n growth_rate: how many filters to add each layer (k in paper).\n block_config: how many layers in each pooling block.\n bn_size: multiplicative factor for number of bottle neck layers.\n (i.e. bn_size * k features in the bottleneck layer)\n dropout_prob: dropout rate after each dense layer.\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet.__init___DenseNet.forward.return.x": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet.__init___DenseNet.forward.return.x", "embedding": null, "metadata": {"file_path": "monai/networks/nets/densenet.py", "file_name": "densenet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 120, "end_line": 196, "span_ids": ["DenseNet.__init__", "DenseNet.forward"], "tokens": 703}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DenseNet(nn.Module):\n\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n init_features: int = 64,\n growth_rate: int = 32,\n block_config: Sequence[int] = (6, 12, 24, 16),\n bn_size: int = 4,\n dropout_prob: float = 0.0,\n ) -> None:\n\n super(DenseNet, self).__init__()\n\n conv_type: Type[Union[nn.Conv1d, nn.Conv2d, nn.Conv3d]] = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n pool_type: Type[Union[nn.MaxPool1d, nn.MaxPool2d, nn.MaxPool3d]] = Pool[Pool.MAX, spatial_dims]\n avg_pool_type: Type[Union[nn.AdaptiveAvgPool1d, nn.AdaptiveAvgPool2d, nn.AdaptiveAvgPool3d]] = Pool[\n Pool.ADAPTIVEAVG, spatial_dims\n ]\n\n self.features = nn.Sequential(\n OrderedDict(\n [\n (\"conv0\", conv_type(in_channels, init_features, kernel_size=7, stride=2, padding=3, bias=False)),\n (\"norm0\", norm_type(init_features)),\n (\"relu0\", nn.ReLU(inplace=True)),\n (\"pool0\", pool_type(kernel_size=3, stride=2, padding=1)),\n ]\n )\n )\n\n in_channels = init_features\n for i, num_layers in enumerate(block_config):\n block = _DenseBlock(\n spatial_dims=spatial_dims,\n layers=num_layers,\n in_channels=in_channels,\n bn_size=bn_size,\n growth_rate=growth_rate,\n dropout_prob=dropout_prob,\n )\n self.features.add_module(f\"denseblock{i + 1}\", block)\n in_channels += num_layers * growth_rate\n if i == len(block_config) - 1:\n self.features.add_module(\"norm5\", norm_type(in_channels))\n else:\n _out_channels = in_channels // 2\n trans = _Transition(spatial_dims, in_channels=in_channels, out_channels=_out_channels)\n self.features.add_module(f\"transition{i + 1}\", trans)\n in_channels = _out_channels\n\n # pooling and classification\n self.class_layers = nn.Sequential(\n OrderedDict(\n [\n (\"relu\", nn.ReLU(inplace=True)),\n (\"pool\", avg_pool_type(1)),\n (\"flatten\", nn.Flatten(1)),\n (\"out\", nn.Linear(in_channels, out_channels)),\n ]\n )\n )\n\n for m in self.modules():\n if isinstance(m, conv_type):\n nn.init.kaiming_normal_(torch.as_tensor(m.weight))\n elif isinstance(m, norm_type):\n nn.init.constant_(torch.as_tensor(m.weight), 1)\n nn.init.constant_(torch.as_tensor(m.bias), 0)\n elif isinstance(m, nn.Linear):\n nn.init.constant_(torch.as_tensor(m.bias), 0)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n x = self.features(x)\n x = self.class_layers(x)\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_from_typing_import_Option_Generator._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_from_typing_import_Option_Generator._", "embedding": null, "metadata": {"file_path": "monai/networks/nets/generator.py", "file_name": "generator.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 35, "span_ids": ["Generator", "docstring"], "tokens": 225}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Union\n\nimport numpy as np\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.blocks import Convolution, ResidualUnit\nfrom monai.networks.layers.factories import Act, Norm\nfrom monai.networks.layers.simplelayers import Reshape\nfrom monai.utils import ensure_tuple, ensure_tuple_rep\n\n\nclass Generator(nn.Module):\n \"\"\"\n Defines a simple generator network accepting a latent vector and through a sequence of convolution layers\n constructs an output tensor of greater size and high dimensionality. The method `_get_layer` is used to\n create each of these layers, override this method to define layers beyond the default Convolution or\n ResidualUnit layers.\n\n For example, a generator accepting a latent vector if shape (42,24) and producing an output volume of\n shape (1,64,64) can be constructed as:\n\n gen = Generator((42, 24), (64, 8, 8), (32, 16, 1), (2, 2, 2))\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator.__init___Generator.__init__.for_i_c_s_in_enumerat.echannel.c": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator.__init___Generator.__init__.for_i_c_s_in_enumerat.echannel.c", "embedding": null, "metadata": {"file_path": "monai/networks/nets/generator.py", "file_name": "generator.py", "file_type": "text/x-python", "category": "implementation", "start_line": 37, "end_line": 97, "span_ids": ["Generator.__init__"], "tokens": 653}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Generator(nn.Module):\n\n def __init__(\n self,\n latent_shape: Sequence[int],\n start_shape: Sequence[int],\n channels: Sequence[int],\n strides: Sequence[int],\n kernel_size: Union[Sequence[int], int] = 3,\n num_res_units: int = 2,\n act=Act.PRELU,\n norm=Norm.INSTANCE,\n dropout: Optional[float] = None,\n bias: bool = True,\n ) -> None:\n \"\"\"\n Construct the generator network with the number of layers defined by `channels` and `strides`. In the\n forward pass a `nn.Linear` layer relates the input latent vector to a tensor of dimensions `start_shape`,\n this is then fed forward through the sequence of convolutional layers. The number of layers is defined by\n the length of `channels` and `strides` which must match, each layer having the number of output channels\n given in `channels` and an upsample factor given in `strides` (ie. a transpose convolution with that stride\n size).\n\n Args:\n latent_shape: tuple of integers stating the dimension of the input latent vector (minus batch dimension)\n start_shape: tuple of integers stating the dimension of the tensor to pass to convolution subnetwork\n channels: tuple of integers stating the output channels of each convolutional layer\n strides: tuple of integers stating the stride (upscale factor) of each convolutional layer\n kernel_size: integer or tuple of integers stating size of convolutional kernels\n num_res_units: integer stating number of convolutions in residual units, 0 means no residual units\n act: name or type defining activation layers\n norm: name or type defining normalization layers\n dropout: optional float value in range [0, 1] stating dropout probability for layers, None for no dropout\n bias: boolean stating if convolution layers should have a bias component\n \"\"\"\n super().__init__()\n\n self.in_channels, *self.start_shape = ensure_tuple(start_shape)\n self.dimensions = len(self.start_shape)\n\n self.latent_shape = ensure_tuple(latent_shape)\n self.channels = ensure_tuple(channels)\n self.strides = ensure_tuple(strides)\n self.kernel_size = ensure_tuple_rep(kernel_size, self.dimensions)\n self.num_res_units = num_res_units\n self.act = act\n self.norm = norm\n self.dropout = dropout\n self.bias = bias\n\n self.flatten = nn.Flatten()\n self.linear = nn.Linear(int(np.prod(self.latent_shape)), int(np.prod(start_shape)))\n self.reshape = Reshape(*start_shape)\n self.conv = nn.Sequential()\n\n echannel = self.in_channels\n\n # transform tensor of shape `start_shape' into output shape through transposed convolutions and residual units\n for i, (c, s) in enumerate(zip(channels, strides)):\n is_last = i == len(channels) - 1\n layer = self._get_layer(echannel, c, s, is_last)\n self.conv.add_module(\"layer_%i\" % i, layer)\n echannel = c", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator._get_layer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator._get_layer_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/generator.py", "file_name": "generator.py", "file_type": "text/x-python", "category": "implementation", "start_line": 99, "end_line": 148, "span_ids": ["Generator.forward", "Generator._get_layer"], "tokens": 340}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Generator(nn.Module):\n\n def _get_layer(\n self, in_channels: int, out_channels: int, strides: int, is_last: bool\n ) -> Union[Convolution, nn.Sequential]:\n \"\"\"\n Returns a layer accepting inputs with `in_channels` number of channels and producing outputs of `out_channels`\n number of channels. The `strides` indicates upsampling factor, ie. transpose convolutional stride. If `is_last`\n is True this is the final layer and is not expected to include activation and normalization layers.\n \"\"\"\n\n layer: Union[Convolution, nn.Sequential]\n\n layer = Convolution(\n in_channels=in_channels,\n strides=strides,\n is_transposed=True,\n conv_only=is_last or self.num_res_units > 0,\n dimensions=self.dimensions,\n out_channels=out_channels,\n kernel_size=self.kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n )\n\n if self.num_res_units > 0:\n ru = ResidualUnit(\n in_channels=out_channels,\n subunits=self.num_res_units,\n last_conv_only=is_last,\n dimensions=self.dimensions,\n out_channels=out_channels,\n kernel_size=self.kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n )\n\n layer = nn.Sequential(layer, ru)\n\n return layer\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n x = self.flatten(x)\n x = self.linear(x)\n x = self.reshape(x)\n x = self.conv(x)\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet_HighResNet._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet_HighResNet._", "embedding": null, "metadata": {"file_path": "monai/networks/nets/highresnet.py", "file_name": "highresnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 97, "end_line": 123, "span_ids": ["HighResNet"], "tokens": 295}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class HighResNet(nn.Module):\n \"\"\"\n Reimplementation of highres3dnet based on\n Li et al., \"On the compactness, efficiency, and representation of 3D\n convolutional networks: Brain parcellation as a pretext task\", IPMI '17\n\n Adapted from:\n https://github.com/NifTK/NiftyNet/blob/v0.6.0/niftynet/network/highres3dnet.py\n https://github.com/fepegar/highresnet\n\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n in_channels: number of input channels.\n out_channels: number of output channels.\n norm_type: feature normalization type and arguments.\n Defaults to ``(\"batch\", {\"affine\": True})``.\n acti_type: activation type and arguments.\n Defaults to ``(\"relu\", {\"inplace\": True})``.\n dropout_prob: probability of the feature map to be zeroed\n (only applies to the penultimate conv layer).\n layer_params: specifying key parameters of each layer/block.\n channel_matching: {``\"pad\"``, ``\"project\"``}\n Specifies handling residual branch and conv branch channel mismatches. Defaults to ``\"pad\"``.\n\n - ``\"pad\"``: with zero padding.\n - ``\"project\"``: with a trainable conv with kernel size one.\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet.__init___": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet.__init___", "embedding": null, "metadata": {"file_path": "monai/networks/nets/highresnet.py", "file_name": "highresnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 125, "end_line": 209, "span_ids": ["HighResNet.forward", "HighResNet.__init__"], "tokens": 660}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class HighResNet(nn.Module):\n\n def __init__(\n self,\n spatial_dims: int = 3,\n in_channels: int = 1,\n out_channels: int = 1,\n norm_type: Union[str, tuple] = (\"batch\", {\"affine\": True}),\n acti_type: Union[str, tuple] = (\"relu\", {\"inplace\": True}),\n dropout_prob: Optional[Union[Tuple, str, float]] = 0.0,\n layer_params: Sequence[Dict] = DEFAULT_LAYER_PARAMS_3D,\n channel_matching: Union[ChannelMatching, str] = ChannelMatching.PAD,\n ) -> None:\n\n super(HighResNet, self).__init__()\n blocks = nn.ModuleList()\n\n # initial conv layer\n params = layer_params[0]\n _in_chns, _out_chns = in_channels, params[\"n_features\"]\n blocks.append(\n Convolution(\n dimensions=spatial_dims,\n in_channels=_in_chns,\n out_channels=_out_chns,\n kernel_size=params[\"kernel_size\"],\n adn_ordering=\"NA\",\n act=acti_type,\n norm=norm_type,\n )\n )\n\n # residual blocks\n for (idx, params) in enumerate(layer_params[1:-2]): # res blocks except the 1st and last two conv layers.\n _in_chns, _out_chns = _out_chns, params[\"n_features\"]\n _dilation = 2 ** idx\n for _ in range(params[\"repeat\"]):\n blocks.append(\n HighResBlock(\n spatial_dims=spatial_dims,\n in_channels=_in_chns,\n out_channels=_out_chns,\n kernels=params[\"kernels\"],\n dilation=_dilation,\n norm_type=norm_type,\n acti_type=acti_type,\n channel_matching=channel_matching,\n )\n )\n _in_chns = _out_chns\n\n # final conv layers\n params = layer_params[-2]\n _in_chns, _out_chns = _out_chns, params[\"n_features\"]\n blocks.append(\n Convolution(\n dimensions=spatial_dims,\n in_channels=_in_chns,\n out_channels=_out_chns,\n kernel_size=params[\"kernel_size\"],\n adn_ordering=\"NAD\",\n act=acti_type,\n norm=norm_type,\n dropout=dropout_prob,\n )\n )\n\n params = layer_params[-1]\n _in_chns = _out_chns\n blocks.append(\n Convolution(\n dimensions=spatial_dims,\n in_channels=_in_chns,\n out_channels=out_channels,\n kernel_size=params[\"kernel_size\"],\n adn_ordering=\"NAD\",\n act=acti_type,\n norm=norm_type,\n dropout=dropout_prob,\n )\n )\n\n self.blocks = nn.Sequential(*blocks)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n return torch.as_tensor(self.blocks(x))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regressor.py_from_typing_import_Option_Regressor.__init__.self.final.self__get_final_layer_ec": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regressor.py_from_typing_import_Option_Regressor.__init__.self.final.self__get_final_layer_ec", "embedding": null, "metadata": {"file_path": "monai/networks/nets/regressor.py", "file_name": "regressor.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 93, "span_ids": ["Regressor", "Regressor.__init__", "docstring"], "tokens": 782}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Union\n\nimport numpy as np\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.blocks import Convolution, ResidualUnit\nfrom monai.networks.layers.convutils import calculate_out_shape, same_padding\nfrom monai.networks.layers.factories import Act, Norm\nfrom monai.networks.layers.simplelayers import Reshape\nfrom monai.utils import ensure_tuple, ensure_tuple_rep\n\n__all__ = [\"Regressor\"]\n\n\nclass Regressor(nn.Module):\n \"\"\"\n This defines a network for relating large-sized input tensors to small output tensors, ie. regressing large\n values to a prediction. An output of a single dimension can be used as value regression or multi-label\n classification prediction, an output of a single value can be used as a discriminator or critic prediction.\n \"\"\"\n\n def __init__(\n self,\n in_shape: Sequence[int],\n out_shape: Sequence[int],\n channels: Sequence[int],\n strides: Sequence[int],\n kernel_size: Union[Sequence[int], int] = 3,\n num_res_units: int = 2,\n act=Act.PRELU,\n norm=Norm.INSTANCE,\n dropout: Optional[float] = None,\n bias: bool = True,\n ) -> None:\n \"\"\"\n Construct the regressor network with the number of layers defined by `channels` and `strides`. Inputs are\n first passed through the convolutional layers in the forward pass, the output from this is then pass\n through a fully connected layer to relate them to the final output tensor.\n\n Args:\n in_shape: tuple of integers stating the dimension of the input tensor (minus batch dimension)\n out_shape: tuple of integers stating the dimension of the final output tensor\n channels: tuple of integers stating the output channels of each convolutional layer\n strides: tuple of integers stating the stride (downscale factor) of each convolutional layer\n kernel_size: integer or tuple of integers stating size of convolutional kernels\n num_res_units: integer stating number of convolutions in residual units, 0 means no residual units\n act: name or type defining activation layers\n norm: name or type defining normalization layers\n dropout: optional float value in range [0, 1] stating dropout probability for layers, None for no dropout\n bias: boolean stating if convolution layers should have a bias component\n \"\"\"\n super().__init__()\n\n self.in_channels, *self.in_shape = ensure_tuple(in_shape)\n self.dimensions = len(self.in_shape)\n self.channels = ensure_tuple(channels)\n self.strides = ensure_tuple(strides)\n self.out_shape = ensure_tuple(out_shape)\n self.kernel_size = ensure_tuple_rep(kernel_size, self.dimensions)\n self.num_res_units = num_res_units\n self.act = act\n self.norm = norm\n self.dropout = dropout\n self.bias = bias\n self.net = nn.Sequential()\n\n echannel = self.in_channels\n\n padding = same_padding(kernel_size)\n\n self.final_size = np.asarray(self.in_shape, dtype=int)\n self.reshape = Reshape(*self.out_shape)\n\n # encode stage\n for i, (c, s) in enumerate(zip(self.channels, self.strides)):\n layer = self._get_layer(echannel, c, s, i == len(channels) - 1)\n echannel = c # use the output channel number as the input for the next loop\n self.net.add_module(\"layer_%i\" % i, layer)\n self.final_size = calculate_out_shape(self.final_size, kernel_size, s, padding) # type: ignore\n\n self.final = self._get_final_layer((echannel,) + self.final_size)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regressor.py_Regressor._get_layer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regressor.py_Regressor._get_layer_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/regressor.py", "file_name": "regressor.py", "file_type": "text/x-python", "category": "implementation", "start_line": 93, "end_line": 143, "span_ids": ["Regressor.forward", "Regressor._get_final_layer", "Regressor._get_layer"], "tokens": 363}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Regressor(nn.Module):\n\n def _get_layer(\n self, in_channels: int, out_channels: int, strides: int, is_last: bool\n ) -> Union[ResidualUnit, Convolution]:\n \"\"\"\n Returns a layer accepting inputs with `in_channels` number of channels and producing outputs of `out_channels`\n number of channels. The `strides` indicates downsampling factor, ie. convolutional stride. If `is_last`\n is True this is the final layer and is not expected to include activation and normalization layers.\n \"\"\"\n\n layer: Union[ResidualUnit, Convolution]\n\n if self.num_res_units > 0:\n layer = ResidualUnit(\n subunits=self.num_res_units,\n last_conv_only=is_last,\n dimensions=self.dimensions,\n in_channels=in_channels,\n out_channels=out_channels,\n strides=strides,\n kernel_size=self.kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n )\n else:\n layer = Convolution(\n conv_only=is_last,\n dimensions=self.dimensions,\n in_channels=in_channels,\n out_channels=out_channels,\n strides=strides,\n kernel_size=self.kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n )\n\n return layer\n\n def _get_final_layer(self, in_shape: Sequence[int]):\n linear = nn.Linear(int(np.product(in_shape)), int(np.product(self.out_shape)))\n return nn.Sequential(nn.Flatten(), linear)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n x = self.net(x)\n x = self.final(x)\n x = self.reshape(x)\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_down_layer_UNet._get_bottom_layer.return.self__get_down_layer_in_c": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_down_layer_UNet._get_bottom_layer.return.self__get_down_layer_in_c", "embedding": null, "metadata": {"file_path": "monai/networks/nets/unet.py", "file_name": "unet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 109, "end_line": 146, "span_ids": ["UNet._get_down_layer", "UNet._get_bottom_layer"], "tokens": 272}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@export(\"monai.networks.nets\")\n@alias(\"Unet\")\nclass UNet(nn.Module):\n\n def _get_down_layer(self, in_channels: int, out_channels: int, strides: int, is_top: bool) -> nn.Module:\n \"\"\"\n Args:\n in_channels: number of input channels.\n out_channels: number of output channels.\n strides: convolution stride.\n is_top: True if this is the top block.\n \"\"\"\n if self.num_res_units > 0:\n return ResidualUnit(\n self.dimensions,\n in_channels,\n out_channels,\n strides=strides,\n kernel_size=self.kernel_size,\n subunits=self.num_res_units,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n )\n return Convolution(\n self.dimensions,\n in_channels,\n out_channels,\n strides=strides,\n kernel_size=self.kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n )\n\n def _get_bottom_layer(self, in_channels: int, out_channels: int) -> nn.Module:\n \"\"\"\n Args:\n in_channels: number of input channels.\n out_channels: number of output channels.\n \"\"\"\n return self._get_down_layer(in_channels, out_channels, 1, False)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_up_layer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_up_layer_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/unet.py", "file_name": "unet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 148, "end_line": 194, "span_ids": ["impl:3", "UNet.forward", "UNet._get_up_layer"], "tokens": 292}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@export(\"monai.networks.nets\")\n@alias(\"Unet\")\nclass UNet(nn.Module):\n\n def _get_up_layer(self, in_channels: int, out_channels: int, strides: int, is_top: bool) -> nn.Module:\n \"\"\"\n Args:\n in_channels: number of input channels.\n out_channels: number of output channels.\n strides: convolution stride.\n is_top: True if this is the top block.\n \"\"\"\n conv: Union[Convolution, nn.Sequential]\n\n conv = Convolution(\n self.dimensions,\n in_channels,\n out_channels,\n strides=strides,\n kernel_size=self.up_kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n conv_only=is_top and self.num_res_units == 0,\n is_transposed=True,\n )\n\n if self.num_res_units > 0:\n ru = ResidualUnit(\n self.dimensions,\n out_channels,\n out_channels,\n strides=1,\n kernel_size=self.kernel_size,\n subunits=1,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n last_conv_only=is_top,\n )\n conv = nn.Sequential(conv, ru)\n\n return conv\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n x = self.model(x)\n return x\n\n\nUnet = unet = UNet", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normalize_transform_normalize_transform.return.norm": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normalize_transform_normalize_transform.return.norm", "embedding": null, "metadata": {"file_path": "monai/networks/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 82, "end_line": 114, "span_ids": ["normalize_transform"], "tokens": 372}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def normalize_transform(\n shape: Sequence[int],\n device: Optional[torch.device] = None,\n dtype: Optional[torch.dtype] = None,\n align_corners: bool = False,\n) -> torch.Tensor:\n \"\"\"\n Compute an affine matrix according to the input shape.\n The transform normalizes the homogeneous image coordinates to the\n range of `[-1, 1]`.\n\n Args:\n shape: input spatial shape\n device: device on which the returned affine will be allocated.\n dtype: data type of the returned affine\n align_corners: if True, consider -1 and 1 to refer to the centers of the\n corner pixels rather than the image corners.\n See also: https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.grid_sample\n \"\"\"\n norm = torch.tensor(shape, dtype=torch.float64, device=device) # no in-place change\n if align_corners:\n norm[norm <= 1.0] = 2.0\n norm = 2.0 / (norm - 1.0)\n norm = torch.diag(torch.cat((norm, torch.ones((1,), dtype=torch.float64, device=device))))\n norm[:-1, -1] = -1.0\n else:\n norm[norm <= 0.0] = 2.0\n norm = 2.0 / norm\n norm = torch.diag(torch.cat((norm, torch.ones((1,), dtype=torch.float64, device=device))))\n norm[:-1, -1] = 1.0 / torch.tensor(shape, dtype=torch.float64, device=device) - 1.0\n norm = norm.unsqueeze(0).to(dtype=dtype)\n norm.requires_grad = False\n return norm", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_adaptor._inner_adaptor.return._inner": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_adaptor._inner_adaptor.return._inner", "embedding": null, "metadata": {"file_path": "monai/transforms/adaptors.py", "file_name": "adaptors.py", "file_type": "text/x-python", "category": "implementation", "start_line": 149, "end_line": 214, "span_ids": ["adaptor"], "tokens": 569}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@_monai_export(\"monai.transforms\")\ndef adaptor(function, outputs, inputs=None):\n # ... other code\n\n def _inner(ditems):\n\n sig = FunctionSignature(function)\n\n if sig.found_kwargs:\n must_be_types_or_none(\"inputs\", inputs, (dict,))\n # we just forward all arguments unless we have been provided an input map\n if inputs is None:\n dinputs = dict(ditems)\n else:\n # dict\n dinputs = map_names(ditems, inputs)\n\n else:\n # no **kwargs\n # select only items from the method signature\n dinputs = {k: v for k, v in ditems.items() if k in sig.non_var_parameters}\n must_be_types_or_none(\"inputs\", inputs, (str, list, tuple, dict))\n if inputs is None:\n pass\n elif isinstance(inputs, str):\n if len(sig.non_var_parameters) != 1:\n raise ValueError(\"if 'inputs' is a string, function may only have a single non-variadic parameter\")\n dinputs = {inputs: ditems[inputs]}\n elif isinstance(inputs, (list, tuple)):\n dinputs = {k: dinputs[k] for k in inputs}\n else:\n # dict\n dinputs = map_only_names(ditems, inputs)\n\n ret = function(**dinputs)\n\n # now the mapping back to the output dictionary depends on outputs and what was returned from the function\n op = outputs\n if isinstance(ret, dict):\n must_be_types_or_none(\"outputs\", op, (dict,))\n if op is not None:\n ret = {v: ret[k] for k, v in op.items()}\n elif isinstance(ret, (list, tuple)):\n if len(ret) == 1:\n must_be_types(\"outputs\", op, (str, list, tuple))\n else:\n must_be_types(\"outputs\", op, (list, tuple))\n\n if isinstance(op, str):\n op = [op]\n\n if len(ret) != len(outputs):\n raise ValueError(\"'outputs' must have the same length as the number of elements that were returned\")\n\n ret = dict(zip(op, ret))\n else:\n must_be_types(\"outputs\", op, (str, list, tuple))\n if isinstance(op, (list, tuple)):\n if len(op) != 1:\n raise ValueError(\"'outputs' must be of length one if it is a list or tuple\")\n op = op[0]\n ret = {op: ret}\n\n ditems = dict(ditems)\n for k, v in ret.items():\n ditems[k] = v\n\n return ditems\n\n return _inner", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_apply_alias_to_kwargs.return._inner": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_apply_alias_to_kwargs.return._inner", "embedding": null, "metadata": {"file_path": "monai/transforms/adaptors.py", "file_name": "adaptors.py", "file_type": "text/x-python", "category": "implementation", "start_line": 213, "end_line": 239, "span_ids": ["apply_alias", "to_kwargs"], "tokens": 145}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@_monai_export(\"monai.transforms\")\ndef apply_alias(fn, name_map):\n def _inner(data):\n\n # map names\n pre_call = dict(data)\n for _from, _to in name_map.items():\n pre_call[_to] = pre_call.pop(_from)\n\n # execute\n post_call = fn(pre_call)\n\n # map names back\n for _from, _to in name_map.items():\n post_call[_from] = post_call.pop(_to)\n\n return post_call\n\n return _inner\n\n\n@_monai_export(\"monai.transforms\")\ndef to_kwargs(fn):\n def _inner(data):\n return fn(**data)\n\n return _inner", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_FunctionSignature_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_FunctionSignature_", "embedding": null, "metadata": {"file_path": "monai/transforms/adaptors.py", "file_name": "adaptors.py", "file_type": "text/x-python", "category": "implementation", "start_line": 244, "end_line": 268, "span_ids": ["FunctionSignature.__repr__", "FunctionSignature", "FunctionSignature.__str__", "FunctionSignature.__init__"], "tokens": 194}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class FunctionSignature:\n def __init__(self, function: Callable) -> None:\n import inspect\n\n sfn = inspect.signature(function)\n self.found_args = False\n self.found_kwargs = False\n self.defaults = {}\n self.non_var_parameters = set()\n for p in sfn.parameters.values():\n if p.kind is inspect.Parameter.VAR_POSITIONAL:\n self.found_args = True\n if p.kind is inspect.Parameter.VAR_KEYWORD:\n self.found_kwargs = True\n else:\n self.non_var_parameters.add(p.name)\n self.defaults[p.name] = p.default is not p.empty\n\n def __repr__(self) -> str:\n s = \" str:\n return self.__repr__()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_BorderPad_BorderPad.__init__.self.mode.NumpyPadMode_mode_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_BorderPad_BorderPad.__init__.self.mode.NumpyPadMode_mode_", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 104, "end_line": 130, "span_ids": ["BorderPad.__init__", "BorderPad"], "tokens": 422}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class BorderPad(Transform):\n \"\"\"\n Pad the input data by adding specified borders to every dimension.\n\n Args:\n spatial_border: specified size for every spatial border. Any -ve values will be set to 0. It can be 3 shapes:\n\n - single int number, pad all the borders with the same size.\n - length equals the length of image shape, pad every spatial dimension separately.\n for example, image shape(CHW) is [1, 4, 4], spatial_border is [2, 1],\n pad every border of H dim with 2, pad every border of W dim with 1, result shape is [1, 8, 6].\n - length equals 2 x (length of image shape), pad every border of every dimension separately.\n for example, image shape(CHW) is [1, 4, 4], spatial_border is [1, 2, 3, 4], pad top of H dim with 1,\n pad bottom of H dim with 2, pad left of W dim with 3, pad right of W dim with 4.\n the result shape is [1, 7, 11].\n\n mode: {``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``, ``\"mean\"``,\n ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n One of the listed string values or a user supplied function. Defaults to ``\"constant\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n \"\"\"\n\n def __init__(\n self, spatial_border: Union[Sequence[int], int], mode: Union[NumpyPadMode, str] = NumpyPadMode.CONSTANT\n ) -> None:\n self.spatial_border = spatial_border\n self.mode: NumpyPadMode = NumpyPadMode(mode)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_BorderPad.__call___BorderPad.__call__.return.np_pad_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_BorderPad.__call___BorderPad.__call__.return.np_pad_", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 141, "end_line": 177, "span_ids": ["BorderPad.__call__"], "tokens": 509}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class BorderPad(Transform):\n\n def __call__(self, img: np.ndarray, mode: Optional[Union[NumpyPadMode, str]] = None):\n \"\"\"\n Args:\n img: data to be transformed, assuming `img` is channel-first and\n padding doesn't apply to the channel dim.\n mode: {``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``, ``\"mean\"``,\n ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n One of the listed string values or a user supplied function. Defaults to ``self.mode``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n\n Raises:\n ValueError: When ``self.spatial_border`` does not contain ints.\n ValueError: When ``self.spatial_border`` length is not one of\n [1, len(spatial_shape), 2*len(spatial_shape)].\n\n \"\"\"\n spatial_shape = img.shape[1:]\n spatial_border = ensure_tuple(self.spatial_border)\n if not all(isinstance(b, int) for b in spatial_border):\n raise ValueError(f\"self.spatial_border must contain only ints, got {spatial_border}.\")\n spatial_border = tuple(max(0, b) for b in spatial_border)\n\n if len(spatial_border) == 1:\n data_pad_width = [(spatial_border[0], spatial_border[0]) for _ in spatial_shape]\n elif len(spatial_border) == len(spatial_shape):\n data_pad_width = [(sp, sp) for sp in spatial_border[: len(spatial_shape)]]\n elif len(spatial_border) == len(spatial_shape) * 2:\n data_pad_width = [(spatial_border[2 * i], spatial_border[2 * i + 1]) for i in range(len(spatial_shape))]\n else:\n raise ValueError(\n f\"Unsupported spatial_border length: {len(spatial_border)}, available options are \"\n f\"[1, len(spatial_shape)={len(spatial_shape)}, 2*len(spatial_shape)={2*len(spatial_shape)}].\"\n )\n\n return np.pad(\n img, [(0, 0)] + data_pad_width, mode=self.mode.value if mode is None else NumpyPadMode(mode).value\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_DivisiblePad_DivisiblePad.__init__.self.mode.NumpyPadMode_mode_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_DivisiblePad_DivisiblePad.__init__.self.mode.NumpyPadMode_mode_", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 147, "end_line": 166, "span_ids": ["DivisiblePad.__init__", "DivisiblePad"], "tokens": 263}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DivisiblePad(Transform):\n \"\"\"\n Pad the input data, so that the spatial sizes are divisible by `k`.\n \"\"\"\n\n def __init__(self, k: Union[Sequence[int], int], mode: Union[NumpyPadMode, str] = NumpyPadMode.CONSTANT) -> None:\n \"\"\"\n Args:\n k: the target k for each spatial dimension.\n if `k` is negative or 0, the original size is preserved.\n if `k` is an int, the same `k` be applied to all the input spatial dimensions.\n mode: {``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``, ``\"mean\"``,\n ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n One of the listed string values or a user supplied function. Defaults to ``\"constant\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n\n See also :py:class:`monai.transforms.SpatialPad`\n \"\"\"\n self.k = k\n self.mode: NumpyPadMode = NumpyPadMode(mode)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_DivisiblePad.__call___DivisiblePad.__call__.return.spatial_pad_img_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_DivisiblePad.__call___DivisiblePad.__call__.return.spatial_pad_img_", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 201, "end_line": 214, "span_ids": ["DivisiblePad.__call__"], "tokens": 231}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DivisiblePad(Transform):\n\n def __call__(self, img: np.ndarray, mode: Optional[Union[NumpyPadMode, str]] = None) -> np.ndarray:\n \"\"\"\n Args:\n img: data to be transformed, assuming `img` is channel-first\n and padding doesn't apply to the channel dim.\n mode: {``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``, ``\"mean\"``,\n ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n One of the listed string values or a user supplied function. Defaults to ``self.mode``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n \"\"\"\n new_size = compute_divisible_spatial_size(spatial_shape=img.shape[1:], k=self.k)\n spatial_pad = SpatialPad(spatial_size=new_size, method=Method.SYMMETRIC, mode=mode or self.mode)\n\n return spatial_pad(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CenterSpatialCrop_CenterSpatialCrop.__call__.return.cropper_img_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CenterSpatialCrop_CenterSpatialCrop.__call__.return.cropper_img_", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 280, "end_line": 306, "span_ids": ["CenterSpatialCrop", "CenterSpatialCrop.__call__", "CenterSpatialCrop.__init__"], "tokens": 322}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CenterSpatialCrop(Transform):\n \"\"\"\n Crop at the center of image with specified ROI size.\n If a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension.\n So the cropped result may be smaller than the expected ROI, and the cropped results of several images may\n not have exactly the same shape.\n\n Args:\n roi_size: the spatial size of the crop region e.g. [224,224,128]\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n If its components have non-positive values, the corresponding size of input image will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `roi_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n \"\"\"\n\n def __init__(self, roi_size: Union[Sequence[int], int]) -> None:\n self.roi_size = roi_size\n\n def __call__(self, img: np.ndarray):\n \"\"\"\n Apply the transform to `img`, assuming `img` is channel-first and\n slicing doesn't apply to the channel dim.\n \"\"\"\n roi_size = fall_back_tuple(self.roi_size, img.shape[1:])\n center = [i // 2 for i in img.shape[1:]]\n cropper = SpatialCrop(roi_center=center, roi_size=roi_size)\n return cropper(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCrop_RandSpatialCrop.__init__.self._slices.None": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCrop_RandSpatialCrop.__init__.self._slices.None", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 330, "end_line": 366, "span_ids": ["RandSpatialCrop.__init__", "RandSpatialCrop"], "tokens": 505}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandSpatialCrop(Randomizable, Transform):\n \"\"\"\n Crop image with random size or specific size ROI. It can crop at a random position as center\n or at the image center. And allows to set the minimum and maximum size to limit the randomly generated ROI.\n\n Note: even `random_size=False`, if a dimension of the expected ROI size is bigger than the input image size,\n will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped results\n of several images may not have exactly the same shape.\n\n Args:\n roi_size: if `random_size` is True, it specifies the minimum crop region.\n if `random_size` is False, it specifies the expected ROI size to crop. e.g. [224, 224, 128]\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n If its components have non-positive values, the corresponding size of input image will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `roi_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n max_roi_size: if `random_size` is True and `roi_size` specifies the min crop region size, `max_roi_size`\n can specify the max crop region size. if None, defaults to the input image size.\n if its components have non-positive values, the corresponding size of input image will be used.\n random_center: crop at random position as center or the image center.\n random_size: crop with random size or specific size ROI.\n if True, the actual size is sampled from `randint(roi_size, max_roi_size + 1)`.\n \"\"\"\n\n def __init__(\n self,\n roi_size: Union[Sequence[int], int],\n max_roi_size: Optional[Union[Sequence[int], int]] = None,\n random_center: bool = True,\n random_size: bool = True,\n ) -> None:\n self.roi_size = roi_size\n self.max_roi_size = max_roi_size\n self.random_center = random_center\n self.random_size = random_size\n self._size: Optional[Sequence[int]] = None\n self._slices: Optional[Tuple[slice, ...]] = None", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCropSamples_RandSpatialCropSamples.__call__.return._self_cropper_img_for___": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCropSamples_RandSpatialCropSamples.__call__.return._self_cropper_img_for___", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 440, "end_line": 499, "span_ids": ["RandSpatialCropSamples", "RandSpatialCropSamples.__call__", "RandSpatialCropSamples.__init__", "RandSpatialCropSamples.set_random_state", "RandSpatialCropSamples.randomize"], "tokens": 695}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandSpatialCropSamples(Randomizable, Transform):\n \"\"\"\n Crop image with random size or specific size ROI to generate a list of N samples.\n It can crop at a random position as center or at the image center. And allows to set\n the minimum size to limit the randomly generated ROI.\n It will return a list of cropped images.\n\n Note: even `random_size=False`, if a dimension of the expected ROI size is bigger than the input image size,\n will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped\n results of several images may not have exactly the same shape.\n\n Args:\n roi_size: if `random_size` is True, it specifies the minimum crop region.\n if `random_size` is False, it specifies the expected ROI size to crop. e.g. [224, 224, 128]\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n If its components have non-positive values, the corresponding size of input image will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `roi_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n num_samples: number of samples (crop regions) to take in the returned list.\n max_roi_size: if `random_size` is True and `roi_size` specifies the min crop region size, `max_roi_size`\n can specify the max crop region size. if None, defaults to the input image size.\n if its components have non-positive values, the corresponding size of input image will be used.\n random_center: crop at random position as center or the image center.\n random_size: crop with random size or specific size ROI.\n The actual size is sampled from `randint(roi_size, img_size)`.\n\n Raises:\n ValueError: When ``num_samples`` is nonpositive.\n\n \"\"\"\n\n def __init__(\n self,\n roi_size: Union[Sequence[int], int],\n num_samples: int,\n max_roi_size: Optional[Union[Sequence[int], int]] = None,\n random_center: bool = True,\n random_size: bool = True,\n ) -> None:\n if num_samples < 1:\n raise ValueError(f\"num_samples must be positive, got {num_samples}.\")\n self.num_samples = num_samples\n self.cropper = RandSpatialCrop(roi_size, max_roi_size, random_center, random_size)\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"Randomizable\":\n super().set_random_state(seed=seed, state=state)\n self.cropper.set_random_state(state=self.R)\n return self\n\n def randomize(self, data: Optional[Any] = None) -> None:\n pass\n\n def __call__(self, img: np.ndarray) -> List[np.ndarray]:\n \"\"\"\n Apply the transform to `img`, assuming `img` is channel-first and\n cropping doesn't change the channel dim.\n \"\"\"\n return [self.cropper(img) for _ in range(self.num_samples)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadd_SpatialPadd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadd_SpatialPadd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 101, "end_line": 143, "span_ids": ["SpatialPadd", "SpatialPadd.__init__", "SpatialPadd.__call__"], "tokens": 572}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SpatialPadd(MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.SpatialPad`.\n Performs padding to the data, symmetric for all sides or all on one side for each dimension.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n spatial_size: Union[Sequence[int], int],\n method: Union[Method, str] = Method.SYMMETRIC,\n mode: NumpyPadModeSequence = NumpyPadMode.CONSTANT,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n spatial_size: the spatial size of output data after padding, if a dimension of the input\n data size is bigger than the pad size, will not pad that dimension.\n If its components have non-positive values, the corresponding size of input image will be used.\n for example: if the spatial size of input data is [30, 30, 30] and `spatial_size=[32, 25, -1]`,\n the spatial size of output data will be [32, 30, 30].\n method: {``\"symmetric\"``, ``\"end\"``}\n Pad image symmetric on every side or only pad at the end sides. Defaults to ``\"symmetric\"``.\n mode: {``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``, ``\"mean\"``,\n ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n One of the listed string values or a user supplied function. Defaults to ``\"constant\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padder = SpatialPad(spatial_size, method)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key, m in self.key_iterator(d, self.mode):\n self.push_transform(d, key, extra_info={\"mode\": m.value if isinstance(m, Enum) else m})\n d[key] = self.padder(d[key], mode=m)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BorderPadd_BorderPadd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BorderPadd_BorderPadd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 154, "end_line": 199, "span_ids": ["BorderPadd.__init__", "BorderPadd.__call__", "BorderPadd"], "tokens": 616}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class BorderPadd(MapTransform, InvertibleTransform):\n \"\"\"\n Pad the input data by adding specified borders to every dimension.\n Dictionary-based wrapper of :py:class:`monai.transforms.BorderPad`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n spatial_border: Union[Sequence[int], int],\n mode: NumpyPadModeSequence = NumpyPadMode.CONSTANT,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n spatial_border: specified size for every spatial border. it can be 3 shapes:\n\n - single int number, pad all the borders with the same size.\n - length equals the length of image shape, pad every spatial dimension separately.\n for example, image shape(CHW) is [1, 4, 4], spatial_border is [2, 1],\n pad every border of H dim with 2, pad every border of W dim with 1, result shape is [1, 8, 6].\n - length equals 2 x (length of image shape), pad every border of every dimension separately.\n for example, image shape(CHW) is [1, 4, 4], spatial_border is [1, 2, 3, 4], pad top of H dim with 1,\n pad bottom of H dim with 2, pad left of W dim with 3, pad right of W dim with 4.\n the result shape is [1, 7, 11].\n\n mode: {``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``, ``\"mean\"``,\n ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n One of the listed string values or a user supplied function. Defaults to ``\"constant\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padder = BorderPad(spatial_border=spatial_border)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key, m in self.key_iterator(d, self.mode):\n self.push_transform(d, key, extra_info={\"mode\": m.value if isinstance(m, Enum) else m})\n d[key] = self.padder(d[key], mode=m)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_DivisiblePadd_DivisiblePadd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_DivisiblePadd_DivisiblePadd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 226, "end_line": 265, "span_ids": ["DivisiblePadd.__init__", "DivisiblePadd", "DivisiblePadd.__call__"], "tokens": 466}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DivisiblePadd(MapTransform, InvertibleTransform):\n \"\"\"\n Pad the input data, so that the spatial sizes are divisible by `k`.\n Dictionary-based wrapper of :py:class:`monai.transforms.DivisiblePad`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n k: Union[Sequence[int], int],\n mode: NumpyPadModeSequence = NumpyPadMode.CONSTANT,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n k: the target k for each spatial dimension.\n if `k` is negative or 0, the original size is preserved.\n if `k` is an int, the same `k` be applied to all the input spatial dimensions.\n mode: {``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``, ``\"mean\"``,\n ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n One of the listed string values or a user supplied function. Defaults to ``\"constant\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n\n See also :py:class:`monai.transforms.SpatialPad`\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padder = DivisiblePad(k=k)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key, m in self.key_iterator(d, self.mode):\n self.push_transform(d, key, extra_info={\"mode\": m.value if isinstance(m, Enum) else m})\n d[key] = self.padder(d[key], mode=m)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialCropd_SpatialCropd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialCropd_SpatialCropd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 298, "end_line": 344, "span_ids": ["SpatialCropd", "SpatialCropd.__call__", "SpatialCropd.__init__"], "tokens": 504}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SpatialCropd(MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.SpatialCrop`.\n General purpose cropper to produce sub-volume region of interest (ROI).\n If a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension.\n So the cropped result may be smaller than the expected ROI, and the cropped results of several images may\n not have exactly the same shape.\n It can support to crop ND spatial (channel-first) data.\n\n The cropped region can be parameterised in various ways:\n - a list of slices for each spatial dimension (allows for use of -ve indexing and `None`)\n - a spatial center and size\n - the start and end coordinates of the ROI\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n roi_center: Optional[Sequence[int]] = None,\n roi_size: Optional[Sequence[int]] = None,\n roi_start: Optional[Sequence[int]] = None,\n roi_end: Optional[Sequence[int]] = None,\n roi_slices: Optional[Sequence[slice]] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n roi_center: voxel coordinates for center of the crop ROI.\n roi_size: size of the crop ROI, if a dimension of ROI size is bigger than image size,\n will not crop that dimension of the image.\n roi_start: voxel coordinates for start of the crop ROI.\n roi_end: voxel coordinates for end of the crop ROI, if a coordinate is out of image,\n use the end coordinate of image.\n roi_slices: list of slices for each of the spatial dimensions.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.cropper = SpatialCrop(roi_center, roi_size, roi_start, roi_end, roi_slices)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n self.push_transform(d, key)\n d[key] = self.cropper(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterSpatialCropd_CenterSpatialCropd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterSpatialCropd_CenterSpatialCropd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 368, "end_line": 398, "span_ids": ["CenterSpatialCropd.__call__", "CenterSpatialCropd", "CenterSpatialCropd.__init__"], "tokens": 380}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CenterSpatialCropd(MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.CenterSpatialCrop`.\n If a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension.\n So the cropped result may be smaller than the expected ROI, and the cropped results of several images may\n not have exactly the same shape.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n roi_size: the size of the crop region e.g. [224,224,128]\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n If its components have non-positive values, the corresponding size of input image will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `roi_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n def __init__(\n self, keys: KeysCollection, roi_size: Union[Sequence[int], int], allow_missing_keys: bool = False\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.cropper = CenterSpatialCrop(roi_size)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n orig_size = d[key].shape[1:]\n d[key] = self.cropper(d[key])\n self.push_transform(d, key, orig_size=orig_size)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd_RandSpatialCropd.__init__.self._size.None": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd_RandSpatialCropd.__init__.self._size.None", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 477, "end_line": 522, "span_ids": ["RandSpatialCropd", "RandSpatialCropd.__init__"], "tokens": 619}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandSpatialCropd(Randomizable, MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandSpatialCrop`.\n Crop image with random size or specific size ROI. It can crop at a random position as\n center or at the image center. And allows to set the minimum and maximum size to limit the randomly\n generated ROI. Suppose all the expected fields specified by `keys` have same shape.\n\n Note: even `random_size=False`, if a dimension of the expected ROI size is bigger than the input image size,\n will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped\n results of several images may not have exactly the same shape.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n roi_size: if `random_size` is True, it specifies the minimum crop region.\n if `random_size` is False, it specifies the expected ROI size to crop. e.g. [224, 224, 128]\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n If its components have non-positive values, the corresponding size of input image will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `roi_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n max_roi_size: if `random_size` is True and `roi_size` specifies the min crop region size, `max_roi_size`\n can specify the max crop region size. if None, defaults to the input image size.\n if its components have non-positive values, the corresponding size of input image will be used.\n random_center: crop at random position as center or the image center.\n random_size: crop with random size or specific size ROI.\n if True, the actual size is sampled from:\n `randint(roi_scale * image spatial size, max_roi_scale * image spatial size + 1)`.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n roi_size: Union[Sequence[int], int],\n max_roi_size: Optional[Union[Sequence[int], int]] = None,\n random_center: bool = True,\n random_size: bool = True,\n allow_missing_keys: bool = False,\n ) -> None:\n MapTransform.__init__(self, keys, allow_missing_keys)\n self.roi_size = roi_size\n self.max_roi_size = max_roi_size\n self.random_center = random_center\n self.random_size = random_size\n self._slices: Optional[Tuple[slice, ...]] = None\n self._size: Optional[Sequence[int]] = None", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.__call___RandCropByPosNegLabeld.__call__.return.results": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.__call___RandCropByPosNegLabeld.__call__.return.results", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1076, "end_line": 1109, "span_ids": ["RandCropByPosNegLabeld.__call__"], "tokens": 427}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabeld(Randomizable, MapTransform, InvertibleTransform):\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> List[Dict[Hashable, np.ndarray]]:\n d = dict(data)\n label = d[self.label_key]\n image = d[self.image_key] if self.image_key else None\n fg_indices = d.get(self.fg_indices_key) if self.fg_indices_key is not None else None\n bg_indices = d.get(self.bg_indices_key) if self.bg_indices_key is not None else None\n\n self.randomize(label, fg_indices, bg_indices, image)\n if not isinstance(self.spatial_size, tuple):\n raise AssertionError\n if self.centers is None:\n raise AssertionError\n\n # initialize returned list with shallow copy to preserve key ordering\n results: List[Dict[Hashable, np.ndarray]] = [dict(data) for _ in range(self.num_samples)]\n\n for i, center in enumerate(self.centers):\n # fill in the extra keys with unmodified data\n for key in set(data.keys()).difference(set(self.keys)):\n results[i][key] = deepcopy(data[key])\n for key in self.key_iterator(d):\n img = d[key]\n cropper = SpatialCrop(roi_center=tuple(center), roi_size=self.spatial_size) # type: ignore\n orig_size = img.shape[1:]\n results[i][key] = cropper(img)\n self.push_transform(results[i], key, extra_info={\"center\": center}, orig_size=orig_size)\n # add `patch_index` to the meta data\n for key, meta_key, meta_key_postfix in self.key_iterator(d, self.meta_keys, self.meta_key_postfix):\n meta_key = meta_key or f\"{key}_{meta_key_postfix}\"\n if meta_key not in results[i]:\n results[i][meta_key] = {} # type: ignore\n results[i][meta_key][Key.PATCH_INDEX] = i\n\n return results", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadD_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadD_", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1252, "end_line": 1266, "span_ids": ["impl:5"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "SpatialPadD = SpatialPadDict = SpatialPadd\nBorderPadD = BorderPadDict = BorderPadd\nDivisiblePadD = DivisiblePadDict = DivisiblePadd\nSpatialCropD = SpatialCropDict = SpatialCropd\nCenterSpatialCropD = CenterSpatialCropDict = CenterSpatialCropd\nCenterScaleCropD = CenterScaleCropDict = CenterScaleCropd\nRandSpatialCropD = RandSpatialCropDict = RandSpatialCropd\nRandScaleCropD = RandScaleCropDict = RandScaleCropd\nRandSpatialCropSamplesD = RandSpatialCropSamplesDict = RandSpatialCropSamplesd\nCropForegroundD = CropForegroundDict = CropForegroundd\nRandWeightedCropD = RandWeightedCropDict = RandWeightedCropd\nRandCropByPosNegLabelD = RandCropByPosNegLabelDict = RandCropByPosNegLabeld\nResizeWithPadOrCropD = ResizeWithPadOrCropDict = ResizeWithPadOrCropd\nBoundingRectD = BoundingRectDict = BoundingRectd", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandScaleIntensity_RandScaleIntensity.__call__.return.scaler_img_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandScaleIntensity_RandScaleIntensity.__call__.return.scaler_img_", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 278, "end_line": 313, "span_ids": ["RandScaleIntensity.__init__", "RandScaleIntensity", "RandScaleIntensity.randomize", "RandScaleIntensity.__call__"], "tokens": 330}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandScaleIntensity(RandomizableTransform):\n \"\"\"\n Randomly scale the intensity of input image by ``v = v * (1 + factor)`` where the `factor`\n is randomly picked.\n \"\"\"\n\n def __init__(self, factors: Union[Tuple[float, float], float], prob: float = 0.1) -> None:\n \"\"\"\n Args:\n factors: factor range to randomly scale by ``v = v * (1 + factor)``.\n if single number, factor value is picked from (-factors, factors).\n prob: probability of scale.\n\n \"\"\"\n RandomizableTransform.__init__(self, prob)\n if isinstance(factors, (int, float)):\n self.factors = (min(-factors, factors), max(-factors, factors))\n else:\n if len(factors) != 2:\n raise AssertionError(\"factors should be a number or pair of numbers.\")\n self.factors = (min(factors), max(factors))\n self.factor = self.factors[0]\n\n def randomize(self, data: Optional[Any] = None) -> None:\n self.factor = self.R.uniform(low=self.factors[0], high=self.factors[1])\n super().randomize(None)\n\n def __call__(self, img: np.ndarray) -> np.ndarray:\n \"\"\"\n Apply the transform to `img`.\n \"\"\"\n self.randomize()\n if not self._do_transform:\n return img\n scaler = ScaleIntensity(minv=None, maxv=None, factor=self.factor)\n return scaler(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRange_ScaleIntensityRange.__init__.self.clip.clip": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRange_ScaleIntensityRange.__init__.self.clip.clip", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 254, "end_line": 272, "span_ids": ["ScaleIntensityRange", "ScaleIntensityRange.__init__"], "tokens": 165}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensityRange(Transform):\n \"\"\"\n Apply specific intensity scaling to the whole numpy array.\n Scaling from [a_min, a_max] to [b_min, b_max] with clip option.\n\n Args:\n a_min: intensity original range min.\n a_max: intensity original range max.\n b_min: intensity target range min.\n b_max: intensity target range max.\n clip: whether to perform clip after scaling.\n \"\"\"\n\n def __init__(self, a_min: float, a_max: float, b_min: float, b_max: float, clip: bool = False) -> None:\n self.a_min = a_min\n self.a_max = a_max\n self.b_min = b_min\n self.b_max = b_max\n self.clip = clip", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRange.__call___ScaleIntensityRange.__call__.return.img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRange.__call___ScaleIntensityRange.__call__.return.img", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 526, "end_line": 538, "span_ids": ["ScaleIntensityRange.__call__"], "tokens": 137}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensityRange(Transform):\n\n def __call__(self, img: np.ndarray):\n \"\"\"\n Apply the transform to `img`.\n \"\"\"\n if self.a_max - self.a_min == 0.0:\n warn(\"Divide by zero (a_min == a_max)\", Warning)\n return img - self.a_min + self.b_min\n\n img = (img - self.a_min) / (self.a_max - self.a_min)\n img = img * (self.b_max - self.b_min) + self.b_min\n if self.clip:\n img = np.asarray(np.clip(img, self.b_min, self.b_max))\n return img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_AdjustContrast_AdjustContrast.__call__.return.np_power_img_img_min_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_AdjustContrast_AdjustContrast.__call__.return.np_power_img_img_min_", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 541, "end_line": 563, "span_ids": ["AdjustContrast.__init__", "AdjustContrast", "AdjustContrast.__call__"], "tokens": 184}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AdjustContrast(Transform):\n \"\"\"\n Changes image intensity by gamma. Each pixel/voxel intensity is updated as::\n\n x = ((x - min) / intensity_range) ^ gamma * intensity_range + min\n\n Args:\n gamma: gamma value to adjust the contrast as function.\n \"\"\"\n\n def __init__(self, gamma: float) -> None:\n if not isinstance(gamma, (int, float)):\n raise AssertionError(\"gamma must be a float or int number.\")\n self.gamma = gamma\n\n def __call__(self, img: np.ndarray):\n \"\"\"\n Apply the transform to `img`.\n \"\"\"\n epsilon = 1e-7\n img_min = img.min()\n img_range = img.max() - img_min\n return np.power(((img - img_min) / float(img_range + epsilon)), self.gamma) * img_range + img_min", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandAdjustContrast_RandAdjustContrast.__call__.return.adjuster_img_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandAdjustContrast_RandAdjustContrast.__call__.return.adjuster_img_", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 650, "end_line": 692, "span_ids": ["RandAdjustContrast.randomize", "RandAdjustContrast", "RandAdjustContrast.__call__", "RandAdjustContrast.__init__"], "tokens": 373}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandAdjustContrast(RandomizableTransform):\n \"\"\"\n Randomly changes image intensity by gamma. Each pixel/voxel intensity is updated as::\n\n x = ((x - min) / intensity_range) ^ gamma * intensity_range + min\n\n Args:\n prob: Probability of adjustment.\n gamma: Range of gamma values.\n If single number, value is picked from (0.5, gamma), default is (0.5, 4.5).\n \"\"\"\n\n def __init__(self, prob: float = 0.1, gamma: Union[Sequence[float], float] = (0.5, 4.5)) -> None:\n RandomizableTransform.__init__(self, prob)\n\n if isinstance(gamma, (int, float)):\n if gamma <= 0.5:\n raise AssertionError(\n \"if gamma is single number, must greater than 0.5 and value is picked from (0.5, gamma)\"\n )\n self.gamma = (0.5, gamma)\n else:\n if len(gamma) != 2:\n raise AssertionError(\"gamma should be a number or pair of numbers.\")\n self.gamma = (min(gamma), max(gamma))\n\n self.gamma_value: float\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n self.gamma_value = self.R.uniform(low=self.gamma[0], high=self.gamma[1])\n\n def __call__(self, img: np.ndarray):\n \"\"\"\n Apply the transform to `img`.\n \"\"\"\n self.randomize()\n if self.gamma_value is None:\n raise AssertionError\n if not self._do_transform:\n return img\n adjuster = AdjustContrast(self.gamma_value)\n return adjuster(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles_ScaleIntensityRangePercentiles._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles_ScaleIntensityRangePercentiles._", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 354, "end_line": 407, "span_ids": ["ScaleIntensityRangePercentiles"], "tokens": 641}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensityRangePercentiles(Transform):\n \"\"\"\n Apply range scaling to a numpy array based on the intensity distribution of the input.\n\n By default this transform will scale from [lower_intensity_percentile, upper_intensity_percentile] to [b_min, b_max], where\n {lower,upper}_intensity_percentile are the intensity values at the corresponding percentiles of ``img``.\n\n The ``relative`` parameter can also be set to scale from [lower_intensity_percentile, upper_intensity_percentile] to the\n lower and upper percentiles of the output range [b_min, b_max]\n\n For example:\n\n .. code-block:: python\n :emphasize-lines: 11, 22\n\n image = np.array(\n [[[1, 2, 3, 4, 5],\n [1, 2, 3, 4, 5],\n [1, 2, 3, 4, 5],\n [1, 2, 3, 4, 5],\n [1, 2, 3, 4, 5],\n [1, 2, 3, 4, 5]]])\n\n # Scale from lower and upper image intensity percentiles\n # to output range [b_min, b_max]\n scaler = ScaleIntensityRangePercentiles(10, 90, 0, 200, False, False)\n print(scaler(image))\n [[[0., 50., 100., 150., 200.],\n [0., 50., 100., 150., 200.],\n [0., 50., 100., 150., 200.],\n [0., 50., 100., 150., 200.],\n [0., 50., 100., 150., 200.],\n [0., 50., 100., 150., 200.]]]\n\n # Scale from lower and upper image intensity percentiles\n # to lower and upper percentiles of the output range [b_min, b_max]\n rel_scaler = ScaleIntensityRangePercentiles(10, 90, 0, 200, False, True)\n print(rel_scaler(image))\n [[[20., 60., 100., 140., 180.],\n [20., 60., 100., 140., 180.],\n [20., 60., 100., 140., 180.],\n [20., 60., 100., 140., 180.],\n [20., 60., 100., 140., 180.],\n [20., 60., 100., 140., 180.]]]\n\n\n Args:\n lower: lower intensity percentile.\n upper: upper intensity percentile.\n b_min: intensity target range min.\n b_max: intensity target range max.\n clip: whether to perform clip after scaling.\n relative: whether to scale to the corresponding percentiles of [b_min, b_max].\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles.__init___ScaleIntensityRangePercentiles.__init__.self.relative.relative": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles.__init___ScaleIntensityRangePercentiles.__init__.self.relative.relative", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 666, "end_line": 678, "span_ids": ["ScaleIntensityRangePercentiles.__init__"], "tokens": 156}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensityRangePercentiles(Transform):\n\n def __init__(\n self, lower: float, upper: float, b_min: float, b_max: float, clip: bool = False, relative: bool = False\n ) -> None:\n if lower < 0.0 or lower > 100.0:\n raise AssertionError(\"Percentiles must be in the range [0, 100]\")\n if upper < 0.0 or upper > 100.0:\n raise AssertionError(\"Percentiles must be in the range [0, 100]\")\n self.lower = lower\n self.upper = upper\n self.b_min = b_min\n self.b_max = b_max\n self.clip = clip\n self.relative = relative", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles.__call___ScaleIntensityRangePercentiles.__call__.return.img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles.__call___ScaleIntensityRangePercentiles.__call__.return.img", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 680, "end_line": 699, "span_ids": ["ScaleIntensityRangePercentiles.__call__"], "tokens": 193}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensityRangePercentiles(Transform):\n\n def __call__(self, img: np.ndarray):\n \"\"\"\n Apply the transform to `img`.\n \"\"\"\n a_min = np.percentile(img, self.lower)\n a_max = np.percentile(img, self.upper)\n b_min = self.b_min\n b_max = self.b_max\n\n if self.relative:\n b_min = ((self.b_max - self.b_min) * (self.lower / 100.0)) + self.b_min\n b_max = ((self.b_max - self.b_min) * (self.upper / 100.0)) + self.b_min\n\n scalar = ScaleIntensityRange(a_min=a_min, a_max=a_max, b_min=b_min, b_max=b_max, clip=False)\n img = scalar(img)\n\n if self.clip:\n img = np.asarray(np.clip(img, self.b_min, self.b_max))\n\n return img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ShiftIntensityd_ShiftIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ShiftIntensityd_ShiftIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 155, "end_line": 175, "span_ids": ["ShiftIntensityd", "ShiftIntensityd.__call__", "ShiftIntensityd.__init__"], "tokens": 189}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ShiftIntensityd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.ShiftIntensity`.\n \"\"\"\n\n def __init__(self, keys: KeysCollection, offset: float, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n offset: offset value to shift the intensity of image.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.shifter = ShiftIntensity(offset)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.shifter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandShiftIntensityd_RandShiftIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandShiftIntensityd_RandShiftIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 178, "end_line": 223, "span_ids": ["RandShiftIntensityd.randomize", "RandShiftIntensityd.__init__", "RandShiftIntensityd.__call__", "RandShiftIntensityd"], "tokens": 417}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandShiftIntensityd(RandomizableTransform, MapTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandShiftIntensity`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n offsets: Union[Tuple[float, float], float],\n prob: float = 0.1,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n offsets: offset range to randomly shift.\n if single number, offset value is picked from (-offsets, offsets).\n prob: probability of rotating.\n (Default 0.1, with 10% probability it returns a rotated array.)\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n\n if isinstance(offsets, (int, float)):\n self.offsets = (min(-offsets, offsets), max(-offsets, offsets))\n else:\n if len(offsets) != 2:\n raise AssertionError(\"offsets should be a number or pair of numbers.\")\n self.offsets = (min(offsets), max(offsets))\n self._offset = self.offsets[0]\n\n def randomize(self, data: Optional[Any] = None) -> None:\n self._offset = self.R.uniform(low=self.offsets[0], high=self.offsets[1])\n super().randomize(None)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n self.randomize()\n if not self._do_transform:\n return d\n shifter = ShiftIntensity(self._offset)\n for key in self.key_iterator(d):\n d[key] = shifter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityd_ScaleIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityd_ScaleIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 317, "end_line": 350, "span_ids": ["ScaleIntensityd", "ScaleIntensityd.__call__", "ScaleIntensityd.__init__"], "tokens": 332}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensityd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.ScaleIntensity`.\n Scale the intensity of input image to the given value range (minv, maxv).\n If `minv` and `maxv` not provided, use `factor` to scale image by ``v = v * (1 + factor)``.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n minv: Optional[float] = 0.0,\n maxv: Optional[float] = 1.0,\n factor: Optional[float] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n minv: minimum value of output data.\n maxv: maximum value of output data.\n factor: factor scale by ``v = v * (1 + factor)``. In order to use\n this parameter, please set `minv` and `maxv` into None.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.scaler = ScaleIntensity(minv, maxv, factor)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.scaler(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandScaleIntensityd_RandScaleIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandScaleIntensityd_RandScaleIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 353, "end_line": 399, "span_ids": ["RandScaleIntensityd.__call__", "RandScaleIntensityd.__init__", "RandScaleIntensityd", "RandScaleIntensityd.randomize"], "tokens": 433}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandScaleIntensityd(RandomizableTransform, MapTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandScaleIntensity`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n factors: Union[Tuple[float, float], float],\n prob: float = 0.1,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n factors: factor range to randomly scale by ``v = v * (1 + factor)``.\n if single number, factor value is picked from (-factors, factors).\n prob: probability of rotating.\n (Default 0.1, with 10% probability it returns a rotated array.)\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n\n if isinstance(factors, (int, float)):\n self.factors = (min(-factors, factors), max(-factors, factors))\n else:\n if len(factors) != 2:\n raise AssertionError(\"factors should be a number or pair of numbers.\")\n self.factors = (min(factors), max(factors))\n self.factor = self.factors[0]\n\n def randomize(self, data: Optional[Any] = None) -> None:\n self.factor = self.R.uniform(low=self.factors[0], high=self.factors[1])\n super().randomize(None)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n self.randomize()\n if not self._do_transform:\n return d\n scaler = ScaleIntensity(minv=None, maxv=None, factor=self.factor)\n for key in self.key_iterator(d):\n d[key] = scaler(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_NormalizeIntensityd_NormalizeIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_NormalizeIntensityd_NormalizeIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 446, "end_line": 481, "span_ids": ["NormalizeIntensityd.__call__", "NormalizeIntensityd.__init__", "NormalizeIntensityd"], "tokens": 336}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NormalizeIntensityd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.NormalizeIntensity`.\n This transform can normalize only non-zero values or entire image, and can also calculate\n mean and std on each channel separately.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n subtrahend: the amount to subtract by (usually the mean)\n divisor: the amount to divide by (usually the standard deviation)\n nonzero: whether only normalize non-zero values.\n channel_wise: if using calculated mean and std, calculate on each channel separately\n or calculate on the entire image directly.\n dtype: output data type, defaults to float32.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n subtrahend: Optional[np.ndarray] = None,\n divisor: Optional[np.ndarray] = None,\n nonzero: bool = False,\n channel_wise: bool = False,\n dtype: DtypeLike = np.float32,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.normalizer = NormalizeIntensity(subtrahend, divisor, nonzero, channel_wise, dtype)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.normalizer(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ThresholdIntensityd_ThresholdIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ThresholdIntensityd_ThresholdIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 484, "end_line": 512, "span_ids": ["ThresholdIntensityd.__init__", "ThresholdIntensityd", "ThresholdIntensityd.__call__"], "tokens": 242}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ThresholdIntensityd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.ThresholdIntensity`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n threshold: the threshold to filter intensity values.\n above: filter values above the threshold or below the threshold, default is True.\n cval: value to fill the remaining parts of the image, default is 0.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n threshold: float,\n above: bool = True,\n cval: float = 0.0,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.filter = ThresholdIntensity(threshold, above, cval)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.filter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRanged_ScaleIntensityRanged.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRanged_ScaleIntensityRanged.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 515, "end_line": 547, "span_ids": ["ScaleIntensityRanged.__call__", "ScaleIntensityRanged.__init__", "ScaleIntensityRanged"], "tokens": 260}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensityRanged(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.ScaleIntensityRange`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n a_min: intensity original range min.\n a_max: intensity original range max.\n b_min: intensity target range min.\n b_max: intensity target range max.\n clip: whether to perform clip after scaling.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n a_min: float,\n a_max: float,\n b_min: float,\n b_max: float,\n clip: bool = False,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.scaler = ScaleIntensityRange(a_min, a_max, b_min, b_max, clip)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.scaler(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_AdjustContrastd_AdjustContrastd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_AdjustContrastd_AdjustContrastd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 550, "end_line": 572, "span_ids": ["AdjustContrastd", "AdjustContrastd.__call__", "AdjustContrastd.__init__"], "tokens": 222}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AdjustContrastd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.AdjustContrast`.\n Changes image intensity by gamma. Each pixel/voxel intensity is updated as:\n\n `x = ((x - min) / intensity_range) ^ gamma * intensity_range + min`\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n gamma: gamma value to adjust the contrast as function.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n def __init__(self, keys: KeysCollection, gamma: float, allow_missing_keys: bool = False) -> None:\n super().__init__(keys, allow_missing_keys)\n self.adjuster = AdjustContrast(gamma)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.adjuster(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandAdjustContrastd_RandAdjustContrastd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandAdjustContrastd_RandAdjustContrastd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 575, "end_line": 628, "span_ids": ["RandAdjustContrastd", "RandAdjustContrastd.randomize", "RandAdjustContrastd.__call__", "RandAdjustContrastd.__init__"], "tokens": 495}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandAdjustContrastd(RandomizableTransform, MapTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandAdjustContrast`.\n Randomly changes image intensity by gamma. Each pixel/voxel intensity is updated as:\n\n `x = ((x - min) / intensity_range) ^ gamma * intensity_range + min`\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n prob: Probability of adjustment.\n gamma: Range of gamma values.\n If single number, value is picked from (0.5, gamma), default is (0.5, 4.5).\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n prob: float = 0.1,\n gamma: Union[Tuple[float, float], float] = (0.5, 4.5),\n allow_missing_keys: bool = False,\n ) -> None:\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n\n if isinstance(gamma, (int, float)):\n if gamma <= 0.5:\n raise AssertionError(\n \"if gamma is single number, must greater than 0.5 and value is picked from (0.5, gamma)\"\n )\n self.gamma = (0.5, gamma)\n else:\n if len(gamma) != 2:\n raise AssertionError(\"gamma should be a number or pair of numbers.\")\n self.gamma = (min(gamma), max(gamma))\n\n self.gamma_value: Optional[float] = None\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n self.gamma_value = self.R.uniform(low=self.gamma[0], high=self.gamma[1])\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n self.randomize()\n if self.gamma_value is None:\n raise AssertionError\n if not self._do_transform:\n return d\n adjuster = AdjustContrast(self.gamma_value)\n for key in self.key_iterator(d):\n d[key] = adjuster(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRangePercentilesd_ScaleIntensityRangePercentilesd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRangePercentilesd_ScaleIntensityRangePercentilesd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 631, "end_line": 665, "span_ids": ["ScaleIntensityRangePercentilesd", "ScaleIntensityRangePercentilesd.__init__", "ScaleIntensityRangePercentilesd.__call__"], "tokens": 284}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensityRangePercentilesd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.ScaleIntensityRangePercentiles`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n lower: lower percentile.\n upper: upper percentile.\n b_min: intensity target range min.\n b_max: intensity target range max.\n clip: whether to perform clip after scaling.\n relative: whether to scale to the corresponding percentiles of [b_min, b_max]\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n lower: float,\n upper: float,\n b_min: float,\n b_max: float,\n clip: bool = False,\n relative: bool = False,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.scaler = ScaleIntensityRangePercentiles(lower, upper, b_min, b_max, clip, relative)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.scaler(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_MaskIntensityd_MaskIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_MaskIntensityd_MaskIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 668, "end_line": 701, "span_ids": ["MaskIntensityd", "MaskIntensityd.__call__", "MaskIntensityd.__init__"], "tokens": 332}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MaskIntensityd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.MaskIntensity`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n mask_data: if mask data is single channel, apply to every channel\n of input image. if multiple channels, the channel number must\n match input data. mask_data will be converted to `bool` values\n by `mask_data > 0` before applying transform to input image.\n if None, will extract the mask data from input data based on `mask_key`.\n mask_key: the key to extract mask data from input dictionary, only works\n when `mask_data` is None.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n mask_data: Optional[np.ndarray] = None,\n mask_key: Optional[str] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.converter = MaskIntensity(mask_data)\n self.mask_key = mask_key if mask_data is None else None\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key], d[self.mask_key]) if self.mask_key is not None else self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianNoiseD_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianNoiseD_", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1327, "end_line": 1352, "span_ids": ["impl:3"], "tokens": 405}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "RandGaussianNoiseD = RandGaussianNoiseDict = RandGaussianNoised\nRandRicianNoiseD = RandRicianNoiseDict = RandRicianNoised\nShiftIntensityD = ShiftIntensityDict = ShiftIntensityd\nRandShiftIntensityD = RandShiftIntensityDict = RandShiftIntensityd\nStdShiftIntensityD = StdShiftIntensityDict = StdShiftIntensityd\nRandStdShiftIntensityD = RandStdShiftIntensityDict = RandStdShiftIntensityd\nRandBiasFieldD = RandBiasFieldDict = RandBiasFieldd\nScaleIntensityD = ScaleIntensityDict = ScaleIntensityd\nRandScaleIntensityD = RandScaleIntensityDict = RandScaleIntensityd\nNormalizeIntensityD = NormalizeIntensityDict = NormalizeIntensityd\nThresholdIntensityD = ThresholdIntensityDict = ThresholdIntensityd\nScaleIntensityRangeD = ScaleIntensityRangeDict = ScaleIntensityRanged\nAdjustContrastD = AdjustContrastDict = AdjustContrastd\nRandAdjustContrastD = RandAdjustContrastDict = RandAdjustContrastd\nScaleIntensityRangePercentilesD = ScaleIntensityRangePercentilesDict = ScaleIntensityRangePercentilesd\nMaskIntensityD = MaskIntensityDict = MaskIntensityd\nGaussianSmoothD = GaussianSmoothDict = GaussianSmoothd\nRandGaussianSmoothD = RandGaussianSmoothDict = RandGaussianSmoothd\nGaussianSharpenD = GaussianSharpenDict = GaussianSharpend\nRandGaussianSharpenD = RandGaussianSharpenDict = RandGaussianSharpend\nRandHistogramShiftD = RandHistogramShiftDict = RandHistogramShiftd\nRandGibbsNoiseD = RandGibbsNoiseDict = RandGibbsNoised\nGibbsNoiseD = GibbsNoiseDict = GibbsNoised\nKSpaceSpikeNoiseD = KSpaceSpikeNoiseDict = KSpaceSpikeNoised\nRandKSpaceSpikeNoiseD = RandKSpaceSpikeNoiseDict = RandKSpaceSpikeNoised", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/io/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/post/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_Activations_Activations.__init__.self.other.other": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_Activations_Activations.__init__.self.other.other", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 70, "end_line": 92, "span_ids": ["Activations.__init__", "Activations"], "tokens": 206}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Activations(Transform):\n \"\"\"\n Add activation operations to the model output, typically `Sigmoid` or `Softmax`.\n\n Args:\n sigmoid: whether to execute sigmoid function on model output before transform.\n Defaults to ``False``.\n softmax: whether to execute softmax function on model output before transform.\n Defaults to ``False``.\n other: callable function to execute other activation layers, for example:\n `other = lambda x: torch.tanh(x)`. Defaults to ``None``.\n\n Raises:\n TypeError: When ``other`` is not an ``Optional[Callable]``.\n\n \"\"\"\n\n def __init__(self, sigmoid: bool = False, softmax: bool = False, other: Optional[Callable] = None) -> None:\n self.sigmoid = sigmoid\n self.softmax = softmax\n if other is not None and not callable(other):\n raise TypeError(f\"other must be None or callable but is {type(other).__name__}.\")\n self.other = other", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_Activations.__call___Activations.__call__.return.img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_Activations.__call___Activations.__call__.return.img", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 64, "end_line": 105, "span_ids": ["Activations.__call__"], "tokens": 353}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Activations(Transform):\n\n def __call__(\n self,\n img: torch.Tensor,\n sigmoid: Optional[bool] = None,\n softmax: Optional[bool] = None,\n other: Optional[Callable] = None,\n ) -> torch.Tensor:\n \"\"\"\n Args:\n sigmoid: whether to execute sigmoid function on model output before transform.\n Defaults to ``self.sigmoid``.\n softmax: whether to execute softmax function on model output before transform.\n Defaults to ``self.softmax``.\n other: callable function to execute other activation layers, for example:\n `other = torch.tanh`. Defaults to ``self.other``.\n\n Raises:\n ValueError: When ``sigmoid=True`` and ``softmax=True``. Incompatible values.\n TypeError: When ``other`` is not an ``Optional[Callable]``.\n ValueError: When ``self.other=None`` and ``other=None``. Incompatible values.\n\n \"\"\"\n if sigmoid and softmax:\n raise ValueError(\"Incompatible values: sigmoid=True and softmax=True.\")\n if other is not None and not callable(other):\n raise TypeError(f\"other must be None or callable but is {type(other).__name__}.\")\n\n # convert to float as activation must operate on float tensor\n img = img.float()\n if sigmoid or self.sigmoid:\n img = torch.sigmoid(img)\n if softmax or self.softmax:\n # add channel dim if not existing\n if img.ndimension() == 1:\n img = img.unsqueeze(-1)\n img = torch.softmax(img, dim=1)\n\n act_func = self.other if other is None else other\n if act_func is not None:\n img = act_func(img)\n\n return img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_AsDiscrete_AsDiscrete.__init__.self.logit_thresh.logit_thresh": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_AsDiscrete_AsDiscrete.__init__.self.logit_thresh.logit_thresh", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 121, "end_line": 156, "span_ids": ["AsDiscrete.__init__", "AsDiscrete"], "tokens": 293}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AsDiscrete(Transform):\n \"\"\"\n Execute after model forward to transform model output to discrete values.\n It can complete below operations:\n\n - execute `argmax` for input logits values.\n - threshold input value to 0.0 or 1.0.\n - convert input value to One-Hot format\n\n Args:\n argmax: whether to execute argmax function on input data before transform.\n Defaults to ``False``.\n to_onehot: whether to convert input data into the one-hot format.\n Defaults to ``False``.\n n_classes: the number of classes to convert to One-Hot format.\n Defaults to ``None``.\n threshold_values: whether threshold the float value to int number 0 or 1.\n Defaults to ``False``.\n logit_thresh: the threshold value for thresholding operation..\n Defaults to ``0.5``.\n\n \"\"\"\n\n def __init__(\n self,\n argmax: bool = False,\n to_onehot: bool = False,\n n_classes: Optional[int] = None,\n threshold_values: bool = False,\n logit_thresh: float = 0.5,\n ) -> None:\n self.argmax = argmax\n self.to_onehot = to_onehot\n self.n_classes = n_classes\n self.threshold_values = threshold_values\n self.logit_thresh = logit_thresh", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_AsDiscrete.__call___AsDiscrete.__call__.return.img_float_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_AsDiscrete.__call___AsDiscrete.__call__.return.img_float_", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 144, "end_line": 179, "span_ids": ["AsDiscrete.__call__"], "tokens": 337}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AsDiscrete(Transform):\n\n def __call__(\n self,\n img: torch.Tensor,\n argmax: Optional[bool] = None,\n to_onehot: Optional[bool] = None,\n n_classes: Optional[int] = None,\n threshold_values: Optional[bool] = None,\n logit_thresh: Optional[float] = None,\n ) -> torch.Tensor:\n \"\"\"\n Args:\n argmax: whether to execute argmax function on input data before transform.\n Defaults to ``self.argmax``.\n to_onehot: whether to convert input data into the one-hot format.\n Defaults to ``self.to_onehot``.\n n_classes: the number of classes to convert to One-Hot format.\n Defaults to ``self.n_classes``.\n threshold_values: whether threshold the float value to int number 0 or 1.\n Defaults to ``self.threshold_values``.\n logit_thresh: the threshold value for thresholding operation..\n Defaults to ``self.logit_thresh``.\n\n \"\"\"\n if argmax or self.argmax:\n img = torch.argmax(img, dim=1, keepdim=True)\n\n if to_onehot or self.to_onehot:\n _nclasses = self.n_classes if n_classes is None else n_classes\n if not isinstance(_nclasses, int):\n raise AssertionError(\"One of self.n_classes or n_classes must be an integer\")\n img = one_hot(img, _nclasses)\n\n if threshold_values or self.threshold_values:\n img = img >= (self.logit_thresh if logit_thresh is None else logit_thresh)\n\n return img.float()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent_KeepLargestConnectedComponent._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent_KeepLargestConnectedComponent._", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 195, "end_line": 239, "span_ids": ["KeepLargestConnectedComponent"], "tokens": 782}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class KeepLargestConnectedComponent(Transform):\n \"\"\"\n Keeps only the largest connected component in the image.\n This transform can be used as a post-processing step to clean up over-segment areas in model output.\n\n The input is assumed to be a PyTorch Tensor:\n 1) With shape (batch_size, 1, spatial_dim1[, spatial_dim2, ...]) and the values correspond to expected labels.\n 2) With shape (batch_size, C, spatial_dim1[, spatial_dim2, ...]) and the values should be 0, 1 on each labels.\n\n Note:\n For single channel data, 0 will be treated as background and the over-segment pixels will be set to 0.\n For one-hot data, the over-segment pixels will be set to 0 in its channel.\n\n For example:\n Use KeepLargestConnectedComponent with applied_labels=[1], connectivity=1::\n\n [1, 0, 0] [0, 0, 0]\n [0, 1, 1] => [0, 1 ,1]\n [0, 1, 1] [0, 1, 1]\n\n Use KeepLargestConnectedComponent with applied_labels[1, 2], independent=False, connectivity=1::\n\n [0, 0, 1, 0 ,0] [0, 0, 1, 0 ,0]\n [0, 2, 1, 1 ,1] [0, 2, 1, 1 ,1]\n [1, 2, 1, 0 ,0] => [1, 2, 1, 0 ,0]\n [1, 2, 0, 1 ,0] [1, 2, 0, 0 ,0]\n [2, 2, 0, 0 ,2] [2, 2, 0, 0 ,0]\n\n Use KeepLargestConnectedComponent with applied_labels[1, 2], independent=True, connectivity=1::\n\n [0, 0, 1, 0 ,0] [0, 0, 1, 0 ,0]\n [0, 2, 1, 1 ,1] [0, 2, 1, 1 ,1]\n [1, 2, 1, 0 ,0] => [0, 2, 1, 0 ,0]\n [1, 2, 0, 1 ,0] [0, 2, 0, 0 ,0]\n [2, 2, 0, 0 ,2] [2, 2, 0, 0 ,0]\n\n Use KeepLargestConnectedComponent with applied_labels[1, 2], independent=False, connectivity=2::\n\n [0, 0, 1, 0 ,0] [0, 0, 1, 0 ,0]\n [0, 2, 1, 1 ,1] [0, 2, 1, 1 ,1]\n [1, 2, 1, 0 ,0] => [1, 2, 1, 0 ,0]\n [1, 2, 0, 1 ,0] [1, 2, 0, 1 ,0]\n [2, 2, 0, 0 ,2] [2, 2, 0, 0 ,2]\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent.__init___KeepLargestConnectedComponent.__init__.self.connectivity.connectivity": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent.__init___KeepLargestConnectedComponent.__init__.self.connectivity.connectivity", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 241, "end_line": 259, "span_ids": ["KeepLargestConnectedComponent.__init__"], "tokens": 237}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class KeepLargestConnectedComponent(Transform):\n\n def __init__(\n self, applied_labels: Union[Sequence[int], int], independent: bool = True, connectivity: Optional[int] = None\n ) -> None:\n \"\"\"\n Args:\n applied_labels: Labels for applying the connected component on.\n If only one channel. The pixel whose value is not in this list will remain unchanged.\n If the data is in one-hot format, this is used to determine what channels to apply.\n independent: consider several labels as a whole or independent, default is `True`.\n Example use case would be segment label 1 is liver and label 2 is liver tumor, in that case\n you want this \"independent\" to be specified as False.\n connectivity: Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor.\n Accepted values are ranging from 1 to input.ndim. If ``None``, a full\n connectivity of ``input.ndim`` is used.\n \"\"\"\n super().__init__()\n self.applied_labels = ensure_tuple(applied_labels)\n self.independent = independent\n self.connectivity = connectivity", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent.__call___KeepLargestConnectedComponent.__call__.return.output": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent.__call___KeepLargestConnectedComponent.__call__.return.output", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 273, "end_line": 315, "span_ids": ["KeepLargestConnectedComponent.__call__"], "tokens": 446}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class KeepLargestConnectedComponent(Transform):\n\n def __call__(self, img: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n img: shape must be (batch_size, C, spatial_dim1[, spatial_dim2, ...]).\n\n Returns:\n A PyTorch Tensor with shape (batch_size, C, spatial_dim1[, spatial_dim2, ...]).\n \"\"\"\n channel_dim = 1\n if img.shape[channel_dim] == 1:\n\n img = torch.squeeze(img, dim=channel_dim)\n\n if self.independent:\n for i in self.applied_labels:\n foreground = (img == i).type(torch.uint8)\n mask = get_largest_connected_component_mask(foreground, self.connectivity)\n img[foreground != mask] = 0\n else:\n foreground = torch.zeros_like(img)\n for i in self.applied_labels:\n foreground += (img == i).type(torch.uint8)\n mask = get_largest_connected_component_mask(foreground, self.connectivity)\n img[foreground != mask] = 0\n output = torch.unsqueeze(img, dim=channel_dim)\n else:\n # one-hot data is assumed to have binary value in each channel\n if self.independent:\n for i in self.applied_labels:\n foreground = img[:, i, ...].type(torch.uint8)\n mask = get_largest_connected_component_mask(foreground, self.connectivity)\n img[:, i, ...][foreground != mask] = 0\n else:\n applied_img = img[:, self.applied_labels, ...].type(torch.uint8)\n foreground = torch.any(applied_img, dim=channel_dim)\n mask = get_largest_connected_component_mask(foreground, self.connectivity)\n background_mask = torch.unsqueeze(foreground != mask, dim=channel_dim)\n background_mask = torch.repeat_interleave(background_mask, len(self.applied_labels), dim=channel_dim)\n applied_img[background_mask] = 0\n img[:, self.applied_labels, ...] = applied_img.type(img.type())\n output = img\n\n return output", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelToContour_LabelToContour.__init__.self.kernel_type.kernel_type": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelToContour_LabelToContour.__init__.self.kernel_type.kernel_type", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 318, "end_line": 334, "span_ids": ["LabelToContour", "LabelToContour.__init__"], "tokens": 148}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LabelToContour(Transform):\n \"\"\"\n Return the contour of binary input images that only compose of 0 and 1, with Laplace kernel\n set as default for edge detection. Typical usage is to plot the edge of label or segmentation output.\n\n Args:\n kernel_type: the method applied to do edge detection, default is \"Laplace\".\n\n Raises:\n NotImplementedError: When ``kernel_type`` is not \"Laplace\".\n\n \"\"\"\n\n def __init__(self, kernel_type: str = \"Laplace\") -> None:\n if kernel_type != \"Laplace\":\n raise NotImplementedError('Currently only kernel_type=\"Laplace\" is supported.')\n self.kernel_type = kernel_type", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelToContour.__call___LabelToContour.__call__.return.contour_img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelToContour.__call___LabelToContour.__call__.return.contour_img", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 336, "end_line": 366, "span_ids": ["LabelToContour.__call__"], "tokens": 428}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LabelToContour(Transform):\n\n def __call__(self, img: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n img: torch tensor data to extract the contour, with shape: [batch_size, channels, height, width[, depth]]\n\n Raises:\n ValueError: When ``image`` ndim is not one of [4, 5].\n\n Returns:\n A torch tensor with the same shape as img, note:\n 1. it's the binary classification result of whether a pixel is edge or not.\n 2. in order to keep the original shape of mask image, we use padding as default.\n 3. the edge detection is just approximate because it defects inherent to Laplace kernel,\n ideally the edge should be thin enough, but now it has a thickness.\n\n \"\"\"\n channels = img.shape[1]\n if img.ndimension() == 4:\n kernel = torch.tensor([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype=torch.float32, device=img.device)\n kernel = kernel.repeat(channels, 1, 1, 1)\n contour_img = F.conv2d(img, kernel, bias=None, stride=1, padding=1, dilation=1, groups=channels)\n elif img.ndimension() == 5:\n kernel = -1 * torch.ones(3, 3, 3, dtype=torch.float32, device=img.device)\n kernel[1, 1, 1] = 26\n kernel = kernel.repeat(channels, 1, 1, 1, 1)\n contour_img = F.conv3d(img, kernel, bias=None, stride=1, padding=1, dilation=1, groups=channels)\n else:\n raise ValueError(f\"Unsupported img dimension: {img.ndimension()}, available options are [4, 5].\")\n\n contour_img.clamp_(min=0.0, max=1.0)\n return contour_img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_MeanEnsemble_MeanEnsemble.__init__.self.weights.torch_as_tensor_weights_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_MeanEnsemble_MeanEnsemble.__init__.self.weights.torch_as_tensor_weights_", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 369, "end_line": 393, "span_ids": ["MeanEnsemble", "MeanEnsemble.__init__"], "tokens": 420}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MeanEnsemble(Transform):\n \"\"\"\n Execute mean ensemble on the input data.\n The input data can be a list or tuple of PyTorch Tensor with shape: [B, C[, H, W, D]],\n Or a single PyTorch Tensor with shape: [E, B, C[, H, W, D]], the `E` dimension represents\n the output data from different models.\n Typically, the input data is model output of segmentation task or classification task.\n And it also can support to add `weights` for the input data.\n\n Args:\n weights: can be a list or tuple of numbers for input data with shape: [E, B, C, H, W[, D]].\n or a Numpy ndarray or a PyTorch Tensor data.\n the `weights` will be added to input data from highest dimension, for example:\n 1. if the `weights` only has 1 dimension, it will be added to the `E` dimension of input data.\n 2. if the `weights` has 3 dimensions, it will be added to `E`, `B` and `C` dimensions.\n it's a typical practice to add weights for different classes:\n to ensemble 3 segmentation model outputs, every output has 4 channels(classes),\n so the input data shape can be: [3, B, 4, H, W, D].\n and add different `weights` for different classes, so the `weights` shape can be: [3, 1, 4].\n for example: `weights = [[[1, 2, 3, 4]], [[4, 3, 2, 1]], [[1, 1, 1, 1]]]`.\n\n \"\"\"\n\n def __init__(self, weights: Optional[Union[Sequence[float], torch.Tensor, np.ndarray]] = None) -> None:\n self.weights = torch.as_tensor(weights, dtype=torch.float) if weights is not None else None", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Activationsd_Activationsd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Activationsd_Activationsd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/post/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 81, "end_line": 119, "span_ids": ["Activationsd.__call__", "Activationsd", "Activationsd.__init__"], "tokens": 410}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Activationsd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.AddActivations`.\n Add activation layers to the input data specified by `keys`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n sigmoid: Union[Sequence[bool], bool] = False,\n softmax: Union[Sequence[bool], bool] = False,\n other: Optional[Union[Sequence[Callable], Callable]] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to model output and label.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n sigmoid: whether to execute sigmoid function on model output before transform.\n it also can be a sequence of bool, each element corresponds to a key in ``keys``.\n softmax: whether to execute softmax function on model output before transform.\n it also can be a sequence of bool, each element corresponds to a key in ``keys``.\n other: callable function to execute other activation layers,\n for example: `other = torch.tanh`. it also can be a sequence of Callable, each\n element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.sigmoid = ensure_tuple_rep(sigmoid, len(self.keys))\n self.softmax = ensure_tuple_rep(softmax, len(self.keys))\n self.other = ensure_tuple_rep(other, len(self.keys))\n self.converter = Activations()\n\n def __call__(self, data: Mapping[Hashable, torch.Tensor]) -> Dict[Hashable, torch.Tensor]:\n d = dict(data)\n for key, sigmoid, softmax, other in self.key_iterator(d, self.sigmoid, self.softmax, self.other):\n d[key] = self.converter(d[key], sigmoid, softmax, other)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_KeepLargestConnectedComponentd_KeepLargestConnectedComponentd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_KeepLargestConnectedComponentd_KeepLargestConnectedComponentd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/post/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 160, "end_line": 196, "span_ids": ["KeepLargestConnectedComponentd.__init__", "KeepLargestConnectedComponentd", "KeepLargestConnectedComponentd.__call__"], "tokens": 372}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class KeepLargestConnectedComponentd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.KeepLargestConnectedComponent`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n applied_labels: Union[Sequence[int], int],\n independent: bool = True,\n connectivity: Optional[int] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n applied_labels: Labels for applying the connected component on.\n If only one channel. The pixel whose value is not in this list will remain unchanged.\n If the data is in one-hot format, this is the channel indices to apply transform.\n independent: consider several labels as a whole or independent, default is `True`.\n Example use case would be segment label 1 is liver and label 2 is liver tumor, in that case\n you want this \"independent\" to be specified as False.\n connectivity: Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor.\n Accepted values are ranging from 1 to input.ndim. If ``None``, a full\n connectivity of ``input.ndim`` is used.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = KeepLargestConnectedComponent(applied_labels, independent, connectivity)\n\n def __call__(self, data: Mapping[Hashable, torch.Tensor]) -> Dict[Hashable, torch.Tensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_LabelToContourd_LabelToContourd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_LabelToContourd_LabelToContourd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/post/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 199, "end_line": 220, "span_ids": ["LabelToContourd.__init__", "LabelToContourd", "LabelToContourd.__call__"], "tokens": 208}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LabelToContourd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.LabelToContour`.\n \"\"\"\n\n def __init__(self, keys: KeysCollection, kernel_type: str = \"Laplace\", allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n kernel_type: the method applied to do edge detection, default is \"Laplace\".\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = LabelToContour(kernel_type=kernel_type)\n\n def __call__(self, data: Mapping[Hashable, torch.Tensor]) -> Dict[Hashable, torch.Tensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Spacing_Spacing.__init__.self.dtype.dtype": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Spacing_Spacing.__init__.self.dtype.dtype", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 78, "end_line": 130, "span_ids": ["Spacing.__init__", "Spacing"], "tokens": 631}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Spacing(Transform):\n \"\"\"\n Resample input image into the specified `pixdim`.\n \"\"\"\n\n def __init__(\n self,\n pixdim: Union[Sequence[float], float],\n diagonal: bool = False,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,\n align_corners: bool = False,\n dtype: DtypeLike = np.float64,\n ) -> None:\n \"\"\"\n Args:\n pixdim: output voxel spacing. if providing a single number, will use it for the first dimension.\n items of the pixdim sequence map to the spatial dimensions of input image, if length\n of pixdim sequence is longer than image spatial dimensions, will ignore the longer part,\n if shorter, will pad with `1.0`.\n if the components of the `pixdim` are non-positive values, the transform will use the\n corresponding components of the origial pixdim, which is computed from the `affine`\n matrix of input image.\n diagonal: whether to resample the input to have a diagonal affine matrix.\n If True, the input data is resampled to the following affine::\n\n np.diag((pixdim_0, pixdim_1, ..., pixdim_n, 1))\n\n This effectively resets the volume to the world coordinate system (RAS+ in nibabel).\n The original orientation, rotation, shearing are not preserved.\n\n If False, this transform preserves the axes orientation, orthogonal rotation and\n translation components from the original affine. This option will not flip/swap axes\n of the original data.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"border\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n align_corners: Geometrically, we consider the pixels of the input as squares rather than points.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n dtype: data type for resampling computation. Defaults to ``np.float64`` for best precision.\n If None, use the data type of input data. To be compatible with other modules,\n the output data type is always ``np.float32``.\n\n \"\"\"\n self.pixdim = np.array(ensure_tuple(pixdim), dtype=np.float64)\n self.diagonal = diagonal\n self.mode: GridSampleMode = GridSampleMode(mode)\n self.padding_mode: GridSamplePadMode = GridSamplePadMode(padding_mode)\n self.align_corners = align_corners\n self.dtype = dtype", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Orientation_Orientation.__init__.self.labels.labels": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Orientation_Orientation.__init__.self.labels.labels", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 189, "end_line": 224, "span_ids": ["Orientation.__init__", "Orientation"], "tokens": 390}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Orientation(Transform):\n \"\"\"\n Change the input image's orientation into the specified based on `axcodes`.\n \"\"\"\n\n def __init__(\n self,\n axcodes: Optional[str] = None,\n as_closest_canonical: bool = False,\n labels: Optional[Sequence[Tuple[str, str]]] = tuple(zip(\"LPI\", \"RAS\")),\n ) -> None:\n \"\"\"\n Args:\n axcodes: N elements sequence for spatial ND input's orientation.\n e.g. axcodes='RAS' represents 3D orientation:\n (Left, Right), (Posterior, Anterior), (Inferior, Superior).\n default orientation labels options are: 'L' and 'R' for the first dimension,\n 'P' and 'A' for the second, 'I' and 'S' for the third.\n as_closest_canonical: if True, load the image as closest to canonical axis format.\n labels: optional, None or sequence of (2,) sequences\n (2,) sequences are labels for (beginning, end) of output axis.\n Defaults to ``(('L', 'R'), ('P', 'A'), ('I', 'S'))``.\n\n Raises:\n ValueError: When ``axcodes=None`` and ``as_closest_canonical=True``. Incompatible values.\n\n See Also: `nibabel.orientations.ornt2axcodes`.\n\n \"\"\"\n if axcodes is None and not as_closest_canonical:\n raise ValueError(\"Incompatible values: axcodes=None and as_closest_canonical=True.\")\n if axcodes is not None and as_closest_canonical:\n warnings.warn(\"using as_closest_canonical=True, axcodes ignored.\")\n self.axcodes = axcodes\n self.as_closest_canonical = as_closest_canonical\n self.labels = labels", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Orientation.__call___Orientation.__call__.return.data_array_affine_new_a": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Orientation.__call___Orientation.__call__.return.data_array_affine_new_a", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 255, "end_line": 301, "span_ids": ["Orientation.__call__"], "tokens": 494}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Orientation(Transform):\n\n def __call__(\n self, data_array: np.ndarray, affine: Optional[np.ndarray] = None\n ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:\n \"\"\"\n original orientation of `data_array` is defined by `affine`.\n\n Args:\n data_array: in shape (num_channels, H[, W, ...]).\n affine (matrix): (N+1)x(N+1) original affine matrix for spatially ND `data_array`. Defaults to identity.\n\n Raises:\n ValueError: When ``data_array`` has no spatial dimensions.\n ValueError: When ``axcodes`` spatiality differs from ``data_array``.\n\n Returns:\n data_array (reoriented in `self.axcodes`), original axcodes, current axcodes.\n\n \"\"\"\n sr = data_array.ndim - 1\n if sr <= 0:\n raise ValueError(\"data_array must have at least one spatial dimension.\")\n if affine is None:\n affine = np.eye(sr + 1, dtype=np.float64)\n affine_ = np.eye(sr + 1, dtype=np.float64)\n else:\n affine_ = to_affine_nd(sr, affine)\n src = nib.io_orientation(affine_)\n if self.as_closest_canonical:\n spatial_ornt = src\n else:\n if self.axcodes is None:\n raise AssertionError\n dst = nib.orientations.axcodes2ornt(self.axcodes[:sr], labels=self.labels)\n if len(dst) < sr:\n raise ValueError(\n f\"axcodes must match data_array spatially, got axcodes={len(self.axcodes)}D data_array={sr}D\"\n )\n spatial_ornt = nib.orientations.ornt_transform(src, dst)\n ornt = spatial_ornt.copy()\n ornt[:, 0] += 1 # skip channel dim\n ornt = np.concatenate([np.array([[0, 1]]), ornt])\n shape = data_array.shape[1:]\n data_array = np.ascontiguousarray(nib.orientations.apply_orientation(data_array, ornt))\n new_affine = affine_ @ nib.orientations.inv_ornt_aff(spatial_ornt, shape)\n new_affine = to_affine_nd(affine, new_affine)\n\n return data_array, affine, new_affine", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resize_Resize.__init__.self.align_corners.align_corners": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resize_Resize.__init__.self.align_corners.align_corners", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 322, "end_line": 348, "span_ids": ["Resize.__init__", "Resize"], "tokens": 329}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Resize(Transform):\n \"\"\"\n Resize the input image to given spatial size (with scaling, not cropping/padding).\n Implemented using :py:class:`torch.nn.functional.interpolate`.\n\n Args:\n spatial_size: expected shape of spatial dimensions after resize operation.\n if the components of the `spatial_size` are non-positive values, the transform will use the\n corresponding components of img size. For example, `spatial_size=(32, -1)` will be adapted\n to `(32, 64)` if the second spatial dimension size of img is `64`.\n mode: {``\"nearest\"``, ``\"linear\"``, ``\"bilinear\"``, ``\"bicubic\"``, ``\"trilinear\"``, ``\"area\"``}\n The interpolation mode. Defaults to ``\"area\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n align_corners: This only has an effect when mode is\n 'linear', 'bilinear', 'bicubic' or 'trilinear'. Default: None.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n \"\"\"\n\n def __init__(\n self,\n spatial_size: Union[Sequence[int], int],\n mode: Union[InterpolateMode, str] = InterpolateMode.AREA,\n align_corners: Optional[bool] = None,\n ) -> None:\n self.spatial_size = ensure_tuple(spatial_size)\n self.mode: InterpolateMode = InterpolateMode(mode)\n self.align_corners = align_corners", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Zoom_Zoom.__init__.self.keep_size.keep_size": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Zoom_Zoom.__init__.self.keep_size.keep_size", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 469, "end_line": 506, "span_ids": ["Zoom.__init__", "Zoom"], "tokens": 493}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Zoom(Transform):\n \"\"\"\n Zooms an ND image using :py:class:`torch.nn.functional.interpolate`.\n For details, please see https://pytorch.org/docs/stable/nn.functional.html#interpolate.\n\n Different from :py:class:`monai.transforms.resize`, this transform takes scaling factors\n as input, and provides an option of preserving the input spatial size.\n\n Args:\n zoom: The zoom factor along the spatial axes.\n If a float, zoom is the same for each spatial axis.\n If a sequence, zoom should contain one value for each spatial axis.\n mode: {``\"nearest\"``, ``\"linear\"``, ``\"bilinear\"``, ``\"bicubic\"``, ``\"trilinear\"``, ``\"area\"``}\n The interpolation mode. Defaults to ``\"area\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n padding_mode: {``\"constant\"``, ``\"edge``\", ``\"linear_ramp``\", ``\"maximum``\", ``\"mean``\", `\"median``\",\n ``\"minimum``\", `\"reflect``\", ``\"symmetric``\", ``\"wrap``\", ``\"empty``\", ``\"``\"}\n The mode to pad data after zooming.\n See also: https://numpy.org/doc/stable/reference/generated/numpy.pad.html\n align_corners: This only has an effect when mode is\n 'linear', 'bilinear', 'bicubic' or 'trilinear'. Default: None.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n keep_size: Should keep original size (padding/slicing if needed), default is True.\n \"\"\"\n\n def __init__(\n self,\n zoom: Union[Sequence[float], float],\n mode: Union[InterpolateMode, str] = InterpolateMode.AREA,\n padding_mode: Union[NumpyPadMode, str] = NumpyPadMode.EDGE,\n align_corners: Optional[bool] = None,\n keep_size: bool = True,\n ) -> None:\n self.zoom = zoom\n self.mode: InterpolateMode = InterpolateMode(mode)\n self.padding_mode: NumpyPadMode = NumpyPadMode(padding_mode)\n self.align_corners = align_corners\n self.keep_size = keep_size", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Zoom.__call___Zoom.__call__.return.zoomed_tuple_slice_vec_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Zoom.__call___Zoom.__call__.return.zoomed_tuple_slice_vec_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 537, "end_line": 583, "span_ids": ["Zoom.__call__"], "tokens": 633}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Zoom(Transform):\n\n def __call__(\n self,\n img: np.ndarray,\n mode: Optional[Union[InterpolateMode, str]] = None,\n padding_mode: Optional[Union[NumpyPadMode, str]] = None,\n align_corners: Optional[bool] = None,\n ):\n \"\"\"\n Args:\n img: channel first array, must have shape: (num_channels, H[, W, ..., ]).\n mode: {``\"nearest\"``, ``\"linear\"``, ``\"bilinear\"``, ``\"bicubic\"``, ``\"trilinear\"``, ``\"area\"``}\n The interpolation mode. Defaults to ``self.mode``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n padding_mode: {``\"constant\"``, ``\"edge``\", ``\"linear_ramp``\", ``\"maximum``\", ``\"mean``\", `\"median``\",\n ``\"minimum``\", `\"reflect``\", ``\"symmetric``\", ``\"wrap``\", ``\"empty``\", ``\"``\"}\n The mode to pad data after zooming, default to ``self.padding_mode``.\n See also: https://numpy.org/doc/stable/reference/generated/numpy.pad.html\n align_corners: This only has an effect when mode is\n 'linear', 'bilinear', 'bicubic' or 'trilinear'. Defaults to ``self.align_corners``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n\n \"\"\"\n _zoom = ensure_tuple_rep(self.zoom, img.ndim - 1) # match the spatial image dim\n zoomed = torch.nn.functional.interpolate( # type: ignore\n recompute_scale_factor=True,\n input=torch.as_tensor(np.ascontiguousarray(img), dtype=torch.float).unsqueeze(0),\n scale_factor=list(_zoom),\n mode=self.mode.value if mode is None else InterpolateMode(mode).value,\n align_corners=self.align_corners if align_corners is None else align_corners,\n )\n zoomed = zoomed.squeeze(0).detach().cpu().numpy()\n if not self.keep_size or np.allclose(img.shape, zoomed.shape):\n return zoomed\n\n pad_vec = [[0, 0]] * len(img.shape)\n slice_vec = [slice(None)] * len(img.shape)\n for idx, (od, zd) in enumerate(zip(img.shape, zoomed.shape)):\n diff = od - zd\n half = abs(diff) // 2\n if diff > 0: # need padding\n pad_vec[idx] = [half, diff - half]\n elif diff < 0: # need slicing\n slice_vec[idx] = slice(half, half + od)\n\n padding_mode = self.padding_mode if padding_mode is None else NumpyPadMode(padding_mode)\n zoomed = np.pad(zoomed, pad_vec, mode=padding_mode.value)\n return zoomed[tuple(slice_vec)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate90_RandRotate90.__call__.return.rotator_img_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate90_RandRotate90.__call__.return.rotator_img_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 618, "end_line": 652, "span_ids": ["RandRotate90.randomize", "RandRotate90", "RandRotate90.__init__", "RandRotate90.__call__"], "tokens": 338}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandRotate90(RandomizableTransform):\n \"\"\"\n With probability `prob`, input arrays are rotated by 90 degrees\n in the plane specified by `spatial_axes`.\n \"\"\"\n\n def __init__(self, prob: float = 0.1, max_k: int = 3, spatial_axes: Tuple[int, int] = (0, 1)) -> None:\n \"\"\"\n Args:\n prob: probability of rotating.\n (Default 0.1, with 10% probability it returns a rotated array)\n max_k: number of rotations will be sampled from `np.random.randint(max_k) + 1`, (Default 3).\n spatial_axes: 2 int numbers, defines the plane to rotate with 2 spatial axes.\n Default: (0, 1), this is the first two axis in spatial dimensions.\n \"\"\"\n RandomizableTransform.__init__(self, prob)\n self.max_k = max_k\n self.spatial_axes = spatial_axes\n\n self._rand_k = 0\n\n def randomize(self, data: Optional[Any] = None) -> None:\n self._rand_k = self.R.randint(self.max_k) + 1\n super().randomize(None)\n\n def __call__(self, img: np.ndarray) -> np.ndarray:\n \"\"\"\n Args:\n img: channel first array, must have shape: (num_channels, H[, W, ..., ]),\n \"\"\"\n self.randomize()\n if not self._do_transform:\n return img\n rotator = Rotate90(self._rand_k, self.spatial_axes)\n return rotator(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandFlip_RandFlip.__call__.return.self_flipper_img_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandFlip_RandFlip.__call__.return.self_flipper_img_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 759, "end_line": 782, "span_ids": ["RandFlip", "RandFlip.__init__", "RandFlip.__call__"], "tokens": 203}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandFlip(RandomizableTransform):\n \"\"\"\n Randomly flips the image along axes. Preserves shape.\n See numpy.flip for additional details.\n https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html\n\n Args:\n prob: Probability of flipping.\n spatial_axis: Spatial axes along which to flip over. Default is None.\n \"\"\"\n\n def __init__(self, prob: float = 0.1, spatial_axis: Optional[Union[Sequence[int], int]] = None) -> None:\n RandomizableTransform.__init__(self, prob)\n self.flipper = Flip(spatial_axis=spatial_axis)\n\n def __call__(self, img: np.ndarray) -> np.ndarray:\n \"\"\"\n Args:\n img: channel first array, must have shape: (num_channels, H[, W, ..., ]),\n \"\"\"\n self.randomize(None)\n if not self._do_transform:\n return img\n return self.flipper(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid_RandDeformGrid.randomize.self.rand_mag.self_R_uniform_self_magni": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid_RandDeformGrid.randomize.self.rand_mag.self_R_uniform_self_magni", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1122, "end_line": 1156, "span_ids": ["RandDeformGrid", "RandDeformGrid.__init__", "RandDeformGrid.randomize"], "tokens": 316}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandDeformGrid(Randomizable, Transform):\n \"\"\"\n Generate random deformation grid.\n \"\"\"\n\n def __init__(\n self,\n spacing: Union[Sequence[float], float],\n magnitude_range: Tuple[float, float],\n as_tensor_output: bool = True,\n device: Optional[torch.device] = None,\n ) -> None:\n \"\"\"\n Args:\n spacing: spacing of the grid in 2D or 3D.\n e.g., spacing=(1, 1) indicates pixel-wise deformation in 2D,\n spacing=(1, 1, 1) indicates voxel-wise deformation in 3D,\n spacing=(2, 2) indicates deformation field defined on every other pixel in 2D.\n magnitude_range: the random offsets will be generated from\n `uniform[magnitude[0], magnitude[1])`.\n as_tensor_output: whether to output tensor instead of numpy array.\n defaults to True.\n device: device to store the output grid data.\n \"\"\"\n self.spacing = spacing\n self.magnitude = magnitude_range\n\n self.rand_mag = 1.0\n self.as_tensor_output = as_tensor_output\n self.random_offset: np.ndarray\n self.device = device\n\n def randomize(self, grid_size: Sequence[int]) -> None:\n self.random_offset = self.R.normal(size=([len(grid_size)] + list(grid_size))).astype(np.float32)\n self.rand_mag = self.R.uniform(self.magnitude[0], self.magnitude[1])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid.__call___RandDeformGrid.__call__.return.control_grid": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid.__call___RandDeformGrid.__call__.return.control_grid", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1158, "end_line": 1169, "span_ids": ["RandDeformGrid.__call__"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandDeformGrid(Randomizable, Transform):\n\n def __call__(self, spatial_size: Sequence[int]):\n \"\"\"\n Args:\n spatial_size: spatial size of the grid.\n \"\"\"\n self.spacing = fall_back_tuple(self.spacing, (1.0,) * len(spatial_size))\n control_grid = create_control_grid(spatial_size, self.spacing)\n self.randomize(control_grid.shape[1:])\n control_grid[: len(spatial_size)] += self.rand_mag * self.random_offset\n if self.as_tensor_output:\n control_grid = torch.as_tensor(np.ascontiguousarray(control_grid), device=self.device)\n return control_grid", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resample_Resample.__init__.self.device.device": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resample_Resample.__init__.self.device.device", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 987, "end_line": 1012, "span_ids": ["Resample.__init__", "Resample"], "tokens": 310}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Resample(Transform):\n def __init__(\n self,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,\n as_tensor_output: bool = False,\n device: Optional[torch.device] = None,\n ) -> None:\n \"\"\"\n computes output image using values from `img`, locations from `grid` using pytorch.\n supports spatially 2D or 3D (num_channels, H, W[, D]).\n\n Args:\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"border\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n as_tensor_output: whether to return a torch tensor. Defaults to False.\n device: device on which the tensor will be allocated.\n \"\"\"\n self.mode: GridSampleMode = GridSampleMode(mode)\n self.padding_mode: GridSamplePadMode = GridSamplePadMode(padding_mode)\n self.as_tensor_output = as_tensor_output\n self.device = device", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Affine_Affine.__init__.self.padding_mode.GridSamplePadMode_padding": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Affine_Affine.__init__.self.padding_mode.GridSamplePadMode_padding", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1266, "end_line": 1323, "span_ids": ["Affine", "Affine.__init__"], "tokens": 746}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Affine(Transform):\n \"\"\"\n Transform ``img`` given the affine parameters.\n \"\"\"\n\n def __init__(\n self,\n rotate_params: Optional[Union[Sequence[float], float]] = None,\n shear_params: Optional[Union[Sequence[float], float]] = None,\n translate_params: Optional[Union[Sequence[float], float]] = None,\n scale_params: Optional[Union[Sequence[float], float]] = None,\n spatial_size: Optional[Union[Sequence[int], int]] = None,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.REFLECTION,\n as_tensor_output: bool = False,\n device: Optional[torch.device] = None,\n image_only: bool = False,\n ) -> None:\n \"\"\"\n The affine transformations are applied in rotate, shear, translate, scale order.\n\n Args:\n rotate_params: a rotation angle in radians, a scalar for 2D image, a tuple of 3 floats for 3D.\n Defaults to no rotation.\n shear_params: a tuple of 2 floats for 2D, a tuple of 6 floats for 3D. Defaults to no shearing.\n translate_params: a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Translation is in\n pixel/voxel relative to the center of the input image. Defaults to no translation.\n scale_params: a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Defaults to no scaling.\n spatial_size: output image spatial size.\n if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,\n the transform will use the spatial size of `img`.\n if the components of the `spatial_size` are non-positive values, the transform will use the\n corresponding components of img size. For example, `spatial_size=(32, -1)` will be adapted\n to `(32, 64)` if the second spatial dimension size of img is `64`.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"reflection\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n as_tensor_output: the computation is implemented using pytorch tensors, this option specifies\n whether to convert it back to numpy arrays.\n device: device on which the tensor will be allocated.\n image_only: if True return only the image volume, otherwise return (image, affine).\n \"\"\"\n self.affine_grid = AffineGrid(\n rotate_params=rotate_params,\n shear_params=shear_params,\n translate_params=translate_params,\n scale_params=scale_params,\n as_tensor_output=True,\n device=device,\n )\n self.image_only = image_only\n self.resampler = Resample(as_tensor_output=as_tensor_output, device=device)\n self.spatial_size = spatial_size\n self.mode: GridSampleMode = GridSampleMode(mode)\n self.padding_mode: GridSamplePadMode = GridSamplePadMode(padding_mode)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic.set_random_state_Rand2DElastic.randomize.self_rand_affine_grid_ran": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic.set_random_state_Rand2DElastic.randomize.self_rand_affine_grid_ran", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1525, "end_line": 1536, "span_ids": ["Rand2DElastic.randomize", "Rand2DElastic.set_random_state"], "tokens": 127}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand2DElastic(RandomizableTransform):\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"Rand2DElastic\":\n self.deform_grid.set_random_state(seed, state)\n self.rand_affine_grid.set_random_state(seed, state)\n super().set_random_state(seed, state)\n return self\n\n def randomize(self, spatial_size: Sequence[int]) -> None:\n super().randomize(None)\n self.deform_grid.randomize(spatial_size)\n self.rand_affine_grid.randomize()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic.__call___Rand2DElastic.__call__.return.self_resampler_img_grid_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic.__call___Rand2DElastic.__call__.return.self_resampler_img_grid_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1538, "end_line": 1573, "span_ids": ["Rand2DElastic.__call__"], "tokens": 454}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand2DElastic(RandomizableTransform):\n\n def __call__(\n self,\n img: Union[np.ndarray, torch.Tensor],\n spatial_size: Optional[Union[Tuple[int, int], int]] = None,\n mode: Optional[Union[GridSampleMode, str]] = None,\n padding_mode: Optional[Union[GridSamplePadMode, str]] = None,\n ) -> Union[np.ndarray, torch.Tensor]:\n \"\"\"\n Args:\n img: shape must be (num_channels, H, W),\n spatial_size: specifying output image spatial size [h, w].\n if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,\n the transform will use the spatial size of `img`.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``self.mode``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``self.padding_mode``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n \"\"\"\n sp_size = fall_back_tuple(spatial_size or self.spatial_size, img.shape[1:])\n self.randomize(spatial_size=sp_size)\n if self._do_transform:\n grid = self.deform_grid(spatial_size=sp_size)\n grid = self.rand_affine_grid(grid=grid)\n grid = torch.nn.functional.interpolate( # type: ignore\n recompute_scale_factor=True,\n input=torch.as_tensor(grid).unsqueeze(0),\n scale_factor=list(ensure_tuple(self.deform_grid.spacing)),\n mode=InterpolateMode.BICUBIC.value,\n align_corners=False,\n )\n grid = CenterSpatialCrop(roi_size=sp_size)(grid[0])\n else:\n grid = create_grid(spatial_size=sp_size)\n return self.resampler(img, grid, mode=mode or self.mode, padding_mode=padding_mode or self.padding_mode)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic_Rand3DElastic.__init__.self.sigma.1_0": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic_Rand3DElastic.__init__.self.sigma.1_0", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1639, "end_line": 1711, "span_ids": ["Rand3DElastic.__init__", "Rand3DElastic"], "tokens": 985}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand3DElastic(RandomizableTransform):\n \"\"\"\n Random elastic deformation and affine in 3D\n \"\"\"\n\n def __init__(\n self,\n sigma_range: Tuple[float, float],\n magnitude_range: Tuple[float, float],\n prob: float = 0.1,\n rotate_range: RandRange = None,\n shear_range: RandRange = None,\n translate_range: RandRange = None,\n scale_range: RandRange = None,\n spatial_size: Optional[Union[Tuple[int, int, int], int]] = None,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.REFLECTION,\n as_tensor_output: bool = False,\n device: Optional[torch.device] = None,\n ) -> None:\n \"\"\"\n Args:\n sigma_range: a Gaussian kernel with standard deviation sampled from\n ``uniform[sigma_range[0], sigma_range[1])`` will be used to smooth the random offset grid.\n magnitude_range: the random offsets on the grid will be generated from\n ``uniform[magnitude[0], magnitude[1])``.\n prob: probability of returning a randomized elastic transform.\n defaults to 0.1, with 10% chance returns a randomized elastic transform,\n otherwise returns a ``spatial_size`` centered area extracted from the input image.\n rotate_range: angle range in radians. If element `i` is iterable, then\n `uniform[-rotate_range[i][0], rotate_range[i][1])` will be used to generate the rotation parameter\n for the ith dimension. If not, `uniform[-rotate_range[i], rotate_range[i])` will be used. This can\n be altered on a per-dimension basis. E.g., `((0,3), 1, ...)`: for dim0, rotation will be in range\n `[0, 3]`, and for dim1 `[-1, 1]` will be used. Setting a single value will use `[-x, x]` for dim0\n and nothing for the remaining dimensions.\n shear_range: shear_range with format matching `rotate_range`.\n translate_range: translate_range with format matching `rotate_range`.\n scale_range: scaling_range with format matching `rotate_range`. A value of 1.0 is added to the result.\n This allows 0 to correspond to no change (i.e., a scaling of 1).\n spatial_size: specifying output image spatial size [h, w, d].\n if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,\n the transform will use the spatial size of `img`.\n if the components of the `spatial_size` are non-positive values, the transform will use the\n corresponding components of img size. For example, `spatial_size=(32, 32, -1)` will be adapted\n to `(32, 32, 64)` if the third spatial dimension size of img is `64`.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"reflection\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n as_tensor_output: the computation is implemented using pytorch tensors, this option specifies\n whether to convert it back to numpy arrays.\n device: device on which the tensor will be allocated.\n\n See also:\n - :py:class:`RandAffineGrid` for the random affine parameters configurations.\n - :py:class:`Affine` for the affine transformation parameters configurations.\n \"\"\"\n RandomizableTransform.__init__(self, prob)\n self.rand_affine_grid = RandAffineGrid(rotate_range, shear_range, translate_range, scale_range, True, device)\n self.resampler = Resample(as_tensor_output=as_tensor_output, device=device)\n\n self.sigma_range = sigma_range\n self.magnitude_range = magnitude_range\n self.spatial_size = spatial_size\n self.mode: GridSampleMode = GridSampleMode(mode)\n self.padding_mode: GridSamplePadMode = GridSamplePadMode(padding_mode)\n self.device = device\n\n self.rand_offset: np.ndarray\n self.magnitude = 1.0\n self.sigma = 1.0", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic.set_random_state_Rand3DElastic.randomize.self_rand_affine_grid_ran": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic.set_random_state_Rand3DElastic.randomize.self_rand_affine_grid_ran", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1650, "end_line": 1663, "span_ids": ["Rand3DElastic.randomize", "Rand3DElastic.set_random_state"], "tokens": 180}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand3DElastic(RandomizableTransform):\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"Rand3DElastic\":\n self.rand_affine_grid.set_random_state(seed, state)\n super().set_random_state(seed, state)\n return self\n\n def randomize(self, grid_size: Sequence[int]) -> None:\n super().randomize(None)\n if self._do_transform:\n self.rand_offset = self.R.uniform(-1.0, 1.0, [3] + list(grid_size)).astype(np.float32)\n self.magnitude = self.R.uniform(self.magnitude_range[0], self.magnitude_range[1])\n self.sigma = self.R.uniform(self.sigma_range[0], self.sigma_range[1])\n self.rand_affine_grid.randomize()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd.__call___Spacingd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd.__call___Spacingd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 209, "end_line": 246, "span_ids": ["Spacingd.__call__"], "tokens": 392}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Spacingd(MapTransform, InvertibleTransform):\n\n def __call__(\n self, data: Mapping[Union[Hashable, str], Dict[str, np.ndarray]]\n ) -> Dict[Union[Hashable, str], Union[np.ndarray, Dict[str, np.ndarray]]]:\n d: Dict = dict(data)\n for key, mode, padding_mode, align_corners, dtype, meta_key, meta_key_postfix in self.key_iterator(\n d, self.mode, self.padding_mode, self.align_corners, self.dtype, self.meta_keys, self.meta_key_postfix\n ):\n meta_key = meta_key or f\"{key}_{meta_key_postfix}\"\n # create metadata if necessary\n if meta_key not in d:\n d[meta_key] = {\"affine\": None}\n meta_data = d[meta_key]\n # resample array of each corresponding key\n # using affine fetched from d[affine_key]\n original_spatial_shape = d[key].shape[1:]\n d[key], old_affine, new_affine = self.spacing_transform(\n data_array=np.asarray(d[key]),\n affine=meta_data[\"affine\"],\n mode=mode,\n padding_mode=padding_mode,\n align_corners=align_corners,\n dtype=dtype,\n )\n self.push_transform(\n d,\n key,\n extra_info={\n \"meta_key\": meta_key,\n \"old_affine\": old_affine,\n \"mode\": mode.value if isinstance(mode, Enum) else mode,\n \"padding_mode\": padding_mode.value if isinstance(padding_mode, Enum) else padding_mode,\n \"align_corners\": align_corners if align_corners is not None else \"none\",\n },\n orig_size=original_spatial_shape,\n )\n # set the 'affine' key\n meta_data[\"affine\"] = new_affine\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotate90d_Rotate90d.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotate90d_Rotate90d.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 348, "end_line": 371, "span_ids": ["Rotate90d.__call__", "Rotate90d.__init__", "Rotate90d"], "tokens": 238}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rotate90d(MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.Rotate90`.\n \"\"\"\n\n def __init__(\n self, keys: KeysCollection, k: int = 1, spatial_axes: Tuple[int, int] = (0, 1), allow_missing_keys: bool = False\n ) -> None:\n \"\"\"\n Args:\n k: number of times to rotate by 90 degrees.\n spatial_axes: 2 int numbers, defines the plane to rotate with 2 spatial axes.\n Default: (0, 1), this is the first two axis in spatial dimensions.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.rotator = Rotate90(k, spatial_axes)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n self.push_transform(d, key)\n d[key] = self.rotator(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotate90d_RandRotate90d.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotate90d_RandRotate90d.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 393, "end_line": 441, "span_ids": ["RandRotate90d", "RandRotate90d.__call__", "RandRotate90d.__init__", "RandRotate90d.randomize"], "tokens": 458}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandRotate90d(RandomizableTransform, MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandRotate90`.\n With probability `prob`, input arrays are rotated by 90 degrees\n in the plane specified by `spatial_axes`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n prob: float = 0.1,\n max_k: int = 3,\n spatial_axes: Tuple[int, int] = (0, 1),\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n prob: probability of rotating.\n (Default 0.1, with 10% probability it returns a rotated array.)\n max_k: number of rotations will be sampled from `np.random.randint(max_k) + 1`.\n (Default 3)\n spatial_axes: 2 int numbers, defines the plane to rotate with 2 spatial axes.\n Default: (0, 1), this is the first two axis in spatial dimensions.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n\n self.max_k = max_k\n self.spatial_axes = spatial_axes\n\n self._rand_k = 0\n\n def randomize(self, data: Optional[Any] = None) -> None:\n self._rand_k = self.R.randint(self.max_k) + 1\n super().randomize(None)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Mapping[Hashable, np.ndarray]:\n self.randomize()\n d = dict(data)\n\n rotator = Rotate90(self._rand_k, self.spatial_axes)\n for key in self.key_iterator(d):\n if self._do_transform:\n d[key] = rotator(d[key])\n self.push_transform(d, key, extra_info={\"rand_k\": self._rand_k})\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined_RandAffined.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined_RandAffined.__init__.self.padding_mode.ensure_tuple_rep_padding_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 671, "end_line": 747, "span_ids": ["RandAffined.__init__", "RandAffined"], "tokens": 1048}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandAffined(RandomizableTransform, MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.RandAffine`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n spatial_size: Optional[Union[Sequence[int], int]] = None,\n prob: float = 0.1,\n rotate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n shear_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n translate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n scale_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n mode: GridSampleModeSequence = GridSampleMode.BILINEAR,\n padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,\n cache_grid: bool = False,\n as_tensor_output: bool = True,\n device: Optional[torch.device] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n spatial_size: output image spatial size.\n if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,\n the transform will use the spatial size of `img`.\n if the components of the `spatial_size` are non-positive values, the transform will use the\n corresponding components of img size. For example, `spatial_size=(32, -1)` will be adapted\n to `(32, 64)` if the second spatial dimension size of img is `64`.\n prob: probability of returning a randomized affine grid.\n defaults to 0.1, with 10% chance returns a randomized grid.\n rotate_range: angle range in radians. If element `i` is iterable, then\n `uniform[-rotate_range[i][0], rotate_range[i][1])` will be used to generate the rotation parameter\n for the ith dimension. If not, `uniform[-rotate_range[i], rotate_range[i])` will be used. This can\n be altered on a per-dimension basis. E.g., `((0,3), 1, ...)`: for dim0, rotation will be in range\n `[0, 3]`, and for dim1 `[-1, 1]` will be used. Setting a single value will use `[-x, x]` for dim0\n and nothing for the remaining dimensions.\n shear_range: shear_range with format matching `rotate_range`.\n translate_range: translate_range with format matching `rotate_range`.\n scale_range: scaling_range with format matching `rotate_range`. A value of 1.0 is added to the result.\n This allows 0 to correspond to no change (i.e., a scaling of 1).\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"reflection\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n cache_grid: whether to cache the identity sampling grid.\n If the spatial size is not dynamically defined by input image, enabling this option could\n accelerate the transform.\n as_tensor_output: the computation is implemented using pytorch tensors, this option specifies\n whether to convert it back to numpy arrays.\n device: device on which the tensor will be allocated.\n allow_missing_keys: don't raise exception if key is missing.\n\n See also:\n - :py:class:`monai.transforms.compose.MapTransform`\n - :py:class:`RandAffineGrid` for the random affine parameters configurations.\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.rand_affine = RandAffine(\n prob=1.0, # because probability handled in this class\n rotate_range=rotate_range,\n shear_range=shear_range,\n translate_range=translate_range,\n scale_range=scale_range,\n spatial_size=spatial_size,\n cache_grid=cache_grid,\n as_tensor_output=as_tensor_output,\n device=device,\n )\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined.set_random_state_RandAffined.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined.set_random_state_RandAffined.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 749, "end_line": 799, "span_ids": ["RandAffined.__call__", "RandAffined.set_random_state", "RandAffined.randomize"], "tokens": 568}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandAffined(RandomizableTransform, MapTransform, InvertibleTransform):\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"RandAffined\":\n self.rand_affine.set_random_state(seed, state)\n super().set_random_state(seed, state)\n return self\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n self.rand_affine.randomize()\n\n def __call__(\n self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]]\n ) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]:\n d = dict(data)\n self.randomize()\n\n sp_size = fall_back_tuple(self.rand_affine.spatial_size, data[self.keys[0]].shape[1:])\n # change image size or do random transform\n do_resampling = self._do_transform or (sp_size != ensure_tuple(data[self.keys[0]].shape[1:]))\n\n # to be consistent with the self._do_transform case (dtype and device)\n affine = torch.as_tensor(np.eye(len(sp_size) + 1), device=self.rand_affine.rand_affine_grid.device)\n grid = None\n if do_resampling: # need to prepare grid\n grid = self.rand_affine.get_identity_grid(sp_size)\n if self._do_transform: # add some random factors\n grid = self.rand_affine.rand_affine_grid(grid=grid)\n affine = self.rand_affine.rand_affine_grid.get_transformation_matrix() # type: ignore[assignment]\n\n for key, mode, padding_mode in self.key_iterator(d, self.mode, self.padding_mode):\n self.push_transform(\n d,\n key,\n extra_info={\n \"affine\": affine,\n \"mode\": mode.value if isinstance(mode, Enum) else mode,\n \"padding_mode\": padding_mode.value if isinstance(padding_mode, Enum) else padding_mode,\n },\n )\n # do the transform\n if do_resampling:\n d[key] = self.rand_affine.resampler(d[key], grid, mode=mode, padding_mode=padding_mode)\n # if not doing transform and and spatial size is unchanged, only need to do numpy/torch conversion\n else:\n if self.rand_affine.resampler.as_tensor_output and not isinstance(d[key], torch.Tensor):\n d[key] = torch.Tensor(d[key])\n elif not self.rand_affine.resampler.as_tensor_output and isinstance(d[key], torch.Tensor):\n d[key] = d[key].detach().cpu().numpy() # type: ignore[union-attr]\n\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd_Rand2DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd_Rand2DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 779, "end_line": 858, "span_ids": ["Rand2DElasticd", "Rand2DElasticd.__init__"], "tokens": 1101}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand2DElasticd(RandomizableTransform, MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.Rand2DElastic`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n spacing: Union[Tuple[float, float], float],\n magnitude_range: Tuple[float, float],\n spatial_size: Optional[Union[Tuple[int, int], int]] = None,\n prob: float = 0.1,\n rotate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n shear_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n translate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n scale_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n mode: GridSampleModeSequence = GridSampleMode.BILINEAR,\n padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,\n as_tensor_output: bool = False,\n device: Optional[torch.device] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n spacing: distance in between the control points.\n magnitude_range: 2 int numbers, the random offsets will be generated from\n ``uniform[magnitude[0], magnitude[1])``.\n spatial_size: specifying output image spatial size [h, w].\n if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,\n the transform will use the spatial size of `img`.\n if the components of the `spatial_size` are non-positive values, the transform will use the\n corresponding components of img size. For example, `spatial_size=(32, -1)` will be adapted\n to `(32, 64)` if the second spatial dimension size of img is `64`.\n prob: probability of returning a randomized affine grid.\n defaults to 0.1, with 10% chance returns a randomized grid,\n otherwise returns a ``spatial_size`` centered area extracted from the input image.\n rotate_range: angle range in radians. If element `i` is iterable, then\n `uniform[-rotate_range[i][0], rotate_range[i][1])` will be used to generate the rotation parameter\n for the ith dimension. If not, `uniform[-rotate_range[i], rotate_range[i])` will be used. This can\n be altered on a per-dimension basis. E.g., `((0,3), 1, ...)`: for dim0, rotation will be in range\n `[0, 3]`, and for dim1 `[-1, 1]` will be used. Setting a single value will use `[-x, x]` for dim0\n and nothing for the remaining dimensions.\n shear_range: shear_range with format matching `rotate_range`.\n translate_range: translate_range with format matching `rotate_range`.\n scale_range: scaling_range with format matching `rotate_range`. A value of 1.0 is added to the result.\n This allows 0 to correspond to no change (i.e., a scaling of 1).\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"reflection\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n as_tensor_output: the computation is implemented using pytorch tensors, this option specifies\n whether to convert it back to numpy arrays.\n device: device on which the tensor will be allocated.\n allow_missing_keys: don't raise exception if key is missing.\n\n See also:\n - :py:class:`RandAffineGrid` for the random affine parameters configurations.\n - :py:class:`Affine` for the affine transformation parameters configurations.\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.rand_2d_elastic = Rand2DElastic(\n spacing=spacing,\n magnitude_range=magnitude_range,\n prob=1.0, # because probability controlled by this class\n rotate_range=rotate_range,\n shear_range=shear_range,\n translate_range=translate_range,\n scale_range=scale_range,\n spatial_size=spatial_size,\n as_tensor_output=as_tensor_output,\n device=device,\n )\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd.set_random_state_Rand2DElasticd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd.set_random_state_Rand2DElasticd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 860, "end_line": 895, "span_ids": ["Rand2DElasticd.randomize", "Rand2DElasticd.__call__", "Rand2DElasticd.set_random_state"], "tokens": 397}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand2DElasticd(RandomizableTransform, MapTransform):\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"Rand2DElasticd\":\n self.rand_2d_elastic.set_random_state(seed, state)\n super().set_random_state(seed, state)\n return self\n\n def randomize(self, spatial_size: Sequence[int]) -> None:\n super().randomize(None)\n self.rand_2d_elastic.randomize(spatial_size)\n\n def __call__(\n self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]]\n ) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]:\n d = dict(data)\n\n sp_size = fall_back_tuple(self.rand_2d_elastic.spatial_size, data[self.keys[0]].shape[1:])\n self.randomize(spatial_size=sp_size)\n\n if self._do_transform:\n grid = self.rand_2d_elastic.deform_grid(spatial_size=sp_size)\n grid = self.rand_2d_elastic.rand_affine_grid(grid=grid)\n grid = torch.nn.functional.interpolate( # type: ignore\n recompute_scale_factor=True,\n input=grid.unsqueeze(0),\n scale_factor=ensure_tuple_rep(self.rand_2d_elastic.deform_grid.spacing, 2),\n mode=InterpolateMode.BICUBIC.value,\n align_corners=False,\n )\n grid = CenterSpatialCrop(roi_size=sp_size)(grid[0])\n else:\n grid = create_grid(spatial_size=sp_size)\n\n for key, mode, padding_mode in self.key_iterator(d, self.mode, self.padding_mode):\n d[key] = self.rand_2d_elastic.resampler(d[key], grid, mode=mode, padding_mode=padding_mode)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd_Rand3DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd_Rand3DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 898, "end_line": 978, "span_ids": ["Rand3DElasticd", "Rand3DElasticd.__init__"], "tokens": 1136}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand3DElasticd(RandomizableTransform, MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.Rand3DElastic`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n sigma_range: Tuple[float, float],\n magnitude_range: Tuple[float, float],\n spatial_size: Optional[Union[Tuple[int, int, int], int]] = None,\n prob: float = 0.1,\n rotate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n shear_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n translate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n scale_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n mode: GridSampleModeSequence = GridSampleMode.BILINEAR,\n padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,\n as_tensor_output: bool = False,\n device: Optional[torch.device] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n sigma_range: a Gaussian kernel with standard deviation sampled from\n ``uniform[sigma_range[0], sigma_range[1])`` will be used to smooth the random offset grid.\n magnitude_range: the random offsets on the grid will be generated from\n ``uniform[magnitude[0], magnitude[1])``.\n spatial_size: specifying output image spatial size [h, w, d].\n if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,\n the transform will use the spatial size of `img`.\n if the components of the `spatial_size` are non-positive values, the transform will use the\n corresponding components of img size. For example, `spatial_size=(32, 32, -1)` will be adapted\n to `(32, 32, 64)` if the third spatial dimension size of img is `64`.\n prob: probability of returning a randomized affine grid.\n defaults to 0.1, with 10% chance returns a randomized grid,\n otherwise returns a ``spatial_size`` centered area extracted from the input image.\n rotate_range: angle range in radians. If element `i` is iterable, then\n `uniform[-rotate_range[i][0], rotate_range[i][1])` will be used to generate the rotation parameter\n for the ith dimension. If not, `uniform[-rotate_range[i], rotate_range[i])` will be used. This can\n be altered on a per-dimension basis. E.g., `((0,3), 1, ...)`: for dim0, rotation will be in range\n `[0, 3]`, and for dim1 `[-1, 1]` will be used. Setting a single value will use `[-x, x]` for dim0\n and nothing for the remaining dimensions.\n shear_range: shear_range with format matching `rotate_range`.\n translate_range: translate_range with format matching `rotate_range`.\n scale_range: scaling_range with format matching `rotate_range`. A value of 1.0 is added to the result.\n This allows 0 to correspond to no change (i.e., a scaling of 1).\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"reflection\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n as_tensor_output: the computation is implemented using pytorch tensors, this option specifies\n whether to convert it back to numpy arrays.\n device: device on which the tensor will be allocated.\n allow_missing_keys: don't raise exception if key is missing.\n\n See also:\n - :py:class:`RandAffineGrid` for the random affine parameters configurations.\n - :py:class:`Affine` for the affine transformation parameters configurations.\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.rand_3d_elastic = Rand3DElastic(\n sigma_range=sigma_range,\n magnitude_range=magnitude_range,\n prob=1.0, # because probability controlled by this class\n rotate_range=rotate_range,\n shear_range=shear_range,\n translate_range=translate_range,\n scale_range=scale_range,\n spatial_size=spatial_size,\n as_tensor_output=as_tensor_output,\n device=device,\n )\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd.set_random_state_Rand3DElasticd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd.set_random_state_Rand3DElasticd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 980, "end_line": 1009, "span_ids": ["Rand3DElasticd.__call__", "Rand3DElasticd.set_random_state", "Rand3DElasticd.randomize"], "tokens": 381}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand3DElasticd(RandomizableTransform, MapTransform):\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"Rand3DElasticd\":\n self.rand_3d_elastic.set_random_state(seed, state)\n super().set_random_state(seed, state)\n return self\n\n def randomize(self, grid_size: Sequence[int]) -> None:\n super().randomize(None)\n self.rand_3d_elastic.randomize(grid_size)\n\n def __call__(\n self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]]\n ) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]:\n d = dict(data)\n sp_size = fall_back_tuple(self.rand_3d_elastic.spatial_size, data[self.keys[0]].shape[1:])\n\n self.randomize(grid_size=sp_size)\n grid = create_grid(spatial_size=sp_size)\n if self._do_transform:\n device = self.rand_3d_elastic.device\n grid = torch.tensor(grid).to(device)\n gaussian = GaussianFilter(spatial_dims=3, sigma=self.rand_3d_elastic.sigma, truncated=3.0).to(device)\n offset = torch.tensor(self.rand_3d_elastic.rand_offset, device=device).unsqueeze(0)\n grid[:3] += gaussian(offset)[0] * self.rand_3d_elastic.magnitude\n grid = self.rand_3d_elastic.rand_affine_grid(grid=grid)\n\n for key, mode, padding_mode in self.key_iterator(d, self.mode, self.padding_mode):\n d[key] = self.rand_3d_elastic.resampler(d[key], grid, mode=mode, padding_mode=padding_mode)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Flipd_Flipd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Flipd_Flipd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1012, "end_line": 1039, "span_ids": ["Flipd.__init__", "Flipd", "Flipd.__call__"], "tokens": 232}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Flipd(MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.Flip`.\n\n See `numpy.flip` for additional details.\n https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html\n\n Args:\n keys: Keys to pick data for transformation.\n spatial_axis: Spatial axes along which to flip over. Default is None.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n spatial_axis: Optional[Union[Sequence[int], int]] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.flipper = Flip(spatial_axis=spatial_axis)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n self.push_transform(d, key)\n d[key] = self.flipper(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandFlipd_RandFlipd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandFlipd_RandFlipd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1056, "end_line": 1090, "span_ids": ["RandFlipd", "RandFlipd.__init__", "RandFlipd.__call__"], "tokens": 289}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandFlipd(RandomizableTransform, MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandFlip`.\n\n See `numpy.flip` for additional details.\n https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html\n\n Args:\n keys: Keys to pick data for transformation.\n prob: Probability of flipping.\n spatial_axis: Spatial axes along which to flip over. Default is None.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n prob: float = 0.1,\n spatial_axis: Optional[Union[Sequence[int], int]] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.spatial_axis = spatial_axis\n\n self.flipper = Flip(spatial_axis=spatial_axis)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n self.randomize(None)\n d = dict(data)\n for key in self.key_iterator(d):\n if self._do_transform:\n d[key] = self.flipper(d[key])\n self.push_transform(d, key)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated_RandRotated._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated_RandRotated._", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1263, "end_line": 1296, "span_ids": ["RandRotated"], "tokens": 517}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandRotated(RandomizableTransform, MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandRotate`\n Randomly rotates the input arrays.\n\n Args:\n keys: Keys to pick data for transformation.\n range_x: Range of rotation angle in radians in the plane defined by the first and second axes.\n If single number, angle is uniformly sampled from (-range_x, range_x).\n range_y: Range of rotation angle in radians in the plane defined by the first and third axes.\n If single number, angle is uniformly sampled from (-range_y, range_y).\n range_z: Range of rotation angle in radians in the plane defined by the second and third axes.\n If single number, angle is uniformly sampled from (-range_z, range_z).\n prob: Probability of rotation.\n keep_size: If it is False, the output shape is adapted so that the\n input array is contained completely in the output.\n If it is True, the output shape is the same as the input. Default is True.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"border\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n align_corners: Defaults to False.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n It also can be a sequence of bool, each element corresponds to a key in ``keys``.\n dtype: data type for resampling computation. Defaults to ``np.float64`` for best precision.\n If None, use the data type of input data. To be compatible with other modules,\n the output data type is always ``np.float32``.\n It also can be a sequence of dtype or None, each element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.__init___RandRotated.randomize.self.z.self_R_uniform_low_self_r": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.__init___RandRotated.randomize.self.z.self_R_uniform_low_self_r", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1298, "end_line": 1338, "span_ids": ["RandRotated.randomize", "RandRotated.__init__"], "tokens": 514}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandRotated(RandomizableTransform, MapTransform, InvertibleTransform):\n\n def __init__(\n self,\n keys: KeysCollection,\n range_x: Union[Tuple[float, float], float] = 0.0,\n range_y: Union[Tuple[float, float], float] = 0.0,\n range_z: Union[Tuple[float, float], float] = 0.0,\n prob: float = 0.1,\n keep_size: bool = True,\n mode: GridSampleModeSequence = GridSampleMode.BILINEAR,\n padding_mode: GridSamplePadModeSequence = GridSamplePadMode.BORDER,\n align_corners: Union[Sequence[bool], bool] = False,\n dtype: Union[Sequence[DtypeLike], DtypeLike] = np.float64,\n allow_missing_keys: bool = False,\n ) -> None:\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.range_x = ensure_tuple(range_x)\n if len(self.range_x) == 1:\n self.range_x = tuple(sorted([-self.range_x[0], self.range_x[0]]))\n self.range_y = ensure_tuple(range_y)\n if len(self.range_y) == 1:\n self.range_y = tuple(sorted([-self.range_y[0], self.range_y[0]]))\n self.range_z = ensure_tuple(range_z)\n if len(self.range_z) == 1:\n self.range_z = tuple(sorted([-self.range_z[0], self.range_z[0]]))\n\n self.keep_size = keep_size\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))\n self.align_corners = ensure_tuple_rep(align_corners, len(self.keys))\n self.dtype = ensure_tuple_rep(dtype, len(self.keys))\n\n self.x = 0.0\n self.y = 0.0\n self.z = 0.0\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n self.x = self.R.uniform(low=self.range_x[0], high=self.range_x[1])\n self.y = self.R.uniform(low=self.range_y[0], high=self.range_y[1])\n self.z = self.R.uniform(low=self.range_z[0], high=self.range_z[1])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.__call___RandRotated.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.__call___RandRotated.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1340, "end_line": 1374, "span_ids": ["RandRotated.__call__"], "tokens": 315}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandRotated(RandomizableTransform, MapTransform, InvertibleTransform):\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n self.randomize()\n d = dict(data)\n angle: Union[Sequence[float], float] = self.x if d[self.keys[0]].ndim == 3 else (self.x, self.y, self.z)\n rotator = Rotate(\n angle=angle,\n keep_size=self.keep_size,\n )\n for key, mode, padding_mode, align_corners, dtype in self.key_iterator(\n d, self.mode, self.padding_mode, self.align_corners, self.dtype\n ):\n orig_size = d[key].shape[1:]\n if self._do_transform:\n d[key] = rotator(\n d[key],\n mode=mode,\n padding_mode=padding_mode,\n align_corners=align_corners,\n dtype=dtype,\n )\n rot_mat = rotator.get_rotation_matrix()\n else:\n rot_mat = np.eye(d[key].ndim)\n self.push_transform(\n d,\n key,\n orig_size=orig_size,\n extra_info={\n \"rot_mat\": rot_mat,\n \"mode\": mode.value if isinstance(mode, Enum) else mode,\n \"padding_mode\": padding_mode.value if isinstance(padding_mode, Enum) else padding_mode,\n \"align_corners\": align_corners if align_corners is not None else \"none\",\n },\n )\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_SpacingD_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_SpacingD_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1702, "end_line": 1719, "span_ids": ["impl:12"], "tokens": 209}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "SpacingD = SpacingDict = Spacingd\nOrientationD = OrientationDict = Orientationd\nRotate90D = Rotate90Dict = Rotate90d\nRandRotate90D = RandRotate90Dict = RandRotate90d\nResizeD = ResizeDict = Resized\nAffineD = AffineDict = Affined\nRandAffineD = RandAffineDict = RandAffined\nRand2DElasticD = Rand2DElasticDict = Rand2DElasticd\nRand3DElasticD = Rand3DElasticDict = Rand3DElasticd\nFlipD = FlipDict = Flipd\nRandFlipD = RandFlipDict = RandFlipd\nRandAxisFlipD = RandAxisFlipDict = RandAxisFlipd\nRotateD = RotateDict = Rotated\nRandRotateD = RandRotateDict = RandRotated\nZoomD = ZoomDict = Zoomd\nRandZoomD = RandZoomDict = RandZoomd\nAddCoordinateChannelsD = AddCoordinateChannelsDict = AddCoordinateChannelsd", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AsChannelFirst_AsChannelFirst.__call__.return.np_moveaxis_img_self_cha": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AsChannelFirst_AsChannelFirst.__call__.return.np_moveaxis_img_self_cha", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 73, "end_line": 98, "span_ids": ["AsChannelFirst.__init__", "AsChannelFirst", "AsChannelFirst.__call__"], "tokens": 247}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AsChannelFirst(Transform):\n \"\"\"\n Change the channel dimension of the image to the first dimension.\n\n Most of the image transformations in ``monai.transforms``\n assume the input image is in the channel-first format, which has the shape\n (num_channels, spatial_dim_1[, spatial_dim_2, ...]).\n\n This transform could be used to convert, for example, a channel-last image array in shape\n (spatial_dim_1[, spatial_dim_2, ...], num_channels) into the channel-first format,\n so that the multidimensional image array can be correctly interpreted by the other transforms.\n\n Args:\n channel_dim: which dimension of input image is the channel, default is the last dimension.\n \"\"\"\n\n def __init__(self, channel_dim: int = -1) -> None:\n if not (isinstance(channel_dim, int) and channel_dim >= -1):\n raise AssertionError(\"invalid channel dimension.\")\n self.channel_dim = channel_dim\n\n def __call__(self, img: np.ndarray) -> np.ndarray:\n \"\"\"\n Apply the transform to `img`.\n \"\"\"\n return np.moveaxis(img, self.channel_dim, 0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AsChannelLast_AsChannelLast.__call__.return.np_moveaxis_img_self_cha": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AsChannelLast_AsChannelLast.__call__.return.np_moveaxis_img_self_cha", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 101, "end_line": 125, "span_ids": ["AsChannelLast.__init__", "AsChannelLast.__call__", "AsChannelLast"], "tokens": 241}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AsChannelLast(Transform):\n \"\"\"\n Change the channel dimension of the image to the last dimension.\n\n Some of other 3rd party transforms assume the input image is in the channel-last format with shape\n (spatial_dim_1[, spatial_dim_2, ...], num_channels).\n\n This transform could be used to convert, for example, a channel-first image array in shape\n (num_channels, spatial_dim_1[, spatial_dim_2, ...]) into the channel-last format,\n so that MONAI transforms can construct a chain with other 3rd party transforms together.\n\n Args:\n channel_dim: which dimension of input image is the channel, default is the first dimension.\n \"\"\"\n\n def __init__(self, channel_dim: int = 0) -> None:\n if not (isinstance(channel_dim, int) and channel_dim >= -1):\n raise AssertionError(\"invalid channel dimension.\")\n self.channel_dim = channel_dim\n\n def __call__(self, img: np.ndarray) -> np.ndarray:\n \"\"\"\n Apply the transform to `img`.\n \"\"\"\n return np.moveaxis(img, self.channel_dim, -1)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddChannel_AddChannel.__call__.return.img_None_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddChannel_AddChannel.__call__.return.img_None_", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 128, "end_line": 146, "span_ids": ["AddChannel.__call__", "AddChannel"], "tokens": 155}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AddChannel(Transform):\n \"\"\"\n Adds a 1-length channel dimension to the input image.\n\n Most of the image transformations in ``monai.transforms``\n assumes the input image is in the channel-first format, which has the shape\n (num_channels, spatial_dim_1[, spatial_dim_2, ...]).\n\n This transform could be used, for example, to convert a (spatial_dim_1[, spatial_dim_2, ...])\n spatial image into the channel-first format so that the\n multidimensional image array can be correctly interpreted by the other\n transforms.\n \"\"\"\n\n def __call__(self, img: NdarrayTensor):\n \"\"\"\n Apply the transform to `img`.\n \"\"\"\n return img[None]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_RepeatChannel_RepeatChannel.__call__.return.np_repeat_img_self_repea": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_RepeatChannel_RepeatChannel.__call__.return.np_repeat_img_self_repea", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 174, "end_line": 193, "span_ids": ["RepeatChannel.__call__", "RepeatChannel.__init__", "RepeatChannel"], "tokens": 196}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RepeatChannel(Transform):\n \"\"\"\n Repeat channel data to construct expected input shape for models.\n The `repeats` count includes the origin data, for example:\n ``RepeatChannel(repeats=2)([[1, 2], [3, 4]])`` generates: ``[[1, 2], [1, 2], [3, 4], [3, 4]]``\n\n Args:\n repeats: the number of repetitions for each element.\n \"\"\"\n\n def __init__(self, repeats: int) -> None:\n if repeats <= 0:\n raise AssertionError(\"repeats count must be greater than 0.\")\n self.repeats = repeats\n\n def __call__(self, img: np.ndarray) -> np.ndarray:\n \"\"\"\n Apply the transform to `img`, assuming `img` is a \"channel-first\" array.\n \"\"\"\n return np.repeat(img, self.repeats, 0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_DataStats.__call___DataStats.__call__.return.img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_DataStats.__call___DataStats.__call__.return.img", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 468, "end_line": 502, "span_ids": ["DataStats.__call__"], "tokens": 365}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DataStats(Transform):\n\n def __call__(\n self,\n img: NdarrayTensor,\n prefix: Optional[str] = None,\n data_type: Optional[bool] = None,\n data_shape: Optional[bool] = None,\n value_range: Optional[bool] = None,\n data_value: Optional[bool] = None,\n additional_info: Optional[Callable] = None,\n ) -> NdarrayTensor:\n \"\"\"\n Apply the transform to `img`, optionally take arguments similar to the class constructor.\n \"\"\"\n lines = [f\"{prefix or self.prefix} statistics:\"]\n\n if self.data_type if data_type is None else data_type:\n lines.append(f\"Type: {type(img)}\")\n if self.data_shape if data_shape is None else data_shape:\n lines.append(f\"Shape: {img.shape}\")\n if self.value_range if value_range is None else value_range:\n if isinstance(img, np.ndarray):\n lines.append(f\"Value range: ({np.min(img)}, {np.max(img)})\")\n elif isinstance(img, torch.Tensor):\n lines.append(f\"Value range: ({torch.min(img)}, {torch.max(img)})\")\n else:\n lines.append(f\"Value range: (not a PyTorch or Numpy array, type: {type(img)})\")\n if self.data_value if data_value is None else data_value:\n lines.append(f\"Value: {img}\")\n additional_info = self.additional_info if additional_info is None else additional_info\n if additional_info is not None:\n lines.append(f\"Additional info: {additional_info(img)}\")\n separator = \"\\n\"\n output = f\"{separator.join(lines)}\"\n logging.getLogger(self._logger_name).info(output)\n return img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_SimulateDelay_SimulateDelay.__call__.return.img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_SimulateDelay_SimulateDelay.__call__.return.img", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 326, "end_line": 355, "span_ids": ["SimulateDelay.__call__", "SimulateDelay.__init__", "SimulateDelay"], "tokens": 256}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SimulateDelay(Transform):\n \"\"\"\n This is a pass through transform to be used for testing purposes. It allows\n adding fake behaviors that are useful for testing purposes to simulate\n how large datasets behave without needing to test on large data sets.\n\n For example, simulating slow NFS data transfers, or slow network transfers\n in testing by adding explicit timing delays. Testing of small test data\n can lead to incomplete understanding of real world issues, and may lead\n to sub-optimal design choices.\n \"\"\"\n\n def __init__(self, delay_time: float = 0.0) -> None:\n \"\"\"\n Args:\n delay_time: The minimum amount of time, in fractions of seconds,\n to accomplish this delay task.\n \"\"\"\n super().__init__()\n self.delay_time: float = delay_time\n\n def __call__(self, img: NdarrayTensor, delay_time: Optional[float] = None) -> NdarrayTensor:\n \"\"\"\n Args:\n img: data remain unchanged throughout this transform.\n delay_time: The minimum amount of time, in fractions of seconds,\n to accomplish this delay task.\n \"\"\"\n time.sleep(self.delay_time if delay_time is None else delay_time)\n return img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_LabelToMask_LabelToMask.__init__.self.merge_channels.merge_channels": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_LabelToMask_LabelToMask.__init__.self.merge_channels.merge_channels", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 408, "end_line": 433, "span_ids": ["LabelToMask.__init__", "LabelToMask"], "tokens": 297}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LabelToMask(Transform):\n \"\"\"\n Convert labels to mask for other tasks. A typical usage is to convert segmentation labels\n to mask data to pre-process images and then feed the images into classification network.\n It can support single channel labels or One-Hot labels with specified `select_labels`.\n For example, users can select `label value = [2, 3]` to construct mask data, or select the\n second and the third channels of labels to construct mask data.\n The output mask data can be a multiple channels binary data or a single channel binary\n data that merges all the channels.\n\n Args:\n select_labels: labels to generate mask from. for 1 channel label, the `select_labels`\n is the expected label values, like: [1, 2, 3]. for One-Hot format label, the\n `select_labels` is the expected channel indices.\n merge_channels: whether to use `np.any()` to merge the result on channel dim. if yes,\n will return a single channel mask with binary data.\n\n \"\"\"\n\n def __init__( # pytype: disable=annotation-type-mismatch\n self,\n select_labels: Union[Sequence[int], int],\n merge_channels: bool = False,\n ) -> None: # pytype: disable=annotation-type-mismatch\n self.select_labels = ensure_tuple(select_labels)\n self.merge_channels = merge_channels", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_Identityd_Identityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_Identityd_Identityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 137, "end_line": 159, "span_ids": ["Identityd.__init__", "Identityd", "Identityd.__call__"], "tokens": 177}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Identityd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.Identity`.\n \"\"\"\n\n def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.identity = Identity()\n\n def __call__(\n self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]]\n ) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.identity(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelFirstd_AsChannelFirstd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelFirstd_AsChannelFirstd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 162, "end_line": 182, "span_ids": ["AsChannelFirstd.__init__", "AsChannelFirstd.__call__", "AsChannelFirstd"], "tokens": 204}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AsChannelFirstd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.AsChannelFirst`.\n \"\"\"\n\n def __init__(self, keys: KeysCollection, channel_dim: int = -1, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n channel_dim: which dimension of input image is the channel, default is the last dimension.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = AsChannelFirst(channel_dim=channel_dim)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelLastd_AsChannelLastd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelLastd_AsChannelLastd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 185, "end_line": 205, "span_ids": ["AsChannelLastd.__call__", "AsChannelLastd.__init__", "AsChannelLastd"], "tokens": 204}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AsChannelLastd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.AsChannelLast`.\n \"\"\"\n\n def __init__(self, keys: KeysCollection, channel_dim: int = 0, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n channel_dim: which dimension of input image is the channel, default is the first dimension.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = AsChannelLast(channel_dim=channel_dim)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AddChanneld_AddChanneld.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AddChanneld_AddChanneld.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 208, "end_line": 227, "span_ids": ["AddChanneld.__call__", "AddChanneld.__init__", "AddChanneld"], "tokens": 174}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AddChanneld(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.AddChannel`.\n \"\"\"\n\n def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.adder = AddChannel()\n\n def __call__(self, data: Mapping[Hashable, NdarrayTensor]) -> Dict[Hashable, NdarrayTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.adder(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RepeatChanneld_RepeatChanneld.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RepeatChanneld_RepeatChanneld.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 256, "end_line": 276, "span_ids": ["RepeatChanneld.__init__", "RepeatChanneld", "RepeatChanneld.__call__"], "tokens": 190}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RepeatChanneld(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.RepeatChannel`.\n \"\"\"\n\n def __init__(self, keys: KeysCollection, repeats: int, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n repeats: the number of repetitions for each element.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.repeater = RepeatChannel(repeats)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.repeater(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_CastToTyped_CastToTyped.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_CastToTyped_CastToTyped.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 352, "end_line": 384, "span_ids": ["CastToTyped", "CastToTyped.__init__", "CastToTyped.__call__"], "tokens": 281}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CastToTyped(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.CastToType`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n dtype: Union[Sequence[Union[DtypeLike, torch.dtype]], DtypeLike, torch.dtype] = np.float32,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n dtype: convert image to this data type, default is `np.float32`.\n it also can be a sequence of dtypes or torch.dtype,\n each element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n self.dtype = ensure_tuple_rep(dtype, len(self.keys))\n self.converter = CastToType()\n\n def __call__(\n self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]]\n ) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]:\n d = dict(data)\n for key, dtype in self.key_iterator(d, self.dtype):\n d[key] = self.converter(d[key], dtype=dtype)\n\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToNumpyd_ToNumpyd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToNumpyd_ToNumpyd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 421, "end_line": 440, "span_ids": ["ToNumpyd.__init__", "ToNumpyd", "ToNumpyd.__call__"], "tokens": 170}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ToNumpyd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.ToNumpy`.\n \"\"\"\n\n def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = ToNumpy()\n\n def __call__(self, data: Mapping[Hashable, Any]) -> Dict[Hashable, Any]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SqueezeDimd_SqueezeDimd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SqueezeDimd_SqueezeDimd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 486, "end_line": 506, "span_ids": ["SqueezeDimd.__init__", "SqueezeDimd", "SqueezeDimd.__call__"], "tokens": 201}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SqueezeDimd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.SqueezeDim`.\n \"\"\"\n\n def __init__(self, keys: KeysCollection, dim: int = 0, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n dim: dimension to be squeezed. Default: 0 (the first dimension)\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = SqueezeDim(dim=dim)\n\n def __call__(self, data: Mapping[Hashable, NdarrayTensor]) -> Dict[Hashable, NdarrayTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SimulateDelayd_SimulateDelayd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SimulateDelayd_SimulateDelayd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 577, "end_line": 602, "span_ids": ["SimulateDelayd.__init__", "SimulateDelayd.__call__", "SimulateDelayd"], "tokens": 266}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SimulateDelayd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.SimulateDelay`.\n \"\"\"\n\n def __init__(\n self, keys: KeysCollection, delay_time: Union[Sequence[float], float] = 0.0, allow_missing_keys: bool = False\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n delay_time: The minimum amount of time, in fractions of seconds, to accomplish this identity task.\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.delay_time = ensure_tuple_rep(delay_time, len(self.keys))\n self.delayer = SimulateDelay()\n\n def __call__(self, data: Mapping[Hashable, NdarrayTensor]) -> Dict[Hashable, NdarrayTensor]:\n d = dict(data)\n for key, delay_time in self.key_iterator(d, self.delay_time):\n d[key] = self.delayer(d[key], delay_time=delay_time)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd_ConcatItemsd.__init__.self.dim.dim": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd_ConcatItemsd.__init__.self.dim.dim", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 661, "end_line": 679, "span_ids": ["ConcatItemsd", "ConcatItemsd.__init__"], "tokens": 180}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ConcatItemsd(MapTransform):\n \"\"\"\n Concatenate specified items from data dictionary together on the first dim to construct a big array.\n Expect all the items are numpy array or PyTorch Tensor.\n\n \"\"\"\n\n def __init__(self, keys: KeysCollection, name: str, dim: int = 0, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be concatenated together.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n name: the name corresponding to the key to store the concatenated data.\n dim: on which dimension to concatenate the items, default is 0.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.name = name\n self.dim = dim", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd.__call___ConcatItemsd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd.__call___ConcatItemsd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 681, "end_line": 703, "span_ids": ["ConcatItemsd.__call__"], "tokens": 201}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ConcatItemsd(MapTransform):\n\n def __call__(self, data):\n \"\"\"\n Raises:\n TypeError: When items in ``data`` differ in type.\n TypeError: When the item type is not in ``Union[numpy.ndarray, torch.Tensor]``.\n\n \"\"\"\n d = dict(data)\n output = []\n data_type = None\n for key in self.key_iterator(d):\n if data_type is None:\n data_type = type(d[key])\n elif not isinstance(d[key], data_type):\n raise TypeError(\"All items in data must have the same type.\")\n output.append(d[key])\n if data_type == np.ndarray:\n d[self.name] = np.concatenate(output, axis=self.dim)\n elif data_type == torch.Tensor:\n d[self.name] = torch.cat(output, dim=self.dim)\n else:\n raise TypeError(f\"Unsupported data type: {data_type}, available options are (numpy.ndarray, torch.Tensor).\")\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_Lambdad_Lambdad.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_Lambdad_Lambdad.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 706, "end_line": 748, "span_ids": ["Lambdad", "Lambdad.__init__", "Lambdad.__call__"], "tokens": 404}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Lambdad(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.Lambda`.\n\n For example:\n\n .. code-block:: python\n :emphasize-lines: 2\n\n input_data={'image': np.zeros((10, 2, 2)), 'label': np.ones((10, 2, 2))}\n lambd = Lambdad(keys='label', func=lambda x: x[:4, :, :])\n print(lambd(input_data)['label'].shape)\n (4, 2, 2)\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n func: Lambda/function to be applied. It also can be a sequence of Callable,\n each element corresponds to a key in ``keys``.\n overwrite: whether to overwrite the original data in the input dictionary with lamdbda function output.\n default to True. it also can be a sequence of bool, each element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n func: Union[Sequence[Callable], Callable],\n overwrite: Union[Sequence[bool], bool] = True,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.func = ensure_tuple_rep(func, len(self.keys))\n self.overwrite = ensure_tuple_rep(overwrite, len(self.keys))\n self._lambd = Lambda()\n\n def __call__(self, data):\n d = dict(data)\n for key, func, overwrite in self.key_iterator(d, self.func, self.overwrite):\n ret = self._lambd(d[key], func=func)\n if overwrite:\n d[key] = ret\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_LabelToMaskd_LabelToMaskd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_LabelToMaskd_LabelToMaskd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 772, "end_line": 803, "span_ids": ["LabelToMaskd", "LabelToMaskd.__init__", "LabelToMaskd.__call__"], "tokens": 319}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LabelToMaskd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.LabelToMask`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n select_labels: labels to generate mask from. for 1 channel label, the `select_labels`\n is the expected label values, like: [1, 2, 3]. for One-Hot format label, the\n `select_labels` is the expected channel indices.\n merge_channels: whether to use `np.any()` to merge the result on channel dim.\n if yes, will return a single channel mask with binary data.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n def __init__( # pytype: disable=annotation-type-mismatch\n self,\n keys: KeysCollection,\n select_labels: Union[Sequence[int], int],\n merge_channels: bool = False,\n allow_missing_keys: bool = False,\n ) -> None: # pytype: disable=annotation-type-mismatch\n super().__init__(keys, allow_missing_keys)\n self.converter = LabelToMask(select_labels=select_labels, merge_channels=merge_channels)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_IdentityD_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_IdentityD_", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1138, "end_line": 1170, "span_ids": ["impl:3"], "tokens": 439}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "IdentityD = IdentityDict = Identityd\nAsChannelFirstD = AsChannelFirstDict = AsChannelFirstd\nAsChannelLastD = AsChannelLastDict = AsChannelLastd\nAddChannelD = AddChannelDict = AddChanneld\nEnsureChannelFirstD = EnsureChannelFirstDict = EnsureChannelFirstd\nRemoveRepeatedChannelD = RemoveRepeatedChannelDict = RemoveRepeatedChanneld\nRepeatChannelD = RepeatChannelDict = RepeatChanneld\nSplitChannelD = SplitChannelDict = SplitChanneld\nCastToTypeD = CastToTypeDict = CastToTyped\nToTensorD = ToTensorDict = ToTensord\nToNumpyD = ToNumpyDict = ToNumpyd\nToCupyD = ToCupyDict = ToCupyd\nToPILD = ToPILDict = ToPILd\nTransposeD = TransposeDict = Transposed\nDeleteItemsD = DeleteItemsDict = DeleteItemsd\nSelectItemsD = SelectItemsDict = SelectItemsd\nSqueezeDimD = SqueezeDimDict = SqueezeDimd\nDataStatsD = DataStatsDict = DataStatsd\nSimulateDelayD = SimulateDelayDict = SimulateDelayd\nCopyItemsD = CopyItemsDict = CopyItemsd\nConcatItemsD = ConcatItemsDict = ConcatItemsd\nLambdaD = LambdaDict = Lambdad\nLabelToMaskD = LabelToMaskDict = LabelToMaskd\nFgBgToIndicesD = FgBgToIndicesDict = FgBgToIndicesd\nConvertToMultiChannelBasedOnBratsClassesD = (\n ConvertToMultiChannelBasedOnBratsClassesDict\n) = ConvertToMultiChannelBasedOnBratsClassesd\nAddExtremePointsChannelD = AddExtremePointsChannelDict = AddExtremePointsChanneld\nTorchVisionD = TorchVisionDict = TorchVisiond\nRandTorchVisionD = RandTorchVisionDict = RandTorchVisiond\nRandLambdaD = RandLambdaDict = RandLambdad\nMapLabelValueD = MapLabelValueDict = MapLabelValued", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_rescale_array_rescale_array._rescale_by_minv_and_max": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_rescale_array_rescale_array._rescale_by_minv_and_max", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 110, "end_line": 124, "span_ids": ["rescale_array"], "tokens": 167}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def rescale_array(arr: np.ndarray, minv: float = 0.0, maxv: float = 1.0, dtype: DtypeLike = np.float32):\n \"\"\"\n Rescale the values of numpy array `arr` to be from `minv` to `maxv`.\n \"\"\"\n if dtype is not None:\n arr = arr.astype(dtype)\n\n mina = np.min(arr)\n maxa = np.max(arr)\n\n if mina == maxa:\n return arr * minv\n\n norm = (arr - mina) / (maxa - mina) # normalize the array first\n return (norm * (maxv - minv)) + minv # rescale by minv and maxv, which is the normalized array by default", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_copypaste_arrays_copypaste_arrays.return.tuple_srcslices_tuple_d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_copypaste_arrays_copypaste_arrays.return.tuple_srcslices_tuple_d", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 148, "end_line": 205, "span_ids": ["copypaste_arrays"], "tokens": 662}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def copypaste_arrays(\n src_shape,\n dest_shape,\n srccenter: Sequence[int],\n destcenter: Sequence[int],\n dims: Sequence[Optional[int]],\n) -> Tuple[Tuple[slice, ...], Tuple[slice, ...]]:\n \"\"\"\n Calculate the slices to copy a sliced area of array in `src_shape` into array in `dest_shape`.\n\n The area has dimensions `dims` (use 0 or None to copy everything in that dimension),\n the source area is centered at `srccenter` index in `src` and copied into area centered at `destcenter` in `dest`.\n The dimensions of the copied area will be clipped to fit within the\n source and destination arrays so a smaller area may be copied than expected. Return value is the tuples of slice\n objects indexing the copied area in `src`, and those indexing the copy area in `dest`.\n\n Example\n\n .. code-block:: python\n\n src_shape = (6,6)\n src = np.random.randint(0,10,src_shape)\n dest = np.zeros_like(src)\n srcslices, destslices = copypaste_arrays(src_shape, dest.shape, (3, 2),(2, 1),(3, 4))\n dest[destslices] = src[srcslices]\n print(src)\n print(dest)\n\n >>> [[9 5 6 6 9 6]\n [4 3 5 6 1 2]\n [0 7 3 2 4 1]\n [3 0 0 1 5 1]\n [9 4 7 1 8 2]\n [6 6 5 8 6 7]]\n [[0 0 0 0 0 0]\n [7 3 2 4 0 0]\n [0 0 1 5 0 0]\n [4 7 1 8 0 0]\n [0 0 0 0 0 0]\n [0 0 0 0 0 0]]\n\n \"\"\"\n s_ndim = len(src_shape)\n d_ndim = len(dest_shape)\n srcslices = [slice(None)] * s_ndim\n destslices = [slice(None)] * d_ndim\n\n for i, ss, ds, sc, dc, dim in zip(range(s_ndim), src_shape, dest_shape, srccenter, destcenter, dims):\n if dim:\n # dimension before midpoint, clip to size fitting in both arrays\n d1 = np.clip(dim // 2, 0, min(sc, dc))\n # dimension after midpoint, clip to size fitting in both arrays\n d2 = np.clip(dim // 2 + 1, 0, min(ss - sc, ds - dc))\n\n srcslices[i] = slice(sc - d1, sc + d2)\n destslices[i] = slice(dc - d1, dc + d2)\n\n return tuple(srcslices), tuple(destslices)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_grid_create_grid.return.np_concatenate_coords_n": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_grid_create_grid.return.np_concatenate_coords_n", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 381, "end_line": 401, "span_ids": ["create_grid"], "tokens": 215}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def create_grid(\n spatial_size: Sequence[int],\n spacing: Optional[Sequence[float]] = None,\n homogeneous: bool = True,\n dtype: DtypeLike = float,\n):\n \"\"\"\n compute a `spatial_size` mesh.\n\n Args:\n spatial_size: spatial size of the grid.\n spacing: same len as ``spatial_size``, defaults to 1.0 (dense grid).\n homogeneous: whether to make homogeneous coordinates.\n dtype: output grid data type.\n \"\"\"\n spacing = spacing or tuple(1.0 for _ in spatial_size)\n ranges = [np.linspace(-(d - 1.0) / 2.0 * s, (d - 1.0) / 2.0 * s, int(d)) for d, s in zip(spatial_size, spacing)]\n coords = np.asarray(np.meshgrid(*ranges, indexing=\"ij\"), dtype=dtype)\n if not homogeneous:\n return coords\n return np.concatenate([coords, np.ones_like(coords[:1])])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_control_grid_create_control_grid.return.create_grid_grid_shape_s": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_control_grid_create_control_grid.return.create_grid_grid_shape_s", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 404, "end_line": 417, "span_ids": ["create_control_grid"], "tokens": 168}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def create_control_grid(\n spatial_shape: Sequence[int], spacing: Sequence[float], homogeneous: bool = True, dtype: DtypeLike = float\n):\n \"\"\"\n control grid with two additional point in each direction\n \"\"\"\n grid_shape = []\n for d, s in zip(spatial_shape, spacing):\n d = int(d)\n if d % 2 == 0:\n grid_shape.append(np.ceil((d - 1.0) / (2.0 * s) + 0.5) * 2.0 + 2.0)\n else:\n grid_shape.append(np.ceil((d - 1.0) / (2.0 * s)) * 2.0 + 3.0)\n return create_grid(grid_shape, spacing, homogeneous, dtype)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_shear_create_shear.raise_NotImplementedError": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_shear_create_shear.raise_NotImplementedError", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 379, "end_line": 404, "span_ids": ["create_shear"], "tokens": 301}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def create_shear(spatial_dims: int, coefs: Union[Sequence[float], float]) -> np.ndarray:\n \"\"\"\n create a shearing matrix\n\n Args:\n spatial_dims: spatial rank\n coefs: shearing factors, defaults to 0.\n\n Raises:\n NotImplementedError: When ``spatial_dims`` is not one of [2, 3].\n\n \"\"\"\n if spatial_dims == 2:\n coefs = ensure_tuple_size(coefs, dim=2, pad_val=0.0)\n return np.array([[1, coefs[0], 0.0], [coefs[1], 1.0, 0.0], [0.0, 0.0, 1.0]])\n if spatial_dims == 3:\n coefs = ensure_tuple_size(coefs, dim=6, pad_val=0.0)\n return np.array(\n [\n [1.0, coefs[0], coefs[1], 0.0],\n [coefs[2], 1.0, coefs[3], 0.0],\n [coefs[4], coefs[5], 1.0, 0.0],\n [0.0, 0.0, 0.0, 1.0],\n ]\n )\n raise NotImplementedError(\"Currently only spatial_dims in [2, 3] are supported.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_spatial_bounding_box_generate_spatial_bounding_box.return.box_start_box_end": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_spatial_bounding_box_generate_spatial_bounding_box.return.box_start_box_end", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 538, "end_line": 584, "span_ids": ["generate_spatial_bounding_box"], "tokens": 539}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def generate_spatial_bounding_box(\n img: np.ndarray,\n select_fn: Callable = is_positive,\n channel_indices: Optional[IndexSelection] = None,\n margin: Union[Sequence[int], int] = 0,\n) -> Tuple[List[int], List[int]]:\n \"\"\"\n generate the spatial bounding box of foreground in the image with start-end positions.\n Users can define arbitrary function to select expected foreground from the whole image or specified channels.\n And it can also add margin to every dim of the bounding box.\n The output format of the coordinates is:\n\n [1st_spatial_dim_start, 2nd_spatial_dim_start, ..., Nth_spatial_dim_start],\n [1st_spatial_dim_end, 2nd_spatial_dim_end, ..., Nth_spatial_dim_end]\n\n The bounding boxes edges are aligned with the input image edges.\n This function returns [-1, -1, ...], [-1, -1, ...] if there's no positive intensity.\n\n Args:\n img: source image to generate bounding box from.\n select_fn: function to select expected foreground, default is to select values > 0.\n channel_indices: if defined, select foreground only on the specified channels\n of image. if None, select foreground on the whole image.\n margin: add margin value to spatial dims of the bounding box, if only 1 value provided, use it for all dims.\n \"\"\"\n data = img[list(ensure_tuple(channel_indices))] if channel_indices is not None else img\n data = np.any(select_fn(data), axis=0)\n ndim = len(data.shape)\n margin = ensure_tuple_rep(margin, ndim)\n for m in margin:\n if m < 0:\n raise ValueError(\"margin value should not be negative number.\")\n\n box_start = [0] * ndim\n box_end = [0] * ndim\n\n for di, ax in enumerate(itertools.combinations(reversed(range(ndim)), ndim - 1)):\n dt = data.any(axis=ax)\n if not np.any(dt):\n # if no foreground, return all zero bounding box coords\n return [0] * ndim, [0] * ndim\n\n min_d = max(np.argmax(dt) - margin[di], 0)\n max_d = max(data.shape[di] - max(np.argmax(dt[::-1]) - margin[di], 0), min_d + 1)\n box_start[di], box_end[di] = min_d, max_d\n\n return box_start, box_end", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_resolve_name_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_resolve_name_", "embedding": null, "metadata": {"file_path": "monai/utils/aliases.py", "file_name": "aliases.py", "file_type": "text/x-python", "category": "implementation", "start_line": 46, "end_line": 103, "span_ids": ["resolve_name"], "tokens": 609}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def resolve_name(name):\n \"\"\"\n Search for the declaration (function or class) with the given name. This will first search the list of aliases to\n see if it was declared with this aliased name, then search treating `name` as a fully qualified name, then search\n the loaded modules for one having a declaration with the given name. If no declaration is found, raise ValueError.\n\n Raises:\n ValueError: When the module is not found.\n ValueError: When the module does not have the specified member.\n ValueError: When multiple modules with the declaration name are found.\n ValueError: When no module with the specified member is found.\n\n \"\"\"\n # attempt to resolve an alias\n with alias_lock:\n obj = GlobalAliases.get(name)\n\n if name in GlobalAliases and obj is None:\n raise AssertionError\n\n # attempt to resolve a qualified name\n if obj is None and \".\" in name:\n modname, declname = name.rsplit(\".\", 1)\n\n try:\n mod = importlib.import_module(modname)\n obj = getattr(mod, declname, None)\n except ModuleNotFoundError:\n raise ValueError(f\"Module {modname!r} not found.\")\n\n if obj is None:\n raise ValueError(f\"Module {modname!r} does not have member {declname!r}.\")\n\n # attempt to resolve a simple name\n if obj is None:\n # Get all modules having the declaration/import, need to check here that getattr returns something which doesn't\n # equate to False since in places __getattr__ returns 0 incorrectly:\n # https://github.com/tensorflow/tensorboard/blob/a22566561d2b4fea408755a951ac9eaf3a156f8e/tensorboard/compat/tensorflow_stub/pywrap_tensorflow.py#L35 # noqa: B950\n mods = [m for m in list(sys.modules.values()) if getattr(m, name, None)]\n\n if len(mods) > 0: # found modules with this declaration or import\n if len(mods) > 1: # found multiple modules, need to determine if ambiguous or just multiple imports\n foundmods = {inspect.getmodule(getattr(m, name)) for m in mods} # resolve imports\n foundmods = {m for m in foundmods if m is not None}\n\n if len(foundmods) > 1: # found multiple declarations with the same name\n modnames = [m.__name__ for m in foundmods]\n msg = f\"Multiple modules ({modnames!r}) with declaration name {name!r} found, resolution is ambiguous.\"\n raise ValueError(msg)\n mods = list(foundmods)\n\n obj = getattr(mods[0], name)\n\n if obj is None:\n raise ValueError(f\"No module with member {name!r} found.\")\n\n return obj", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_fall_back_tuple_fall_back_tuple.return.tuple_use_the_default": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_fall_back_tuple_fall_back_tuple.return.tuple_use_the_default", "embedding": null, "metadata": {"file_path": "monai/utils/misc.py", "file_name": "misc.py", "file_type": "text/x-python", "category": "implementation", "start_line": 134, "end_line": 177, "span_ids": ["fall_back_tuple"], "tokens": 466}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def fall_back_tuple(\n user_provided: Any, default: Union[Sequence, np.ndarray], func: Callable = lambda x: x and x > 0\n) -> Tuple[Any, ...]:\n \"\"\"\n Refine `user_provided` according to the `default`, and returns as a validated tuple.\n\n The validation is done for each element in `user_provided` using `func`.\n If `func(user_provided[idx])` returns False, the corresponding `default[idx]` will be used\n as the fallback.\n\n Typically used when `user_provided` is a tuple of window size provided by the user,\n `default` is defined by data, this function returns an updated `user_provided` with its non-positive\n components replaced by the corresponding components from `default`.\n\n Args:\n user_provided: item to be validated.\n default: a sequence used to provided the fallbacks.\n func: a Callable to validate every components of `user_provided`.\n\n Examples::\n\n >>> fall_back_tuple((1, 2), (32, 32))\n (1, 2)\n >>> fall_back_tuple(None, (32, 32))\n (32, 32)\n >>> fall_back_tuple((-1, 10), (32, 32))\n (32, 10)\n >>> fall_back_tuple((-1, None), (32, 32))\n (32, 32)\n >>> fall_back_tuple((1, None), (32, 32))\n (1, 32)\n >>> fall_back_tuple(0, (32, 32))\n (32, 32)\n >>> fall_back_tuple(range(3), (32, 64, 48))\n (32, 1, 2)\n >>> fall_back_tuple([0], (32, 32))\n ValueError: Sequence must have length 2, got length 1.\n\n \"\"\"\n ndim = len(default)\n user = ensure_tuple_rep(user_provided, ndim)\n return tuple( # use the default values if user provided is not valid\n user_c if func(user_c) else default_c for default_c, user_c in zip(default, user)\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_is_scalar_tensor_get_seed.return._seed": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_is_scalar_tensor_get_seed.return._seed", "embedding": null, "metadata": {"file_path": "monai/utils/misc.py", "file_name": "misc.py", "file_type": "text/x-python", "category": "implementation", "start_line": 180, "end_line": 212, "span_ids": ["is_scalar", "is_scalar_tensor", "progress_bar", "get_seed"], "tokens": 296}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def is_scalar_tensor(val: Any) -> bool:\n if isinstance(val, torch.Tensor) and val.ndim == 0:\n return True\n return False\n\n\ndef is_scalar(val: Any) -> bool:\n if isinstance(val, torch.Tensor) and val.ndim == 0:\n return True\n return bool(np.isscalar(val))\n\n\ndef progress_bar(index: int, count: int, desc: Optional[str] = None, bar_len: int = 30, newline: bool = False) -> None:\n \"\"\"print a progress bar to track some time consuming task.\n\n Args:\n index: current status in progress.\n count: total steps of the progress.\n desc: description of the progress bar, if not None, show before the progress bar.\n bar_len: the total length of the bar on screen, default is 30 char.\n newline: whether to print in a new line for every index.\n \"\"\"\n end = \"\\r\" if newline is False else \"\\r\\n\"\n filled_len = int(bar_len * index // count)\n bar = f\"{desc} \" if desc is not None else \"\"\n bar += \"[\" + \"=\" * filled_len + \" \" * (bar_len - filled_len) + \"]\"\n print(f\"{index}/{count} {bar}\", end=end)\n if index == count:\n print(\"\")\n\n\ndef get_seed() -> Optional[int]:\n return _seed", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_optional_import_optional_import.msg.descriptor_format_actual_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_optional_import_optional_import.msg.descriptor_format_actual_", "embedding": null, "metadata": {"file_path": "monai/utils/module.py", "file_name": "module.py", "file_type": "text/x-python", "category": "implementation", "start_line": 134, "end_line": 210, "span_ids": ["optional_import"], "tokens": 759}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def optional_import(\n module: str,\n version: str = \"\",\n version_checker: Callable[..., bool] = min_version,\n name: str = \"\",\n descriptor: str = OPTIONAL_IMPORT_MSG_FMT,\n version_args=None,\n allow_namespace_pkg: bool = False,\n) -> Tuple[Any, bool]:\n \"\"\"\n Imports an optional module specified by `module` string.\n Any importing related exceptions will be stored, and exceptions raise lazily\n when attempting to use the failed-to-import module.\n\n Args:\n module: name of the module to be imported.\n version: version string used by the version_checker.\n version_checker: a callable to check the module version, Defaults to monai.utils.min_version.\n name: a non-module attribute (such as method/class) to import from the imported module.\n descriptor: a format string for the final error message when using a not imported module.\n version_args: additional parameters to the version checker.\n allow_namespace_pkg: whether importing a namespace package is allowed. Defaults to False.\n\n Returns:\n The imported module and a boolean flag indicating whether the import is successful.\n\n Examples::\n\n >>> torch, flag = optional_import('torch', '1.1')\n >>> print(torch, flag)\n True\n\n >>> the_module, flag = optional_import('unknown_module')\n >>> print(flag)\n False\n >>> the_module.method # trying to access a module which is not imported\n OptionalImportError: import unknown_module (No module named 'unknown_module').\n\n >>> torch, flag = optional_import('torch', '42', exact_version)\n >>> torch.nn # trying to access a module for which there isn't a proper version imported\n OptionalImportError: import torch (requires version '42' by 'exact_version').\n\n >>> conv, flag = optional_import('torch.nn.functional', '1.0', name='conv1d')\n >>> print(conv)\n \n\n >>> conv, flag = optional_import('torch.nn.functional', '42', name='conv1d')\n >>> conv() # trying to use a function from the not successfully imported module (due to unmatched version)\n OptionalImportError: from torch.nn.functional import conv1d (requires version '42' by 'min_version').\n \"\"\"\n\n tb = None\n exception_str = \"\"\n if name:\n actual_cmd = f\"from {module} import {name}\"\n else:\n actual_cmd = f\"import {module}\"\n try:\n pkg = __import__(module) # top level module\n the_module = import_module(module)\n if not allow_namespace_pkg:\n is_namespace = getattr(the_module, \"__file__\", None) is None and hasattr(the_module, \"__path__\")\n if is_namespace:\n raise AssertionError\n if name: # user specified to load class/function/... from the module\n the_module = getattr(the_module, name)\n except Exception as import_exception: # any exceptions during import\n tb = import_exception.__traceback__\n exception_str = f\"{import_exception}\"\n else: # found the module\n if version_args and version_checker(pkg, f\"{version}\", version_args):\n return the_module, True\n if not version_args and version_checker(pkg, f\"{version}\"):\n return the_module, True\n\n # preparing lazy error message\n msg = descriptor.format(actual_cmd)\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_make_animated_gif_summary_make_animated_gif_summary.return.summary_op": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_make_animated_gif_summary_make_animated_gif_summary.return.summary_op", "embedding": null, "metadata": {"file_path": "monai/visualize/img2tensorboard.py", "file_name": "img2tensorboard.py", "file_type": "text/x-python", "category": "implementation", "start_line": 61, "end_line": 102, "span_ids": ["make_animated_gif_summary"], "tokens": 413}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def make_animated_gif_summary(\n tag: str,\n image: Union[np.ndarray, torch.Tensor],\n max_out: int = 3,\n animation_axes: Sequence[int] = (3,),\n image_axes: Sequence[int] = (1, 2),\n other_indices: Optional[Dict] = None,\n scale_factor: float = 1.0,\n) -> Summary:\n \"\"\"Creates an animated gif out of an image tensor in 'CHWD' format and returns Summary.\n\n Args:\n tag: Data identifier\n image: The image, expected to be in CHWD format\n max_out: maximum number of slices to animate through\n animation_axes: axis to animate on (not currently used)\n image_axes: axes of image (not currently used)\n other_indices: (not currently used)\n scale_factor: amount to multiply values by.\n if the image data is between 0 and 1, using 255 for this value will scale it to displayable range\n \"\"\"\n\n suffix = \"/image\" if max_out == 1 else \"/image/{}\"\n if other_indices is None:\n other_indices = {}\n axis_order = [0] + list(animation_axes) + list(image_axes)\n\n slicing = []\n for i in range(len(image.shape)):\n if i in axis_order:\n slicing.append(slice(None))\n else:\n other_ind = other_indices.get(i, 0)\n slicing.append(slice(other_ind, other_ind + 1))\n image = image[tuple(slicing)]\n\n for it_i in range(min(max_out, list(image.shape)[0])):\n one_channel_img: Union[torch.Tensor, np.ndarray] = (\n image[it_i, :, :, :].squeeze(dim=0) if isinstance(image, torch.Tensor) else image[it_i, :, :, :]\n )\n summary_op = _image3_animated_gif(tag + suffix.format(it_i), one_channel_img, scale_factor)\n return summary_op", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_add_animated_gif_add_animated_gif.writer__get_file_writer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_add_animated_gif_add_animated_gif.writer__get_file_writer_", "embedding": null, "metadata": {"file_path": "monai/visualize/img2tensorboard.py", "file_name": "img2tensorboard.py", "file_type": "text/x-python", "category": "implementation", "start_line": 102, "end_line": 126, "span_ids": ["add_animated_gif"], "tokens": 236}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def add_animated_gif(\n writer: SummaryWriter,\n tag: str,\n image_tensor: Union[np.ndarray, torch.Tensor],\n max_out: int,\n scale_factor: float,\n global_step: Optional[int] = None,\n) -> None:\n \"\"\"Creates an animated gif out of an image tensor in 'CHWD' format and writes it with SummaryWriter.\n\n Args:\n writer: Tensorboard SummaryWriter to write to\n tag: Data identifier\n image_tensor: tensor for the image to add, expected to be in CHWD format\n max_out: maximum number of slices to animate through\n scale_factor: amount to multiply values by. If the image data is between 0 and 1, using 255 for this value will\n scale it to displayable range\n global_step: Global step value to record\n \"\"\"\n writer._get_file_writer().add_summary(\n make_animated_gif_summary(\n tag, image_tensor, max_out=max_out, animation_axes=[1], image_axes=[2, 3], scale_factor=scale_factor\n ),\n global_step,\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_add_animated_gif_no_channels_add_animated_gif_no_channels.writer__get_file_writer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_add_animated_gif_no_channels_add_animated_gif_no_channels.writer__get_file_writer_", "embedding": null, "metadata": {"file_path": "monai/visualize/img2tensorboard.py", "file_name": "img2tensorboard.py", "file_type": "text/x-python", "category": "implementation", "start_line": 132, "end_line": 158, "span_ids": ["add_animated_gif_no_channels"], "tokens": 268}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def add_animated_gif_no_channels(\n writer: SummaryWriter,\n tag: str,\n image_tensor: Union[np.ndarray, torch.Tensor],\n max_out: int,\n scale_factor: float,\n global_step: Optional[int] = None,\n) -> None:\n \"\"\"Creates an animated gif out of an image tensor in 'HWD' format that does not have\n a channel dimension and writes it with SummaryWriter. This is similar to the \"add_animated_gif\"\n after inserting a channel dimension of 1.\n\n Args:\n writer: Tensorboard SummaryWriter to write to\n tag: Data identifier\n image_tensor: tensor for the image to add, expected to be in HWD format\n max_out: maximum number of slices to animate through\n scale_factor: amount to multiply values by. If the image data is between 0 and 1,\n using 255 for this value will scale it to displayable range\n global_step: Global step value to record\n \"\"\"\n writer._get_file_writer().add_summary(\n make_animated_gif_summary(\n tag, image_tensor, max_out=max_out, animation_axes=[1], image_axes=[1, 2], scale_factor=scale_factor\n ),\n global_step,\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_plot_2d_or_3d_image_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_plot_2d_or_3d_image_", "embedding": null, "metadata": {"file_path": "monai/visualize/img2tensorboard.py", "file_name": "img2tensorboard.py", "file_type": "text/x-python", "category": "implementation", "start_line": 161, "end_line": 210, "span_ids": ["plot_2d_or_3d_image"], "tokens": 529}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def plot_2d_or_3d_image(\n data: Union[torch.Tensor, np.ndarray],\n step: int,\n writer: SummaryWriter,\n index: int = 0,\n max_channels: int = 1,\n max_frames: int = 64,\n tag: str = \"output\",\n) -> None:\n \"\"\"Plot 2D or 3D image on the TensorBoard, 3D image will be converted to GIF image.\n\n Note:\n Plot 3D or 2D image(with more than 3 channels) as separate images.\n\n Args:\n data: target data to be plotted as image on the TensorBoard.\n The data is expected to have 'NCHW[D]' dimensions, and only plot the first in the batch.\n step: current step to plot in a chart.\n writer: specify TensorBoard SummaryWriter to plot the image.\n index: plot which element in the input data batch, default is the first element.\n max_channels: number of channels to plot.\n max_frames: number of frames for 2D-t plot.\n tag: tag of the plotted image on TensorBoard.\n \"\"\"\n d = data[index].detach().cpu().numpy() if isinstance(data, torch.Tensor) else data[index]\n\n if d.ndim == 2:\n d = rescale_array(d, 0, 1)\n dataformats = \"HW\"\n writer.add_image(f\"{tag}_{dataformats}\", d, step, dataformats=dataformats)\n return\n\n if d.ndim == 3:\n if d.shape[0] == 3 and max_channels == 3: # RGB\n dataformats = \"CHW\"\n writer.add_image(f\"{tag}_{dataformats}\", d, step, dataformats=dataformats)\n return\n dataformats = \"HW\"\n for j, d2 in enumerate(d[:max_channels]):\n d2 = rescale_array(d2, 0, 1)\n writer.add_image(f\"{tag}_{dataformats}_{j}\", d2, step, dataformats=dataformats)\n return\n\n if d.ndim >= 4:\n spatial = d.shape[-3:]\n for j, d3 in enumerate(d.reshape([-1] + list(spatial))[:max_channels]):\n d3 = rescale_array(d3, 0, 255)\n add_animated_gif(writer, f\"{tag}_HWD_{j}\", d3[None], max_frames, 1.0, step)\n return", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/__init__.py_sys_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/__init__.py_sys_", "embedding": null, "metadata": {"file_path": "tests/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 38, "span_ids": ["_enter_pr_4800", "impl", "docstring"], "tokens": 200}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import sys\nimport unittest\nimport warnings\n\n\ndef _enter_pr_4800(self):\n \"\"\"\n code from https://github.com/python/cpython/pull/4800\n \"\"\"\n # The __warningregistry__'s need to be in a pristine state for tests\n # to work properly.\n for v in list(sys.modules.values()):\n if getattr(v, \"__warningregistry__\", None):\n v.__warningregistry__ = {}\n self.warnings_manager = warnings.catch_warnings(record=True)\n self.warnings = self.warnings_manager.__enter__()\n warnings.simplefilter(\"always\", self.expected)\n return self\n\n\n# workaround for https://bugs.python.org/issue29620\ntry:\n # Suppression for issue #494: tests/__init__.py:34: error: Cannot assign to a method\n unittest.case._AssertWarnsContext.__enter__ = _enter_pr_4800 # type: ignore\nexcept AttributeError:\n pass", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activationsd.py_unittest_TEST_CASE_3._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activationsd.py_unittest_TEST_CASE_3._", "embedding": null, "metadata": {"file_path": "tests/test_activationsd.py", "file_name": "test_activationsd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["docstring"], "tokens": 482}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import Activationsd\n\nTEST_CASE_1 = [\n {\"keys\": [\"pred\", \"label\"], \"sigmoid\": False, \"softmax\": [True, False], \"other\": None},\n {\"pred\": torch.tensor([[[[0.0, 1.0]], [[2.0, 3.0]]]]), \"label\": torch.tensor([[[[0.0, 1.0]], [[2.0, 3.0]]]])},\n {\n \"pred\": torch.tensor([[[[0.1192, 0.1192]], [[0.8808, 0.8808]]]]),\n \"label\": torch.tensor([[[[0.0, 1.0]], [[2.0, 3.0]]]]),\n },\n (1, 2, 1, 2),\n]\n\nTEST_CASE_2 = [\n {\"keys\": [\"pred\", \"label\"], \"sigmoid\": False, \"softmax\": False, \"other\": [torch.tanh, None]},\n {\"pred\": torch.tensor([[[[0.0, 1.0], [2.0, 3.0]]]]), \"label\": torch.tensor([[[[0.0, 1.0], [2.0, 3.0]]]])},\n {\n \"pred\": torch.tensor([[[[0.0000, 0.7616], [0.9640, 0.9951]]]]),\n \"label\": torch.tensor([[[[0.0, 1.0], [2.0, 3.0]]]]),\n },\n (1, 1, 2, 2),\n]\n\nTEST_CASE_3 = [\n {\"keys\": \"pred\", \"sigmoid\": False, \"softmax\": False, \"other\": torch.tanh},\n {\"pred\": torch.tensor([[[[0.0, 1.0], [2.0, 3.0]]]])},\n {\"pred\": torch.tensor([[[[0.0000, 0.7616], [0.9640, 0.9951]]]])},\n (1, 1, 2, 2),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activationsd.py_TestActivationsd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activationsd.py_TestActivationsd_", "embedding": null, "metadata": {"file_path": "tests/test_activationsd.py", "file_name": "test_activationsd.py", "file_type": "text/x-python", "category": "test", "start_line": 45, "end_line": 58, "span_ids": ["TestActivationsd.test_value_shape", "TestActivationsd", "impl:7"], "tokens": 136}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestActivationsd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value_shape(self, input_param, test_input, output, expected_shape):\n result = Activationsd(**input_param)(test_input)\n torch.testing.assert_allclose(result[\"pred\"], output[\"pred\"])\n self.assertTupleEqual(result[\"pred\"].shape, expected_shape)\n if \"label\" in result:\n torch.testing.assert_allclose(result[\"label\"], output[\"label\"])\n self.assertTupleEqual(result[\"label\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_multi_in_single_out_TestAdaptors.test_multi_in_single_out.None_2.self_assertEqual_dres_lb": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_multi_in_single_out_TestAdaptors.test_multi_in_single_out.None_2.self_assertEqual_dres_lb", "embedding": null, "metadata": {"file_path": "tests/test_adaptors.py", "file_name": "test_adaptors.py", "file_type": "text/x-python", "category": "test", "start_line": 56, "end_line": 85, "span_ids": ["TestAdaptors.test_multi_in_single_out"], "tokens": 320}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAdaptors(unittest.TestCase):\n\n def test_multi_in_single_out(self):\n def foo(image, label):\n return image * label\n\n it = itertools.product([\"image\", [\"image\"]], [None, [\"image\", \"label\"], {\"image\": \"image\", \"label\": \"label\"}])\n\n for i in it:\n d = {\"image\": 2, \"label\": 3}\n dres = adaptor(foo, i[0], i[1])(d)\n self.assertEqual(dres[\"image\"], 6)\n self.assertEqual(dres[\"label\"], 3)\n\n it = itertools.product(\n [\"newimage\", [\"newimage\"]], [None, [\"image\", \"label\"], {\"image\": \"image\", \"label\": \"label\"}]\n )\n\n for i in it:\n d = {\"image\": 2, \"label\": 3}\n dres = adaptor(foo, i[0], i[1])(d)\n self.assertEqual(dres[\"image\"], 2)\n self.assertEqual(dres[\"label\"], 3)\n self.assertEqual(dres[\"newimage\"], 6)\n\n it = itertools.product([\"img\", [\"img\"]], [{\"img\": \"image\", \"lbl\": \"label\"}])\n\n for i in it:\n d = {\"img\": 2, \"lbl\": 3}\n dres = adaptor(foo, i[0], i[1])(d)\n self.assertEqual(dres[\"img\"], 6)\n self.assertEqual(dres[\"lbl\"], 3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_default_arg_single_out_TestAdaptors.test_dict_out.self_assertEqual_dres_b_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_default_arg_single_out_TestAdaptors.test_dict_out.self_assertEqual_dres_b_", "embedding": null, "metadata": {"file_path": "tests/test_adaptors.py", "file_name": "test_adaptors.py", "file_type": "text/x-python", "category": "test", "start_line": 87, "end_line": 118, "span_ids": ["TestAdaptors.test_multi_out", "TestAdaptors.test_dict_out", "TestAdaptors.test_default_arg_single_out"], "tokens": 270}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAdaptors(unittest.TestCase):\n\n def test_default_arg_single_out(self):\n def foo(a, b=2):\n return a * b\n\n d = {\"a\": 5}\n dres = adaptor(foo, \"c\")(d)\n self.assertEqual(dres[\"c\"], 10)\n\n d = {\"b\": 5}\n with self.assertRaises(TypeError):\n dres = adaptor(foo, \"c\")(d)\n\n def test_multi_out(self):\n def foo(a, b):\n return a * b, a / b\n\n d = {\"a\": 3, \"b\": 4}\n dres = adaptor(foo, [\"c\", \"d\"])(d)\n self.assertEqual(dres[\"c\"], 12)\n self.assertEqual(dres[\"d\"], 3 / 4)\n\n def test_dict_out(self):\n def foo(a):\n return {\"a\": a * 2}\n\n d = {\"a\": 2}\n dres = adaptor(foo, {\"a\": \"a\"})(d)\n self.assertEqual(dres[\"a\"], 4)\n\n d = {\"b\": 2}\n dres = adaptor(foo, {\"a\": \"b\"}, {\"b\": \"a\"})(d)\n self.assertEqual(dres[\"b\"], 4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestApplyAlias_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestApplyAlias_", "embedding": null, "metadata": {"file_path": "tests/test_adaptors.py", "file_name": "test_adaptors.py", "file_type": "text/x-python", "category": "test", "start_line": 121, "end_line": 149, "span_ids": ["TestToKwargs", "TestToKwargs.test_to_kwargs", "TestApplyAlias", "TestApplyAlias.test_apply_alias"], "tokens": 203}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestApplyAlias(unittest.TestCase):\n def test_apply_alias(self):\n def foo(d):\n d[\"x\"] *= 2\n return d\n\n d = {\"a\": 1, \"b\": 3}\n result = apply_alias(foo, {\"b\": \"x\"})(d)\n self.assertDictEqual({\"a\": 1, \"b\": 6}, result)\n\n\nclass TestToKwargs(unittest.TestCase):\n def test_to_kwargs(self):\n def foo(**kwargs):\n results = {k: v * 2 for k, v in kwargs.items()}\n return results\n\n def compose_like(fn, data):\n data = fn(data)\n return data\n\n d = {\"a\": 1, \"b\": 2}\n\n actual = compose_like(to_kwargs(foo), d)\n self.assertDictEqual(actual, {\"a\": 2, \"b\": 4})\n\n with self.assertRaises(TypeError):\n actual = compose_like(foo, d)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_channeld.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_channeld.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_add_channeld.py", "file_name": "test_add_channeld.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 36, "span_ids": ["TestAddChanneld.test_shape", "TestAddChanneld", "impl:3", "docstring"], "tokens": 175}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import AddChanneld\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\", \"seg\"]},\n {\"img\": np.array([[0, 1], [1, 2]]), \"seg\": np.array([[0, 1], [1, 2]])},\n (1, 2, 2),\n]\n\n\nclass TestAddChanneld(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1])\n def test_shape(self, input_param, input_data, expected_shape):\n result = AddChanneld(**input_param)(input_data)\n self.assertEqual(result[\"img\"].shape, expected_shape)\n self.assertEqual(result[\"seg\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrast.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrast.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_adjust_contrast.py", "file_name": "test_adjust_contrast.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestAdjustContrast.test_correct_results", "impl:7", "TestAdjustContrast", "docstring"], "tokens": 237}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import AdjustContrast\nfrom tests.utils import NumpyImageTestCase2D\n\nTEST_CASE_1 = [1.0]\n\nTEST_CASE_2 = [0.5]\n\nTEST_CASE_3 = [4.5]\n\n\nclass TestAdjustContrast(NumpyImageTestCase2D):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_correct_results(self, gamma):\n adjuster = AdjustContrast(gamma=gamma)\n result = adjuster(self.imt)\n if gamma == 1.0:\n expected = self.imt\n else:\n epsilon = 1e-7\n img_min = self.imt.min()\n img_range = self.imt.max() - img_min\n expected = np.power(((self.imt - img_min) / float(img_range + epsilon)), gamma) * img_range + img_min\n np.testing.assert_allclose(expected, result, rtol=1e-05)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrastd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrastd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_adjust_contrastd.py", "file_name": "test_adjust_contrastd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestAdjustContrastd.test_correct_results", "TestAdjustContrastd", "impl:7", "docstring"], "tokens": 247}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import AdjustContrastd\nfrom tests.utils import NumpyImageTestCase2D\n\nTEST_CASE_1 = [1.0]\n\nTEST_CASE_2 = [0.5]\n\nTEST_CASE_3 = [4.5]\n\n\nclass TestAdjustContrastd(NumpyImageTestCase2D):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_correct_results(self, gamma):\n adjuster = AdjustContrastd(\"img\", gamma=gamma)\n result = adjuster({\"img\": self.imt})\n if gamma == 1.0:\n expected = self.imt\n else:\n epsilon = 1e-7\n img_min = self.imt.min()\n img_range = self.imt.max() - img_min\n expected = np.power(((self.imt - img_min) / float(img_range + epsilon)), gamma) * img_range + img_min\n np.testing.assert_allclose(expected, result[\"img\"], rtol=1e-05)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_affine.py", "file_name": "test_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 79, "span_ids": ["docstring"], "tokens": 1369}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import Affine\n\nTEST_CASES = [\n [\n dict(padding_mode=\"zeros\", as_tensor_output=False, device=None),\n {\"img\": np.arange(9).reshape((1, 3, 3)), \"spatial_size\": (-1, 0)},\n np.arange(9).reshape(1, 3, 3),\n ],\n [\n dict(padding_mode=\"zeros\", as_tensor_output=False, device=None, image_only=True),\n {\"img\": np.arange(9).reshape((1, 3, 3)), \"spatial_size\": (-1, 0)},\n np.arange(9).reshape(1, 3, 3),\n ],\n [\n dict(padding_mode=\"zeros\", as_tensor_output=False, device=None),\n {\"img\": np.arange(4).reshape((1, 2, 2))},\n np.arange(4).reshape(1, 2, 2),\n ],\n [\n dict(padding_mode=\"zeros\", as_tensor_output=False, device=None),\n {\"img\": np.arange(4).reshape((1, 2, 2)), \"spatial_size\": (4, 4)},\n np.array([[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 2.0, 3.0, 0.0], [0.0, 0.0, 0.0, 0.0]]]),\n ],\n [\n dict(rotate_params=[np.pi / 2], padding_mode=\"zeros\", as_tensor_output=False, device=None),\n {\"img\": np.arange(4).reshape((1, 2, 2)), \"spatial_size\": (4, 4)},\n np.array([[[0.0, 0.0, 0.0, 0.0], [0.0, 2.0, 0.0, 0.0], [0.0, 3.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0]]]),\n ],\n [\n dict(padding_mode=\"zeros\", as_tensor_output=False, device=None),\n {\"img\": np.arange(27).reshape((1, 3, 3, 3)), \"spatial_size\": (-1, 0, 0)},\n np.arange(27).reshape(1, 3, 3, 3),\n ],\n [\n dict(padding_mode=\"zeros\", as_tensor_output=False, device=None),\n {\"img\": np.arange(8).reshape((1, 2, 2, 2)), \"spatial_size\": (4, 4, 4)},\n np.array(\n [\n [\n [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 2.0, 3.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n [[0.0, 0.0, 0.0, 0.0], [0.0, 4.0, 5.0, 0.0], [0.0, 6.0, 7.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n ]\n ]\n ),\n ],\n [\n dict(rotate_params=[np.pi / 2], padding_mode=\"zeros\", as_tensor_output=False, device=None),\n {\"img\": np.arange(8).reshape((1, 2, 2, 2)), \"spatial_size\": (4, 4, 4)},\n np.array(\n [\n [\n [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n [[0.0, 0.0, 0.0, 0.0], [0.0, 2.0, 0.0, 0.0], [0.0, 3.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n [[0.0, 0.0, 0.0, 0.0], [0.0, 6.0, 4.0, 0.0], [0.0, 7.0, 5.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n ]\n ]\n ),\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine.py_TestAffine_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine.py_TestAffine_", "embedding": null, "metadata": {"file_path": "tests/test_affine.py", "file_name": "test_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 82, "end_line": 95, "span_ids": ["TestAffine", "impl:3", "TestAffine.test_affine"], "tokens": 117}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffine(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_affine(self, input_param, input_data, expected_val):\n g = Affine(**input_param)\n result = g(**input_data)\n if isinstance(result, tuple):\n result = result[0]\n self.assertEqual(isinstance(result, torch.Tensor), isinstance(expected_val, torch.Tensor))\n np.testing.assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_grid.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_grid.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_affine_grid.py", "file_name": "test_affine_grid.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 88, "span_ids": ["docstring"], "tokens": 1413}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import AffineGrid\n\nTEST_CASES = [\n [\n {\"as_tensor_output\": False, \"device\": torch.device(\"cpu:0\")},\n {\"spatial_size\": (2, 2)},\n np.array([[[-0.5, -0.5], [0.5, 0.5]], [[-0.5, 0.5], [-0.5, 0.5]], [[1.0, 1.0], [1.0, 1.0]]]),\n ],\n [\n {\"as_tensor_output\": True, \"device\": None},\n {\"spatial_size\": (2, 2)},\n torch.tensor([[[-0.5, -0.5], [0.5, 0.5]], [[-0.5, 0.5], [-0.5, 0.5]], [[1.0, 1.0], [1.0, 1.0]]]),\n ],\n [{\"as_tensor_output\": False, \"device\": None}, {\"grid\": np.ones((3, 3, 3))}, np.ones((3, 3, 3))],\n [{\"as_tensor_output\": True, \"device\": torch.device(\"cpu:0\")}, {\"grid\": np.ones((3, 3, 3))}, torch.ones((3, 3, 3))],\n [{\"as_tensor_output\": False, \"device\": None}, {\"grid\": torch.ones((3, 3, 3))}, np.ones((3, 3, 3))],\n [\n {\"as_tensor_output\": True, \"device\": torch.device(\"cpu:0\")},\n {\"grid\": torch.ones((3, 3, 3))},\n torch.ones((3, 3, 3)),\n ],\n [\n {\n \"rotate_params\": (1.0, 1.0),\n \"scale_params\": (-20, 10),\n \"as_tensor_output\": True,\n \"device\": torch.device(\"cpu:0\"),\n },\n {\"grid\": torch.ones((3, 3, 3))},\n torch.tensor(\n [\n [[-19.2208, -19.2208, -19.2208], [-19.2208, -19.2208, -19.2208], [-19.2208, -19.2208, -19.2208]],\n [[-11.4264, -11.4264, -11.4264], [-11.4264, -11.4264, -11.4264], [-11.4264, -11.4264, -11.4264]],\n [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],\n ]\n ),\n ],\n [\n {\n \"rotate_params\": (1.0, 1.0, 1.0),\n \"scale_params\": (-20, 10),\n \"as_tensor_output\": True,\n \"device\": torch.device(\"cpu:0\"),\n },\n {\"grid\": torch.ones((4, 3, 3, 3))},\n torch.tensor(\n [\n [\n [[-9.5435, -9.5435, -9.5435], [-9.5435, -9.5435, -9.5435], [-9.5435, -9.5435, -9.5435]],\n [[-9.5435, -9.5435, -9.5435], [-9.5435, -9.5435, -9.5435], [-9.5435, -9.5435, -9.5435]],\n [[-9.5435, -9.5435, -9.5435], [-9.5435, -9.5435, -9.5435], [-9.5435, -9.5435, -9.5435]],\n ],\n [\n [[-20.2381, -20.2381, -20.2381], [-20.2381, -20.2381, -20.2381], [-20.2381, -20.2381, -20.2381]],\n [[-20.2381, -20.2381, -20.2381], [-20.2381, -20.2381, -20.2381], [-20.2381, -20.2381, -20.2381]],\n [[-20.2381, -20.2381, -20.2381], [-20.2381, -20.2381, -20.2381], [-20.2381, -20.2381, -20.2381]],\n ],\n [\n [[-0.5844, -0.5844, -0.5844], [-0.5844, -0.5844, -0.5844], [-0.5844, -0.5844, -0.5844]],\n [[-0.5844, -0.5844, -0.5844], [-0.5844, -0.5844, -0.5844], [-0.5844, -0.5844, -0.5844]],\n [[-0.5844, -0.5844, -0.5844], [-0.5844, -0.5844, -0.5844], [-0.5844, -0.5844, -0.5844]],\n ],\n [\n [[1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000]],\n [[1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000]],\n [[1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000]],\n ],\n ]\n ),\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_grid.py_TestAffineGrid_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_grid.py_TestAffineGrid_", "embedding": null, "metadata": {"file_path": "tests/test_affine_grid.py", "file_name": "test_affine_grid.py", "file_type": "text/x-python", "category": "test", "start_line": 91, "end_line": 105, "span_ids": ["TestAffineGrid", "impl:3", "TestAffineGrid.test_affine_grid"], "tokens": 151}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineGrid(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_affine_grid(self, input_param, input_data, expected_val):\n g = AffineGrid(**input_param)\n result, _ = g(**input_data)\n self.assertEqual(isinstance(result, torch.Tensor), isinstance(expected_val, torch.Tensor))\n if isinstance(result, torch.Tensor):\n np.testing.assert_allclose(result.cpu().numpy(), expected_val.cpu().numpy(), rtol=1e-4, atol=1e-4)\n else:\n np.testing.assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_unittest_TEST_NORM_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_unittest_TEST_NORM_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 30, "span_ids": ["docstring"], "tokens": 341}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import normalize_transform, to_norm_affine\nfrom monai.networks.layers import AffineTransform\n\nTEST_NORM_CASES = [\n [(4, 5), True, [[[0.666667, 0, -1], [0, 0.5, -1], [0, 0, 1]]]],\n [\n (2, 4, 5),\n True,\n [[[2.0, 0.0, 0.0, -1.0], [0.0, 0.6666667, 0.0, -1.0], [0.0, 0.0, 0.5, -1.0], [0.0, 0.0, 0.0, 1.0]]],\n ],\n [(4, 5), False, [[[0.5, 0.0, -0.75], [0.0, 0.4, -0.8], [0.0, 0.0, 1.0]]]],\n [(2, 4, 5), False, [[[1.0, 0.0, 0.0, -0.5], [0.0, 0.5, 0.0, -0.75], [0.0, 0.0, 0.4, -0.8], [0.0, 0.0, 0.0, 1.0]]]],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TEST_TO_NORM_AFFINE_CASES_TEST_ILL_TO_NORM_AFFINE_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TEST_TO_NORM_AFFINE_CASES_TEST_ILL_TO_NORM_AFFINE_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 32, "end_line": 67, "span_ids": ["impl:5", "docstring"], "tokens": 720}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_TO_NORM_AFFINE_CASES = [\n [\n [[[1, 0, 0], [0, 1, 0], [0, 0, 1]]],\n (4, 6),\n (5, 3),\n True,\n [[[1.3333334, 0.0, 0.33333337], [0.0, 0.4, -0.6], [0.0, 0.0, 1.0]]],\n ],\n [\n [[[1, 0, 0], [0, 1, 0], [0, 0, 1]]],\n (4, 6),\n (5, 3),\n False,\n [[[1.25, 0.0, 0.25], [0.0, 0.5, -0.5], [0.0, 0.0, 1.0]]],\n ],\n [\n [[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]],\n (2, 4, 6),\n (3, 5, 3),\n True,\n [[[2.0, 0.0, 0.0, 1.0], [0.0, 1.3333334, 0.0, 0.33333337], [0.0, 0.0, 0.4, -0.6], [0.0, 0.0, 0.0, 1.0]]],\n ],\n [\n [[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]],\n (2, 4, 6),\n (3, 5, 3),\n False,\n [[[1.5, 0.0, 0.0, 0.5], [0.0, 1.25, 0.0, 0.25], [0.0, 0.0, 0.5, -0.5], [0.0, 0.0, 0.0, 1.0]]],\n ],\n]\n\nTEST_ILL_TO_NORM_AFFINE_CASES = [\n [[[[1, 0, 0], [0, 1, 0], [0, 0, 1]]], (3, 4, 6), (3, 5, 3), False],\n [[[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]], (4, 6), (3, 5, 3), True],\n [[[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]], (4, 6), (3, 5, 3), True],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestNormTransform_TestNormTransform.test_norm_xform.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestNormTransform_TestNormTransform.test_norm_xform.if_torch_cuda_is_availabl.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 70, "end_line": 83, "span_ids": ["TestNormTransform.test_norm_xform", "TestNormTransform"], "tokens": 157}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNormTransform(unittest.TestCase):\n @parameterized.expand(TEST_NORM_CASES)\n def test_norm_xform(self, input_shape, align_corners, expected):\n norm = normalize_transform(\n input_shape, device=torch.device(\"cpu:0\"), dtype=torch.float32, align_corners=align_corners\n )\n norm = norm.detach().cpu().numpy()\n np.testing.assert_allclose(norm, expected, atol=1e-6)\n if torch.cuda.is_available():\n norm = normalize_transform(\n input_shape, device=torch.device(\"cuda:0\"), dtype=torch.float32, align_corners=align_corners\n )\n norm = norm.detach().cpu().numpy()\n np.testing.assert_allclose(norm, expected, atol=1e-4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine_TestToNormAffine.test_to_norm_affine.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine_TestToNormAffine.test_to_norm_affine.if_torch_cuda_is_availabl.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 86, "end_line": 98, "span_ids": ["TestToNormAffine.test_to_norm_affine", "TestToNormAffine"], "tokens": 209}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestToNormAffine(unittest.TestCase):\n @parameterized.expand(TEST_TO_NORM_AFFINE_CASES)\n def test_to_norm_affine(self, affine, src_size, dst_size, align_corners, expected):\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n new_affine = to_norm_affine(affine, src_size, dst_size, align_corners)\n new_affine = new_affine.detach().cpu().numpy()\n np.testing.assert_allclose(new_affine, expected, atol=1e-6)\n\n if torch.cuda.is_available():\n affine = torch.as_tensor(affine, device=torch.device(\"cuda:0\"), dtype=torch.float32)\n new_affine = to_norm_affine(affine, src_size, dst_size, align_corners)\n new_affine = new_affine.detach().cpu().numpy()\n np.testing.assert_allclose(new_affine, expected, atol=1e-4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform_TestAffineTransform.test_affine_shift.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform_TestAffineTransform.test_affine_shift.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 109, "end_line": 116, "span_ids": ["TestAffineTransform", "TestAffineTransform.test_affine_shift"], "tokens": 197}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n def test_affine_shift(self):\n affine = torch.as_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, -1.0]])\n image = torch.as_tensor([[[[4.0, 1.0, 3.0, 2.0], [7.0, 6.0, 8.0, 5.0], [3.0, 5.0, 3.0, 6.0]]]])\n out = AffineTransform()(image, affine)\n out = out.detach().cpu().numpy()\n expected = [[[[0, 4, 1, 3], [0, 7, 6, 8], [0, 3, 5, 3]]]]\n np.testing.assert_allclose(out, expected, atol=1e-5)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_1_TestAffineTransform.test_affine_shift_1.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_1_TestAffineTransform.test_affine_shift_1.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 118, "end_line": 124, "span_ids": ["TestAffineTransform.test_affine_shift_1"], "tokens": 199}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_shift_1(self):\n affine = torch.as_tensor([[1.0, 0.0, -1.0], [0.0, 1.0, -1.0]])\n image = torch.as_tensor([[[[4.0, 1.0, 3.0, 2.0], [7.0, 6.0, 8.0, 5.0], [3.0, 5.0, 3.0, 6.0]]]])\n out = AffineTransform()(image, affine)\n out = out.detach().cpu().numpy()\n expected = [[[[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]]]\n np.testing.assert_allclose(out, expected, atol=1e-5)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_2_TestAffineTransform.test_affine_shift_2.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_2_TestAffineTransform.test_affine_shift_2.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 126, "end_line": 132, "span_ids": ["TestAffineTransform.test_affine_shift_2"], "tokens": 199}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_shift_2(self):\n affine = torch.as_tensor([[1.0, 0.0, -1.0], [0.0, 1.0, 0.0]])\n image = torch.as_tensor([[[[4.0, 1.0, 3.0, 2.0], [7.0, 6.0, 8.0, 5.0], [3.0, 5.0, 3.0, 6.0]]]])\n out = AffineTransform()(image, affine)\n out = out.detach().cpu().numpy()\n expected = [[[[0, 0, 0, 0], [4, 1, 3, 2], [7, 6, 8, 5]]]]\n np.testing.assert_allclose(out, expected, atol=1e-5)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_TestAffineTransform.test_zoom.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_TestAffineTransform.test_zoom.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 134, "end_line": 139, "span_ids": ["TestAffineTransform.test_zoom"], "tokens": 140}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_zoom(self):\n affine = torch.as_tensor([[1.0, 0.0, 0.0], [0.0, 2.0, 0.0]])\n image = torch.arange(1.0, 13.0).view(1, 1, 3, 4).to(device=torch.device(\"cpu:0\"))\n out = AffineTransform((3, 2))(image, affine)\n expected = [[[[1, 3], [5, 7], [9, 11]]]]\n np.testing.assert_allclose(out, expected, atol=1e-5)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_1_TestAffineTransform.test_zoom_1.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_1_TestAffineTransform.test_zoom_1.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 141, "end_line": 146, "span_ids": ["TestAffineTransform.test_zoom_1"], "tokens": 137}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_zoom_1(self):\n affine = torch.as_tensor([[2.0, 0.0, 0.0], [0.0, 1.0, 0.0]])\n image = torch.arange(1.0, 13.0).view(1, 1, 3, 4).to(device=torch.device(\"cpu:0\"))\n out = AffineTransform()(image, affine, (1, 4))\n expected = [[[[1, 2, 3, 4]]]]\n np.testing.assert_allclose(out, expected, atol=1e-5)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_2_TestAffineTransform.test_zoom_2.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_2_TestAffineTransform.test_zoom_2.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 148, "end_line": 153, "span_ids": ["TestAffineTransform.test_zoom_2"], "tokens": 135}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_zoom_2(self):\n affine = torch.as_tensor([[2.0, 0.0, 0.0], [0.0, 2.0, 0.0]], dtype=torch.float32)\n image = torch.arange(1.0, 13.0).view(1, 1, 3, 4).to(device=torch.device(\"cpu:0\"))\n out = AffineTransform((1, 2))(image, affine)\n expected = [[[[1, 3]]]]\n np.testing.assert_allclose(out, expected, atol=1e-5)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_minimum_TestAffineTransform.test_affine_transform_minimum.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_minimum_TestAffineTransform.test_affine_transform_minimum.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 155, "end_line": 172, "span_ids": ["TestAffineTransform.test_affine_transform_minimum"], "tokens": 305}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_transform_minimum(self):\n t = np.pi / 3\n affine = [[np.cos(t), -np.sin(t), 0], [np.sin(t), np.cos(t), 0], [0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n image = torch.arange(24.0).view(1, 1, 4, 6).to(device=torch.device(\"cpu:0\"))\n out = AffineTransform()(image, affine)\n out = out.detach().cpu().numpy()\n expected = [\n [\n [\n [0.0, 0.06698727, 0.0, 0.0, 0.0, 0.0],\n [3.8660254, 0.86602557, 0.0, 0.0, 0.0, 0.0],\n [7.732051, 3.035899, 0.73205125, 0.0, 0.0, 0.0],\n [11.598076, 6.901923, 2.7631402, 0.0, 0.0, 0.0],\n ]\n ]\n ]\n np.testing.assert_allclose(out, expected, atol=1e-5)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_2d_TestAffineTransform.test_affine_transform_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_2d_TestAffineTransform.test_affine_transform_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 174, "end_line": 208, "span_ids": ["TestAffineTransform.test_affine_transform_2d"], "tokens": 558}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_transform_2d(self):\n t = np.pi / 3\n affine = [[np.cos(t), -np.sin(t), 0], [np.sin(t), np.cos(t), 0], [0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n image = torch.arange(24.0).view(1, 1, 4, 6).to(device=torch.device(\"cpu:0\"))\n xform = AffineTransform((3, 4), padding_mode=\"border\", align_corners=True, mode=\"bilinear\")\n out = xform(image, affine)\n out = out.detach().cpu().numpy()\n expected = [\n [\n [\n [7.1525574e-07, 4.9999994e-01, 1.0000000e00, 1.4999999e00],\n [3.8660259e00, 1.3660253e00, 1.8660252e00, 2.3660252e00],\n [7.7320518e00, 3.0358994e00, 2.7320509e00, 3.2320507e00],\n ]\n ]\n ]\n np.testing.assert_allclose(out, expected, atol=1e-5)\n\n if torch.cuda.is_available():\n affine = torch.as_tensor(affine, device=torch.device(\"cuda:0\"), dtype=torch.float32)\n image = torch.arange(24.0).view(1, 1, 4, 6).to(device=torch.device(\"cuda:0\"))\n xform = AffineTransform(padding_mode=\"border\", align_corners=True, mode=\"bilinear\")\n out = xform(image, affine, (3, 4))\n out = out.detach().cpu().numpy()\n expected = [\n [\n [\n [7.1525574e-07, 4.9999994e-01, 1.0000000e00, 1.4999999e00],\n [3.8660259e00, 1.3660253e00, 1.8660252e00, 2.3660252e00],\n [7.7320518e00, 3.0358994e00, 2.7320509e00, 3.2320507e00],\n ]\n ]\n ]\n np.testing.assert_allclose(out, expected, atol=1e-4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d_TestAffineTransform.test_affine_transform_3d.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d_TestAffineTransform.test_affine_transform_3d.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 210, "end_line": 234, "span_ids": ["TestAffineTransform.test_affine_transform_3d"], "tokens": 519}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_transform_3d(self):\n t = np.pi / 3\n affine = [[1, 0, 0, 0], [0.0, np.cos(t), -np.sin(t), 0], [0, np.sin(t), np.cos(t), 0], [0, 0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n image = torch.arange(48.0).view(2, 1, 4, 2, 3).to(device=torch.device(\"cpu:0\"))\n xform = AffineTransform((3, 4, 2), padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n out = xform(image, affine)\n out = out.detach().cpu().numpy()\n expected = [\n [\n [\n [[0.00000006, 0.5000001], [2.3660254, 1.3660254], [4.732051, 2.4019241], [5.0, 3.9019237]],\n [[6.0, 6.5], [8.366026, 7.3660254], [10.732051, 8.401924], [11.0, 9.901924]],\n [[12.0, 12.5], [14.366026, 13.366025], [16.732052, 14.401924], [17.0, 15.901923]],\n ]\n ],\n [\n [\n [[24.0, 24.5], [26.366024, 25.366024], [28.732052, 26.401924], [29.0, 27.901924]],\n [[30.0, 30.5], [32.366028, 31.366026], [34.732048, 32.401924], [35.0, 33.901924]],\n [[36.0, 36.5], [38.366024, 37.366024], [40.73205, 38.401924], [41.0, 39.901924]],\n ]\n ],\n ]\n np.testing.assert_allclose(out, expected, atol=1e-4)\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 236, "end_line": 258, "span_ids": ["TestAffineTransform.test_affine_transform_3d"], "tokens": 460}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_transform_3d(self):\n # ... other code\n\n if torch.cuda.is_available():\n affine = torch.as_tensor(affine, device=torch.device(\"cuda:0\"), dtype=torch.float32)\n image = torch.arange(48.0).view(2, 1, 4, 2, 3).to(device=torch.device(\"cuda:0\"))\n xform = AffineTransform(padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n out = xform(image, affine, (3, 4, 2))\n out = out.detach().cpu().numpy()\n expected = [\n [\n [\n [[0.00000006, 0.5000001], [2.3660254, 1.3660254], [4.732051, 2.4019241], [5.0, 3.9019237]],\n [[6.0, 6.5], [8.366026, 7.3660254], [10.732051, 8.401924], [11.0, 9.901924]],\n [[12.0, 12.5], [14.366026, 13.366025], [16.732052, 14.401924], [17.0, 15.901923]],\n ]\n ],\n [\n [\n [[24.0, 24.5], [26.366024, 25.366024], [28.732052, 26.401924], [29.0, 27.901924]],\n [[30.0, 30.5], [32.366028, 31.366026], [34.732048, 32.401924], [35.0, 33.901924]],\n [[36.0, 36.5], [38.366024, 37.366024], [40.73205, 38.401924], [41.0, 39.901924]],\n ]\n ],\n ]\n np.testing.assert_allclose(out, expected, atol=1e-4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_ill_affine_transform_TestAffineTransform.test_ill_affine_transform.None_3.xform_image_affine_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_ill_affine_transform_TestAffineTransform.test_ill_affine_transform.None_3.xform_image_affine_", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 260, "end_line": 293, "span_ids": ["TestAffineTransform.test_ill_affine_transform"], "tokens": 720}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_ill_affine_transform(self):\n with self.assertRaises(ValueError): # image too small\n t = np.pi / 3\n affine = [[1, 0, 0, 0], [0.0, np.cos(t), -np.sin(t), 0], [0, np.sin(t), np.cos(t), 0], [0, 0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n xform = AffineTransform((3, 4, 2), padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n xform(torch.as_tensor([1.0, 2.0, 3.0]), affine)\n\n with self.assertRaises(ValueError): # output shape too small\n t = np.pi / 3\n affine = [[1, 0, 0, 0], [0.0, np.cos(t), -np.sin(t), 0], [0, np.sin(t), np.cos(t), 0], [0, 0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n image = torch.arange(48).view(2, 1, 4, 2, 3).to(device=torch.device(\"cpu:0\"))\n xform = AffineTransform((3, 4), padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n xform(image, affine)\n\n with self.assertRaises(ValueError): # incorrect affine\n t = np.pi / 3\n affine = [[1, 0, 0, 0], [0.0, np.cos(t), -np.sin(t), 0], [0, np.sin(t), np.cos(t), 0], [0, 0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n affine = affine.unsqueeze(0).unsqueeze(0)\n image = torch.arange(48).view(2, 1, 4, 2, 3).to(device=torch.device(\"cpu:0\"))\n xform = AffineTransform((2, 3, 4), padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n xform(image, affine)\n\n with self.assertRaises(ValueError): # batch doesn't match\n t = np.pi / 3\n affine = [[1, 0, 0, 0], [0.0, np.cos(t), -np.sin(t), 0], [0, np.sin(t), np.cos(t), 0], [0, 0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n affine = affine.unsqueeze(0)\n affine = affine.repeat(3, 1, 1)\n image = torch.arange(48).view(2, 1, 4, 2, 3).to(device=torch.device(\"cpu:0\"))\n xform = AffineTransform((2, 3, 4), padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n xform(image, affine)\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_2d_TestAffineTransform.test_forward_2d.None_5": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_2d_TestAffineTransform.test_forward_2d.None_5", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 316, "end_line": 338, "span_ids": ["TestAffineTransform.test_forward_2d"], "tokens": 328}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_forward_2d(self):\n x = torch.rand(2, 1, 4, 4)\n theta = torch.Tensor([[[0, -1, 0], [1, 0, 0]]]).repeat(2, 1, 1)\n grid = torch.nn.functional.affine_grid(theta, x.size(), align_corners=False)\n expected = torch.nn.functional.grid_sample(x, grid, align_corners=False)\n expected = expected.detach().cpu().numpy()\n\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [2, 2, 3])\n\n theta = torch.Tensor([[0, -1, 0], [1, 0, 0]])\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [2, 3])\n\n theta = torch.Tensor([[[0, -1, 0], [1, 0, 0]]])\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [1, 2, 3])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_3d_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_3d_", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 340, "end_line": 367, "span_ids": ["TestAffineTransform.test_forward_3d", "impl:7"], "tokens": 397}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_forward_3d(self):\n x = torch.rand(2, 1, 4, 4, 4)\n theta = torch.Tensor([[[0, 0, -1, 0], [1, 0, 0, 0], [0, 0, 1, 0]]]).repeat(2, 1, 1)\n grid = torch.nn.functional.affine_grid(theta, x.size(), align_corners=False)\n expected = torch.nn.functional.grid_sample(x, grid, align_corners=False)\n expected = expected.detach().cpu().numpy()\n\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [2, 3, 4])\n\n theta = torch.Tensor([[0, 0, -1, 0], [1, 0, 0, 0], [0, 0, 1, 0]])\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [3, 4])\n\n theta = torch.Tensor([[[0, 0, -1, 0], [1, 0, 0, 0], [0, 0, 1, 0]]])\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [1, 3, 4])\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_first.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_first.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_as_channel_first.py", "file_name": "test_as_channel_first.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 36, "span_ids": ["TestAsChannelFirst.test_shape", "TestAsChannelFirst", "impl:7", "docstring"], "tokens": 200}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import AsChannelFirst\n\nTEST_CASE_1 = [{\"channel_dim\": -1}, (4, 1, 2, 3)]\n\nTEST_CASE_2 = [{\"channel_dim\": 3}, (4, 1, 2, 3)]\n\nTEST_CASE_3 = [{\"channel_dim\": 2}, (3, 1, 2, 4)]\n\n\nclass TestAsChannelFirst(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_shape(self, input_param, expected_shape):\n test_data = np.random.randint(0, 2, size=[1, 2, 3, 4])\n result = AsChannelFirst(**input_param)(test_data)\n self.assertTupleEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_firstd.py_unittest_TEST_CASE_3._keys_image_labe": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_firstd.py_unittest_TEST_CASE_3._keys_image_labe", "embedding": null, "metadata": {"file_path": "tests/test_as_channel_firstd.py", "file_name": "test_as_channel_firstd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 23, "span_ids": ["docstring"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import AsChannelFirstd\n\nTEST_CASE_1 = [{\"keys\": [\"image\", \"label\", \"extra\"], \"channel_dim\": -1}, (4, 1, 2, 3)]\n\nTEST_CASE_2 = [{\"keys\": [\"image\", \"label\", \"extra\"], \"channel_dim\": 3}, (4, 1, 2, 3)]\n\nTEST_CASE_3 = [{\"keys\": [\"image\", \"label\", \"extra\"], \"channel_dim\": 2}, (3, 1, 2, 4)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_firstd.py_TestAsChannelFirstd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_firstd.py_TestAsChannelFirstd_", "embedding": null, "metadata": {"file_path": "tests/test_as_channel_firstd.py", "file_name": "test_as_channel_firstd.py", "file_type": "text/x-python", "category": "test", "start_line": 24, "end_line": 40, "span_ids": ["TestAsChannelFirstd", "TestAsChannelFirstd.test_shape", "impl:7"], "tokens": 195}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAsChannelFirstd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_shape(self, input_param, expected_shape):\n test_data = {\n \"image\": np.random.randint(0, 2, size=[1, 2, 3, 4]),\n \"label\": np.random.randint(0, 2, size=[1, 2, 3, 4]),\n \"extra\": np.random.randint(0, 2, size=[1, 2, 3, 4]),\n }\n result = AsChannelFirstd(**input_param)(test_data)\n self.assertTupleEqual(result[\"image\"].shape, expected_shape)\n self.assertTupleEqual(result[\"label\"].shape, expected_shape)\n self.assertTupleEqual(result[\"extra\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_last.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_last.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_as_channel_last.py", "file_name": "test_as_channel_last.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 36, "span_ids": ["TestAsChannelLast", "TestAsChannelLast.test_shape", "impl:7", "docstring"], "tokens": 200}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import AsChannelLast\n\nTEST_CASE_1 = [{\"channel_dim\": 0}, (2, 3, 4, 1)]\n\nTEST_CASE_2 = [{\"channel_dim\": 1}, (1, 3, 4, 2)]\n\nTEST_CASE_3 = [{\"channel_dim\": 3}, (1, 2, 3, 4)]\n\n\nclass TestAsChannelLast(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_shape(self, input_param, expected_shape):\n test_data = np.random.randint(0, 2, size=[1, 2, 3, 4])\n result = AsChannelLast(**input_param)(test_data)\n self.assertTupleEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_lastd.py_unittest_TEST_CASE_3._keys_image_labe": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_lastd.py_unittest_TEST_CASE_3._keys_image_labe", "embedding": null, "metadata": {"file_path": "tests/test_as_channel_lastd.py", "file_name": "test_as_channel_lastd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 23, "span_ids": ["docstring"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import AsChannelLastd\n\nTEST_CASE_1 = [{\"keys\": [\"image\", \"label\", \"extra\"], \"channel_dim\": 0}, (2, 3, 4, 1)]\n\nTEST_CASE_2 = [{\"keys\": [\"image\", \"label\", \"extra\"], \"channel_dim\": 1}, (1, 3, 4, 2)]\n\nTEST_CASE_3 = [{\"keys\": [\"image\", \"label\", \"extra\"], \"channel_dim\": 3}, (1, 2, 3, 4)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_lastd.py_TestAsChannelLastd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_lastd.py_TestAsChannelLastd_", "embedding": null, "metadata": {"file_path": "tests/test_as_channel_lastd.py", "file_name": "test_as_channel_lastd.py", "file_type": "text/x-python", "category": "test", "start_line": 24, "end_line": 40, "span_ids": ["TestAsChannelLastd.test_shape", "TestAsChannelLastd", "impl:7"], "tokens": 195}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAsChannelLastd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_shape(self, input_param, expected_shape):\n test_data = {\n \"image\": np.random.randint(0, 2, size=[1, 2, 3, 4]),\n \"label\": np.random.randint(0, 2, size=[1, 2, 3, 4]),\n \"extra\": np.random.randint(0, 2, size=[1, 2, 3, 4]),\n }\n result = AsChannelLastd(**input_param)(test_data)\n self.assertTupleEqual(result[\"image\"].shape, expected_shape)\n self.assertTupleEqual(result[\"label\"].shape, expected_shape)\n self.assertTupleEqual(result[\"extra\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discrete.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discrete.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_as_discrete.py", "file_name": "test_as_discrete.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 51, "span_ids": ["TestAsDiscrete", "TestAsDiscrete.test_value_shape", "impl:7", "docstring"], "tokens": 434}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import AsDiscrete\n\nTEST_CASE_1 = [\n {\"argmax\": True, \"to_onehot\": False, \"n_classes\": None, \"threshold_values\": False, \"logit_thresh\": 0.5},\n torch.tensor([[[[0.0, 1.0]], [[2.0, 3.0]]]]),\n torch.tensor([[[[1.0, 1.0]]]]),\n (1, 1, 1, 2),\n]\n\nTEST_CASE_2 = [\n {\"argmax\": True, \"to_onehot\": True, \"n_classes\": 2, \"threshold_values\": False, \"logit_thresh\": 0.5},\n torch.tensor([[[[0.0, 1.0]], [[2.0, 3.0]]]]),\n torch.tensor([[[[0.0, 0.0]], [[1.0, 1.0]]]]),\n (1, 2, 1, 2),\n]\n\nTEST_CASE_3 = [\n {\"argmax\": False, \"to_onehot\": False, \"n_classes\": None, \"threshold_values\": True, \"logit_thresh\": 0.6},\n torch.tensor([[[[0.0, 1.0], [2.0, 3.0]]]]),\n torch.tensor([[[[0.0, 1.0], [1.0, 1.0]]]]),\n (1, 1, 2, 2),\n]\n\n\nclass TestAsDiscrete(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value_shape(self, input_param, img, out, expected_shape):\n result = AsDiscrete(**input_param)(img)\n torch.testing.assert_allclose(result, out)\n self.assertTupleEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discreted.py_unittest_TEST_CASE_3._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discreted.py_unittest_TEST_CASE_3._", "embedding": null, "metadata": {"file_path": "tests/test_as_discreted.py", "file_name": "test_as_discreted.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 59, "span_ids": ["impl:5", "docstring"], "tokens": 524}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import AsDiscreted\n\nTEST_CASE_1 = [\n {\n \"keys\": [\"pred\", \"label\"],\n \"argmax\": [True, False],\n \"to_onehot\": True,\n \"n_classes\": 2,\n \"threshold_values\": False,\n \"logit_thresh\": 0.5,\n },\n {\"pred\": torch.tensor([[[[0.0, 1.0]], [[2.0, 3.0]]]]), \"label\": torch.tensor([[[[0, 1]]]])},\n {\"pred\": torch.tensor([[[[0.0, 0.0]], [[1.0, 1.0]]]]), \"label\": torch.tensor([[[[1.0, 0.0]], [[0.0, 1.0]]]])},\n (1, 2, 1, 2),\n]\n\nTEST_CASE_2 = [\n {\n \"keys\": [\"pred\", \"label\"],\n \"argmax\": False,\n \"to_onehot\": False,\n \"n_classes\": None,\n \"threshold_values\": [True, False],\n \"logit_thresh\": 0.6,\n },\n {\"pred\": torch.tensor([[[[0.0, 1.0], [2.0, 3.0]]]]), \"label\": torch.tensor([[[[0, 1], [1, 1]]]])},\n {\"pred\": torch.tensor([[[[0.0, 1.0], [1.0, 1.0]]]]), \"label\": torch.tensor([[[[0.0, 1.0], [1.0, 1.0]]]])},\n (1, 1, 2, 2),\n]\n\nTEST_CASE_3 = [\n {\n \"keys\": [\"pred\"],\n \"argmax\": True,\n \"to_onehot\": True,\n \"n_classes\": 2,\n \"threshold_values\": False,\n \"logit_thresh\": 0.5,\n },\n {\"pred\": torch.tensor([[[[0.0, 1.0]], [[2.0, 3.0]]]])},\n {\"pred\": torch.tensor([[[[0.0, 0.0]], [[1.0, 1.0]]]])},\n (1, 2, 1, 2),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discreted.py_TestAsDiscreted_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discreted.py_TestAsDiscreted_", "embedding": null, "metadata": {"file_path": "tests/test_as_discreted.py", "file_name": "test_as_discreted.py", "file_type": "text/x-python", "category": "test", "start_line": 60, "end_line": 73, "span_ids": ["TestAsDiscreted.test_value_shape", "impl:7", "TestAsDiscreted"], "tokens": 138}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAsDiscreted(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value_shape(self, input_param, test_input, output, expected_shape):\n result = AsDiscreted(**input_param)(test_input)\n torch.testing.assert_allclose(result[\"pred\"], output[\"pred\"])\n self.assertTupleEqual(result[\"pred\"].shape, expected_shape)\n if \"label\" in result:\n torch.testing.assert_allclose(result[\"label\"], output[\"label\"])\n self.assertTupleEqual(result[\"label\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_pad.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_pad.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_border_pad.py", "file_name": "test_border_pad.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 57, "span_ids": ["impl:9", "TestBorderPad.test_pad_shape", "TestBorderPad", "docstring"], "tokens": 395}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import BorderPad\nfrom monai.utils import NumpyPadMode\n\nTEST_CASE_1 = [\n {\"spatial_border\": 2, \"mode\": \"constant\"},\n np.zeros((3, 8, 8, 4)),\n np.zeros((3, 12, 12, 8)),\n]\n\nTEST_CASE_2 = [\n {\"spatial_border\": [1, 2, 3], \"mode\": \"constant\"},\n np.zeros((3, 8, 8, 4)),\n np.zeros((3, 10, 12, 10)),\n]\n\nTEST_CASE_3 = [\n {\"spatial_border\": [1, 2, 3, 4, 5, 6], \"mode\": \"constant\"},\n np.zeros((3, 8, 8, 4)),\n np.zeros((3, 11, 15, 15)),\n]\n\nTEST_CASE_4 = [\n {\"spatial_border\": [1, 2, 3, 4, 5, 6], \"mode\": NumpyPadMode.CONSTANT},\n np.zeros((3, 8, 8, 4)),\n np.zeros((3, 11, 15, 15)),\n]\n\n\nclass TestBorderPad(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4])\n def test_pad_shape(self, input_param, input_data, expected_val):\n padder = BorderPad(**input_param)\n result = padder(input_data)\n self.assertAlmostEqual(result.shape, expected_val.shape)\n result = padder(input_data, mode=input_param[\"mode\"])\n self.assertAlmostEqual(result.shape, expected_val.shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_padd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_padd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_border_padd.py", "file_name": "test_border_padd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 61, "span_ids": ["TestBorderPadd.test_pad_shape", "impl:11", "TestBorderPadd", "docstring"], "tokens": 548}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import BorderPadd\nfrom monai.utils import NumpyPadMode\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\", \"seg\"], \"spatial_border\": 2, \"mode\": [\"constant\", \"edge\"]},\n {\"img\": np.zeros((3, 8, 8, 4)), \"seg\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 12, 12, 8)),\n]\n\nTEST_CASE_2 = [\n {\"keys\": \"img\", \"spatial_border\": [1, 2, 3], \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 10, 12, 10)),\n]\n\nTEST_CASE_3 = [\n {\"keys\": \"img\", \"spatial_border\": [1, 2, 3, 4, 5, 6], \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 11, 15, 15)),\n]\n\nTEST_CASE_4 = [\n {\"keys\": [\"img\", \"seg\"], \"spatial_border\": 2, \"mode\": [\"constant\", NumpyPadMode.EDGE]},\n {\"img\": np.zeros((3, 8, 8, 4)), \"seg\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 12, 12, 8)),\n]\n\nTEST_CASE_5 = [\n {\"keys\": [\"img\", \"seg\"], \"spatial_border\": 2, \"mode\": [NumpyPadMode.CONSTANT, NumpyPadMode.EDGE]},\n {\"img\": np.zeros((3, 8, 8, 4)), \"seg\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 12, 12, 8)),\n]\n\n\nclass TestBorderPadd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_pad_shape(self, input_param, input_data, expected_val):\n padder = BorderPadd(**input_param)\n result = padder(input_data)\n self.assertAlmostEqual(result[\"img\"].shape, expected_val.shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset_parallel.py_TestCacheDatasetParallel_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset_parallel.py_TestCacheDatasetParallel_", "embedding": null, "metadata": {"file_path": "tests/test_cachedataset_parallel.py", "file_name": "test_cachedataset_parallel.py", "file_type": "text/x-python", "category": "test", "start_line": 30, "end_line": 59, "span_ids": ["TestCacheDatasetParallel", "impl:7", "TestCacheDatasetParallel.test_shape"], "tokens": 283}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCacheDatasetParallel(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_shape(self, num_workers, dataset_size, transform):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=[8, 8, 8]), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n nib.save(test_image, os.path.join(tempdir, \"test_image1.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_label1.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_extra1.nii.gz\"))\n test_data = [\n {\n \"image\": os.path.join(tempdir, \"test_image1.nii.gz\"),\n \"label\": os.path.join(tempdir, \"test_label1.nii.gz\"),\n \"extra\": os.path.join(tempdir, \"test_extra1.nii.gz\"),\n }\n ] * dataset_size\n dataset = CacheDataset(\n data=test_data,\n transform=transform,\n cache_rate=1,\n num_workers=num_workers,\n )\n\n self.assertEqual(len(dataset._cache), dataset.cache_num)\n for i in range(dataset.cache_num):\n self.assertIsNotNone(dataset._cache[i])\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cast_to_type.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cast_to_type.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_cast_to_type.py", "file_name": "test_cast_to_type.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 34, "span_ids": ["TestCastToType.test_type", "TestCastToType", "impl:5", "docstring"], "tokens": 170}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import CastToType\n\nTEST_CASE_1 = [{\"dtype\": np.float64}, np.array([[0, 1], [1, 2]], dtype=np.float32), np.float64]\n\nTEST_CASE_2 = [{\"dtype\": torch.float64}, torch.tensor([[0, 1], [1, 2]], dtype=torch.float32), torch.float64]\n\n\nclass TestCastToType(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2])\n def test_type(self, input_param, input_data, expected_type):\n result = CastToType(**input_param)(input_data)\n self.assertEqual(result.dtype, expected_type)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cast_to_typed.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cast_to_typed.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_cast_to_typed.py", "file_name": "test_cast_to_typed.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 46, "span_ids": ["TestCastToTyped", "TestCastToTyped.test_type", "impl:5", "docstring"], "tokens": 277}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import CastToTyped\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\"], \"dtype\": np.float64},\n {\"img\": np.array([[0, 1], [1, 2]], dtype=np.float32), \"seg\": np.array([[0, 1], [1, 2]], dtype=np.int8)},\n {\"img\": np.float64, \"seg\": np.int8},\n]\n\nTEST_CASE_2 = [\n {\"keys\": [\"img\"], \"dtype\": torch.float64},\n {\n \"img\": torch.tensor([[0, 1], [1, 2]], dtype=torch.float32),\n \"seg\": torch.tensor([[0, 1], [1, 2]], dtype=torch.int8),\n },\n {\"img\": torch.float64, \"seg\": torch.int8},\n]\n\n\nclass TestCastToTyped(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2])\n def test_type(self, input_param, input_data, expected_type):\n result = CastToTyped(**input_param)(input_data)\n for k, v in result.items():\n self.assertEqual(v.dtype, expected_type[k])\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_crop.py_TestCenterSpatialCrop_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_crop.py_TestCenterSpatialCrop_", "embedding": null, "metadata": {"file_path": "tests/test_center_spatial_crop.py", "file_name": "test_center_spatial_crop.py", "file_type": "text/x-python", "category": "test", "start_line": 37, "end_line": 51, "span_ids": ["impl:9", "TestCenterSpatialCrop.test_shape", "TestCenterSpatialCrop", "TestCenterSpatialCrop.test_value"], "tokens": 131}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCenterSpatialCrop(unittest.TestCase):\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1, TEST_CASE_3])\n def test_shape(self, input_param, input_data, expected_shape):\n result = CenterSpatialCrop(**input_param)(input_data)\n np.testing.assert_allclose(result.shape, expected_shape)\n\n @parameterized.expand([TEST_CASE_2])\n def test_value(self, input_param, input_data, expected_value):\n result = CenterSpatialCrop(**input_param)(input_data)\n np.testing.assert_allclose(result, expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_cropd.py_unittest_TEST_CASE_2._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_cropd.py_unittest_TEST_CASE_2._", "embedding": null, "metadata": {"file_path": "tests/test_center_spatial_cropd.py", "file_name": "test_center_spatial_cropd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 35, "span_ids": ["docstring"], "tokens": 284}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import CenterSpatialCropd\n\nTEST_CASE_0 = [\n {\"keys\": \"img\", \"roi_size\": [2, -1, -1]},\n {\"img\": np.random.randint(0, 2, size=[3, 3, 3, 3])},\n (3, 2, 3, 3),\n]\n\nTEST_CASE_1 = [\n {\"keys\": \"img\", \"roi_size\": [2, 2, 2]},\n {\"img\": np.random.randint(0, 2, size=[3, 3, 3, 3])},\n (3, 2, 2, 2),\n]\n\nTEST_CASE_2 = [\n {\"keys\": \"img\", \"roi_size\": [2, 2]},\n {\"img\": np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 1, 2, 1, 0], [0, 0, 0, 0, 0]]])},\n np.array([[[1, 2], [2, 3]]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_cropd.py_TestCenterSpatialCropd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_cropd.py_TestCenterSpatialCropd_", "embedding": null, "metadata": {"file_path": "tests/test_center_spatial_cropd.py", "file_name": "test_center_spatial_cropd.py", "file_type": "text/x-python", "category": "test", "start_line": 36, "end_line": 50, "span_ids": ["TestCenterSpatialCropd", "TestCenterSpatialCropd.test_value", "impl:7", "TestCenterSpatialCropd.test_shape"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCenterSpatialCropd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1])\n def test_shape(self, input_param, input_data, expected_shape):\n result = CenterSpatialCropd(**input_param)(input_data)\n self.assertTupleEqual(result[\"img\"].shape, expected_shape)\n\n @parameterized.expand([TEST_CASE_2])\n def test_value(self, input_param, input_data, expected_value):\n result = CenterSpatialCropd(**input_param)(input_data)\n np.testing.assert_allclose(result[\"img\"], expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_list_dict_compose_TestCompose.test_list_dict_compose.for_item_in_value_.self_assertDictEqual_item": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_list_dict_compose_TestCompose.test_list_dict_compose.for_item_in_value_.self_assertDictEqual_item", "embedding": null, "metadata": {"file_path": "tests/test_compose.py", "file_name": "test_compose.py", "file_type": "text/x-python", "category": "test", "start_line": 47, "end_line": 67, "span_ids": ["TestCompose.test_list_dict_compose"], "tokens": 193}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCompose(unittest.TestCase):\n\n def test_list_dict_compose(self):\n def a(d): # transform to handle dict data\n d = dict(d)\n d[\"a\"] += 1\n return d\n\n def b(d): # transform to generate a batch list of data\n d = dict(d)\n d[\"b\"] += 1\n d = [d] * 5\n return d\n\n def c(d): # transform to handle dict data\n d = dict(d)\n d[\"c\"] += 1\n return d\n\n transforms = Compose([a, a, b, c, c])\n value = transforms({\"a\": 0, \"b\": 0, \"c\": 0})\n for item in value:\n self.assertDictEqual(item, {\"a\": 2, \"b\": 1, \"c\": 2})", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TestComputeMeanDice.test_value_class_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TestComputeMeanDice.test_value_class_", "embedding": null, "metadata": {"file_path": "tests/test_compute_meandice.py", "file_name": "test_compute_meandice.py", "file_type": "text/x-python", "category": "test", "start_line": 191, "end_line": 214, "span_ids": ["impl:21", "TestComputeMeanDice.test_value_class", "TestComputeMeanDice.test_nans_class"], "tokens": 236}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestComputeMeanDice(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_10])\n def test_value_class(self, input_data, expected_value):\n\n # same test as for compute_meandice\n vals = {}\n vals[\"y_pred\"] = input_data.pop(\"y_pred\")\n vals[\"y\"] = input_data.pop(\"y\")\n dice_metric = DiceMetric(**input_data, reduction=\"none\")\n dice_metric(**vals)\n result = dice_metric.aggregate()\n np.testing.assert_allclose(result.cpu().numpy(), expected_value, atol=1e-4)\n\n @parameterized.expand([TEST_CASE_4, TEST_CASE_5, TEST_CASE_6, TEST_CASE_7, TEST_CASE_8])\n def test_nans_class(self, params, input_data, expected_value):\n\n dice_metric = DiceMetric(**params)\n dice_metric(**input_data)\n result, _ = dice_metric.aggregate()\n np.testing.assert_allclose(result.cpu().numpy(), expected_value, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_unittest_TestConcatItemsd.test_tensor_values.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_unittest_TestConcatItemsd.test_tensor_values.None_2", "embedding": null, "metadata": {"file_path": "tests/test_concat_itemsd.py", "file_name": "test_concat_itemsd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 31, "span_ids": ["TestConcatItemsd.test_tensor_values", "TestConcatItemsd", "docstring"], "tokens": 221}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.transforms import ConcatItemsd\n\n\nclass TestConcatItemsd(unittest.TestCase):\n def test_tensor_values(self):\n device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu:0\")\n input_data = {\n \"img1\": torch.tensor([[0, 1], [1, 2]], device=device),\n \"img2\": torch.tensor([[0, 1], [1, 2]], device=device),\n }\n result = ConcatItemsd(keys=[\"img1\", \"img2\"], name=\"cat_img\")(input_data)\n self.assertTrue(\"cat_img\" in result)\n result[\"cat_img\"] += 1\n torch.testing.assert_allclose(result[\"img1\"], torch.tensor([[0, 1], [1, 2]], device=device))\n torch.testing.assert_allclose(result[\"cat_img\"], torch.tensor([[1, 2], [2, 3], [1, 2], [2, 3]], device=device))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestResidualUnit2D_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestResidualUnit2D_", "embedding": null, "metadata": {"file_path": "tests/test_convolutions.py", "file_name": "test_convolutions.py", "file_type": "text/x-python", "category": "test", "start_line": 126, "end_line": 155, "span_ids": ["TestResidualUnit2D.test_conv_only1", "impl", "TestResidualUnit2D", "TestResidualUnit2D.test_stride1", "TestResidualUnit2D.test_dropout1", "TestResidualUnit2D.test_dilation1"], "tokens": 322}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestResidualUnit2D(TorchImageTestCase2D):\n def test_conv_only1(self):\n conv = ResidualUnit(2, 1, self.output_channels)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_stride1(self):\n for strides in [2, [2, 2], (2, 2)]:\n conv = ResidualUnit(2, 1, self.output_channels, strides=strides)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0] // 2, self.im_shape[1] // 2)\n self.assertEqual(out.shape, expected_shape)\n\n def test_dilation1(self):\n conv = ResidualUnit(2, 1, self.output_channels, dilation=3)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_dropout1(self):\n conv = ResidualUnit(2, 1, self.output_channels, dropout=0.15)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_unittest_TEST_CASE_4._img_seg_2_img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_unittest_TEST_CASE_4._img_seg_2_img", "embedding": null, "metadata": {"file_path": "tests/test_copy_itemsd.py", "file_name": "test_copy_itemsd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 28, "span_ids": ["docstring"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.transforms import CopyItemsd\nfrom monai.utils import ensure_tuple\n\nTEST_CASE_1 = [\"img\", 1, \"img_1\"]\n\nTEST_CASE_2 = [[\"img\", \"seg\"], 1, [\"img_1\", \"seg_1\"]]\n\nTEST_CASE_3 = [\"img\", 2, [\"img_1\", \"img_2\"]]\n\nTEST_CASE_4 = [[\"img\", \"seg\"], 2, [\"img_1\", \"seg_1\", \"img_2\", \"seg_2\"]]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd.test_tensor_values_TestCopyItemsd.test_tensor_values.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd.test_tensor_values_TestCopyItemsd.test_tensor_values.None_2", "embedding": null, "metadata": {"file_path": "tests/test_copy_itemsd.py", "file_name": "test_copy_itemsd.py", "file_type": "text/x-python", "category": "test", "start_line": 39, "end_line": 49, "span_ids": ["TestCopyItemsd.test_tensor_values"], "tokens": 189}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCopyItemsd(unittest.TestCase):\n\n def test_tensor_values(self):\n device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu:0\")\n input_data = {\n \"img\": torch.tensor([[0, 1], [1, 2]], device=device),\n \"seg\": torch.tensor([[0, 1], [1, 2]], device=device),\n }\n result = CopyItemsd(keys=\"img\", times=1, names=\"img_1\")(input_data)\n self.assertTrue(\"img_1\" in result)\n result[\"img_1\"] += 1\n torch.testing.assert_allclose(result[\"img\"], torch.tensor([[0, 1], [1, 2]], device=device))\n torch.testing.assert_allclose(result[\"img_1\"], torch.tensor([[1, 2], [2, 3]], device=device))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_unittest_TestCreateGrid.test_create_grid.g_13.create_grid_2_2_2_sp": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_unittest_TestCreateGrid.test_create_grid.g_13.create_grid_2_2_2_sp", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 69, "span_ids": ["TestCreateGrid", "TestCreateGrid.test_create_grid", "docstring"], "tokens": 685}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import (\n create_control_grid,\n create_grid,\n create_rotate,\n create_scale,\n create_shear,\n create_translate,\n)\n\n\nclass TestCreateGrid(unittest.TestCase):\n def test_create_grid(self):\n with self.assertRaisesRegex(TypeError, \"\"):\n create_grid(None)\n with self.assertRaisesRegex(TypeError, \"\"):\n create_grid((1, 1), spacing=2.0)\n with self.assertRaisesRegex(TypeError, \"\"):\n create_grid((1, 1), spacing=2.0)\n\n g = create_grid((1, 1))\n expected = np.array([[[0.0]], [[0.0]], [[1.0]]])\n np.testing.assert_allclose(g, expected)\n\n g = create_grid((1, 1), homogeneous=False)\n expected = np.array([[[0.0]], [[0.0]]])\n np.testing.assert_allclose(g, expected)\n\n g = create_grid((1, 1), spacing=(1.2, 1.3))\n expected = np.array([[[0.0]], [[0.0]], [[1.0]]])\n np.testing.assert_allclose(g, expected)\n\n g = create_grid((1, 1, 1), spacing=(1.2, 1.3, 1.0))\n expected = np.array([[[[0.0]]], [[[0.0]]], [[[0.0]]], [[[1.0]]]])\n np.testing.assert_allclose(g, expected)\n\n g = create_grid((1, 1, 1), spacing=(1.2, 1.3, 1.0), homogeneous=False)\n expected = np.array([[[[0.0]]], [[[0.0]]], [[[0.0]]]])\n np.testing.assert_allclose(g, expected)\n\n g = create_grid((1, 1, 1), spacing=(1.2, 1.3, 1.0), dtype=np.int32)\n np.testing.assert_equal(g.dtype, np.int32)\n\n g = create_grid((2, 2, 2))\n expected = np.array(\n [\n [[[-0.5, -0.5], [-0.5, -0.5]], [[0.5, 0.5], [0.5, 0.5]]],\n [[[-0.5, -0.5], [0.5, 0.5]], [[-0.5, -0.5], [0.5, 0.5]]],\n [[[-0.5, 0.5], [-0.5, 0.5]], [[-0.5, 0.5], [-0.5, 0.5]]],\n [[[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]]],\n ]\n )\n np.testing.assert_allclose(g, expected)\n\n g = create_grid((2, 2, 2), spacing=(1.2, 1.3, 1.0))\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_grid.expected_14_TestCreateGrid.test_create_grid.None_7": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_grid.expected_14_TestCreateGrid.test_create_grid.None_7", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 70, "end_line": 78, "span_ids": ["TestCreateGrid.test_create_grid"], "tokens": 215}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateGrid(unittest.TestCase):\n def test_create_grid(self):\n # ... other code\n expected = np.array(\n [\n [[[-0.6, -0.6], [-0.6, -0.6]], [[0.6, 0.6], [0.6, 0.6]]],\n [[[-0.65, -0.65], [0.65, 0.65]], [[-0.65, -0.65], [0.65, 0.65]]],\n [[[-0.5, 0.5], [-0.5, 0.5]], [[-0.5, 0.5], [-0.5, 0.5]]],\n [[[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]]],\n ]\n )\n np.testing.assert_allclose(g, expected)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid_TestCreateGrid.test_create_control_grid.g_6.create_control_grid_2_0_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid_TestCreateGrid.test_create_control_grid.g_6.create_control_grid_2_0_", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 80, "end_line": 116, "span_ids": ["TestCreateGrid.test_create_control_grid"], "tokens": 756}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateGrid(unittest.TestCase):\n\n def test_create_control_grid(self):\n with self.assertRaisesRegex(TypeError, \"\"):\n create_control_grid(None, None)\n with self.assertRaisesRegex(TypeError, \"\"):\n create_control_grid((1, 1), 2.0)\n\n g = create_control_grid((1.0, 1.0), (1.0, 1.0))\n expected = np.array(\n [\n [[-1.0, -1.0, -1.0], [0.0, 0.0, 0.0], [1.0, 1.0, 1.0]],\n [[-1.0, 0.0, 1.0], [-1.0, 0.0, 1.0], [-1.0, 0.0, 1.0]],\n [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],\n ]\n )\n np.testing.assert_allclose(g, expected)\n\n g = create_control_grid((1.0, 1.0), (2.0, 2.0))\n expected = np.array(\n [\n [[-2.0, -2.0, -2.0], [0.0, 0.0, 0.0], [2.0, 2.0, 2.0]],\n [[-2.0, 0.0, 2.0], [-2.0, 0.0, 2.0], [-2.0, 0.0, 2.0]],\n [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]],\n ]\n )\n np.testing.assert_allclose(g, expected)\n\n g = create_control_grid((2.0, 2.0), (1.0, 1.0))\n expected = np.array(\n [\n [[-1.5, -1.5, -1.5, -1.5], [-0.5, -0.5, -0.5, -0.5], [0.5, 0.5, 0.5, 0.5], [1.5, 1.5, 1.5, 1.5]],\n [[-1.5, -0.5, 0.5, 1.5], [-1.5, -0.5, 0.5, 1.5], [-1.5, -0.5, 0.5, 1.5], [-1.5, -0.5, 0.5, 1.5]],\n [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]],\n ]\n )\n np.testing.assert_allclose(g, expected)\n\n g = create_control_grid((2.0, 2.0), (2.0, 2.0))\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid.expected_7_TestCreateGrid.test_create_control_grid.g_8.create_control_grid_1_0_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid.expected_7_TestCreateGrid.test_create_control_grid.g_8.create_control_grid_1_0_", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 117, "end_line": 126, "span_ids": ["TestCreateGrid.test_create_control_grid"], "tokens": 332}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateGrid(unittest.TestCase):\n\n def test_create_control_grid(self):\n # ... other code\n expected = np.array(\n [\n [[-3.0, -3.0, -3.0, -3.0], [-1.0, -1.0, -1.0, -1.0], [1.0, 1.0, 1.0, 1.0], [3.0, 3.0, 3.0, 3.0]],\n [[-3.0, -1.0, 1.0, 3.0], [-3.0, -1.0, 1.0, 3.0], [-3.0, -1.0, 1.0, 3.0], [-3.0, -1.0, 1.0, 3.0]],\n [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]],\n ]\n )\n np.testing.assert_allclose(g, expected)\n\n g = create_control_grid((1.0, 1.0, 1.0), (2.0, 2.0, 2.0), homogeneous=False)\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid.expected_9_test_assert.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid.expected_9_test_assert.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 127, "end_line": 151, "span_ids": ["test_assert", "TestCreateGrid.test_create_control_grid"], "tokens": 509}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateGrid(unittest.TestCase):\n\n def test_create_control_grid(self):\n # ... other code\n expected = np.array(\n [\n [\n [[-2.0, -2.0, -2.0], [-2.0, -2.0, -2.0], [-2.0, -2.0, -2.0]],\n [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],\n [[2.0, 2.0, 2.0], [2.0, 2.0, 2.0], [2.0, 2.0, 2.0]],\n ],\n [\n [[-2.0, -2.0, -2.0], [0.0, 0.0, 0.0], [2.0, 2.0, 2.0]],\n [[-2.0, -2.0, -2.0], [0.0, 0.0, 0.0], [2.0, 2.0, 2.0]],\n [[-2.0, -2.0, -2.0], [0.0, 0.0, 0.0], [2.0, 2.0, 2.0]],\n ],\n [\n [[-2.0, 0.0, 2.0], [-2.0, 0.0, 2.0], [-2.0, 0.0, 2.0]],\n [[-2.0, 0.0, 2.0], [-2.0, 0.0, 2.0], [-2.0, 0.0, 2.0]],\n [[-2.0, 0.0, 2.0], [-2.0, 0.0, 2.0], [-2.0, 0.0, 2.0]],\n ],\n ]\n )\n np.testing.assert_allclose(g, expected)\n\n\ndef test_assert(func, params, expected):\n m = func(*params)\n np.testing.assert_allclose(m, expected, atol=1e-7)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine_TestCreateAffine.test_create_rotate.None_4": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine_TestCreateAffine.test_create_rotate.None_4", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 154, "end_line": 207, "span_ids": ["TestCreateAffine", "TestCreateAffine.test_create_rotate"], "tokens": 626}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateAffine(unittest.TestCase):\n def test_create_rotate(self):\n with self.assertRaisesRegex(TypeError, \"\"):\n create_rotate(2, None)\n\n with self.assertRaisesRegex(ValueError, \"\"):\n create_rotate(5, 1)\n\n test_assert(\n create_rotate,\n (2, 1.1),\n np.array([[0.45359612, -0.89120736, 0.0], [0.89120736, 0.45359612, 0.0], [0.0, 0.0, 1.0]]),\n )\n test_assert(\n create_rotate,\n (3, 1.1),\n np.array(\n [\n [1.0, 0.0, 0.0, 0.0],\n [0.0, 0.45359612, -0.89120736, 0.0],\n [0.0, 0.89120736, 0.45359612, 0.0],\n [0.0, 0.0, 0.0, 1.0],\n ]\n ),\n )\n test_assert(\n create_rotate,\n (3, (1.1, 1)),\n np.array(\n [\n [0.54030231, 0.0, 0.84147098, 0.0],\n [0.74992513, 0.45359612, -0.48152139, 0.0],\n [-0.38168798, 0.89120736, 0.24507903, 0.0],\n [0.0, 0.0, 0.0, 1.0],\n ]\n ),\n )\n test_assert(\n create_rotate,\n (3, (1, 1, 1.1)),\n np.array(\n [\n [0.24507903, -0.48152139, 0.84147098, 0.0],\n [0.80270075, -0.38596121, -0.45464871, 0.0],\n [0.54369824, 0.78687425, 0.29192658, 0.0],\n [0.0, 0.0, 0.0, 1.0],\n ]\n ),\n )\n test_assert(\n create_rotate,\n (3, (0, 0, np.pi / 2)),\n np.array([[0.0, -1.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_shear_TestCreateAffine.test_create_shear.test_assert_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_shear_TestCreateAffine.test_create_shear.test_assert_", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 209, "end_line": 216, "span_ids": ["TestCreateAffine.test_create_shear"], "tokens": 251}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateAffine(unittest.TestCase):\n\n def test_create_shear(self):\n test_assert(create_shear, (2, 1.0), np.array([[1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]))\n test_assert(create_shear, (2, (2.0, 3.0)), np.array([[1.0, 2.0, 0.0], [3.0, 1.0, 0.0], [0.0, 0.0, 1.0]]))\n test_assert(\n create_shear,\n (3, 1.0),\n np.array([[1.0, 1.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_scale_TestCreateAffine.test_create_scale.None_4": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_scale_TestCreateAffine.test_create_scale.None_4", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 218, "end_line": 235, "span_ids": ["TestCreateAffine.test_create_scale"], "tokens": 465}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateAffine(unittest.TestCase):\n\n def test_create_scale(self):\n test_assert(create_scale, (2, 2), np.array([[2.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]))\n test_assert(create_scale, (2, [2, 2, 2]), np.array([[2.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 1.0]]))\n test_assert(\n create_scale,\n (3, [1.5, 2.4]),\n np.array([[1.5, 0.0, 0.0, 0.0], [0.0, 2.4, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )\n test_assert(\n create_scale,\n (3, 1.5),\n np.array([[1.5, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )\n test_assert(\n create_scale,\n (3, [1, 2, 3, 4, 5]),\n np.array([[1.0, 0.0, 0.0, 0.0], [0.0, 2.0, 0.0, 0.0], [0.0, 0.0, 3.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_translate_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_translate_", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 237, "end_line": 259, "span_ids": ["TestCreateAffine.test_create_translate", "impl"], "tokens": 477}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateAffine(unittest.TestCase):\n\n def test_create_translate(self):\n test_assert(create_translate, (2, 2), np.array([[1.0, 0.0, 2.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]))\n test_assert(create_translate, (2, [2, 2, 2]), np.array([[1.0, 0.0, 2.0], [0.0, 1.0, 2.0], [0.0, 0.0, 1.0]]))\n test_assert(\n create_translate,\n (3, [1.5, 2.4]),\n np.array([[1.0, 0.0, 0.0, 1.5], [0.0, 1.0, 0.0, 2.4], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )\n test_assert(\n create_translate,\n (3, 1.5),\n np.array([[1.0, 0.0, 0.0, 1.5], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )\n test_assert(\n create_translate,\n (3, [1, 2, 3, 4, 5]),\n np.array([[1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 2.0], [0.0, 0.0, 1.0, 3.0], [0.0, 0.0, 0.0, 1.0]]),\n )\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foregroundd.py_unittest_TEST_CASE_3._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foregroundd.py_unittest_TEST_CASE_3._", "embedding": null, "metadata": {"file_path": "tests/test_crop_foregroundd.py", "file_name": "test_crop_foregroundd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["impl:5", "docstring"], "tokens": 581}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import CropForegroundd\n\nTEST_CASE_1 = [\n {\n \"keys\": [\"img\", \"label\"],\n \"source_key\": \"label\",\n \"select_fn\": lambda x: x > 0,\n \"channel_indices\": None,\n \"margin\": 0,\n },\n {\n \"img\": np.array([[[1, 0, 2, 0, 1], [0, 1, 2, 1, 0], [2, 2, 3, 2, 2], [0, 1, 2, 1, 0], [1, 0, 2, 0, 1]]]),\n \"label\": np.array([[[0, 0, 0, 0, 0], [0, 1, 0, 1, 0], [0, 0, 1, 0, 0], [0, 1, 0, 1, 0], [0, 0, 0, 0, 0]]]),\n },\n np.array([[[1, 2, 1], [2, 3, 2], [1, 2, 1]]]),\n]\n\nTEST_CASE_2 = [\n {\"keys\": [\"img\"], \"source_key\": \"img\", \"select_fn\": lambda x: x > 1, \"channel_indices\": None, \"margin\": 0},\n {\"img\": np.array([[[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 3, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]]])},\n np.array([[[3]]]),\n]\n\nTEST_CASE_3 = [\n {\"keys\": [\"img\"], \"source_key\": \"img\", \"select_fn\": lambda x: x > 0, \"channel_indices\": 0, \"margin\": 0},\n {\"img\": np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 1, 2, 1, 0], [0, 0, 0, 0, 0]]])},\n np.array([[[1, 2, 1], [2, 3, 2], [1, 2, 1]]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_stats.py_TestDataStats_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_stats.py_TestDataStats_", "embedding": null, "metadata": {"file_path": "tests/test_data_stats.py", "file_name": "test_data_stats.py", "file_type": "text/x-python", "category": "test", "start_line": 134, "end_line": 169, "span_ids": ["impl:17", "TestDataStats.test_file", "TestDataStats.test_value", "TestDataStats"], "tokens": 297}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDataStats(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6, TEST_CASE_7])\n def test_value(self, input_param, input_data, expected_print):\n transform = DataStats(**input_param)\n _ = transform(input_data)\n # self.assertEqual(transform.output, expected_print)\n\n @parameterized.expand([TEST_CASE_8])\n def test_file(self, input_data, expected_print):\n with tempfile.TemporaryDirectory() as tempdir:\n filename = os.path.join(tempdir, \"test_data_stats.log\")\n handler = logging.FileHandler(filename, mode=\"w\")\n handler.setLevel(logging.INFO)\n input_param = {\n \"prefix\": \"test data\",\n \"data_type\": True,\n \"data_shape\": True,\n \"value_range\": True,\n \"data_value\": True,\n \"additional_info\": np.mean,\n \"logger_handler\": handler,\n }\n transform = DataStats(**input_param)\n _ = transform(input_data)\n _logger = logging.getLogger(transform._logger_name)\n for h in _logger.handlers[:]:\n h.close()\n _logger.removeHandler(h)\n with open(filename, \"r\") as f:\n content = f.read()\n self.assertEqual(content, expected_print)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_densenet.py_TestDENSENET_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_densenet.py_TestDENSENET_", "embedding": null, "metadata": {"file_path": "tests/test_densenet.py", "file_name": "test_densenet.py", "file_type": "text/x-python", "category": "test", "start_line": 104, "end_line": 121, "span_ids": ["TestDENSENET.test_densenet_shape", "TestDENSENET.test_script", "TestDENSENET", "impl:27"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDENSENET(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_densenet_shape(self, model, input_param, input_shape, expected_shape):\n net = model(**input_param).to(device)\n with eval_mode(net):\n result = net.forward(torch.randn(input_shape).to(device))\n self.assertEqual(result.shape, expected_shape)\n\n @parameterized.expand(TEST_SCRIPT_CASES)\n def test_script(self, model, input_param, input_shape, expected_shape):\n net = model(**input_param)\n test_data = torch.randn(input_shape)\n test_script_save(net, test_data)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_unittest_TEST_CASES": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_unittest_TEST_CASES", "embedding": null, "metadata": {"file_path": "tests/test_dice_loss.py", "file_name": "test_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 162, "span_ids": ["docstring"], "tokens": 51}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.losses import DiceLoss\nfrom tests.utils import SkipIfBeforePyTorchVersion, test_script_save\n\nTEST_CASES =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_opts.None_2.DiceLoss_reduction_None_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_opts.None_2.DiceLoss_reduction_None_", "embedding": null, "metadata": {"file_path": "tests/test_dice_loss.py", "file_name": "test_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 114, "end_line": 133, "span_ids": ["TestDiceLoss.test_shape", "TestDiceLoss.test_ill_shape", "TestDiceLoss", "TestDiceLoss.test_ill_opts"], "tokens": 227}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDiceLoss(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_data, expected_val):\n result = DiceLoss(**input_param).forward(**input_data)\n np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, rtol=1e-5)\n\n def test_ill_shape(self):\n loss = DiceLoss()\n with self.assertRaisesRegex(AssertionError, \"\"):\n loss.forward(torch.ones((1, 2, 3)), torch.ones((4, 5, 6)))\n\n def test_ill_opts(self):\n with self.assertRaisesRegex(ValueError, \"\"):\n DiceLoss(sigmoid=True, softmax=True)\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertRaisesRegex(ValueError, \"\"):\n DiceLoss(reduction=\"unknown\")(chn_input, chn_target)\n with self.assertRaisesRegex(ValueError, \"\"):\n DiceLoss(reduction=None)(chn_input, chn_target)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss.test_input_warnings_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss.test_input_warnings_", "embedding": null, "metadata": {"file_path": "tests/test_dice_loss.py", "file_name": "test_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 186, "end_line": 208, "span_ids": ["TestDiceLoss.test_script", "impl:3", "TestDiceLoss.test_input_warnings"], "tokens": 207}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDiceLoss(unittest.TestCase):\n\n def test_input_warnings(self):\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertWarns(Warning):\n loss = DiceLoss(include_background=False)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = DiceLoss(softmax=True)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = DiceLoss(to_onehot_y=True)\n loss.forward(chn_input, chn_target)\n\n @SkipIfBeforePyTorchVersion((1, 7, 0))\n def test_script(self):\n loss = DiceLoss()\n test_input = torch.ones(2, 1, 8, 8)\n test_script_save(loss, test_input, test_input)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_divisible_pad.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_divisible_pad.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_divisible_pad.py", "file_name": "test_divisible_pad.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 46, "span_ids": ["TestDivisiblePad", "TestDivisiblePad.test_pad_shape", "impl:5", "docstring"], "tokens": 252}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import DivisiblePad\n\n# pad first dim to be divisible by 7, the second unchanged.\nTEST_CASE_1 = [\n {\"k\": (7, -1), \"mode\": \"constant\"},\n np.zeros((3, 8, 7)),\n np.zeros((3, 14, 7)),\n]\n\n# pad all dimensions to be divisible by 5\nTEST_CASE_2 = [\n {\"k\": 5, \"mode\": \"constant\"},\n np.zeros((3, 10, 5, 17)),\n np.zeros((3, 10, 5, 20)),\n]\n\n\nclass TestDivisiblePad(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2])\n def test_pad_shape(self, input_param, input_data, expected_val):\n padder = DivisiblePad(**input_param)\n result = padder(input_data)\n self.assertAlmostEqual(result.shape, expected_val.shape)\n result = padder(input_data, mode=input_param[\"mode\"])\n self.assertAlmostEqual(result.shape, expected_val.shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_divisible_padd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_divisible_padd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_divisible_padd.py", "file_name": "test_divisible_padd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 48, "span_ids": ["TestDivisiblePadd.test_pad_shape", "TestDivisiblePadd", "impl:7", "docstring"], "tokens": 284}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import DivisiblePadd\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\"], \"k\": [4, 3, 2], \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 8, 9, 4)),\n]\n\nTEST_CASE_2 = [\n {\"keys\": [\"img\"], \"k\": 7, \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 7))},\n np.zeros((3, 14, 7)),\n]\n\nTEST_CASE_3 = [\n {\"keys\": [\"img\"], \"k\": 0, \"mode\": {\"constant\"}},\n {\"img\": np.zeros((3, 8))},\n np.zeros((3, 8)),\n]\n\n\nclass TestDivisiblePadd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_pad_shape(self, input_param, input_data, expected_val):\n padder = DivisiblePadd(**input_param)\n result = padder(input_data)\n np.testing.assert_allclose(result[\"img\"], expected_val)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_downsample_block.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_downsample_block.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_downsample_block.py", "file_name": "test_downsample_block.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 52, "span_ids": ["TestMaxAvgPool", "impl:3", "TestMaxAvgPool.test_shape", "docstring"], "tokens": 418}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.blocks import MaxAvgPool\n\nTEST_CASES = [\n [{\"spatial_dims\": 2, \"kernel_size\": 2}, (7, 4, 64, 48), (7, 8, 32, 24)], # 4-channel 2D, batch 7\n [{\"spatial_dims\": 1, \"kernel_size\": 4}, (16, 4, 63), (16, 8, 15)], # 4-channel 1D, batch 16\n [ # 4-channel 1D, batch 16\n {\"spatial_dims\": 1, \"kernel_size\": 4, \"padding\": 1},\n (16, 4, 63),\n (16, 8, 16),\n ],\n [ # 4-channel 3D, batch 16\n {\"spatial_dims\": 3, \"kernel_size\": 3, \"ceil_mode\": True},\n (16, 4, 32, 24, 48),\n (16, 8, 11, 8, 16),\n ],\n [ # 1-channel 3D, batch 16\n {\"spatial_dims\": 3, \"kernel_size\": 3, \"ceil_mode\": False},\n (16, 1, 32, 24, 48),\n (16, 2, 10, 8, 16),\n ],\n]\n\n\nclass TestMaxAvgPool(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_shape, expected_shape):\n net = MaxAvgPool(**input_param)\n with eval_mode(net):\n result = net(torch.randn(input_shape))\n self.assertEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_flip.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_flip.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_flip.py", "file_name": "test_flip.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestFlip.test_invalid_inputs", "TestFlip.test_correct_results", "impl:5", "TestFlip", "docstring"], "tokens": 244}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import Flip\nfrom tests.utils import NumpyImageTestCase2D\n\nINVALID_CASES = [(\"wrong_axis\", [\"s\", 1], TypeError), (\"not_numbers\", \"s\", TypeError)]\n\nVALID_CASES = [(\"no_axis\", None), (\"one_axis\", 1), (\"many_axis\", [0, 1]), (\"negative_axis\", [0, -1])]\n\n\nclass TestFlip(NumpyImageTestCase2D):\n @parameterized.expand(INVALID_CASES)\n def test_invalid_inputs(self, _, spatial_axis, raises):\n with self.assertRaises(raises):\n flip = Flip(spatial_axis)\n flip(self.imt[0])\n\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, _, spatial_axis):\n flip = Flip(spatial_axis=spatial_axis)\n expected = []\n for channel in self.imt[0]:\n expected.append(np.flip(channel, spatial_axis))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(expected, flip(self.imt[0])))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_flipd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_flipd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_flipd.py", "file_name": "test_flipd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 45, "span_ids": ["TestFlipd.test_invalid_cases", "TestFlipd.test_correct_results", "impl:5", "docstring", "TestFlipd"], "tokens": 261}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import Flipd\nfrom tests.utils import NumpyImageTestCase2D\n\nINVALID_CASES = [(\"wrong_axis\", [\"s\", 1], TypeError), (\"not_numbers\", \"s\", TypeError)]\n\nVALID_CASES = [(\"no_axis\", None), (\"one_axis\", 1), (\"many_axis\", [0, 1])]\n\n\nclass TestFlipd(NumpyImageTestCase2D):\n @parameterized.expand(INVALID_CASES)\n def test_invalid_cases(self, _, spatial_axis, raises):\n with self.assertRaises(raises):\n flip = Flipd(keys=\"img\", spatial_axis=spatial_axis)\n flip({\"img\": self.imt[0]})\n\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, _, spatial_axis):\n flip = Flipd(keys=\"img\", spatial_axis=spatial_axis)\n expected = []\n for channel in self.imt[0]:\n expected.append(np.flip(channel, spatial_axis))\n expected = np.stack(expected)\n res = flip({\"img\": self.imt[0]})\n assert np.allclose(expected, res[\"img\"])\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_unittest_TestFocalLoss.test_consistency_with_cross_entropy_2d.self_assertAlmostEqual_ma": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_unittest_TestFocalLoss.test_consistency_with_cross_entropy_2d.self_assertAlmostEqual_ma", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 45, "span_ids": ["TestFocalLoss", "TestFocalLoss.test_consistency_with_cross_entropy_2d", "docstring"], "tokens": 340}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\n\nfrom monai.losses import FocalLoss\nfrom monai.networks import one_hot\nfrom tests.utils import SkipIfBeforePyTorchVersion, test_script_save\n\n\nclass TestFocalLoss(unittest.TestCase):\n def test_consistency_with_cross_entropy_2d(self):\n # For gamma=0 the focal loss reduces to the cross entropy loss\n focal_loss = FocalLoss(to_onehot_y=True, gamma=0.0, reduction=\"mean\", weight=1.0)\n ce = nn.CrossEntropyLoss(reduction=\"mean\")\n max_error = 0\n class_num = 10\n batch_size = 128\n for _ in range(100):\n # Create a random tensor of shape (batch_size, class_num, 8, 4)\n x = torch.rand(batch_size, class_num, 8, 4, requires_grad=True)\n # Create a random batch of classes\n l = torch.randint(low=0, high=class_num, size=(batch_size, 1, 8, 4))\n if torch.cuda.is_available():\n x = x.cuda()\n l = l.cuda()\n output0 = focal_loss(x, l)\n output1 = ce(x, l[:, 0]) / class_num\n a = float(output0.cpu().detach())\n b = float(output1.cpu().detach())\n if abs(a - b) > max_error:\n max_error = abs(a - b)\n self.assertAlmostEqual(max_error, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_consistency_with_cross_entropy_classification_TestFocalLoss.test_consistency_with_cross_entropy_classification.self_assertAlmostEqual_ma": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_consistency_with_cross_entropy_classification_TestFocalLoss.test_consistency_with_cross_entropy_classification.self_assertAlmostEqual_ma", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 70, "end_line": 92, "span_ids": ["TestFocalLoss.test_consistency_with_cross_entropy_classification"], "tokens": 267}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFocalLoss(unittest.TestCase):\n\n def test_consistency_with_cross_entropy_classification(self):\n # for gamma=0 the focal loss reduces to the cross entropy loss\n focal_loss = FocalLoss(to_onehot_y=True, gamma=0.0, reduction=\"mean\")\n ce = nn.CrossEntropyLoss(reduction=\"mean\")\n max_error = 0\n class_num = 10\n batch_size = 128\n for _ in range(100):\n # Create a random scores tensor of shape (batch_size, class_num)\n x = torch.rand(batch_size, class_num, requires_grad=True)\n # Create a random batch of classes\n l = torch.randint(low=0, high=class_num, size=(batch_size, 1))\n l = l.long()\n if torch.cuda.is_available():\n x = x.cuda()\n l = l.cuda()\n output0 = focal_loss(x, l)\n output1 = ce(x, l[:, 0]) / class_num\n a = float(output0.cpu().detach())\n b = float(output1.cpu().detach())\n if abs(a - b) > max_error:\n max_error = abs(a - b)\n self.assertAlmostEqual(max_error, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_2d_TestFocalLoss.test_bin_seg_2d.self_assertAlmostEqual_fo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_2d_TestFocalLoss.test_bin_seg_2d.self_assertAlmostEqual_fo", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 94, "end_line": 107, "span_ids": ["TestFocalLoss.test_bin_seg_2d"], "tokens": 240}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFocalLoss(unittest.TestCase):\n\n def test_bin_seg_2d(self):\n # define 2d examples\n target = torch.tensor([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]])\n # add another dimension corresponding to the batch (batch size = 1 here)\n target = target.unsqueeze(0) # shape (1, H, W)\n pred_very_good = 1000 * F.one_hot(target, num_classes=2).permute(0, 3, 1, 2).float()\n\n # initialize the mean dice loss\n loss = FocalLoss(to_onehot_y=True)\n\n # focal loss for pred_very_good should be close to 0\n target = target.unsqueeze(1) # shape (1, 1, H, W)\n focal_loss_good = float(loss(pred_very_good, target).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_empty_class_2d_TestFocalLoss.test_empty_class_2d.self_assertAlmostEqual_fo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_empty_class_2d_TestFocalLoss.test_empty_class_2d.self_assertAlmostEqual_fo", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 109, "end_line": 123, "span_ids": ["TestFocalLoss.test_empty_class_2d"], "tokens": 247}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFocalLoss(unittest.TestCase):\n\n def test_empty_class_2d(self):\n num_classes = 2\n # define 2d examples\n target = torch.tensor([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])\n # add another dimension corresponding to the batch (batch size = 1 here)\n target = target.unsqueeze(0) # shape (1, H, W)\n pred_very_good = 1000 * F.one_hot(target, num_classes=num_classes).permute(0, 3, 1, 2).float()\n\n # initialize the mean dice loss\n loss = FocalLoss(to_onehot_y=True)\n\n # focal loss for pred_very_good should be close to 0\n target = target.unsqueeze(1) # shape (1, 1, H, W)\n focal_loss_good = float(loss(pred_very_good, target).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_multi_class_seg_2d_TestFocalLoss.test_multi_class_seg_2d.None_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_multi_class_seg_2d_TestFocalLoss.test_multi_class_seg_2d.None_1", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 125, "end_line": 144, "span_ids": ["TestFocalLoss.test_multi_class_seg_2d"], "tokens": 342}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFocalLoss(unittest.TestCase):\n\n def test_multi_class_seg_2d(self):\n num_classes = 6 # labels 0 to 5\n # define 2d examples\n target = torch.tensor([[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]])\n # add another dimension corresponding to the batch (batch size = 1 here)\n target = target.unsqueeze(0) # shape (1, H, W)\n pred_very_good = 1000 * F.one_hot(target, num_classes=num_classes).permute(0, 3, 1, 2).float()\n # initialize the mean dice loss\n loss = FocalLoss(to_onehot_y=True)\n loss_onehot = FocalLoss(to_onehot_y=False)\n\n # focal loss for pred_very_good should be close to 0\n target_one_hot = F.one_hot(target, num_classes=num_classes).permute(0, 3, 1, 2) # test one hot\n target = target.unsqueeze(1) # shape (1, 1, H, W)\n\n focal_loss_good = float(loss(pred_very_good, target).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)\n\n focal_loss_good = float(loss_onehot(pred_very_good, target_one_hot).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_3d_TestFocalLoss.test_bin_seg_3d.None_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_3d_TestFocalLoss.test_bin_seg_3d.None_1", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 146, "end_line": 174, "span_ids": ["TestFocalLoss.test_bin_seg_3d"], "tokens": 473}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFocalLoss(unittest.TestCase):\n\n def test_bin_seg_3d(self):\n num_classes = 2 # labels 0, 1\n # define 3d examples\n target = torch.tensor(\n [\n # raw 0\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n # raw 1\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n # raw 2\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n ]\n )\n # add another dimension corresponding to the batch (batch size = 1 here)\n target = target.unsqueeze(0) # shape (1, H, W, D)\n target_one_hot = F.one_hot(target, num_classes=num_classes).permute(0, 4, 1, 2, 3) # test one hot\n pred_very_good = 1000 * F.one_hot(target, num_classes=num_classes).permute(0, 4, 1, 2, 3).float()\n\n # initialize the mean dice loss\n loss = FocalLoss(to_onehot_y=True)\n loss_onehot = FocalLoss(to_onehot_y=False)\n\n # focal loss for pred_very_good should be close to 0\n target = target.unsqueeze(1) # shape (1, 1, H, W)\n focal_loss_good = float(loss(pred_very_good, target).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)\n\n focal_loss_good = float(loss_onehot(pred_very_good, target_one_hot).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_2d_GaussianFilterTestCase.test_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_2d_GaussianFilterTestCase.test_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_filter.py", "file_name": "test_gaussian_filter.py", "file_type": "text/x-python", "category": "test", "start_line": 122, "end_line": 141, "span_ids": ["GaussianFilterTestCase.test_2d"], "tokens": 222}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianFilterTestCase(unittest.TestCase):\n\n @skip_if_quick\n def test_2d(self):\n a = torch.ones(1, 1, 3, 3)\n g = GaussianFilter(2, 3, 3).to(torch.device(\"cpu:0\"))\n expected = np.array(\n [\n [\n [\n [0.13239081, 0.13932934, 0.13239081],\n [0.13932936, 0.14663152, 0.13932936],\n [0.13239081, 0.13932934, 0.13239081],\n ]\n ]\n ]\n )\n\n np.testing.assert_allclose(g(a).cpu().numpy(), expected, rtol=1e-5)\n if torch.cuda.is_available():\n g = GaussianFilter(2, 3, 3).to(torch.device(\"cuda:0\"))\n np.testing.assert_allclose(g(a.cuda()).cpu().numpy(), expected, rtol=1e-2)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_GaussianFilterTestCase.test_3d.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_GaussianFilterTestCase.test_3d.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_filter.py", "file_name": "test_gaussian_filter.py", "file_type": "text/x-python", "category": "test", "start_line": 131, "end_line": 163, "span_ids": ["GaussianFilterTestCase.test_3d"], "tokens": 464}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianFilterTestCase(unittest.TestCase):\n\n def test_3d(self):\n a = torch.ones(1, 1, 4, 3, 4)\n g = GaussianFilter(3, 3, 3).to(torch.device(\"cpu:0\"))\n\n expected = np.array(\n [\n [\n [\n [\n [0.07189433, 0.07911152, 0.07911152, 0.07189433],\n [0.07566228, 0.08325771, 0.08325771, 0.07566228],\n [0.07189433, 0.07911152, 0.07911152, 0.07189433],\n ],\n [\n [0.07911152, 0.08705322, 0.08705322, 0.07911152],\n [0.08325771, 0.09161563, 0.09161563, 0.08325771],\n [0.07911152, 0.08705322, 0.08705322, 0.07911152],\n ],\n [\n [0.07911152, 0.08705322, 0.08705322, 0.07911152],\n [0.08325771, 0.09161563, 0.09161563, 0.08325771],\n [0.07911152, 0.08705322, 0.08705322, 0.07911152],\n ],\n [\n [0.07189433, 0.07911152, 0.07911152, 0.07189433],\n [0.07566228, 0.08325771, 0.08325771, 0.07566228],\n [0.07189433, 0.07911152, 0.07911152, 0.07189433],\n ],\n ]\n ]\n ]\n )\n np.testing.assert_allclose(g(a).cpu().numpy(), expected, rtol=1e-5)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_sigmas_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_sigmas_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_filter.py", "file_name": "test_gaussian_filter.py", "file_type": "text/x-python", "category": "test", "start_line": 177, "end_line": 206, "span_ids": ["GaussianFilterTestCase.test_wrong_args", "impl:9", "GaussianFilterTestCase.test_3d_sigmas"], "tokens": 421}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianFilterTestCase(unittest.TestCase):\n\n def test_3d_sigmas(self):\n a = torch.ones(1, 1, 4, 3, 2)\n g = GaussianFilter(3, [3, 2, 1], 3).to(torch.device(\"cpu:0\"))\n\n expected = np.array(\n [\n [\n [\n [[0.13690521, 0.13690521], [0.15181276, 0.15181276], [0.13690521, 0.13690521]],\n [[0.1506486, 0.15064861], [0.16705267, 0.16705267], [0.1506486, 0.15064861]],\n [[0.1506486, 0.15064861], [0.16705267, 0.16705267], [0.1506486, 0.15064861]],\n [[0.13690521, 0.13690521], [0.15181276, 0.15181276], [0.13690521, 0.13690521]],\n ]\n ]\n ]\n )\n np.testing.assert_allclose(g(a).cpu().numpy(), expected, rtol=1e-5)\n if torch.cuda.is_available():\n g = GaussianFilter(3, [3, 2, 1], 3).to(torch.device(\"cuda:0\"))\n np.testing.assert_allclose(g(a.cuda()).cpu().numpy(), expected, rtol=1e-2)\n\n def test_wrong_args(self):\n with self.assertRaisesRegex(ValueError, \"\"):\n GaussianFilter(3, [3, 2], 3).to(torch.device(\"cpu:0\"))\n GaussianFilter(3, [3, 2, 1], 3).to(torch.device(\"cpu:0\")) # test init\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_unittest_TEST_CASES": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_unittest_TEST_CASES", "embedding": null, "metadata": {"file_path": "tests/test_generalized_dice_loss.py", "file_name": "test_generalized_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 145, "span_ids": ["docstring"], "tokens": 53}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.losses import GeneralizedDiceLoss\nfrom tests.utils import SkipIfBeforePyTorchVersion, test_script_save\n\nTEST_CASES =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss_TestGeneralizedDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss_TestGeneralizedDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_", "embedding": null, "metadata": {"file_path": "tests/test_generalized_dice_loss.py", "file_name": "test_generalized_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 114, "end_line": 123, "span_ids": ["TestGeneralizedDiceLoss.test_shape", "TestGeneralizedDiceLoss", "TestGeneralizedDiceLoss.test_ill_shape"], "tokens": 127}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestGeneralizedDiceLoss(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_data, expected_val):\n result = GeneralizedDiceLoss(**input_param).forward(**input_data)\n np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, rtol=1e-5)\n\n def test_ill_shape(self):\n loss = GeneralizedDiceLoss()\n with self.assertRaisesRegex(AssertionError, \"\"):\n loss.forward(torch.ones((1, 2, 3)), torch.ones((4, 5, 6)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss.test_ill_opts_TestGeneralizedDiceLoss.test_ill_opts.None_2.GeneralizedDiceLoss_reduc": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss.test_ill_opts_TestGeneralizedDiceLoss.test_ill_opts.None_2.GeneralizedDiceLoss_reduc", "embedding": null, "metadata": {"file_path": "tests/test_generalized_dice_loss.py", "file_name": "test_generalized_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 125, "end_line": 133, "span_ids": ["TestGeneralizedDiceLoss.test_ill_opts"], "tokens": 121}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestGeneralizedDiceLoss(unittest.TestCase):\n\n def test_ill_opts(self):\n with self.assertRaisesRegex(ValueError, \"\"):\n GeneralizedDiceLoss(sigmoid=True, softmax=True)\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertRaisesRegex(ValueError, \"\"):\n GeneralizedDiceLoss(reduction=\"unknown\")(chn_input, chn_target)\n with self.assertRaisesRegex(ValueError, \"\"):\n GeneralizedDiceLoss(reduction=None)(chn_input, chn_target)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss.test_input_warnings_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss.test_input_warnings_", "embedding": null, "metadata": {"file_path": "tests/test_generalized_dice_loss.py", "file_name": "test_generalized_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 169, "end_line": 191, "span_ids": ["TestGeneralizedDiceLoss.test_script", "impl:3", "TestGeneralizedDiceLoss.test_input_warnings"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestGeneralizedDiceLoss(unittest.TestCase):\n\n def test_input_warnings(self):\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertWarns(Warning):\n loss = GeneralizedDiceLoss(include_background=False)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = GeneralizedDiceLoss(softmax=True)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = GeneralizedDiceLoss(to_onehot_y=True)\n loss.forward(chn_input, chn_target)\n\n @SkipIfBeforePyTorchVersion((1, 7, 0))\n def test_script(self):\n loss = GeneralizedDiceLoss()\n test_input = torch.ones(2, 1, 8, 8)\n test_script_save(loss, test_input, test_input)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_pos_neg_label_crop_centers.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_pos_neg_label_crop_centers.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_generate_pos_neg_label_crop_centers.py", "file_name": "test_generate_pos_neg_label_crop_centers.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 46, "span_ids": ["TestGeneratePosNegLabelCropCenters", "impl:3", "TestGeneratePosNegLabelCropCenters.test_type_shape", "docstring"], "tokens": 231}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import generate_pos_neg_label_crop_centers\n\nTEST_CASE_1 = [\n {\n \"spatial_size\": [2, 2, 2],\n \"num_samples\": 2,\n \"pos_ratio\": 1.0,\n \"label_spatial_shape\": [3, 3, 3],\n \"fg_indices\": [1, 9, 18],\n \"bg_indices\": [3, 12, 21],\n \"rand_state\": np.random.RandomState(),\n },\n list,\n 2,\n 3,\n]\n\n\nclass TestGeneratePosNegLabelCropCenters(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1])\n def test_type_shape(self, input_data, expected_type, expected_count, expected_shape):\n result = generate_pos_neg_label_crop_centers(**input_data)\n self.assertIsInstance(result, expected_type)\n self.assertEqual(len(result), expected_count)\n self.assertEqual(len(result[0]), expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_spatial_bounding_box.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_spatial_bounding_box.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_generate_spatial_bounding_box.py", "file_name": "test_generate_spatial_bounding_box.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 79, "span_ids": ["TestGenerateSpatialBoundingBox", "impl:11", "impl:7", "docstring", "TestGenerateSpatialBoundingBox.test_value"], "tokens": 787}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import generate_spatial_bounding_box\n\nTEST_CASE_1 = [\n {\n \"img\": np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 1, 2, 1, 0], [0, 0, 0, 0, 0]]]),\n \"select_fn\": lambda x: x > 0,\n \"channel_indices\": None,\n \"margin\": 0,\n },\n ([1, 1], [4, 4]),\n]\n\nTEST_CASE_2 = [\n {\n \"img\": np.array([[[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 3, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]]]),\n \"select_fn\": lambda x: x > 1,\n \"channel_indices\": None,\n \"margin\": 0,\n },\n ([2, 2], [3, 3]),\n]\n\nTEST_CASE_3 = [\n {\n \"img\": np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 1, 2, 1, 0], [0, 0, 0, 0, 0]]]),\n \"select_fn\": lambda x: x > 0,\n \"channel_indices\": 0,\n \"margin\": 0,\n },\n ([1, 1], [4, 4]),\n]\n\nTEST_CASE_4 = [\n {\n \"img\": np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]]),\n \"select_fn\": lambda x: x > 0,\n \"channel_indices\": None,\n \"margin\": 1,\n },\n ([0, 0], [4, 5]),\n]\n\nTEST_CASE_5 = [\n {\n \"img\": np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]]),\n \"select_fn\": lambda x: x > 0,\n \"channel_indices\": None,\n \"margin\": [2, 1],\n },\n ([0, 0], [5, 5]),\n]\n\n\nclass TestGenerateSpatialBoundingBox(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_value(self, input_data, expected_box):\n result = generate_spatial_bounding_box(**input_data)\n self.assertTupleEqual(result, expected_box)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_rocauc.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_rocauc.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_handler_rocauc.py", "file_name": "test_handler_rocauc.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 47, "span_ids": ["TestHandlerROCAUC", "TestHandlerROCAUC.test_compute", "impl", "docstring"], "tokens": 263}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.handlers import ROCAUC\nfrom monai.transforms import Activations, AsDiscrete\n\n\nclass TestHandlerROCAUC(unittest.TestCase):\n def test_compute(self):\n auc_metric = ROCAUC()\n act = Activations(softmax=True)\n to_onehot = AsDiscrete(to_onehot=True, n_classes=2)\n\n y_pred = torch.Tensor([[0.1, 0.9], [0.3, 1.4]])\n y = torch.Tensor([[0], [1]])\n y_pred = act(y_pred)\n y = to_onehot(y)\n auc_metric.update([y_pred, y])\n\n y_pred = torch.Tensor([[0.2, 0.1], [0.1, 0.5]])\n y = torch.Tensor([[0], [1]])\n y_pred = act(y_pred)\n y = to_onehot(y)\n # test a list of channel-first tensors\n y_pred, y = list(y_pred), list(y)\n auc_metric.update([y_pred, y])\n\n auc = auc_metric.compute()\n np.testing.assert_allclose(0.75, auc)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_TestHandlerSegmentationSaver.test_save_resized_content_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_TestHandlerSegmentationSaver.test_save_resized_content_", "embedding": null, "metadata": {"file_path": "tests/test_handler_segmentation_saver.py", "file_name": "test_handler_segmentation_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 49, "end_line": 79, "span_ids": ["impl:5", "TestHandlerSegmentationSaver.test_save_resized_content"], "tokens": 307}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerSegmentationSaver(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1])\n def test_save_resized_content(self, output_ext):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n return torch.randint(0, 255, (8, 1, 2, 2)).float()\n\n engine = Engine(_train_func)\n\n # set up testing handler\n saver = SegmentationSaver(output_dir=tempdir, output_postfix=\"seg\", output_ext=output_ext, scale=255)\n saver.attach(engine)\n\n data = [\n {\n \"filename_or_obj\": [\"testfile\" + str(i) + \".nii.gz\" for i in range(8)],\n \"spatial_shape\": [(28, 28)] * 8,\n \"affine\": [np.diag(np.ones(4)) * 5] * 8,\n \"original_affine\": [np.diag(np.ones(4)) * 1.0] * 8,\n }\n ]\n engine.run(data, max_epochs=1)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg\" + output_ext)\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_print_TestHandlerStats.test_loss_print.for_idx_line_in_enumerat.if_grep_match_line_.if_idx_in_1_2_3_6_7_.self_assertTrue_has_key_w": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_print_TestHandlerStats.test_loss_print.for_idx_line_in_enumerat.if_grep_match_line_.if_idx_in_1_2_3_6_7_.self_assertTrue_has_key_w", "embedding": null, "metadata": {"file_path": "tests/test_handler_stats.py", "file_name": "test_handler_stats.py", "file_type": "text/x-python", "category": "test", "start_line": 61, "end_line": 88, "span_ids": ["TestHandlerStats.test_loss_print"], "tokens": 236}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerStats(unittest.TestCase):\n\n def test_loss_print(self):\n log_stream = StringIO()\n log_handler = logging.StreamHandler(log_stream)\n log_handler.setLevel(logging.INFO)\n key_to_handler = \"test_logging\"\n key_to_print = \"myLoss\"\n\n # set up engine\n def _train_func(engine, batch):\n return torch.tensor(0.0)\n\n engine = Engine(_train_func)\n\n # set up testing handler\n stats_handler = StatsHandler(name=key_to_handler, tag_name=key_to_print, logger_handler=log_handler)\n stats_handler.attach(engine)\n\n engine.run(range(3), max_epochs=2)\n\n # check logging output\n output_str = log_stream.getvalue()\n log_handler.close()\n grep = re.compile(f\".*{key_to_handler}.*\")\n has_key_word = re.compile(f\".*{key_to_print}.*\")\n for idx, line in enumerate(output_str.split(\"\\n\")):\n if grep.match(line):\n if idx in [1, 2, 3, 6, 7, 8]:\n self.assertTrue(has_key_word.match(line))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_dict_TestHandlerStats.test_loss_dict.for_idx_line_in_enumerat.if_grep_match_line_.if_idx_in_1_2_3_6_7_.self_assertTrue_has_key_w": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_dict_TestHandlerStats.test_loss_dict.for_idx_line_in_enumerat.if_grep_match_line_.if_idx_in_1_2_3_6_7_.self_assertTrue_has_key_w", "embedding": null, "metadata": {"file_path": "tests/test_handler_stats.py", "file_name": "test_handler_stats.py", "file_type": "text/x-python", "category": "test", "start_line": 90, "end_line": 119, "span_ids": ["TestHandlerStats.test_loss_dict"], "tokens": 247}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerStats(unittest.TestCase):\n\n def test_loss_dict(self):\n log_stream = StringIO()\n log_handler = logging.StreamHandler(log_stream)\n log_handler.setLevel(logging.INFO)\n key_to_handler = \"test_logging\"\n key_to_print = \"myLoss1\"\n\n # set up engine\n def _train_func(engine, batch):\n return torch.tensor(0.0)\n\n engine = Engine(_train_func)\n\n # set up testing handler\n stats_handler = StatsHandler(\n name=key_to_handler, output_transform=lambda x: {key_to_print: x}, logger_handler=log_handler\n )\n stats_handler.attach(engine)\n\n engine.run(range(3), max_epochs=2)\n\n # check logging output\n output_str = log_stream.getvalue()\n log_handler.close()\n grep = re.compile(f\".*{key_to_handler}.*\")\n has_key_word = re.compile(f\".*{key_to_print}.*\")\n for idx, line in enumerate(output_str.split(\"\\n\")):\n if grep.match(line):\n if idx in [1, 2, 3, 6, 7, 8]:\n self.assertTrue(has_key_word.match(line))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_file_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_file_", "embedding": null, "metadata": {"file_path": "tests/test_handler_stats.py", "file_name": "test_handler_stats.py", "file_type": "text/x-python", "category": "test", "start_line": 121, "end_line": 169, "span_ids": ["TestHandlerStats.test_loss_file", "impl", "TestHandlerStats.test_exception"], "tokens": 355}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerStats(unittest.TestCase):\n\n def test_loss_file(self):\n key_to_handler = \"test_logging\"\n key_to_print = \"myLoss\"\n\n with tempfile.TemporaryDirectory() as tempdir:\n filename = os.path.join(tempdir, \"test_loss_stats.log\")\n handler = logging.FileHandler(filename, mode=\"w\")\n handler.setLevel(logging.INFO)\n\n # set up engine\n def _train_func(engine, batch):\n return torch.tensor(0.0)\n\n engine = Engine(_train_func)\n\n # set up testing handler\n stats_handler = StatsHandler(name=key_to_handler, tag_name=key_to_print, logger_handler=handler)\n stats_handler.attach(engine)\n\n engine.run(range(3), max_epochs=2)\n handler.close()\n stats_handler.logger.removeHandler(handler)\n with open(filename, \"r\") as f:\n output_str = f.read()\n grep = re.compile(f\".*{key_to_handler}.*\")\n has_key_word = re.compile(f\".*{key_to_print}.*\")\n for idx, line in enumerate(output_str.split(\"\\n\")):\n if grep.match(line):\n if idx in [1, 2, 3, 6, 7, 8]:\n self.assertTrue(has_key_word.match(line))\n\n def test_exception(self):\n # set up engine\n def _train_func(engine, batch):\n raise RuntimeError(\"test exception.\")\n\n engine = Engine(_train_func)\n\n # set up testing handler\n stats_handler = StatsHandler()\n stats_handler.attach(engine)\n\n with self.assertRaises(RuntimeError):\n engine.run(range(3), max_epochs=2)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_glob_TEST_CASES._20_20_2_20_20_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_glob_TEST_CASES._20_20_2_20_20_", "embedding": null, "metadata": {"file_path": "tests/test_handler_tb_image.py", "file_name": "test_handler_tb_image.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 23, "span_ids": ["docstring"], "tokens": 107}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import glob\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport torch\nfrom ignite.engine import Engine, Events\nfrom parameterized import parameterized\n\nfrom monai.handlers import TensorBoardImageHandler\n\nTEST_CASES = [[[20, 20]], [[2, 20, 20]], [[3, 20, 20]], [[20, 20, 20]], [[2, 20, 20, 20]], [[2, 2, 20, 20, 20]]]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_TestHandlerTBImage_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_TestHandlerTBImage_", "embedding": null, "metadata": {"file_path": "tests/test_handler_tb_image.py", "file_name": "test_handler_tb_image.py", "file_type": "text/x-python", "category": "test", "start_line": 26, "end_line": 50, "span_ids": ["TestHandlerTBImage.test_tb_image_shape", "impl:3", "TestHandlerTBImage"], "tokens": 188}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerTBImage(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_tb_image_shape(self, shape):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n return torch.zeros((1, 1, 10, 10))\n\n engine = Engine(_train_func)\n\n # set up testing handler\n stats_handler = TensorBoardImageHandler(log_dir=tempdir)\n engine.add_event_handler(Events.ITERATION_COMPLETED, stats_handler)\n\n data = zip(np.random.normal(size=(10, 4, *shape)), np.random.normal(size=(10, 4, *shape)))\n engine.run(data, epoch_length=10, max_epochs=1)\n stats_handler.close()\n\n self.assertTrue(len(glob.glob(tempdir)) > 0)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_TestHandlerTBStats.test_metrics_writer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_TestHandlerTBStats.test_metrics_writer_", "embedding": null, "metadata": {"file_path": "tests/test_handler_tb_stats.py", "file_name": "test_handler_tb_stats.py", "file_type": "text/x-python", "category": "test", "start_line": 46, "end_line": 75, "span_ids": ["TestHandlerTBStats.test_metrics_writer", "impl"], "tokens": 227}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerTBStats(unittest.TestCase):\n\n def test_metrics_writer(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n return batch + 1.0\n\n engine = Engine(_train_func)\n\n # set up dummy metric\n @engine.on(Events.EPOCH_COMPLETED)\n def _update_metric(engine):\n current_metric = engine.state.metrics.get(\"acc\", 0.1)\n engine.state.metrics[\"acc\"] = current_metric + 0.1\n\n # set up testing handler\n writer = SummaryWriter(log_dir=tempdir)\n stats_handler = TensorBoardStatsHandler(\n writer, output_transform=lambda x: {\"loss\": x * 2.0}, global_epoch_transform=lambda x: x * 3.0\n )\n stats_handler.attach(engine)\n engine.run(range(3), max_epochs=2)\n writer.close()\n # check logging output\n self.assertTrue(len(glob.glob(tempdir)) > 0)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_validation.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_validation.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_handler_validation.py", "file_name": "test_handler_validation.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 50, "span_ids": ["TestEvaluator", "TestHandlerValidation.test_content", "TestEvaluator._iteration", "impl", "docstring", "TestHandlerValidation"], "tokens": 207}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom ignite.engine import Engine\n\nfrom monai.data import Dataset\nfrom monai.engines import Evaluator\nfrom monai.handlers import ValidationHandler\n\n\nclass TestEvaluator(Evaluator):\n def _iteration(self, engine, batchdata):\n pass\n\n\nclass TestHandlerValidation(unittest.TestCase):\n def test_content(self):\n data = [0] * 8\n\n # set up engine\n def _train_func(engine, batch):\n pass\n\n engine = Engine(_train_func)\n\n # set up testing handler\n val_data_loader = torch.utils.data.DataLoader(Dataset(data))\n evaluator = TestEvaluator(torch.device(\"cpu:0\"), val_data_loader)\n saver = ValidationHandler(interval=2, validator=evaluator)\n saver.attach(engine)\n\n engine.run(data, max_epochs=5)\n self.assertEqual(evaluator.state.max_epochs, 4)\n self.assertEqual(evaluator.state.epoch_length, 8)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_unittest_TestCorrection.test_correct.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_unittest_TestCorrection.test_correct.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_header_correct.py", "file_name": "test_header_correct.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 28, "span_ids": ["TestCorrection", "TestCorrection.test_correct", "docstring"], "tokens": 197}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport nibabel as nib\nimport numpy as np\n\nfrom monai.data import correct_nifti_header_if_necessary\n\n\nclass TestCorrection(unittest.TestCase):\n def test_correct(self):\n test_img = nib.Nifti1Image(np.zeros((1, 2, 3)), np.eye(4))\n test_img.header.set_zooms((100, 100, 100))\n test_img = correct_nifti_header_if_necessary(test_img)\n np.testing.assert_allclose(\n test_img.affine,\n np.array([[100.0, 0.0, 0.0, 0.0], [0.0, 100.0, 0.0, 0.0], [0.0, 0.0, 100.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_TestCorrection.test_affine_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_TestCorrection.test_affine_", "embedding": null, "metadata": {"file_path": "tests/test_header_correct.py", "file_name": "test_header_correct.py", "file_type": "text/x-python", "category": "test", "start_line": 30, "end_line": 41, "span_ids": ["TestCorrection.test_affine", "impl"], "tokens": 172}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCorrection(unittest.TestCase):\n\n def test_affine(self):\n test_img = nib.Nifti1Image(np.zeros((1, 2, 3)), np.eye(4) * 20.0)\n test_img = correct_nifti_header_if_necessary(test_img)\n np.testing.assert_allclose(\n test_img.affine,\n np.array([[20.0, 0.0, 0.0, 0.0], [0.0, 20.0, 0.0, 0.0], [0.0, 0.0, 20.0, 0.0], [0.0, 0.0, 0.0, 20.0]]),\n )\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_identity.py", "file_name": "test_identity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 29, "span_ids": ["TestIdentity", "TestIdentity.test_identity", "impl", "docstring"], "tokens": 79}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms.utility.array import Identity\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestIdentity(NumpyImageTestCase2D):\n def test_identity(self):\n img = self.imt\n identity = Identity()\n self.assertTrue(np.allclose(img, identity(img)))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identityd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identityd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_identityd.py", "file_name": "test_identityd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 29, "span_ids": ["TestIdentityd.test_identityd", "TestIdentityd", "impl", "docstring"], "tokens": 90}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom monai.transforms.utility.dictionary import Identityd\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestIdentityd(NumpyImageTestCase2D):\n def test_identityd(self):\n img = self.imt\n data = {}\n data[\"img\"] = img\n identity = Identityd(keys=data.keys())\n self.assertEqual(data, identity(data))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_os_MedNISTDataset.__getitem__.return.self_transforms_self_imag": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_os_MedNISTDataset.__getitem__.return.self_transforms_self_imag", "embedding": null, "metadata": {"file_path": "tests/test_integration_classification_2d.py", "file_name": "test_integration_classification_2d.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 57, "span_ids": ["MedNISTDataset", "MedNISTDataset.__len__", "MedNISTDataset.__init__", "docstring", "MedNISTDataset.__getitem__"], "tokens": 315}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport unittest\nimport warnings\nfrom urllib.error import ContentTooShortError, HTTPError\n\nimport numpy as np\nimport torch\nfrom torch.utils.data import DataLoader\n\nimport monai\nfrom monai.apps import download_and_extract\nfrom monai.metrics import compute_roc_auc\nfrom monai.networks import eval_mode\nfrom monai.networks.nets import DenseNet121\nfrom monai.transforms import (\n Activations,\n AddChannel,\n AsDiscrete,\n Compose,\n LoadImage,\n RandFlip,\n RandRotate,\n RandZoom,\n ScaleIntensity,\n ToTensor,\n)\nfrom monai.utils import set_determinism\nfrom tests.testing_data.integration_answers import test_integration_value\nfrom tests.utils import DistTestCase, TimedCall, skip_if_quick\n\nTEST_DATA_URL = \"https://drive.google.com/uc?id=13MhoPsNgI6qboJfLicFf_jNvsFUbIYsd\"\nMD5_VALUE = \"0bc7306e7427e00ad1c5526a6677552d\"\nTASK = \"integration_classification_2d\"\n\n\nclass MedNISTDataset(torch.utils.data.Dataset):\n def __init__(self, image_files, labels, transforms):\n self.image_files = image_files\n self.labels = labels\n self.transforms = transforms\n\n def __len__(self):\n return len(self.image_files)\n\n def __getitem__(self, index):\n return self.transforms(self.image_files[index]), self.labels[index]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_run_inference_test_run_inference_test.return.tps": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_run_inference_test_run_inference_test.return.tps", "embedding": null, "metadata": {"file_path": "tests/test_integration_classification_2d.py", "file_name": "test_integration_classification_2d.py", "file_type": "text/x-python", "category": "test", "start_line": 148, "end_line": 168, "span_ids": ["run_inference_test"], "tokens": 272}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_inference_test(root_dir, test_x, test_y, device=\"cuda:0\", num_workers=10):\n # define transforms for image and classification\n val_transforms = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity(), ToTensor()])\n val_ds = MedNISTDataset(test_x, test_y, val_transforms)\n val_loader = DataLoader(val_ds, batch_size=300, num_workers=num_workers)\n\n model = DenseNet121(spatial_dims=2, in_channels=1, out_channels=len(np.unique(test_y))).to(device)\n\n model_filename = os.path.join(root_dir, \"best_metric_model.pth\")\n model.load_state_dict(torch.load(model_filename))\n y_true = []\n y_pred = []\n with eval_mode(model):\n for test_data in val_loader:\n test_images, test_labels = test_data[0].to(device), test_data[1].to(device)\n pred = model(test_images).argmax(dim=1)\n for i in range(len(pred)):\n y_true.append(test_labels[i].item())\n y_pred.append(pred[i].item())\n tps = [np.sum((np.asarray(y_true) == idx) & (np.asarray(y_pred) == idx)) for idx in np.unique(test_y)]\n return tps", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_IntegrationClassification2D.tearDown_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_IntegrationClassification2D.tearDown_", "embedding": null, "metadata": {"file_path": "tests/test_integration_classification_2d.py", "file_name": "test_integration_classification_2d.py", "file_type": "text/x-python", "category": "test", "start_line": 220, "end_line": 270, "span_ids": ["IntegrationClassification2D.tearDown", "IntegrationClassification2D.test_training", "impl:7", "IntegrationClassification2D.test_timing", "IntegrationClassification2D.train_and_infer"], "tokens": 471}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@skip_if_quick\nclass IntegrationClassification2D(DistTestCase):\n\n def tearDown(self):\n set_determinism(seed=None)\n try:\n os.remove(os.path.join(self.data_dir, \"best_metric_model.pth\"))\n except FileNotFoundError:\n warnings.warn(\"not found best_metric_model.pth, training skipped?\")\n pass\n\n def train_and_infer(self, idx=0):\n results = []\n if not os.path.exists(os.path.join(self.data_dir, \"MedNIST\")):\n # skip test if no MedNIST dataset\n return results\n\n set_determinism(seed=0)\n losses, best_metric, best_metric_epoch = run_training_test(\n self.data_dir, self.train_x, self.train_y, self.val_x, self.val_y, device=self.device\n )\n infer_metric = run_inference_test(self.data_dir, self.test_x, self.test_y, device=self.device)\n\n print(f\"integration_classification_2d {losses}\")\n print(\"best metric\", best_metric)\n print(\"infer metric\", infer_metric)\n # check training properties\n self.assertTrue(test_integration_value(TASK, key=\"losses\", data=losses, rtol=1e-2))\n self.assertTrue(test_integration_value(TASK, key=\"best_metric\", data=best_metric, rtol=1e-4))\n np.testing.assert_allclose(best_metric_epoch, 4)\n model_file = os.path.join(self.data_dir, \"best_metric_model.pth\")\n self.assertTrue(os.path.exists(model_file))\n # check inference properties\n self.assertTrue(test_integration_value(TASK, key=\"infer_prop\", data=np.asarray(infer_metric), rtol=1))\n results.extend(losses)\n results.append(best_metric)\n results.extend(infer_metric)\n return results\n\n def test_training(self):\n repeated = []\n for i in range(2):\n results = self.train_and_infer(i)\n repeated.append(results)\n np.testing.assert_allclose(repeated[0], repeated[1])\n\n @TimedCall(seconds=1000, skip_timing=not torch.cuda.is_available(), daemon=False)\n def test_timing(self):\n self.train_and_infer()\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_unittest_run_test._TestBatch.__len__.return.train_steps": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_unittest_run_test._TestBatch.__len__.return.train_steps", "embedding": null, "metadata": {"file_path": "tests/test_integration_determinism.py", "file_name": "test_integration_determinism.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["run_test", "docstring"], "tokens": 253}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom torch.utils.data import DataLoader, Dataset\n\nfrom monai.data import create_test_image_2d\nfrom monai.losses import DiceLoss\nfrom monai.networks.nets import UNet\nfrom monai.transforms import AddChannel, Compose, RandRotate90, RandSpatialCrop, ScaleIntensity, ToTensor\nfrom monai.utils import set_determinism\nfrom tests.utils import DistTestCase, TimedCall\n\n\ndef run_test(batch_size=64, train_steps=200, device=\"cuda:0\"):\n class _TestBatch(Dataset):\n def __init__(self, transforms):\n self.transforms = transforms\n\n def __getitem__(self, _unused_id):\n im, seg = create_test_image_2d(128, 128, noise_max=1, num_objs=4, num_seg_classes=1)\n seed = np.random.randint(2147483647)\n self.transforms.set_random_state(seed=seed)\n im = self.transforms(im)\n self.transforms.set_random_state(seed=seed)\n seg = self.transforms(seg)\n return im, seg\n\n def __len__(self):\n return train_steps\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_run_test.net_run_test.return.epoch_loss_step": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_run_test.net_run_test.return.epoch_loss_step", "embedding": null, "metadata": {"file_path": "tests/test_integration_determinism.py", "file_name": "test_integration_determinism.py", "file_type": "text/x-python", "category": "test", "start_line": 43, "end_line": 68, "span_ids": ["run_test"], "tokens": 245}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_test(batch_size=64, train_steps=200, device=\"cuda:0\"):\n # ... other code\n\n net = UNet(\n dimensions=2, in_channels=1, out_channels=1, channels=(4, 8, 16, 32), strides=(2, 2, 2), num_res_units=2\n ).to(device)\n\n loss = DiceLoss(sigmoid=True)\n opt = torch.optim.Adam(net.parameters(), 1e-2)\n train_transforms = Compose(\n [AddChannel(), ScaleIntensity(), RandSpatialCrop((96, 96), random_size=False), RandRotate90(), ToTensor()]\n )\n\n src = DataLoader(_TestBatch(train_transforms), batch_size=batch_size, shuffle=True)\n\n net.train()\n epoch_loss = 0\n step = 0\n for img, seg in src:\n step += 1\n opt.zero_grad()\n output = net(img.to(device))\n step_loss = loss(output, seg.to(device))\n step_loss.backward()\n opt.step()\n epoch_loss += step_loss.item()\n epoch_loss /= step\n\n return epoch_loss, step", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_TestDeterminism_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_TestDeterminism_", "embedding": null, "metadata": {"file_path": "tests/test_integration_determinism.py", "file_name": "test_integration_determinism.py", "file_type": "text/x-python", "category": "test", "start_line": 71, "end_line": 89, "span_ids": ["TestDeterminism.tearDown", "impl", "TestDeterminism.setUp", "TestDeterminism", "TestDeterminism.test_training"], "tokens": 145}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDeterminism(DistTestCase):\n def setUp(self):\n self.device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu:0\")\n\n def tearDown(self):\n set_determinism(seed=None)\n\n @TimedCall(seconds=30)\n def test_training(self):\n set_determinism(seed=0)\n loss, step = run_test(device=self.device)\n print(f\"Deterministic loss {loss} at training step {step}\")\n np.testing.assert_allclose(step, 4)\n np.testing.assert_allclose(loss, 0.535927, rtol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_IntegrationSegmentation3D_IntegrationSegmentation3D.tearDown.shutil_rmtree_self_data_d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_IntegrationSegmentation3D_IntegrationSegmentation3D.tearDown.shutil_rmtree_self_data_d", "embedding": null, "metadata": {"file_path": "tests/test_integration_segmentation_3d.py", "file_name": "test_integration_segmentation_3d.py", "file_type": "text/x-python", "category": "test", "start_line": 229, "end_line": 246, "span_ids": ["IntegrationSegmentation3D", "IntegrationSegmentation3D.tearDown", "IntegrationSegmentation3D.setUp"], "tokens": 195}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@skip_if_quick\nclass IntegrationSegmentation3D(DistTestCase):\n def setUp(self):\n set_determinism(seed=0)\n\n self.data_dir = tempfile.mkdtemp()\n for i in range(40):\n im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)\n n = nib.Nifti1Image(im, np.eye(4))\n nib.save(n, os.path.join(self.data_dir, f\"img{i:d}.nii.gz\"))\n n = nib.Nifti1Image(seg, np.eye(4))\n nib.save(n, os.path.join(self.data_dir, f\"seg{i:d}.nii.gz\"))\n\n self.device = \"cuda:0\" if torch.cuda.is_available() else \"cpu:0\"\n\n def tearDown(self):\n set_determinism(seed=None)\n shutil.rmtree(self.data_dir)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_run_test_run_test.return.saved_name": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_run_test_run_test.return.saved_name", "embedding": null, "metadata": {"file_path": "tests/test_integration_sliding_window.py", "file_name": "test_integration_sliding_window.py", "file_type": "text/x-python", "category": "test", "start_line": 32, "end_line": 58, "span_ids": ["run_test"], "tokens": 322}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_test(batch_size, img_name, seg_name, output_dir, device=\"cuda:0\"):\n ds = ImageDataset([img_name], [seg_name], transform=AddChannel(), seg_transform=AddChannel(), image_only=False)\n loader = DataLoader(ds, batch_size=1, pin_memory=torch.cuda.is_available())\n\n net = UNet(\n dimensions=3, in_channels=1, out_channels=1, channels=(4, 8, 16, 32), strides=(2, 2, 2), num_res_units=2\n ).to(device)\n roi_size = (16, 32, 48)\n sw_batch_size = batch_size\n\n def _sliding_window_processor(_engine, batch):\n img = batch[0] # first item from ImageDataset is the input image\n with eval_mode(net):\n seg_probs = sliding_window_inference(img.to(device), roi_size, sw_batch_size, net, device=device)\n return predict_segmentation(seg_probs)\n\n infer_engine = Engine(_sliding_window_processor)\n\n SegmentationSaver( # 3rd item for image batch meta data\n output_dir=output_dir, output_ext=\".nii.gz\", output_postfix=\"seg\", batch_transform=lambda x: x[2]\n ).attach(infer_engine)\n\n infer_engine.run(loader)\n\n basename = os.path.basename(img_name)[: -len(\".nii.gz\")]\n saved_name = os.path.join(output_dir, basename, f\"{basename}_seg.nii.gz\")\n return saved_name", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_from___future___import_pr_STNBenchmark.forward.return.self_stn_x_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_from___future___import_pr_STNBenchmark.forward.return.self_stn_x_", "embedding": null, "metadata": {"file_path": "tests/test_integration_stn.py", "file_name": "test_integration_stn.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 74, "span_ids": ["STNBenchmark.forward", "STNBenchmark.stn", "docstring", "STNBenchmark.__init__", "STNBenchmark", "STNBenchmark.stn_ref"], "tokens": 554}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from __future__ import print_function\n\nimport unittest\n\nimport numpy as np\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\nimport torch.optim as optim\n\nfrom monai.data import create_test_image_2d\nfrom monai.networks.layers import AffineTransform\nfrom monai.utils import set_determinism\nfrom tests.utils import DistTestCase, TimedCall\n\n\nclass STNBenchmark(nn.Module):\n \"\"\"\n adapted from https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html\n \"\"\"\n\n def __init__(self, is_ref=True, reverse_indexing=False):\n super().__init__()\n self.is_ref = is_ref\n self.localization = nn.Sequential(\n nn.Conv2d(1, 8, kernel_size=7),\n nn.MaxPool2d(2, stride=2),\n nn.ReLU(True),\n nn.Conv2d(8, 10, kernel_size=5),\n nn.MaxPool2d(2, stride=2),\n nn.ReLU(True),\n )\n # Regressor for the 3 * 2 affine matrix\n self.fc_loc = nn.Sequential(nn.Linear(10 * 3 * 3, 32), nn.ReLU(True), nn.Linear(32, 3 * 2))\n # Initialize the weights/bias with identity transformation\n self.fc_loc[2].weight.data.zero_()\n self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))\n if not self.is_ref:\n self.xform = AffineTransform(normalized=True, reverse_indexing=reverse_indexing)\n\n # Spatial transformer network forward function\n def stn_ref(self, x):\n xs = self.localization(x)\n xs = xs.view(-1, 10 * 3 * 3)\n theta = self.fc_loc(xs)\n theta = theta.view(-1, 2, 3)\n\n grid = F.affine_grid(theta, x.size(), align_corners=False)\n x = F.grid_sample(x, grid, align_corners=False)\n return x\n\n def stn(self, x):\n xs = self.localization(x)\n xs = xs.view(-1, 10 * 3 * 3)\n theta = self.fc_loc(xs)\n theta = theta.view(-1, 2, 3)\n x = self.xform(x, theta, spatial_size=x.size()[2:])\n return x\n\n def forward(self, x):\n if self.is_ref:\n return self.stn_ref(x)\n return self.stn(x)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_compare_2d_compare_2d.return.model_img_a_detach_cpu": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_compare_2d_compare_2d.return.model_img_a_detach_cpu", "embedding": null, "metadata": {"file_path": "tests/test_integration_stn.py", "file_name": "test_integration_stn.py", "file_type": "text/x-python", "category": "test", "start_line": 76, "end_line": 96, "span_ids": ["compare_2d"], "tokens": 281}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def compare_2d(is_ref=True, device=None, reverse_indexing=False):\n batch_size = 32\n img_a = [create_test_image_2d(28, 28, 5, rad_max=6, noise_max=1)[0][None] for _ in range(batch_size)]\n img_b = [create_test_image_2d(28, 28, 5, rad_max=6, noise_max=1)[0][None] for _ in range(batch_size)]\n img_a = np.stack(img_a, axis=0)\n img_b = np.stack(img_b, axis=0)\n img_a = torch.as_tensor(img_a, device=device)\n img_b = torch.as_tensor(img_b, device=device)\n model = STNBenchmark(is_ref=is_ref, reverse_indexing=reverse_indexing).to(device)\n optimizer = optim.SGD(model.parameters(), lr=0.001)\n model.train()\n init_loss = None\n for _ in range(20):\n optimizer.zero_grad()\n output_a = model(img_a)\n loss = torch.mean((output_a - img_b) ** 2)\n if init_loss is None:\n init_loss = loss.item()\n loss.backward()\n optimizer.step()\n return model(img_a).detach().cpu().numpy(), loss.item(), init_loss", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_TestSpatialTransformerCore_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_TestSpatialTransformerCore_", "embedding": null, "metadata": {"file_path": "tests/test_integration_stn.py", "file_name": "test_integration_stn.py", "file_type": "text/x-python", "category": "test", "start_line": 100, "end_line": 134, "span_ids": ["TestSpatialTransformerCore", "TestSpatialTransformerCore.tearDown", "impl", "TestSpatialTransformerCore.test_training", "TestSpatialTransformerCore.setUp"], "tokens": 317}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSpatialTransformerCore(DistTestCase):\n def setUp(self):\n self.device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu:0\")\n\n def tearDown(self):\n set_determinism(seed=None)\n\n @TimedCall(seconds=60)\n def test_training(self):\n \"\"\"\n check that the quality AffineTransform backpropagation\n \"\"\"\n atol = 1e-5\n set_determinism(seed=0)\n out_ref, loss_ref, init_loss_ref = compare_2d(True, self.device)\n print(out_ref.shape, loss_ref, init_loss_ref)\n\n set_determinism(seed=0)\n out, loss, init_loss = compare_2d(False, self.device)\n print(out.shape, loss, init_loss)\n np.testing.assert_allclose(out_ref, out, atol=atol)\n np.testing.assert_allclose(init_loss_ref, init_loss, atol=atol)\n np.testing.assert_allclose(loss_ref, loss, atol=atol)\n\n set_determinism(seed=0)\n out, loss, init_loss = compare_2d(False, self.device, True)\n print(out.shape, loss, init_loss)\n np.testing.assert_allclose(out_ref, out, atol=atol)\n np.testing.assert_allclose(init_loss_ref, init_loss, atol=atol)\n np.testing.assert_allclose(loss_ref, loss, atol=atol)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_inference_test_run_inference_test.return.evaluator_state_best_metr": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_inference_test_run_inference_test.return.evaluator_state_best_metr", "embedding": null, "metadata": {"file_path": "tests/test_integration_workflows.py", "file_name": "test_integration_workflows.py", "file_type": "text/x-python", "category": "test", "start_line": 207, "end_line": 277, "span_ids": ["run_inference_test"], "tokens": 641}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_inference_test(root_dir, model_file, device=\"cuda:0\", amp=False, num_workers=4):\n images = sorted(glob(os.path.join(root_dir, \"im*.nii.gz\")))\n segs = sorted(glob(os.path.join(root_dir, \"seg*.nii.gz\")))\n val_files = [{\"image\": img, \"label\": seg} for img, seg in zip(images, segs)]\n\n # define transforms for image and segmentation\n val_transforms = Compose(\n [\n LoadImaged(keys=[\"image\", \"label\"]),\n AsChannelFirstd(keys=[\"image\", \"label\"], channel_dim=-1),\n ScaleIntensityd(keys=[\"image\", \"label\"]),\n ToTensord(keys=[\"image\", \"label\"]),\n ]\n )\n\n # create a validation data loader\n val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)\n val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=num_workers)\n\n # create UNet, DiceLoss and Adam optimizer\n net = monai.networks.nets.UNet(\n dimensions=3,\n in_channels=1,\n out_channels=1,\n channels=(16, 32, 64, 128, 256),\n strides=(2, 2, 2, 2),\n num_res_units=2,\n ).to(device)\n\n val_post_transforms = Compose(\n [\n Activationsd(keys=\"pred\", sigmoid=True),\n AsDiscreted(keys=\"pred\", threshold_values=True),\n KeepLargestConnectedComponentd(keys=\"pred\", applied_labels=[1]),\n # test the case that `pred` in `engine.state.output`, while `image_meta_dict` in `engine.state.batch`\n SaveImaged(\n keys=\"pred\",\n meta_keys=\"image_meta_dict\",\n output_dir=root_dir,\n output_postfix=\"seg_transform\",\n save_batch=True,\n ),\n ]\n )\n val_handlers = [\n StatsHandler(output_transform=lambda x: None),\n CheckpointLoader(load_path=f\"{model_file}\", load_dict={\"net\": net}),\n SegmentationSaver(\n output_dir=root_dir,\n output_postfix=\"seg_handler\",\n batch_transform=lambda batch: batch[\"image_meta_dict\"],\n output_transform=lambda output: output[\"pred\"],\n ),\n ]\n\n evaluator = SupervisedEvaluator(\n device=device,\n val_data_loader=val_loader,\n network=net,\n inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5),\n post_transform=val_post_transforms,\n key_val_metric={\n \"val_mean_dice\": MeanDice(include_background=True, output_transform=lambda x: (x[\"pred\"], x[\"label\"]))\n },\n additional_metrics={\"val_acc\": Accuracy(output_transform=lambda x: (x[\"pred\"], x[\"label\"]))},\n val_handlers=val_handlers,\n amp=True if amp else False,\n )\n evaluator.run()\n\n return evaluator.state.best_metric", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows_IntegrationWorkflows.tearDown.shutil_rmtree_self_data_d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows_IntegrationWorkflows.tearDown.shutil_rmtree_self_data_d", "embedding": null, "metadata": {"file_path": "tests/test_integration_workflows.py", "file_name": "test_integration_workflows.py", "file_type": "text/x-python", "category": "test", "start_line": 270, "end_line": 289, "span_ids": ["IntegrationWorkflows.tearDown", "IntegrationWorkflows.setUp", "IntegrationWorkflows"], "tokens": 213}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@skip_if_quick\nclass IntegrationWorkflows(DistTestCase):\n def setUp(self):\n set_determinism(seed=0)\n\n self.data_dir = tempfile.mkdtemp()\n for i in range(40):\n im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)\n n = nib.Nifti1Image(im, np.eye(4))\n nib.save(n, os.path.join(self.data_dir, f\"img{i:d}.nii.gz\"))\n n = nib.Nifti1Image(seg, np.eye(4))\n nib.save(n, os.path.join(self.data_dir, f\"seg{i:d}.nii.gz\"))\n\n self.device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu:0\")\n monai.config.print_config()\n logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n\n def tearDown(self):\n set_determinism(seed=None)\n shutil.rmtree(self.data_dir)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows.test_training_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows.test_training_", "embedding": null, "metadata": {"file_path": "tests/test_integration_workflows.py", "file_name": "test_integration_workflows.py", "file_type": "text/x-python", "category": "test", "start_line": 331, "end_line": 351, "span_ids": ["impl:3", "IntegrationWorkflows.test_training", "IntegrationWorkflows.test_timing"], "tokens": 166}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@skip_if_quick\nclass IntegrationWorkflows(DistTestCase):\n\n def test_training(self):\n repeated = []\n test_rounds = 3 if monai.utils.module.get_torch_version_tuple() >= (1, 6) else 2\n for i in range(test_rounds):\n results = self.train_and_infer(idx=i)\n repeated.append(results)\n np.testing.assert_allclose(repeated[0], repeated[1])\n\n @TimedCall(\n seconds=300,\n skip_timing=not torch.cuda.is_available(),\n daemon=False,\n )\n def test_timing(self):\n if monai.utils.module.get_torch_version_tuple() >= (1, 6):\n self.train_and_infer(idx=2)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_unittest_grid_2.torch_tensor_0_0_0_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_unittest_grid_2.torch_tensor_0_0_0_", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_component.py", "file_name": "test_keep_largest_connected_component.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 20, "span_ids": ["docstring"], "tokens": 192}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import KeepLargestConnectedComponent\n\ngrid_1 = torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 2]]]])\ngrid_2 = torch.tensor([[[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [1, 0, 1, 1, 2], [1, 0, 1, 2, 2], [0, 0, 0, 0, 1]]]])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_grid_3_grid_3.torch_tensor_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_grid_3_grid_3.torch_tensor_", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_component.py", "file_name": "test_keep_largest_connected_component.py", "file_type": "text/x-python", "category": "test", "start_line": 21, "end_line": 70, "span_ids": ["docstring"], "tokens": 824}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "grid_3 = torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [1.0, 0.0, 1.0, 0.0, 0.0],\n [1.0, 0.0, 0.0, 1.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 1.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [1.0, 0.0, 1.0, 1.0, 0.0],\n [1.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_1_TEST_CASE_6._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_1_TEST_CASE_6._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_component.py", "file_name": "test_keep_largest_connected_component.py", "file_type": "text/x-python", "category": "test", "start_line": 73, "end_line": 113, "span_ids": ["impl:17", "impl:7"], "tokens": 710}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_1 = [\n \"value_1\",\n {\"independent\": False, \"applied_labels\": 1},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 1, 0], [2, 2, 0, 0, 2]]]]),\n]\n\nTEST_CASE_2 = [\n \"value_2\",\n {\"independent\": False, \"applied_labels\": [2]},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 0]]]]),\n]\n\nTEST_CASE_3 = [\n \"independent_value_1_2\",\n {\"independent\": True, \"applied_labels\": [1, 2]},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 1, 0], [2, 2, 0, 0, 0]]]]),\n]\n\nTEST_CASE_4 = [\n \"dependent_value_1_2\",\n {\"independent\": False, \"applied_labels\": [1, 2]},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 2]]]]),\n]\n\nTEST_CASE_5 = [\n \"value_1\",\n {\"independent\": True, \"applied_labels\": [1]},\n grid_2,\n torch.tensor([[[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 0]]]]),\n]\n\nTEST_CASE_6 = [\n \"independent_value_1_2\",\n {\"independent\": True, \"applied_labels\": [1, 2]},\n grid_2,\n torch.tensor([[[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 0]]]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_7_TEST_CASE_10._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_7_TEST_CASE_10._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_component.py", "file_name": "test_keep_largest_connected_component.py", "file_type": "text/x-python", "category": "test", "start_line": 115, "end_line": 141, "span_ids": ["impl:17", "impl:25"], "tokens": 509}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_7 = [\n \"dependent_value_1_2\",\n {\"independent\": False, \"applied_labels\": [1, 2]},\n grid_2,\n torch.tensor([[[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 1]]]]),\n]\n\nTEST_CASE_8 = [\n \"value_1_connect_1\",\n {\"independent\": False, \"applied_labels\": [1], \"connectivity\": 1},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 0, 0], [2, 2, 0, 0, 2]]]]),\n]\n\nTEST_CASE_9 = [\n \"independent_value_1_2_connect_1\",\n {\"independent\": True, \"applied_labels\": [1, 2], \"connectivity\": 1},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 0, 0], [2, 2, 0, 0, 0]]]]),\n]\n\nTEST_CASE_10 = [\n \"dependent_value_1_2_connect_1\",\n {\"independent\": False, \"applied_labels\": [1, 2], \"connectivity\": 1},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 0, 0], [2, 2, 0, 0, 0]]]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_11_TEST_CASE_11._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_11_TEST_CASE_11._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_component.py", "file_name": "test_keep_largest_connected_component.py", "file_type": "text/x-python", "category": "test", "start_line": 143, "end_line": 197, "span_ids": ["impl:25"], "tokens": 873}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_11 = [\n \"onehot_independent_batch_2_apply_label_1_connect_1\",\n {\"independent\": True, \"applied_labels\": [1], \"connectivity\": 1},\n grid_3,\n torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 1.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_12_TEST_CASE_12._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_12_TEST_CASE_12._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_component.py", "file_name": "test_keep_largest_connected_component.py", "file_type": "text/x-python", "category": "test", "start_line": 199, "end_line": 253, "span_ids": ["impl:29"], "tokens": 873}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_12 = [\n \"onehot_independent_batch_2_apply_label_1_connect_2\",\n {\"independent\": True, \"applied_labels\": [1], \"connectivity\": 2},\n grid_3,\n torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 1.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_13_TEST_CASE_13._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_13_TEST_CASE_13._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_component.py", "file_name": "test_keep_largest_connected_component.py", "file_type": "text/x-python", "category": "test", "start_line": 255, "end_line": 309, "span_ids": ["impl:31"], "tokens": 878}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_13 = [\n \"onehot_independent_batch_2_apply_label_1_2_connect_2\",\n {\"independent\": True, \"applied_labels\": [1, 2], \"connectivity\": 2},\n grid_3,\n torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_14_TEST_CASE_14._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_14_TEST_CASE_14._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_component.py", "file_name": "test_keep_largest_connected_component.py", "file_type": "text/x-python", "category": "test", "start_line": 311, "end_line": 365, "span_ids": ["impl:33"], "tokens": 878}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_14 = [\n \"onehot_dependent_batch_2_apply_label_1_2_connect_2\",\n {\"independent\": False, \"applied_labels\": [1, 2], \"connectivity\": 2},\n grid_3,\n torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [1.0, 0.0, 1.0, 0.0, 0.0],\n [1.0, 0.0, 0.0, 1.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 1.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_15_TEST_CASE_15._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TEST_CASE_15_TEST_CASE_15._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_component.py", "file_name": "test_keep_largest_connected_component.py", "file_type": "text/x-python", "category": "test", "start_line": 367, "end_line": 421, "span_ids": ["impl:35"], "tokens": 878}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_15 = [\n \"onehot_dependent_batch_2_apply_label_1_2_connect_1\",\n {\"independent\": False, \"applied_labels\": [1, 2], \"connectivity\": 1},\n grid_3,\n torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [1.0, 0.0, 1.0, 0.0, 0.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_VALID_CASES_INVALID_CASES._ITEST_CASE_1_ITEST_CASE": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_VALID_CASES_INVALID_CASES._ITEST_CASE_1_ITEST_CASE", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_component.py", "file_name": "test_keep_largest_connected_component.py", "file_type": "text/x-python", "category": "test", "start_line": 423, "end_line": 445, "span_ids": ["impl:37"], "tokens": 167}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "VALID_CASES = [\n TEST_CASE_1,\n TEST_CASE_2,\n TEST_CASE_3,\n TEST_CASE_4,\n TEST_CASE_5,\n TEST_CASE_6,\n TEST_CASE_7,\n TEST_CASE_8,\n TEST_CASE_9,\n TEST_CASE_10,\n TEST_CASE_11,\n TEST_CASE_12,\n TEST_CASE_13,\n TEST_CASE_14,\n TEST_CASE_15,\n]\n\nITEST_CASE_1 = [\"no_applied_labels_for_single_channel\", {\"independent\": False}, grid_1, TypeError]\n\nITEST_CASE_2 = [\"no_applied_labels_for_multi_channel\", {\"independent\": False}, grid_3, TypeError]\n\nINVALID_CASES = [ITEST_CASE_1, ITEST_CASE_2]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TestKeepLargestConnectedComponent_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_TestKeepLargestConnectedComponent_", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_component.py", "file_name": "test_keep_largest_connected_component.py", "file_type": "text/x-python", "category": "test", "start_line": 448, "end_line": 471, "span_ids": ["impl:45", "TestKeepLargestConnectedComponent", "TestKeepLargestConnectedComponent.test_raise_exception", "TestKeepLargestConnectedComponent.test_correct_results"], "tokens": 171}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestKeepLargestConnectedComponent(unittest.TestCase):\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, _, args, tensor, expected):\n converter = KeepLargestConnectedComponent(**args)\n if torch.cuda.is_available():\n result = converter(tensor.clone().cuda())\n assert torch.allclose(result, expected.cuda())\n else:\n result = converter(tensor.clone())\n assert torch.allclose(result, expected)\n\n @parameterized.expand(INVALID_CASES)\n def test_raise_exception(self, _, args, tensor, expected_error):\n with self.assertRaises(expected_error):\n converter = KeepLargestConnectedComponent(**args)\n if torch.cuda.is_available():\n _ = converter(tensor.clone().cuda())\n else:\n _ = converter(tensor.clone())\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_unittest_grid_2._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_unittest_grid_2._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_componentd.py", "file_name": "test_keep_largest_connected_componentd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 24, "span_ids": ["docstring"], "tokens": 205}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import KeepLargestConnectedComponentd\n\ngrid_1 = {\n \"img\": torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 2]]]])\n}\ngrid_2 = {\n \"img\": torch.tensor([[[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [1, 0, 1, 1, 2], [1, 0, 1, 2, 2], [0, 0, 0, 0, 1]]]])\n}", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_grid_3_grid_3._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_grid_3_grid_3._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_componentd.py", "file_name": "test_keep_largest_connected_componentd.py", "file_type": "text/x-python", "category": "test", "start_line": 25, "end_line": 76, "span_ids": ["docstring"], "tokens": 831}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "grid_3 = {\n \"img\": torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [1.0, 0.0, 1.0, 0.0, 0.0],\n [1.0, 0.0, 0.0, 1.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 1.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [1.0, 0.0, 1.0, 1.0, 0.0],\n [1.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n )\n}", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_1_TEST_CASE_6._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_1_TEST_CASE_6._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_componentd.py", "file_name": "test_keep_largest_connected_componentd.py", "file_type": "text/x-python", "category": "test", "start_line": 78, "end_line": 118, "span_ids": ["impl:15", "impl:7"], "tokens": 746}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_1 = [\n \"value_1\",\n {\"keys\": [\"img\"], \"independent\": False, \"applied_labels\": 1},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 1, 0], [2, 2, 0, 0, 2]]]]),\n]\n\nTEST_CASE_2 = [\n \"value_2\",\n {\"keys\": [\"img\"], \"independent\": False, \"applied_labels\": [2]},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 0]]]]),\n]\n\nTEST_CASE_3 = [\n \"independent_value_1_2\",\n {\"keys\": [\"img\"], \"independent\": True, \"applied_labels\": [1, 2]},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 1, 0], [2, 2, 0, 0, 0]]]]),\n]\n\nTEST_CASE_4 = [\n \"dependent_value_1_2\",\n {\"keys\": [\"img\"], \"independent\": False, \"applied_labels\": [1, 2]},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 2]]]]),\n]\n\nTEST_CASE_5 = [\n \"value_1\",\n {\"keys\": [\"img\"], \"independent\": True, \"applied_labels\": [1]},\n grid_2,\n torch.tensor([[[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 0]]]]),\n]\n\nTEST_CASE_6 = [\n \"independent_value_1_2\",\n {\"keys\": [\"img\"], \"independent\": True, \"applied_labels\": [1, 2]},\n grid_2,\n torch.tensor([[[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 0]]]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_7_TEST_CASE_10._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_7_TEST_CASE_10._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_componentd.py", "file_name": "test_keep_largest_connected_componentd.py", "file_type": "text/x-python", "category": "test", "start_line": 120, "end_line": 146, "span_ids": ["impl:23", "impl:15"], "tokens": 533}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_7 = [\n \"dependent_value_1_2\",\n {\"keys\": [\"img\"], \"independent\": False, \"applied_labels\": [1, 2]},\n grid_2,\n torch.tensor([[[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 0, 0, 0, 1]]]]),\n]\n\nTEST_CASE_8 = [\n \"value_1_connect_1\",\n {\"keys\": [\"img\"], \"independent\": False, \"applied_labels\": [1], \"connectivity\": 1},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 0, 0], [2, 2, 0, 0, 2]]]]),\n]\n\nTEST_CASE_9 = [\n \"independent_value_1_2_connect_1\",\n {\"keys\": [\"img\"], \"independent\": True, \"applied_labels\": [1, 2], \"connectivity\": 1},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [0, 2, 1, 0, 0], [0, 2, 0, 0, 0], [2, 2, 0, 0, 0]]]]),\n]\n\nTEST_CASE_10 = [\n \"dependent_value_1_2_connect_1\",\n {\"keys\": [\"img\"], \"independent\": False, \"applied_labels\": [1, 2], \"connectivity\": 1},\n grid_1,\n torch.tensor([[[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 0, 0], [2, 2, 0, 0, 0]]]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_11_TEST_CASE_11._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_11_TEST_CASE_11._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_componentd.py", "file_name": "test_keep_largest_connected_componentd.py", "file_type": "text/x-python", "category": "test", "start_line": 148, "end_line": 202, "span_ids": ["impl:23"], "tokens": 879}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_11 = [\n \"onehot_independent_batch_2_apply_label_1_connect_1\",\n {\"keys\": [\"img\"], \"independent\": True, \"applied_labels\": [1], \"connectivity\": 1},\n grid_3,\n torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 1.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_12_TEST_CASE_12._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_12_TEST_CASE_12._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_componentd.py", "file_name": "test_keep_largest_connected_componentd.py", "file_type": "text/x-python", "category": "test", "start_line": 204, "end_line": 258, "span_ids": ["impl:29"], "tokens": 879}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_12 = [\n \"onehot_independent_batch_2_apply_label_1_connect_2\",\n {\"keys\": [\"img\"], \"independent\": True, \"applied_labels\": [1], \"connectivity\": 2},\n grid_3,\n torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 1.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_13_TEST_CASE_13._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_13_TEST_CASE_13._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_componentd.py", "file_name": "test_keep_largest_connected_componentd.py", "file_type": "text/x-python", "category": "test", "start_line": 260, "end_line": 314, "span_ids": ["impl:31"], "tokens": 884}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_13 = [\n \"onehot_independent_batch_2_apply_label_1_2_connect_2\",\n {\"keys\": [\"img\"], \"independent\": True, \"applied_labels\": [1, 2], \"connectivity\": 2},\n grid_3,\n torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_14_TEST_CASE_14._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_14_TEST_CASE_14._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_componentd.py", "file_name": "test_keep_largest_connected_componentd.py", "file_type": "text/x-python", "category": "test", "start_line": 316, "end_line": 370, "span_ids": ["impl:33"], "tokens": 884}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_14 = [\n \"onehot_dependent_batch_2_apply_label_1_2_connect_2\",\n {\"keys\": [\"img\"], \"independent\": False, \"applied_labels\": [1, 2], \"connectivity\": 2},\n grid_3,\n torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [1.0, 0.0, 1.0, 0.0, 0.0],\n [1.0, 0.0, 0.0, 1.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 1.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_15_TEST_CASE_15._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TEST_CASE_15_TEST_CASE_15._", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_componentd.py", "file_name": "test_keep_largest_connected_componentd.py", "file_type": "text/x-python", "category": "test", "start_line": 372, "end_line": 426, "span_ids": ["impl:35"], "tokens": 884}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_15 = [\n \"onehot_dependent_batch_2_apply_label_1_2_connect_1\",\n {\"keys\": [\"img\"], \"independent\": False, \"applied_labels\": [1, 2], \"connectivity\": 1},\n grid_3,\n torch.tensor(\n [\n [\n [\n [1.0, 1.0, 0.0, 1.0, 1.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [1.0, 0.0, 1.0, 0.0, 0.0],\n [1.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n ],\n ],\n [\n [\n [1.0, 1.0, 1.0, 1.0, 0.0],\n [1.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [0.0, 1.0, 0.0, 0.0, 0.0],\n [1.0, 1.0, 1.0, 1.0, 0.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 1.0],\n [0.0, 0.0, 1.0, 1.0, 0.0],\n [0.0, 0.0, 1.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n ],\n [\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n [0.0, 0.0, 0.0, 0.0, 1.0],\n [0.0, 0.0, 0.0, 1.0, 1.0],\n [0.0, 0.0, 0.0, 0.0, 0.0],\n ],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_VALID_CASES_INVALID_CASES._ITEST_CASE_1_ITEST_CASE": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_VALID_CASES_INVALID_CASES._ITEST_CASE_1_ITEST_CASE", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_componentd.py", "file_name": "test_keep_largest_connected_componentd.py", "file_type": "text/x-python", "category": "test", "start_line": 428, "end_line": 450, "span_ids": ["impl:37"], "tokens": 179}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "VALID_CASES = [\n TEST_CASE_1,\n TEST_CASE_2,\n TEST_CASE_3,\n TEST_CASE_4,\n TEST_CASE_5,\n TEST_CASE_6,\n TEST_CASE_7,\n TEST_CASE_8,\n TEST_CASE_9,\n TEST_CASE_10,\n TEST_CASE_11,\n TEST_CASE_12,\n TEST_CASE_13,\n TEST_CASE_14,\n TEST_CASE_15,\n]\n\nITEST_CASE_1 = [\"no_applied_labels_for_single_channel\", {\"keys\": [\"img\"], \"independent\": False}, grid_1, TypeError]\n\nITEST_CASE_2 = [\"no_applied_labels_for_multi_channel\", {\"keys\": [\"img\"], \"independent\": False}, grid_3, TypeError]\n\nINVALID_CASES = [ITEST_CASE_1, ITEST_CASE_2]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TestKeepLargestConnectedComponentd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TestKeepLargestConnectedComponentd_", "embedding": null, "metadata": {"file_path": "tests/test_keep_largest_connected_componentd.py", "file_name": "test_keep_largest_connected_componentd.py", "file_type": "text/x-python", "category": "test", "start_line": 453, "end_line": 476, "span_ids": ["TestKeepLargestConnectedComponentd.test_correct_results", "TestKeepLargestConnectedComponentd.test_raise_exception", "TestKeepLargestConnectedComponentd", "impl:45"], "tokens": 192}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestKeepLargestConnectedComponentd(unittest.TestCase):\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, _, args, input_dict, expected):\n converter = KeepLargestConnectedComponentd(**args)\n if torch.cuda.is_available():\n input_dict[\"img\"] = input_dict[\"img\"].cuda()\n result = converter(input_dict)\n torch.allclose(result[\"img\"], expected.cuda())\n else:\n result = converter(input_dict)\n torch.allclose(result[\"img\"], expected)\n\n @parameterized.expand(INVALID_CASES)\n def test_raise_exception(self, _, args, input_dict, expected_error):\n with self.assertRaises(expected_error):\n converter = KeepLargestConnectedComponentd(**args)\n if torch.cuda.is_available():\n input_dict[\"img\"] = input_dict[\"img\"].cuda()\n _ = converter(input_dict)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_unittest_expected_output_for_cube": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_unittest_expected_output_for_cube", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contour.py", "file_name": "test_label_to_contour.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 102, "span_ids": ["docstring"], "tokens": 30}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.transforms import LabelToContour\n\nexpected_output_for_cube =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_gen_fixed_cube_gen_fixed_cube.return.cube_expected_output_for": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_gen_fixed_cube_gen_fixed_cube.return.cube_expected_output_for", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contour.py", "file_name": "test_label_to_contour.py", "file_type": "text/x-python", "category": "test", "start_line": 103, "end_line": 113, "span_ids": ["gen_fixed_cube"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def gen_fixed_cube():\n scale, core_start, core_end = 8, 1, 7\n cube = torch.zeros(scale, scale, scale)\n cube[core_start:core_end, core_start:core_end, core_start:core_end] = torch.ones(\n core_end - core_start, core_end - core_start, core_end - core_start\n )\n cube = torch.unsqueeze(cube, 0)\n\n batch_size, channels = 10, 6\n cube = cube.repeat(batch_size, channels, 1, 1, 1)\n return cube, expected_output_for_cube", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contour.py", "file_name": "test_label_to_contour.py", "file_type": "text/x-python", "category": "test", "start_line": 116, "end_line": 139, "span_ids": ["gen_fixed_img"], "tokens": 300}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def gen_fixed_img():\n img = torch.tensor(\n [\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 1, 1, 1, 1, 1],\n [0, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1],\n ],\n dtype=torch.float32,\n )\n batch_size, channels = 10, 6\n img = img.repeat(batch_size, channels, 1, 1)\n expected_output_for_img = torch.tensor(\n [\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 0, 1, 0, 0, 1],\n [0, 0, 1, 1, 0, 0, 1],\n [0, 1, 1, 0, 0, 0, 1],\n [1, 1, 1, 1, 1, 1, 1],\n ],\n dtype=torch.float32,\n )\n return img, expected_output_for_img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_TestContour_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_TestContour_", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contour.py", "file_name": "test_label_to_contour.py", "file_type": "text/x-python", "category": "test", "start_line": 144, "end_line": 179, "span_ids": ["impl:3", "TestContour", "TestContour.test_contour"], "tokens": 347}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestContour(unittest.TestCase):\n def test_contour(self):\n input_param = {\"kernel_type\": \"Laplace\"}\n\n # check 5-dim input data\n test_cube, expected_output = gen_fixed_cube()\n test_result_cube = LabelToContour(**input_param)(test_cube)\n self.assertEqual(test_result_cube.shape, test_cube.shape)\n\n test_result_np = test_result_cube.data.cpu().numpy()\n batch_size, channels = test_cube.shape[0], test_cube.shape[1]\n for batch in range(batch_size):\n for channel in range(channels):\n np.testing.assert_allclose(test_result_np[batch, channel, ...], expected_output)\n\n # check 4-dim input data\n test_img, expected_output = gen_fixed_img()\n batch_size, channels = test_img.shape[0], test_img.shape[1]\n test_result_img = LabelToContour(**input_param)(test_img)\n self.assertEqual(test_result_img.shape, test_img.shape)\n\n test_result_np = test_result_img.data.cpu().numpy()\n for batch in range(batch_size):\n for channel in range(channels):\n np.testing.assert_allclose(test_result_img[batch, channel, ...], expected_output)\n\n # check invalid input data\n error_input = torch.rand(1, 2, 3)\n self.assertRaises(ValueError, LabelToContour(**input_param), error_input)\n error_input = torch.rand(1, 2, 3, 4, 5, 6)\n self.assertRaises(ValueError, LabelToContour(**input_param), error_input)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_unittest_expected_output_for_cube": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_unittest_expected_output_for_cube", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contourd.py", "file_name": "test_label_to_contourd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 102, "span_ids": ["docstring"], "tokens": 30}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.transforms import LabelToContourd\n\nexpected_output_for_cube =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_gen_fixed_cube_gen_fixed_cube.return.cube_expected_output_for": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_gen_fixed_cube_gen_fixed_cube.return.cube_expected_output_for", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contourd.py", "file_name": "test_label_to_contourd.py", "file_type": "text/x-python", "category": "test", "start_line": 103, "end_line": 113, "span_ids": ["gen_fixed_cube"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def gen_fixed_cube():\n scale, core_start, core_end = 8, 1, 7\n cube = torch.zeros(scale, scale, scale)\n cube[core_start:core_end, core_start:core_end, core_start:core_end] = torch.ones(\n core_end - core_start, core_end - core_start, core_end - core_start\n )\n cube = torch.unsqueeze(cube, 0)\n\n batch_size, channels = 10, 6\n cube = cube.repeat(batch_size, channels, 1, 1, 1)\n return cube, expected_output_for_cube", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contourd.py", "file_name": "test_label_to_contourd.py", "file_type": "text/x-python", "category": "test", "start_line": 116, "end_line": 139, "span_ids": ["gen_fixed_img"], "tokens": 300}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def gen_fixed_img():\n img = torch.tensor(\n [\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 1, 1, 1, 1, 1],\n [0, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1],\n ],\n dtype=torch.float32,\n )\n batch_size, channels = 10, 6\n img = img.repeat(batch_size, channels, 1, 1)\n expected_output_for_img = torch.tensor(\n [\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 0, 1, 0, 0, 1],\n [0, 0, 1, 1, 0, 0, 1],\n [0, 1, 1, 0, 0, 0, 1],\n [1, 1, 1, 1, 1, 1, 1],\n ],\n dtype=torch.float32,\n )\n return img, expected_output_for_img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_TestContourd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_TestContourd_", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contourd.py", "file_name": "test_label_to_contourd.py", "file_type": "text/x-python", "category": "test", "start_line": 144, "end_line": 179, "span_ids": ["impl:3", "TestContourd", "TestContourd.test_contour"], "tokens": 379}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestContourd(unittest.TestCase):\n def test_contour(self):\n input_param = {\"keys\": \"img\", \"kernel_type\": \"Laplace\"}\n\n # check 5-dim input data\n test_cube, expected_output = gen_fixed_cube()\n test_result_cube = LabelToContourd(**input_param)({\"img\": test_cube})\n self.assertEqual(test_result_cube[\"img\"].shape, test_cube.shape)\n\n test_result_np = test_result_cube[\"img\"].data.cpu().numpy()\n batch_size, channels = test_cube.shape[0], test_cube.shape[1]\n for batch in range(batch_size):\n for channel in range(channels):\n np.testing.assert_allclose(test_result_np[batch, channel, ...], expected_output)\n\n # check 4-dim input data\n test_img, expected_output = gen_fixed_img()\n batch_size, channels = test_img.shape[0], test_img.shape[1]\n test_result_img = LabelToContourd(**input_param)({\"img\": test_img})\n self.assertEqual(test_result_img[\"img\"].shape, test_img.shape)\n\n test_result_np = test_result_img[\"img\"].data.cpu().numpy()\n for batch in range(batch_size):\n for channel in range(channels):\n np.testing.assert_allclose(test_result_img[\"img\"][batch, channel, ...], expected_output)\n\n # check invalid input data\n error_input = {\"img\": torch.rand(1, 2, 3)}\n self.assertRaises(ValueError, LabelToContourd(**input_param), error_input)\n error_input = {\"img\": torch.rand(1, 2, 3, 4, 5, 6)}\n self.assertRaises(ValueError, LabelToContourd(**input_param), error_input)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_mask.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_mask.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_label_to_mask.py", "file_name": "test_label_to_mask.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 59, "span_ids": ["TestLabelToMask.test_value", "impl:11", "impl:7", "docstring", "TestLabelToMask"], "tokens": 726}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import LabelToMask\n\nTEST_CASE_1 = [\n {\"select_labels\": [2, 3], \"merge_channels\": False},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array([[[0, 0, 0], [1, 1, 1], [1, 1, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]),\n]\n\nTEST_CASE_2 = [\n {\"select_labels\": 2, \"merge_channels\": False},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array([[[0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]),\n]\n\nTEST_CASE_3 = [\n {\"select_labels\": [1, 2], \"merge_channels\": False},\n np.array([[[0, 0, 1], [0, 1, 0]], [[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]]),\n np.array([[[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]]),\n]\n\nTEST_CASE_4 = [\n {\"select_labels\": 2, \"merge_channels\": False},\n np.array([[[0, 0, 1], [0, 1, 0]], [[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]]),\n np.array([[[1, 0, 1], [1, 1, 0]]]),\n]\n\nTEST_CASE_5 = [\n {\"select_labels\": [1, 2], \"merge_channels\": True},\n np.array([[[0, 0, 1], [0, 1, 0]], [[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]]),\n np.array([[[1, 0, 1], [1, 1, 1]]]),\n]\n\n\nclass TestLabelToMask(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_value(self, argments, image, expected_data):\n result = LabelToMask(**argments)(image)\n np.testing.assert_allclose(result, expected_data)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_maskd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_maskd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_label_to_maskd.py", "file_name": "test_label_to_maskd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 59, "span_ids": ["impl:11", "TestLabelToMaskd", "impl:7", "TestLabelToMaskd.test_value", "docstring"], "tokens": 781}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import LabelToMaskd\n\nTEST_CASE_1 = [\n {\"keys\": \"img\", \"select_labels\": [2, 3], \"merge_channels\": False},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array([[[0, 0, 0], [1, 1, 1], [1, 1, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]),\n]\n\nTEST_CASE_2 = [\n {\"keys\": \"img\", \"select_labels\": 2, \"merge_channels\": False},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array([[[0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]),\n]\n\nTEST_CASE_3 = [\n {\"keys\": \"img\", \"select_labels\": [1, 2], \"merge_channels\": False},\n {\"img\": np.array([[[0, 0, 1], [0, 1, 0]], [[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]])},\n np.array([[[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]]),\n]\n\nTEST_CASE_4 = [\n {\"keys\": \"img\", \"select_labels\": 2, \"merge_channels\": False},\n {\"img\": np.array([[[0, 0, 1], [0, 1, 0]], [[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]])},\n np.array([[[1, 0, 1], [1, 1, 0]]]),\n]\n\nTEST_CASE_5 = [\n {\"keys\": \"img\", \"select_labels\": [1, 2], \"merge_channels\": True},\n {\"img\": np.array([[[0, 0, 1], [0, 1, 0]], [[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]])},\n np.array([[[1, 0, 1], [1, 1, 1]]]),\n]\n\n\nclass TestLabelToMaskd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_value(self, argments, image, expected_data):\n result = LabelToMaskd(**argments)(image)\n np.testing.assert_allclose(result[\"img\"], expected_data)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambda.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambda.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_lambda.py", "file_name": "test_lambda.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 42, "span_ids": ["impl", "TestLambda.test_lambda_identity", "docstring", "TestLambda", "TestLambda.test_lambda_slicing"], "tokens": 155}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms.utility.array import Lambda\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestLambda(NumpyImageTestCase2D):\n def test_lambda_identity(self):\n img = self.imt\n\n def identity_func(x):\n return x\n\n lambd = Lambda(func=identity_func)\n self.assertTrue(np.allclose(identity_func(img), lambd(img)))\n\n def test_lambda_slicing(self):\n img = self.imt\n\n def slice_func(x):\n return x[:, :, :6, ::-2]\n\n lambd = Lambda(func=slice_func)\n self.assertTrue(np.allclose(slice_func(img), lambd(img)))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambdad.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambdad.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_lambdad.py", "file_name": "test_lambdad.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 49, "span_ids": ["impl", "TestLambdad", "docstring", "TestLambdad.test_lambdad_identity", "TestLambdad.test_lambdad_slicing"], "tokens": 269}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms.utility.dictionary import Lambdad\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestLambdad(NumpyImageTestCase2D):\n def test_lambdad_identity(self):\n img = self.imt\n data = {\"img\": img, \"prop\": 1.0}\n\n def noise_func(x):\n return x + 1.0\n\n expected = {\"img\": noise_func(data[\"img\"]), \"prop\": 1.0}\n ret = Lambdad(keys=[\"img\", \"prop\"], func=noise_func, overwrite=[True, False])(data)\n self.assertTrue(np.allclose(expected[\"img\"], ret[\"img\"]))\n self.assertTrue(np.allclose(expected[\"prop\"], ret[\"prop\"]))\n\n def test_lambdad_slicing(self):\n img = self.imt\n data = {}\n data[\"img\"] = img\n\n def slice_func(x):\n return x[:, :, :6, ::-2]\n\n lambd = Lambdad(keys=data.keys(), func=slice_func)\n expected = {}\n expected[\"img\"] = slice_func(data[\"img\"])\n self.assertTrue(np.allclose(expected[\"img\"], lambd(data)[\"img\"]))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_data_collate.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_data_collate.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_list_data_collate.py", "file_name": "test_list_data_collate.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 47, "span_ids": ["impl:21", "TestListDataCollate.test_type_shape", "TestListDataCollate", "docstring"], "tokens": 426}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.data import list_data_collate\n\na = {\"image\": np.array([1, 2, 3]), \"label\": np.array([4, 5, 6])}\nb = {\"image\": np.array([7, 8, 9]), \"label\": np.array([10, 11, 12])}\nc = {\"image\": np.array([13, 14, 15]), \"label\": np.array([16, 7, 18])}\nd = {\"image\": np.array([19, 20, 21]), \"label\": np.array([22, 23, 24])}\nTEST_CASE_1 = [[[a, b], [c, d]], dict, torch.Size([4, 3])] # dataset returns a list of dictionary data\n\ne = (np.array([1, 2, 3]), np.array([4, 5, 6]))\nf = (np.array([7, 8, 9]), np.array([10, 11, 12]))\ng = (np.array([13, 14, 15]), np.array([16, 7, 18]))\nh = (np.array([19, 20, 21]), np.array([22, 23, 24]))\nTEST_CASE_2 = [[[e, f], [g, h]], list, torch.Size([4, 3])] # dataset returns a list of tuple data\n\n\nclass TestListDataCollate(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2])\n def test_type_shape(self, input_data, expected_type, expected_shape):\n result = list_data_collate(input_data)\n self.assertIsInstance(result, expected_type)\n if isinstance(result, dict):\n data = result[\"image\"]\n else:\n data = result[0]\n self.assertEqual(data.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_os_TestLoadSpacingOrientation.test_load_spacingd.None_5": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_os_TestLoadSpacingOrientation.test_load_spacingd.None_5", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 46, "span_ids": ["TestLoadSpacingOrientation.test_load_spacingd", "TestLoadSpacingOrientation", "docstring"], "tokens": 366}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport time\nimport unittest\n\nimport nibabel\nimport numpy as np\nfrom nibabel.processing import resample_to_output\nfrom parameterized import parameterized\n\nfrom monai.transforms import AddChanneld, LoadImaged, Orientationd, Spacingd\n\nFILES = tuple(\n os.path.join(os.path.dirname(__file__), \"testing_data\", filename)\n for filename in (\"anatomical.nii\", \"reoriented_anat_moved.nii\")\n)\n\n\nclass TestLoadSpacingOrientation(unittest.TestCase):\n @parameterized.expand(FILES)\n def test_load_spacingd(self, filename):\n data = {\"image\": filename}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n t = time.time()\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 0.2, 1), diagonal=True, padding_mode=\"zeros\")(data_dict)\n t1 = time.time()\n print(f\"time monai: {t1 - t}\")\n anat = nibabel.Nifti1Image(data_dict[\"image\"][0], data_dict[\"image_meta_dict\"][\"original_affine\"])\n ref = resample_to_output(anat, (1, 0.2, 1), order=1)\n t2 = time.time()\n print(f\"time scipy: {t2 - t1}\")\n self.assertTrue(t2 >= t1)\n np.testing.assert_allclose(res_dict[\"image_meta_dict\"][\"affine\"], ref.affine)\n np.testing.assert_allclose(res_dict[\"image\"].shape[1:], ref.shape)\n np.testing.assert_allclose(ref.get_fdata(), res_dict[\"image\"][0], atol=0.05)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_TestLoadSpacingOrientation.test_load_spacingd_rotate.if_anatomical_not_in_fi.else_.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_TestLoadSpacingOrientation.test_load_spacingd_rotate.if_anatomical_not_in_fi.else_.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 48, "end_line": 73, "span_ids": ["TestLoadSpacingOrientation.test_load_spacingd_rotate"], "tokens": 421}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadSpacingOrientation(unittest.TestCase):\n\n @parameterized.expand(FILES)\n def test_load_spacingd_rotate(self, filename):\n data = {\"image\": filename}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n affine = data_dict[\"image_meta_dict\"][\"affine\"]\n data_dict[\"image_meta_dict\"][\"original_affine\"] = data_dict[\"image_meta_dict\"][\"affine\"] = (\n np.array([[0, 0, 1, 0], [0, 1, 0, 0], [-1, 0, 0, 0], [0, 0, 0, 1]]) @ affine\n )\n t = time.time()\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 2, 3), diagonal=True, padding_mode=\"zeros\")(data_dict)\n t1 = time.time()\n print(f\"time monai: {t1 - t}\")\n anat = nibabel.Nifti1Image(data_dict[\"image\"][0], data_dict[\"image_meta_dict\"][\"original_affine\"])\n ref = resample_to_output(anat, (1, 2, 3), order=1)\n t2 = time.time()\n print(f\"time scipy: {t2 - t1}\")\n self.assertTrue(t2 >= t1)\n np.testing.assert_allclose(res_dict[\"image_meta_dict\"][\"affine\"], ref.affine)\n if \"anatomical\" not in filename:\n np.testing.assert_allclose(res_dict[\"image\"].shape[1:], ref.shape)\n np.testing.assert_allclose(ref.get_fdata(), res_dict[\"image\"][0], atol=0.05)\n else:\n # different from the ref implementation (shape computed by round\n # instead of ceil)\n np.testing.assert_allclose(ref.get_fdata()[..., :-1], res_dict[\"image\"][0], atol=0.05)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_TestLoadSpacingOrientation.test_load_spacingd_non_diag.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_TestLoadSpacingOrientation.test_load_spacingd_non_diag.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 75, "end_line": 94, "span_ids": ["TestLoadSpacingOrientation.test_load_spacingd_non_diag"], "tokens": 300}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadSpacingOrientation(unittest.TestCase):\n\n def test_load_spacingd_non_diag(self):\n data = {\"image\": FILES[1]}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n affine = data_dict[\"image_meta_dict\"][\"affine\"]\n data_dict[\"image_meta_dict\"][\"original_affine\"] = data_dict[\"image_meta_dict\"][\"affine\"] = (\n np.array([[0, 0, 1, 0], [0, 1, 0, 0], [-1, 0, 0, 0], [0, 0, 0, 1]]) @ affine\n )\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 2, 3), diagonal=False, padding_mode=\"zeros\")(data_dict)\n np.testing.assert_allclose(\n res_dict[\"image_meta_dict\"][\"affine\"],\n np.array(\n [\n [0.0, 0.0, 3.0, -27.599409],\n [0.0, 2.0, 0.0, -47.977585],\n [-1.0, 0.0, 0.0, 35.297897],\n [0.0, 0.0, 0.0, 1.0],\n ]\n ),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 96, "end_line": 104, "span_ids": ["TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag"], "tokens": 195}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadSpacingOrientation(unittest.TestCase):\n\n def test_load_spacingd_rotate_non_diag(self):\n data = {\"image\": FILES[0]}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 2, 3), diagonal=False, padding_mode=\"border\")(data_dict)\n np.testing.assert_allclose(\n res_dict[\"image_meta_dict\"][\"affine\"],\n np.array([[-1.0, 0.0, 0.0, 32.0], [0.0, 2.0, 0.0, -40.0], [0.0, 0.0, 3.0, -16.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 106, "end_line": 115, "span_ids": ["TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt"], "tokens": 216}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadSpacingOrientation(unittest.TestCase):\n\n def test_load_spacingd_rotate_non_diag_ornt(self):\n data = {\"image\": FILES[0]}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 2, 3), diagonal=False, padding_mode=\"border\")(data_dict)\n res_dict = Orientationd(keys=\"image\", axcodes=\"LPI\")(res_dict)\n np.testing.assert_allclose(\n res_dict[\"image_meta_dict\"][\"affine\"],\n np.array([[-1.0, 0.0, 0.0, 32.0], [0.0, -2.0, 0.0, 40.0], [0.0, 0.0, -3.0, 32.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_ornt_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_ornt_", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 117, "end_line": 142, "span_ids": ["impl:3", "TestLoadSpacingOrientation.test_load_spacingd_non_diag_ornt"], "tokens": 336}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadSpacingOrientation(unittest.TestCase):\n\n def test_load_spacingd_non_diag_ornt(self):\n data = {\"image\": FILES[1]}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n affine = data_dict[\"image_meta_dict\"][\"affine\"]\n data_dict[\"image_meta_dict\"][\"original_affine\"] = data_dict[\"image_meta_dict\"][\"affine\"] = (\n np.array([[0, 0, 1, 0], [0, 1, 0, 0], [-1, 0, 0, 0], [0, 0, 0, 1]]) @ affine\n )\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 2, 3), diagonal=False, padding_mode=\"border\")(data_dict)\n res_dict = Orientationd(keys=\"image\", axcodes=\"LPI\")(res_dict)\n np.testing.assert_allclose(\n res_dict[\"image_meta_dict\"][\"affine\"],\n np.array(\n [\n [-3.0, 0.0, 0.0, 56.4005909],\n [0.0, -2.0, 0.0, 52.02241516],\n [0.0, 0.0, -1.0, 35.29789734],\n [0.0, 0.0, 0.0, 1.0],\n ]\n ),\n )\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_transform.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_transform.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_map_transform.py", "file_name": "test_map_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 42, "span_ids": ["TestRandomizable.test_wrong_keys", "MapTest", "MapTest.__call__", "TestRandomizable.test_keys", "impl:5", "docstring", "TestRandomizable"], "tokens": 188}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom parameterized import parameterized\n\nfrom monai.transforms import MapTransform\n\nTEST_CASES = [[\"item\", (\"item\",)], [None, (None,)], [[\"item1\", \"item2\"], (\"item1\", \"item2\")]]\n\nTEST_ILL_CASES = [[ValueError, []], [ValueError, ()], [TypeError, [[]]]]\n\n\nclass MapTest(MapTransform):\n def __call__(self, data):\n pass\n\n\nclass TestRandomizable(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_keys(self, keys, expected):\n transform = MapTest(keys=keys)\n self.assertEqual(transform.keys, expected)\n\n @parameterized.expand(TEST_ILL_CASES)\n def test_wrong_keys(self, exception, keys):\n with self.assertRaisesRegex(exception, \"\"):\n MapTest(keys=keys)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mask_intensity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mask_intensity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_mask_intensity.py", "file_name": "test_mask_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 47, "span_ids": ["TestMaskIntensity.test_value", "TestMaskIntensity", "impl:7", "docstring"], "tokens": 612}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import MaskIntensity\n\nTEST_CASE_1 = [\n {\"mask_data\": np.array([[[0, 0, 0], [0, 1, 0], [0, 0, 0]]])},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array([[[0, 0, 0], [0, 2, 0], [0, 0, 0]], [[0, 0, 0], [0, 5, 0], [0, 0, 0]]]),\n]\n\nTEST_CASE_2 = [\n {\"mask_data\": np.array([[[0, 0, 0], [0, 5, 0], [0, 0, 0]]])},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array([[[0, 0, 0], [0, 2, 0], [0, 0, 0]], [[0, 0, 0], [0, 5, 0], [0, 0, 0]]]),\n]\n\nTEST_CASE_3 = [\n {\"mask_data\": np.array([[[0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 1, 0], [0, 1, 0], [0, 1, 0]]])},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array([[[0, 0, 0], [0, 2, 0], [0, 0, 0]], [[0, 4, 0], [0, 5, 0], [0, 6, 0]]]),\n]\n\n\nclass TestMaskIntensity(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value(self, argments, image, expected_data):\n result = MaskIntensity(**argments)(image)\n np.testing.assert_allclose(result, expected_data)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_unittest_TEST_CASES": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_unittest_TEST_CASES", "embedding": null, "metadata": {"file_path": "tests/test_masked_dice_loss.py", "file_name": "test_masked_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 115, "span_ids": ["docstring"], "tokens": 37}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.losses import MaskedDiceLoss\n\nTEST_CASES =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_", "embedding": null, "metadata": {"file_path": "tests/test_masked_dice_loss.py", "file_name": "test_masked_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 118, "end_line": 127, "span_ids": ["TestDiceLoss.test_shape", "TestDiceLoss.test_ill_shape", "TestDiceLoss"], "tokens": 125}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDiceLoss(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_data, expected_val):\n result = MaskedDiceLoss(**input_param).forward(**input_data)\n np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, rtol=1e-5)\n\n def test_ill_shape(self):\n loss = MaskedDiceLoss()\n with self.assertRaisesRegex(AssertionError, \"\"):\n loss.forward(torch.ones((1, 2, 3)), torch.ones((4, 5, 6)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_ill_opts_TestDiceLoss.test_ill_opts.None_2.MaskedDiceLoss_reduction_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_ill_opts_TestDiceLoss.test_ill_opts.None_2.MaskedDiceLoss_reduction_", "embedding": null, "metadata": {"file_path": "tests/test_masked_dice_loss.py", "file_name": "test_masked_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 129, "end_line": 137, "span_ids": ["TestDiceLoss.test_ill_opts"], "tokens": 119}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDiceLoss(unittest.TestCase):\n\n def test_ill_opts(self):\n with self.assertRaisesRegex(ValueError, \"\"):\n MaskedDiceLoss(sigmoid=True, softmax=True)\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertRaisesRegex(ValueError, \"\"):\n MaskedDiceLoss(reduction=\"unknown\")(chn_input, chn_target)\n with self.assertRaisesRegex(ValueError, \"\"):\n MaskedDiceLoss(reduction=None)(chn_input, chn_target)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_input_warnings_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_input_warnings_", "embedding": null, "metadata": {"file_path": "tests/test_masked_dice_loss.py", "file_name": "test_masked_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 139, "end_line": 155, "span_ids": ["impl:3", "TestDiceLoss.test_input_warnings"], "tokens": 153}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDiceLoss(unittest.TestCase):\n\n def test_input_warnings(self):\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertWarns(Warning):\n loss = MaskedDiceLoss(include_background=False)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = MaskedDiceLoss(softmax=True)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = MaskedDiceLoss(to_onehot_y=True)\n loss.forward(chn_input, chn_target)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensemble.py_unittest_TEST_CASE_6._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensemble.py_unittest_TEST_CASE_6._", "embedding": null, "metadata": {"file_path": "tests/test_mean_ensemble.py", "file_name": "test_mean_ensemble.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 54, "span_ids": ["impl:11", "docstring"], "tokens": 538}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import MeanEnsemble\n\nTEST_CASE_1 = [\n {\"weights\": None},\n [torch.ones(2, 2, 2, 2), torch.ones(2, 2, 2, 2) + 2],\n torch.ones(2, 2, 2, 2) + 1,\n]\n\nTEST_CASE_2 = [\n {\"weights\": None},\n torch.stack([torch.ones(2, 2, 2, 2), torch.ones(2, 2, 2, 2) + 2]),\n torch.ones(2, 2, 2, 2) + 1,\n]\n\nTEST_CASE_3 = [\n {\"weights\": [1, 3]},\n [torch.ones(2, 2, 2, 2), torch.ones(2, 2, 2, 2) + 2],\n torch.ones(2, 2, 2, 2) * 2.5,\n]\n\nTEST_CASE_4 = [\n {\"weights\": [[[1, 3]], [[3, 1]]]},\n [torch.ones(2, 2, 2, 2), torch.ones(2, 2, 2, 2) + 2],\n torch.ones(2, 2, 2, 2) * torch.tensor([2.5, 1.5]).reshape(1, 2, 1, 1),\n]\n\nTEST_CASE_5 = [\n {\"weights\": np.array([[[1, 3]], [[3, 1]]])},\n [torch.ones(2, 2, 2, 2), torch.ones(2, 2, 2, 2) + 2],\n torch.ones(2, 2, 2, 2) * torch.tensor([2.5, 1.5]).reshape(1, 2, 1, 1),\n]\n\nTEST_CASE_6 = [\n {\"weights\": torch.tensor([[[1, 3]], [[3, 1]]])},\n [torch.ones(2, 2, 2, 2), torch.ones(2, 2, 2, 2) + 2],\n torch.ones(2, 2, 2, 2) * torch.tensor([2.5, 1.5]).reshape(1, 2, 1, 1),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensemble.py_TestMeanEnsemble_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensemble.py_TestMeanEnsemble_", "embedding": null, "metadata": {"file_path": "tests/test_mean_ensemble.py", "file_name": "test_mean_ensemble.py", "file_type": "text/x-python", "category": "test", "start_line": 55, "end_line": 73, "span_ids": ["TestMeanEnsemble.test_cuda_value", "TestMeanEnsemble", "TestMeanEnsemble.test_value", "impl:13"], "tokens": 251}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestMeanEnsemble(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6])\n def test_value(self, input_param, img, expected_value):\n result = MeanEnsemble(**input_param)(img)\n torch.testing.assert_allclose(result, expected_value)\n\n def test_cuda_value(self):\n img = torch.stack([torch.ones(2, 2, 2, 2), torch.ones(2, 2, 2, 2) + 2])\n expected_value = torch.ones(2, 2, 2, 2) * torch.tensor([2.5, 1.5]).reshape(1, 2, 1, 1)\n if torch.cuda.is_available():\n img = img.to(torch.device(\"cuda:0\"))\n expected_value = expected_value.to(torch.device(\"cuda:0\"))\n result = MeanEnsemble(torch.tensor([[[1, 3]], [[3, 1]]]))(img)\n torch.testing.assert_allclose(result, expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensembled.py_unittest_TEST_CASE_6._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensembled.py_unittest_TEST_CASE_6._", "embedding": null, "metadata": {"file_path": "tests/test_mean_ensembled.py", "file_name": "test_mean_ensembled.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 54, "span_ids": ["impl:9", "docstring"], "tokens": 673}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import MeanEnsembled\n\nTEST_CASE_1 = [\n {\"keys\": [\"pred0\", \"pred1\"], \"output_key\": \"output\", \"weights\": None},\n {\"pred0\": torch.ones(2, 2, 2, 2), \"pred1\": torch.ones(2, 2, 2, 2) + 2},\n torch.ones(2, 2, 2, 2) + 1,\n]\n\nTEST_CASE_2 = [\n {\"keys\": \"output\", \"weights\": None},\n {\"output\": torch.stack([torch.ones(2, 2, 2, 2), torch.ones(2, 2, 2, 2) + 2])},\n torch.ones(2, 2, 2, 2) + 1,\n]\n\nTEST_CASE_3 = [\n {\"keys\": [\"pred0\", \"pred1\"], \"output_key\": \"output\", \"weights\": [1, 3]},\n {\"pred0\": torch.ones(2, 2, 2, 2), \"pred1\": torch.ones(2, 2, 2, 2) + 2},\n torch.ones(2, 2, 2, 2) * 2.5,\n]\n\nTEST_CASE_4 = [\n {\"keys\": [\"pred0\", \"pred1\"], \"output_key\": \"output\", \"weights\": [[[1, 3]], [[3, 1]]]},\n {\"pred0\": torch.ones(2, 2, 2, 2), \"pred1\": torch.ones(2, 2, 2, 2) + 2},\n torch.ones(2, 2, 2, 2) * torch.tensor([2.5, 1.5]).reshape(1, 2, 1, 1),\n]\n\nTEST_CASE_5 = [\n {\"keys\": [\"pred0\", \"pred1\"], \"output_key\": \"output\", \"weights\": np.array([[[1, 3]], [[3, 1]]])},\n {\"pred0\": torch.ones(2, 2, 2, 2), \"pred1\": torch.ones(2, 2, 2, 2) + 2},\n torch.ones(2, 2, 2, 2) * torch.tensor([2.5, 1.5]).reshape(1, 2, 1, 1),\n]\n\nTEST_CASE_6 = [\n {\"keys\": [\"pred0\", \"pred1\"], \"output_key\": \"output\", \"weights\": torch.tensor([[[1, 3]], [[3, 1]]])},\n {\"pred0\": torch.ones(2, 2, 2, 2), \"pred1\": torch.ones(2, 2, 2, 2) + 2},\n torch.ones(2, 2, 2, 2) * torch.tensor([2.5, 1.5]).reshape(1, 2, 1, 1),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensembled.py_TestMeanEnsembled_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensembled.py_TestMeanEnsembled_", "embedding": null, "metadata": {"file_path": "tests/test_mean_ensembled.py", "file_name": "test_mean_ensembled.py", "file_type": "text/x-python", "category": "test", "start_line": 55, "end_line": 73, "span_ids": ["TestMeanEnsembled.test_value", "impl:13", "TestMeanEnsembled", "TestMeanEnsembled.test_cuda_value"], "tokens": 262}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestMeanEnsembled(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6])\n def test_value(self, input_param, data, expected_value):\n result = MeanEnsembled(**input_param)(data)\n torch.testing.assert_allclose(result[\"output\"], expected_value)\n\n def test_cuda_value(self):\n img = torch.stack([torch.ones(2, 2, 2, 2), torch.ones(2, 2, 2, 2) + 2])\n expected_value = torch.ones(2, 2, 2, 2) * torch.tensor([2.5, 1.5]).reshape(1, 2, 1, 1)\n if torch.cuda.is_available():\n img = img.to(torch.device(\"cuda:0\"))\n expected_value = expected_value.to(torch.device(\"cuda:0\"))\n result = MeanEnsembled(keys=\"output\", weights=torch.tensor([[[1, 3]], [[3, 1]]]))({\"output\": img})\n torch.testing.assert_allclose(result[\"output\"], expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_header_revise.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_header_revise.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_nifti_header_revise.py", "file_name": "test_nifti_header_revise.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 40, "span_ids": ["impl", "TestRectifyHeaderSformQform", "TestRectifyHeaderSformQform.test_revise_q", "TestRectifyHeaderSformQform.test_revise_both", "docstring"], "tokens": 299}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport nibabel as nib\nimport numpy as np\n\nfrom monai.data import rectify_header_sform_qform\n\n\nclass TestRectifyHeaderSformQform(unittest.TestCase):\n def test_revise_q(self):\n img = nib.Nifti1Image(np.zeros((10, 10, 10)), np.eye(4))\n img.header.set_zooms((0.1, 0.2, 0.3))\n output = rectify_header_sform_qform(img)\n expected = np.diag([0.1, 0.2, 0.3, 1.0])\n np.testing.assert_allclose(output.affine, expected)\n\n def test_revise_both(self):\n img = nib.Nifti1Image(np.zeros((10, 10, 10)), np.eye(4))\n img.header.set_sform(np.diag([5, 3, 4, 1]))\n img.header.set_qform(np.diag([2, 3, 4, 1]))\n img.header.set_zooms((0.1, 0.2, 0.3))\n output = rectify_header_sform_qform(img)\n expected = np.diag([0.1, 0.2, 0.3, 1.0])\n np.testing.assert_allclose(output.affine, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_os_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_os_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_nifti_rw.py", "file_name": "test_nifti_rw.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 65, "span_ids": ["docstring"], "tokens": 533}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport nibabel as nib\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.data import write_nifti\nfrom monai.transforms import LoadImage, Orientation, Spacing\nfrom tests.utils import make_nifti_image\n\nTEST_IMAGE = np.arange(24).reshape((2, 4, 3))\nTEST_AFFINE = np.array(\n [[-5.3, 0.0, 0.0, 102.01], [0.0, 0.52, 2.17, -7.50], [-0.0, 1.98, -0.26, -23.12], [0.0, 0.0, 0.0, 1.0]]\n)\n\nTEST_CASES = [\n [\n TEST_IMAGE,\n TEST_AFFINE,\n dict(reader=\"NibabelReader\", image_only=False, as_closest_canonical=True),\n np.arange(24).reshape((2, 4, 3)),\n ],\n [\n TEST_IMAGE,\n TEST_AFFINE,\n dict(reader=\"NibabelReader\", image_only=True, as_closest_canonical=True),\n np.array(\n [\n [[12.0, 15.0, 18.0, 21.0], [13.0, 16.0, 19.0, 22.0], [14.0, 17.0, 20.0, 23.0]],\n [[0.0, 3.0, 6.0, 9.0], [1.0, 4.0, 7.0, 10.0], [2.0, 5.0, 8.0, 11.0]],\n ]\n ),\n ],\n [\n TEST_IMAGE,\n TEST_AFFINE,\n dict(reader=\"NibabelReader\", image_only=True, as_closest_canonical=False),\n np.arange(24).reshape((2, 4, 3)),\n ],\n [\n TEST_IMAGE,\n TEST_AFFINE,\n dict(reader=\"NibabelReader\", image_only=False, as_closest_canonical=False),\n np.arange(24).reshape((2, 4, 3)),\n ],\n [\n TEST_IMAGE,\n None,\n dict(reader=\"NibabelReader\", image_only=False, as_closest_canonical=False),\n np.arange(24).reshape((2, 4, 3)),\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead_TestNiftiLoadRead.test_orientation.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead_TestNiftiLoadRead.test_orientation.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_nifti_rw.py", "file_name": "test_nifti_rw.py", "file_type": "text/x-python", "category": "test", "start_line": 68, "end_line": 97, "span_ids": ["TestNiftiLoadRead", "TestNiftiLoadRead.test_orientation"], "tokens": 245}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNiftiLoadRead(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_orientation(self, array, affine, reader_param, expected):\n test_image = make_nifti_image(array, affine)\n\n # read test cases\n loader = LoadImage(**reader_param)\n load_result = loader(test_image)\n if isinstance(load_result, tuple):\n data_array, header = load_result\n else:\n data_array = load_result\n header = None\n if os.path.exists(test_image):\n os.remove(test_image)\n\n # write test cases\n if header is not None:\n write_nifti(data_array, test_image, header[\"affine\"], header.get(\"original_affine\", None))\n elif affine is not None:\n write_nifti(data_array, test_image, affine)\n saved = nib.load(test_image)\n saved_affine = saved.affine\n saved_data = saved.get_fdata()\n if os.path.exists(test_image):\n os.remove(test_image)\n\n if affine is not None:\n np.testing.assert_allclose(saved_affine, affine)\n np.testing.assert_allclose(saved_data, expected)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_5d_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_5d_", "embedding": null, "metadata": {"file_path": "tests/test_nifti_rw.py", "file_name": "test_nifti_rw.py", "file_type": "text/x-python", "category": "test", "start_line": 156, "end_line": 178, "span_ids": ["TestNiftiLoadRead.test_write_5d", "impl:7"], "tokens": 399}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNiftiLoadRead(unittest.TestCase):\n\n def test_write_5d(self):\n with tempfile.TemporaryDirectory() as out_dir:\n image_name = os.path.join(out_dir, \"test.nii.gz\")\n img = np.arange(12).reshape((1, 1, 3, 2, 2))\n write_nifti(img, image_name, affine=np.diag([1]), target_affine=np.diag([1.4]))\n out = nib.load(image_name)\n np.testing.assert_allclose(\n out.get_fdata(),\n np.array([[[[[0.0, 1.0], [2.0, 3.0]], [[4.0, 5.0], [6.0, 7.0]], [[8.0, 9.0], [10.0, 11.0]]]]]),\n )\n np.testing.assert_allclose(out.affine, np.diag([1.4, 1, 1, 1]))\n\n image_name = os.path.join(out_dir, \"test1.nii.gz\")\n img = np.arange(10).reshape((1, 1, 5, 1, 2))\n write_nifti(img, image_name, affine=np.diag([1, 1, 1, 3, 3]), target_affine=np.diag([1.4, 2.0, 2, 3, 5]))\n out = nib.load(image_name)\n np.testing.assert_allclose(out.get_fdata(), np.array([[[[[0.0, 1.0]], [[4.0, 5.0]], [[8.0, 9.0]]]]]))\n np.testing.assert_allclose(out.affine, np.diag([1.4, 2, 2, 1]))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity_TestNormalizeIntensity.test_nonzero.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity_TestNormalizeIntensity.test_nonzero.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_normalize_intensity.py", "file_name": "test_normalize_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 58, "end_line": 69, "span_ids": ["TestNormalizeIntensity.test_default", "TestNormalizeIntensity", "TestNormalizeIntensity.test_nonzero"], "tokens": 134}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNormalizeIntensity(NumpyImageTestCase2D):\n def test_default(self):\n normalizer = NormalizeIntensity()\n normalized = normalizer(self.imt.copy())\n self.assertTrue(normalized.dtype == np.float32)\n expected = (self.imt - np.mean(self.imt)) / np.std(self.imt)\n np.testing.assert_allclose(normalized, expected, rtol=1e-3)\n\n @parameterized.expand(TEST_CASES)\n def test_nonzero(self, input_param, input_data, expected_data):\n normalizer = NormalizeIntensity(**input_param)\n np.testing.assert_allclose(expected_data, normalizer(input_data))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_unittest_TEST_CASE_3._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_unittest_TEST_CASE_3._", "embedding": null, "metadata": {"file_path": "tests/test_normalize_intensityd.py", "file_name": "test_normalize_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["docstring"], "tokens": 306}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import NormalizeIntensityd\nfrom tests.utils import NumpyImageTestCase2D\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\"], \"nonzero\": True},\n {\"img\": np.array([0.0, 3.0, 0.0, 4.0])},\n np.array([0.0, -1.0, 0.0, 1.0]),\n]\n\nTEST_CASE_2 = [\n {\n \"keys\": [\"img\"],\n \"subtrahend\": np.array([3.5, 3.5, 3.5, 3.5]),\n \"divisor\": np.array([0.5, 0.5, 0.5, 0.5]),\n \"nonzero\": True,\n },\n {\"img\": np.array([0.0, 3.0, 0.0, 4.0])},\n np.array([0.0, -1.0, 0.0, 1.0]),\n]\n\nTEST_CASE_3 = [\n {\"keys\": [\"img\"], \"nonzero\": True},\n {\"img\": np.array([0.0, 0.0, 0.0, 0.0])},\n np.array([0.0, 0.0, 0.0, 0.0]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_TestNormalizeIntensityd_TestNormalizeIntensityd.test_nonzero.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_TestNormalizeIntensityd_TestNormalizeIntensityd.test_nonzero.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_normalize_intensityd.py", "file_name": "test_normalize_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 44, "end_line": 55, "span_ids": ["TestNormalizeIntensityd.test_nonzero", "TestNormalizeIntensityd", "TestNormalizeIntensityd.test_image_normalize_intensityd"], "tokens": 155}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNormalizeIntensityd(NumpyImageTestCase2D):\n def test_image_normalize_intensityd(self):\n key = \"img\"\n normalizer = NormalizeIntensityd(keys=[key])\n normalized = normalizer({key: self.imt})\n expected = (self.imt - np.mean(self.imt)) / np.std(self.imt)\n np.testing.assert_allclose(normalized[key], expected, rtol=1e-3)\n\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_nonzero(self, input_param, input_data, expected_data):\n normalizer = NormalizeIntensityd(**input_param)\n np.testing.assert_allclose(expected_data, normalizer(input_data)[\"img\"])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_TestNormalizeIntensityd.test_channel_wise_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_TestNormalizeIntensityd.test_channel_wise_", "embedding": null, "metadata": {"file_path": "tests/test_normalize_intensityd.py", "file_name": "test_normalize_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 56, "end_line": 66, "span_ids": ["TestNormalizeIntensityd.test_channel_wise", "impl:7"], "tokens": 166}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNormalizeIntensityd(NumpyImageTestCase2D):\n\n def test_channel_wise(self):\n key = \"img\"\n normalizer = NormalizeIntensityd(keys=key, nonzero=True, channel_wise=True)\n input_data = {key: np.array([[0.0, 3.0, 0.0, 4.0], [0.0, 4.0, 0.0, 5.0]])}\n expected = np.array([[0.0, -1.0, 0.0, 1.0], [0.0, -1.0, 0.0, 1.0]])\n np.testing.assert_allclose(expected, normalizer(input_data)[key])\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_unittest_TestOptionalImport.test_import_wrong_number.None_2.print_my_module_randint_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_unittest_TestOptionalImport.test_import_wrong_number.None_2.print_my_module_randint_1", "embedding": null, "metadata": {"file_path": "tests/test_optional_import.py", "file_name": "test_optional_import.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 45, "span_ids": ["TestOptionalImport", "TestOptionalImport.test_import_valid", "TestOptionalImport.test_import_wrong_number", "docstring", "TestOptionalImport.test_default"], "tokens": 265}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom monai.utils import OptionalImportError, exact_version, optional_import\n\n\nclass TestOptionalImport(unittest.TestCase):\n def test_default(self):\n my_module, flag = optional_import(\"not_a_module\")\n self.assertFalse(flag)\n with self.assertRaises(OptionalImportError):\n my_module.test\n\n my_module, flag = optional_import(\"torch.randint\")\n with self.assertRaises(OptionalImportError):\n self.assertFalse(flag)\n print(my_module.test)\n\n def test_import_valid(self):\n my_module, flag = optional_import(\"torch\")\n self.assertTrue(flag)\n print(my_module.randint(1, 2, (1, 2)))\n\n def test_import_wrong_number(self):\n my_module, flag = optional_import(\"torch\", \"42\")\n with self.assertRaisesRegex(OptionalImportError, \"version\"):\n my_module.nn\n self.assertFalse(flag)\n with self.assertRaisesRegex(OptionalImportError, \"version\"):\n my_module.randint(1, 2, (1, 2))\n with self.assertRaisesRegex(ValueError, \"invalid literal\"):\n my_module, flag = optional_import(\"torch\", \"test\") # version should be number.number\n my_module.nn\n self.assertTrue(flag)\n print(my_module.randint(1, 2, (1, 2)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_good_number_TestOptionalImport.test_import_good_number.None_5": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_good_number_TestOptionalImport.test_import_good_number.None_5", "embedding": null, "metadata": {"file_path": "tests/test_optional_import.py", "file_name": "test_optional_import.py", "file_type": "text/x-python", "category": "test", "start_line": 47, "end_line": 61, "span_ids": ["TestOptionalImport.test_import_good_number"], "tokens": 148}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestOptionalImport(unittest.TestCase):\n\n def test_import_good_number(self):\n my_module, flag = optional_import(\"torch\", \"0\")\n my_module.nn\n self.assertTrue(flag)\n print(my_module.randint(1, 2, (1, 2)))\n\n my_module, flag = optional_import(\"torch\", \"0.0.0.1\")\n my_module.nn\n self.assertTrue(flag)\n print(my_module.randint(1, 2, (1, 2)))\n\n my_module, flag = optional_import(\"torch\", \"1.1.0\")\n my_module.nn\n self.assertTrue(flag)\n print(my_module.randint(1, 2, (1, 2)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_exact_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_exact_", "embedding": null, "metadata": {"file_path": "tests/test_optional_import.py", "file_name": "test_optional_import.py", "file_type": "text/x-python", "category": "test", "start_line": 63, "end_line": 89, "span_ids": ["TestOptionalImport.test_import_exact", "TestOptionalImport.test_additional", "impl", "TestOptionalImport.test_import_method"], "tokens": 210}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestOptionalImport(unittest.TestCase):\n\n def test_import_exact(self):\n my_module, flag = optional_import(\"torch\", \"0\", exact_version)\n with self.assertRaisesRegex(OptionalImportError, \"exact_version\"):\n my_module.nn\n self.assertFalse(flag)\n with self.assertRaisesRegex(OptionalImportError, \"exact_version\"):\n my_module.randint(1, 2, (1, 2))\n\n def test_import_method(self):\n nn, flag = optional_import(\"torch\", \"1.1\", name=\"nn\")\n self.assertTrue(flag)\n print(nn.functional)\n\n def test_additional(self):\n test_args = {\"a\": \"test\", \"b\": \"test\"}\n\n def versioning(module, ver, a):\n self.assertEqual(a, test_args)\n return True\n\n nn, flag = optional_import(\"torch\", \"1.1\", version_checker=versioning, name=\"nn\", version_args=test_args)\n self.assertTrue(flag)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientation.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientation.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_orientation.py", "file_name": "test_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 102, "span_ids": ["docstring"], "tokens": 1208}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport nibabel as nib\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import Orientation, create_rotate, create_translate\n\nTEST_CASES = [\n [\n {\"axcodes\": \"RAS\"},\n np.arange(12).reshape((2, 1, 2, 3)),\n {\"affine\": np.eye(4)},\n np.arange(12).reshape((2, 1, 2, 3)),\n \"RAS\",\n ],\n [\n {\"axcodes\": \"ALS\"},\n np.arange(12).reshape((2, 1, 2, 3)),\n {\"affine\": np.diag([-1, -1, 1, 1])},\n np.array([[[[3, 4, 5]], [[0, 1, 2]]], [[[9, 10, 11]], [[6, 7, 8]]]]),\n \"ALS\",\n ],\n [\n {\"axcodes\": \"RAS\"},\n np.arange(12).reshape((2, 1, 2, 3)),\n {\"affine\": np.diag([-1, -1, 1, 1])},\n np.array([[[[3, 4, 5], [0, 1, 2]]], [[[9, 10, 11], [6, 7, 8]]]]),\n \"RAS\",\n ],\n [\n {\"axcodes\": \"AL\"},\n np.arange(6).reshape((2, 1, 3)),\n {\"affine\": np.eye(3)},\n np.array([[[0], [1], [2]], [[3], [4], [5]]]),\n \"AL\",\n ],\n [{\"axcodes\": \"L\"}, np.arange(6).reshape((2, 3)), {\"affine\": np.eye(2)}, np.array([[2, 1, 0], [5, 4, 3]]), \"L\"],\n [{\"axcodes\": \"L\"}, np.arange(6).reshape((2, 3)), {\"affine\": np.eye(2)}, np.array([[2, 1, 0], [5, 4, 3]]), \"L\"],\n [{\"axcodes\": \"L\"}, np.arange(6).reshape((2, 3)), {\"affine\": np.diag([-1, 1])}, np.arange(6).reshape((2, 3)), \"L\"],\n [\n {\"axcodes\": \"LPS\"},\n np.arange(12).reshape((2, 1, 2, 3)),\n {\n \"affine\": create_translate(3, (10, 20, 30))\n @ create_rotate(3, (np.pi / 2, np.pi / 2, np.pi / 4))\n @ np.diag([-1, 1, 1, 1])\n },\n np.array([[[[2, 5]], [[1, 4]], [[0, 3]]], [[[8, 11]], [[7, 10]], [[6, 9]]]]),\n \"LPS\",\n ],\n [\n {\"as_closest_canonical\": True},\n np.arange(12).reshape((2, 1, 2, 3)),\n {\n \"affine\": create_translate(3, (10, 20, 30))\n @ create_rotate(3, (np.pi / 2, np.pi / 2, np.pi / 4))\n @ np.diag([-1, 1, 1, 1])\n },\n np.array([[[[0, 3]], [[1, 4]], [[2, 5]]], [[[6, 9]], [[7, 10]], [[8, 11]]]]),\n \"RAS\",\n ],\n [\n {\"as_closest_canonical\": True},\n np.arange(6).reshape((1, 2, 3)),\n {\"affine\": create_translate(2, (10, 20)) @ create_rotate(2, (np.pi / 3)) @ np.diag([-1, -0.2, 1])},\n np.array([[[3, 0], [4, 1], [5, 2]]]),\n \"RA\",\n ],\n [\n {\"axcodes\": \"LP\"},\n np.arange(6).reshape((1, 2, 3)),\n {\"affine\": create_translate(2, (10, 20)) @ create_rotate(2, (np.pi / 3)) @ np.diag([-1, -0.2, 1])},\n np.array([[[2, 5], [1, 4], [0, 3]]]),\n \"LP\",\n ],\n [\n {\"axcodes\": \"LPID\", \"labels\": tuple(zip(\"LPIC\", \"RASD\"))},\n np.zeros((1, 2, 3, 4, 5)),\n {\"affine\": np.diag([-1, -0.2, -1, 1, 1])},\n np.zeros((1, 2, 3, 4, 5)),\n \"LPID\",\n ],\n [\n {\"as_closest_canonical\": True, \"labels\": tuple(zip(\"LPIC\", \"RASD\"))},\n np.zeros((1, 2, 3, 4, 5)),\n {\"affine\": np.diag([-1, -0.2, -1, 1, 1])},\n np.zeros((1, 2, 3, 4, 5)),\n \"RASD\",\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientation.py_ILL_CASES_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientation.py_ILL_CASES_", "embedding": null, "metadata": {"file_path": "tests/test_orientation.py", "file_name": "test_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 104, "end_line": 134, "span_ids": ["impl:3", "TestOrientationCase.test_bad_params", "TestOrientationCase", "TestOrientationCase.test_ornt", "impl:5"], "tokens": 287}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "ILL_CASES = [\n # no axcodes or as_cloest_canonical\n [{}, np.arange(6).reshape((2, 3)), \"L\"],\n # too short axcodes\n [{\"axcodes\": \"RA\"}, np.arange(12).reshape((2, 1, 2, 3)), {\"affine\": np.eye(4)}],\n]\n\n\nclass TestOrientationCase(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_ornt(self, init_param, img, data_param, expected_data, expected_code):\n ornt = Orientation(**init_param)\n res = ornt(img, **data_param)\n if not isinstance(res, tuple):\n np.testing.assert_allclose(res, expected_data)\n return\n np.testing.assert_allclose(res[0], expected_data)\n original_affine = data_param[\"affine\"]\n np.testing.assert_allclose(original_affine, res[1])\n new_code = nib.orientations.aff2axcodes(res[2], labels=ornt.labels)\n self.assertEqual(\"\".join(new_code), expected_code)\n\n @parameterized.expand(ILL_CASES)\n def test_bad_params(self, init_param, img, data_param):\n with self.assertRaises(ValueError):\n Orientation(**init_param)(img, **data_param)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_unittest_TestOrientationdCase.test_orntd.self_assertEqual_code_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_unittest_TestOrientationdCase.test_orntd.self_assertEqual_code_", "embedding": null, "metadata": {"file_path": "tests/test_orientationd.py", "file_name": "test_orientationd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 27, "span_ids": ["TestOrientationdCase.test_orntd", "TestOrientationdCase", "docstring"], "tokens": 159}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport nibabel as nib\nimport numpy as np\n\nfrom monai.transforms import Orientationd\n\n\nclass TestOrientationdCase(unittest.TestCase):\n def test_orntd(self):\n data = {\"seg\": np.ones((2, 1, 2, 3)), \"seg_meta_dict\": {\"affine\": np.eye(4)}}\n ornt = Orientationd(keys=\"seg\", axcodes=\"RAS\")\n res = ornt(data)\n np.testing.assert_allclose(res[\"seg\"].shape, (2, 1, 2, 3))\n code = nib.aff2axcodes(res[\"seg_meta_dict\"][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"R\", \"A\", \"S\"))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_3d_TestOrientationdCase.test_orntd_3d.None_3": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_3d_TestOrientationdCase.test_orntd_3d.None_3", "embedding": null, "metadata": {"file_path": "tests/test_orientationd.py", "file_name": "test_orientationd.py", "file_type": "text/x-python", "category": "test", "start_line": 29, "end_line": 43, "span_ids": ["TestOrientationdCase.test_orntd_3d"], "tokens": 243}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestOrientationdCase(unittest.TestCase):\n\n def test_orntd_3d(self):\n data = {\n \"seg\": np.ones((2, 1, 2, 3)),\n \"img\": np.ones((2, 1, 2, 3)),\n \"seg_meta_dict\": {\"affine\": np.eye(4)},\n \"img_meta_dict\": {\"affine\": np.eye(4)},\n }\n ornt = Orientationd(keys=(\"img\", \"seg\"), axcodes=\"PLI\")\n res = ornt(data)\n np.testing.assert_allclose(res[\"img\"].shape, (2, 2, 1, 3))\n np.testing.assert_allclose(res[\"seg\"].shape, (2, 2, 1, 3))\n code = nib.aff2axcodes(res[\"seg_meta_dict\"][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"P\", \"L\", \"I\"))\n code = nib.aff2axcodes(res[\"img_meta_dict\"][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"P\", \"L\", \"I\"))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_2d_TestOrientationdCase.test_orntd_2d.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_2d_TestOrientationdCase.test_orntd_2d.None_2", "embedding": null, "metadata": {"file_path": "tests/test_orientationd.py", "file_name": "test_orientationd.py", "file_type": "text/x-python", "category": "test", "start_line": 45, "end_line": 58, "span_ids": ["TestOrientationdCase.test_orntd_2d"], "tokens": 210}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestOrientationdCase(unittest.TestCase):\n\n def test_orntd_2d(self):\n data = {\n \"seg\": np.ones((2, 1, 3)),\n \"img\": np.ones((2, 1, 3)),\n \"seg_meta_dict\": {\"affine\": np.eye(4)},\n \"img_meta_dict\": {\"affine\": np.eye(4)},\n }\n ornt = Orientationd(keys=(\"img\", \"seg\"), axcodes=\"PLI\")\n res = ornt(data)\n np.testing.assert_allclose(res[\"img\"].shape, (2, 3, 1))\n code = nib.aff2axcodes(res[\"seg_meta_dict\"][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"P\", \"L\", \"S\"))\n code = nib.aff2axcodes(res[\"img_meta_dict\"][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"P\", \"L\", \"S\"))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_1d_TestOrientationdCase.test_orntd_1d.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_1d_TestOrientationdCase.test_orntd_1d.None_2", "embedding": null, "metadata": {"file_path": "tests/test_orientationd.py", "file_name": "test_orientationd.py", "file_type": "text/x-python", "category": "test", "start_line": 60, "end_line": 73, "span_ids": ["TestOrientationdCase.test_orntd_1d"], "tokens": 200}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestOrientationdCase(unittest.TestCase):\n\n def test_orntd_1d(self):\n data = {\n \"seg\": np.ones((2, 3)),\n \"img\": np.ones((2, 3)),\n \"seg_meta_dict\": {\"affine\": np.eye(4)},\n \"img_meta_dict\": {\"affine\": np.eye(4)},\n }\n ornt = Orientationd(keys=(\"img\", \"seg\"), axcodes=\"L\")\n res = ornt(data)\n np.testing.assert_allclose(res[\"img\"].shape, (2, 3))\n code = nib.aff2axcodes(res[\"seg_meta_dict\"][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"L\", \"A\", \"S\"))\n code = nib.aff2axcodes(res[\"img_meta_dict\"][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"L\", \"A\", \"S\"))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_plot_2d_or_3d_image.py_glob_TEST_CASE_5._1_3_10_10_10_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_plot_2d_or_3d_image.py_glob_TEST_CASE_5._1_3_10_10_10_", "embedding": null, "metadata": {"file_path": "tests/test_plot_2d_or_3d_image.py", "file_name": "test_plot_2d_or_3d_image.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 30, "span_ids": ["docstring"], "tokens": 135}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import glob\nimport tempfile\nimport unittest\n\nimport torch\nfrom parameterized import parameterized\nfrom torch.utils.tensorboard import SummaryWriter\n\nfrom monai.visualize import plot_2d_or_3d_image\n\nTEST_CASE_1 = [(1, 1, 10, 10)]\n\nTEST_CASE_2 = [(1, 3, 10, 10)]\n\nTEST_CASE_3 = [(1, 4, 10, 10)]\n\nTEST_CASE_4 = [(1, 1, 10, 10, 10)]\n\nTEST_CASE_5 = [(1, 3, 10, 10, 10)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_plot_2d_or_3d_image.py_TestPlot2dOr3dImage_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_plot_2d_or_3d_image.py_TestPlot2dOr3dImage_", "embedding": null, "metadata": {"file_path": "tests/test_plot_2d_or_3d_image.py", "file_name": "test_plot_2d_or_3d_image.py", "file_type": "text/x-python", "category": "test", "start_line": 33, "end_line": 46, "span_ids": ["impl:11", "TestPlot2dOr3dImage", "TestPlot2dOr3dImage.test_tb_image_shape"], "tokens": 127}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPlot2dOr3dImage(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_tb_image_shape(self, shape):\n with tempfile.TemporaryDirectory() as tempdir:\n writer = SummaryWriter(log_dir=tempdir)\n plot_2d_or_3d_image(torch.zeros(shape), 0, writer)\n writer.flush()\n writer.close()\n self.assertTrue(len(glob.glob(tempdir)) > 0)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_rw.py_os_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_rw.py_os_", "embedding": null, "metadata": {"file_path": "tests/test_png_rw.py", "file_name": "test_png_rw.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 79, "span_ids": ["TestPngWrite.test_write_output_shape", "impl", "TestPngWrite.test_write_gray", "docstring", "TestPngWrite.test_write_gray_1height", "TestPngWrite.test_write_2channels", "TestPngWrite", "TestPngWrite.test_write_rgb", "TestPngWrite.test_write_gray_1channel"], "tokens": 629}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport numpy as np\nfrom PIL import Image\n\nfrom monai.data import write_png\n\n\nclass TestPngWrite(unittest.TestCase):\n def test_write_gray(self):\n with tempfile.TemporaryDirectory() as out_dir:\n image_name = os.path.join(out_dir, \"test.png\")\n img = np.random.rand(2, 3)\n img_save_val = (255 * img).astype(np.uint8)\n write_png(img, image_name, scale=255)\n out = np.asarray(Image.open(image_name))\n np.testing.assert_allclose(out, img_save_val)\n\n def test_write_gray_1height(self):\n with tempfile.TemporaryDirectory() as out_dir:\n image_name = os.path.join(out_dir, \"test.png\")\n img = np.random.rand(1, 3)\n img_save_val = (65535 * img).astype(np.uint16)\n write_png(img, image_name, scale=65535)\n out = np.asarray(Image.open(image_name))\n np.testing.assert_allclose(out, img_save_val)\n\n def test_write_gray_1channel(self):\n with tempfile.TemporaryDirectory() as out_dir:\n image_name = os.path.join(out_dir, \"test.png\")\n img = np.random.rand(2, 3, 1)\n img_save_val = (255 * img).astype(np.uint8).squeeze(2)\n write_png(img, image_name, scale=255)\n out = np.asarray(Image.open(image_name))\n np.testing.assert_allclose(out, img_save_val)\n\n def test_write_rgb(self):\n with tempfile.TemporaryDirectory() as out_dir:\n image_name = os.path.join(out_dir, \"test.png\")\n img = np.random.rand(2, 3, 3)\n img_save_val = (255 * img).astype(np.uint8)\n write_png(img, image_name, scale=255)\n out = np.asarray(Image.open(image_name))\n np.testing.assert_allclose(out, img_save_val)\n\n def test_write_2channels(self):\n with tempfile.TemporaryDirectory() as out_dir:\n image_name = os.path.join(out_dir, \"test.png\")\n img = np.random.rand(2, 3, 2)\n img_save_val = (255 * img).astype(np.uint8)\n write_png(img, image_name, scale=255)\n out = np.asarray(Image.open(image_name))\n np.testing.assert_allclose(out, img_save_val)\n\n def test_write_output_shape(self):\n with tempfile.TemporaryDirectory() as out_dir:\n image_name = os.path.join(out_dir, \"test.png\")\n img = np.random.rand(2, 2, 3)\n write_png(img, image_name, (4, 4), scale=255)\n out = np.asarray(Image.open(image_name))\n np.testing.assert_allclose(out.shape, (4, 4, 3))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_query_memory.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_query_memory.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_query_memory.py", "file_name": "test_query_memory.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 27, "span_ids": ["impl", "TestQueryMemory", "TestQueryMemory.test_output_str", "docstring"], "tokens": 75}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom tests.utils import query_memory\n\n\nclass TestQueryMemory(unittest.TestCase):\n def test_output_str(self):\n self.assertTrue(isinstance(query_memory(2), str))\n all_device = query_memory(-1)\n self.assertTrue(isinstance(all_device, str))\n self.assertEqual(query_memory(\"test\"), \"\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrast.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrast.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_adjust_contrast.py", "file_name": "test_rand_adjust_contrast.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["TestRandAdjustContrast", "TestRandAdjustContrast.test_correct_results", "impl:5", "docstring"], "tokens": 223}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandAdjustContrast\nfrom tests.utils import NumpyImageTestCase2D\n\nTEST_CASE_1 = [(0.5, 4.5)]\n\nTEST_CASE_2 = [1.5]\n\n\nclass TestRandAdjustContrast(NumpyImageTestCase2D):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2])\n def test_correct_results(self, gamma):\n adjuster = RandAdjustContrast(prob=1.0, gamma=gamma)\n result = adjuster(self.imt)\n epsilon = 1e-7\n img_min = self.imt.min()\n img_range = self.imt.max() - img_min\n expected = (\n np.power(((self.imt - img_min) / float(img_range + epsilon)), adjuster.gamma_value) * img_range + img_min\n )\n np.testing.assert_allclose(expected, result, rtol=1e-05)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrastd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrastd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_adjust_contrastd.py", "file_name": "test_rand_adjust_contrastd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["impl:5", "TestRandAdjustContrastd.test_correct_results", "TestRandAdjustContrastd", "docstring"], "tokens": 234}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandAdjustContrastd\nfrom tests.utils import NumpyImageTestCase2D\n\nTEST_CASE_1 = [(0.5, 4.5)]\n\nTEST_CASE_2 = [1.5]\n\n\nclass TestRandAdjustContrastd(NumpyImageTestCase2D):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2])\n def test_correct_results(self, gamma):\n adjuster = RandAdjustContrastd(\"img\", prob=1.0, gamma=gamma)\n result = adjuster({\"img\": self.imt})\n epsilon = 1e-7\n img_min = self.imt.min()\n img_range = self.imt.max() - img_min\n expected = (\n np.power(((self.imt - img_min) / float(img_range + epsilon)), adjuster.gamma_value) * img_range + img_min\n )\n np.testing.assert_allclose(expected, result[\"img\"], rtol=1e-05)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_rand_affine.py", "file_name": "test_rand_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 103, "span_ids": ["docstring"], "tokens": 996}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandAffine\n\nTEST_CASES = [\n [\n dict(as_tensor_output=False, device=None),\n {\"img\": torch.arange(27).reshape((3, 3, 3))},\n np.arange(27).reshape((3, 3, 3)),\n ],\n [\n dict(as_tensor_output=False, device=None, spatial_size=-1),\n {\"img\": torch.arange(27).reshape((3, 3, 3))},\n np.arange(27).reshape((3, 3, 3)),\n ],\n [\n dict(as_tensor_output=False, device=None),\n {\"img\": torch.arange(27).reshape((3, 3, 3)), \"spatial_size\": (2, 2)},\n np.array([[[2.0, 3.0], [5.0, 6.0]], [[11.0, 12.0], [14.0, 15.0]], [[20.0, 21.0], [23.0, 24.0]]]),\n ],\n [\n dict(as_tensor_output=True, device=None),\n {\"img\": torch.ones((1, 3, 3, 3)), \"spatial_size\": (2, 2, 2)},\n torch.ones((1, 2, 2, 2)),\n ],\n [\n dict(as_tensor_output=True, device=None, spatial_size=(2, 2, 2), cache_grid=True),\n {\"img\": torch.ones((1, 3, 3, 3))},\n torch.ones((1, 2, 2, 2)),\n ],\n [\n dict(\n prob=0.9,\n rotate_range=(np.pi / 2,),\n shear_range=[1, 2],\n translate_range=[2, 1],\n as_tensor_output=True,\n padding_mode=\"zeros\",\n spatial_size=(2, 2, 2),\n device=None,\n ),\n {\"img\": torch.ones((1, 3, 3, 3)), \"mode\": \"bilinear\"},\n torch.tensor([[[[0.3658, 1.0000], [1.0000, 1.0000]], [[1.0000, 1.0000], [1.0000, 0.9333]]]]),\n ],\n [\n dict(\n prob=0.9,\n rotate_range=(np.pi / 2,),\n shear_range=[1, 2],\n translate_range=[2, 1],\n as_tensor_output=True,\n padding_mode=\"zeros\",\n spatial_size=(2, 2, 2),\n cache_grid=True,\n device=None,\n ),\n {\"img\": torch.ones((1, 3, 3, 3)), \"mode\": \"bilinear\"},\n torch.tensor([[[[0.3658, 1.0000], [1.0000, 1.0000]], [[1.0000, 1.0000], [1.0000, 0.9333]]]]),\n ],\n [\n dict(\n prob=0.9,\n rotate_range=(np.pi / 2,),\n shear_range=[1, 2],\n translate_range=[2, 1],\n scale_range=[0.1, 0.2],\n as_tensor_output=True,\n device=None,\n ),\n {\"img\": torch.arange(64).reshape((1, 8, 8)), \"spatial_size\": (3, 3)},\n torch.tensor([[[18.7362, 15.5820, 12.4278], [27.3988, 24.2446, 21.0904], [36.0614, 32.9072, 29.7530]]]),\n ],\n [\n dict(\n prob=0.9,\n rotate_range=(np.pi / 2,),\n shear_range=[1, 2],\n translate_range=[2, 1],\n scale_range=[0.1, 0.2],\n spatial_size=(3, 3),\n cache_grid=True,\n as_tensor_output=True,\n device=None,\n ),\n {\"img\": torch.arange(64).reshape((1, 8, 8))},\n torch.tensor([[[18.7362, 15.5820, 12.4278], [27.3988, 24.2446, 21.0904], [36.0614, 32.9072, 29.7530]]]),\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine_grid.py_unittest_TEST_CASES": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine_grid.py_unittest_TEST_CASES", "embedding": null, "metadata": {"file_path": "tests/test_rand_affine_grid.py", "file_name": "test_rand_affine_grid.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 181, "span_ids": ["docstring"], "tokens": 36}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandAffineGrid\n\nTEST_CASES =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine_grid.py_TestRandAffineGrid_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine_grid.py_TestRandAffineGrid_", "embedding": null, "metadata": {"file_path": "tests/test_rand_affine_grid.py", "file_name": "test_rand_affine_grid.py", "file_type": "text/x-python", "category": "test", "start_line": 184, "end_line": 199, "span_ids": ["TestRandAffineGrid.test_rand_affine_grid", "impl:3", "TestRandAffineGrid"], "tokens": 160}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandAffineGrid(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_rand_affine_grid(self, input_param, input_data, expected_val):\n g = RandAffineGrid(**input_param)\n g.set_random_state(123)\n result = g(**input_data)\n self.assertEqual(isinstance(result, torch.Tensor), isinstance(expected_val, torch.Tensor))\n if isinstance(result, torch.Tensor):\n np.testing.assert_allclose(result.cpu().numpy(), expected_val.cpu().numpy(), rtol=1e-4, atol=1e-4)\n else:\n np.testing.assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_label.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_label.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_crop_by_pos_neg_label.py", "file_name": "test_rand_crop_by_pos_neg_label.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 79, "span_ids": ["TestRandCropByPosNegLabel", "TestRandCropByPosNegLabel.test_type_shape", "impl:7", "docstring"], "tokens": 617}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandCropByPosNegLabel\n\nTEST_CASE_0 = [\n {\n \"label\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"spatial_size\": [2, 2, -1],\n \"pos\": 1,\n \"neg\": 1,\n \"num_samples\": 2,\n \"image\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"image_threshold\": 0,\n },\n {\"img\": np.random.randint(0, 2, size=[3, 3, 3, 3])},\n list,\n (3, 2, 2, 3),\n]\n\nTEST_CASE_1 = [\n {\n \"label\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"spatial_size\": [2, 2, 2],\n \"pos\": 1,\n \"neg\": 1,\n \"num_samples\": 2,\n \"image\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"image_threshold\": 0,\n },\n {\"img\": np.random.randint(0, 2, size=[3, 3, 3, 3])},\n list,\n (3, 2, 2, 2),\n]\n\nTEST_CASE_2 = [\n {\n \"label\": None,\n \"spatial_size\": [2, 2, 2],\n \"pos\": 1,\n \"neg\": 1,\n \"num_samples\": 2,\n \"image\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"image_threshold\": 0,\n },\n {\n \"img\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"label\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"image\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n },\n list,\n (3, 2, 2, 2),\n]\n\n\nclass TestRandCropByPosNegLabel(unittest.TestCase):\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1, TEST_CASE_2])\n def test_type_shape(self, input_param, input_data, expected_type, expected_shape):\n result = RandCropByPosNegLabel(**input_param)(**input_data)\n self.assertIsInstance(result, expected_type)\n self.assertTupleEqual(result[0].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_labeld.py_unittest_TEST_CASE_2._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_labeld.py_unittest_TEST_CASE_2._", "embedding": null, "metadata": {"file_path": "tests/test_rand_crop_by_pos_neg_labeld.py", "file_name": "test_rand_crop_by_pos_neg_labeld.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 80, "span_ids": ["impl:5", "docstring"], "tokens": 620}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandCropByPosNegLabeld\n\nTEST_CASE_0 = [\n {\n \"keys\": [\"image\", \"extra\", \"label\"],\n \"label_key\": \"label\",\n \"spatial_size\": [-1, 2, 2],\n \"pos\": 1,\n \"neg\": 1,\n \"num_samples\": 2,\n \"image_key\": None,\n \"image_threshold\": 0,\n },\n {\n \"image\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"extra\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"label\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"image_meta_dict\": {\"affine\": np.eye(3), \"shape\": \"CHWD\"},\n },\n list,\n (3, 3, 2, 2),\n]\n\nTEST_CASE_1 = [\n {\n \"keys\": [\"image\", \"extra\", \"label\"],\n \"label_key\": \"label\",\n \"spatial_size\": [2, 2, 2],\n \"pos\": 1,\n \"neg\": 1,\n \"num_samples\": 2,\n \"image_key\": None,\n \"image_threshold\": 0,\n },\n {\n \"image\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"extra\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"label\": np.random.randint(0, 2, size=[3, 3, 3, 3]),\n \"label_meta_dict\": {\"affine\": np.eye(3), \"shape\": \"CHWD\"},\n },\n list,\n (3, 2, 2, 2),\n]\n\nTEST_CASE_2 = [\n {\n \"keys\": [\"image\", \"extra\", \"label\"],\n \"label_key\": \"label\",\n \"spatial_size\": [2, 2, 2],\n \"pos\": 1,\n \"neg\": 1,\n \"num_samples\": 2,\n \"image_key\": None,\n \"image_threshold\": 0,\n },\n {\n \"image\": np.zeros([3, 3, 3, 3]) - 1,\n \"extra\": np.zeros([3, 3, 3, 3]),\n \"label\": np.ones([3, 3, 3, 3]),\n \"extra_meta_dict\": {\"affine\": np.eye(3), \"shape\": \"CHWD\"},\n },\n list,\n (3, 2, 2, 2),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_labeld.py_TestRandCropByPosNegLabeld_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_labeld.py_TestRandCropByPosNegLabeld_", "embedding": null, "metadata": {"file_path": "tests/test_rand_crop_by_pos_neg_labeld.py", "file_name": "test_rand_crop_by_pos_neg_labeld.py", "file_type": "text/x-python", "category": "test", "start_line": 83, "end_line": 101, "span_ids": ["TestRandCropByPosNegLabeld", "TestRandCropByPosNegLabeld.test_type_shape", "impl:7"], "tokens": 219}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandCropByPosNegLabeld(unittest.TestCase):\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1, TEST_CASE_2])\n def test_type_shape(self, input_param, input_data, expected_type, expected_shape):\n result = RandCropByPosNegLabeld(**input_param)(input_data)\n self.assertIsInstance(result, expected_type)\n self.assertTupleEqual(result[0][\"image\"].shape, expected_shape)\n self.assertTupleEqual(result[0][\"extra\"].shape, expected_shape)\n self.assertTupleEqual(result[0][\"label\"].shape, expected_shape)\n _len = len(tuple(input_data.keys()))\n self.assertTupleEqual(tuple(result[0].keys())[:_len], tuple(input_data.keys()))\n for i, item in enumerate(result):\n self.assertEqual(item[\"image_meta_dict\"][\"patch_index\"], i)\n self.assertEqual(item[\"label_meta_dict\"][\"patch_index\"], i)\n self.assertEqual(item[\"extra_meta_dict\"][\"patch_index\"], i)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_deform_grid.py_unittest_TEST_CASES": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_deform_grid.py_unittest_TEST_CASES", "embedding": null, "metadata": {"file_path": "tests/test_rand_deform_grid.py", "file_name": "test_rand_deform_grid.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 123, "span_ids": ["docstring"], "tokens": 36}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandDeformGrid\n\nTEST_CASES =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_deform_grid.py_TestRandDeformGrid_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_deform_grid.py_TestRandDeformGrid_", "embedding": null, "metadata": {"file_path": "tests/test_rand_deform_grid.py", "file_name": "test_rand_deform_grid.py", "file_type": "text/x-python", "category": "test", "start_line": 126, "end_line": 141, "span_ids": ["TestRandDeformGrid.test_rand_deform_grid", "impl:3", "TestRandDeformGrid"], "tokens": 160}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandDeformGrid(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_rand_deform_grid(self, input_param, input_data, expected_val):\n g = RandDeformGrid(**input_param)\n g.set_random_state(123)\n result = g(**input_data)\n self.assertEqual(isinstance(result, torch.Tensor), isinstance(expected_val, torch.Tensor))\n if isinstance(result, torch.Tensor):\n np.testing.assert_allclose(result.cpu().numpy(), expected_val.cpu().numpy(), rtol=1e-4, atol=1e-4)\n else:\n np.testing.assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_2d.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_2d.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_rand_elastic_2d.py", "file_name": "test_rand_elastic_2d.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 89, "span_ids": ["docstring"], "tokens": 818}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import Rand2DElastic\n\nTEST_CASES = [\n [\n {\"spacing\": (0.3, 0.3), \"magnitude_range\": (1.0, 2.0), \"prob\": 0.0, \"as_tensor_output\": False, \"device\": None},\n {\"img\": torch.ones((3, 3, 3)), \"spatial_size\": (2, 2)},\n np.ones((3, 2, 2)),\n ],\n [\n {\"spacing\": (0.3, 0.3), \"magnitude_range\": (1.0, 2.0), \"prob\": 0.0, \"as_tensor_output\": False, \"device\": None},\n {\"img\": torch.arange(27).reshape((3, 3, 3))},\n np.arange(27).reshape((3, 3, 3)),\n ],\n [\n {\n \"spacing\": (0.3, 0.3),\n \"magnitude_range\": (1.0, 2.0),\n \"prob\": 0.9,\n \"as_tensor_output\": False,\n \"device\": None,\n \"padding_mode\": \"zeros\",\n },\n {\"img\": torch.ones((3, 3, 3)), \"spatial_size\": (2, 2), \"mode\": \"bilinear\"},\n np.array(\n [\n [[0.45531988, 0.0], [0.0, 0.71558857]],\n [[0.45531988, 0.0], [0.0, 0.71558857]],\n [[0.45531988, 0.0], [0.0, 0.71558857]],\n ]\n ),\n ],\n [\n {\n \"spacing\": (1.0, 1.0),\n \"magnitude_range\": (1.0, 1.0),\n \"scale_range\": [1.2, 2.2],\n \"prob\": 0.9,\n \"padding_mode\": \"border\",\n \"as_tensor_output\": True,\n \"device\": None,\n \"spatial_size\": (2, 2),\n },\n {\"img\": torch.arange(27).reshape((3, 3, 3))},\n torch.tensor(\n [\n [[3.0793, 2.6141], [4.0568, 5.9978]],\n [[12.0793, 11.6141], [13.0568, 14.9978]],\n [[21.0793, 20.6141], [22.0568, 23.9978]],\n ]\n ),\n ],\n [\n {\n \"spacing\": (0.3, 0.3),\n \"magnitude_range\": (0.1, 0.2),\n \"translate_range\": [-0.01, 0.01],\n \"scale_range\": [0.01, 0.02],\n \"prob\": 0.9,\n \"as_tensor_output\": False,\n \"device\": \"cuda\" if torch.cuda.is_available() else \"cpu\",\n \"spatial_size\": (2, 2),\n },\n {\"img\": torch.arange(27).reshape((3, 3, 3))},\n np.array(\n [\n [[1.3584113, 1.9251312], [5.626623, 6.642721]],\n [[10.358411, 10.925131], [14.626623, 15.642721]],\n [[19.358412, 19.92513], [23.626623, 24.642721]],\n ]\n ),\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_2d.py_TestRand2DElastic_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_2d.py_TestRand2DElastic_", "embedding": null, "metadata": {"file_path": "tests/test_rand_elastic_2d.py", "file_name": "test_rand_elastic_2d.py", "file_type": "text/x-python", "category": "test", "start_line": 92, "end_line": 107, "span_ids": ["impl:3", "TestRand2DElastic.test_rand_2d_elastic", "TestRand2DElastic"], "tokens": 162}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRand2DElastic(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_rand_2d_elastic(self, input_param, input_data, expected_val):\n g = Rand2DElastic(**input_param)\n g.set_random_state(123)\n result = g(**input_data)\n self.assertEqual(isinstance(result, torch.Tensor), isinstance(expected_val, torch.Tensor))\n if isinstance(result, torch.Tensor):\n np.testing.assert_allclose(result.cpu().numpy(), expected_val.cpu().numpy(), rtol=1e-4, atol=1e-4)\n else:\n np.testing.assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_3d.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_3d.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_rand_elastic_3d.py", "file_name": "test_rand_elastic_3d.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 68, "span_ids": ["docstring"], "tokens": 593}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import Rand3DElastic\n\nTEST_CASES = [\n [\n {\n \"magnitude_range\": (0.3, 2.3),\n \"sigma_range\": (1.0, 20.0),\n \"prob\": 0.0,\n \"as_tensor_output\": False,\n \"device\": None,\n \"spatial_size\": -1,\n },\n {\"img\": torch.arange(72).reshape((2, 3, 3, 4))},\n np.arange(72).reshape((2, 3, 3, 4)),\n ],\n [\n {\n \"magnitude_range\": (0.3, 2.3),\n \"sigma_range\": (1.0, 20.0),\n \"prob\": 0.0,\n \"as_tensor_output\": False,\n \"device\": None,\n },\n {\"img\": torch.ones((2, 3, 3, 3)), \"spatial_size\": (2, 2, 2)},\n np.ones((2, 2, 2, 2)),\n ],\n [\n {\n \"magnitude_range\": (0.3, 0.3),\n \"sigma_range\": (1.0, 2.0),\n \"prob\": 0.9,\n \"as_tensor_output\": False,\n \"device\": None,\n },\n {\"img\": torch.arange(27).reshape((1, 3, 3, 3)), \"spatial_size\": (2, 2, 2)},\n np.array([[[[6.4939356, 7.50289], [9.518351, 10.522849]], [[15.512375, 16.523542], [18.531467, 19.53646]]]]),\n ],\n [\n {\n \"magnitude_range\": (0.3, 0.3),\n \"sigma_range\": (1.0, 2.0),\n \"prob\": 0.9,\n \"rotate_range\": [1, 1, 1],\n \"as_tensor_output\": False,\n \"device\": \"cuda\" if torch.cuda.is_available() else \"cpu\",\n \"spatial_size\": (2, 2, 2),\n },\n {\"img\": torch.arange(27).reshape((1, 3, 3, 3)), \"mode\": \"bilinear\"},\n np.array([[[[5.0069294, 9.463932], [9.287769, 13.739735]], [[12.319424, 16.777205], [16.594296, 21.045748]]]]),\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_3d.py_TestRand3DElastic_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_3d.py_TestRand3DElastic_", "embedding": null, "metadata": {"file_path": "tests/test_rand_elastic_3d.py", "file_name": "test_rand_elastic_3d.py", "file_type": "text/x-python", "category": "test", "start_line": 71, "end_line": 86, "span_ids": ["impl:3", "TestRand3DElastic.test_rand_3d_elastic", "TestRand3DElastic"], "tokens": 162}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRand3DElastic(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_rand_3d_elastic(self, input_param, input_data, expected_val):\n g = Rand3DElastic(**input_param)\n g.set_random_state(123)\n result = g(**input_data)\n self.assertEqual(isinstance(result, torch.Tensor), isinstance(expected_val, torch.Tensor))\n if isinstance(result, torch.Tensor):\n np.testing.assert_allclose(result.cpu().numpy(), expected_val.cpu().numpy(), rtol=1e-4, atol=1e-4)\n else:\n np.testing.assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_2d.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_2d.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_rand_elasticd_2d.py", "file_name": "test_rand_elasticd_2d.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 135, "span_ids": ["docstring"], "tokens": 1291}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import Rand2DElasticd\n\nTEST_CASES = [\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"spacing\": (0.3, 0.3),\n \"magnitude_range\": (1.0, 2.0),\n \"prob\": 0.0,\n \"as_tensor_output\": False,\n \"device\": None,\n \"spatial_size\": (2, 2),\n },\n {\"img\": torch.ones((3, 3, 3)), \"seg\": torch.ones((3, 3, 3))},\n np.ones((3, 2, 2)),\n ],\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"spacing\": (0.3, 0.3),\n \"magnitude_range\": (0.3, 0.3),\n \"prob\": 0.0,\n \"as_tensor_output\": False,\n \"device\": None,\n \"spatial_size\": -1,\n },\n {\"img\": torch.arange(4).reshape((1, 2, 2)), \"seg\": torch.arange(4).reshape((1, 2, 2))},\n np.arange(4).reshape((1, 2, 2)),\n ],\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"spacing\": (0.3, 0.3),\n \"magnitude_range\": (1.0, 2.0),\n \"prob\": 0.9,\n \"as_tensor_output\": False,\n \"padding_mode\": \"zeros\",\n \"device\": None,\n \"spatial_size\": (2, 2),\n \"mode\": \"bilinear\",\n },\n {\"img\": torch.ones((3, 3, 3)), \"seg\": torch.ones((3, 3, 3))},\n np.array(\n [\n [[0.45531988, 0.0], [0.0, 0.71558857]],\n [[0.45531988, 0.0], [0.0, 0.71558857]],\n [[0.45531988, 0.0], [0.0, 0.71558857]],\n ]\n ),\n ],\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"spacing\": (1.0, 1.0),\n \"magnitude_range\": (1.0, 1.0),\n \"scale_range\": [1.2, 2.2],\n \"prob\": 0.9,\n \"padding_mode\": \"border\",\n \"as_tensor_output\": True,\n \"device\": None,\n \"spatial_size\": (2, 2),\n },\n {\"img\": torch.arange(27).reshape((3, 3, 3)), \"seg\": torch.arange(27).reshape((3, 3, 3))},\n torch.tensor(\n [\n [[3.0793, 2.6141], [4.0568, 5.9978]],\n [[12.0793, 11.6141], [13.0568, 14.9978]],\n [[21.0793, 20.6141], [22.0568, 23.9978]],\n ]\n ),\n ],\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"spacing\": (0.3, 0.3),\n \"magnitude_range\": (0.1, 0.2),\n \"translate_range\": [-0.01, 0.01],\n \"scale_range\": [0.01, 0.02],\n \"prob\": 0.9,\n \"as_tensor_output\": False,\n \"device\": None,\n \"spatial_size\": (2, 2),\n },\n {\"img\": torch.arange(27).reshape((3, 3, 3)), \"seg\": torch.arange(27).reshape((3, 3, 3))},\n np.array(\n [\n [[1.3584113, 1.9251312], [5.626623, 6.642721]],\n [[10.358411, 10.925131], [14.626623, 15.642721]],\n [[19.358412, 19.92513], [23.626623, 24.642721]],\n ]\n ),\n ],\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"mode\": (\"bilinear\", \"nearest\"),\n \"spacing\": (0.3, 0.3),\n \"magnitude_range\": (0.1, 0.2),\n \"translate_range\": [-0.01, 0.01],\n \"scale_range\": [0.01, 0.02],\n \"prob\": 0.9,\n \"as_tensor_output\": True,\n \"device\": None,\n \"spatial_size\": (2, 2),\n },\n {\"img\": torch.arange(27).reshape((3, 3, 3)), \"seg\": torch.arange(27).reshape((3, 3, 3))},\n {\n \"img\": torch.tensor(\n [\n [[1.3584, 1.9251], [5.6266, 6.6427]],\n [[10.3584, 10.9251], [14.6266, 15.6427]],\n [[19.3584, 19.9251], [23.6266, 24.6427]],\n ]\n ),\n \"seg\": torch.tensor([[[0.0, 2.0], [6.0, 8.0]], [[9.0, 11.0], [15.0, 17.0]], [[18.0, 20.0], [24.0, 26.0]]]),\n },\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_2d.py_TestRand2DElasticd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_2d.py_TestRand2DElasticd_", "embedding": null, "metadata": {"file_path": "tests/test_rand_elasticd_2d.py", "file_name": "test_rand_elasticd_2d.py", "file_type": "text/x-python", "category": "test", "start_line": 138, "end_line": 156, "span_ids": ["TestRand2DElasticd.test_rand_2d_elasticd", "impl:3", "TestRand2DElasticd"], "tokens": 191}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRand2DElasticd(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_rand_2d_elasticd(self, input_param, input_data, expected_val):\n g = Rand2DElasticd(**input_param)\n g.set_random_state(123)\n res = g(input_data)\n for key in res:\n result = res[key]\n expected = expected_val[key] if isinstance(expected_val, dict) else expected_val\n self.assertEqual(isinstance(result, torch.Tensor), isinstance(expected, torch.Tensor))\n if isinstance(result, torch.Tensor):\n np.testing.assert_allclose(result.cpu().numpy(), expected.cpu().numpy(), rtol=1e-4, atol=1e-4)\n else:\n np.testing.assert_allclose(result, expected, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_3d.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_3d.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_rand_elasticd_3d.py", "file_name": "test_rand_elasticd_3d.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 106, "span_ids": ["docstring"], "tokens": 1118}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import Rand3DElasticd\n\nTEST_CASES = [\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"magnitude_range\": (0.3, 2.3),\n \"sigma_range\": (1.0, 20.0),\n \"prob\": 0.0,\n \"as_tensor_output\": False,\n \"device\": None,\n \"spatial_size\": (2, 2, 2),\n },\n {\"img\": torch.ones((2, 3, 3, 3)), \"seg\": torch.ones((2, 3, 3, 3))},\n np.ones((2, 2, 2, 2)),\n ],\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"magnitude_range\": (0.3, 2.3),\n \"sigma_range\": (1.0, 20.0),\n \"prob\": 0.0,\n \"as_tensor_output\": False,\n \"device\": None,\n \"spatial_size\": (2, -1, -1),\n },\n {\"img\": torch.ones((2, 3, 3, 3)), \"seg\": torch.ones((2, 3, 3, 3))},\n np.ones((2, 2, 3, 3)),\n ],\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"magnitude_range\": (0.3, 2.3),\n \"sigma_range\": (1.0, 20.0),\n \"prob\": 0.0,\n \"as_tensor_output\": False,\n \"device\": None,\n \"spatial_size\": -1,\n },\n {\"img\": torch.arange(8).reshape((1, 2, 2, 2)), \"seg\": torch.arange(8).reshape((1, 2, 2, 2))},\n np.arange(8).reshape((1, 2, 2, 2)),\n ],\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"magnitude_range\": (0.3, 0.3),\n \"sigma_range\": (1.0, 2.0),\n \"prob\": 0.9,\n \"as_tensor_output\": False,\n \"device\": None,\n \"spatial_size\": (2, 2, 2),\n },\n {\"img\": torch.arange(27).reshape((1, 3, 3, 3)), \"seg\": torch.arange(27).reshape((1, 3, 3, 3))},\n np.array([[[[6.4939356, 7.50289], [9.518351, 10.522849]], [[15.512375, 16.523542], [18.531467, 19.53646]]]]),\n ],\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"magnitude_range\": (0.3, 0.3),\n \"sigma_range\": (1.0, 2.0),\n \"prob\": 0.9,\n \"rotate_range\": [1, 1, 1],\n \"as_tensor_output\": False,\n \"device\": None,\n \"spatial_size\": (2, 2, 2),\n \"mode\": \"bilinear\",\n },\n {\"img\": torch.arange(27).reshape((1, 3, 3, 3)), \"seg\": torch.arange(27).reshape((1, 3, 3, 3))},\n np.array([[[[5.0069294, 9.463932], [9.287769, 13.739735]], [[12.319424, 16.777205], [16.594296, 21.045748]]]]),\n ],\n [\n {\n \"keys\": (\"img\", \"seg\"),\n \"mode\": (\"bilinear\", \"nearest\"),\n \"magnitude_range\": (0.3, 0.3),\n \"sigma_range\": (1.0, 2.0),\n \"prob\": 0.9,\n \"rotate_range\": [1, 1, 1],\n \"as_tensor_output\": True,\n \"device\": torch.device(\"cpu:0\"),\n \"spatial_size\": (2, 2, 2),\n },\n {\"img\": torch.arange(27).reshape((1, 3, 3, 3)), \"seg\": torch.arange(27).reshape((1, 3, 3, 3))},\n {\n \"img\": torch.tensor([[[[5.0069, 9.4639], [9.2878, 13.7397]], [[12.3194, 16.7772], [16.5943, 21.0457]]]]),\n \"seg\": torch.tensor([[[[4.0, 14.0], [7.0, 14.0]], [[9.0, 19.0], [12.0, 22.0]]]]),\n },\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_3d.py_TestRand3DElasticd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_3d.py_TestRand3DElasticd_", "embedding": null, "metadata": {"file_path": "tests/test_rand_elasticd_3d.py", "file_name": "test_rand_elasticd_3d.py", "file_type": "text/x-python", "category": "test", "start_line": 109, "end_line": 127, "span_ids": ["impl:3", "TestRand3DElasticd.test_rand_3d_elasticd", "TestRand3DElasticd"], "tokens": 191}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRand3DElasticd(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_rand_3d_elasticd(self, input_param, input_data, expected_val):\n g = Rand3DElasticd(**input_param)\n g.set_random_state(123)\n res = g(input_data)\n for key in res:\n result = res[key]\n expected = expected_val[key] if isinstance(expected_val, dict) else expected_val\n self.assertEqual(isinstance(result, torch.Tensor), isinstance(expected, torch.Tensor))\n if isinstance(result, torch.Tensor):\n np.testing.assert_allclose(result.cpu().numpy(), expected.cpu().numpy(), rtol=1e-4, atol=1e-4)\n else:\n np.testing.assert_allclose(result, expected, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flip.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flip.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_flip.py", "file_name": "test_rand_flip.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestRandFlip.test_correct_results", "TestRandFlip", "TestRandFlip.test_invalid_inputs", "impl:5", "docstring"], "tokens": 252}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandFlip\nfrom tests.utils import NumpyImageTestCase2D\n\nINVALID_CASES = [(\"wrong_axis\", [\"s\", 1], TypeError), (\"not_numbers\", \"s\", TypeError)]\n\nVALID_CASES = [(\"no_axis\", None), (\"one_axis\", 1), (\"many_axis\", [0, 1])]\n\n\nclass TestRandFlip(NumpyImageTestCase2D):\n @parameterized.expand(INVALID_CASES)\n def test_invalid_inputs(self, _, spatial_axis, raises):\n with self.assertRaises(raises):\n flip = RandFlip(prob=1.0, spatial_axis=spatial_axis)\n flip(self.imt[0])\n\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, _, spatial_axis):\n flip = RandFlip(prob=1.0, spatial_axis=spatial_axis)\n expected = []\n for channel in self.imt[0]:\n expected.append(np.flip(channel, spatial_axis))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(expected, flip(self.imt[0])))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flipd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flipd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_flipd.py", "file_name": "test_rand_flipd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 37, "span_ids": ["TestRandFlipd.test_correct_results", "impl:3", "TestRandFlipd", "docstring"], "tokens": 188}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandFlipd\nfrom tests.utils import NumpyImageTestCase2D\n\nVALID_CASES = [(\"no_axis\", None), (\"one_axis\", 1), (\"many_axis\", [0, 1])]\n\n\nclass TestRandFlipd(NumpyImageTestCase2D):\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, _, spatial_axis):\n flip = RandFlipd(keys=\"img\", prob=1.0, spatial_axis=spatial_axis)\n res = flip({\"img\": self.imt[0]})\n expected = []\n for channel in self.imt[0]:\n expected.append(np.flip(channel, spatial_axis))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(expected, res[\"img\"]))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate.py_TestRandRotate3D_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate.py_TestRandRotate3D_", "embedding": null, "metadata": {"file_path": "tests/test_rand_rotate.py", "file_name": "test_rand_rotate.py", "file_type": "text/x-python", "category": "test", "start_line": 59, "end_line": 104, "span_ids": ["TestRandRotate3D", "TestRandRotate3D.test_correct_results", "impl"], "tokens": 372}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandRotate3D(NumpyImageTestCase3D):\n @parameterized.expand(\n [\n (np.pi / 2, -np.pi / 6, (0.0, np.pi), False, \"bilinear\", \"border\", False, (1, 87, 104, 109)),\n (\n np.pi / 4,\n (-np.pi / 9, np.pi / 4.5),\n (np.pi / 9, np.pi / 6),\n False,\n \"nearest\",\n \"border\",\n True,\n (1, 89, 105, 104),\n ),\n (\n 0.0,\n (2 * np.pi, 2.06 * np.pi),\n (-np.pi / 180, np.pi / 180),\n True,\n \"nearest\",\n \"zeros\",\n True,\n (1, 48, 64, 80),\n ),\n ((-np.pi / 4, 0), 0, 0, False, \"nearest\", \"zeros\", False, (1, 48, 77, 90)),\n ]\n )\n def test_correct_results(self, x, y, z, keep_size, mode, padding_mode, align_corners, expected):\n rotate_fn = RandRotate(\n range_x=x,\n range_y=y,\n range_z=z,\n prob=1.0,\n keep_size=keep_size,\n mode=mode,\n padding_mode=padding_mode,\n align_corners=align_corners,\n )\n rotate_fn.set_random_state(243)\n rotated = rotate_fn(self.imt[0])\n np.testing.assert_allclose(rotated.shape, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_rotate90.py", "file_name": "test_rand_rotate90.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 64, "span_ids": ["TestRandRotate90", "impl", "TestRandRotate90.test_spatial_axes", "TestRandRotate90.test_prob_k_spatial_axes", "TestRandRotate90.test_k", "docstring", "TestRandRotate90.test_default"], "tokens": 408}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import RandRotate90\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestRandRotate90(NumpyImageTestCase2D):\n def test_default(self):\n rotate = RandRotate90()\n rotate.set_random_state(123)\n rotated = rotate(self.imt[0])\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 0, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated, expected))\n\n def test_k(self):\n rotate = RandRotate90(max_k=2)\n rotate.set_random_state(234)\n rotated = rotate(self.imt[0])\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 0, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated, expected))\n\n def test_spatial_axes(self):\n rotate = RandRotate90(spatial_axes=(0, 1))\n rotate.set_random_state(234)\n rotated = rotate(self.imt[0])\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 0, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated, expected))\n\n def test_prob_k_spatial_axes(self):\n rotate = RandRotate90(prob=1.0, max_k=2, spatial_axes=(0, 1))\n rotate.set_random_state(234)\n rotated = rotate(self.imt[0])\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 1, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated, expected))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90d.py_unittest_TestRandRotate90d.test_spatial_axes.self_assertTrue_np_allclo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90d.py_unittest_TestRandRotate90d.test_spatial_axes.self_assertTrue_np_allclo", "embedding": null, "metadata": {"file_path": "tests/test_rand_rotate90d.py", "file_name": "test_rand_rotate90d.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 52, "span_ids": ["TestRandRotate90d.test_spatial_axes", "TestRandRotate90d", "TestRandRotate90d.test_default", "docstring", "TestRandRotate90d.test_k"], "tokens": 335}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import RandRotate90d\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestRandRotate90d(NumpyImageTestCase2D):\n def test_default(self):\n key = None\n rotate = RandRotate90d(keys=key)\n rotate.set_random_state(123)\n rotated = rotate({key: self.imt[0]})\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 0, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated[key], expected))\n\n def test_k(self):\n key = \"test\"\n rotate = RandRotate90d(keys=key, max_k=2)\n rotate.set_random_state(234)\n rotated = rotate({key: self.imt[0]})\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 0, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated[key], expected))\n\n def test_spatial_axes(self):\n key = \"test\"\n rotate = RandRotate90d(keys=key, spatial_axes=(0, 1))\n rotate.set_random_state(234)\n rotated = rotate({key: self.imt[0]})\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 0, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated[key], expected))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90d.py_TestRandRotate90d.test_prob_k_spatial_axes_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90d.py_TestRandRotate90d.test_prob_k_spatial_axes_", "embedding": null, "metadata": {"file_path": "tests/test_rand_rotate90d.py", "file_name": "test_rand_rotate90d.py", "file_type": "text/x-python", "category": "test", "start_line": 54, "end_line": 74, "span_ids": ["TestRandRotate90d.test_prob_k_spatial_axes", "TestRandRotate90d.test_no_key", "impl"], "tokens": 205}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandRotate90d(NumpyImageTestCase2D):\n\n def test_prob_k_spatial_axes(self):\n key = \"test\"\n rotate = RandRotate90d(keys=key, prob=1.0, max_k=2, spatial_axes=(0, 1))\n rotate.set_random_state(234)\n rotated = rotate({key: self.imt[0]})\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 1, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated[key], expected))\n\n def test_no_key(self):\n key = \"unknown\"\n rotate = RandRotate90d(keys=key, prob=1.0, max_k=2, spatial_axes=(0, 1))\n with self.assertRaisesRegex(KeyError, \"\"):\n rotate({\"test\": self.imt[0]})\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotated.py_TestRandRotated3D_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotated.py_TestRandRotated3D_", "embedding": null, "metadata": {"file_path": "tests/test_rand_rotated.py", "file_name": "test_rand_rotated.py", "file_type": "text/x-python", "category": "test", "start_line": 61, "end_line": 138, "span_ids": ["TestRandRotated3D", "TestRandRotated3D.test_correct_shapes", "impl"], "tokens": 656}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandRotated3D(NumpyImageTestCase3D):\n @parameterized.expand(\n [\n (np.pi / 2, -np.pi / 6, (0.0, np.pi), False, \"bilinear\", \"border\", False, (1, 87, 104, 109)),\n (\n np.pi / 2,\n -np.pi / 6,\n (0.0, np.pi),\n False,\n GridSampleMode.NEAREST,\n GridSamplePadMode.BORDER,\n False,\n (1, 87, 104, 109),\n ),\n (\n np.pi / 4,\n (-np.pi / 9, np.pi / 4.5),\n (np.pi / 9, np.pi / 6),\n False,\n \"nearest\",\n \"border\",\n True,\n (1, 89, 105, 104),\n ),\n (\n np.pi / 4,\n (-np.pi / 9, np.pi / 4.5),\n (np.pi / 9, np.pi / 6),\n False,\n GridSampleMode.NEAREST,\n GridSamplePadMode.BORDER,\n True,\n (1, 89, 105, 104),\n ),\n (\n 0.0,\n (2 * np.pi, 2.06 * np.pi),\n (-np.pi / 180, np.pi / 180),\n True,\n \"nearest\",\n \"zeros\",\n True,\n (1, 48, 64, 80),\n ),\n (\n 0.0,\n (2 * np.pi, 2.06 * np.pi),\n (-np.pi / 180, np.pi / 180),\n True,\n GridSampleMode.NEAREST,\n GridSamplePadMode.ZEROS,\n True,\n (1, 48, 64, 80),\n ),\n ((-np.pi / 4, 0), 0, 0, False, \"nearest\", \"zeros\", False, (1, 48, 77, 90)),\n ((-np.pi / 4, 0), 0, 0, False, GridSampleMode.NEAREST, GridSamplePadMode.ZEROS, False, (1, 48, 77, 90)),\n ]\n )\n def test_correct_shapes(self, x, y, z, keep_size, mode, padding_mode, align_corners, expected):\n rotate_fn = RandRotated(\n \"img\",\n range_x=x,\n range_y=y,\n range_z=z,\n prob=1.0,\n keep_size=keep_size,\n mode=mode,\n padding_mode=padding_mode,\n align_corners=align_corners,\n )\n rotate_fn.set_random_state(243)\n rotated = rotate_fn({\"img\": self.imt[0], \"seg\": self.segn[0]})\n np.testing.assert_allclose(rotated[\"img\"].shape, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_scale_intensity.py", "file_name": "test_rand_scale_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 32, "span_ids": ["TestRandScaleIntensity", "TestRandScaleIntensity.test_value", "impl", "docstring"], "tokens": 142}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import RandScaleIntensity\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestRandScaleIntensity(NumpyImageTestCase2D):\n def test_value(self):\n scaler = RandScaleIntensity(factors=0.5, prob=1.0)\n scaler.set_random_state(seed=0)\n result = scaler(self.imt)\n np.random.seed(0)\n expected = (self.imt * (1 + np.random.uniform(low=-0.5, high=0.5))).astype(np.float32)\n np.testing.assert_allclose(result, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensityd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensityd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_scale_intensityd.py", "file_name": "test_rand_scale_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 33, "span_ids": ["TestRandScaleIntensityd", "TestRandScaleIntensityd.test_value", "impl", "docstring"], "tokens": 158}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import RandScaleIntensityd\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestRandScaleIntensityd(NumpyImageTestCase2D):\n def test_value(self):\n key = \"img\"\n scaler = RandScaleIntensityd(keys=[key], factors=0.5, prob=1.0)\n scaler.set_random_state(seed=0)\n result = scaler({key: self.imt})\n np.random.seed(0)\n expected = (self.imt * (1 + np.random.uniform(low=-0.5, high=0.5))).astype(np.float32)\n np.testing.assert_allclose(result[key], expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_shift_intensity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_shift_intensity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_shift_intensity.py", "file_name": "test_rand_shift_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 32, "span_ids": ["impl", "TestRandShiftIntensity", "TestRandShiftIntensity.test_value", "docstring"], "tokens": 136}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import RandShiftIntensity\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestRandShiftIntensity(NumpyImageTestCase2D):\n def test_value(self):\n shifter = RandShiftIntensity(offsets=1.0, prob=1.0)\n shifter.set_random_state(seed=0)\n result = shifter(self.imt)\n np.random.seed(0)\n expected = self.imt + np.random.uniform(low=-1.0, high=1.0)\n np.testing.assert_allclose(result, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_shift_intensityd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_shift_intensityd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_shift_intensityd.py", "file_name": "test_rand_shift_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 33, "span_ids": ["TestRandShiftIntensityd", "TestRandShiftIntensityd.test_value", "impl", "docstring"], "tokens": 152}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import RandShiftIntensityd\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestRandShiftIntensityd(NumpyImageTestCase2D):\n def test_value(self):\n key = \"img\"\n shifter = RandShiftIntensityd(keys=[key], offsets=1.0, prob=1.0)\n shifter.set_random_state(seed=0)\n result = shifter({key: self.imt})\n np.random.seed(0)\n expected = self.imt + np.random.uniform(low=-1.0, high=1.0)\n np.testing.assert_allclose(result[key], expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop.py_TestRandSpatialCrop_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop.py_TestRandSpatialCrop_", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_crop.py", "file_name": "test_rand_spatial_crop.py", "file_type": "text/x-python", "category": "test", "start_line": 51, "end_line": 74, "span_ids": ["TestRandSpatialCrop", "TestRandSpatialCrop.test_value", "TestRandSpatialCrop.test_random_shape", "TestRandSpatialCrop.test_shape", "impl:13"], "tokens": 260}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandSpatialCrop(unittest.TestCase):\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1, TEST_CASE_2])\n def test_shape(self, input_param, input_data, expected_shape):\n result = RandSpatialCrop(**input_param)(input_data)\n self.assertTupleEqual(result.shape, expected_shape)\n\n @parameterized.expand([TEST_CASE_3])\n def test_value(self, input_param, input_data):\n cropper = RandSpatialCrop(**input_param)\n result = cropper(input_data)\n roi = [(2 - i // 2, 2 + i - i // 2) for i in cropper._size]\n np.testing.assert_allclose(result, input_data[:, roi[0][0] : roi[0][1], roi[1][0] : roi[1][1]])\n\n @parameterized.expand([TEST_CASE_4, TEST_CASE_5])\n def test_random_shape(self, input_param, input_data, expected_shape):\n cropper = RandSpatialCrop(**input_param)\n cropper.set_random_state(seed=123)\n result = cropper(input_data)\n self.assertTupleEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_cropd.py_TestRandSpatialCropd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_cropd.py_TestRandSpatialCropd_", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_cropd.py", "file_name": "test_rand_spatial_cropd.py", "file_type": "text/x-python", "category": "test", "start_line": 55, "end_line": 78, "span_ids": ["TestRandSpatialCropd.test_shape", "TestRandSpatialCropd.test_value", "TestRandSpatialCropd", "TestRandSpatialCropd.test_random_shape", "impl:13"], "tokens": 275}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandSpatialCropd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1, TEST_CASE_2])\n def test_shape(self, input_param, input_data, expected_shape):\n result = RandSpatialCropd(**input_param)(input_data)\n self.assertTupleEqual(result[\"img\"].shape, expected_shape)\n\n @parameterized.expand([TEST_CASE_3])\n def test_value(self, input_param, input_data):\n cropper = RandSpatialCropd(**input_param)\n result = cropper(input_data)\n roi = [(2 - i // 2, 2 + i - i // 2) for i in cropper._size]\n np.testing.assert_allclose(result[\"img\"], input_data[\"img\"][:, roi[0][0] : roi[0][1], roi[1][0] : roi[1][1]])\n\n @parameterized.expand([TEST_CASE_4, TEST_CASE_5])\n def test_random_shape(self, input_param, input_data, expected_shape):\n cropper = RandSpatialCropd(**input_param)\n cropper.set_random_state(seed=123)\n result = cropper(input_data)\n self.assertTupleEqual(result[\"img\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_unittest_TestRandZoom.test_correct_results.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_unittest_TestRandZoom.test_correct_results.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_rand_zoom.py", "file_name": "test_rand_zoom.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["TestRandZoom", "TestRandZoom.test_correct_results", "docstring"], "tokens": 269}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\nfrom scipy.ndimage import zoom as zoom_scipy\n\nfrom monai.transforms import RandZoom\nfrom monai.utils import GridSampleMode, InterpolateMode\nfrom tests.utils import NumpyImageTestCase2D\n\nVALID_CASES = [(0.8, 1.2, \"nearest\", False), (0.8, 1.2, InterpolateMode.NEAREST, False)]\n\n\nclass TestRandZoom(NumpyImageTestCase2D):\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, min_zoom, max_zoom, mode, keep_size):\n random_zoom = RandZoom(\n prob=1.0,\n min_zoom=min_zoom,\n max_zoom=max_zoom,\n mode=mode,\n keep_size=keep_size,\n )\n random_zoom.set_random_state(1234)\n zoomed = random_zoom(self.imt[0])\n expected = []\n for channel in self.imt[0]:\n expected.append(zoom_scipy(channel, zoom=random_zoom._zoom, mode=\"nearest\", order=0, prefilter=False))\n expected = np.stack(expected).astype(np.float32)\n np.testing.assert_allclose(zoomed, expected, atol=1.0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_TestRandZoom.test_keep_size_TestRandZoom.test_keep_size.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_TestRandZoom.test_keep_size_TestRandZoom.test_keep_size.None_2", "embedding": null, "metadata": {"file_path": "tests/test_rand_zoom.py", "file_name": "test_rand_zoom.py", "file_type": "text/x-python", "category": "test", "start_line": 37, "end_line": 44, "span_ids": ["TestRandZoom.test_keep_size"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandZoom(NumpyImageTestCase2D):\n\n def test_keep_size(self):\n random_zoom = RandZoom(prob=1.0, min_zoom=0.6, max_zoom=0.7, keep_size=True)\n zoomed = random_zoom(self.imt[0])\n self.assertTrue(np.array_equal(zoomed.shape, self.imt.shape[1:]))\n zoomed = random_zoom(self.imt[0])\n self.assertTrue(np.array_equal(zoomed.shape, self.imt.shape[1:]))\n zoomed = random_zoom(self.imt[0])\n self.assertTrue(np.array_equal(zoomed.shape, self.imt.shape[1:]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoomd.py_unittest_TestRandZoomd.test_correct_results.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoomd.py_unittest_TestRandZoomd.test_correct_results.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_rand_zoomd.py", "file_name": "test_rand_zoomd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestRandZoomd", "TestRandZoomd.test_correct_results", "docstring"], "tokens": 264}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\nfrom scipy.ndimage import zoom as zoom_scipy\n\nfrom monai.transforms import RandZoomd\nfrom tests.utils import NumpyImageTestCase2D\n\nVALID_CASES = [(0.8, 1.2, \"nearest\", None, False)]\n\n\nclass TestRandZoomd(NumpyImageTestCase2D):\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, min_zoom, max_zoom, mode, align_corners, keep_size):\n key = \"img\"\n random_zoom = RandZoomd(\n key,\n prob=1.0,\n min_zoom=min_zoom,\n max_zoom=max_zoom,\n mode=mode,\n align_corners=align_corners,\n keep_size=keep_size,\n )\n random_zoom.set_random_state(1234)\n\n zoomed = random_zoom({key: self.imt[0]})\n expected = []\n for channel in self.imt[0]:\n expected.append(zoom_scipy(channel, zoom=random_zoom._zoom, mode=\"nearest\", order=0, prefilter=False))\n expected = np.stack(expected).astype(np.float32)\n np.testing.assert_allclose(expected, zoomed[key], atol=1.0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randomizable.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randomizable.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_randomizable.py", "file_name": "test_randomizable.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 49, "span_ids": ["TestRandomizable.test_state", "impl", "TestRandomizable.test_default", "RandTest.randomize", "docstring", "RandTest", "TestRandomizable", "TestRandomizable.test_seed"], "tokens": 214}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms.transform import Randomizable\n\n\nclass RandTest(Randomizable):\n def randomize(self, data=None):\n pass\n\n\nclass TestRandomizable(unittest.TestCase):\n def test_default(self):\n inst = RandTest()\n r1 = inst.R.rand()\n self.assertTrue(isinstance(inst.R, np.random.RandomState))\n inst.set_random_state()\n r2 = inst.R.rand()\n self.assertNotAlmostEqual(r1, r2)\n\n def test_seed(self):\n inst = RandTest()\n inst.set_random_state(seed=123)\n self.assertAlmostEqual(inst.R.rand(), 0.69646918)\n inst.set_random_state(123)\n self.assertAlmostEqual(inst.R.rand(), 0.69646918)\n\n def test_state(self):\n inst = RandTest()\n inst_r = np.random.RandomState(123)\n inst.set_random_state(state=inst_r)\n self.assertAlmostEqual(inst.R.rand(), 0.69646918)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channel.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channel.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_repeat_channel.py", "file_name": "test_repeat_channel.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 31, "span_ids": ["TestRepeatChannel", "impl:3", "TestRepeatChannel.test_shape", "docstring"], "tokens": 127}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RepeatChannel\n\nTEST_CASE_1 = [{\"repeats\": 3}, np.array([[[0, 1], [1, 2]]]), (3, 2, 2)]\n\n\nclass TestRepeatChannel(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1])\n def test_shape(self, input_param, input_data, expected_shape):\n result = RepeatChannel(**input_param)(input_data)\n self.assertEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channeld.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channeld.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_repeat_channeld.py", "file_name": "test_repeat_channeld.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 35, "span_ids": ["TestRepeatChanneld.test_shape", "impl:3", "TestRepeatChanneld", "docstring"], "tokens": 169}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RepeatChanneld\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\"], \"repeats\": 3},\n {\"img\": np.array([[[0, 1], [1, 2]]]), \"seg\": np.array([[[0, 1], [1, 2]]])},\n (3, 2, 2),\n]\n\n\nclass TestRepeatChanneld(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1])\n def test_shape(self, input_param, input_data, expected_shape):\n result = RepeatChanneld(**input_param)(input_data)\n self.assertEqual(result[\"img\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resampler.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resampler.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_resampler.py", "file_name": "test_resampler.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 70, "span_ids": ["docstring"], "tokens": 1324}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import Resample\nfrom monai.transforms.utils import create_grid\n\nTEST_CASES = [\n [\n dict(padding_mode=\"zeros\", as_tensor_output=False, device=None),\n {\"grid\": create_grid((2, 2)), \"img\": np.arange(4).reshape((1, 2, 2))},\n np.array([[[0.0, 1.0], [2.0, 3.0]]]),\n ],\n [\n dict(padding_mode=\"zeros\", as_tensor_output=False, device=None),\n {\"grid\": create_grid((4, 4)), \"img\": np.arange(4).reshape((1, 2, 2))},\n np.array([[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 2.0, 3.0, 0.0], [0.0, 0.0, 0.0, 0.0]]]),\n ],\n [\n dict(padding_mode=\"border\", as_tensor_output=False, device=None),\n {\"grid\": create_grid((4, 4)), \"img\": np.arange(4).reshape((1, 2, 2))},\n np.array([[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [2.0, 2.0, 3, 3.0], [2.0, 2.0, 3.0, 3.0]]]),\n ],\n [\n dict(padding_mode=\"reflection\", as_tensor_output=False, device=None),\n {\"grid\": create_grid((4, 4)), \"img\": np.arange(4).reshape((1, 2, 2)), \"mode\": \"nearest\"},\n np.array([[[3.0, 2.0, 3.0, 2.0], [1.0, 0.0, 1.0, 0.0], [3.0, 2.0, 3.0, 2.0], [1.0, 0.0, 1.0, 0.0]]]),\n ],\n [\n dict(padding_mode=\"zeros\", as_tensor_output=False, device=None),\n {\"grid\": create_grid((4, 4, 4)), \"img\": np.arange(8).reshape((1, 2, 2, 2)), \"mode\": \"bilinear\"},\n np.array(\n [\n [\n [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 2.0, 3.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n [[0.0, 0.0, 0.0, 0.0], [0.0, 4.0, 5.0, 0.0], [0.0, 6.0, 7.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]],\n ]\n ]\n ),\n ],\n [\n dict(padding_mode=\"border\", as_tensor_output=False, device=None),\n {\"grid\": create_grid((4, 4, 4)), \"img\": np.arange(8).reshape((1, 2, 2, 2)), \"mode\": \"bilinear\"},\n np.array(\n [\n [\n [[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [2.0, 2.0, 3.0, 3.0], [2.0, 2.0, 3.0, 3.0]],\n [[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [2.0, 2.0, 3.0, 3.0], [2.0, 2.0, 3.0, 3.0]],\n [[4.0, 4.0, 5.0, 5.0], [4.0, 4.0, 5.0, 5.0], [6.0, 6.0, 7.0, 7.0], [6.0, 6.0, 7.0, 7.0]],\n [[4.0, 4.0, 5.0, 5.0], [4.0, 4.0, 5.0, 5.0], [6.0, 6.0, 7.0, 7.0], [6.0, 6.0, 7.0, 7.0]],\n ]\n ]\n ),\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resampler.py_TestResample_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resampler.py_TestResample_", "embedding": null, "metadata": {"file_path": "tests/test_resampler.py", "file_name": "test_resampler.py", "file_type": "text/x-python", "category": "test", "start_line": 73, "end_line": 87, "span_ids": ["TestResample.test_resample", "impl:3", "TestResample"], "tokens": 146}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestResample(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_resample(self, input_param, input_data, expected_val):\n g = Resample(**input_param)\n result = g(**input_data)\n self.assertEqual(isinstance(result, torch.Tensor), isinstance(expected_val, torch.Tensor))\n if isinstance(result, torch.Tensor):\n np.testing.assert_allclose(result.cpu().numpy(), expected_val.cpu().numpy(), rtol=1e-4, atol=1e-4)\n else:\n np.testing.assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_resize.py", "file_name": "test_resize.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 56, "span_ids": ["TestResize", "impl", "TestResize.test_invalid_inputs", "TestResize.test_correct_results", "docstring"], "tokens": 332}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport skimage.transform\nfrom parameterized import parameterized\n\nfrom monai.transforms import Resize\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestResize(NumpyImageTestCase2D):\n def test_invalid_inputs(self):\n with self.assertRaises(ValueError):\n resize = Resize(spatial_size=(128, 128, 3), mode=\"order\")\n resize(self.imt[0])\n\n with self.assertRaises(ValueError):\n resize = Resize(spatial_size=(128,), mode=\"order\")\n resize(self.imt[0])\n\n @parameterized.expand(\n [((32, -1), \"area\"), ((32, 32), \"area\"), ((32, 32, 32), \"trilinear\"), ((256, 256), \"bilinear\")]\n )\n def test_correct_results(self, spatial_size, mode):\n resize = Resize(spatial_size, mode=mode)\n _order = 0\n if mode.endswith(\"linear\"):\n _order = 1\n if spatial_size == (32, -1):\n spatial_size = (32, 64)\n expected = []\n for channel in self.imt[0]:\n expected.append(\n skimage.transform.resize(\n channel, spatial_size, order=_order, clip=False, preserve_range=False, anti_aliasing=False\n )\n )\n expected = np.stack(expected).astype(np.float32)\n out = resize(self.imt[0])\n np.testing.assert_allclose(out, expected, atol=0.9)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resized.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resized.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_resized.py", "file_name": "test_resized.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 54, "span_ids": ["TestResized", "TestResized.test_correct_results", "impl", "TestResized.test_invalid_inputs", "docstring"], "tokens": 354}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport skimage.transform\nfrom parameterized import parameterized\n\nfrom monai.transforms import Resized\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestResized(NumpyImageTestCase2D):\n def test_invalid_inputs(self):\n with self.assertRaises(ValueError):\n resize = Resized(keys=\"img\", spatial_size=(128, 128, 3), mode=\"order\")\n resize({\"img\": self.imt[0]})\n\n with self.assertRaises(ValueError):\n resize = Resized(keys=\"img\", spatial_size=(128,), mode=\"order\")\n resize({\"img\": self.imt[0]})\n\n @parameterized.expand([((32, -1), \"area\"), ((64, 64), \"area\"), ((32, 32, 32), \"area\"), ((256, 256), \"bilinear\")])\n def test_correct_results(self, spatial_size, mode):\n resize = Resized(\"img\", spatial_size, mode)\n _order = 0\n if mode.endswith(\"linear\"):\n _order = 1\n if spatial_size == (32, -1):\n spatial_size = (32, 64)\n expected = []\n for channel in self.imt[0]:\n expected.append(\n skimage.transform.resize(\n channel, spatial_size, order=_order, clip=False, preserve_range=False, anti_aliasing=False\n )\n )\n expected = np.stack(expected).astype(np.float32)\n out = resize({\"img\": self.imt[0]})[\"img\"]\n np.testing.assert_allclose(out, expected, atol=0.9)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_unittest_TEST_CASES_SHAPE_3D._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_unittest_TEST_CASES_SHAPE_3D._", "embedding": null, "metadata": {"file_path": "tests/test_rotate.py", "file_name": "test_rotate.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["docstring"], "tokens": 331}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport scipy.ndimage\nfrom parameterized import parameterized\n\nfrom monai.transforms import Rotate\nfrom tests.utils import NumpyImageTestCase2D, NumpyImageTestCase3D\n\nTEST_CASES_2D = [\n (np.pi / 6, False, \"bilinear\", \"border\", False),\n (np.pi / 4, True, \"bilinear\", \"border\", False),\n (-np.pi / 4.5, True, \"nearest\", \"reflection\", False),\n (np.pi, False, \"nearest\", \"zeros\", False),\n (-np.pi / 2, False, \"bilinear\", \"zeros\", True),\n]\n\nTEST_CASES_3D = [\n (-np.pi / 2, True, \"nearest\", \"border\", False),\n (np.pi / 4, True, \"bilinear\", \"border\", False),\n (-np.pi / 4.5, True, \"nearest\", \"reflection\", False),\n (np.pi, False, \"nearest\", \"zeros\", False),\n (-np.pi / 2, False, \"bilinear\", \"zeros\", False),\n]\n\nTEST_CASES_SHAPE_3D = [\n ([-np.pi / 2, 1.0, 2.0], \"nearest\", \"border\", False),\n ([np.pi / 4, 0, 0], \"bilinear\", \"border\", False),\n ([-np.pi / 4.5, -20, 20], \"nearest\", \"reflection\", False),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_TestRotate3D.test_correct_shape_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_TestRotate3D.test_correct_shape_", "embedding": null, "metadata": {"file_path": "tests/test_rotate.py", "file_name": "test_rotate.py", "file_type": "text/x-python", "category": "test", "start_line": 91, "end_line": 109, "span_ids": ["TestRotate3D.test_correct_shape", "impl:7", "TestRotate3D.test_ill_case"], "tokens": 180}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRotate3D(NumpyImageTestCase3D):\n\n @parameterized.expand(TEST_CASES_SHAPE_3D)\n def test_correct_shape(self, angle, mode, padding_mode, align_corners):\n rotate_fn = Rotate(angle, True, align_corners=align_corners)\n rotated = rotate_fn(self.imt[0], mode=mode, padding_mode=padding_mode)\n np.testing.assert_allclose(self.imt[0].shape, rotated.shape)\n\n def test_ill_case(self):\n rotate_fn = Rotate(10, True)\n with self.assertRaises(ValueError): # wrong shape\n rotate_fn(self.imt)\n\n rotate_fn = Rotate(10, keep_size=False)\n with self.assertRaises(ValueError): # wrong mode\n rotate_fn(self.imt[0], mode=\"trilinear\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate90.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate90.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rotate90.py", "file_name": "test_rotate90.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 60, "span_ids": ["TestRotate90.test_k", "impl", "TestRotate90.test_rotate90_default", "TestRotate90.test_prob_k_spatial_axes", "TestRotate90.test_spatial_axes", "TestRotate90", "docstring"], "tokens": 364}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import Rotate90\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestRotate90(NumpyImageTestCase2D):\n def test_rotate90_default(self):\n rotate = Rotate90()\n rotated = rotate(self.imt[0])\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 1, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated, expected))\n\n def test_k(self):\n rotate = Rotate90(k=2)\n rotated = rotate(self.imt[0])\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 2, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated, expected))\n\n def test_spatial_axes(self):\n rotate = Rotate90(spatial_axes=(0, -1))\n rotated = rotate(self.imt[0])\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 1, (0, -1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated, expected))\n\n def test_prob_k_spatial_axes(self):\n rotate = Rotate90(k=2, spatial_axes=(0, 1))\n rotated = rotate(self.imt[0])\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 2, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated, expected))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate90d.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate90d.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rotate90d.py", "file_name": "test_rotate90d.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 70, "span_ids": ["impl", "TestRotate90d.test_prob_k_spatial_axes", "TestRotate90d.test_rotate90_default", "TestRotate90d", "docstring", "TestRotate90d.test_spatial_axes", "TestRotate90d.test_k", "TestRotate90d.test_no_key"], "tokens": 463}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import Rotate90d\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestRotate90d(NumpyImageTestCase2D):\n def test_rotate90_default(self):\n key = \"test\"\n rotate = Rotate90d(keys=key)\n rotated = rotate({key: self.imt[0]})\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 1, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated[key], expected))\n\n def test_k(self):\n key = None\n rotate = Rotate90d(keys=key, k=2)\n rotated = rotate({key: self.imt[0]})\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 2, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated[key], expected))\n\n def test_spatial_axes(self):\n key = \"test\"\n rotate = Rotate90d(keys=key, spatial_axes=(0, 1))\n rotated = rotate({key: self.imt[0]})\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 1, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated[key], expected))\n\n def test_prob_k_spatial_axes(self):\n key = \"test\"\n rotate = Rotate90d(keys=key, k=2, spatial_axes=(0, 1))\n rotated = rotate({key: self.imt[0]})\n expected = []\n for channel in self.imt[0]:\n expected.append(np.rot90(channel, 2, (0, 1)))\n expected = np.stack(expected)\n self.assertTrue(np.allclose(rotated[key], expected))\n\n def test_no_key(self):\n key = \"unknown\"\n rotate = Rotate90d(keys=key)\n with self.assertRaisesRegex(KeyError, \"\"):\n rotate({\"test\": self.imt[0]})\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_unittest_TEST_CASES_3D._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_unittest_TEST_CASES_3D._", "embedding": null, "metadata": {"file_path": "tests/test_rotated.py", "file_name": "test_rotated.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 35, "span_ids": ["docstring"], "tokens": 248}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport scipy.ndimage\nfrom parameterized import parameterized\n\nfrom monai.transforms import Rotated\nfrom tests.utils import NumpyImageTestCase2D, NumpyImageTestCase3D\n\nTEST_CASES_2D = [\n (-np.pi / 6, False, \"bilinear\", \"border\", False),\n (-np.pi / 4, True, \"bilinear\", \"border\", False),\n (np.pi / 4.5, True, \"nearest\", \"reflection\", False),\n (-np.pi, False, \"nearest\", \"zeros\", False),\n (np.pi / 2, False, \"bilinear\", \"zeros\", True),\n]\n\nTEST_CASES_3D = [\n (-np.pi / 6, False, \"bilinear\", \"border\", False),\n (-np.pi / 4, True, \"bilinear\", \"border\", False),\n (np.pi / 4.5, True, \"nearest\", \"reflection\", False),\n (-np.pi, False, \"nearest\", \"zeros\", False),\n (np.pi / 2, False, \"bilinear\", \"zeros\", True),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated2D_TestRotated2D.test_correct_results.self_assertLessEqual_np_c": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated2D_TestRotated2D.test_correct_results.self_assertLessEqual_np_c", "embedding": null, "metadata": {"file_path": "tests/test_rotated.py", "file_name": "test_rotated.py", "file_type": "text/x-python", "category": "test", "start_line": 38, "end_line": 62, "span_ids": ["TestRotated2D.test_correct_results", "TestRotated2D"], "tokens": 353}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRotated2D(NumpyImageTestCase2D):\n @parameterized.expand(TEST_CASES_2D)\n def test_correct_results(self, angle, keep_size, mode, padding_mode, align_corners):\n rotate_fn = Rotated((\"img\", \"seg\"), angle, keep_size, (mode, \"nearest\"), padding_mode, align_corners)\n rotated = rotate_fn({\"img\": self.imt[0], \"seg\": self.segn[0]})\n if keep_size:\n np.testing.assert_allclose(self.imt[0].shape, rotated[\"img\"].shape)\n _order = 0 if mode == \"nearest\" else 1\n if padding_mode == \"border\":\n _mode = \"nearest\"\n elif padding_mode == \"reflection\":\n _mode = \"reflect\"\n else:\n _mode = \"constant\"\n expected = scipy.ndimage.rotate(\n self.imt[0, 0], -np.rad2deg(angle), (0, 1), not keep_size, order=_order, mode=_mode, prefilter=False\n )\n good = np.sum(np.isclose(expected, rotated[\"img\"][0], atol=1e-3))\n self.assertLessEqual(np.abs(good - expected.size), 5, \"diff at most 5 pixels\")\n\n expected = scipy.ndimage.rotate(\n self.segn[0, 0], -np.rad2deg(angle), (0, 1), not keep_size, order=0, mode=_mode, prefilter=False\n )\n expected = np.stack(expected).astype(int)\n self.assertLessEqual(np.count_nonzero(expected != rotated[\"seg\"][0]), 30)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3D_TestRotated3D.test_correct_results.self_assertLessEqual_np_c": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3D_TestRotated3D.test_correct_results.self_assertLessEqual_np_c", "embedding": null, "metadata": {"file_path": "tests/test_rotated.py", "file_name": "test_rotated.py", "file_type": "text/x-python", "category": "test", "start_line": 65, "end_line": 89, "span_ids": ["TestRotated3D", "TestRotated3D.test_correct_results"], "tokens": 362}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRotated3D(NumpyImageTestCase3D):\n @parameterized.expand(TEST_CASES_3D)\n def test_correct_results(self, angle, keep_size, mode, padding_mode, align_corners):\n rotate_fn = Rotated((\"img\", \"seg\"), [0, angle, 0], keep_size, (mode, \"nearest\"), padding_mode, align_corners)\n rotated = rotate_fn({\"img\": self.imt[0], \"seg\": self.segn[0]})\n if keep_size:\n np.testing.assert_allclose(self.imt[0].shape, rotated[\"img\"].shape)\n _order = 0 if mode == \"nearest\" else 1\n if padding_mode == \"border\":\n _mode = \"nearest\"\n elif padding_mode == \"reflection\":\n _mode = \"reflect\"\n else:\n _mode = \"constant\"\n expected = scipy.ndimage.rotate(\n self.imt[0, 0], np.rad2deg(angle), (0, 2), not keep_size, order=_order, mode=_mode, prefilter=False\n )\n good = np.sum(np.isclose(expected.astype(np.float32), rotated[\"img\"][0], atol=1e-3))\n self.assertLessEqual(np.abs(good - expected.size), 5, \"diff at most 5 voxels.\")\n\n expected = scipy.ndimage.rotate(\n self.segn[0, 0], np.rad2deg(angle), (0, 2), not keep_size, order=0, mode=_mode, prefilter=False\n )\n expected = np.stack(expected).astype(int)\n self.assertLessEqual(np.count_nonzero(expected != rotated[\"seg\"][0]), 130)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3DXY_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3DXY_", "embedding": null, "metadata": {"file_path": "tests/test_rotated.py", "file_name": "test_rotated.py", "file_type": "text/x-python", "category": "test", "start_line": 92, "end_line": 121, "span_ids": ["TestRotated3DXY.test_correct_results", "impl:5", "TestRotated3DXY"], "tokens": 373}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRotated3DXY(NumpyImageTestCase3D):\n @parameterized.expand(TEST_CASES_3D)\n def test_correct_results(self, angle, keep_size, mode, padding_mode, align_corners):\n rotate_fn = Rotated((\"img\", \"seg\"), [0, 0, angle], keep_size, (mode, \"nearest\"), padding_mode, align_corners)\n rotated = rotate_fn({\"img\": self.imt[0], \"seg\": self.segn[0]})\n if keep_size:\n np.testing.assert_allclose(self.imt[0].shape, rotated[\"img\"].shape)\n _order = 0 if mode == \"nearest\" else 1\n if padding_mode == \"border\":\n _mode = \"nearest\"\n elif padding_mode == \"reflection\":\n _mode = \"reflect\"\n else:\n _mode = \"constant\"\n expected = scipy.ndimage.rotate(\n self.imt[0, 0], -np.rad2deg(angle), (0, 1), not keep_size, order=_order, mode=_mode, prefilter=False\n )\n good = np.sum(np.isclose(expected, rotated[\"img\"][0], atol=1e-3))\n self.assertLessEqual(np.abs(good - expected.size), 5, \"diff at most 5 voxels\")\n\n expected = scipy.ndimage.rotate(\n self.segn[0, 0], -np.rad2deg(angle), (0, 1), not keep_size, order=0, mode=_mode, prefilter=False\n )\n expected = np.stack(expected).astype(int)\n self.assertLessEqual(np.count_nonzero(expected != rotated[\"seg\"][0]), 130)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_scale_intensity.py", "file_name": "test_scale_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 39, "span_ids": ["impl", "TestScaleIntensity", "docstring", "TestScaleIntensity.test_range_scale", "TestScaleIntensity.test_factor_scale"], "tokens": 220}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import ScaleIntensity\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestScaleIntensity(NumpyImageTestCase2D):\n def test_range_scale(self):\n scaler = ScaleIntensity(minv=1.0, maxv=2.0)\n result = scaler(self.imt)\n mina = np.min(self.imt)\n maxa = np.max(self.imt)\n norm = (self.imt - mina) / (maxa - mina)\n expected = (norm * (2.0 - 1.0)) + 1.0\n np.testing.assert_allclose(result, expected)\n\n def test_factor_scale(self):\n scaler = ScaleIntensity(minv=None, maxv=None, factor=0.1)\n result = scaler(self.imt)\n expected = (self.imt * (1 + 0.1)).astype(np.float32)\n np.testing.assert_allclose(result, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_scale_intensity_range.py", "file_name": "test_scale_intensity_range.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 31, "span_ids": ["IntensityScaleIntensityRange", "impl", "IntensityScaleIntensityRange.test_image_scale_intensity_range", "docstring"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import ScaleIntensityRange\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass IntensityScaleIntensityRange(NumpyImageTestCase2D):\n def test_image_scale_intensity_range(self):\n scaler = ScaleIntensityRange(a_min=20, a_max=108, b_min=50, b_max=80)\n scaled = scaler(self.imt)\n expected = (self.imt - 20) / 88\n expected = expected * 30 + 50\n self.assertTrue(np.allclose(scaled, expected))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_unittest_TestScaleIntensityRangePercentiles.test_scaling.self_assertTrue_np_allclo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_unittest_TestScaleIntensityRangePercentiles.test_scaling.self_assertTrue_np_allclo", "embedding": null, "metadata": {"file_path": "tests/test_scale_intensity_range_percentiles.py", "file_name": "test_scale_intensity_range_percentiles.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 33, "span_ids": ["TestScaleIntensityRangePercentiles.test_scaling", "TestScaleIntensityRangePercentiles", "docstring"], "tokens": 179}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms.intensity.array import ScaleIntensityRangePercentiles\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestScaleIntensityRangePercentiles(NumpyImageTestCase2D):\n def test_scaling(self):\n img = self.imt\n lower = 10\n upper = 99\n b_min = 0\n b_max = 255\n\n a_min = np.percentile(img, lower)\n a_max = np.percentile(img, upper)\n expected = (img - a_min) / (a_max - a_min)\n expected = (expected * (b_max - b_min)) + b_min\n scaler = ScaleIntensityRangePercentiles(lower=lower, upper=upper, b_min=b_min, b_max=b_max)\n self.assertTrue(np.allclose(expected, scaler(img)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_TestScaleIntensityRangePercentiles.test_relative_scaling_TestScaleIntensityRangePercentiles.test_relative_scaling.self_assertTrue_np_allclo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_TestScaleIntensityRangePercentiles.test_relative_scaling_TestScaleIntensityRangePercentiles.test_relative_scaling.self_assertTrue_np_allclo", "embedding": null, "metadata": {"file_path": "tests/test_scale_intensity_range_percentiles.py", "file_name": "test_scale_intensity_range_percentiles.py", "file_type": "text/x-python", "category": "test", "start_line": 35, "end_line": 50, "span_ids": ["TestScaleIntensityRangePercentiles.test_relative_scaling"], "tokens": 212}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestScaleIntensityRangePercentiles(NumpyImageTestCase2D):\n\n def test_relative_scaling(self):\n img = self.imt\n lower = 10\n upper = 99\n b_min = 100\n b_max = 300\n scaler = ScaleIntensityRangePercentiles(lower=lower, upper=upper, b_min=b_min, b_max=b_max, relative=True)\n\n expected_a_min = np.percentile(img, lower)\n expected_a_max = np.percentile(img, upper)\n expected_b_min = ((b_max - b_min) * (lower / 100.0)) + b_min\n expected_b_max = ((b_max - b_min) * (upper / 100.0)) + b_min\n expected_img = (img - expected_a_min) / (expected_a_max - expected_a_min)\n expected_img = (expected_img * (expected_b_max - expected_b_min)) + expected_b_min\n\n self.assertTrue(np.allclose(expected_img, scaler(img)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_TestScaleIntensityRangePercentiles.test_invalid_instantiation_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_TestScaleIntensityRangePercentiles.test_invalid_instantiation_", "embedding": null, "metadata": {"file_path": "tests/test_scale_intensity_range_percentiles.py", "file_name": "test_scale_intensity_range_percentiles.py", "file_type": "text/x-python", "category": "test", "start_line": 52, "end_line": 61, "span_ids": ["TestScaleIntensityRangePercentiles.test_invalid_instantiation", "impl"], "tokens": 167}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestScaleIntensityRangePercentiles(NumpyImageTestCase2D):\n\n def test_invalid_instantiation(self):\n self.assertRaises(AssertionError, ScaleIntensityRangePercentiles, lower=-10, upper=99, b_min=0, b_max=255)\n self.assertRaises(AssertionError, ScaleIntensityRangePercentiles, lower=101, upper=99, b_min=0, b_max=255)\n self.assertRaises(AssertionError, ScaleIntensityRangePercentiles, lower=30, upper=-20, b_min=0, b_max=255)\n self.assertRaises(AssertionError, ScaleIntensityRangePercentiles, lower=30, upper=900, b_min=0, b_max=255)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_unittest_TestScaleIntensityRangePercentilesd.test_scaling.self_assertTrue_np_allclo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_unittest_TestScaleIntensityRangePercentilesd.test_scaling.self_assertTrue_np_allclo", "embedding": null, "metadata": {"file_path": "tests/test_scale_intensity_range_percentilesd.py", "file_name": "test_scale_intensity_range_percentilesd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 37, "span_ids": ["TestScaleIntensityRangePercentilesd", "TestScaleIntensityRangePercentilesd.test_scaling", "docstring"], "tokens": 200}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms.intensity.dictionary import ScaleIntensityRangePercentilesd\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestScaleIntensityRangePercentilesd(NumpyImageTestCase2D):\n def test_scaling(self):\n img = self.imt\n data = {}\n data[\"img\"] = img\n lower = 10\n upper = 99\n b_min = 0\n b_max = 255\n\n a_min = np.percentile(img, lower)\n a_max = np.percentile(img, upper)\n expected = (img - a_min) / (a_max - a_min)\n expected = (expected * (b_max - b_min)) + b_min\n\n scaler = ScaleIntensityRangePercentilesd(keys=data.keys(), lower=lower, upper=upper, b_min=b_min, b_max=b_max)\n\n self.assertTrue(np.allclose(expected, scaler(data)[\"img\"]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_TestScaleIntensityRangePercentilesd.test_relative_scaling_TestScaleIntensityRangePercentilesd.test_relative_scaling.self_assertTrue_np_allclo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_TestScaleIntensityRangePercentilesd.test_relative_scaling_TestScaleIntensityRangePercentilesd.test_relative_scaling.self_assertTrue_np_allclo", "embedding": null, "metadata": {"file_path": "tests/test_scale_intensity_range_percentilesd.py", "file_name": "test_scale_intensity_range_percentilesd.py", "file_type": "text/x-python", "category": "test", "start_line": 39, "end_line": 58, "span_ids": ["TestScaleIntensityRangePercentilesd.test_relative_scaling"], "tokens": 236}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestScaleIntensityRangePercentilesd(NumpyImageTestCase2D):\n\n def test_relative_scaling(self):\n img = self.imt\n data = {}\n data[\"img\"] = img\n lower = 10\n upper = 99\n b_min = 100\n b_max = 300\n scaler = ScaleIntensityRangePercentilesd(\n keys=data.keys(), lower=lower, upper=upper, b_min=b_min, b_max=b_max, relative=True\n )\n\n expected_a_min = np.percentile(img, lower)\n expected_a_max = np.percentile(img, upper)\n expected_b_min = ((b_max - b_min) * (lower / 100.0)) + b_min\n expected_b_max = ((b_max - b_min) * (upper / 100.0)) + b_min\n expected_img = (img - expected_a_min) / (expected_a_max - expected_a_min)\n expected_img = (expected_img * (expected_b_max - expected_b_min)) + expected_b_min\n\n self.assertTrue(np.allclose(expected_img, scaler(data)[\"img\"]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_TestScaleIntensityRangePercentilesd.test_invalid_instantiation_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_TestScaleIntensityRangePercentilesd.test_invalid_instantiation_", "embedding": null, "metadata": {"file_path": "tests/test_scale_intensity_range_percentilesd.py", "file_name": "test_scale_intensity_range_percentilesd.py", "file_type": "text/x-python", "category": "test", "start_line": 60, "end_line": 77, "span_ids": ["TestScaleIntensityRangePercentilesd.test_invalid_instantiation", "impl"], "tokens": 189}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestScaleIntensityRangePercentilesd(NumpyImageTestCase2D):\n\n def test_invalid_instantiation(self):\n self.assertRaises(\n AssertionError, ScaleIntensityRangePercentilesd, keys=[\"img\"], lower=-1, upper=99, b_min=0, b_max=255\n )\n self.assertRaises(\n AssertionError, ScaleIntensityRangePercentilesd, keys=[\"img\"], lower=101, upper=99, b_min=0, b_max=255\n )\n self.assertRaises(\n AssertionError, ScaleIntensityRangePercentilesd, keys=[\"img\"], lower=30, upper=-2, b_min=0, b_max=255\n )\n self.assertRaises(\n AssertionError, ScaleIntensityRangePercentilesd, keys=[\"img\"], lower=30, upper=1000, b_min=0, b_max=255\n )\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_ranged.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_ranged.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_scale_intensity_ranged.py", "file_name": "test_scale_intensity_ranged.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 32, "span_ids": ["IntensityScaleIntensityRanged", "IntensityScaleIntensityRanged.test_image_scale_intensity_ranged", "impl", "docstring"], "tokens": 150}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import ScaleIntensityRanged\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass IntensityScaleIntensityRanged(NumpyImageTestCase2D):\n def test_image_scale_intensity_ranged(self):\n key = \"img\"\n scaler = ScaleIntensityRanged(keys=key, a_min=20, a_max=108, b_min=50, b_max=80)\n scaled = scaler({key: self.imt})\n expected = (self.imt - 20) / 88\n expected = expected * 30 + 50\n self.assertTrue(np.allclose(scaled[key], expected))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensityd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensityd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_scale_intensityd.py", "file_name": "test_scale_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["impl", "TestScaleIntensityd", "TestScaleIntensityd.test_factor_scale", "docstring", "TestScaleIntensityd.test_range_scale"], "tokens": 252}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import ScaleIntensityd\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestScaleIntensityd(NumpyImageTestCase2D):\n def test_range_scale(self):\n key = \"img\"\n scaler = ScaleIntensityd(keys=[key], minv=1.0, maxv=2.0)\n result = scaler({key: self.imt})\n mina = np.min(self.imt)\n maxa = np.max(self.imt)\n norm = (self.imt - mina) / (maxa - mina)\n expected = (norm * (2.0 - 1.0)) + 1.0\n np.testing.assert_allclose(result[key], expected)\n\n def test_factor_scale(self):\n key = \"img\"\n scaler = ScaleIntensityd(keys=[key], minv=None, maxv=None, factor=0.1)\n result = scaler({key: self.imt})\n expected = (self.imt * (1 + 0.1)).astype(np.float32)\n np.testing.assert_allclose(result[key], expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_unittest_for_type_1_in_.for_type_2_in_.TEST_CASES_3D_append_test": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_unittest_for_type_1_in_.for_type_2_in_.TEST_CASES_3D_append_test", "embedding": null, "metadata": {"file_path": "tests/test_se_block.py", "file_name": "test_se_block.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 60, "span_ids": ["docstring"], "tokens": 519}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.blocks import SEBlock\nfrom monai.networks.layers.factories import Act, Norm\nfrom tests.utils import test_script_save\n\ndevice = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n\nTEST_CASES = [\n [\n {\"spatial_dims\": 2, \"in_channels\": 4, \"n_chns_1\": 20, \"n_chns_2\": 30, \"n_chns_3\": 4, \"r\": 2},\n (7, 4, 64, 48), # 4-channel 2D, batch 7\n (7, 4, 64, 48),\n ],\n [\n {\"spatial_dims\": 1, \"in_channels\": 3, \"n_chns_1\": 20, \"n_chns_2\": 30, \"n_chns_3\": 40, \"r\": 5},\n (16, 3, 63), # 3-channel 1D, batch 16\n (16, 40, 63),\n ],\n]\n\nTEST_CASES_3D = []\nfor type_1 in (\n {\"kernel_size\": 3, \"act\": Act.PRELU, \"norm\": Norm.INSTANCE},\n {\"kernel_size\": 1, \"act\": None, \"norm\": Norm.INSTANCE},\n):\n for type_2 in (\n {\"kernel_size\": 3, \"act\": Act.PRELU, \"norm\": Norm.INSTANCE},\n {\"kernel_size\": 1, \"act\": None, \"norm\": Norm.INSTANCE},\n ):\n test_case = [\n {\n \"spatial_dims\": 3,\n \"in_channels\": 10,\n \"r\": 3,\n \"n_chns_1\": 3,\n \"n_chns_2\": 5,\n \"n_chns_3\": 11,\n \"conv_param_1\": type_1,\n \"conv_param_3\": type_2,\n },\n (16, 10, 32, 24, 48), # 10-channel 3D, batch 16\n (16, 11, 32, 24, 48),\n ]\n TEST_CASES_3D.append(test_case)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_TestSEBlockLayer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_TestSEBlockLayer_", "embedding": null, "metadata": {"file_path": "tests/test_se_block.py", "file_name": "test_se_block.py", "file_type": "text/x-python", "category": "test", "start_line": 63, "end_line": 84, "span_ids": ["TestSEBlockLayer.test_script", "TestSEBlockLayer", "impl:12", "TestSEBlockLayer.test_shape", "TestSEBlockLayer.test_ill_arg"], "tokens": 197}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSEBlockLayer(unittest.TestCase):\n @parameterized.expand(TEST_CASES + TEST_CASES_3D)\n def test_shape(self, input_param, input_shape, expected_shape):\n net = SEBlock(**input_param).to(device)\n with eval_mode(net):\n result = net(torch.randn(input_shape).to(device))\n self.assertEqual(result.shape, expected_shape)\n\n def test_script(self):\n input_param, input_shape, _ = TEST_CASES[0]\n net = SEBlock(**input_param)\n test_data = torch.randn(input_shape)\n test_script_save(net, test_data)\n\n def test_ill_arg(self):\n with self.assertRaises(ValueError):\n SEBlock(spatial_dims=1, in_channels=4, n_chns_1=2, n_chns_2=3, n_chns_3=4, r=100)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_seg_loss_integration.py", "file_name": "test_seg_loss_integration.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["docstring"], "tokens": 707}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nimport torch.nn as nn\nimport torch.optim as optim\nfrom parameterized import parameterized\n\nfrom monai.losses import DiceLoss, FocalLoss, GeneralizedDiceLoss, TverskyLoss\nfrom monai.networks import one_hot\n\nTEST_CASES = [\n [DiceLoss, {\"to_onehot_y\": True, \"squared_pred\": True, \"smooth_nr\": 1e-4, \"smooth_dr\": 1e-4}, {}],\n [DiceLoss, {\"to_onehot_y\": True, \"squared_pred\": True, \"smooth_nr\": 0, \"smooth_dr\": 1e-3}, {}],\n [DiceLoss, {\"to_onehot_y\": False, \"squared_pred\": True, \"smooth_nr\": 0, \"smooth_dr\": 1e-3}, {}],\n [DiceLoss, {\"to_onehot_y\": True, \"squared_pred\": True, \"batch\": True}, {}],\n [DiceLoss, {\"to_onehot_y\": True, \"sigmoid\": True}, {}],\n [DiceLoss, {\"to_onehot_y\": True, \"softmax\": True}, {}],\n [FocalLoss, {\"to_onehot_y\": True, \"gamma\": 1.5, \"weight\": torch.tensor([1, 2])}, {}],\n [FocalLoss, {\"to_onehot_y\": False, \"gamma\": 1.5, \"weight\": [1, 2]}, {}],\n [FocalLoss, {\"to_onehot_y\": False, \"gamma\": 1.5, \"weight\": 1.0}, {}],\n [FocalLoss, {\"to_onehot_y\": True, \"gamma\": 1.5}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": True, \"softmax\": True}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": True, \"sigmoid\": True}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": True, \"sigmoid\": True, \"w_type\": \"simple\"}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": True, \"sigmoid\": True, \"w_type\": \"uniform\"}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": True, \"sigmoid\": True, \"w_type\": \"uniform\", \"batch\": True}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": False, \"sigmoid\": True, \"w_type\": \"uniform\", \"batch\": True}, {}],\n [TverskyLoss, {\"to_onehot_y\": True, \"softmax\": True, \"alpha\": 0.8, \"beta\": 0.2}, {}],\n [TverskyLoss, {\"to_onehot_y\": True, \"softmax\": True, \"alpha\": 0.8, \"beta\": 0.2, \"batch\": True}, {}],\n [TverskyLoss, {\"to_onehot_y\": True, \"softmax\": True, \"alpha\": 1.0, \"beta\": 0.0}, {}],\n [TverskyLoss, {\"to_onehot_y\": False, \"softmax\": True, \"alpha\": 1.0, \"beta\": 0.0}, {}],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration_TestSegLossIntegration.test_convergence._define_a_one_layer_mode": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration_TestSegLossIntegration.test_convergence._define_a_one_layer_mode", "embedding": null, "metadata": {"file_path": "tests/test_seg_loss_integration.py", "file_name": "test_seg_loss_integration.py", "file_type": "text/x-python", "category": "test", "start_line": 47, "end_line": 91, "span_ids": ["TestSegLossIntegration.setUp", "TestSegLossIntegration.test_convergence", "TestSegLossIntegration", "TestSegLossIntegration.tearDown"], "tokens": 473}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSegLossIntegration(unittest.TestCase):\n def setUp(self):\n torch.backends.cudnn.deterministic = True\n torch.backends.cudnn.benchmark = False\n torch.manual_seed(0)\n self.device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu:0\")\n\n def tearDown(self):\n torch.backends.cudnn.deterministic = False\n torch.backends.cudnn.benchmark = True\n\n @parameterized.expand(TEST_CASES)\n def test_convergence(self, loss_type, loss_args, forward_args):\n \"\"\"\n The goal of this test is to assess if the gradient of the loss function\n is correct by testing if we can train a one layer neural network\n to segment one image.\n We verify that the loss is decreasing in almost all SGD steps.\n \"\"\"\n learning_rate = 0.001\n max_iter = 40\n\n # define a simple 3d example\n target_seg = torch.tensor(\n [\n [\n # raw 0\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n # raw 1\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n # raw 2\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n ]\n ],\n device=self.device,\n )\n target_seg = torch.unsqueeze(target_seg, dim=0)\n image = 12 * target_seg + 27\n image = image.float().to(self.device)\n num_classes = 2\n num_voxels = 3 * 4 * 4\n\n target_onehot = one_hot(target_seg, num_classes=num_classes)\n\n # define a one layer model\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence.OnelayerNet_TestSegLossIntegration.test_convergence.OnelayerNet.forward.return.x": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence.OnelayerNet_TestSegLossIntegration.test_convergence.OnelayerNet.forward.return.x", "embedding": null, "metadata": {"file_path": "tests/test_seg_loss_integration.py", "file_name": "test_seg_loss_integration.py", "file_type": "text/x-python", "category": "test", "start_line": 80, "end_line": 93, "span_ids": ["TestSegLossIntegration.test_convergence"], "tokens": 185}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSegLossIntegration(unittest.TestCase):\n\n @parameterized.expand(TEST_CASES)\n def test_convergence(self, loss_type, loss_args, forward_args):\n # ... other code\n class OnelayerNet(nn.Module):\n def __init__(self):\n super(OnelayerNet, self).__init__()\n self.layer_1 = nn.Linear(num_voxels, 200)\n self.acti = nn.ReLU()\n self.layer_2 = nn.Linear(200, num_voxels * num_classes)\n\n def forward(self, x):\n x = x.view(-1, num_voxels)\n x = self.layer_1(x)\n x = self.acti(x)\n x = self.layer_2(x)\n x = x.view(-1, num_classes, 3, 4, 4)\n return x\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence._initialise_the_network_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence._initialise_the_network_", "embedding": null, "metadata": {"file_path": "tests/test_seg_loss_integration.py", "file_name": "test_seg_loss_integration.py", "file_type": "text/x-python", "category": "test", "start_line": 107, "end_line": 156, "span_ids": ["impl:3", "TestSegLossIntegration.test_convergence"], "tokens": 384}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSegLossIntegration(unittest.TestCase):\n\n @parameterized.expand(TEST_CASES)\n def test_convergence(self, loss_type, loss_args, forward_args):\n\n # initialise the network\n net = OnelayerNet().to(self.device)\n\n # initialize the loss\n loss = loss_type(**loss_args)\n\n # initialize a SGD optimizer\n optimizer = optim.Adam(net.parameters(), lr=learning_rate)\n\n loss_history = []\n init_output = None\n\n # train the network\n for iter_i in range(max_iter):\n # set the gradient to zero\n optimizer.zero_grad()\n\n # forward pass\n output = net(image)\n if init_output is None:\n init_output = torch.argmax(output, 1).detach().cpu().numpy()\n\n if loss_args[\"to_onehot_y\"] is False:\n loss_val = loss(output, target_onehot, **forward_args)\n else:\n loss_val = loss(output, target_seg, **forward_args)\n\n if iter_i % 10 == 0:\n pred = torch.argmax(output, 1).detach().cpu().numpy()\n gt = target_seg.detach().cpu().numpy()[:, 0]\n print(f\"{loss_type.__name__} iter: {iter_i}, acc: {np.sum(pred == gt) / np.prod(pred.shape)}\")\n\n # backward pass\n loss_val.backward()\n optimizer.step()\n\n # stats\n loss_history.append(loss_val.item())\n\n pred = torch.argmax(output, 1).detach().cpu().numpy()\n target = target_seg.detach().cpu().numpy()[:, 0]\n # initial predictions are bad\n self.assertTrue(not np.allclose(init_output, target))\n # final predictions are good\n np.testing.assert_allclose(pred, target)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_set_determinism.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_set_determinism.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_set_determinism.py", "file_name": "test_set_determinism.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 54, "span_ids": ["impl", "TestSetDeterminism.test_values", "TestSetDeterminism", "docstring"], "tokens": 297}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.utils import get_seed, set_determinism\n\n\nclass TestSetDeterminism(unittest.TestCase):\n def test_values(self):\n # check system default flags\n set_determinism(None)\n self.assertTrue(not torch.backends.cudnn.deterministic)\n self.assertTrue(get_seed() is None)\n # set default seed\n set_determinism()\n self.assertTrue(get_seed() is not None)\n self.assertTrue(torch.backends.cudnn.deterministic)\n self.assertTrue(not torch.backends.cudnn.benchmark)\n # resume default\n set_determinism(None)\n self.assertTrue(not torch.backends.cudnn.deterministic)\n self.assertTrue(not torch.backends.cudnn.benchmark)\n self.assertTrue(get_seed() is None)\n # test seeds\n seed = 255\n set_determinism(seed=seed)\n self.assertEqual(seed, get_seed())\n a = np.random.randint(seed)\n b = torch.randint(seed, (1,))\n set_determinism(seed=seed)\n c = np.random.randint(seed)\n d = torch.randint(seed, (1,))\n self.assertEqual(a, c)\n self.assertEqual(b, d)\n self.assertTrue(torch.backends.cudnn.deterministic)\n self.assertTrue(not torch.backends.cudnn.benchmark)\n set_determinism(seed=None)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_shift_intensity.py", "file_name": "test_shift_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 30, "span_ids": ["TestShiftIntensity.test_value", "TestShiftIntensity", "impl", "docstring"], "tokens": 99}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import ShiftIntensity\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestShiftIntensity(NumpyImageTestCase2D):\n def test_value(self):\n shifter = ShiftIntensity(offset=1.0)\n result = shifter(self.imt)\n expected = self.imt + 1.0\n np.testing.assert_allclose(result, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensityd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensityd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_shift_intensityd.py", "file_name": "test_shift_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 31, "span_ids": ["TestShiftIntensityd", "TestShiftIntensityd.test_value", "impl", "docstring"], "tokens": 116}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import ShiftIntensityd\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestShiftIntensityd(NumpyImageTestCase2D):\n def test_value(self):\n key = \"img\"\n shifter = ShiftIntensityd(keys=[key], offset=1.0)\n result = shifter({key: self.imt})\n expected = self.imt + 1.0\n np.testing.assert_allclose(result[key], expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_unittest_TEST_ILL_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_unittest_TEST_ILL_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_simple_aspp.py", "file_name": "test_simple_aspp.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 66, "span_ids": ["impl:3", "docstring"], "tokens": 590}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.blocks import SimpleASPP\n\nTEST_CASES = [\n [ # 32-channel 2D, batch 7\n {\"spatial_dims\": 2, \"in_channels\": 32, \"conv_out_channels\": 3, \"norm_type\": (\"batch\", {\"affine\": False})},\n (7, 32, 18, 20),\n (7, 12, 18, 20),\n ],\n [ # 4-channel 1D, batch 16\n {\"spatial_dims\": 1, \"in_channels\": 4, \"conv_out_channels\": 8, \"acti_type\": (\"PRELU\", {\"num_parameters\": 32})},\n (16, 4, 17),\n (16, 32, 17),\n ],\n [ # 3-channel 3D, batch 16\n {\"spatial_dims\": 3, \"in_channels\": 3, \"conv_out_channels\": 2},\n (16, 3, 17, 18, 19),\n (16, 8, 17, 18, 19),\n ],\n [ # 3-channel 3D, batch 16\n {\n \"spatial_dims\": 3,\n \"in_channels\": 3,\n \"conv_out_channels\": 2,\n \"kernel_sizes\": (1, 3, 3),\n \"dilations\": (1, 2, 4),\n },\n (16, 3, 17, 18, 19),\n (16, 6, 17, 18, 19),\n ],\n]\n\nTEST_ILL_CASES = [\n [ # 3-channel 3D, batch 16, wrong k and d sizes.\n {\"spatial_dims\": 3, \"in_channels\": 3, \"conv_out_channels\": 2, \"kernel_sizes\": (1, 3, 3), \"dilations\": (1, 2)},\n (16, 3, 17, 18, 19),\n ValueError,\n ],\n [ # 3-channel 3D, batch 16, wrong k and d sizes.\n {\n \"spatial_dims\": 3,\n \"in_channels\": 3,\n \"conv_out_channels\": 2,\n \"kernel_sizes\": (1, 3, 4),\n \"dilations\": (1, 2, 3),\n },\n (16, 3, 17, 18, 19),\n NotImplementedError, # unknown padding k=4, d=3\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_TestChannelSELayer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_TestChannelSELayer_", "embedding": null, "metadata": {"file_path": "tests/test_simple_aspp.py", "file_name": "test_simple_aspp.py", "file_type": "text/x-python", "category": "test", "start_line": 69, "end_line": 85, "span_ids": ["TestChannelSELayer.test_shape", "impl:5", "TestChannelSELayer", "TestChannelSELayer.test_ill_args"], "tokens": 121}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestChannelSELayer(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_shape, expected_shape):\n net = SimpleASPP(**input_param)\n with eval_mode(net):\n result = net(torch.randn(input_shape))\n self.assertEqual(result.shape, expected_shape)\n\n @parameterized.expand(TEST_ILL_CASES)\n def test_ill_args(self, input_param, input_shape, error_type):\n with self.assertRaises(error_type):\n SimpleASPP(**input_param)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacing.py_unittest_TEST_CASES": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacing.py_unittest_TEST_CASES", "embedding": null, "metadata": {"file_path": "tests/test_spacing.py", "file_name": "test_spacing.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 147, "span_ids": ["docstring"], "tokens": 43}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import Spacing\nfrom monai.utils import ensure_tuple, fall_back_tuple\n\nTEST_CASES =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacing.py_TestSpacingCase_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacing.py_TestSpacingCase_", "embedding": null, "metadata": {"file_path": "tests/test_spacing.py", "file_name": "test_spacing.py", "file_type": "text/x-python", "category": "test", "start_line": 150, "end_line": 169, "span_ids": ["TestSpacingCase.test_spacing", "impl:3", "TestSpacingCase"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSpacingCase(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_spacing(self, init_param, img, data_param, expected_output):\n res = Spacing(**init_param)(img, **data_param)\n if not isinstance(res, tuple):\n np.testing.assert_allclose(res, expected_output, atol=1e-6)\n return\n np.testing.assert_allclose(res[0], expected_output, atol=1e-6)\n sr = len(res[0].shape) - 1\n if isinstance(init_param[\"pixdim\"], float):\n init_param[\"pixdim\"] = [init_param[\"pixdim\"]] * sr\n init_pixdim = ensure_tuple(init_param[\"pixdim\"])\n init_pixdim = init_param[\"pixdim\"][:sr]\n norm = np.sqrt(np.sum(np.square(res[2]), axis=0))[:sr]\n np.testing.assert_allclose(fall_back_tuple(init_pixdim, norm), norm)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_unittest_TestSpacingDCase.test_spacingd_3d.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_unittest_TestSpacingDCase.test_spacingd_3d.None_2", "embedding": null, "metadata": {"file_path": "tests/test_spacingd.py", "file_name": "test_spacingd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 26, "span_ids": ["TestSpacingDCase.test_spacingd_3d", "TestSpacingDCase", "docstring"], "tokens": 176}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import Spacingd\n\n\nclass TestSpacingDCase(unittest.TestCase):\n def test_spacingd_3d(self):\n data = {\"image\": np.ones((2, 10, 15, 20)), \"image_meta_dict\": {\"affine\": np.eye(4)}}\n spacing = Spacingd(keys=\"image\", pixdim=(1, 2, 1.4))\n res = spacing(data)\n self.assertEqual((\"image\", \"image_meta_dict\", \"image_transforms\"), tuple(sorted(res)))\n np.testing.assert_allclose(res[\"image\"].shape, (2, 10, 8, 15))\n np.testing.assert_allclose(res[\"image_meta_dict\"][\"affine\"], np.diag([1, 2, 1.4, 1.0]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_TestSpacingDCase.test_spacingd_2d_TestSpacingDCase.test_spacingd_2d.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_TestSpacingDCase.test_spacingd_2d_TestSpacingDCase.test_spacingd_2d.None_2", "embedding": null, "metadata": {"file_path": "tests/test_spacingd.py", "file_name": "test_spacingd.py", "file_type": "text/x-python", "category": "test", "start_line": 28, "end_line": 34, "span_ids": ["TestSpacingDCase.test_spacingd_2d"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSpacingDCase(unittest.TestCase):\n\n def test_spacingd_2d(self):\n data = {\"image\": np.ones((2, 10, 20)), \"image_meta_dict\": {\"affine\": np.eye(3)}}\n spacing = Spacingd(keys=\"image\", pixdim=(1, 2))\n res = spacing(data)\n self.assertEqual((\"image\", \"image_meta_dict\", \"image_transforms\"), tuple(sorted(res)))\n np.testing.assert_allclose(res[\"image\"].shape, (2, 10, 10))\n np.testing.assert_allclose(res[\"image_meta_dict\"][\"affine\"], np.diag((1, 2, 1)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_TestSpacingDCase.test_interp_all_TestSpacingDCase.test_interp_all.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_TestSpacingDCase.test_interp_all_TestSpacingDCase.test_interp_all.None_2", "embedding": null, "metadata": {"file_path": "tests/test_spacingd.py", "file_name": "test_spacingd.py", "file_type": "text/x-python", "category": "test", "start_line": 36, "end_line": 57, "span_ids": ["TestSpacingDCase.test_interp_all"], "tokens": 219}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSpacingDCase(unittest.TestCase):\n\n def test_interp_all(self):\n data = {\n \"image\": np.arange(20).reshape((2, 1, 10)),\n \"seg\": np.ones((2, 1, 10)),\n \"image_meta_dict\": {\"affine\": np.eye(4)},\n \"seg_meta_dict\": {\"affine\": np.eye(4)},\n }\n spacing = Spacingd(\n keys=(\"image\", \"seg\"),\n mode=\"nearest\",\n pixdim=(\n 1,\n 0.2,\n ),\n )\n res = spacing(data)\n self.assertEqual(\n (\"image\", \"image_meta_dict\", \"image_transforms\", \"seg\", \"seg_meta_dict\", \"seg_transforms\"),\n tuple(sorted(res)),\n )\n np.testing.assert_allclose(res[\"image\"].shape, (2, 1, 46))\n np.testing.assert_allclose(res[\"image_meta_dict\"][\"affine\"], np.diag((1, 0.2, 1, 1)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_TestSpacingDCase.test_interp_sep_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_TestSpacingDCase.test_interp_sep_", "embedding": null, "metadata": {"file_path": "tests/test_spacingd.py", "file_name": "test_spacingd.py", "file_type": "text/x-python", "category": "test", "start_line": 59, "end_line": 85, "span_ids": ["TestSpacingDCase.test_interp_sep", "impl"], "tokens": 231}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSpacingDCase(unittest.TestCase):\n\n def test_interp_sep(self):\n data = {\n \"image\": np.ones((2, 1, 10)),\n \"seg\": np.ones((2, 1, 10)),\n \"image_meta_dict\": {\"affine\": np.eye(4)},\n \"seg_meta_dict\": {\"affine\": np.eye(4)},\n }\n spacing = Spacingd(\n keys=(\"image\", \"seg\"),\n mode=(\"bilinear\", \"nearest\"),\n pixdim=(\n 1,\n 0.2,\n ),\n )\n res = spacing(data)\n self.assertEqual(\n (\"image\", \"image_meta_dict\", \"image_transforms\", \"seg\", \"seg_meta_dict\", \"seg_transforms\"),\n tuple(sorted(res)),\n )\n np.testing.assert_allclose(res[\"image\"].shape, (2, 1, 46))\n np.testing.assert_allclose(res[\"image_meta_dict\"][\"affine\"], np.diag((1, 0.2, 1, 1)))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_cropd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_cropd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_spatial_cropd.py", "file_name": "test_spatial_cropd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 57, "span_ids": ["TestSpatialCropd.test_shape", "impl:3", "TestSpatialCropd", "docstring"], "tokens": 500}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import SpatialCropd\n\nTEST_CASES = [\n [\n {\"keys\": [\"img\"], \"roi_center\": [1, 1, 1], \"roi_size\": [2, 2, 2]},\n {\"img\": np.random.randint(0, 2, size=[3, 3, 3, 3])},\n (3, 2, 2, 2),\n ],\n [\n {\"keys\": [\"img\"], \"roi_start\": [0, 0, 0], \"roi_end\": [2, 2, 2]},\n {\"img\": np.random.randint(0, 2, size=[3, 3, 3, 3])},\n (3, 2, 2, 2),\n ],\n [\n {\"keys\": [\"img\"], \"roi_start\": [0, 0], \"roi_end\": [2, 2]},\n {\"img\": np.random.randint(0, 2, size=[3, 3, 3, 3])},\n (3, 2, 2, 3),\n ],\n [\n {\"keys\": [\"img\"], \"roi_start\": [0, 0, 0, 0, 0], \"roi_end\": [2, 2, 2, 2, 2]},\n {\"img\": np.random.randint(0, 2, size=[3, 3, 3, 3])},\n (3, 2, 2, 2),\n ],\n [\n {\"keys\": [\"img\"], \"roi_slices\": [slice(s, e) for s, e in zip([-1, -2, 0], [None, None, 2])]},\n {\"img\": np.random.randint(0, 2, size=[3, 3, 3, 3])},\n (3, 1, 2, 2),\n ],\n]\n\n\nclass TestSpatialCropd(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_data, expected_shape):\n result = SpatialCropd(**input_param)(input_data)\n self.assertTupleEqual(result[\"img\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_pad.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_pad.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_spatial_pad.py", "file_name": "test_spatial_pad.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 50, "span_ids": ["TestSpatialPad.test_pad_shape", "TestSpatialPad", "impl:7", "docstring"], "tokens": 331}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import SpatialPad\n\nTEST_CASE_1 = [\n {\"spatial_size\": [15, 8, 8], \"method\": \"symmetric\", \"mode\": \"constant\"},\n np.zeros((3, 8, 8, 4)),\n np.zeros((3, 15, 8, 8)),\n]\n\nTEST_CASE_2 = [\n {\"spatial_size\": [15, 8, 8], \"method\": \"end\", \"mode\": \"constant\"},\n np.zeros((3, 8, 8, 4)),\n np.zeros((3, 15, 8, 8)),\n]\n\nTEST_CASE_3 = [\n {\"spatial_size\": [15, 4, -1], \"method\": \"symmetric\", \"mode\": \"constant\"},\n np.zeros((3, 8, 8, 4)),\n np.zeros((3, 15, 8, 4)),\n]\n\n\nclass TestSpatialPad(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_pad_shape(self, input_param, input_data, expected_val):\n padder = SpatialPad(**input_param)\n result = padder(input_data)\n np.testing.assert_allclose(result.shape, expected_val.shape)\n result = padder(input_data, mode=input_param[\"mode\"])\n np.testing.assert_allclose(result.shape, expected_val.shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_padd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_padd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_spatial_padd.py", "file_name": "test_spatial_padd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 54, "span_ids": ["impl:9", "TestSpatialPadd.test_pad_shape", "TestSpatialPadd", "docstring"], "tokens": 418}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import SpatialPadd\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\"], \"spatial_size\": [15, 8, 8], \"method\": \"symmetric\", \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 15, 8, 8)),\n]\n\nTEST_CASE_2 = [\n {\"keys\": [\"img\"], \"spatial_size\": [15, 8, 8], \"method\": \"end\", \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 15, 8, 8)),\n]\n\nTEST_CASE_3 = [\n {\"keys\": [\"img\"], \"spatial_size\": [15, 8, 8], \"method\": \"end\", \"mode\": {\"constant\"}},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 15, 8, 8)),\n]\n\nTEST_CASE_4 = [\n {\"keys\": [\"img\"], \"spatial_size\": [15, 8, -1], \"method\": \"end\", \"mode\": {\"constant\"}},\n {\"img\": np.zeros((3, 8, 4, 4))},\n np.zeros((3, 15, 8, 4)),\n]\n\n\nclass TestSpatialPadd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4])\n def test_pad_shape(self, input_param, input_data, expected_val):\n padder = SpatialPadd(**input_param)\n result = padder(input_data)\n np.testing.assert_allclose(result[\"img\"].shape, expected_val.shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channel.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channel.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_split_channel.py", "file_name": "test_split_channel.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 43, "span_ids": ["TestSplitChannel", "TestSplitChannel.test_shape", "impl:13", "docstring"], "tokens": 362}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import SplitChannel\n\nTEST_CASE_1 = [{\"channel_dim\": None}, torch.randint(0, 2, size=(4, 3, 3, 4)), (4, 1, 3, 4)]\n\nTEST_CASE_2 = [{\"channel_dim\": 1}, torch.randint(0, 2, size=(4, 3, 3, 4)), (4, 1, 3, 4)]\n\nTEST_CASE_3 = [{\"channel_dim\": None}, np.random.randint(2, size=(3, 3, 4)), (1, 3, 4)]\n\nTEST_CASE_4 = [{\"channel_dim\": 0}, np.random.randint(2, size=(3, 3, 4)), (1, 3, 4)]\n\nTEST_CASE_5 = [{\"channel_dim\": 2}, np.random.randint(2, size=(3, 2, 4)), (3, 2, 1)]\n\nTEST_CASE_6 = [{\"channel_dim\": -1}, np.random.randint(2, size=(3, 2, 4)), (3, 2, 1)]\n\n\nclass TestSplitChannel(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6])\n def test_shape(self, input_param, test_data, expected_shape):\n result = SplitChannel(**input_param)(test_data)\n for data in result:\n self.assertTupleEqual(data.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channeld.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channeld.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_split_channeld.py", "file_name": "test_split_channeld.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 74, "span_ids": ["TestSplitChanneld.test_shape", "impl:11", "docstring", "TestSplitChanneld", "impl:15"], "tokens": 639}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import SplitChanneld\n\nTEST_CASE_1 = [\n {\"keys\": \"pred\", \"output_postfixes\": [\"cls1\", \"cls2\", \"cls3\"], \"channel_dim\": None},\n {\"pred\": torch.randint(0, 2, size=(4, 3, 3, 4))},\n (4, 1, 3, 4),\n]\n\nTEST_CASE_2 = [\n {\"keys\": \"pred\", \"output_postfixes\": [\"cls1\", \"cls2\", \"cls3\"], \"channel_dim\": 1},\n {\"pred\": torch.randint(0, 2, size=(4, 3, 3, 4))},\n (4, 1, 3, 4),\n]\n\nTEST_CASE_3 = [\n {\"keys\": \"pred\", \"output_postfixes\": [\"cls1\", \"cls2\", \"cls3\"], \"channel_dim\": None},\n {\"pred\": np.random.randint(2, size=(3, 3, 4))},\n (1, 3, 4),\n]\n\nTEST_CASE_4 = [\n {\"keys\": \"pred\", \"output_postfixes\": [\"cls1\", \"cls2\", \"cls3\"], \"channel_dim\": 0},\n {\"pred\": np.random.randint(2, size=(3, 3, 4))},\n (1, 3, 4),\n]\n\nTEST_CASE_5 = [\n {\"keys\": \"pred\", \"output_postfixes\": [\"cls1\", \"cls2\", \"cls3\", \"cls4\"], \"channel_dim\": 2},\n {\"pred\": np.random.randint(2, size=(3, 2, 4))},\n (3, 2, 1),\n]\n\nTEST_CASE_6 = [\n {\"keys\": \"pred\", \"output_postfixes\": [\"cls1\", \"cls2\", \"cls3\", \"cls4\"], \"channel_dim\": -1},\n {\"pred\": np.random.randint(2, size=(3, 2, 4))},\n (3, 2, 1),\n]\n\nTEST_CASE_7 = [\n {\"keys\": \"pred\", \"channel_dim\": 1},\n {\"pred\": np.random.randint(2, size=(3, 2, 4))},\n (3, 1, 4),\n]\n\n\nclass TestSplitChanneld(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6, TEST_CASE_7])\n def test_shape(self, input_param, test_data, expected_shape):\n result = SplitChanneld(**input_param)(test_data)\n for k, v in result.items():\n if \"_\" in k:\n self.assertTupleEqual(v.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedim.py_TestSqueezeDim_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedim.py_TestSqueezeDim_", "embedding": null, "metadata": {"file_path": "tests/test_squeezedim.py", "file_name": "test_squeezedim.py", "file_type": "text/x-python", "category": "test", "start_line": 35, "end_line": 49, "span_ids": ["impl:15", "TestSqueezeDim.test_invalid_inputs", "TestSqueezeDim.test_shape", "TestSqueezeDim"], "tokens": 139}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSqueezeDim(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_4_PT])\n def test_shape(self, input_param, test_data, expected_shape):\n result = SqueezeDim(**input_param)(test_data)\n self.assertTupleEqual(result.shape, expected_shape)\n\n @parameterized.expand([TEST_CASE_5, TEST_CASE_6])\n def test_invalid_inputs(self, exception, input_param, test_data):\n with self.assertRaises(exception):\n SqueezeDim(**input_param)(test_data)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedimd.py_unittest_TEST_CASE_6._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedimd.py_unittest_TEST_CASE_6._", "embedding": null, "metadata": {"file_path": "tests/test_squeezedimd.py", "file_name": "test_squeezedimd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 60, "span_ids": ["impl:11", "docstring"], "tokens": 582}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import SqueezeDimd\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\", \"seg\"], \"dim\": None},\n {\"img\": np.random.rand(1, 2, 1, 3), \"seg\": np.random.randint(0, 2, size=[1, 2, 1, 3])},\n (2, 3),\n]\n\nTEST_CASE_2 = [\n {\"keys\": [\"img\", \"seg\"], \"dim\": 2},\n {\"img\": np.random.rand(1, 2, 1, 8, 16), \"seg\": np.random.randint(0, 2, size=[1, 2, 1, 8, 16])},\n (1, 2, 8, 16),\n]\n\nTEST_CASE_3 = [\n {\"keys\": [\"img\", \"seg\"], \"dim\": -1},\n {\"img\": np.random.rand(1, 1, 16, 8, 1), \"seg\": np.random.randint(0, 2, size=[1, 1, 16, 8, 1])},\n (1, 1, 16, 8),\n]\n\nTEST_CASE_4 = [\n {\"keys\": [\"img\", \"seg\"]},\n {\"img\": np.random.rand(1, 2, 1, 3), \"seg\": np.random.randint(0, 2, size=[1, 2, 1, 3])},\n (2, 1, 3),\n]\n\nTEST_CASE_4_PT = [\n {\"keys\": [\"img\", \"seg\"], \"dim\": 0},\n {\"img\": torch.rand(1, 2, 1, 3), \"seg\": torch.randint(0, 2, size=[1, 2, 1, 3])},\n (2, 1, 3),\n]\n\nTEST_CASE_5 = [\n ValueError,\n {\"keys\": [\"img\", \"seg\"], \"dim\": -2},\n {\"img\": np.random.rand(1, 1, 16, 8, 1), \"seg\": np.random.randint(0, 2, size=[1, 1, 16, 8, 1])},\n]\n\nTEST_CASE_6 = [\n TypeError,\n {\"keys\": [\"img\", \"seg\"], \"dim\": 0.5},\n {\"img\": np.random.rand(1, 1, 16, 8, 1), \"seg\": np.random.randint(0, 2, size=[1, 1, 16, 8, 1])},\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedimd.py_TestSqueezeDim_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedimd.py_TestSqueezeDim_", "embedding": null, "metadata": {"file_path": "tests/test_squeezedimd.py", "file_name": "test_squeezedimd.py", "file_type": "text/x-python", "category": "test", "start_line": 63, "end_line": 78, "span_ids": ["impl:15", "TestSqueezeDim.test_invalid_inputs", "TestSqueezeDim.test_shape", "TestSqueezeDim"], "tokens": 158}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSqueezeDim(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_4_PT])\n def test_shape(self, input_param, test_data, expected_shape):\n result = SqueezeDimd(**input_param)(test_data)\n self.assertTupleEqual(result[\"img\"].shape, expected_shape)\n self.assertTupleEqual(result[\"seg\"].shape, expected_shape)\n\n @parameterized.expand([TEST_CASE_5, TEST_CASE_6])\n def test_invalid_inputs(self, exception, input_param, test_data):\n with self.assertRaises(exception):\n SqueezeDimd(**input_param)(test_data)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_threshold_intensity.py", "file_name": "test_threshold_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 36, "span_ids": ["TestThresholdIntensity.test_value", "TestThresholdIntensity", "impl:7", "docstring"], "tokens": 267}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import ThresholdIntensity\n\nTEST_CASE_1 = [{\"threshold\": 5, \"above\": True, \"cval\": 0}, (0, 0, 0, 0, 0, 0, 6, 7, 8, 9)]\n\nTEST_CASE_2 = [{\"threshold\": 5, \"above\": False, \"cval\": 0}, (0, 1, 2, 3, 4, 0, 0, 0, 0, 0)]\n\nTEST_CASE_3 = [{\"threshold\": 5, \"above\": True, \"cval\": 5}, (5, 5, 5, 5, 5, 5, 6, 7, 8, 9)]\n\n\nclass TestThresholdIntensity(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value(self, input_param, expected_value):\n test_data = np.arange(10)\n result = ThresholdIntensity(**input_param)(test_data)\n np.testing.assert_allclose(result, expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensityd.py_unittest_TEST_CASE_3._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensityd.py_unittest_TEST_CASE_3._", "embedding": null, "metadata": {"file_path": "tests/test_threshold_intensityd.py", "file_name": "test_threshold_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 32, "span_ids": ["docstring"], "tokens": 231}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import ThresholdIntensityd\n\nTEST_CASE_1 = [\n {\"keys\": [\"image\", \"label\", \"extra\"], \"threshold\": 5, \"above\": True, \"cval\": 0},\n (0, 0, 0, 0, 0, 0, 6, 7, 8, 9),\n]\n\nTEST_CASE_2 = [\n {\"keys\": [\"image\", \"label\", \"extra\"], \"threshold\": 5, \"above\": False, \"cval\": 0},\n (0, 1, 2, 3, 4, 0, 0, 0, 0, 0),\n]\n\nTEST_CASE_3 = [\n {\"keys\": [\"image\", \"label\", \"extra\"], \"threshold\": 5, \"above\": True, \"cval\": 5},\n (5, 5, 5, 5, 5, 5, 6, 7, 8, 9),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensityd.py_TestThresholdIntensityd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensityd.py_TestThresholdIntensityd_", "embedding": null, "metadata": {"file_path": "tests/test_threshold_intensityd.py", "file_name": "test_threshold_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 33, "end_line": 45, "span_ids": ["TestThresholdIntensityd", "TestThresholdIntensityd.test_value", "impl:7"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestThresholdIntensityd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value(self, input_param, expected_value):\n test_data = {\"image\": np.arange(10), \"label\": np.arange(10), \"extra\": np.arange(10)}\n result = ThresholdIntensityd(**input_param)(test_data)\n np.testing.assert_allclose(result[\"image\"], expected_value)\n np.testing.assert_allclose(result[\"label\"], expected_value)\n np.testing.assert_allclose(result[\"extra\"], expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_numpy.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_numpy.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_to_numpy.py", "file_name": "test_to_numpy.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 64, "span_ids": ["TestToNumpy", "TestToNumpy.test_list_tuple", "TestToNumpy.test_tensor_input", "TestToNumpy.test_numpy_input", "impl:2", "TestToNumpy.test_cumpy_input", "docstring"], "tokens": 431}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\nfrom unittest import skipUnless\n\nimport numpy as np\nimport torch\n\nfrom monai.transforms import ToNumpy\nfrom monai.utils import optional_import\n\ncp, has_cp = optional_import(\"cupy\")\n\n\nclass TestToNumpy(unittest.TestCase):\n @skipUnless(has_cp, \"CuPy is required.\")\n def test_cumpy_input(self):\n test_data = cp.array([[1, 2], [3, 4]])\n test_data = cp.rot90(test_data)\n self.assertFalse(test_data.flags[\"C_CONTIGUOUS\"])\n result = ToNumpy()(test_data)\n self.assertTrue(isinstance(result, np.ndarray))\n self.assertTrue(result.flags[\"C_CONTIGUOUS\"])\n np.testing.assert_allclose(result, test_data.get())\n\n def test_numpy_input(self):\n test_data = np.array([[1, 2], [3, 4]])\n test_data = np.rot90(test_data)\n self.assertFalse(test_data.flags[\"C_CONTIGUOUS\"])\n result = ToNumpy()(test_data)\n self.assertTrue(isinstance(result, np.ndarray))\n self.assertTrue(result.flags[\"C_CONTIGUOUS\"])\n np.testing.assert_allclose(result, test_data)\n\n def test_tensor_input(self):\n test_data = torch.tensor([[1, 2], [3, 4]])\n test_data = test_data.rot90()\n self.assertFalse(test_data.is_contiguous())\n result = ToNumpy()(test_data)\n self.assertTrue(isinstance(result, np.ndarray))\n self.assertTrue(result.flags[\"C_CONTIGUOUS\"])\n np.testing.assert_allclose(result, test_data.numpy())\n\n def test_list_tuple(self):\n test_data = [[1, 2], [3, 4]]\n result = ToNumpy()(test_data)\n np.testing.assert_allclose(result, np.asarray(test_data))\n test_data = ((1, 2), (3, 4))\n result = ToNumpy()(test_data)\n np.testing.assert_allclose(result, np.asarray(test_data))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_unittest_TEST_CASE_4._no_channel_0D_batch": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_unittest_TEST_CASE_4._no_channel_0D_batch", "embedding": null, "metadata": {"file_path": "tests/test_to_onehot.py", "file_name": "test_to_onehot.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["docstring"], "tokens": 437}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import one_hot\n\nTEST_CASE_1 = [ # single channel 2D, batch 3, shape (2, 1, 2, 2)\n {\"labels\": torch.tensor([[[[0, 1], [1, 2]]], [[[2, 1], [1, 0]]]]), \"num_classes\": 3},\n (2, 3, 2, 2),\n]\n\nTEST_CASE_2 = [ # single channel 1D, batch 2, shape (2, 1, 4)\n {\"labels\": torch.tensor([[[1, 2, 2, 0]], [[2, 1, 0, 1]]]), \"num_classes\": 3},\n (2, 3, 4),\n np.array([[[0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 1, 0]], [[0, 0, 1, 0], [0, 1, 0, 1], [1, 0, 0, 0]]]),\n]\n\nTEST_CASE_3 = [ # single channel 0D, batch 2, shape (2, 1)\n {\"labels\": torch.tensor([[1.0], [2.0]]), \"num_classes\": 3},\n (2, 3),\n np.array([[0, 1, 0], [0, 0, 1]]),\n]\n\nTEST_CASE_4 = [ # no channel 0D, batch 3, shape (3)\n {\"labels\": torch.tensor([1, 2, 0]), \"num_classes\": 3, \"dtype\": torch.long},\n (3, 3),\n np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_TestToOneHot_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_TestToOneHot_", "embedding": null, "metadata": {"file_path": "tests/test_to_onehot.py", "file_name": "test_to_onehot.py", "file_type": "text/x-python", "category": "test", "start_line": 44, "end_line": 61, "span_ids": ["impl:9", "TestToOneHot.test_shape", "TestToOneHot"], "tokens": 140}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestToOneHot(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4])\n def test_shape(self, input_data, expected_shape, expected_result=None):\n result = one_hot(**input_data)\n self.assertEqual(result.shape, expected_shape)\n if expected_result is not None:\n self.assertTrue(np.allclose(expected_result, result.numpy()))\n\n if \"dtype\" in input_data:\n self.assertEqual(result.dtype, input_data[\"dtype\"])\n else:\n # by default, expecting float type\n self.assertEqual(result.dtype, torch.float)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss_TestTverskyLoss.test_ill_shape.None_2.TverskyLoss_reduction_Non": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss_TestTverskyLoss.test_ill_shape.None_2.TverskyLoss_reduction_Non", "embedding": null, "metadata": {"file_path": "tests/test_tversky_loss.py", "file_name": "test_tversky_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 105, "end_line": 120, "span_ids": ["TestTverskyLoss.test_ill_shape", "TestTverskyLoss", "TestTverskyLoss.test_shape"], "tokens": 210}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestTverskyLoss(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_data, expected_val):\n result = TverskyLoss(**input_param).forward(**input_data)\n np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, rtol=1e-4)\n\n def test_ill_shape(self):\n loss = TverskyLoss()\n with self.assertRaisesRegex(AssertionError, \"\"):\n loss.forward(torch.ones((2, 2, 3)), torch.ones((4, 5, 6)))\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertRaisesRegex(ValueError, \"\"):\n TverskyLoss(reduction=\"unknown\")(chn_input, chn_target)\n with self.assertRaisesRegex(ValueError, \"\"):\n TverskyLoss(reduction=None)(chn_input, chn_target)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss.test_input_warnings_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss.test_input_warnings_", "embedding": null, "metadata": {"file_path": "tests/test_tversky_loss.py", "file_name": "test_tversky_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 174, "end_line": 196, "span_ids": ["impl:3", "TestTverskyLoss.test_input_warnings", "TestTverskyLoss.test_script"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestTverskyLoss(unittest.TestCase):\n\n def test_input_warnings(self):\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertWarns(Warning):\n loss = TverskyLoss(include_background=False)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = TverskyLoss(softmax=True)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = TverskyLoss(to_onehot_y=True)\n loss.forward(chn_input, chn_target)\n\n @SkipIfBeforePyTorchVersion((1, 7, 0))\n def test_script(self):\n loss = TverskyLoss()\n test_input = torch.ones(2, 1, 8, 8)\n test_script_save(loss, test_input, test_input)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_unittest_INVALID_CASES._None_None_bilinear": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_unittest_INVALID_CASES._None_None_bilinear", "embedding": null, "metadata": {"file_path": "tests/test_zoom.py", "file_name": "test_zoom.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 23, "span_ids": ["docstring"], "tokens": 112}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\nfrom scipy.ndimage import zoom as zoom_scipy\n\nfrom monai.transforms import Zoom\nfrom tests.utils import NumpyImageTestCase2D\n\nVALID_CASES = [(1.5, \"nearest\"), (1.5, \"nearest\"), (0.8, \"bilinear\"), (0.8, \"area\")]\n\nINVALID_CASES = [((None, None), \"bilinear\", TypeError), ((0.9, 0.9), \"s\", ValueError)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom_TestZoom.test_correct_results.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom_TestZoom.test_correct_results.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_zoom.py", "file_name": "test_zoom.py", "file_type": "text/x-python", "category": "test", "start_line": 26, "end_line": 38, "span_ids": ["TestZoom", "TestZoom.test_correct_results"], "tokens": 151}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestZoom(NumpyImageTestCase2D):\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, zoom, mode):\n zoom_fn = Zoom(zoom=zoom, mode=mode, keep_size=False)\n zoomed = zoom_fn(self.imt[0])\n _order = 0\n if mode.endswith(\"linear\"):\n _order = 1\n expected = []\n for channel in self.imt[0]:\n expected.append(zoom_scipy(channel, zoom=zoom, mode=\"nearest\", order=_order, prefilter=False))\n expected = np.stack(expected).astype(np.float32)\n np.testing.assert_allclose(zoomed, expected, atol=1.0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_unittest_VALID_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_unittest_VALID_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_zoom_affine.py", "file_name": "test_zoom_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 47, "span_ids": ["docstring"], "tokens": 643}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport nibabel as nib\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.data.utils import zoom_affine\n\nVALID_CASES = [\n (\n np.array([[2, 1, 4], [-1, -3, 5], [0, 0, 1]]),\n (10, 20, 30),\n np.array([[8.94427191, -8.94427191, 0], [-4.47213595, -17.88854382, 0], [0.0, 0.0, 1.0]]),\n ),\n (\n np.array([[1, 0, 0, 4], [0, 2, 0, 5], [0, 0, 3, 6], [0, 0, 0, 1]]),\n (10, 20, 30),\n np.array([[10, 0, 0, 0], [0, 20, 0, 0], [0, 0, 30, 0], [0, 0, 0, 1]]),\n ),\n (\n np.array([[1, 0, 0, 4], [0, 2, 0, 5], [0, 0, 3, 6], [0, 0, 0, 1]]),\n (10, 20),\n np.array([[10, 0, 0, 0], [0, 20, 0, 0], [0, 0, 3, 0], [0, 0, 0, 1]]),\n ),\n (\n np.array([[1, 0, 0, 4], [0, 2, 0, 5], [0, 0, 3, 6], [0, 0, 0, 1]]),\n (10,),\n np.array([[10, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 1]]),\n ),\n (\n [[1, 0, 10], [0, 1, 20], [0, 0, 1]]\n @ ([[0, -1, 0], [1, 0, 0], [0, 0, 1]] @ np.array([[2, 0.3, 0], [0, 3, 0], [0, 0, 1]])),\n (4, 5, 6),\n ([[0, -1, 0], [1, 0, 0], [0, 0, 1]] @ np.array([[4, 0, 0], [0, 5, 0], [0, 0, 1]])),\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_DIAGONAL_CASES_DIAGONAL_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_DIAGONAL_CASES_DIAGONAL_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_zoom_affine.py", "file_name": "test_zoom_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 49, "end_line": 61, "span_ids": ["impl:3"], "tokens": 291}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "DIAGONAL_CASES = [\n (\n np.array([[-1, 0, 0, 4], [0, 2, 0, 5], [0, 0, 3, 6], [0, 0, 0, 1]]),\n (10, 20, 30),\n np.array([[10, 0, 0, 0], [0, 20, 0, 0], [0, 0, 30, 0], [0, 0, 0, 1]]),\n ),\n (np.array([[2, 1, 4], [-1, -3, 5], [0, 0, 1]]), (10, 20, 30), np.array([[10, 0, 0], [0, 20, 0], [0.0, 0.0, 1.0]])),\n ( # test default scale from affine\n np.array([[2, 1, 4], [-1, -3, 5], [0, 0, 1]]),\n (10,),\n np.array([[10, 0, 0], [0, 3.162278, 0], [0.0, 0.0, 1.0]]),\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_TestZoomAffine_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_TestZoomAffine_", "embedding": null, "metadata": {"file_path": "tests/test_zoom_affine.py", "file_name": "test_zoom_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 64, "end_line": 81, "span_ids": ["TestZoomAffine.test_diagonal", "TestZoomAffine.test_correct", "impl:5", "TestZoomAffine"], "tokens": 211}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestZoomAffine(unittest.TestCase):\n @parameterized.expand(VALID_CASES)\n def test_correct(self, affine, scale, expected):\n output = zoom_affine(affine, scale, diagonal=False)\n ornt_affine = nib.orientations.ornt2axcodes(nib.orientations.io_orientation(output))\n ornt_output = nib.orientations.ornt2axcodes(nib.orientations.io_orientation(affine))\n np.testing.assert_array_equal(ornt_affine, ornt_output)\n np.testing.assert_allclose(output, expected, rtol=1e-6, atol=1e-6)\n\n @parameterized.expand(DIAGONAL_CASES)\n def test_diagonal(self, affine, scale, expected):\n output = zoom_affine(affine, scale, diagonal=True)\n np.testing.assert_allclose(output, expected, rtol=1e-6, atol=1e-6)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_unittest_INVALID_CASES._no_zoom_None_bilin": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_unittest_INVALID_CASES._no_zoom_None_bilin", "embedding": null, "metadata": {"file_path": "tests/test_zoomd.py", "file_name": "test_zoomd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 23, "span_ids": ["docstring"], "tokens": 111}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\nfrom scipy.ndimage import zoom as zoom_scipy\n\nfrom monai.transforms import Zoomd\nfrom tests.utils import NumpyImageTestCase2D\n\nVALID_CASES = [(1.5, \"nearest\", False), (0.3, \"bilinear\", False), (0.8, \"bilinear\", False)]\n\nINVALID_CASES = [(\"no_zoom\", None, \"bilinear\", TypeError), (\"invalid_order\", 0.9, \"s\", ValueError)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_TestZoomd_TestZoomd.test_correct_results.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_TestZoomd_TestZoomd.test_correct_results.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_zoomd.py", "file_name": "test_zoomd.py", "file_type": "text/x-python", "category": "test", "start_line": 26, "end_line": 44, "span_ids": ["TestZoomd.test_correct_results", "TestZoomd"], "tokens": 175}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestZoomd(NumpyImageTestCase2D):\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, zoom, mode, keep_size):\n key = \"img\"\n zoom_fn = Zoomd(\n key,\n zoom=zoom,\n mode=mode,\n keep_size=keep_size,\n )\n zoomed = zoom_fn({key: self.imt[0]})\n _order = 0\n if mode.endswith(\"linear\"):\n _order = 1\n expected = []\n for channel in self.imt[0]:\n expected.append(zoom_scipy(channel, zoom=zoom, mode=\"nearest\", order=_order, prefilter=False))\n expected = np.stack(expected).astype(np.float32)\n np.testing.assert_allclose(expected, zoomed[key], atol=1.0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_TestZoomd.test_keep_size_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_TestZoomd.test_keep_size_", "embedding": null, "metadata": {"file_path": "tests/test_zoomd.py", "file_name": "test_zoomd.py", "file_type": "text/x-python", "category": "test", "start_line": 42, "end_line": 62, "span_ids": ["TestZoomd.test_keep_size", "impl:5", "TestZoomd.test_invalid_inputs"], "tokens": 210}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestZoomd(NumpyImageTestCase2D):\n\n def test_keep_size(self):\n key = \"img\"\n zoom_fn = Zoomd(key, zoom=0.6, keep_size=True)\n zoomed = zoom_fn({key: self.imt[0]})\n self.assertTrue(np.array_equal(zoomed[key].shape, self.imt.shape[1:]))\n\n zoom_fn = Zoomd(key, zoom=1.3, keep_size=True)\n zoomed = zoom_fn({key: self.imt[0]})\n self.assertTrue(np.array_equal(zoomed[key].shape, self.imt.shape[1:]))\n\n @parameterized.expand(INVALID_CASES)\n def test_invalid_inputs(self, _, zoom, mode, raises):\n key = \"img\"\n with self.assertRaises(raises):\n zoom_fn = Zoomd(key, zoom=zoom, mode=mode)\n zoom_fn({key: self.imt[0]})\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_make_nifti_image_make_nifti_image.return.image_name": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_make_nifti_image_make_nifti_image.return.image_name", "embedding": null, "metadata": {"file_path": "tests/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 33, "end_line": 45, "span_ids": ["make_nifti_image"], "tokens": 110}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def make_nifti_image(array, affine=None):\n \"\"\"\n Create a temporary nifti image on the disk and return the image name.\n User is responsible for deleting the temporary file when done with it.\n \"\"\"\n if affine is None:\n affine = np.eye(4)\n test_image = nib.Nifti1Image(array, affine)\n\n temp_f, image_name = tempfile.mkstemp(suffix=\".nii.gz\")\n nib.save(test_image, image_name)\n os.close(temp_f)\n return image_name", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_NumpyImageTestCase2D_TorchImageTestCase2D.setUp.self.segn.torch_tensor_self_segn_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_NumpyImageTestCase2D_TorchImageTestCase2D.setUp.self.segn.torch_tensor_self_segn_", "embedding": null, "metadata": {"file_path": "tests/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 48, "end_line": 67, "span_ids": ["NumpyImageTestCase2D", "TorchImageTestCase2D.setUp", "TorchImageTestCase2D", "NumpyImageTestCase2D.setUp"], "tokens": 192}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NumpyImageTestCase2D(unittest.TestCase):\n im_shape = (128, 64)\n input_channels = 1\n output_channels = 4\n num_classes = 3\n\n def setUp(self):\n im, msk = create_test_image_2d(self.im_shape[0], self.im_shape[1], 4, 20, 0, self.num_classes)\n\n self.imt = im[None, None]\n self.seg1 = (msk[None, None] > 0).astype(np.float32)\n self.segn = msk[None, None]\n\n\nclass TorchImageTestCase2D(NumpyImageTestCase2D):\n def setUp(self):\n NumpyImageTestCase2D.setUp(self)\n self.imt = torch.tensor(self.imt)\n self.seg1 = torch.tensor(self.seg1)\n self.segn = torch.tensor(self.segn)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_query_memory_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_query_memory_", "embedding": null, "metadata": {"file_path": "tests/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 568, "end_line": 588, "span_ids": ["query_memory", "impl:7"], "tokens": 214}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def query_memory(n=2):\n \"\"\"\n Find best n idle devices and return a string of device ids.\n \"\"\"\n bash_string = \"nvidia-smi --query-gpu=power.draw,temperature.gpu,memory.used --format=csv,noheader,nounits\"\n\n try:\n p1 = Popen(bash_string.split(), stdout=PIPE)\n output, error = p1.communicate()\n free_memory = [x.split(\",\") for x in output.decode(\"utf-8\").split(\"\\n\")[:-1]]\n free_memory = np.asarray(free_memory, dtype=float).T\n free_memory[1] += free_memory[0] # combine 0/1 column measures\n ids = np.lexsort(free_memory)[:n]\n except (FileNotFoundError, TypeError, IndexError):\n ids = range(n) if isinstance(n, int) else []\n return \",\".join([f\"{int(x)}\" for x in ids])\n\n\nif __name__ == \"__main__\":\n print(query_memory())", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_config_from_root_get_config_from_root.return.cfg": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_config_from_root_get_config_from_root.return.cfg", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 328, "end_line": 355, "span_ids": ["get_config_from_root"], "tokens": 293}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_config_from_root(root):\n \"\"\"Read the project setup.cfg file to determine Versioneer config.\"\"\"\n # This might raise EnvironmentError (if setup.cfg is missing), or\n # configparser.NoSectionError (if it lacks a [versioneer] section), or\n # configparser.NoOptionError (if it lacks \"VCS=\"). See the docstring at\n # the top of versioneer.py for instructions on writing your setup.cfg .\n setup_cfg = os.path.join(root, \"setup.cfg\")\n parser = configparser.ConfigParser()\n with open(setup_cfg, \"r\") as f:\n parser.read_file(f)\n VCS = parser.get(\"versioneer\", \"VCS\") # mandatory\n\n def get(parser, name):\n if parser.has_option(\"versioneer\", name):\n return parser.get(\"versioneer\", name)\n return None\n\n cfg = VersioneerConfig()\n cfg.VCS = VCS\n cfg.style = get(parser, \"style\") or \"\"\n cfg.versionfile_source = get(parser, \"versionfile_source\")\n cfg.versionfile_build = get(parser, \"versionfile_build\")\n cfg.tag_prefix = get(parser, \"tag_prefix\")\n if cfg.tag_prefix in (\"''\", '\"\"'):\n cfg.tag_prefix = \"\"\n cfg.parentdir_prefix = get(parser, \"parentdir_prefix\")\n cfg.verbose = get(parser, \"verbose\")\n return cfg", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_NotThisMethod_register_vcs_handler.return.decorate": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_NotThisMethod_register_vcs_handler.return.decorate", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 358, "end_line": 377, "span_ids": ["register_vcs_handler", "NotThisMethod", "impl"], "tokens": 128}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NotThisMethod(Exception):\n \"\"\"Exception raised if a method is not valid for the current scenario.\"\"\"\n\n\n# these dictionaries contain VCS-specific tools\nLONG_VERSION_PY = {}\nHANDLERS = {}\n\n\ndef register_vcs_handler(vcs, method): # decorator\n \"\"\"Create decorator to mark a method as the handler of a VCS.\"\"\"\n\n def decorate(f):\n \"\"\"Store f in HANDLERS[vcs][method].\"\"\"\n if vcs not in HANDLERS:\n HANDLERS[vcs] = {}\n HANDLERS[vcs][method] = f\n return f\n\n return decorate", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_run_command_run_command.return.stdout_p_returncode": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_run_command_run_command.return.stdout_p_returncode", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 380, "end_line": 410, "span_ids": ["run_command"], "tokens": 273}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None):\n \"\"\"Call the given command(s).\"\"\"\n assert isinstance(commands, list)\n p = None\n for c in commands:\n try:\n dispcmd = str([c] + args)\n # remember shell=False, so use git.cmd on windows, not just git\n p = subprocess.Popen(\n [c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)\n )\n break\n except EnvironmentError:\n e = sys.exc_info()[1]\n if e.errno == errno.ENOENT:\n continue\n if verbose:\n print(\"unable to run %s\" % dispcmd)\n print(e)\n return None, None\n else:\n if verbose:\n print(\"unable to find command, tried %s\" % (commands,))\n return None, None\n stdout = p.communicate()[0].strip().decode()\n if p.returncode != 0:\n if verbose:\n print(\"unable to run %s (error)\" % dispcmd)\n print(\"stdout was %s\" % stdout)\n return None, p.returncode\n return stdout, p.returncode", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_get_keywords_git_get_keywords.return.keywords": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_get_keywords_git_get_keywords.return.keywords", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 948, "end_line": 974, "span_ids": ["git_get_keywords"], "tokens": 255}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"get_keywords\")\ndef git_get_keywords(versionfile_abs):\n \"\"\"Extract version information from the given file.\"\"\"\n # the code embedded in _version.py can just fetch the value of these\n # keywords. When used from setup.py, we don't want to import _version.py,\n # so we do it with a regexp instead. This function is not used from\n # _version.py.\n keywords = {}\n try:\n f = open(versionfile_abs, \"r\")\n for line in f.readlines():\n if line.strip().startswith(\"git_refnames =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"refnames\"] = mo.group(1)\n if line.strip().startswith(\"git_full =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"full\"] = mo.group(1)\n if line.strip().startswith(\"git_date =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"date\"] = mo.group(1)\n f.close()\n except EnvironmentError:\n pass\n return keywords", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_versions_from_keywords_git_versions_from_keywords.return._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_versions_from_keywords_git_versions_from_keywords.return._", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 972, "end_line": 1035, "span_ids": ["git_versions_from_keywords"], "tokens": 756}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"keywords\")\ndef git_versions_from_keywords(keywords, tag_prefix, verbose):\n \"\"\"Get version information from git keywords.\"\"\"\n if not keywords:\n raise NotThisMethod(\"no keywords at all, weird\")\n date = keywords.get(\"date\")\n if date is not None:\n # Use only the last line. Previous lines may contain GPG signature\n # information.\n date = date.splitlines()[-1]\n\n # git-2.2.0 added \"%cI\", which expands to an ISO-8601 -compliant\n # datestamp. However we prefer \"%ci\" (which expands to an \"ISO-8601\n # -like\" string, which we must then edit to make compliant), because\n # it's been around since git-1.5.3, and it's too difficult to\n # discover which version we're using, or to work around using an\n # older one.\n date = date.strip().replace(\" \", \"T\", 1).replace(\" \", \"\", 1)\n refnames = keywords[\"refnames\"].strip()\n if refnames.startswith(\"$Format\"):\n if verbose:\n print(\"keywords are unexpanded, not using\")\n raise NotThisMethod(\"unexpanded keywords, not a git-archive tarball\")\n refs = set([r.strip() for r in refnames.strip(\"()\").split(\",\")])\n # starting in git-1.8.3, tags are listed as \"tag: foo-1.0\" instead of\n # just \"foo-1.0\". If we see a \"tag: \" prefix, prefer those.\n TAG = \"tag: \"\n tags = set([r[len(TAG) :] for r in refs if r.startswith(TAG)])\n if not tags:\n # Either we're using git < 1.8.3, or there really are no tags. We use\n # a heuristic: assume all version tags have a digit. The old git %d\n # expansion behaves like git log --decorate=short and strips out the\n # refs/heads/ and refs/tags/ prefixes that would let us distinguish\n # between branches and tags. By ignoring refnames without digits, we\n # filter out many common branch names like \"release\" and\n # \"stabilization\", as well as \"HEAD\" and \"master\".\n tags = set([r for r in refs if re.search(r\"\\d\", r)])\n if verbose:\n print(\"discarding '%s', no digits\" % \",\".join(refs - tags))\n if verbose:\n print(\"likely tags: %s\" % \",\".join(sorted(tags)))\n for ref in sorted(tags):\n # sorting will prefer e.g. \"2.0\" over \"2.0rc1\"\n if ref.startswith(tag_prefix):\n r = ref[len(tag_prefix) :]\n if verbose:\n print(\"picking %s\" % r)\n return {\n \"version\": r,\n \"full-revisionid\": keywords[\"full\"].strip(),\n \"dirty\": False,\n \"error\": None,\n \"date\": date,\n }\n # no suitable tags, so version is \"0+unknown\", but full hex is still there\n if verbose:\n print(\"no suitable tags, using unknown + full revision id\")\n return {\n \"version\": \"0+unknown\",\n \"full-revisionid\": keywords[\"full\"].strip(),\n \"dirty\": False,\n \"error\": \"no suitable tags\",\n \"date\": None,\n }", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1038, "end_line": 1124, "span_ids": ["git_pieces_from_vcs"], "tokens": 902}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"pieces_from_vcs\")\ndef git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command):\n \"\"\"Get version from 'git describe' in the root of the source tree.\n\n This only gets called if the git-archive 'subst' keywords were *not*\n expanded, and _version.py hasn't already been rewritten with a short\n version string, meaning we're inside a checked out source tree.\n \"\"\"\n GITS = [\"git\"]\n if sys.platform == \"win32\":\n GITS = [\"git.cmd\", \"git.exe\"]\n\n out, rc = run_command(GITS, [\"rev-parse\", \"--git-dir\"], cwd=root, hide_stderr=True)\n if rc != 0:\n if verbose:\n print(\"Directory %s not under git control\" % root)\n raise NotThisMethod(\"'git rev-parse --git-dir' returned error\")\n\n # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty]\n # if there isn't one, this yields HEX[-dirty] (no NUM)\n describe_out, rc = run_command(\n GITS, [\"describe\", \"--tags\", \"--dirty\", \"--always\", \"--long\", \"--match\", \"%s*\" % tag_prefix], cwd=root\n )\n # --long was added in git-1.5.5\n if describe_out is None:\n raise NotThisMethod(\"'git describe' failed\")\n describe_out = describe_out.strip()\n full_out, rc = run_command(GITS, [\"rev-parse\", \"HEAD\"], cwd=root)\n if full_out is None:\n raise NotThisMethod(\"'git rev-parse' failed\")\n full_out = full_out.strip()\n\n pieces = {}\n pieces[\"long\"] = full_out\n pieces[\"short\"] = full_out[:7] # maybe improved later\n pieces[\"error\"] = None\n\n # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty]\n # TAG might have hyphens.\n git_describe = describe_out\n\n # look for -dirty suffix\n dirty = git_describe.endswith(\"-dirty\")\n pieces[\"dirty\"] = dirty\n if dirty:\n git_describe = git_describe[: git_describe.rindex(\"-dirty\")]\n\n # now we have TAG-NUM-gHEX or HEX\n\n if \"-\" in git_describe:\n # TAG-NUM-gHEX\n mo = re.search(r\"^(.+)-(\\d+)-g([0-9a-f]+)$\", git_describe)\n if not mo:\n # unparseable. Maybe git-describe is misbehaving?\n pieces[\"error\"] = \"unable to parse git-describe output: '%s'\" % describe_out\n return pieces\n\n # tag\n full_tag = mo.group(1)\n if not full_tag.startswith(tag_prefix):\n if verbose:\n fmt = \"tag '%s' doesn't start with prefix '%s'\"\n print(fmt % (full_tag, tag_prefix))\n pieces[\"error\"] = \"tag '%s' doesn't start with prefix '%s'\" % (full_tag, tag_prefix)\n return pieces\n pieces[\"closest-tag\"] = full_tag[len(tag_prefix) :]\n\n # distance: number of commits since tag\n pieces[\"distance\"] = int(mo.group(2))\n\n # commit: short hex revision ID\n pieces[\"short\"] = mo.group(3)\n\n else:\n # HEX: no tags\n pieces[\"closest-tag\"] = None\n count_out, rc = run_command(GITS, [\"rev-list\", \"HEAD\", \"--count\"], cwd=root)\n pieces[\"distance\"] = int(count_out) # total number of commits\n\n # commit date: see ISO-8601 comment in git_versions_from_keywords()\n date = run_command(GITS, [\"show\", \"-s\", \"--format=%ci\", \"HEAD\"], cwd=root)[0].strip()\n # Use only the last line. Previous lines may contain GPG signature\n # information.\n date = date.splitlines()[-1]\n pieces[\"date\"] = date.strip().replace(\" \", \"T\", 1).replace(\" \", \"\", 1)\n\n return pieces", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_vcs_install_do_vcs_install.run_command_GITS_add_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_vcs_install_do_vcs_install.run_command_GITS_add_", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1125, "end_line": 1160, "span_ids": ["do_vcs_install"], "tokens": 300}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def do_vcs_install(manifest_in, versionfile_source, ipy):\n \"\"\"Git-specific installation logic for Versioneer.\n\n For Git, this means creating/changing .gitattributes to mark _version.py\n for export-subst keyword substitution.\n \"\"\"\n GITS = [\"git\"]\n if sys.platform == \"win32\":\n GITS = [\"git.cmd\", \"git.exe\"]\n files = [manifest_in, versionfile_source]\n if ipy:\n files.append(ipy)\n try:\n me = __file__\n if me.endswith(\".pyc\") or me.endswith(\".pyo\"):\n me = os.path.splitext(me)[0] + \".py\"\n versioneer_file = os.path.relpath(me)\n except NameError:\n versioneer_file = \"versioneer.py\"\n files.append(versioneer_file)\n present = False\n try:\n f = open(\".gitattributes\", \"r\")\n for line in f.readlines():\n if line.strip().startswith(versionfile_source):\n if \"export-subst\" in line.strip().split()[1:]:\n present = True\n f.close()\n except EnvironmentError:\n pass\n if not present:\n f = open(\".gitattributes\", \"a+\")\n f.write(\"%s export-subst\\n\" % versionfile_source)\n f.close()\n files.append(\".gitattributes\")\n run_command(GITS, [\"add\", \"--\"] + files)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1163, "end_line": 1188, "span_ids": ["versions_from_parentdir"], "tokens": 211}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def versions_from_parentdir(parentdir_prefix, root, verbose):\n \"\"\"Try to determine the version from the parent directory name.\n\n Source tarballs conventionally unpack into a directory that includes both\n the project name and a version string. We will also support searching up\n two directory levels for an appropriately named parent directory\n \"\"\"\n rootdirs = []\n\n for i in range(3):\n dirname = os.path.basename(root)\n if dirname.startswith(parentdir_prefix):\n return {\n \"version\": dirname[len(parentdir_prefix) :],\n \"full-revisionid\": None,\n \"dirty\": False,\n \"error\": None,\n \"date\": None,\n }\n else:\n rootdirs.append(root)\n root = os.path.dirname(root) # up a level\n\n if verbose:\n print(\"Tried directories %s but none started with prefix %s\" % (str(rootdirs), parentdir_prefix))\n raise NotThisMethod(\"rootdir doesn't start with parentdir_prefix\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_SHORT_VERSION_PY_versions_from_file.return.json_loads_mo_group_1_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_SHORT_VERSION_PY_versions_from_file.return.json_loads_mo_group_1_", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1193, "end_line": 1223, "span_ids": ["versions_from_file", "impl:6"], "tokens": 236}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "SHORT_VERSION_PY = \"\"\"\n# This file was generated by 'versioneer.py' (0.19) from\n# revision-control system data, or from the parent directory name of an\n# unpacked source archive. Distribution tarballs contain a pre-generated copy\n# of this file.\n\nimport json\n\nversion_json = '''\n%s\n''' # END VERSION_JSON\n\n\ndef get_versions():\n return json.loads(version_json)\n\"\"\"\n\n\ndef versions_from_file(filename):\n \"\"\"Try to determine the version from _version.py if present.\"\"\"\n try:\n with open(filename) as f:\n contents = f.read()\n except EnvironmentError:\n raise NotThisMethod(\"unable to read _version.py\")\n mo = re.search(r\"version_json = '''\\n(.*)''' # END VERSION_JSON\", contents, re.M | re.S)\n if not mo:\n mo = re.search(r\"version_json = '''\\r\\n(.*)''' # END VERSION_JSON\", contents, re.M | re.S)\n if not mo:\n raise NotThisMethod(\"no version_json in _version.py\")\n return json.loads(mo.group(1))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_write_to_version_file_plus_or_dot.return._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_write_to_version_file_plus_or_dot.return._", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1224, "end_line": 1238, "span_ids": ["plus_or_dot", "write_to_version_file"], "tokens": 134}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def write_to_version_file(filename, versions):\n \"\"\"Write the given version number to the given _version.py file.\"\"\"\n os.unlink(filename)\n contents = json.dumps(versions, sort_keys=True, indent=1, separators=(\",\", \": \"))\n with open(filename, \"w\") as f:\n f.write(SHORT_VERSION_PY % contents)\n\n print(\"set %s to '%s'\" % (filename, versions[\"version\"]))\n\n\ndef plus_or_dot(pieces):\n \"\"\"Return a + if we don't already have one, else return a .\"\"\"\n if \"+\" in pieces.get(\"closest-tag\", \"\"):\n return \".\"\n return \"+\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_post_render_pep440_post.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_post_render_pep440_post.return.rendered", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1281, "end_line": 1305, "span_ids": ["render_pep440_post"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_pep440_post(pieces):\n \"\"\"TAG[.postDISTANCE[.dev0]+gHEX] .\n\n The \".dev0\" means dirty. Note that .dev0 sorts backwards\n (a dirty tree will appear \"older\" than the corresponding clean one),\n but you shouldn't be releasing software with -dirty anyways.\n\n Exceptions:\n 1: no tags. 0.postDISTANCE[.dev0]\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"] or pieces[\"dirty\"]:\n rendered += \".post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n rendered += plus_or_dot(pieces)\n rendered += \"g%s\" % pieces[\"short\"]\n else:\n # exception #1\n rendered = \"0.post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n rendered += \"+g%s\" % pieces[\"short\"]\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_old_render_pep440_old.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_old_render_pep440_old.return.rendered", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1310, "end_line": 1329, "span_ids": ["render_pep440_old"], "tokens": 143}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_pep440_old(pieces):\n \"\"\"TAG[.postDISTANCE[.dev0]] .\n\n The \".dev0\" means dirty.\n\n Exceptions:\n 1: no tags. 0.postDISTANCE[.dev0]\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"] or pieces[\"dirty\"]:\n rendered += \".post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n else:\n # exception #1\n rendered = \"0.post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_render_git_describe.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_render_git_describe.return.rendered", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1330, "end_line": 1347, "span_ids": ["render_git_describe"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_git_describe(pieces):\n \"\"\"TAG[-DISTANCE-gHEX][-dirty].\n\n Like 'git describe --tags --dirty --always'.\n\n Exceptions:\n 1: no tags. HEX[-dirty] (note: no 'g' prefix)\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"]:\n rendered += \"-%d-g%s\" % (pieces[\"distance\"], pieces[\"short\"])\n else:\n # exception #1\n rendered = pieces[\"short\"]\n if pieces[\"dirty\"]:\n rendered += \"-dirty\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_long_render_git_describe_long.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_long_render_git_describe_long.return.rendered", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1350, "end_line": 1367, "span_ids": ["render_git_describe_long"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_git_describe_long(pieces):\n \"\"\"TAG-DISTANCE-gHEX[-dirty].\n\n Like 'git describe --tags --dirty --always -long'.\n The distance/hash is unconditional.\n\n Exceptions:\n 1: no tags. HEX[-dirty] (note: no 'g' prefix)\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n rendered += \"-%d-g%s\" % (pieces[\"distance\"], pieces[\"short\"])\n else:\n # exception #1\n rendered = pieces[\"short\"]\n if pieces[\"dirty\"]:\n rendered += \"-dirty\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_VersioneerBadRootError._The_project_root_direc": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_VersioneerBadRootError._The_project_root_direc", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1370, "end_line": 1409, "span_ids": ["VersioneerBadRootError", "render"], "tokens": 295}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render(pieces, style):\n \"\"\"Render the given version pieces into the requested style.\"\"\"\n if pieces[\"error\"]:\n return {\n \"version\": \"unknown\",\n \"full-revisionid\": pieces.get(\"long\"),\n \"dirty\": None,\n \"error\": pieces[\"error\"],\n \"date\": None,\n }\n\n if not style or style == \"default\":\n style = \"pep440\" # the default\n\n if style == \"pep440\":\n rendered = render_pep440(pieces)\n elif style == \"pep440-pre\":\n rendered = render_pep440_pre(pieces)\n elif style == \"pep440-post\":\n rendered = render_pep440_post(pieces)\n elif style == \"pep440-old\":\n rendered = render_pep440_old(pieces)\n elif style == \"git-describe\":\n rendered = render_git_describe(pieces)\n elif style == \"git-describe-long\":\n rendered = render_git_describe_long(pieces)\n else:\n raise ValueError(\"unknown style '%s'\" % style)\n\n return {\n \"version\": rendered,\n \"full-revisionid\": pieces[\"long\"],\n \"dirty\": pieces[\"dirty\"],\n \"error\": None,\n \"date\": pieces.get(\"date\"),\n }\n\n\nclass VersioneerBadRootError(Exception):\n \"\"\"The project root directory is unknown or missing key files.\"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_versions_get_versions.return._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_versions_get_versions.return._", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1412, "end_line": 1488, "span_ids": ["get_versions"], "tokens": 619}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_versions(verbose=False):\n \"\"\"Get the project version from whatever source is available.\n\n Returns dict with two keys: 'version' and 'full'.\n \"\"\"\n if \"versioneer\" in sys.modules:\n # see the discussion in cmdclass.py:get_cmdclass()\n del sys.modules[\"versioneer\"]\n\n root = get_root()\n cfg = get_config_from_root(root)\n\n assert cfg.VCS is not None, \"please set [versioneer]VCS= in setup.cfg\"\n handlers = HANDLERS.get(cfg.VCS)\n assert handlers, \"unrecognized VCS '%s'\" % cfg.VCS\n verbose = verbose or cfg.verbose\n assert cfg.versionfile_source is not None, \"please set versioneer.versionfile_source\"\n assert cfg.tag_prefix is not None, \"please set versioneer.tag_prefix\"\n\n versionfile_abs = os.path.join(root, cfg.versionfile_source)\n\n # extract version from first of: _version.py, VCS command (e.g. 'git\n # describe'), parentdir. This is meant to work for developers using a\n # source checkout, for users of a tarball created by 'setup.py sdist',\n # and for users of a tarball/zipball created by 'git archive' or github's\n # download-from-tag feature or the equivalent in other VCSes.\n\n get_keywords_f = handlers.get(\"get_keywords\")\n from_keywords_f = handlers.get(\"keywords\")\n if get_keywords_f and from_keywords_f:\n try:\n keywords = get_keywords_f(versionfile_abs)\n ver = from_keywords_f(keywords, cfg.tag_prefix, verbose)\n if verbose:\n print(\"got version from expanded keyword %s\" % ver)\n return ver\n except NotThisMethod:\n pass\n\n try:\n ver = versions_from_file(versionfile_abs)\n if verbose:\n print(\"got version from file %s %s\" % (versionfile_abs, ver))\n return ver\n except NotThisMethod:\n pass\n\n from_vcs_f = handlers.get(\"pieces_from_vcs\")\n if from_vcs_f:\n try:\n pieces = from_vcs_f(cfg.tag_prefix, root, verbose)\n ver = render(pieces, cfg.style)\n if verbose:\n print(\"got version from VCS %s\" % ver)\n return ver\n except NotThisMethod:\n pass\n\n try:\n if cfg.parentdir_prefix:\n ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose)\n if verbose:\n print(\"got version from parentdir %s\" % ver)\n return ver\n except NotThisMethod:\n pass\n\n if verbose:\n print(\"unable to compute version\")\n\n return {\n \"version\": \"0+unknown\",\n \"full-revisionid\": None,\n \"dirty\": None,\n \"error\": \"unable to compute version\",\n \"date\": None,\n }", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_version_get_cmdclass.from_distutils_core_impor": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_version_get_cmdclass.from_distutils_core_impor", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1493, "end_line": 1522, "span_ids": ["get_cmdclass", "get_version"], "tokens": 344}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_version():\n \"\"\"Get the short version string for this project.\"\"\"\n return get_versions()[\"version\"]\n\n\ndef get_cmdclass(cmdclass=None):\n \"\"\"Get the custom setuptools/distutils subclasses used by Versioneer.\n\n If the package uses a different cmdclass (e.g. one from numpy), it\n should be provide as an argument.\n \"\"\"\n if \"versioneer\" in sys.modules:\n del sys.modules[\"versioneer\"]\n # this fixes the \"python setup.py develop\" case (also 'install' and\n # 'easy_install .'), in which subdependencies of the main project are\n # built (using setup.py bdist_egg) in the same python process. Assume\n # a main project A and a dependency B, which use different versions\n # of Versioneer. A's setup.py imports A's Versioneer, leaving it in\n # sys.modules by the time B's setup.py is executed, causing B to run\n # with the wrong versioneer. Setuptools wraps the sub-dep builds in a\n # sandbox that restores sys.modules to it's pre-build state, so the\n # parent is protected against the child's \"import versioneer\". By\n # removing ourselves from sys.modules here, before the child build\n # happens, we protect the child from the parent's versioneer too.\n # Also see https://github.com/python-versioneer/python-versioneer/issues/52\n\n cmds = {} if cmdclass is None else cmdclass.copy()\n\n # we add \"version\" to both distutils and setuptools\n from distutils.core import Command\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_version_get_cmdclass.cmd_version.run.if_vers_error_.print_error_s_vers": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_version_get_cmdclass.cmd_version.run.if_vers_error_.print_error_s_vers", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1524, "end_line": 1542, "span_ids": ["get_cmdclass"], "tokens": 155}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_cmdclass(cmdclass=None):\n # ... other code\n\n class cmd_version(Command):\n description = \"report generated version string\"\n user_options = []\n boolean_options = []\n\n def initialize_options(self):\n pass\n\n def finalize_options(self):\n pass\n\n def run(self):\n vers = get_versions(verbose=True)\n print(\"Version: %s\" % vers[\"version\"])\n print(\" full-revisionid: %s\" % vers.get(\"full-revisionid\"))\n print(\" dirty: %s\" % vers.get(\"dirty\"))\n print(\" date: %s\" % vers.get(\"date\"))\n if vers[\"error\"]:\n print(\" error: %s\" % vers[\"error\"])\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_sdist_get_cmdclass.return.cmds": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_sdist_get_cmdclass.return.cmds", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1683, "end_line": 1705, "span_ids": ["get_cmdclass"], "tokens": 221}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_cmdclass(cmdclass=None):\n # ... other code\n\n class cmd_sdist(_sdist):\n def run(self):\n versions = get_versions()\n self._versioneer_generated_versions = versions\n # unless we update this, the command will keep using the old\n # version\n self.distribution.metadata.version = versions[\"version\"]\n return _sdist.run(self)\n\n def make_release_tree(self, base_dir, files):\n root = get_root()\n cfg = get_config_from_root(root)\n _sdist.make_release_tree(self, base_dir, files)\n # now locate _version.py in the new base_dir directory\n # (remembering that it may be a hardlink) and replace it with an\n # updated value\n target_versionfile = os.path.join(base_dir, cfg.versionfile_source)\n print(\"UPDATING %s\" % target_versionfile)\n write_to_version_file(target_versionfile, self._versioneer_generated_versions)\n\n cmds[\"sdist\"] = cmd_sdist\n\n return cmds", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_CONFIG_ERROR_INIT_PY_SNIPPET._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_CONFIG_ERROR_INIT_PY_SNIPPET._", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1708, "end_line": 1749, "span_ids": ["impl:8"], "tokens": 243}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "CONFIG_ERROR = \"\"\"\nsetup.cfg is missing the necessary Versioneer configuration. You need\na section like:\n\n [versioneer]\n VCS = git\n style = pep440\n versionfile_source = src/myproject/_version.py\n versionfile_build = myproject/_version.py\n tag_prefix =\n parentdir_prefix = myproject-\n\nYou will also need to edit your setup.py to use the results:\n\n import versioneer\n setup(version=versioneer.get_version(),\n cmdclass=versioneer.get_cmdclass(), ...)\n\nPlease read the docstring in ./versioneer.py for configuration instructions,\nedit setup.cfg, and re-run the installer or 'python versioneer.py setup'.\n\"\"\"\n\nSAMPLE_CONFIG = \"\"\"\n# See the docstring in versioneer.py for instructions. Note that you must\n# re-run 'versioneer.py setup' after changing this section, and commit the\n# resulting files.\n\n[versioneer]\n#VCS = git\n#style = pep440\n#versionfile_source =\n#versionfile_build =\n#tag_prefix =\n#parentdir_prefix =\n\n\"\"\"\n\nINIT_PY_SNIPPET = \"\"\"\nfrom ._version import get_versions\n__version__ = get_versions()['version']\ndel get_versions\n\"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_setup_do_setup.return.0": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_setup_do_setup.return.0", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1752, "end_line": 1831, "span_ids": ["do_setup"], "tokens": 763}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def do_setup():\n \"\"\"Do main VCS-independent setup function for installing Versioneer.\"\"\"\n root = get_root()\n try:\n cfg = get_config_from_root(root)\n except (EnvironmentError, configparser.NoSectionError, configparser.NoOptionError) as e:\n if isinstance(e, (EnvironmentError, configparser.NoSectionError)):\n print(\"Adding sample versioneer config to setup.cfg\", file=sys.stderr)\n with open(os.path.join(root, \"setup.cfg\"), \"a\") as f:\n f.write(SAMPLE_CONFIG)\n print(CONFIG_ERROR, file=sys.stderr)\n return 1\n\n print(\" creating %s\" % cfg.versionfile_source)\n with open(cfg.versionfile_source, \"w\") as f:\n LONG = LONG_VERSION_PY[cfg.VCS]\n f.write(\n LONG\n % {\n \"DOLLAR\": \"$\",\n \"STYLE\": cfg.style,\n \"TAG_PREFIX\": cfg.tag_prefix,\n \"PARENTDIR_PREFIX\": cfg.parentdir_prefix,\n \"VERSIONFILE_SOURCE\": cfg.versionfile_source,\n }\n )\n\n ipy = os.path.join(os.path.dirname(cfg.versionfile_source), \"__init__.py\")\n if os.path.exists(ipy):\n try:\n with open(ipy, \"r\") as f:\n old = f.read()\n except EnvironmentError:\n old = \"\"\n if INIT_PY_SNIPPET not in old:\n print(\" appending to %s\" % ipy)\n with open(ipy, \"a\") as f:\n f.write(INIT_PY_SNIPPET)\n else:\n print(\" %s unmodified\" % ipy)\n else:\n print(\" %s doesn't exist, ok\" % ipy)\n ipy = None\n\n # Make sure both the top-level \"versioneer.py\" and versionfile_source\n # (PKG/_version.py, used by runtime code) are in MANIFEST.in, so\n # they'll be copied into source distributions. Pip won't be able to\n # install the package without this.\n manifest_in = os.path.join(root, \"MANIFEST.in\")\n simple_includes = set()\n try:\n with open(manifest_in, \"r\") as f:\n for line in f:\n if line.startswith(\"include \"):\n for include in line.split()[1:]:\n simple_includes.add(include)\n except EnvironmentError:\n pass\n # That doesn't cover everything MANIFEST.in can do\n # (http://docs.python.org/2/distutils/sourcedist.html#commands), so\n # it might give some false negatives. Appending redundant 'include'\n # lines is safe, though.\n if \"versioneer.py\" not in simple_includes:\n print(\" appending 'versioneer.py' to MANIFEST.in\")\n with open(manifest_in, \"a\") as f:\n f.write(\"include versioneer.py\\n\")\n else:\n print(\" 'versioneer.py' already in MANIFEST.in\")\n if cfg.versionfile_source not in simple_includes:\n print(\" appending versionfile_source ('%s') to MANIFEST.in\" % cfg.versionfile_source)\n with open(manifest_in, \"a\") as f:\n f.write(\"include %s\\n\" % cfg.versionfile_source)\n else:\n print(\" versionfile_source already in MANIFEST.in\")\n\n # Make VCS-specific changes. For git, this means creating/changing\n # .gitattributes to mark _version.py for export-subst keyword\n # substitution.\n do_vcs_install(manifest_in, cfg.versionfile_source, ipy)\n return 0", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_scan_setup_py_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_scan_setup_py_", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1834, "end_line": 1878, "span_ids": ["scan_setup_py", "impl:14"], "tokens": 351}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def scan_setup_py():\n \"\"\"Validate the contents of setup.py against Versioneer's expectations.\"\"\"\n found = set()\n setters = False\n errors = 0\n with open(\"setup.py\", \"r\") as f:\n for line in f.readlines():\n if \"import versioneer\" in line:\n found.add(\"import\")\n if \"versioneer.get_cmdclass()\" in line:\n found.add(\"cmdclass\")\n if \"versioneer.get_version()\" in line:\n found.add(\"get_version\")\n if \"versioneer.VCS\" in line:\n setters = True\n if \"versioneer.versionfile_source\" in line:\n setters = True\n if len(found) != 3:\n print(\"\")\n print(\"Your setup.py appears to be missing some important items\")\n print(\"(but I might be wrong). Please make sure it has something\")\n print(\"roughly like the following:\")\n print(\"\")\n print(\" import versioneer\")\n print(\" setup( version=versioneer.get_version(),\")\n print(\" cmdclass=versioneer.get_cmdclass(), ...)\")\n print(\"\")\n errors += 1\n if setters:\n print(\"You should remove lines like 'versioneer.VCS = ' and\")\n print(\"'versioneer.versionfile_source = ' . This configuration\")\n print(\"now lives in setup.cfg, and should be removed from setup.py\")\n print(\"\")\n errors += 1\n return errors\n\n\nif __name__ == \"__main__\":\n cmd = sys.argv[1]\n if cmd == \"setup\":\n errors = do_setup()\n errors += scan_setup_py()\n if errors:\n sys.exit(1)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/type_definitions.py_from_typing_import_Collec_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/type_definitions.py_from_typing_import_Collec_", "embedding": null, "metadata": {"file_path": "monai/config/type_definitions.py", "file_name": "type_definitions.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 78, "span_ids": ["docstring:13", "docstring"], "tokens": 522}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Collection, Hashable, Iterable, Sequence, TypeVar, Union\n\nimport numpy as np\nimport torch\n\n__all__ = [\"KeysCollection\", \"IndexSelection\", \"DtypeLike\", \"NdarrayTensor\", \"TensorOrList\"]\n\n\"\"\"Commonly used concepts\nThis module provides naming and type specifications for commonly used concepts\nwithin the MONAI package. The intent is to explicitly identify information\nthat should be used consistently throughout the entire MONAI package.\n\nA type would be named as type_definitions.KeysCollection\nwhich includes a meaningful name for the consent in the name itself. The\ndefinitions in this file map context meaningful names to the underlying\nobject properties that define the expected API.\n\nA conceptual type is represented by a new type name but is also one which\ncan be different depending on an environment (i.e. differences for python 3.6 vs 3.9\nmay be implemented). Consistent use of the concept and recorded documentation of\nthe rationale and convention behind it lowers the learning curve for new\ndevelopers. For readability, short names are preferred.\n\"\"\"\n\nKeysCollection = Union[Collection[Hashable], Hashable]\n\"\"\"KeysCollection\n\nThe KeyCollection type is used to for defining variables\nthat store a subset of keys to select items from a dictionary.\nThe container of keys must contain hashable elements.\nNOTE: `Hashable` is not a collection, but is provided as a\n convenience to end-users. All supplied values will be\n internally converted to a tuple of `Hashable`'s before\n use\n\"\"\"\n\n\nIndexSelection = Union[Iterable[int], int]\n\"\"\"IndexSelection\n\nThe IndexSelection type is used to for defining variables\nthat store a subset of indices to select items from a List or Array like objects.\nThe indices must be integers, and if a container of indices is specified, the\ncontainer must be iterable.\n\"\"\"\n\n\nDtypeLike = Union[\n np.dtype,\n type,\n None,\n]\n\"\"\"Type of datatypes\nadapted from https://github.com/numpy/numpy/blob/master/numpy/typing/_dtype_like.py\n\"\"\"\n\n# Generic type which can represent either a numpy.ndarray or a torch.Tensor\n# Unlike Union can create a dependence between parameter(s) / return(s)\nNdarrayTensor = TypeVar(\"NdarrayTensor\", np.ndarray, torch.Tensor)\n\n\nTensorOrList = Union[torch.Tensor, Sequence[torch.Tensor]]\n\"\"\"TensorOrList\n\nThe TensorOrList type is used for defining `batch-first Tensor` or `list of channel-first Tensor`.\n\"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_from_typing_import_Dict__PNGSaver.__init__.self._data_index.0": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_from_typing_import_Dict__PNGSaver.__init__.self._data_index.0", "embedding": null, "metadata": {"file_path": "monai/data/png_saver.py", "file_name": "png_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 78, "span_ids": ["PNGSaver.__init__", "PNGSaver", "docstring"], "tokens": 676}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Dict, Optional, Union\n\nimport numpy as np\nimport torch\n\nfrom monai.data.png_writer import write_png\nfrom monai.data.utils import create_file_basename\nfrom monai.utils import ImageMetaKey as Key\nfrom monai.utils import InterpolateMode\n\n\nclass PNGSaver:\n \"\"\"\n Save the data as png file, it can support single data content or a batch of data.\n Typically, the data can be segmentation predictions, call `save` for single data\n or call `save_batch` to save a batch of data together.\n The name of saved file will be `{input_image_name}_{output_postfix}{output_ext}`,\n where the input image name is extracted from the provided meta data dictionary.\n If no meta data provided, use index from 0 as the filename prefix.\n\n \"\"\"\n\n def __init__(\n self,\n output_dir: str = \"./\",\n output_postfix: str = \"seg\",\n output_ext: str = \".png\",\n resample: bool = True,\n mode: Union[InterpolateMode, str] = InterpolateMode.NEAREST,\n scale: Optional[int] = None,\n data_root_dir: str = \"\",\n print_log: bool = True,\n ) -> None:\n \"\"\"\n Args:\n output_dir: output image directory.\n output_postfix: a string appended to all output file names.\n output_ext: output file extension name.\n resample: whether to resample and resize if providing spatial_shape in the metadata.\n mode: {``\"nearest\"``, ``\"linear\"``, ``\"bilinear\"``, ``\"bicubic\"``, ``\"trilinear\"``, ``\"area\"``}\n The interpolation mode. Defaults to ``\"nearest\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n scale: {``255``, ``65535``} postprocess data by clipping to [0, 1] and scaling\n [0, 255] (uint8) or [0, 65535] (uint16). Default is None to disable scaling.\n data_root_dir: if not empty, it specifies the beginning parts of the input file's\n absolute path. it's used to compute `input_file_rel_path`, the relative path to the file from\n `data_root_dir` to preserve folder structure when saving in case there are files in different\n folders with the same file names. for example:\n input_file_name: /foo/bar/test1/image.png,\n postfix: seg\n output_ext: png\n output_dir: /output,\n data_root_dir: /foo/bar,\n output will be: /output/test1/image/image_seg.png\n print_log: whether to print log about the saved PNG file path, etc. default to `True`.\n\n \"\"\"\n self.output_dir = output_dir\n self.output_postfix = output_postfix\n self.output_ext = output_ext\n self.resample = resample\n self.mode: InterpolateMode = InterpolateMode(mode)\n self.scale = scale\n self.data_root_dir = data_root_dir\n self.print_log = print_log\n\n self._data_index = 0", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_from_typing_import_TYPE_C__default_eval_transform.return.y_pred_y": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_from_typing_import_TYPE_C__default_eval_transform.return.y_pred_y", "embedding": null, "metadata": {"file_path": "monai/engines/multi_gpu_supervised_trainer.py", "file_name": "multi_gpu_supervised_trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 45, "span_ids": ["_default_eval_transform", "_default_transform", "docstring"], "tokens": 325}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import TYPE_CHECKING, Callable, Dict, Optional, Sequence, Tuple\n\nimport torch\nimport torch.nn\nfrom torch.nn.parallel import DataParallel, DistributedDataParallel\nfrom torch.optim.optimizer import Optimizer\n\nfrom monai.engines.utils import get_devices_spec\nfrom monai.utils import exact_version, optional_import\n\ncreate_supervised_trainer, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"create_supervised_trainer\")\ncreate_supervised_evaluator, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"create_supervised_evaluator\")\n_prepare_batch, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"_prepare_batch\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\n from ignite.metrics import Metric\nelse:\n Engine, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Engine\")\n Metric, _ = optional_import(\"ignite.metrics\", \"0.4.4\", exact_version, \"Metric\")\n\n__all__ = [\n \"create_multigpu_supervised_trainer\",\n \"create_multigpu_supervised_evaluator\",\n]\n\n\ndef _default_transform(_x: torch.Tensor, _y: torch.Tensor, _y_pred: torch.Tensor, loss: torch.Tensor) -> float:\n return loss.item()\n\n\ndef _default_eval_transform(\n x: torch.Tensor, y: torch.Tensor, y_pred: torch.Tensor\n) -> Tuple[torch.Tensor, torch.Tensor]:\n return y_pred, y", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer_GanTrainer._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer_GanTrainer._", "embedding": null, "metadata": {"file_path": "monai/engines/trainer.py", "file_name": "trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 187, "end_line": 231, "span_ids": ["GanTrainer"], "tokens": 637}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GanTrainer(Trainer):\n \"\"\"\n Generative adversarial network training based on Goodfellow et al. 2014 https://arxiv.org/abs/1406.266,\n inherits from ``Trainer`` and ``Workflow``.\n\n Training Loop: for each batch of data size `m`\n 1. Generate `m` fakes from random latent codes.\n 2. Update discriminator with these fakes and current batch reals, repeated d_train_steps times.\n 3. If g_update_latents, generate `m` fakes from new random latent codes.\n 4. Update generator with these fakes using discriminator feedback.\n\n Args:\n device: an object representing the device on which to run.\n max_epochs: the total epoch number for engine to run.\n train_data_loader: Core ignite engines uses `DataLoader` for training loop batchdata.\n g_network: generator (G) network architecture.\n g_optimizer: G optimizer function.\n g_loss_function: G loss function for optimizer.\n d_network: discriminator (D) network architecture.\n d_optimizer: D optimizer function.\n d_loss_function: D loss function for optimizer.\n epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`.\n g_inferer: inference method to execute G model forward. Defaults to ``SimpleInferer()``.\n d_inferer: inference method to execute D model forward. Defaults to ``SimpleInferer()``.\n d_train_steps: number of times to update D with real data minibatch. Defaults to ``1``.\n latent_shape: size of G input latent code. Defaults to ``64``.\n non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously\n with respect to the host. For other cases, this argument has no effect.\n d_prepare_batch: callback function to prepare batchdata for D inferer.\n Defaults to return ``GanKeys.REALS`` in batchdata dict.\n g_prepare_batch: callback function to create batch of latent input for G inferer.\n Defaults to return random latents.\n g_update_latents: Calculate G loss with new latent codes. Defaults to ``True``.\n iteration_update: the callable function for every iteration, expect to accept `engine`\n and `batchdata` as input parameters. if not provided, use `self._iteration()` instead.\n post_transform: execute additional transformation for the model output data.\n Typically, several Tensor based transforms composed by `Compose`.\n key_train_metric: compute metric when every iteration completed, and save average value to\n engine.state.metrics when epoch completed. key_train_metric is the main metric to compare and save the\n checkpoint into files.\n additional_metrics: more Ignite metrics that also attach to Ignite Engine.\n train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like:\n CheckpointHandler, StatsHandler, SegmentationSaver, etc.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer.__init___GanTrainer.__init__.self.g_update_latents.g_update_latents": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer.__init___GanTrainer.__init__.self.g_update_latents.g_update_latents", "embedding": null, "metadata": {"file_path": "monai/engines/trainer.py", "file_name": "trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 233, "end_line": 287, "span_ids": ["GanTrainer.__init__"], "tokens": 496}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GanTrainer(Trainer):\n\n def __init__(\n self,\n device: torch.device,\n max_epochs: int,\n train_data_loader: DataLoader,\n g_network: torch.nn.Module,\n g_optimizer: Optimizer,\n g_loss_function: Callable,\n d_network: torch.nn.Module,\n d_optimizer: Optimizer,\n d_loss_function: Callable,\n epoch_length: Optional[int] = None,\n g_inferer: Optional[Inferer] = None,\n d_inferer: Optional[Inferer] = None,\n d_train_steps: int = 1,\n latent_shape: int = 64,\n non_blocking: bool = False,\n d_prepare_batch: Callable = default_prepare_batch,\n g_prepare_batch: Callable = default_make_latent,\n g_update_latents: bool = True,\n iteration_update: Optional[Callable] = None,\n post_transform: Optional[Transform] = None,\n key_train_metric: Optional[Dict[str, Metric]] = None,\n additional_metrics: Optional[Dict[str, Metric]] = None,\n train_handlers: Optional[Sequence] = None,\n ):\n if not isinstance(train_data_loader, DataLoader):\n raise ValueError(\"train_data_loader must be PyTorch DataLoader.\")\n\n # set up Ignite engine and environments\n super().__init__(\n device=device,\n max_epochs=max_epochs,\n data_loader=train_data_loader,\n epoch_length=epoch_length,\n non_blocking=non_blocking,\n prepare_batch=d_prepare_batch,\n iteration_update=iteration_update,\n key_metric=key_train_metric,\n additional_metrics=additional_metrics,\n handlers=train_handlers,\n post_transform=post_transform,\n )\n self.g_network = g_network\n self.g_optimizer = g_optimizer\n self.g_loss_function = g_loss_function\n self.g_inferer = SimpleInferer() if g_inferer is None else g_inferer\n self.d_network = d_network\n self.d_optimizer = d_optimizer\n self.d_loss_function = d_loss_function\n self.d_inferer = SimpleInferer() if d_inferer is None else d_inferer\n self.d_train_steps = d_train_steps\n self.latent_shape = latent_shape\n self.g_prepare_batch = g_prepare_batch\n self.g_update_latents = g_update_latents", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer._iteration_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer._iteration_", "embedding": null, "metadata": {"file_path": "monai/engines/trainer.py", "file_name": "trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 289, "end_line": 338, "span_ids": ["GanTrainer._iteration"], "tokens": 423}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GanTrainer(Trainer):\n\n def _iteration(\n self, engine: Engine, batchdata: Union[Dict, Sequence]\n ) -> Dict[str, Union[torch.Tensor, int, float, bool]]:\n \"\"\"\n Callback function for Adversarial Training processing logic of 1 iteration in Ignite Engine.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data.\n\n Raises:\n ValueError: must provide batch data for current iteration.\n\n \"\"\"\n if batchdata is None:\n raise ValueError(\"must provide batch data for current iteration.\")\n\n d_input = self.prepare_batch(batchdata, engine.state.device, engine.non_blocking)\n batch_size = self.data_loader.batch_size # type: ignore\n g_input = self.g_prepare_batch(batch_size, self.latent_shape, engine.state.device, engine.non_blocking)\n g_output = self.g_inferer(g_input, self.g_network)\n\n # Train Discriminator\n d_total_loss = torch.zeros(\n 1,\n )\n for _ in range(self.d_train_steps):\n self.d_optimizer.zero_grad()\n dloss = self.d_loss_function(g_output, d_input)\n dloss.backward()\n self.d_optimizer.step()\n d_total_loss += dloss.item()\n\n # Train Generator\n if self.g_update_latents:\n g_input = self.g_prepare_batch(batch_size, self.latent_shape, engine.state.device, engine.non_blocking)\n g_output = self.g_inferer(g_input, self.g_network)\n self.g_optimizer.zero_grad()\n g_loss = self.g_loss_function(g_output)\n g_loss.backward()\n self.g_optimizer.step()\n\n return {\n GanKeys.REALS: d_input,\n GanKeys.FAKES: g_output,\n GanKeys.LATENTS: g_input,\n GanKeys.GLOSS: g_loss.item(),\n GanKeys.DLOSS: d_total_loss.item(),\n }", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_loader.py", "file_name": "checkpoint_loader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 25, "span_ids": ["docstring"], "tokens": 123}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nfrom typing import TYPE_CHECKING, Dict, Optional\n\nimport torch\n\nfrom monai.networks.utils import copy_model_state\nfrom monai.utils import exact_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Events\")\nCheckpoint, _ = optional_import(\"ignite.handlers\", \"0.4.4\", exact_version, \"Checkpoint\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Engine\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader_CheckpointLoader.attach.engine_add_event_handler_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader_CheckpointLoader.attach.engine_add_event_handler_", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_loader.py", "file_name": "checkpoint_loader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 28, "end_line": 85, "span_ids": ["CheckpointLoader.attach", "CheckpointLoader", "CheckpointLoader.__init__"], "tokens": 566}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointLoader:\n \"\"\"\n CheckpointLoader acts as an Ignite handler to load checkpoint data from file.\n It can load variables for network, optimizer, lr_scheduler, etc.\n If saving checkpoint after `torch.nn.DataParallel`, need to save `model.module` instead\n as PyTorch recommended and then use this loader to load the model.\n\n Args:\n load_path: the file path of checkpoint, it should be a PyTorch `pth` file.\n load_dict: target objects that load checkpoint to. examples::\n\n {'network': net, 'optimizer': optimizer, 'lr_scheduler': lr_scheduler}\n\n name: identifier of logging.logger to use, if None, defaulting to ``engine.logger``.\n map_location: when loading the module for distributed training/evaluation,\n need to provide an appropriate map_location argument to prevent a process\n to step into others\u2019 devices. If map_location is missing, torch.load will\n first load the module to CPU and then copy each parameter to where it was\n saved, which would result in all processes on the same machine using the\n same set of devices.\n strict: whether to strictly enforce that the keys in `state_dict` match the keys\n returned by `torch.nn.Module.state_dict` function. default to `True`.\n strict_shape: whether to enforce the data shape of the matched layers in the checkpoint,\n `if `False`, it will skip the layers that have different data shape with checkpoint content.\n This can be useful advanced feature for transfer learning. users should totally\n understand which layers will have different shape. default to `True`.\n\n \"\"\"\n\n def __init__(\n self,\n load_path: str,\n load_dict: Dict,\n name: Optional[str] = None,\n map_location: Optional[Dict] = None,\n strict: bool = True,\n strict_shape: bool = True,\n ) -> None:\n if load_path is None:\n raise AssertionError(\"must provide clear path to load checkpoint.\")\n self.load_path = load_path\n if not (load_dict is not None and len(load_dict) > 0):\n raise AssertionError(\"must provide target objects to load.\")\n self.logger = logging.getLogger(name)\n self.load_dict = load_dict\n self._name = name\n self.map_location = map_location\n self.strict = strict\n self.strict_shape = strict_shape\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n engine.add_event_handler(Events.STARTED, self)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader.__call___": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader.__call___", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_loader.py", "file_name": "checkpoint_loader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 87, "end_line": 117, "span_ids": ["CheckpointLoader.__call__"], "tokens": 323}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointLoader:\n\n def __call__(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n checkpoint = torch.load(self.load_path, map_location=self.map_location)\n\n if not self.strict_shape:\n k, _ = list(self.load_dict.items())[0]\n # single object and checkpoint is directly a state_dict\n if len(self.load_dict) == 1 and k not in checkpoint:\n checkpoint = {k: checkpoint}\n\n # skip items that don't match data shape\n for k, obj in self.load_dict.items():\n checkpoint[k] = copy_model_state(obj, checkpoint, inplace=False)[0]\n\n # save current max epochs setting in the engine, don't overwrite it if larger than max_epochs in checkpoint\n prior_max_epochs = engine.state.max_epochs\n Checkpoint.load_objects(to_load=self.load_dict, checkpoint=checkpoint, strict=self.strict)\n if engine.state.epoch > prior_max_epochs:\n raise ValueError(\n f\"Epoch count ({engine.state.epoch}) in checkpoint is larger than \"\n f\"the `engine.state.max_epochs` ({prior_max_epochs}) of engine. To further train from checkpoint, \"\n \"construct trainer with `max_epochs` larger than checkpoint's epoch count. \"\n \"To use checkpoint for inference, no need to load state_dict for the engine.\"\n )\n engine.state.max_epochs = prior_max_epochs\n\n self.logger.info(f\"Restored all variables from {self.load_path}\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.exception_raised_CheckpointSaver.exception_raised.raise_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.exception_raised_CheckpointSaver.exception_raised.raise_e", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_saver.py", "file_name": "checkpoint_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 256, "end_line": 275, "span_ids": ["CheckpointSaver.exception_raised"], "tokens": 222}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointSaver:\n\n def exception_raised(self, engine: Engine, e: Exception) -> None:\n \"\"\"Callback for train or validation/evaluation exception raised Event.\n Save current data as final checkpoint if configure save_final is True. This callback may be skipped\n because the logic with Ignite can only trigger the first attached handler for `EXCEPTION_RAISED` event.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n e: the exception caught in Ignite during engine.run().\n \"\"\"\n if not callable(self._final_checkpoint):\n raise AssertionError(\"Error: _final_checkpoint function not specified.\")\n # delete previous saved final checkpoint if existing\n self._delete_previous_final_ckpt()\n self._final_checkpoint(engine)\n if self.logger is None:\n raise AssertionError\n if not hasattr(self.logger, \"info\"):\n raise AssertionError(\"Error, provided logger has not info attribute.\")\n self.logger.info(f\"Exception raised, saved the last checkpoint: {self._final_checkpoint.last_checkpoint}\")\n raise e", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.metrics_completed_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.metrics_completed_", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_saver.py", "file_name": "checkpoint_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 277, "end_line": 305, "span_ids": ["CheckpointSaver.metrics_completed", "CheckpointSaver.interval_completed"], "tokens": 251}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointSaver:\n\n def metrics_completed(self, engine: Engine) -> None:\n \"\"\"Callback to compare metrics and save models in train or validation when epoch completed.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if not callable(self._key_metric_checkpoint):\n raise AssertionError(\"Error: _key_metric_checkpoint function not specified.\")\n self._key_metric_checkpoint(engine)\n\n def interval_completed(self, engine: Engine) -> None:\n \"\"\"Callback for train epoch/iteration completed Event.\n Save checkpoint if configure save_interval = N\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if not callable(self._interval_checkpoint):\n raise AssertionError(\"Error: _interval_checkpoint function not specified.\")\n self._interval_checkpoint(engine)\n if self.logger is None:\n raise AssertionError\n if not hasattr(self.logger, \"info\"):\n raise AssertionError(\"Error, provided logger has not info attribute.\")\n if self.epoch_level:\n self.logger.info(f\"Saved checkpoint at epoch: {engine.state.epoch}\")\n else:\n self.logger.info(f\"Saved checkpoint at iteration: {engine.state.iteration}\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo", "embedding": null, "metadata": {"file_path": "monai/handlers/lr_schedule_handler.py", "file_name": "lr_schedule_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 23, "span_ids": ["docstring"], "tokens": 111}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nfrom typing import TYPE_CHECKING, Any, Callable, Optional, Union\n\nfrom torch.optim.lr_scheduler import ReduceLROnPlateau, _LRScheduler\n\nfrom monai.utils import ensure_tuple, exact_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Events\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Engine\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo", "embedding": null, "metadata": {"file_path": "monai/handlers/segmentation_saver.py", "file_name": "segmentation_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 25, "span_ids": ["docstring"], "tokens": 122}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nfrom typing import TYPE_CHECKING, Callable, Optional, Union\n\nimport numpy as np\n\nfrom monai.config import DtypeLike\nfrom monai.transforms import SaveImage\nfrom monai.utils import GridSampleMode, GridSamplePadMode, InterpolateMode, exact_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Events\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Engine\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_logging_DEFAULT_TAG._Loss_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_logging_DEFAULT_TAG._Loss_", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 27, "span_ids": ["docstring"], "tokens": 115}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nimport warnings\nfrom typing import TYPE_CHECKING, Any, Callable, Optional\n\nimport torch\n\nfrom monai.utils import exact_version, is_scalar, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Events\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Engine\")\n\nDEFAULT_KEY_VAL_FORMAT = \"{}: {:.4f} \"\nDEFAULT_TAG = \"Loss\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.epoch_completed_StatsHandler.iteration_completed.if_self_iteration_print_l.else_.self__default_iteration_p": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.epoch_completed_StatsHandler.iteration_completed.if_self_iteration_print_l.else_.self__default_iteration_p", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 105, "end_line": 131, "span_ids": ["StatsHandler.epoch_completed", "StatsHandler.iteration_completed"], "tokens": 192}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class StatsHandler:\n\n def epoch_completed(self, engine: Engine) -> None:\n \"\"\"\n Handler for train or validation/evaluation epoch completed Event.\n Print epoch level log, default values are from Ignite state.metrics dict.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if self.epoch_print_logger is not None:\n self.epoch_print_logger(engine)\n else:\n self._default_epoch_print(engine)\n\n def iteration_completed(self, engine: Engine) -> None:\n \"\"\"\n Handler for train or validation/evaluation iteration completed Event.\n Print iteration level log, default values are from Ignite state.logs dict.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if self.iteration_print_logger is not None:\n self.iteration_print_logger(engine)\n else:\n self._default_iteration_print(engine)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.exception_raised_StatsHandler.exception_raised.raise_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.exception_raised_StatsHandler.exception_raised.raise_e", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 133, "end_line": 145, "span_ids": ["StatsHandler.exception_raised"], "tokens": 123}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class StatsHandler:\n\n def exception_raised(self, engine: Engine, e: Exception) -> None:\n \"\"\"\n Handler for train or validation/evaluation exception raised Event.\n Print the exception information and traceback. This callback may be skipped because the logic\n with Ignite can only trigger the first attached handler for `EXCEPTION_RAISED` event.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n e: the exception caught in Ignite during engine.run().\n\n \"\"\"\n self.logger.exception(f\"Exception: {e}\")\n raise e", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_warnings_DEFAULT_TAG._Loss_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_warnings_DEFAULT_TAG._Loss_", "embedding": null, "metadata": {"file_path": "monai/handlers/tensorboard_handlers.py", "file_name": "tensorboard_handlers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 29, "span_ids": ["docstring"], "tokens": 150}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import warnings\nfrom typing import TYPE_CHECKING, Any, Callable, Optional\n\nimport numpy as np\nimport torch\n\nfrom monai.utils import exact_version, is_scalar, optional_import\nfrom monai.visualize import plot_2d_or_3d_image\n\nEvents, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Events\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\n from torch.utils.tensorboard import SummaryWriter\nelse:\n Engine, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Engine\")\n SummaryWriter, _ = optional_import(\"torch.utils.tensorboard\", name=\"SummaryWriter\")\n\nDEFAULT_TAG = \"Loss\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_warnings_DiceLoss._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_warnings_DiceLoss._", "embedding": null, "metadata": {"file_path": "monai/losses/dice.py", "file_name": "dice.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 41, "span_ids": ["DiceLoss", "docstring"], "tokens": 358}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import warnings\nfrom typing import Callable, List, Optional, Sequence, Union\n\nimport numpy as np\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\nfrom torch.nn.modules.loss import _Loss\n\nfrom monai.losses.focal_loss import FocalLoss\nfrom monai.losses.spatial_mask import MaskedLoss\nfrom monai.networks import one_hot\nfrom monai.utils import LossReduction, Weight\n\n\nclass DiceLoss(_Loss):\n \"\"\"\n Compute average Dice loss between two tensors. It can support both multi-classes and multi-labels tasks.\n Input logits `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]).\n Axis N of `input` is expected to have logit predictions for each class rather than being image channels,\n while the same axis of `target` can be 1 or N (one-hot format). The `smooth_nr` and `smooth_dr` parameters are\n values added to the intersection and union components of the inter-over-union calculation to smooth results\n respectively, these values should be small. The `include_background` class attribute can be set to False for\n an instance of DiceLoss to exclude the first category (channel index 0) which is by convention assumed to be\n background. If the non-background segmentations are small compared to the total image size they can get\n overwhelmed by the signal from the background so excluding it in such cases helps convergence.\n\n Milletari, F. et. al. (2016) V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation, 3DV, 2016.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedDiceLoss.forward_GeneralizedDiceLoss.forward.return.f": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedDiceLoss.forward_GeneralizedDiceLoss.forward.return.f", "embedding": null, "metadata": {"file_path": "monai/losses/dice.py", "file_name": "dice.py", "file_type": "text/x-python", "category": "implementation", "start_line": 294, "end_line": 363, "span_ids": ["GeneralizedDiceLoss.forward"], "tokens": 620}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GeneralizedDiceLoss(_Loss):\n\n def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n input: the shape should be BNH[WD].\n target: the shape should be BNH[WD].\n\n Raises:\n ValueError: When ``self.reduction`` is not one of [\"mean\", \"sum\", \"none\"].\n\n \"\"\"\n if self.sigmoid:\n input = torch.sigmoid(input)\n n_pred_ch = input.shape[1]\n if self.softmax:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `softmax=True` ignored.\")\n else:\n input = torch.softmax(input, 1)\n\n if self.other_act is not None:\n input = self.other_act(input)\n\n if self.to_onehot_y:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `to_onehot_y=True` ignored.\")\n else:\n target = one_hot(target, num_classes=n_pred_ch)\n\n if not self.include_background:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `include_background=False` ignored.\")\n else:\n # if skipping background, removing first channel\n target = target[:, 1:]\n input = input[:, 1:]\n\n if target.shape != input.shape:\n raise AssertionError(f\"ground truth has differing shape ({target.shape}) from input ({input.shape})\")\n\n # reducing only spatial dimensions (not batch nor channels)\n reduce_axis: List[int] = torch.arange(2, len(input.shape)).tolist()\n if self.batch:\n reduce_axis = [0] + reduce_axis\n intersection = torch.sum(target * input, reduce_axis)\n\n ground_o = torch.sum(target, reduce_axis)\n pred_o = torch.sum(input, reduce_axis)\n\n denominator = ground_o + pred_o\n\n w = self.w_func(ground_o.float())\n for b in w:\n infs = torch.isinf(b)\n b[infs] = 0.0\n b[infs] = torch.max(b)\n\n f: torch.Tensor = 1.0 - (2.0 * (intersection * w).sum(0 if self.batch else 1) + self.smooth_nr) / (\n (denominator * w).sum(0 if self.batch else 1) + self.smooth_dr\n )\n\n if self.reduction == LossReduction.MEAN.value:\n f = torch.mean(f) # the batch and channel average\n elif self.reduction == LossReduction.SUM.value:\n f = torch.sum(f) # sum over the batch and channel dims\n elif self.reduction == LossReduction.NONE.value:\n pass # returns [N, n_classes] losses\n else:\n raise ValueError(f'Unsupported reduction: {self.reduction}, available options are [\"mean\", \"sum\", \"none\"].')\n\n return f", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss.wasserstein_distance_map_GeneralizedWassersteinDiceLoss.wasserstein_distance_map.return.wasserstein_map": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss.wasserstein_distance_map_GeneralizedWassersteinDiceLoss.wasserstein_distance_map.return.wasserstein_map", "embedding": null, "metadata": {"file_path": "monai/losses/dice.py", "file_name": "dice.py", "file_type": "text/x-python", "category": "implementation", "start_line": 502, "end_line": 538, "span_ids": ["GeneralizedWassersteinDiceLoss.wasserstein_distance_map"], "tokens": 414}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GeneralizedWassersteinDiceLoss(_Loss):\n\n def wasserstein_distance_map(self, flat_proba: torch.Tensor, flat_target: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Compute the voxel-wise Wasserstein distance between the\n flattened prediction and the flattened labels (ground_truth) with respect\n to the distance matrix on the label space M.\n This corresponds to eq. 6 in:\n\n Fidon L. et al. (2017) Generalised Wasserstein Dice Score for Imbalanced Multi-class\n Segmentation using Holistic Convolutional Networks. BrainLes 2017.\n\n Args:\n flat_proba: the probabilities of input(predicted) tensor.\n flat_target: the target tensor.\n \"\"\"\n # Turn the distance matrix to a map of identical matrix\n m = torch.clone(torch.as_tensor(self.m)).to(flat_proba.device)\n m_extended = torch.unsqueeze(m, dim=0)\n m_extended = torch.unsqueeze(m_extended, dim=3)\n m_extended = m_extended.expand((flat_proba.size(0), m_extended.size(1), m_extended.size(2), flat_proba.size(2)))\n\n # Expand the feature dimensions of the target\n flat_target_extended = torch.unsqueeze(flat_target, dim=1)\n flat_target_extended = flat_target_extended.expand(\n (flat_target.size(0), m_extended.size(1), flat_target.size(1))\n )\n flat_target_extended = torch.unsqueeze(flat_target_extended, dim=1)\n\n # Extract the vector of class distances for the ground-truth label at each voxel\n m_extended = torch.gather(m_extended, dim=1, index=flat_target_extended)\n m_extended = torch.squeeze(m_extended, dim=1)\n\n # Compute the wasserstein distance map\n wasserstein_map = m_extended * flat_proba\n\n # Sum over the classes\n wasserstein_map = torch.sum(wasserstein_map, dim=1)\n return wasserstein_map", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_from_typing_import_Option_Convolution._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_from_typing_import_Option_Convolution._", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/convolutions.py", "file_name": "convolutions.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 94, "span_ids": ["Convolution", "docstring"], "tokens": 721}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Tuple, Union\n\nimport numpy as np\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.blocks import ADN\nfrom monai.networks.layers.convutils import same_padding, stride_minus_kernel_padding\nfrom monai.networks.layers.factories import Conv\n\n\nclass Convolution(nn.Sequential):\n \"\"\"\n Constructs a convolution with normalization, optional dropout, and optional activation layers::\n\n -- (Conv|ConvTrans) -- (Norm -- Dropout -- Acti) --\n\n if ``conv_only`` set to ``True``::\n\n -- (Conv|ConvTrans) --\n\n For example:\n\n .. code-block:: python\n\n from monai.networks.blocks import Convolution\n\n conv = Convolution(\n dimensions=3,\n in_channels=1,\n out_channels=1,\n adn_ordering=\"ADN\",\n act=(\"prelu\", {\"init\": 0.2}),\n dropout=0.1,\n norm=(\"layer\", {\"normalized_shape\": (10, 10, 10)}),\n )\n print(conv)\n\n output::\n\n Convolution(\n (conv): Conv3d(1, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n (adn): ADN(\n (A): PReLU(num_parameters=1)\n (D): Dropout(p=0.1, inplace=False)\n (N): LayerNorm((10, 10, 10), eps=1e-05, elementwise_affine=True)\n )\n )\n\n Args:\n dimensions: number of spatial dimensions.\n in_channels: number of input channels.\n out_channels: number of output channels.\n strides: convolution stride. Defaults to 1.\n kernel_size: convolution kernel size. Defaults to 3.\n adn_ordering: a string representing the ordering of activation, normalization, and dropout.\n Defaults to \"NDA\".\n act: activation type and arguments. Defaults to PReLU.\n norm: feature normalization type and arguments. Defaults to instance norm.\n dropout: dropout ratio. Defaults to no dropout.\n dropout_dim: determine the dimensions of dropout. Defaults to 1.\n\n - When dropout_dim = 1, randomly zeroes some of the elements for each channel.\n - When dropout_dim = 2, Randomly zeroes out entire channels (a channel is a 2D feature map).\n - When dropout_dim = 3, Randomly zeroes out entire channels (a channel is a 3D feature map).\n\n The value of dropout_dim should be no no larger than the value of `dimensions`.\n dilation: dilation rate. Defaults to 1.\n groups: controls the connections between inputs and outputs. Defaults to 1.\n bias: whether to have a bias term. Defaults to True.\n conv_only: whether to use the convolutional layer only. Defaults to False.\n is_transposed: if True uses ConvTrans instead of Conv. Defaults to False.\n padding: controls the amount of implicit zero-paddings on both sides for padding number of points\n for each dimension. Defaults to None.\n output_padding: controls the additional size added to one side of the output shape.\n Defaults to None.\n\n See also:\n\n :py:class:`monai.networks.layers.Conv`\n :py:class:`monai.networks.blocks.ADN`\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit_ResidualUnit._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit_ResidualUnit._", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/convolutions.py", "file_name": "convolutions.py", "file_type": "text/x-python", "category": "implementation", "start_line": 169, "end_line": 241, "span_ids": ["ResidualUnit"], "tokens": 683}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ResidualUnit(nn.Module):\n \"\"\"\n Residual module with multiple convolutions and a residual connection.\n\n For example:\n\n .. code-block:: python\n\n from monai.networks.blocks import ResidualUnit\n\n convs = ResidualUnit(\n dimensions=3,\n in_channels=1,\n out_channels=1,\n adn_ordering=\"AN\",\n act=(\"prelu\", {\"init\": 0.2}),\n norm=(\"layer\", {\"normalized_shape\": (10, 10, 10)}),\n )\n print(convs)\n\n output::\n\n ResidualUnit(\n (conv): Sequential(\n (unit0): Convolution(\n (conv): Conv3d(1, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n (adn): ADN(\n (A): PReLU(num_parameters=1)\n (N): LayerNorm((10, 10, 10), eps=1e-05, elementwise_affine=True)\n )\n )\n (unit1): Convolution(\n (conv): Conv3d(1, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n (adn): ADN(\n (A): PReLU(num_parameters=1)\n (N): LayerNorm((10, 10, 10), eps=1e-05, elementwise_affine=True)\n )\n )\n )\n (residual): Identity()\n )\n\n Args:\n dimensions: number of spatial dimensions.\n in_channels: number of input channels.\n out_channels: number of output channels.\n strides: convolution stride. Defaults to 1.\n kernel_size: convolution kernel size. Defaults to 3.\n subunits: number of convolutions. Defaults to 2.\n adn_ordering: a string representing the ordering of activation, normalization, and dropout.\n Defaults to \"NDA\".\n act: activation type and arguments. Defaults to PReLU.\n norm: feature normalization type and arguments. Defaults to instance norm.\n dropout: dropout ratio. Defaults to no dropout.\n dropout_dim: determine the dimensions of dropout. Defaults to 1.\n\n - When dropout_dim = 1, randomly zeroes some of the elements for each channel.\n - When dropout_dim = 2, Randomly zero out entire channels (a channel is a 2D feature map).\n - When dropout_dim = 3, Randomly zero out entire channels (a channel is a 3D feature map).\n\n The value of dropout_dim should be no no larger than the value of `dimensions`.\n dilation: dilation rate. Defaults to 1.\n bias: whether to have a bias term. Defaults to True.\n last_conv_only: for the last subunit, whether to use the convolutional layer only.\n Defaults to False.\n padding: controls the amount of implicit zero-paddings on both sides for padding number of points\n for each dimension. Defaults to None.\n\n See also:\n\n :py:class:`monai.networks.blocks.Convolution`\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit.__init___": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit.__init___", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/convolutions.py", "file_name": "convolutions.py", "file_type": "text/x-python", "category": "implementation", "start_line": 243, "end_line": 314, "span_ids": ["ResidualUnit.forward", "ResidualUnit.__init__"], "tokens": 634}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ResidualUnit(nn.Module):\n\n def __init__(\n self,\n dimensions: int,\n in_channels: int,\n out_channels: int,\n strides: Union[Sequence[int], int] = 1,\n kernel_size: Union[Sequence[int], int] = 3,\n subunits: int = 2,\n adn_ordering: str = \"NDA\",\n act: Optional[Union[Tuple, str]] = \"PRELU\",\n norm: Optional[Union[Tuple, str]] = \"INSTANCE\",\n dropout: Optional[Union[Tuple, str, float]] = None,\n dropout_dim: Optional[int] = 1,\n dilation: Union[Sequence[int], int] = 1,\n bias: bool = True,\n last_conv_only: bool = False,\n padding: Optional[Union[Sequence[int], int]] = None,\n ) -> None:\n super().__init__()\n self.dimensions = dimensions\n self.in_channels = in_channels\n self.out_channels = out_channels\n self.conv = nn.Sequential()\n self.residual = nn.Identity()\n if not padding:\n padding = same_padding(kernel_size, dilation)\n schannels = in_channels\n sstrides = strides\n subunits = max(1, subunits)\n\n for su in range(subunits):\n conv_only = last_conv_only and su == (subunits - 1)\n unit = Convolution(\n dimensions,\n schannels,\n out_channels,\n strides=sstrides,\n kernel_size=kernel_size,\n adn_ordering=adn_ordering,\n act=act,\n norm=norm,\n dropout=dropout,\n dropout_dim=dropout_dim,\n dilation=dilation,\n bias=bias,\n conv_only=conv_only,\n padding=padding,\n )\n\n self.conv.add_module(f\"unit{su:d}\", unit)\n\n # after first loop set channels and strides to what they should be for subsequent units\n schannels = out_channels\n sstrides = 1\n\n # apply convolution to input to change number of output channels and size to match that coming from self.conv\n if np.prod(strides) != 1 or in_channels != out_channels:\n rkernel_size = kernel_size\n rpadding = padding\n\n if np.prod(strides) == 1: # if only adapting number of channels a 1x1 kernel is used with no padding\n rkernel_size = 1\n rpadding = 0\n\n conv_type = Conv[Conv.CONV, dimensions]\n self.residual = conv_type(in_channels, out_channels, rkernel_size, strides, rpadding, bias=bias)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n res: torch.Tensor = self.residual(x) # create the additive residual from x\n cx: torch.Tensor = self.conv(x) # apply x to sequence of operations\n return cx + res # add the residual to the output", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_from_typing_import_Type_GCN.forward.return.x": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_from_typing_import_Type_GCN.forward.return.x", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/fcn.py", "file_name": "fcn.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 57, "span_ids": ["GCN", "GCN.forward", "GCN.__init__", "docstring"], "tokens": 460}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Type\n\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\n\nfrom monai.networks.blocks.convolutions import Convolution\nfrom monai.networks.blocks.upsample import UpSample\nfrom monai.networks.layers.factories import Act, Conv, Norm\nfrom monai.utils import optional_import\n\nmodels, _ = optional_import(\"torchvision\", name=\"models\")\n\n\nclass GCN(nn.Module):\n \"\"\"\n The Global Convolutional Network module using large 1D\n Kx1 and 1xK kernels to represent 2D kernels.\n \"\"\"\n\n def __init__(self, inplanes: int, planes: int, ks: int = 7):\n \"\"\"\n Args:\n inplanes: number of input channels.\n planes: number of output channels.\n ks: kernel size for one dimension. Defaults to 7.\n \"\"\"\n super(GCN, self).__init__()\n\n conv2d_type: Type[nn.Conv2d] = Conv[Conv.CONV, 2]\n self.conv_l1 = conv2d_type(in_channels=inplanes, out_channels=planes, kernel_size=(ks, 1), padding=(ks // 2, 0))\n self.conv_l2 = conv2d_type(in_channels=planes, out_channels=planes, kernel_size=(1, ks), padding=(0, ks // 2))\n self.conv_r1 = conv2d_type(in_channels=inplanes, out_channels=planes, kernel_size=(1, ks), padding=(0, ks // 2))\n self.conv_r2 = conv2d_type(in_channels=planes, out_channels=planes, kernel_size=(ks, 1), padding=(ks // 2, 0))\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n x: in shape (batch, inplanes, spatial_1, spatial_2).\n \"\"\"\n x_l = self.conv_l1(x)\n x_l = self.conv_l2(x_l)\n x_r = self.conv_r1(x)\n x_r = self.conv_r2(x_r)\n x = x_l + x_r\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_Refine_Refine.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_Refine_Refine.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/fcn.py", "file_name": "fcn.py", "file_type": "text/x-python", "category": "implementation", "start_line": 60, "end_line": 95, "span_ids": ["Refine", "Refine.__init__", "Refine.forward"], "tokens": 297}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Refine(nn.Module):\n \"\"\"\n Simple residual block to refine the details of the activation maps.\n \"\"\"\n\n def __init__(self, planes: int):\n \"\"\"\n Args:\n planes: number of input channels.\n \"\"\"\n super(Refine, self).__init__()\n\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n conv2d_type: Type[nn.Conv2d] = Conv[Conv.CONV, 2]\n norm2d_type: Type[nn.BatchNorm2d] = Norm[Norm.BATCH, 2]\n\n self.bn = norm2d_type(num_features=planes)\n self.relu = relu_type(inplace=True)\n self.conv1 = conv2d_type(in_channels=planes, out_channels=planes, kernel_size=3, padding=1)\n self.conv2 = conv2d_type(in_channels=planes, out_channels=planes, kernel_size=3, padding=1)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n x: in shape (batch, planes, spatial_1, spatial_2).\n \"\"\"\n residual = x\n x = self.bn(x)\n x = self.relu(x)\n x = self.conv1(x)\n x = self.bn(x)\n x = self.relu(x)\n x = self.conv2(x)\n\n out = residual + x\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_FCN_FCN.__init__.if_self_upsample_mode_.self.up_conv.UpSample_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_FCN_FCN.__init__.if_self_upsample_mode_.self.up_conv.UpSample_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/fcn.py", "file_name": "fcn.py", "file_type": "text/x-python", "category": "implementation", "start_line": 98, "end_line": 163, "span_ids": ["FCN.__init__", "FCN"], "tokens": 662}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class FCN(nn.Module):\n \"\"\"\n 2D FCN network with 3 input channels. The small decoder is built\n with the GCN and Refine modules.\n The code is adapted from `lsqshr's official 2D code `_.\n\n Args:\n out_channels: number of output channels. Defaults to 1.\n upsample_mode: [``\"transpose\"``, ``\"bilinear\"``]\n The mode of upsampling manipulations.\n Using the second mode cannot guarantee the model's reproducibility. Defaults to ``bilinear``.\n\n - ``transpose``, uses transposed convolution layers.\n - ``bilinear``, uses bilinear interpolation.\n\n pretrained: If True, returns a model pre-trained on ImageNet\n progress: If True, displays a progress bar of the download to stderr.\n \"\"\"\n\n def __init__(\n self, out_channels: int = 1, upsample_mode: str = \"bilinear\", pretrained: bool = True, progress: bool = True\n ):\n super(FCN, self).__init__()\n\n conv2d_type: Type[nn.Conv2d] = Conv[Conv.CONV, 2]\n\n self.upsample_mode = upsample_mode\n self.conv2d_type = conv2d_type\n self.out_channels = out_channels\n resnet = models.resnet50(pretrained=pretrained, progress=progress)\n\n self.conv1 = resnet.conv1\n self.bn0 = resnet.bn1\n self.relu = resnet.relu\n self.maxpool = resnet.maxpool\n\n self.layer1 = resnet.layer1\n self.layer2 = resnet.layer2\n self.layer3 = resnet.layer3\n self.layer4 = resnet.layer4\n\n self.gcn1 = GCN(2048, self.out_channels)\n self.gcn2 = GCN(1024, self.out_channels)\n self.gcn3 = GCN(512, self.out_channels)\n self.gcn4 = GCN(64, self.out_channels)\n self.gcn5 = GCN(64, self.out_channels)\n\n self.refine1 = Refine(self.out_channels)\n self.refine2 = Refine(self.out_channels)\n self.refine3 = Refine(self.out_channels)\n self.refine4 = Refine(self.out_channels)\n self.refine5 = Refine(self.out_channels)\n self.refine6 = Refine(self.out_channels)\n self.refine7 = Refine(self.out_channels)\n self.refine8 = Refine(self.out_channels)\n self.refine9 = Refine(self.out_channels)\n self.refine10 = Refine(self.out_channels)\n self.transformer = self.conv2d_type(in_channels=256, out_channels=64, kernel_size=1)\n\n if self.upsample_mode == \"transpose\":\n self.up_conv = UpSample(\n dimensions=2,\n in_channels=self.out_channels,\n scale_factor=2,\n mode=\"deconv\",\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_FCN.forward_FCN.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_FCN.forward_FCN.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/fcn.py", "file_name": "fcn.py", "file_type": "text/x-python", "category": "implementation", "start_line": 164, "end_line": 206, "span_ids": ["FCN.forward"], "tokens": 512}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class FCN(nn.Module):\n\n def forward(self, x: torch.Tensor):\n \"\"\"\n Args:\n x: in shape (batch, 3, spatial_1, spatial_2).\n \"\"\"\n org_input = x\n x = self.conv1(x)\n x = self.bn0(x)\n x = self.relu(x)\n conv_x = x\n x = self.maxpool(x)\n pool_x = x\n\n fm1 = self.layer1(x)\n fm2 = self.layer2(fm1)\n fm3 = self.layer3(fm2)\n fm4 = self.layer4(fm3)\n\n gcfm1 = self.refine1(self.gcn1(fm4))\n gcfm2 = self.refine2(self.gcn2(fm3))\n gcfm3 = self.refine3(self.gcn3(fm2))\n gcfm4 = self.refine4(self.gcn4(pool_x))\n gcfm5 = self.refine5(self.gcn5(conv_x))\n\n if self.upsample_mode == \"transpose\":\n fs1 = self.refine6(self.up_conv(gcfm1) + gcfm2)\n fs2 = self.refine7(self.up_conv(fs1) + gcfm3)\n fs3 = self.refine8(self.up_conv(fs2) + gcfm4)\n fs4 = self.refine9(self.up_conv(fs3) + gcfm5)\n out = self.refine10(self.up_conv(fs4))\n else:\n fs1 = self.refine6(\n F.interpolate(gcfm1, fm3.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm2\n )\n fs2 = self.refine7(F.interpolate(fs1, fm2.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm3)\n fs3 = self.refine8(\n F.interpolate(fs2, pool_x.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm4\n )\n fs4 = self.refine9(\n F.interpolate(fs3, conv_x.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm5\n )\n out = self.refine10(F.interpolate(fs4, org_input.size()[2:], mode=self.upsample_mode, align_corners=True))\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_MCFCN_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_MCFCN_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/fcn.py", "file_name": "fcn.py", "file_type": "text/x-python", "category": "implementation", "start_line": 210, "end_line": 258, "span_ids": ["MCFCN.forward", "MCFCN.__init__", "MCFCN"], "tokens": 375}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MCFCN(FCN):\n \"\"\"\n The multi-channel version of the 2D FCN module.\n Adds a projection layer to take arbitrary number of inputs.\n\n Args:\n in_channels: number of input channels. Defaults to 3.\n out_channels: number of output channels. Defaults to 1.\n upsample_mode: [``\"transpose\"``, ``\"bilinear\"``]\n The mode of upsampling manipulations.\n Using the second mode cannot guarantee the model's reproducibility. Defaults to ``bilinear``.\n\n - ``transpose``, uses transposed convolution layers.\n - ``bilinear``, uses bilinear interpolate.\n pretrained: If True, returns a model pre-trained on ImageNet\n progress: If True, displays a progress bar of the download to stderr.\n \"\"\"\n\n def __init__(\n self,\n in_channels: int = 3,\n out_channels: int = 1,\n upsample_mode: str = \"bilinear\",\n pretrained: bool = True,\n progress: bool = True,\n ):\n super(MCFCN, self).__init__(\n out_channels=out_channels, upsample_mode=upsample_mode, pretrained=pretrained, progress=progress\n )\n\n self.init_proj = Convolution(\n dimensions=2,\n in_channels=in_channels,\n out_channels=3,\n kernel_size=1,\n act=(\"relu\", {\"inplace\": True}),\n norm=Norm.BATCH,\n bias=False,\n )\n\n def forward(self, x: torch.Tensor):\n \"\"\"\n Args:\n x: in shape (batch, in_channels, spatial_1, spatial_2).\n \"\"\"\n x = self.init_proj(x)\n out = super(MCFCN, self).forward(x)\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/segresnet_block.py_ResBlock_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/segresnet_block.py_ResBlock_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/segresnet_block.py", "file_name": "segresnet_block.py", "file_type": "text/x-python", "category": "implementation", "start_line": 52, "end_line": 100, "span_ids": ["ResBlock.__init__", "ResBlock.forward", "ResBlock"], "tokens": 368}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ResBlock(nn.Module):\n \"\"\"\n ResBlock employs skip connection and two convolution blocks and is used\n in SegResNet based on `3D MRI brain tumor segmentation using autoencoder regularization\n `_.\n \"\"\"\n\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n norm: Union[Tuple, str],\n kernel_size: int = 3,\n ) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions, could be 1, 2 or 3.\n in_channels: number of input channels.\n norm: feature normalization type and arguments.\n kernel_size: convolution kernel size, the value should be an odd number. Defaults to 3.\n \"\"\"\n\n super().__init__()\n\n if kernel_size % 2 != 1:\n raise AssertionError(\"kernel_size should be an odd number.\")\n\n self.norm1 = get_norm_layer(name=norm, spatial_dims=spatial_dims, channels=in_channels)\n self.norm2 = get_norm_layer(name=norm, spatial_dims=spatial_dims, channels=in_channels)\n self.relu = Act[Act.RELU](inplace=True)\n self.conv1 = get_conv_layer(spatial_dims, in_channels=in_channels, out_channels=in_channels)\n self.conv2 = get_conv_layer(spatial_dims, in_channels=in_channels, out_channels=in_channels)\n\n def forward(self, x):\n\n identity = x\n\n x = self.norm1(x)\n x = self.relu(x)\n x = self.conv1(x)\n\n x = self.norm2(x)\n x = self.relu(x)\n x = self.conv2(x)\n\n x += identity\n\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEBottleneck_SEBottleneck.__init__.super_SEBottleneck_self_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEBottleneck_SEBottleneck.__init__.super_SEBottleneck_self_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/squeeze_and_excitation.py", "file_name": "squeeze_and_excitation.py", "file_type": "text/x-python", "category": "implementation", "start_line": 224, "end_line": 270, "span_ids": ["SEBottleneck.__init__", "SEBottleneck"], "tokens": 342}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SEBottleneck(SEBlock):\n \"\"\"\n Bottleneck for SENet154.\n \"\"\"\n\n expansion = 4\n\n def __init__(\n self,\n spatial_dims: int,\n inplanes: int,\n planes: int,\n groups: int,\n reduction: int,\n stride: int = 1,\n downsample: Optional[Convolution] = None,\n ) -> None:\n\n conv_param_1 = {\n \"strides\": 1,\n \"kernel_size\": 1,\n \"act\": (\"relu\", {\"inplace\": True}),\n \"norm\": Norm.BATCH,\n \"bias\": False,\n }\n conv_param_2 = {\n \"strides\": stride,\n \"kernel_size\": 3,\n \"act\": (\"relu\", {\"inplace\": True}),\n \"norm\": Norm.BATCH,\n \"groups\": groups,\n \"bias\": False,\n }\n conv_param_3 = {\"strides\": 1, \"kernel_size\": 1, \"act\": None, \"norm\": Norm.BATCH, \"bias\": False}\n\n super(SEBottleneck, self).__init__(\n spatial_dims=spatial_dims,\n in_channels=inplanes,\n n_chns_1=planes * 2,\n n_chns_2=planes * 4,\n n_chns_3=planes * 4,\n conv_param_1=conv_param_1,\n conv_param_2=conv_param_2,\n conv_param_3=conv_param_3,\n project=downsample,\n r=reduction,\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEResNetBottleneck_SEResNetBottleneck.__init__.super_SEResNetBottleneck_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEResNetBottleneck_SEResNetBottleneck.__init__.super_SEResNetBottleneck_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/squeeze_and_excitation.py", "file_name": "squeeze_and_excitation.py", "file_type": "text/x-python", "category": "implementation", "start_line": 273, "end_line": 321, "span_ids": ["SEResNetBottleneck", "SEResNetBottleneck.__init__"], "tokens": 388}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SEResNetBottleneck(SEBlock):\n \"\"\"\n ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe\n implementation and uses `strides=stride` in `conv1` and not in `conv2`\n (the latter is used in the torchvision implementation of ResNet).\n \"\"\"\n\n expansion = 4\n\n def __init__(\n self,\n spatial_dims: int,\n inplanes: int,\n planes: int,\n groups: int,\n reduction: int,\n stride: int = 1,\n downsample: Optional[Convolution] = None,\n ) -> None:\n\n conv_param_1 = {\n \"strides\": stride,\n \"kernel_size\": 1,\n \"act\": (\"relu\", {\"inplace\": True}),\n \"norm\": Norm.BATCH,\n \"bias\": False,\n }\n conv_param_2 = {\n \"strides\": 1,\n \"kernel_size\": 3,\n \"act\": (\"relu\", {\"inplace\": True}),\n \"norm\": Norm.BATCH,\n \"groups\": groups,\n \"bias\": False,\n }\n conv_param_3 = {\"strides\": 1, \"kernel_size\": 1, \"act\": None, \"norm\": Norm.BATCH, \"bias\": False}\n\n super(SEResNetBottleneck, self).__init__(\n spatial_dims=spatial_dims,\n in_channels=inplanes,\n n_chns_1=planes,\n n_chns_2=planes,\n n_chns_3=planes * 4,\n conv_param_1=conv_param_1,\n conv_param_2=conv_param_2,\n conv_param_3=conv_param_3,\n project=downsample,\n r=reduction,\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEResNeXtBottleneck_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEResNeXtBottleneck_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/squeeze_and_excitation.py", "file_name": "squeeze_and_excitation.py", "file_type": "text/x-python", "category": "implementation", "start_line": 332, "end_line": 381, "span_ids": ["SEResNeXtBottleneck.__init__", "SEResNeXtBottleneck"], "tokens": 371}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SEResNeXtBottleneck(SEBlock):\n \"\"\"\n ResNeXt bottleneck type C with a Squeeze-and-Excitation module.\n \"\"\"\n\n expansion = 4\n\n def __init__(\n self,\n spatial_dims: int,\n inplanes: int,\n planes: int,\n groups: int,\n reduction: int,\n stride: int = 1,\n downsample: Optional[Convolution] = None,\n base_width: int = 4,\n ) -> None:\n\n conv_param_1 = {\n \"strides\": 1,\n \"kernel_size\": 1,\n \"act\": (\"relu\", {\"inplace\": True}),\n \"norm\": Norm.BATCH,\n \"bias\": False,\n }\n conv_param_2 = {\n \"strides\": stride,\n \"kernel_size\": 3,\n \"act\": (\"relu\", {\"inplace\": True}),\n \"norm\": Norm.BATCH,\n \"groups\": groups,\n \"bias\": False,\n }\n conv_param_3 = {\"strides\": 1, \"kernel_size\": 1, \"act\": None, \"norm\": Norm.BATCH, \"bias\": False}\n width = math.floor(planes * (base_width / 64)) * groups\n\n super().__init__(\n spatial_dims=spatial_dims,\n in_channels=inplanes,\n n_chns_1=width,\n n_chns_2=width,\n n_chns_3=planes * 4,\n conv_param_1=conv_param_1,\n conv_param_2=conv_param_2,\n conv_param_3=conv_param_3,\n project=downsample,\n r=reduction,\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_calculate_out_shape_calculate_out_shape.return.out_shape_if_len_out_shap": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_calculate_out_shape_calculate_out_shape.return.out_shape_if_len_out_shap", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 59, "end_line": 78, "span_ids": ["calculate_out_shape"], "tokens": 243}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def calculate_out_shape(\n in_shape: Union[Sequence[int], int, np.ndarray],\n kernel_size: Union[Sequence[int], int],\n stride: Union[Sequence[int], int],\n padding: Union[Sequence[int], int],\n) -> Union[Tuple[int, ...], int]:\n \"\"\"\n Calculate the output tensor shape when applying a convolution to a tensor of shape `inShape` with kernel size\n `kernel_size`, stride value `stride`, and input padding value `padding`. All arguments can be scalars or multiple\n values, return value is a scalar if all inputs are scalars.\n \"\"\"\n in_shape_np = np.atleast_1d(in_shape)\n kernel_size_np = np.atleast_1d(kernel_size)\n stride_np = np.atleast_1d(stride)\n padding_np = np.atleast_1d(padding)\n\n out_shape_np = ((in_shape_np - kernel_size_np + padding_np + padding_np) // stride_np) + 1\n out_shape = tuple(int(s) for s in out_shape_np)\n\n return out_shape if len(out_shape) > 1 else out_shape[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTMFunction_LLTMFunction.backward.return.d_input_d_weights_d_bia": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTMFunction_LLTMFunction.backward.return.d_input_d_weights_d_bia", "embedding": null, "metadata": {"file_path": "monai/networks/layers/simplelayers.py", "file_name": "simplelayers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 161, "end_line": 176, "span_ids": ["LLTMFunction.forward", "LLTMFunction", "LLTMFunction.backward"], "tokens": 163}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LLTMFunction(Function):\n @staticmethod\n def forward(ctx, input, weights, bias, old_h, old_cell):\n outputs = _C.lltm_forward(input, weights, bias, old_h, old_cell)\n new_h, new_cell = outputs[:2]\n variables = outputs[1:] + [weights]\n ctx.save_for_backward(*variables)\n\n return new_h, new_cell\n\n @staticmethod\n def backward(ctx, grad_h, grad_cell):\n outputs = _C.lltm_backward(grad_h.contiguous(), grad_cell.contiguous(), *ctx.saved_tensors)\n d_old_h, d_input, d_weights, d_bias, d_old_cell = outputs[:5]\n\n return d_input, d_weights, d_bias, d_old_h, d_old_cell", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTM_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTM_", "embedding": null, "metadata": {"file_path": "monai/networks/layers/simplelayers.py", "file_name": "simplelayers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 146, "end_line": 176, "span_ids": ["LLTM.forward", "LLTM", "LLTM.__init__", "LLTM.reset_parameters"], "tokens": 290}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LLTM(nn.Module):\n \"\"\"\n This recurrent unit is similar to an LSTM, but differs in that it lacks a forget\n gate and uses an Exponential Linear Unit (ELU) as its internal activation function.\n Because this unit never forgets, call it LLTM, or Long-Long-Term-Memory unit.\n It has both C++ and CUDA implementation, automatically switch according to the\n target device where put this module to.\n\n Args:\n input_features: size of input feature data\n state_size: size of the state of recurrent unit\n\n Referring to: https://pytorch.org/tutorials/advanced/cpp_extension.html\n \"\"\"\n\n def __init__(self, input_features: int, state_size: int):\n super(LLTM, self).__init__()\n self.input_features = input_features\n self.state_size = state_size\n self.weights = nn.Parameter(torch.empty(3 * state_size, input_features + state_size))\n self.bias = nn.Parameter(torch.empty(1, 3 * state_size))\n self.reset_parameters()\n\n def reset_parameters(self):\n stdv = 1.0 / math.sqrt(self.state_size)\n for weight in self.parameters():\n weight.data.uniform_(-stdv, +stdv)\n\n def forward(self, input, state):\n return LLTMFunction.apply(input, self.weights, self.bias, *state)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_math_Bottleneck3x3x1.__init__.self.pool.pool_type_kernel_size_1_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_math_Bottleneck3x3x1.__init__.self.pool.pool_type_kernel_size_1_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 61, "span_ids": ["Bottleneck3x3x1.__init__", "Bottleneck3x3x1", "docstring"], "tokens": 446}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import math\nfrom typing import Optional, Sequence, Type, Union\n\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\n\nfrom monai.networks.blocks.fcn import FCN\nfrom monai.networks.layers.factories import Act, Conv, Norm, Pool\n\n__all__ = [\"AHnet\", \"Ahnet\", \"ahnet\", \"AHNet\"]\n\n\nclass Bottleneck3x3x1(nn.Module):\n\n expansion = 4\n\n def __init__(\n self,\n spatial_dims: int,\n inplanes: int,\n planes: int,\n stride: Union[Sequence[int], int] = 1,\n downsample: Optional[nn.Sequential] = None,\n ) -> None:\n\n super(Bottleneck3x3x1, self).__init__()\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n pool_type: Type[Union[nn.MaxPool2d, nn.MaxPool3d]] = Pool[Pool.MAX, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n\n self.conv1 = conv_type(inplanes, planes, kernel_size=1, bias=False)\n self.bn1 = norm_type(planes)\n self.conv2 = conv_type(\n planes,\n planes,\n kernel_size=(3, 3, 1)[-spatial_dims:],\n stride=stride,\n padding=(1, 1, 0)[-spatial_dims:],\n bias=False,\n )\n self.bn2 = norm_type(planes)\n self.conv3 = conv_type(planes, planes * 4, kernel_size=1, bias=False)\n self.bn3 = norm_type(planes * 4)\n self.relu = relu_type(inplace=True)\n self.downsample = downsample\n self.stride = stride\n self.pool = pool_type(kernel_size=(1, 1, 2)[-spatial_dims:], stride=(1, 1, 2)[-spatial_dims:])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Bottleneck3x3x1.forward_Bottleneck3x3x1.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Bottleneck3x3x1.forward_Bottleneck3x3x1.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 60, "end_line": 82, "span_ids": ["Bottleneck3x3x1.forward"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Bottleneck3x3x1(nn.Module):\n\n def forward(self, x):\n residual = x\n\n out = self.conv1(x)\n out = self.bn1(out)\n out = self.relu(out)\n\n out = self.conv2(out)\n out = self.bn2(out)\n out = self.relu(out)\n\n out = self.conv3(out)\n out = self.bn3(out)\n\n if self.downsample is not None:\n residual = self.downsample(x)\n if out.size() != residual.size():\n out = self.pool(out)\n\n out += residual\n out = self.relu(out)\n\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Projection_Projection.__init__.self_add_module_conv_c": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Projection_Projection.__init__.self_add_module_conv_c", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 85, "end_line": 95, "span_ids": ["Projection.__init__", "Projection"], "tokens": 149}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Projection(nn.Sequential):\n def __init__(self, spatial_dims: int, num_input_features: int, num_output_features: int):\n super(Projection, self).__init__()\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n\n self.add_module(\"norm\", norm_type(num_input_features))\n self.add_module(\"relu\", relu_type(inplace=True))\n self.add_module(\"conv\", conv_type(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_DenseBlock_DenseBlock.__init__.for_i_in_range_num_layers.self_add_module_denselay": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_DenseBlock_DenseBlock.__init__.for_i_in_range_num_layers.self_add_module_denselay", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 98, "end_line": 113, "span_ids": ["DenseBlock.__init__", "DenseBlock"], "tokens": 122}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DenseBlock(nn.Sequential):\n def __init__(\n self,\n spatial_dims: int,\n num_layers: int,\n num_input_features: int,\n bn_size: int,\n growth_rate: int,\n dropout_prob: float,\n ):\n super(DenseBlock, self).__init__()\n for i in range(num_layers):\n layer = Pseudo3DLayer(\n spatial_dims, num_input_features + i * growth_rate, growth_rate, bn_size, dropout_prob\n )\n self.add_module(\"denselayer%d\" % (i + 1), layer)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_UpTransition_UpTransition.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_UpTransition_UpTransition.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 117, "end_line": 139, "span_ids": ["UpTransition.__init__", "UpTransition"], "tokens": 283}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class UpTransition(nn.Sequential):\n def __init__(\n self, spatial_dims: int, num_input_features: int, num_output_features: int, upsample_mode: str = \"transpose\"\n ):\n super(UpTransition, self).__init__()\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n\n self.add_module(\"norm\", norm_type(num_input_features))\n self.add_module(\"relu\", relu_type(inplace=True))\n self.add_module(\"conv\", conv_type(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))\n if upsample_mode == \"transpose\":\n conv_trans_type = Conv[Conv.CONVTRANS, spatial_dims]\n self.add_module(\n \"up\", conv_trans_type(num_output_features, num_output_features, kernel_size=2, stride=2, bias=False)\n )\n else:\n align_corners: Optional[bool] = None\n if upsample_mode in [\"trilinear\", \"bilinear\"]:\n align_corners = True\n self.add_module(\"up\", nn.Upsample(scale_factor=2, mode=upsample_mode, align_corners=align_corners))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Final_Final.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Final_Final.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 142, "end_line": 174, "span_ids": ["Final.__init__", "Final"], "tokens": 321}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Final(nn.Sequential):\n def __init__(\n self, spatial_dims: int, num_input_features: int, num_output_features: int, upsample_mode: str = \"transpose\"\n ):\n super(Final, self).__init__()\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n\n self.add_module(\"norm\", norm_type(num_input_features))\n self.add_module(\"relu\", relu_type(inplace=True))\n self.add_module(\n \"conv\",\n conv_type(\n num_input_features,\n num_output_features,\n kernel_size=(3, 3, 1)[-spatial_dims:],\n stride=1,\n padding=(1, 1, 0)[-spatial_dims:],\n bias=False,\n ),\n )\n if upsample_mode == \"transpose\":\n conv_trans_type = Conv[Conv.CONVTRANS, spatial_dims]\n self.add_module(\n \"up\", conv_trans_type(num_output_features, num_output_features, kernel_size=2, stride=2, bias=False)\n )\n else:\n align_corners: Optional[bool] = None\n if upsample_mode in [\"trilinear\", \"bilinear\"]:\n align_corners = True\n self.add_module(\"up\", nn.Upsample(scale_factor=2, mode=upsample_mode, align_corners=align_corners))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer_Pseudo3DLayer.__init__.self.dropout_prob.dropout_prob": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer_Pseudo3DLayer.__init__.self.dropout_prob.dropout_prob", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 171, "end_line": 209, "span_ids": ["Pseudo3DLayer.__init__", "Pseudo3DLayer"], "tokens": 419}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Pseudo3DLayer(nn.Module):\n def __init__(self, spatial_dims: int, num_input_features: int, growth_rate: int, bn_size: int, dropout_prob: float):\n super(Pseudo3DLayer, self).__init__()\n # 1x1x1\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n\n self.bn1 = norm_type(num_input_features)\n self.relu1 = relu_type(inplace=True)\n self.conv1 = conv_type(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)\n # 3x3x1\n self.bn2 = norm_type(bn_size * growth_rate)\n self.relu2 = relu_type(inplace=True)\n self.conv2 = conv_type(\n bn_size * growth_rate,\n growth_rate,\n kernel_size=(3, 3, 1)[-spatial_dims:],\n stride=1,\n padding=(1, 1, 0)[-spatial_dims:],\n bias=False,\n )\n # 1x1x3\n self.bn3 = norm_type(growth_rate)\n self.relu3 = relu_type(inplace=True)\n self.conv3 = conv_type(\n growth_rate,\n growth_rate,\n kernel_size=(1, 1, 3)[-spatial_dims:],\n stride=1,\n padding=(0, 0, 1)[-spatial_dims:],\n bias=False,\n )\n # 1x1x1\n self.bn4 = norm_type(growth_rate)\n self.relu4 = relu_type(inplace=True)\n self.conv4 = conv_type(growth_rate, growth_rate, kernel_size=1, stride=1, bias=False)\n self.dropout_prob = dropout_prob", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer.forward_Pseudo3DLayer.forward.return.torch_cat_inx_new_featu": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer.forward_Pseudo3DLayer.forward.return.torch_cat_inx_new_featu", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 217, "end_line": 240, "span_ids": ["Pseudo3DLayer.forward"], "tokens": 220}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Pseudo3DLayer(nn.Module):\n\n def forward(self, x):\n inx = x\n x = self.bn1(x)\n x = self.relu1(x)\n x = self.conv1(x)\n\n x = self.bn2(x)\n x = self.relu2(x)\n x3x3x1 = self.conv2(x)\n\n x = self.bn3(x3x3x1)\n x = self.relu3(x)\n x1x1x3 = self.conv3(x)\n\n x = x3x3x1 + x1x1x3\n x = self.bn4(x)\n x = self.relu4(x)\n new_features = self.conv4(x)\n\n self.dropout_prob = 0.0 # Dropout will make trouble!\n # since we use the train mode for inference\n if self.dropout_prob > 0.0:\n new_features = F.dropout(new_features, p=self.dropout_prob, training=self.training)\n return torch.cat([inx, new_features], 1)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_PSP.forward_PSP.forward.return.x": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_PSP.forward_PSP.forward.return.x", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 285, "end_line": 307, "span_ids": ["PSP.forward"], "tokens": 193}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class PSP(nn.Module):\n\n def forward(self, x):\n outputs = []\n if self.upsample_mode == \"transpose\":\n for (project_module, pool_module, up_module) in zip(\n self.project_modules, self.pool_modules, self.up_modules\n ):\n output = up_module(project_module(pool_module(x)))\n outputs.append(output)\n else:\n for (project_module, pool_module) in zip(self.project_modules, self.pool_modules):\n interpolate_size = x.shape[2:]\n align_corners: Optional[bool] = None\n if self.upsample_mode in [\"trilinear\", \"bilinear\"]:\n align_corners = True\n output = F.interpolate(\n project_module(pool_module(x)),\n size=interpolate_size,\n mode=self.upsample_mode,\n align_corners=align_corners,\n )\n outputs.append(output)\n x = torch.cat(outputs, dim=1)\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet_AHNet._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet_AHNet._", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 310, "end_line": 342, "span_ids": ["AHNet"], "tokens": 560}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AHNet(nn.Module):\n \"\"\"\n AHNet based on `Anisotropic Hybrid Network `_.\n Adapted from `lsqshr's official code `_.\n Except from the original network that supports 3D inputs, this implementation also supports 2D inputs.\n According to the `tests for deconvolutions `_, using\n ``\"transpose\"`` rather than linear interpolations is faster. Therefore, this implementation sets ``\"transpose\"``\n as the default upsampling method.\n\n To meet to requirements of the structure, for ``transpose`` mode, the input size of the first ``dim-1`` dimensions should\n be divisible by 2 ** (psp_block_num + 3) and no less than 32. For other modes, the input size of the first\n ``dim-1`` dimensions should be divisible by 32 and no less than 2 ** (psp_block_num + 3). In addition, at least one\n dimension should have a no less than 64 size.\n\n Args:\n layers: number of residual blocks for 4 layers of the network (layer1...layer4). Defaults to ``(3, 4, 6, 3)``.\n spatial_dims: spatial dimension of the input data. Defaults to 3.\n in_channels: number of input channels for the network. Default to 1.\n out_channels: number of output channels for the network. Defaults to 1.\n psp_block_num: the number of pyramid volumetric pooling modules used at the end of the network before the final\n output layer for extracting multiscale features. The number should be an integer that belongs to [0,4]. Defaults\n to 4.\n upsample_mode: [``\"transpose\"``, ``\"bilinear\"``, ``\"trilinear\"``, ``nearest``]\n The mode of upsampling manipulations.\n Using the last two modes cannot guarantee the model's reproducibility. Defaults to ``transpose``.\n\n - ``\"transpose\"``, uses transposed convolution layers.\n - ``\"bilinear\"``, uses bilinear interpolate.\n - ``\"trilinear\"``, uses trilinear interpolate.\n - ``\"nearest\"``, uses nearest interpolate.\n pretrained: whether to load pretrained weights from ResNet50 to initialize convolution layers, default to False.\n progress: If True, displays a progress bar of the download of pretrained weights to stderr.\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet._make_layer_AHNet._make_layer.return.nn_Sequential_layers_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet._make_layer_AHNet._make_layer.return.nn_Sequential_layers_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 470, "end_line": 500, "span_ids": ["AHNet._make_layer"], "tokens": 252}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AHNet(nn.Module):\n\n def _make_layer(\n self,\n block: Type[Bottleneck3x3x1],\n planes: int,\n blocks: int,\n stride: int = 1,\n ) -> nn.Sequential:\n downsample = None\n if stride != 1 or self.inplanes != planes * block.expansion:\n downsample = nn.Sequential(\n self.conv_type(\n self.inplanes,\n planes * block.expansion,\n kernel_size=1,\n stride=(stride, stride, 1)[: self.spatial_dims],\n bias=False,\n ),\n self.pool_type(\n kernel_size=(1, 1, stride)[: self.spatial_dims], stride=(1, 1, stride)[: self.spatial_dims]\n ),\n self.norm_type(planes * block.expansion),\n )\n\n layers = []\n layers.append(\n block(self.spatial_dims, self.inplanes, planes, (stride, stride, 1)[: self.spatial_dims], downsample)\n )\n self.inplanes = planes * block.expansion\n for _ in range(1, blocks):\n layers.append(block(self.spatial_dims, self.inplanes, planes))\n return nn.Sequential(*layers)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.forward_AHNet.forward.return.self_final_x_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.forward_AHNet.forward.return.self_final_x_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 485, "end_line": 518, "span_ids": ["AHNet.forward"], "tokens": 275}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AHNet(nn.Module):\n\n def forward(self, x):\n x = self.conv1(x)\n x = self.pool1(x)\n x = self.bn0(x)\n x = self.relu(x)\n conv_x = x\n x = self.maxpool(x)\n pool_x = x\n\n fm1 = self.layer1(x)\n fm2 = self.layer2(fm1)\n fm3 = self.layer3(fm2)\n fm4 = self.layer4(fm3)\n\n sum0 = self.up0(fm4) + fm3\n d0 = self.dense0(sum0)\n\n sum1 = self.up1(d0) + fm2\n d1 = self.dense1(sum1)\n\n sum2 = self.up2(d1) + fm1\n d2 = self.dense2(sum2)\n\n sum3 = self.trans1(d2) + pool_x\n d3 = self.dense3(sum3)\n\n sum4 = self.up3(d3) + conv_x\n d4 = self.dense4(sum4)\n if self.psp_block_num > 0:\n psp = self.psp(d4)\n x = torch.cat((psp, d4), dim=1)\n else:\n x = d4\n return self.final(x)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_from_typing_import_Dict__DEFAULT_LAYER_PARAMS_3D._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_from_typing_import_Dict__DEFAULT_LAYER_PARAMS_3D._", "embedding": null, "metadata": {"file_path": "monai/networks/nets/highresnet.py", "file_name": "highresnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 33, "span_ids": ["docstring"], "tokens": 253}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Dict, Optional, Sequence, Tuple, Union\n\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.blocks import ADN, Convolution\nfrom monai.networks.layers.simplelayers import ChannelPad\nfrom monai.utils import ChannelMatching\n\n__all__ = [\"HighResBlock\", \"HighResNet\"]\n\nDEFAULT_LAYER_PARAMS_3D = (\n # initial conv layer\n {\"name\": \"conv_0\", \"n_features\": 16, \"kernel_size\": 3},\n # residual blocks\n {\"name\": \"res_1\", \"n_features\": 16, \"kernels\": (3, 3), \"repeat\": 3},\n {\"name\": \"res_2\", \"n_features\": 32, \"kernels\": (3, 3), \"repeat\": 3},\n {\"name\": \"res_3\", \"n_features\": 64, \"kernels\": (3, 3), \"repeat\": 3},\n # final conv layers\n {\"name\": \"conv_1\", \"n_features\": 80, \"kernel_size\": 1},\n {\"name\": \"conv_2\", \"kernel_size\": 1},\n)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_from_typing_import_Sequen_UNet.__init__.self.model._create_block_in_channels": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_from_typing_import_Sequen_UNet.__init__.self.model._create_block_in_channels", "embedding": null, "metadata": {"file_path": "monai/networks/nets/unet.py", "file_name": "unet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 107, "span_ids": ["UNet", "UNet.__init__", "docstring"], "tokens": 852}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Sequence, Union\n\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.blocks.convolutions import Convolution, ResidualUnit\nfrom monai.networks.layers.factories import Act, Norm\nfrom monai.networks.layers.simplelayers import SkipConnection\nfrom monai.utils import alias, export\n\n__all__ = [\"UNet\", \"Unet\", \"unet\"]\n\n\n@export(\"monai.networks.nets\")\n@alias(\"Unet\")\nclass UNet(nn.Module):\n def __init__(\n self,\n dimensions: int,\n in_channels: int,\n out_channels: int,\n channels: Sequence[int],\n strides: Sequence[int],\n kernel_size: Union[Sequence[int], int] = 3,\n up_kernel_size: Union[Sequence[int], int] = 3,\n num_res_units: int = 0,\n act=Act.PRELU,\n norm=Norm.INSTANCE,\n dropout=0.0,\n ) -> None:\n \"\"\"\n Enhanced version of UNet which has residual units implemented with the ResidualUnit class.\n The residual part uses a convolution to change the input dimensions to match the output dimensions\n if this is necessary but will use nn.Identity if not.\n Refer to: https://link.springer.com/chapter/10.1007/978-3-030-12029-0_40.\n\n Args:\n dimensions: number of spatial dimensions.\n in_channels: number of input channels.\n out_channels: number of output channels.\n channels: sequence of channels. Top block first.\n strides: convolution stride.\n kernel_size: convolution kernel size. Defaults to 3.\n up_kernel_size: upsampling convolution kernel size. Defaults to 3.\n num_res_units: number of residual units. Defaults to 0.\n act: activation type and arguments. Defaults to PReLU.\n norm: feature normalization type and arguments. Defaults to instance norm.\n dropout: dropout ratio. Defaults to no dropout.\n \"\"\"\n super().__init__()\n\n self.dimensions = dimensions\n self.in_channels = in_channels\n self.out_channels = out_channels\n self.channels = channels\n self.strides = strides\n self.kernel_size = kernel_size\n self.up_kernel_size = up_kernel_size\n self.num_res_units = num_res_units\n self.act = act\n self.norm = norm\n self.dropout = dropout\n\n def _create_block(\n inc: int, outc: int, channels: Sequence[int], strides: Sequence[int], is_top: bool\n ) -> nn.Sequential:\n \"\"\"\n Builds the UNet structure from the bottom up by recursing down to the bottom block, then creating sequential\n blocks containing the downsample path, a skip connection around the previous block, and the upsample path.\n\n Args:\n inc: number of input channels.\n outc: number of output channels.\n channels: sequence of channels. Top block first.\n strides: convolution stride.\n is_top: True if this is the top block.\n \"\"\"\n c = channels[0]\n s = strides[0]\n\n subblock: nn.Module\n\n if len(channels) > 2:\n subblock = _create_block(c, c, channels[1:], strides[1:], False) # continue recursion down\n upc = c * 2\n else:\n # the next layer is the bottom so stop recursion, create the bottom layer as the sublock for this layer\n subblock = self._get_bottom_layer(c, channels[1])\n upc = c + channels[1]\n\n down = self._get_down_layer(inc, c, s, is_top) # create layer in downsampling path\n up = self._get_up_layer(upc, outc, s, is_top) # create layer in upsampling path\n\n return nn.Sequential(down, SkipConnection(subblock), up)\n\n self.model = _create_block(in_channels, out_channels, self.channels, self.strides, True)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_from_typing_import_Dict__get_acti_layer.return.act_type_act_args_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_from_typing_import_Dict__get_acti_layer.return.act_type_act_args_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 28, "span_ids": ["get_acti_layer", "docstring"], "tokens": 138}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Dict, Optional, Tuple, Type, Union\n\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.blocks.convolutions import Convolution\nfrom monai.networks.layers.factories import Act, Conv, Dropout, Norm, split_args\n\n__all__ = [\"VNet\"]\n\n\ndef get_acti_layer(act: Union[Tuple[str, Dict], str], nchan: int = 0):\n if act == \"prelu\":\n act = (\"prelu\", {\"num_parameters\": nchan})\n act_name, act_args = split_args(act)\n act_type = Act[act_name]\n return act_type(**act_args)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_LUConv__make_nconv.return.nn_Sequential_layers_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_LUConv__make_nconv.return.nn_Sequential_layers_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 29, "end_line": 53, "span_ids": ["LUConv.__init__", "LUConv.forward", "LUConv", "_make_nconv"], "tokens": 195}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LUConv(nn.Module):\n def __init__(self, spatial_dims: int, nchan: int, act: Union[Tuple[str, Dict], str]):\n super(LUConv, self).__init__()\n\n self.act_function = get_acti_layer(act, nchan)\n self.conv_block = Convolution(\n dimensions=spatial_dims,\n in_channels=nchan,\n out_channels=nchan,\n kernel_size=5,\n act=None,\n norm=Norm.BATCH,\n )\n\n def forward(self, x):\n out = self.conv_block(x)\n out = self.act_function(out)\n return out\n\n\ndef _make_nconv(spatial_dims: int, nchan: int, depth: int, act: Union[Tuple[str, Dict], str]):\n layers = []\n for _ in range(depth):\n layers.append(LUConv(spatial_dims, nchan, act))\n return nn.Sequential(*layers)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_InputTransition_InputTransition.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_InputTransition_InputTransition.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 56, "end_line": 80, "span_ids": ["InputTransition.forward", "InputTransition.__init__", "InputTransition"], "tokens": 226}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class InputTransition(nn.Module):\n def __init__(self, spatial_dims: int, in_channels: int, out_channels: int, act: Union[Tuple[str, Dict], str]):\n super(InputTransition, self).__init__()\n\n if 16 % in_channels != 0:\n raise ValueError(f\"16 should be divisible by in_channels, got in_channels={in_channels}.\")\n\n self.spatial_dims = spatial_dims\n self.in_channels = in_channels\n self.act_function = get_acti_layer(act, 16)\n self.conv_block = Convolution(\n dimensions=spatial_dims,\n in_channels=in_channels,\n out_channels=16,\n kernel_size=5,\n act=None,\n norm=Norm.BATCH,\n )\n\n def forward(self, x):\n out = self.conv_block(x)\n repeat_num = 16 // self.in_channels\n x16 = x.repeat([1, repeat_num, 1, 1, 1][: self.spatial_dims + 2])\n out = self.act_function(torch.add(out, x16))\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_DownTransition_DownTransition.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_DownTransition_DownTransition.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 73, "end_line": 105, "span_ids": ["DownTransition.__init__", "DownTransition", "DownTransition.forward"], "tokens": 346}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DownTransition(nn.Module):\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n nconvs: int,\n act: Union[Tuple[str, Dict], str],\n dropout_prob: Optional[float] = None,\n dropout_dim: int = 3,\n ):\n super(DownTransition, self).__init__()\n\n conv_type: Type[Union[nn.Conv2d, nn.Conv3d]] = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n dropout_type: Type[Union[nn.Dropout, nn.Dropout2d, nn.Dropout3d]] = Dropout[Dropout.DROPOUT, dropout_dim]\n\n out_channels = 2 * in_channels\n self.down_conv = conv_type(in_channels, out_channels, kernel_size=2, stride=2)\n self.bn1 = norm_type(out_channels)\n self.act_function1 = get_acti_layer(act, out_channels)\n self.act_function2 = get_acti_layer(act, out_channels)\n self.ops = _make_nconv(spatial_dims, out_channels, nconvs, act)\n self.dropout = dropout_type(dropout_prob) if dropout_prob is not None else None\n\n def forward(self, x):\n down = self.act_function1(self.bn1(self.down_conv(x)))\n if self.dropout is not None:\n out = self.dropout(down)\n else:\n out = down\n out = self.ops(out)\n out = self.act_function2(torch.add(out, down))\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_UpTransition_UpTransition.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_UpTransition_UpTransition.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 108, "end_line": 143, "span_ids": ["UpTransition.__init__", "UpTransition", "UpTransition.forward"], "tokens": 400}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class UpTransition(nn.Module):\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n nconvs: int,\n act: Union[Tuple[str, Dict], str],\n dropout_prob: Optional[float] = None,\n dropout_dim: int = 3,\n ):\n super(UpTransition, self).__init__()\n\n conv_trans_type: Type[Union[nn.ConvTranspose2d, nn.ConvTranspose3d]] = Conv[Conv.CONVTRANS, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n dropout_type: Type[Union[nn.Dropout, nn.Dropout2d, nn.Dropout3d]] = Dropout[Dropout.DROPOUT, dropout_dim]\n\n self.up_conv = conv_trans_type(in_channels, out_channels // 2, kernel_size=2, stride=2)\n self.bn1 = norm_type(out_channels // 2)\n self.dropout = dropout_type(dropout_prob) if dropout_prob is not None else None\n self.dropout2 = dropout_type(0.5)\n self.act_function1 = get_acti_layer(act, out_channels // 2)\n self.act_function2 = get_acti_layer(act, out_channels)\n self.ops = _make_nconv(spatial_dims, out_channels, nconvs, act)\n\n def forward(self, x, skipx):\n if self.dropout is not None:\n out = self.dropout(x)\n else:\n out = x\n skipxdo = self.dropout2(skipx)\n out = self.act_function1(self.bn1(self.up_conv(out)))\n xcat = torch.cat((out, skipxdo), 1)\n out = self.ops(xcat)\n out = self.act_function2(torch.add(out, xcat))\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_OutputTransition_OutputTransition.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_OutputTransition_OutputTransition.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 146, "end_line": 168, "span_ids": ["OutputTransition.__init__", "OutputTransition.forward", "OutputTransition"], "tokens": 202}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class OutputTransition(nn.Module):\n def __init__(self, spatial_dims: int, in_channels: int, out_channels: int, act: Union[Tuple[str, Dict], str]):\n super(OutputTransition, self).__init__()\n\n conv_type: Type[Union[nn.Conv2d, nn.Conv3d]] = Conv[Conv.CONV, spatial_dims]\n\n self.act_function1 = get_acti_layer(act, out_channels)\n self.conv_block = Convolution(\n dimensions=spatial_dims,\n in_channels=in_channels,\n out_channels=out_channels,\n kernel_size=5,\n act=None,\n norm=Norm.BATCH,\n )\n self.conv2 = conv_type(out_channels, out_channels, kernel_size=1)\n\n def forward(self, x):\n # convolve 32 down to 2 channels\n out = self.conv_block(x)\n out = self.act_function1(out)\n out = self.conv2(out)\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet_VNet.__init__.self.out_tr.OutputTransition_spatial_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet_VNet.__init__.self.out_tr.OutputTransition_spatial_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 181, "end_line": 227, "span_ids": ["VNet", "VNet.__init__"], "tokens": 662}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class VNet(nn.Module):\n \"\"\"\n V-Net based on `Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation\n `_.\n Adapted from `the official Caffe implementation\n `_. and `another pytorch implementation\n `_.\n The model supports 2D or 3D inputs.\n\n Args:\n spatial_dims: spatial dimension of the input data. Defaults to 3.\n in_channels: number of input channels for the network. Defaults to 1.\n The value should meet the condition that ``16 % in_channels == 0``.\n out_channels: number of output channels for the network. Defaults to 1.\n act: activation type in the network. Defaults to ``(\"elu\", {\"inplace\": True})``.\n dropout_prob: dropout ratio. Defaults to 0.5. Defaults to 3.\n dropout_dim: determine the dimensions of dropout. Defaults to 3.\n\n - ``dropout_dim = 1``, randomly zeroes some of the elements for each channel.\n - ``dropout_dim = 2``, Randomly zeroes out entire channels (a channel is a 2D feature map).\n - ``dropout_dim = 3``, Randomly zeroes out entire channels (a channel is a 3D feature map).\n \"\"\"\n\n def __init__(\n self,\n spatial_dims: int = 3,\n in_channels: int = 1,\n out_channels: int = 1,\n act: Union[Tuple[str, Dict], str] = (\"elu\", {\"inplace\": True}),\n dropout_prob: float = 0.5,\n dropout_dim: int = 3,\n ):\n super().__init__()\n\n if spatial_dims not in (2, 3):\n raise AssertionError(\"spatial_dims can only be 2 or 3.\")\n\n self.in_tr = InputTransition(spatial_dims, in_channels, 16, act)\n self.down_tr32 = DownTransition(spatial_dims, 16, 1, act)\n self.down_tr64 = DownTransition(spatial_dims, 32, 2, act)\n self.down_tr128 = DownTransition(spatial_dims, 64, 3, act, dropout_prob=dropout_prob)\n self.down_tr256 = DownTransition(spatial_dims, 128, 2, act, dropout_prob=dropout_prob)\n self.up_tr256 = UpTransition(spatial_dims, 256, 256, 2, act, dropout_prob=dropout_prob)\n self.up_tr128 = UpTransition(spatial_dims, 256, 128, 2, act, dropout_prob=dropout_prob)\n self.up_tr64 = UpTransition(spatial_dims, 128, 64, 1, act)\n self.up_tr32 = UpTransition(spatial_dims, 64, 32, 1, act)\n self.out_tr = OutputTransition(spatial_dims, 32, out_channels, act)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet.forward_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet.forward_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 217, "end_line": 229, "span_ids": ["VNet.forward"], "tokens": 126}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class VNet(nn.Module):\n\n def forward(self, x):\n out16 = self.in_tr(x)\n out32 = self.down_tr32(out16)\n out64 = self.down_tr64(out32)\n out128 = self.down_tr128(out64)\n out256 = self.down_tr256(out128)\n x = self.up_tr256(out256, out128)\n x = self.up_tr128(x, out64)\n x = self.up_tr64(x, out32)\n x = self.up_tr32(x, out16)\n x = self.out_tr(x)\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normal_init_normal_init.if_getattr_m_weight_N.elif_cname_find_BatchNor.nn_init_constant__m_bias_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normal_init_normal_init.if_getattr_m_weight_N.elif_cname_find_BatchNor.nn_init_constant__m_bias_", "embedding": null, "metadata": {"file_path": "monai/networks/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 152, "end_line": 170, "span_ids": ["normal_init"], "tokens": 266}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def normal_init(\n m, std: float = 0.02, normal_func: Callable[[torch.Tensor, float, float], Any] = torch.nn.init.normal_\n) -> None:\n \"\"\"\n Initialize the weight and bias tensors of `m' and its submodules to values from a normal distribution with a\n stddev of `std'. Weight tensors of convolution and linear modules are initialized with a mean of 0, batch\n norm modules with a mean of 1. The callable `normal_func', used to assign values, should have the same arguments\n as its default normal_(). This can be used with `nn.Module.apply` to visit submodules of a network.\n \"\"\"\n cname = m.__class__.__name__\n\n if getattr(m, \"weight\", None) is not None and (cname.find(\"Conv\") != -1 or cname.find(\"Linear\") != -1):\n normal_func(m.weight.data, 0.0, std)\n if getattr(m, \"bias\", None) is not None:\n nn.init.constant_(m.bias.data, 0.0)\n\n elif cname.find(\"BatchNorm\") != -1:\n normal_func(m.weight.data, 1.0, std)\n nn.init.constant_(m.bias.data, 0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_icnr_init_icnr_init.conv_weight_data_copy__ke": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_icnr_init_icnr_init.conv_weight_data_copy__ke", "embedding": null, "metadata": {"file_path": "monai/networks/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 173, "end_line": 190, "span_ids": ["icnr_init"], "tokens": 191}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def icnr_init(conv, upsample_factor, init=nn.init.kaiming_normal_):\n \"\"\"\n ICNR initialization for 2D/3D kernels adapted from Aitken et al.,2017 , \"Checkerboard artifact free\n sub-pixel convolution\".\n \"\"\"\n out_channels, in_channels, *dims = conv.weight.shape\n scale_factor = upsample_factor ** len(dims)\n\n oc2 = int(out_channels / scale_factor)\n\n kernel = torch.zeros([oc2, in_channels] + dims)\n kernel = init(kernel)\n kernel = kernel.transpose(0, 1)\n kernel = kernel.reshape(oc2, in_channels, -1)\n kernel = kernel.repeat(1, 1, scale_factor)\n kernel = kernel.reshape([in_channels, out_channels] + dims)\n kernel = kernel.transpose(0, 1)\n conv.weight.data.copy_(kernel)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_from_typing_import_Callab_adaptor.map_only_names.return._v_ditems_k_for_k_v_in": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_from_typing_import_Callab_adaptor.map_only_names.return._v_ditems_k_for_k_v_in", "embedding": null, "metadata": {"file_path": "monai/transforms/adaptors.py", "file_name": "adaptors.py", "file_type": "text/x-python", "category": "implementation", "start_line": 125, "end_line": 147, "span_ids": ["adaptor", "imports"], "tokens": 218}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Callable\n\nfrom monai.utils import export as _monai_export\n\n__all__ = [\"adaptor\", \"apply_alias\", \"to_kwargs\", \"FunctionSignature\"]\n\n\n@_monai_export(\"monai.transforms\")\ndef adaptor(function, outputs, inputs=None):\n def must_be_types_or_none(variable_name, variable, types):\n if variable is not None:\n if not isinstance(variable, types):\n raise TypeError(f\"'{variable_name}' must be None or one of {types} but is {type(variable)}\")\n\n def must_be_types(variable_name, variable, types):\n if not isinstance(variable, types):\n raise TypeError(f\"'{variable_name}' must be one of {types} but is {type(variable)}\")\n\n def map_names(ditems, input_map):\n return {input_map(k, k): v for k, v in ditems.items()}\n\n def map_only_names(ditems, input_map):\n return {v: ditems[k] for k, v in input_map.items()}\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.randomize_RandSpatialCropd.randomize.if_self_random_center_.self._slices._slice_None_get_rand": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.randomize_RandSpatialCropd.randomize.if_self_random_center_.self._slices._slice_None_get_rand", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 524, "end_line": 533, "span_ids": ["RandSpatialCropd.randomize"], "tokens": 202}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandSpatialCropd(Randomizable, MapTransform, InvertibleTransform):\n\n def randomize(self, img_size: Sequence[int]) -> None:\n self._size = fall_back_tuple(self.roi_size, img_size)\n if self.random_size:\n max_size = img_size if self.max_roi_size is None else fall_back_tuple(self.max_roi_size, img_size)\n if any([i > j for i, j in zip(self._size, max_size)]):\n raise ValueError(f\"min ROI size: {self._size} is bigger than max ROI size: {max_size}.\")\n self._size = [self.R.randint(low=self._size[i], high=max_size[i] + 1) for i in range(len(img_size))]\n if self.random_center:\n valid_size = get_valid_patch_size(img_size, self._size)\n self._slices = (slice(None),) + get_random_patch(img_size, valid_size, self.R)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.__call___RandSpatialCropd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.__call___RandSpatialCropd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 441, "end_line": 454, "span_ids": ["RandSpatialCropd.__call__"], "tokens": 184}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandSpatialCropd(Randomizable, MapTransform, InvertibleTransform):\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n self.randomize(d[self.keys[0]].shape[1:]) # image shape from the first data key\n if self._size is None:\n raise AssertionError\n for key in self.key_iterator(d):\n if self.random_center:\n self.push_transform(d, key, {\"slices\": [(i.start, i.stop) for i in self._slices[1:]]}) # type: ignore\n d[key] = d[key][self._slices]\n else:\n self.push_transform(d, key)\n cropper = CenterSpatialCrop(self._size)\n d[key] = cropper(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensity_ScaleIntensity.__init__.self.factor.factor": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensity_ScaleIntensity.__init__.self.factor.factor", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 243, "end_line": 261, "span_ids": ["ScaleIntensity", "ScaleIntensity.__init__"], "tokens": 196}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensity(Transform):\n \"\"\"\n Scale the intensity of input image to the given value range (minv, maxv).\n If `minv` and `maxv` not provided, use `factor` to scale image by ``v = v * (1 + factor)``.\n \"\"\"\n\n def __init__(\n self, minv: Optional[float] = 0.0, maxv: Optional[float] = 1.0, factor: Optional[float] = None\n ) -> None:\n \"\"\"\n Args:\n minv: minimum value of output data.\n maxv: maximum value of output data.\n factor: factor scale by ``v = v * (1 + factor)``. In order to use\n this parameter, please set `minv` and `maxv` into None.\n \"\"\"\n self.minv = minv\n self.maxv = maxv\n self.factor = factor", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_MaskIntensity_MaskIntensity.__init__.self.mask_data.mask_data": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_MaskIntensity_MaskIntensity.__init__.self.mask_data.mask_data", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 702, "end_line": 718, "span_ids": ["MaskIntensity.__init__", "MaskIntensity"], "tokens": 167}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MaskIntensity(Transform):\n \"\"\"\n Mask the intensity values of input image with the specified mask data.\n Mask data must have the same spatial size as the input image, and all\n the intensity values of input image corresponding to `0` in the mask\n data will be set to `0`, others will keep the original value.\n\n Args:\n mask_data: if `mask_data` is single channel, apply to every channel\n of input image. if multiple channels, the number of channels must\n match the input data. `mask_data` will be converted to `bool` values\n by `mask_data > 0` before applying transform to input image.\n\n \"\"\"\n\n def __init__(self, mask_data: Optional[np.ndarray]) -> None:\n self.mask_data = mask_data", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSmooth_GaussianSmooth.__call__.return.gaussian_filter_input_dat": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSmooth_GaussianSmooth.__call__.return.gaussian_filter_input_dat", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 828, "end_line": 849, "span_ids": ["GaussianSmooth.__call__", "GaussianSmooth", "GaussianSmooth.__init__"], "tokens": 250}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianSmooth(Transform):\n \"\"\"\n Apply Gaussian smooth to the input data based on specified `sigma` parameter.\n A default value `sigma=1.0` is provided for reference.\n\n Args:\n sigma: if a list of values, must match the count of spatial dimensions of input data,\n and apply every value in the list to 1 spatial dimension. if only 1 value provided,\n use it for all spatial dimensions.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n see also :py:meth:`monai.networks.layers.GaussianFilter`.\n\n \"\"\"\n\n def __init__(self, sigma: Union[Sequence[float], float] = 1.0, approx: str = \"erf\") -> None:\n self.sigma = sigma\n self.approx = approx\n\n def __call__(self, img: np.ndarray):\n gaussian_filter = GaussianFilter(img.ndim - 1, self.sigma, approx=self.approx)\n input_data = torch.as_tensor(np.ascontiguousarray(img), dtype=torch.float).unsqueeze(0)\n return gaussian_filter(input_data).squeeze(0).detach().numpy()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSmooth_RandGaussianSmooth.__call__.return.GaussianSmooth_sigma_sigm": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSmooth_RandGaussianSmooth.__call__.return.GaussianSmooth_sigma_sigm", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 852, "end_line": 895, "span_ids": ["RandGaussianSmooth.__call__", "RandGaussianSmooth.randomize", "RandGaussianSmooth", "RandGaussianSmooth.__init__"], "tokens": 449}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandGaussianSmooth(RandomizableTransform):\n \"\"\"\n Apply Gaussian smooth to the input data based on randomly selected `sigma` parameters.\n\n Args:\n sigma_x: randomly select sigma value for the first spatial dimension.\n sigma_y: randomly select sigma value for the second spatial dimension if have.\n sigma_z: randomly select sigma value for the third spatial dimension if have.\n prob: probability of Gaussian smooth.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n see also :py:meth:`monai.networks.layers.GaussianFilter`.\n\n \"\"\"\n\n def __init__(\n self,\n sigma_x: Tuple[float, float] = (0.25, 1.5),\n sigma_y: Tuple[float, float] = (0.25, 1.5),\n sigma_z: Tuple[float, float] = (0.25, 1.5),\n prob: float = 0.1,\n approx: str = \"erf\",\n ) -> None:\n RandomizableTransform.__init__(self, prob)\n self.sigma_x = sigma_x\n self.sigma_y = sigma_y\n self.sigma_z = sigma_z\n self.approx = approx\n\n self.x = self.sigma_x[0]\n self.y = self.sigma_y[0]\n self.z = self.sigma_z[0]\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n self.x = self.R.uniform(low=self.sigma_x[0], high=self.sigma_x[1])\n self.y = self.R.uniform(low=self.sigma_y[0], high=self.sigma_y[1])\n self.z = self.R.uniform(low=self.sigma_z[0], high=self.sigma_z[1])\n\n def __call__(self, img: np.ndarray):\n self.randomize()\n if not self._do_transform:\n return img\n sigma = ensure_tuple_size(tup=(self.x, self.y, self.z), dim=img.ndim - 1)\n return GaussianSmooth(sigma=sigma, approx=self.approx)(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSharpen.__call___GaussianSharpen.__call__.return._blurred_f_self_alpha_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSharpen.__call___GaussianSharpen.__call__.return._blurred_f_self_alpha_", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 937, "end_line": 943, "span_ids": ["GaussianSharpen.__call__"], "tokens": 135}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianSharpen(Transform):\n\n def __call__(self, img: np.ndarray):\n gaussian_filter1 = GaussianFilter(img.ndim - 1, self.sigma1, approx=self.approx)\n gaussian_filter2 = GaussianFilter(img.ndim - 1, self.sigma2, approx=self.approx)\n input_data = torch.as_tensor(np.ascontiguousarray(img), dtype=torch.float).unsqueeze(0)\n blurred_f = gaussian_filter1(input_data)\n filter_blurred_f = gaussian_filter2(blurred_f)\n return (blurred_f + self.alpha * (blurred_f - filter_blurred_f)).squeeze(0).detach().numpy()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.randomize_RandGaussianSharpen.randomize.self.a.self_R_uniform_low_self_a": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.randomize_RandGaussianSharpen.randomize.self.a.self_R_uniform_low_self_a", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 990, "end_line": 1001, "span_ids": ["RandGaussianSharpen.randomize"], "tokens": 290}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandGaussianSharpen(RandomizableTransform):\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n self.x1 = self.R.uniform(low=self.sigma1_x[0], high=self.sigma1_x[1])\n self.y1 = self.R.uniform(low=self.sigma1_y[0], high=self.sigma1_y[1])\n self.z1 = self.R.uniform(low=self.sigma1_z[0], high=self.sigma1_z[1])\n sigma2_x = (self.sigma2_x, self.x1) if not isinstance(self.sigma2_x, Iterable) else self.sigma2_x\n sigma2_y = (self.sigma2_y, self.y1) if not isinstance(self.sigma2_y, Iterable) else self.sigma2_y\n sigma2_z = (self.sigma2_z, self.z1) if not isinstance(self.sigma2_z, Iterable) else self.sigma2_z\n self.x2 = self.R.uniform(low=sigma2_x[0], high=sigma2_x[1])\n self.y2 = self.R.uniform(low=sigma2_y[0], high=sigma2_y[1])\n self.z2 = self.R.uniform(low=sigma2_z[0], high=sigma2_z[1])\n self.a = self.R.uniform(low=self.alpha[0], high=self.alpha[1])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSmoothd_GaussianSmoothd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSmoothd_GaussianSmoothd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 704, "end_line": 734, "span_ids": ["GaussianSmoothd", "GaussianSmoothd.__call__", "GaussianSmoothd.__init__"], "tokens": 286}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianSmoothd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.GaussianSmooth`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n sigma: if a list of values, must match the count of spatial dimensions of input data,\n and apply every value in the list to 1 spatial dimension. if only 1 value provided,\n use it for all spatial dimensions.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n see also :py:meth:`monai.networks.layers.GaussianFilter`.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n sigma: Union[Sequence[float], float],\n approx: str = \"erf\",\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.converter = GaussianSmooth(sigma, approx=approx)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSmoothd_RandGaussianSmoothd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSmoothd_RandGaussianSmoothd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 737, "end_line": 785, "span_ids": ["RandGaussianSmoothd.__init__", "RandGaussianSmoothd", "RandGaussianSmoothd.randomize", "RandGaussianSmoothd.__call__"], "tokens": 557}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandGaussianSmoothd(RandomizableTransform, MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.GaussianSmooth`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n sigma_x: randomly select sigma value for the first spatial dimension.\n sigma_y: randomly select sigma value for the second spatial dimension if have.\n sigma_z: randomly select sigma value for the third spatial dimension if have.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n see also :py:meth:`monai.networks.layers.GaussianFilter`.\n prob: probability of Gaussian smooth.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n sigma_x: Tuple[float, float] = (0.25, 1.5),\n sigma_y: Tuple[float, float] = (0.25, 1.5),\n sigma_z: Tuple[float, float] = (0.25, 1.5),\n approx: str = \"erf\",\n prob: float = 0.1,\n allow_missing_keys: bool = False,\n ) -> None:\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.sigma_x, self.sigma_y, self.sigma_z = sigma_x, sigma_y, sigma_z\n self.approx = approx\n\n self.x, self.y, self.z = self.sigma_x[0], self.sigma_y[0], self.sigma_z[0]\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n self.x = self.R.uniform(low=self.sigma_x[0], high=self.sigma_x[1])\n self.y = self.R.uniform(low=self.sigma_y[0], high=self.sigma_y[1])\n self.z = self.R.uniform(low=self.sigma_z[0], high=self.sigma_z[1])\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n self.randomize()\n if not self._do_transform:\n return d\n for key in self.key_iterator(d):\n sigma = ensure_tuple_size(tup=(self.x, self.y, self.z), dim=d[key].ndim - 1)\n d[key] = GaussianSmooth(sigma=sigma, approx=self.approx)(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSharpend_GaussianSharpend.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSharpend_GaussianSharpend.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 788, "end_line": 824, "span_ids": ["GaussianSharpend.__init__", "GaussianSharpend.__call__", "GaussianSharpend"], "tokens": 408}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianSharpend(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.GaussianSharpen`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n sigma1: sigma parameter for the first gaussian kernel. if a list of values, must match the count\n of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension.\n if only 1 value provided, use it for all spatial dimensions.\n sigma2: sigma parameter for the second gaussian kernel. if a list of values, must match the count\n of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension.\n if only 1 value provided, use it for all spatial dimensions.\n alpha: weight parameter to compute the final result.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n see also :py:meth:`monai.networks.layers.GaussianFilter`.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n sigma1: Union[Sequence[float], float] = 3.0,\n sigma2: Union[Sequence[float], float] = 1.0,\n alpha: float = 30.0,\n approx: str = \"erf\",\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.converter = GaussianSharpen(sigma1, sigma2, alpha, approx=approx)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSharpend.randomize_RandGaussianSharpend.randomize.self.a.self_R_uniform_low_self_a": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSharpend.randomize_RandGaussianSharpend.randomize.self.a.self_R_uniform_low_self_a", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 876, "end_line": 887, "span_ids": ["RandGaussianSharpend.randomize"], "tokens": 293}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandGaussianSharpend(RandomizableTransform, MapTransform):\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n self.x1 = self.R.uniform(low=self.sigma1_x[0], high=self.sigma1_x[1])\n self.y1 = self.R.uniform(low=self.sigma1_y[0], high=self.sigma1_y[1])\n self.z1 = self.R.uniform(low=self.sigma1_z[0], high=self.sigma1_z[1])\n sigma2_x = (self.sigma2_x, self.x1) if not isinstance(self.sigma2_x, Iterable) else self.sigma2_x\n sigma2_y = (self.sigma2_y, self.y1) if not isinstance(self.sigma2_y, Iterable) else self.sigma2_y\n sigma2_z = (self.sigma2_z, self.z1) if not isinstance(self.sigma2_z, Iterable) else self.sigma2_z\n self.x2 = self.R.uniform(low=sigma2_x[0], high=sigma2_x[1])\n self.y2 = self.R.uniform(low=sigma2_y[0], high=sigma2_y[1])\n self.z2 = self.R.uniform(low=sigma2_z[0], high=sigma2_z[1])\n self.a = self.R.uniform(low=self.alpha[0], high=self.alpha[1])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSharpend.__call___RandGaussianSharpend.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSharpend.__call___RandGaussianSharpend.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 889, "end_line": 898, "span_ids": ["RandGaussianSharpend.__call__"], "tokens": 153}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandGaussianSharpend(RandomizableTransform, MapTransform):\n\n def __call__(self, data):\n d = dict(data)\n self.randomize()\n if not self._do_transform:\n return d\n for key in self.key_iterator(d):\n sigma1 = ensure_tuple_size(tup=(self.x1, self.y1, self.z1), dim=d[key].ndim - 1)\n sigma2 = ensure_tuple_size(tup=(self.x2, self.y2, self.z2), dim=d[key].ndim - 1)\n d[key] = GaussianSharpen(sigma1=sigma1, sigma2=sigma2, alpha=self.a, approx=self.approx)(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_MeanEnsemble.__call___MeanEnsemble.__call__.return.torch_mean_img__dim_0_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_MeanEnsemble.__call___MeanEnsemble.__call__.return.torch_mean_img__dim_0_", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 395, "end_line": 406, "span_ids": ["MeanEnsemble.__call__"], "tokens": 139}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MeanEnsemble(Transform):\n\n def __call__(self, img: Union[Sequence[torch.Tensor], torch.Tensor]) -> torch.Tensor:\n img_ = torch.stack(img) if isinstance(img, (tuple, list)) else torch.as_tensor(img)\n if self.weights is not None:\n self.weights = self.weights.to(img_.device)\n shape = tuple(self.weights.shape)\n for _ in range(img_.ndimension() - self.weights.ndimension()):\n shape += (1,)\n weights = self.weights.reshape(*shape)\n\n img_ = img_ * weights / weights.mean(dim=0, keepdim=True)\n\n return torch.mean(img_, dim=0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_VoteEnsemble_VoteEnsemble.__init__.self.num_classes.num_classes": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_VoteEnsemble_VoteEnsemble.__init__.self.num_classes.num_classes", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 409, "end_line": 430, "span_ids": ["VoteEnsemble.__init__", "VoteEnsemble"], "tokens": 234}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class VoteEnsemble(Transform):\n \"\"\"\n Execute vote ensemble on the input data.\n The input data can be a list or tuple of PyTorch Tensor with shape: [B[, C, H, W, D]],\n Or a single PyTorch Tensor with shape: [E, B[, C, H, W, D]], the `E` dimension represents\n the output data from different models.\n Typically, the input data is model output of segmentation task or classification task.\n\n Note:\n This vote transform expects the input data is discrete values. It can be multiple channels\n data in One-Hot format or single channel data. It will vote to select the most common data\n between items.\n The output data has the same shape as every item of the input data.\n\n Args:\n num_classes: if the input is single channel data instead of One-Hot, we can't get class number\n from channel, need to explicitly specify the number of classes to vote.\n\n \"\"\"\n\n def __init__(self, num_classes: Optional[int] = None) -> None:\n self.num_classes = num_classes", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Ensembled_Ensembled.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Ensembled_Ensembled.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/post/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 223, "end_line": 267, "span_ids": ["Ensembled", "Ensembled.__call__", "Ensembled.__init__"], "tokens": 421}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Ensembled(MapTransform):\n \"\"\"\n Base class of dictionary-based ensemble transforms.\n\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n ensemble: Callable[[Union[Sequence[torch.Tensor], torch.Tensor]], torch.Tensor],\n output_key: Optional[str] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be stack and execute ensemble.\n if only 1 key provided, suppose it's a PyTorch Tensor with data stacked on dimension `E`.\n output_key: the key to store ensemble result in the dictionary.\n ensemble: callable method to execute ensemble on specified data.\n if only 1 key provided in `keys`, `output_key` can be None and use `keys` as default.\n allow_missing_keys: don't raise exception if key is missing.\n\n Raises:\n TypeError: When ``ensemble`` is not ``callable``.\n ValueError: When ``len(keys) > 1`` and ``output_key=None``. Incompatible values.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n if not callable(ensemble):\n raise TypeError(f\"ensemble must be callable but is {type(ensemble).__name__}.\")\n self.ensemble = ensemble\n if len(self.keys) > 1 and output_key is None:\n raise ValueError(\"Incompatible values: len(self.keys) > 1 and output_key=None.\")\n self.output_key = output_key if output_key is not None else self.keys[0]\n\n def __call__(self, data: Mapping[Hashable, torch.Tensor]) -> Dict[Hashable, torch.Tensor]:\n d = dict(data)\n items: Union[List[torch.Tensor], torch.Tensor]\n if len(self.keys) == 1:\n items = d[self.keys[0]]\n else:\n items = [d[key] for key in self.key_iterator(d)]\n d[self.output_key] = self.ensemble(items)\n\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_MeanEnsembled_MeanEnsembled.__init__.super___init___keys_en": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_MeanEnsembled_MeanEnsembled.__init__.super___init___keys_en", "embedding": null, "metadata": {"file_path": "monai/transforms/post/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 277, "end_line": 307, "span_ids": ["MeanEnsembled", "MeanEnsembled.__init__"], "tokens": 435}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MeanEnsembled(Ensembled):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.MeanEnsemble`.\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n output_key: Optional[str] = None,\n weights: Optional[Union[Sequence[float], torch.Tensor, np.ndarray]] = None,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be stack and execute ensemble.\n if only 1 key provided, suppose it's a PyTorch Tensor with data stacked on dimension `E`.\n output_key: the key to store ensemble result in the dictionary.\n if only 1 key provided in `keys`, `output_key` can be None and use `keys` as default.\n weights: can be a list or tuple of numbers for input data with shape: [E, B, C, H, W[, D]].\n or a Numpy ndarray or a PyTorch Tensor data.\n the `weights` will be added to input data from highest dimension, for example:\n 1. if the `weights` only has 1 dimension, it will be added to the `E` dimension of input data.\n 2. if the `weights` has 3 dimensions, it will be added to `E`, `B` and `C` dimensions.\n it's a typical practice to add weights for different classes:\n to ensemble 3 segmentation model outputs, every output has 4 channels(classes),\n so the input data shape can be: [3, B, 4, H, W, D].\n and add different `weights` for different classes, so the `weights` shape can be: [3, 1, 4].\n for example: `weights = [[[1, 2, 3, 4]], [[4, 3, 2, 1]], [[1, 1, 1, 1]]]`.\n\n \"\"\"\n ensemble = MeanEnsemble(weights=weights)\n super().__init__(keys, ensemble, output_key)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate_RandRotate.__init__.self.z.0_0": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate_RandRotate.__init__.self.z.0_0", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 655, "end_line": 714, "span_ids": ["RandRotate", "RandRotate.__init__"], "tokens": 744}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandRotate(RandomizableTransform):\n \"\"\"\n Randomly rotate the input arrays.\n\n Args:\n range_x: Range of rotation angle in radians in the plane defined by the first and second axes.\n If single number, angle is uniformly sampled from (-range_x, range_x).\n range_y: Range of rotation angle in radians in the plane defined by the first and third axes.\n If single number, angle is uniformly sampled from (-range_y, range_y).\n range_z: Range of rotation angle in radians in the plane defined by the second and third axes.\n If single number, angle is uniformly sampled from (-range_z, range_z).\n prob: Probability of rotation.\n keep_size: If it is False, the output shape is adapted so that the\n input array is contained completely in the output.\n If it is True, the output shape is the same as the input. Default is True.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"border\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n align_corners: Defaults to False.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n dtype: data type for resampling computation. Defaults to ``np.float64`` for best precision.\n If None, use the data type of input data. To be compatible with other modules,\n the output data type is always ``np.float32``.\n \"\"\"\n\n def __init__(\n self,\n range_x: Union[Tuple[float, float], float] = 0.0,\n range_y: Union[Tuple[float, float], float] = 0.0,\n range_z: Union[Tuple[float, float], float] = 0.0,\n prob: float = 0.1,\n keep_size: bool = True,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,\n align_corners: bool = False,\n dtype: DtypeLike = np.float64,\n ) -> None:\n RandomizableTransform.__init__(self, prob)\n self.range_x = ensure_tuple(range_x)\n if len(self.range_x) == 1:\n self.range_x = tuple(sorted([-self.range_x[0], self.range_x[0]]))\n self.range_y = ensure_tuple(range_y)\n if len(self.range_y) == 1:\n self.range_y = tuple(sorted([-self.range_y[0], self.range_y[0]]))\n self.range_z = ensure_tuple(range_z)\n if len(self.range_z) == 1:\n self.range_z = tuple(sorted([-self.range_z[0], self.range_z[0]]))\n\n self.keep_size = keep_size\n self.mode: GridSampleMode = GridSampleMode(mode)\n self.padding_mode: GridSamplePadMode = GridSamplePadMode(padding_mode)\n self.align_corners = align_corners\n self.dtype = dtype\n\n self.x = 0.0\n self.y = 0.0\n self.z = 0.0", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd_Spacingd._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd_Spacingd._", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 117, "end_line": 129, "span_ids": ["Spacingd"], "tokens": 128}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Spacingd(MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.Spacing`.\n\n This transform assumes the ``data`` dictionary has a key for the input\n data's metadata and contains `affine` field. The key is formed by ``key_{meta_key_postfix}``.\n\n After resampling the input array, this transform will write the new affine\n to the `affine` field of metadata which is formed by ``key_{meta_key_postfix}``.\n\n see also:\n :py:class:`monai.transforms.Spacing`\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Orientationd.__call___Orientationd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Orientationd.__call___Orientationd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 342, "end_line": 355, "span_ids": ["Orientationd.__call__"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Orientationd(MapTransform, InvertibleTransform):\n\n def __call__(\n self, data: Mapping[Union[Hashable, str], Dict[str, np.ndarray]]\n ) -> Dict[Union[Hashable, str], Union[np.ndarray, Dict[str, np.ndarray]]]:\n d: Dict = dict(data)\n for key, meta_key, meta_key_postfix in self.key_iterator(d, self.meta_keys, self.meta_key_postfix):\n meta_key = meta_key or f\"{key}_{meta_key_postfix}\"\n # create metadata if necessary\n if meta_key not in d:\n d[meta_key] = {\"affine\": None}\n meta_data = d[meta_key]\n d[key], old_affine, new_affine = self.ornt_transform(d[key], affine=meta_data[\"affine\"])\n self.push_transform(d, key, extra_info={\"meta_key\": meta_key, \"old_affine\": old_affine})\n d[meta_key][\"affine\"] = new_affine\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_logging_Identity.__call__.return.np_asanyarray_img_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_logging_Identity.__call__.return.np_asanyarray_img_", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 16, "end_line": 74, "span_ids": ["Identity.__call__", "Identity", "docstring"], "tokens": 408}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nimport sys\nimport time\nimport warnings\nfrom typing import Callable, List, Mapping, Optional, Sequence, Tuple, Union\n\nimport numpy as np\nimport torch\n\nfrom monai.config import DtypeLike, NdarrayTensor\nfrom monai.transforms.transform import Randomizable, Transform\nfrom monai.transforms.utils import extreme_points_to_image, get_extreme_points, map_binary_to_indices\nfrom monai.utils import ensure_tuple, min_version, optional_import\n\nPILImageImage, has_pil = optional_import(\"PIL.Image\", name=\"Image\")\npil_image_fromarray, _ = optional_import(\"PIL.Image\", name=\"fromarray\")\ncp, has_cp = optional_import(\"cupy\")\ncp_ndarray, _ = optional_import(\"cupy\", name=\"ndarray\")\n\n__all__ = [\n \"Identity\",\n \"AsChannelFirst\",\n \"AsChannelLast\",\n \"AddChannel\",\n \"EnsureChannelFirst\",\n \"RepeatChannel\",\n \"RemoveRepeatedChannel\",\n \"SplitChannel\",\n \"CastToType\",\n \"ToTensor\",\n \"ToNumpy\",\n \"ToPIL\",\n \"Transpose\",\n \"SqueezeDim\",\n \"DataStats\",\n \"SimulateDelay\",\n \"Lambda\",\n \"LabelToMask\",\n \"FgBgToIndices\",\n \"ConvertToMultiChannelBasedOnBratsClasses\",\n \"AddExtremePointsChannel\",\n \"TorchVision\",\n \"MapLabelValue\",\n]\n\n\nclass Identity(Transform):\n \"\"\"\n Convert the input to an np.ndarray, if input data is np.ndarray or subclasses, return unchanged data.\n As the output value is same as input, it can be used as a testing tool to verify the transform chain,\n Compose or transform adaptor, etc.\n\n \"\"\"\n\n def __call__(self, img: Union[np.ndarray, torch.Tensor]) -> np.ndarray:\n \"\"\"\n Apply the transform to `img`.\n \"\"\"\n return np.asanyarray(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_Lambda_Lambda.__init__.self.func.func": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_Lambda_Lambda.__init__.self.func.func", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 358, "end_line": 383, "span_ids": ["Lambda", "Lambda.__init__"], "tokens": 176}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Lambda(Transform):\n \"\"\"\n Apply a user-defined lambda as a transform.\n\n For example:\n\n .. code-block:: python\n :emphasize-lines: 2\n\n image = np.ones((10, 2, 2))\n lambd = Lambda(func=lambda x: x[:4, :, :])\n print(lambd(image).shape)\n (4, 2, 2)\n\n Args:\n func: Lambda/function to be applied.\n\n Raises:\n TypeError: When ``func`` is not an ``Optional[Callable]``.\n\n \"\"\"\n\n def __init__(self, func: Optional[Callable] = None) -> None:\n if func is not None and not callable(func):\n raise TypeError(f\"func must be None or callable but is {type(func).__name__}.\")\n self.func = func", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_rotate_create_rotate.raise_ValueError_f_Unsupp": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_rotate_create_rotate.raise_ValueError_f_Unsupp", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 420, "end_line": 467, "span_ids": ["create_rotate"], "tokens": 652}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def create_rotate(spatial_dims: int, radians: Union[Sequence[float], float]) -> np.ndarray:\n \"\"\"\n create a 2D or 3D rotation matrix\n\n Args:\n spatial_dims: {``2``, ``3``} spatial rank\n radians: rotation radians\n when spatial_dims == 3, the `radians` sequence corresponds to\n rotation in the 1st, 2nd, and 3rd dim respectively.\n\n Raises:\n ValueError: When ``radians`` is empty.\n ValueError: When ``spatial_dims`` is not one of [2, 3].\n\n \"\"\"\n radians = ensure_tuple(radians)\n if spatial_dims == 2:\n if len(radians) >= 1:\n sin_, cos_ = np.sin(radians[0]), np.cos(radians[0])\n return np.array([[cos_, -sin_, 0.0], [sin_, cos_, 0.0], [0.0, 0.0, 1.0]])\n raise ValueError(\"radians must be non empty.\")\n\n if spatial_dims == 3:\n affine = None\n if len(radians) >= 1:\n sin_, cos_ = np.sin(radians[0]), np.cos(radians[0])\n affine = np.array(\n [[1.0, 0.0, 0.0, 0.0], [0.0, cos_, -sin_, 0.0], [0.0, sin_, cos_, 0.0], [0.0, 0.0, 0.0, 1.0]]\n )\n if len(radians) >= 2:\n sin_, cos_ = np.sin(radians[1]), np.cos(radians[1])\n if affine is None:\n raise ValueError(\"Affine should be a matrix.\")\n affine = affine @ np.array(\n [[cos_, 0.0, sin_, 0.0], [0.0, 1.0, 0.0, 0.0], [-sin_, 0.0, cos_, 0.0], [0.0, 0.0, 0.0, 1.0]]\n )\n if len(radians) >= 3:\n sin_, cos_ = np.sin(radians[2]), np.cos(radians[2])\n if affine is None:\n raise ValueError(\"Affine should be a matrix.\")\n affine = affine @ np.array(\n [[cos_, -sin_, 0.0, 0.0], [sin_, cos_, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]\n )\n if affine is None:\n raise ValueError(\"radians must be non empty.\")\n return affine\n\n raise ValueError(f\"Unsupported spatial_dims: {spatial_dims}, available options are [2, 3].\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_importlib_alias.return._outer": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_importlib_alias.return._outer", "embedding": null, "metadata": {"file_path": "monai/utils/aliases.py", "file_name": "aliases.py", "file_type": "text/x-python", "category": "implementation", "start_line": 16, "end_line": 43, "span_ids": ["alias", "docstring"], "tokens": 162}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import importlib\nimport inspect\nimport sys\nimport threading\n\nalias_lock = threading.RLock()\nGlobalAliases = {}\n\n__all__ = [\"alias\", \"resolve_name\"]\n\n\ndef alias(*names):\n \"\"\"\n Stores the decorated function or class in the global aliases table under the given names and as the `__aliases__`\n member of the decorated object. This new member will contain all alias names declared for that object.\n \"\"\"\n\n def _outer(obj):\n for n in names:\n with alias_lock:\n GlobalAliases[n] = obj\n\n # set the member list __aliases__ to contain the alias names defined by the decorator for `obj`\n obj.__aliases__ = getattr(obj, \"__aliases__\", ()) + tuple(names)\n\n return obj\n\n return _outer", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_collections.abc_ensure_tuple_size.return.tuple_tup_dim_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_collections.abc_ensure_tuple_size.return.tuple_tup_dim_", "embedding": null, "metadata": {"file_path": "monai/utils/misc.py", "file_name": "misc.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 104, "span_ids": ["zip_with", "ensure_tuple_size", "first", "docstring", "ensure_tuple", "star_zip_with", "issequenceiterable"], "tokens": 640}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import collections.abc\nimport inspect\nimport itertools\nimport random\nimport types\nimport warnings\nfrom ast import literal_eval\nfrom distutils.util import strtobool\nfrom typing import Any, Callable, List, Optional, Sequence, Tuple, Union, cast\n\nimport numpy as np\nimport torch\nimport torch.distributed as dist\n\n__all__ = [\n \"zip_with\",\n \"star_zip_with\",\n \"first\",\n \"issequenceiterable\",\n \"ensure_tuple\",\n \"ensure_tuple_size\",\n \"ensure_tuple_rep\",\n \"fall_back_tuple\",\n \"is_scalar_tensor\",\n \"is_scalar\",\n \"progress_bar\",\n \"get_seed\",\n \"set_determinism\",\n \"list_to_dict\",\n \"dtype_torch_to_numpy\",\n \"dtype_numpy_to_torch\",\n \"MAX_SEED\",\n \"copy_to_device\",\n \"get_dist_device\",\n \"evenly_divisible_all_gather\",\n \"string_list_all_gather\",\n \"ImageMetaKey\",\n]\n\n_seed = None\n_flag_deterministic = torch.backends.cudnn.deterministic\n_flag_cudnn_benchmark = torch.backends.cudnn.benchmark\nMAX_SEED = np.iinfo(np.uint32).max + 1 # 2**32, the actual seed should be in [0, MAX_SEED - 1] for uint32\n\n\ndef zip_with(op, *vals, mapfunc=map):\n \"\"\"\n Map `op`, using `mapfunc`, to each tuple derived from zipping the iterables in `vals`.\n \"\"\"\n return mapfunc(op, zip(*vals))\n\n\ndef star_zip_with(op, *vals):\n \"\"\"\n Use starmap as the mapping function in zipWith.\n \"\"\"\n return zip_with(op, *vals, mapfunc=itertools.starmap)\n\n\ndef first(iterable, default=None):\n \"\"\"\n Returns the first item in the given iterable or `default` if empty, meaningful mostly with 'for' expressions.\n \"\"\"\n for i in iterable:\n return i\n return default\n\n\ndef issequenceiterable(obj: Any) -> bool:\n \"\"\"\n Determine if the object is an iterable sequence and is not a string.\n \"\"\"\n if isinstance(obj, torch.Tensor):\n return int(obj.dim()) > 0 # a 0-d tensor is not iterable\n return isinstance(obj, collections.abc.Iterable) and not isinstance(obj, (str, bytes))\n\n\ndef ensure_tuple(vals: Any) -> Tuple[Any, ...]:\n \"\"\"\n Returns a tuple of `vals`.\n \"\"\"\n if not issequenceiterable(vals):\n vals = (vals,)\n\n return tuple(vals)\n\n\ndef ensure_tuple_size(tup: Any, dim: int, pad_val: Any = 0) -> Tuple[Any, ...]:\n \"\"\"\n Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary.\n \"\"\"\n tup = ensure_tuple(tup) + (pad_val,) * dim\n return tuple(tup[:dim])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_ensure_tuple_rep_ensure_tuple_rep.raise_ValueError_f_Sequen": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_ensure_tuple_rep_ensure_tuple_rep.raise_ValueError_f_Sequen", "embedding": null, "metadata": {"file_path": "monai/utils/misc.py", "file_name": "misc.py", "file_type": "text/x-python", "category": "implementation", "start_line": 103, "end_line": 131, "span_ids": ["ensure_tuple_rep"], "tokens": 264}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def ensure_tuple_rep(tup: Any, dim: int) -> Tuple[Any, ...]:\n \"\"\"\n Returns a copy of `tup` with `dim` values by either shortened or duplicated input.\n\n Raises:\n ValueError: When ``tup`` is a sequence and ``tup`` length is not ``dim``.\n\n Examples::\n\n >>> ensure_tuple_rep(1, 3)\n (1, 1, 1)\n >>> ensure_tuple_rep(None, 3)\n (None, None, None)\n >>> ensure_tuple_rep('test', 3)\n ('test', 'test', 'test')\n >>> ensure_tuple_rep([1, 2, 3], 3)\n (1, 2, 3)\n >>> ensure_tuple_rep(range(3), 3)\n (0, 1, 2)\n >>> ensure_tuple_rep([1, 2], 3)\n ValueError: Sequence must have length 3, got length 2.\n\n \"\"\"\n if not issequenceiterable(tup):\n return (tup,) * dim\n if len(tup) == dim:\n return tuple(tup)\n\n raise ValueError(f\"Sequence must have length {dim}, got {len(tup)}.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py__image3_animated_gif__image3_animated_gif.return.Summary_value_image_summ": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py__image3_animated_gif__image3_animated_gif.return.Summary_value_image_summ", "embedding": null, "metadata": {"file_path": "monai/visualize/img2tensorboard.py", "file_name": "img2tensorboard.py", "file_type": "text/x-python", "category": "implementation", "start_line": 34, "end_line": 58, "span_ids": ["_image3_animated_gif"], "tokens": 363}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def _image3_animated_gif(tag: str, image: Union[np.ndarray, torch.Tensor], scale_factor: float = 1.0) -> Summary:\n \"\"\"Function to actually create the animated gif.\n\n Args:\n tag: Data identifier\n image: 3D image tensors expected to be in `HWD` format\n scale_factor: amount to multiply values by. if the image data is between 0 and 1, using 255 for this value will\n scale it to displayable range\n \"\"\"\n if len(image.shape) != 3:\n raise AssertionError(\"3D image tensors expected to be in `HWD` format, len(image.shape) != 3\")\n\n ims = [(np.asarray((image[:, :, i])) * scale_factor).astype(np.uint8) for i in range(image.shape[2])]\n ims = [GifImage.fromarray(im) for im in ims]\n img_str = b\"\"\n for b_data in PIL.GifImagePlugin.getheader(ims[0])[0]:\n img_str += b_data\n img_str += b\"\\x21\\xFF\\x0B\\x4E\\x45\\x54\\x53\\x43\\x41\\x50\" b\"\\x45\\x32\\x2E\\x30\\x03\\x01\\x00\\x00\\x00\"\n for i in ims:\n for b_data in PIL.GifImagePlugin.getdata(i):\n img_str += b_data\n img_str += b\"\\x3B\"\n summary_image_str = Summary.Image(height=10, width=10, colorspace=1, encoded_image_string=img_str)\n image_summary = Summary.Value(tag=tag, image=summary_image_str)\n return Summary(value=[image_summary])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_itertools_TestAdaptors.test_single_in_single_out.None_4": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_itertools_TestAdaptors.test_single_in_single_out.None_4", "embedding": null, "metadata": {"file_path": "tests/test_adaptors.py", "file_name": "test_adaptors.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 53, "span_ids": ["TestAdaptors.test_function_signature", "TestAdaptors.test_single_in_single_out", "TestAdaptors", "docstring"], "tokens": 338}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import itertools\nimport unittest\n\nfrom monai.transforms.adaptors import FunctionSignature, adaptor, apply_alias, to_kwargs\n\n\nclass TestAdaptors(unittest.TestCase):\n def test_function_signature(self):\n def foo(image, label=None, *a, **kw):\n pass\n\n f = FunctionSignature(foo)\n\n def test_single_in_single_out(self):\n def foo(image):\n return image * 2\n\n it = itertools.product([\"image\", [\"image\"]], [None, \"image\", [\"image\"], {\"image\": \"image\"}])\n for i in it:\n d = {\"image\": 2}\n dres = adaptor(foo, i[0], i[1])(d)\n self.assertEqual(dres[\"image\"], 4)\n\n d = {\"image\": 2}\n dres = adaptor(foo, \"image\")(d)\n self.assertEqual(dres[\"image\"], 4)\n\n d = {\"image\": 2}\n dres = adaptor(foo, \"image\", \"image\")(d)\n self.assertEqual(dres[\"image\"], 4)\n\n d = {\"image\": 2}\n dres = adaptor(foo, \"image\", {\"image\": \"image\"})(d)\n self.assertEqual(dres[\"image\"], 4)\n\n d = {\"img\": 2}\n dres = adaptor(foo, \"img\", {\"img\": \"image\"})(d)\n self.assertEqual(dres[\"img\"], 4)\n\n d = {\"img\": 2}\n dres = adaptor(foo, [\"img\"], {\"img\": \"image\"})(d)\n self.assertEqual(dres[\"img\"], 4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine.test_to_norm_affine_ill_TestToNormAffine.test_to_norm_affine_ill.with_self_assertRaises_Va.to_norm_affine_affine_sr": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine.test_to_norm_affine_ill_TestToNormAffine.test_to_norm_affine_ill.with_self_assertRaises_Va.to_norm_affine_affine_sr", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 100, "end_line": 106, "span_ids": ["TestToNormAffine.test_to_norm_affine_ill"], "tokens": 119}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestToNormAffine(unittest.TestCase):\n\n @parameterized.expand(TEST_ILL_TO_NORM_AFFINE_CASES)\n def test_to_norm_affine_ill(self, affine, src_size, dst_size, align_corners):\n with self.assertRaises(TypeError):\n to_norm_affine(affine, src_size, dst_size, align_corners)\n with self.assertRaises(ValueError):\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n to_norm_affine(affine, src_size, dst_size, align_corners)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset_TestArrayDataset.test_shape.with_tempfile_TemporaryDi.None_13": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset_TestArrayDataset.test_shape.with_tempfile_TemporaryDi.None_13", "embedding": null, "metadata": {"file_path": "tests/test_arraydataset.py", "file_name": "test_arraydataset.py", "file_type": "text/x-python", "category": "test", "start_line": 57, "end_line": 90, "span_ids": ["TestArrayDataset", "TestArrayDataset.test_shape"], "tokens": 480}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestArrayDataset(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_shape(self, img_transform, label_transform, indices, expected_shape):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=(128, 128, 128)), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n test_image1 = os.path.join(tempdir, \"test_image1.nii.gz\")\n test_seg1 = os.path.join(tempdir, \"test_seg1.nii.gz\")\n test_image2 = os.path.join(tempdir, \"test_image2.nii.gz\")\n test_seg2 = os.path.join(tempdir, \"test_seg2.nii.gz\")\n nib.save(test_image, test_image1)\n nib.save(test_image, test_seg1)\n nib.save(test_image, test_image2)\n nib.save(test_image, test_seg2)\n test_images = [test_image1, test_image2]\n test_segs = [test_seg1, test_seg2]\n test_labels = [1, 1]\n dataset = ArrayDataset(test_images, img_transform, test_segs, label_transform, test_labels, None)\n self.assertEqual(len(dataset), 2)\n dataset.set_random_state(1234)\n data1 = dataset[0]\n data2 = dataset[1]\n\n self.assertTupleEqual(data1[indices[0]].shape, expected_shape)\n self.assertTupleEqual(data1[indices[1]].shape, expected_shape)\n np.testing.assert_allclose(data1[indices[0]], data1[indices[1]])\n self.assertTupleEqual(data2[indices[0]].shape, expected_shape)\n self.assertTupleEqual(data2[indices[1]].shape, expected_shape)\n np.testing.assert_allclose(data2[indices[0]], data2[indices[0]])\n\n dataset = ArrayDataset(test_images, img_transform, test_segs, label_transform, test_labels, None)\n dataset.set_random_state(1234)\n _ = dataset[0]\n data2_new = dataset[1]\n np.testing.assert_allclose(data2[indices[0]], data2_new[indices[0]], atol=1e-3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_default_none_TestArrayDataset.test_default_none.with_tempfile_TemporaryDi.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_default_none_TestArrayDataset.test_default_none.with_tempfile_TemporaryDi.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_arraydataset.py", "file_name": "test_arraydataset.py", "file_type": "text/x-python", "category": "test", "start_line": 92, "end_line": 113, "span_ids": ["TestArrayDataset.test_default_none"], "tokens": 270}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestArrayDataset(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_4])\n def test_default_none(self, img_transform, expected_shape):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=(128, 128, 128)), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n test_image1 = os.path.join(tempdir, \"test_image1.nii.gz\")\n test_image2 = os.path.join(tempdir, \"test_image2.nii.gz\")\n nib.save(test_image, test_image1)\n nib.save(test_image, test_image2)\n test_images = [test_image1, test_image2]\n dataset = ArrayDataset(test_images, img_transform)\n self.assertEqual(len(dataset), 2)\n dataset.set_random_state(1234)\n data1 = dataset[0]\n data2 = dataset[1]\n self.assertTupleEqual(data1.shape, expected_shape)\n self.assertTupleEqual(data2.shape, expected_shape)\n\n dataset = ArrayDataset(test_images, img_transform)\n dataset.set_random_state(1234)\n _ = dataset[0]\n data2_new = dataset[1]\n np.testing.assert_allclose(data2, data2_new, atol=1e-3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_TestArrayDataset.test_dataloading_img.with_tempfile_TemporaryDi.None_6": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_TestArrayDataset.test_dataloading_img.with_tempfile_TemporaryDi.None_6", "embedding": null, "metadata": {"file_path": "tests/test_arraydataset.py", "file_name": "test_arraydataset.py", "file_type": "text/x-python", "category": "test", "start_line": 116, "end_line": 135, "span_ids": ["TestArrayDataset.test_dataloading_img"], "tokens": 282}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestArrayDataset(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_4])\n def test_dataloading_img(self, img_transform, expected_shape):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=(128, 128, 128)), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n test_image1 = os.path.join(tempdir, \"test_image1.nii.gz\")\n test_image2 = os.path.join(tempdir, \"test_image2.nii.gz\")\n nib.save(test_image, test_image1)\n nib.save(test_image, test_image2)\n test_images = [test_image1, test_image2]\n dataset = ArrayDataset(test_images, img_transform)\n self.assertEqual(len(dataset), 2)\n dataset.set_random_state(1234)\n n_workers = 0 if sys.platform == \"win32\" else 2\n loader = DataLoader(dataset, batch_size=10, num_workers=n_workers)\n imgs = next(iter(loader)) # test batching\n np.testing.assert_allclose(imgs.shape, [2] + list(expected_shape))\n\n dataset.set_random_state(1234)\n new_imgs = next(iter(loader)) # test batching\n np.testing.assert_allclose(imgs, new_imgs, atol=1e-3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_label_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_label_", "embedding": null, "metadata": {"file_path": "tests/test_arraydataset.py", "file_name": "test_arraydataset.py", "file_type": "text/x-python", "category": "test", "start_line": 137, "end_line": 166, "span_ids": ["impl:9", "TestArrayDataset.test_dataloading_img_label"], "tokens": 375}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestArrayDataset(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_4])\n def test_dataloading_img_label(self, img_transform, expected_shape):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=(128, 128, 128)), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n test_image1 = os.path.join(tempdir, \"test_image1.nii.gz\")\n test_image2 = os.path.join(tempdir, \"test_image2.nii.gz\")\n test_label1 = os.path.join(tempdir, \"test_label1.nii.gz\")\n test_label2 = os.path.join(tempdir, \"test_label2.nii.gz\")\n nib.save(test_image, test_image1)\n nib.save(test_image, test_image2)\n nib.save(test_image, test_label1)\n nib.save(test_image, test_label2)\n test_images = [test_image1, test_image2]\n test_labels = [test_label1, test_label2]\n dataset = ArrayDataset(test_images, img_transform, test_labels, img_transform)\n self.assertEqual(len(dataset), 2)\n dataset.set_random_state(1234)\n n_workers = 0 if sys.platform == \"win32\" else 2\n loader = DataLoader(dataset, batch_size=10, num_workers=n_workers)\n data = next(iter(loader)) # test batching\n np.testing.assert_allclose(data[0].shape, [2] + list(expected_shape))\n\n dataset.set_random_state(1234)\n new_data = next(iter(loader)) # test batching\n np.testing.assert_allclose(data[0], new_data[0], atol=1e-3)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_roc_auc.py_unittest_TEST_CASE_7._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_roc_auc.py_unittest_TEST_CASE_7._", "embedding": null, "metadata": {"file_path": "tests/test_compute_roc_auc.py", "file_name": "test_compute_roc_auc.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 82, "span_ids": ["impl:11", "docstring"], "tokens": 625}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.metrics import ROCAUCMetric, compute_roc_auc\nfrom monai.transforms import Activations, AsDiscrete\n\nTEST_CASE_1 = [\n torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5]]),\n torch.tensor([[0], [1], [0], [1]]),\n True,\n True,\n \"macro\",\n 0.75,\n]\n\nTEST_CASE_2 = [\n torch.tensor([[0.5], [0.5], [0.2], [8.3]]),\n torch.tensor([[0], [1], [0], [1]]),\n False,\n False,\n \"macro\",\n 0.875,\n]\n\nTEST_CASE_3 = [\n torch.tensor([[0.5], [0.5], [0.2], [8.3]]),\n torch.tensor([0, 1, 0, 1]),\n False,\n False,\n \"macro\",\n 0.875,\n]\n\nTEST_CASE_4 = [\n torch.tensor([0.5, 0.5, 0.2, 8.3]),\n torch.tensor([0, 1, 0, 1]),\n False,\n False,\n \"macro\",\n 0.875,\n]\n\nTEST_CASE_5 = [\n torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5]]),\n torch.tensor([[0], [1], [0], [1]]),\n True,\n True,\n \"none\",\n [0.75, 0.75],\n]\n\nTEST_CASE_6 = [\n torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5], [0.1, 0.5]]),\n torch.tensor([[1, 0], [0, 1], [0, 0], [1, 1], [0, 1]]),\n True,\n False,\n \"weighted\",\n 0.56667,\n]\n\nTEST_CASE_7 = [\n torch.tensor([[0.1, 0.9], [0.3, 1.4], [0.2, 0.1], [0.1, 0.5], [0.1, 0.5]]),\n torch.tensor([[1, 0], [0, 1], [0, 0], [1, 1], [0, 1]]),\n True,\n False,\n \"micro\",\n 0.62,\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_saver.py_csv_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_saver.py_csv_", "embedding": null, "metadata": {"file_path": "tests/test_csv_saver.py", "file_name": "test_csv_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestCSVSaver.test_saved_content", "TestCSVSaver", "impl", "docstring"], "tokens": 225}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import csv\nimport os\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.data import CSVSaver\n\n\nclass TestCSVSaver(unittest.TestCase):\n def test_saved_content(self):\n with tempfile.TemporaryDirectory() as tempdir:\n saver = CSVSaver(output_dir=tempdir, filename=\"predictions.csv\")\n meta_data = {\"filename_or_obj\": [\"testfile\" + str(i) for i in range(8)]}\n saver.save_batch(torch.zeros(8), meta_data)\n saver.finalize()\n filepath = os.path.join(tempdir, \"predictions.csv\")\n self.assertTrue(os.path.exists(filepath))\n with open(filepath, \"r\") as f:\n reader = csv.reader(f)\n i = 0\n for row in reader:\n self.assertEqual(row[0], \"testfile\" + str(i))\n self.assertEqual(np.array(row[1:]).astype(np.float32), 0.0)\n i += 1\n self.assertEqual(i, 8)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_statsd.py_logging_TEST_CASE_6._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_statsd.py_logging_TEST_CASE_6._", "embedding": null, "metadata": {"file_path": "tests/test_data_statsd.py", "file_name": "test_data_statsd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 114, "span_ids": ["impl:9", "docstring"], "tokens": 757}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nimport os\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import DataStatsd\n\nTEST_CASE_1 = [\n {\n \"keys\": \"img\",\n \"prefix\": \"test data\",\n \"data_type\": False,\n \"data_shape\": False,\n \"value_range\": False,\n \"data_value\": False,\n \"additional_info\": None,\n \"logger_handler\": None,\n },\n {\"img\": np.array([[0, 1], [1, 2]])},\n \"test data statistics:\",\n]\n\nTEST_CASE_2 = [\n {\n \"keys\": \"img\",\n \"prefix\": \"test data\",\n \"data_type\": True,\n \"data_shape\": False,\n \"value_range\": False,\n \"data_value\": False,\n \"additional_info\": None,\n \"logger_handler\": None,\n },\n {\"img\": np.array([[0, 1], [1, 2]])},\n \"test data statistics:\\nType: \",\n]\n\nTEST_CASE_3 = [\n {\n \"keys\": \"img\",\n \"prefix\": \"test data\",\n \"data_type\": True,\n \"data_shape\": True,\n \"value_range\": False,\n \"data_value\": False,\n \"additional_info\": None,\n \"logger_handler\": None,\n },\n {\"img\": np.array([[0, 1], [1, 2]])},\n \"test data statistics:\\nType: \\nShape: (2, 2)\",\n]\n\nTEST_CASE_4 = [\n {\n \"keys\": \"img\",\n \"prefix\": \"test data\",\n \"data_type\": True,\n \"data_shape\": True,\n \"value_range\": True,\n \"data_value\": False,\n \"additional_info\": None,\n \"logger_handler\": None,\n },\n {\"img\": np.array([[0, 1], [1, 2]])},\n \"test data statistics:\\nType: \\nShape: (2, 2)\\nValue range: (0, 2)\",\n]\n\nTEST_CASE_5 = [\n {\n \"keys\": \"img\",\n \"prefix\": \"test data\",\n \"data_type\": True,\n \"data_shape\": True,\n \"value_range\": True,\n \"data_value\": True,\n \"additional_info\": None,\n \"logger_handler\": None,\n },\n {\"img\": np.array([[0, 1], [1, 2]])},\n \"test data statistics:\\nType: \\nShape: (2, 2)\\nValue range: (0, 2)\\nValue: [[0 1]\\n [1 2]]\",\n]\n\nTEST_CASE_6 = [\n {\n \"keys\": \"img\",\n \"prefix\": \"test data\",\n \"data_type\": True,\n \"data_shape\": True,\n \"value_range\": True,\n \"data_value\": True,\n \"additional_info\": np.mean,\n \"logger_handler\": None,\n },\n {\"img\": np.array([[0, 1], [1, 2]])},\n (\n \"test data statistics:\\nType: \\nShape: (2, 2)\\n\"\n \"Value range: (0, 2)\\nValue: [[0 1]\\n [1 2]]\\nAdditional info: 1.0\"\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataset.py_os_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataset.py_os_", "embedding": null, "metadata": {"file_path": "tests/test_dataset.py", "file_name": "test_dataset.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 93, "span_ids": ["TestDataset.test_shape", "impl:3", "TestDataset", "docstring"], "tokens": 864}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport nibabel as nib\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.data import Dataset\nfrom monai.transforms import Compose, LoadImaged, SimulateDelayd\n\nTEST_CASE_1 = [(128, 128, 128)]\n\n\nclass TestDataset(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1])\n def test_shape(self, expected_shape):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=[128, 128, 128]), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n nib.save(test_image, os.path.join(tempdir, \"test_image1.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_label1.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_extra1.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_image2.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_label2.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_extra2.nii.gz\"))\n test_data = [\n {\n \"image\": os.path.join(tempdir, \"test_image1.nii.gz\"),\n \"label\": os.path.join(tempdir, \"test_label1.nii.gz\"),\n \"extra\": os.path.join(tempdir, \"test_extra1.nii.gz\"),\n },\n {\n \"image\": os.path.join(tempdir, \"test_image2.nii.gz\"),\n \"label\": os.path.join(tempdir, \"test_label2.nii.gz\"),\n \"extra\": os.path.join(tempdir, \"test_extra2.nii.gz\"),\n },\n ]\n test_transform = Compose(\n [\n LoadImaged(keys=[\"image\", \"label\", \"extra\"]),\n SimulateDelayd(keys=[\"image\", \"label\", \"extra\"], delay_time=[1e-7, 1e-6, 1e-5]),\n ]\n )\n dataset = Dataset(data=test_data, transform=test_transform)\n data1 = dataset[0]\n data2 = dataset[1]\n\n self.assertTupleEqual(data1[\"image\"].shape, expected_shape)\n self.assertTupleEqual(data1[\"label\"].shape, expected_shape)\n self.assertTupleEqual(data1[\"extra\"].shape, expected_shape)\n self.assertTupleEqual(data2[\"image\"].shape, expected_shape)\n self.assertTupleEqual(data2[\"label\"].shape, expected_shape)\n self.assertTupleEqual(data2[\"extra\"].shape, expected_shape)\n\n dataset = Dataset(data=test_data, transform=LoadImaged(keys=[\"image\", \"label\", \"extra\"]))\n data1_simple = dataset[0]\n data2_simple = dataset[1]\n data3_simple = dataset[-1]\n data4_simple = dataset[[0, 1]]\n\n self.assertTupleEqual(data1_simple[\"image\"].shape, expected_shape)\n self.assertTupleEqual(data1_simple[\"label\"].shape, expected_shape)\n self.assertTupleEqual(data1_simple[\"extra\"].shape, expected_shape)\n self.assertTupleEqual(data2_simple[\"image\"].shape, expected_shape)\n self.assertTupleEqual(data2_simple[\"label\"].shape, expected_shape)\n self.assertTupleEqual(data2_simple[\"extra\"].shape, expected_shape)\n self.assertTupleEqual(data3_simple[\"image\"].shape, expected_shape)\n self.assertTupleEqual(data3_simple[\"label\"].shape, expected_shape)\n self.assertTupleEqual(data3_simple[\"extra\"].shape, expected_shape)\n self.assertTupleEqual(data4_simple[0][\"image\"].shape, expected_shape)\n self.assertTupleEqual(data4_simple[1][\"label\"].shape, expected_shape)\n self.assertTupleEqual(data4_simple[-1][\"extra\"].shape, expected_shape)\n\n data4_list = dataset[0:1]\n self.assertEqual(len(data4_list), 1)\n for d in data4_list:\n self.assertTupleEqual(d[\"image\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decathlondataset.py_os_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decathlondataset.py_os_", "embedding": null, "metadata": {"file_path": "tests/test_decathlondataset.py", "file_name": "test_decathlondataset.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 96, "span_ids": ["TestDecathlonDataset", "TestDecathlonDataset.test_values", "impl", "docstring"], "tokens": 715}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport shutil\nimport unittest\nfrom urllib.error import ContentTooShortError, HTTPError\n\nfrom monai.apps import DecathlonDataset\nfrom monai.transforms import AddChanneld, Compose, LoadImaged, ScaleIntensityd, ToTensord\nfrom tests.utils import skip_if_quick\n\n\nclass TestDecathlonDataset(unittest.TestCase):\n @skip_if_quick\n def test_values(self):\n testing_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), \"testing_data\")\n transform = Compose(\n [\n LoadImaged(keys=[\"image\", \"label\"]),\n AddChanneld(keys=[\"image\", \"label\"]),\n ScaleIntensityd(keys=\"image\"),\n ToTensord(keys=[\"image\", \"label\"]),\n ]\n )\n\n def _test_dataset(dataset):\n self.assertEqual(len(dataset), 52)\n self.assertTrue(\"image\" in dataset[0])\n self.assertTrue(\"label\" in dataset[0])\n self.assertTrue(\"image_meta_dict\" in dataset[0])\n self.assertTupleEqual(dataset[0][\"image\"].shape, (1, 36, 47, 44))\n\n try: # will start downloading if testing_dir doesn't have the Decathlon files\n data = DecathlonDataset(\n root_dir=testing_dir,\n task=\"Task04_Hippocampus\",\n transform=transform,\n section=\"validation\",\n download=True,\n )\n except (ContentTooShortError, HTTPError, RuntimeError) as e:\n print(str(e))\n if isinstance(e, RuntimeError):\n # FIXME: skip MD5 check as current downloading method may fail\n self.assertTrue(str(e).startswith(\"md5 check\"))\n return # skipping this test due the network connection errors\n\n _test_dataset(data)\n data = DecathlonDataset(\n root_dir=testing_dir, task=\"Task04_Hippocampus\", transform=transform, section=\"validation\", download=False\n )\n _test_dataset(data)\n # test validation without transforms\n data = DecathlonDataset(root_dir=testing_dir, task=\"Task04_Hippocampus\", section=\"validation\", download=False)\n self.assertTupleEqual(data[0][\"image\"].shape, (36, 47, 44))\n self.assertEqual(len(data), 52)\n data = DecathlonDataset(root_dir=testing_dir, task=\"Task04_Hippocampus\", section=\"training\", download=False)\n self.assertTupleEqual(data[0][\"image\"].shape, (34, 56, 31))\n self.assertEqual(len(data), 208)\n\n # test dataset properties\n data = DecathlonDataset(\n root_dir=testing_dir,\n task=\"Task04_Hippocampus\",\n section=\"validation\",\n download=False,\n )\n properties = data.get_properties(keys=\"labels\")\n self.assertDictEqual(properties[\"labels\"], {\"0\": \"background\", \"1\": \"Anterior\", \"2\": \"Posterior\"})\n\n shutil.rmtree(os.path.join(testing_dir, \"Task04_Hippocampus\"))\n try:\n data = DecathlonDataset(\n root_dir=testing_dir,\n task=\"Task04_Hippocampus\",\n transform=transform,\n section=\"validation\",\n download=False,\n )\n except RuntimeError as e:\n print(str(e))\n self.assertTrue(str(e).startswith(\"Cannot find dataset directory\"))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_delete_itemsd.py_sys_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_delete_itemsd.py_sys_", "embedding": null, "metadata": {"file_path": "tests/test_delete_itemsd.py", "file_name": "test_delete_itemsd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 38, "span_ids": ["TestDeleteItemsd", "impl:3", "TestDeleteItemsd.test_memory", "docstring"], "tokens": 176}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import sys\nimport time\nimport unittest\n\nfrom parameterized import parameterized\n\nfrom monai.transforms import DeleteItemsd\n\nTEST_CASE_1 = [{\"keys\": [str(i) for i in range(30)]}, 20]\n\n\nclass TestDeleteItemsd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1])\n def test_memory(self, input_param, expected_key_size):\n input_data = {}\n for i in range(50):\n input_data[str(i)] = [time.time()] * 100000\n result = DeleteItemsd(**input_param)(input_data)\n self.assertEqual(len(result.keys()), expected_key_size)\n self.assertGreaterEqual(\n sys.getsizeof(input_data) * float(expected_key_size) / len(input_data), sys.getsizeof(result)\n )\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensemble_evaluator.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensemble_evaluator.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_ensemble_evaluator.py", "file_name": "test_ensemble_evaluator.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 86, "span_ids": ["TestEnsembleEvaluator", "TestEnsembleEvaluator.test_content", "impl", "docstring"], "tokens": 533}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom ignite.engine import EventEnum, Events\n\nfrom monai.engines import EnsembleEvaluator\n\n\nclass TestEnsembleEvaluator(unittest.TestCase):\n def test_content(self):\n device = torch.device(\"cpu:0\")\n\n class TestDataset(torch.utils.data.Dataset):\n def __len__(self):\n return 8\n\n def __getitem__(self, index):\n return {\"image\": torch.tensor([index]), \"label\": torch.zeros(1)}\n\n val_loader = torch.utils.data.DataLoader(TestDataset())\n\n class TestNet(torch.nn.Module):\n def __init__(self, func):\n super().__init__()\n self.func = func\n\n def forward(self, x):\n return self.func(x)\n\n net0 = TestNet(lambda x: x + 1)\n net1 = TestNet(lambda x: x + 2)\n net2 = TestNet(lambda x: x + 3)\n net3 = TestNet(lambda x: x + 4)\n net4 = TestNet(lambda x: x + 5)\n\n class CustomEvents(EventEnum):\n FOO_EVENT = \"foo_event\"\n BAR_EVENT = \"bar_event\"\n\n val_engine = EnsembleEvaluator(\n device=device,\n val_data_loader=val_loader,\n networks=[net0, net1, net2, net3, net4],\n pred_keys=[\"pred0\", \"pred1\", \"pred2\", \"pred3\", \"pred4\"],\n event_names=[\"bwd_event\", \"opt_event\", CustomEvents],\n event_to_attr={CustomEvents.FOO_EVENT: \"foo\", \"opt_event\": \"opt\"},\n )\n\n @val_engine.on(Events.ITERATION_COMPLETED)\n def run_post_transform(engine):\n for i in range(5):\n expected_value = engine.state.iteration + i\n torch.testing.assert_allclose(engine.state.output[f\"pred{i}\"], torch.tensor([[expected_value]]))\n\n @val_engine.on(Events.EPOCH_COMPLETED)\n def trigger_custom_event():\n val_engine.fire_event(CustomEvents.FOO_EVENT)\n val_engine.fire_event(CustomEvents.BAR_EVENT)\n val_engine.fire_event(\"bwd_event\")\n val_engine.fire_event(\"opt_event\")\n\n @val_engine.on(CustomEvents.FOO_EVENT)\n def do_foo_op():\n self.assertEqual(val_engine.state.foo, 0)\n\n @val_engine.on(\"opt_event\")\n def do_bar_op():\n self.assertEqual(val_engine.state.opt, 0)\n\n val_engine.run()\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpen.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpen.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_sharpen.py", "file_name": "test_gaussian_sharpen.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 62, "span_ids": ["TestGaussianSharpen", "impl:7", "TestGaussianSharpen.test_value", "impl:5", "docstring"], "tokens": 745}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import GaussianSharpen\n\nTEST_CASE_1 = [\n {},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[4.1081963, 3.4950666, 4.1081963], [3.7239995, 2.8491793, 3.7239995], [4.569839, 3.9529324, 4.569839]],\n [[10.616725, 9.081067, 10.616725], [9.309998, 7.12295, 9.309998], [11.078365, 9.538931, 11.078365]],\n ]\n ),\n]\n\nTEST_CASE_2 = [\n {\"sigma1\": 1.0, \"sigma2\": 0.75, \"alpha\": 20},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[4.513644, 4.869134, 4.513644], [8.467242, 9.4004135, 8.467242], [10.416813, 12.0653515, 10.416813]],\n [[15.711488, 17.569994, 15.711488], [21.16811, 23.501041, 21.16811], [21.614658, 24.766209, 21.614658]],\n ]\n ),\n]\n\nTEST_CASE_3 = [\n {\"sigma1\": (0.5, 1.0), \"sigma2\": (0.5, 0.75), \"alpha\": 20},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[3.3324685, 3.335536, 3.3324673], [7.7666636, 8.16056, 7.7666636], [12.662973, 14.317837, 12.6629715]],\n [[15.329051, 16.57557, 15.329051], [19.41665, 20.40139, 19.416655], [24.659554, 27.557873, 24.659554]],\n ]\n ),\n]\n\n\nclass TestGaussianSharpen(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value(self, argments, image, expected_data):\n result = GaussianSharpen(**argments)(image)\n np.testing.assert_allclose(result, expected_data, rtol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpend.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpend.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_sharpend.py", "file_name": "test_gaussian_sharpend.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 62, "span_ids": ["TestGaussianSharpend.test_value", "TestGaussianSharpend", "impl:7", "impl:5", "docstring"], "tokens": 776}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import GaussianSharpend\n\nTEST_CASE_1 = [\n {\"keys\": \"img\"},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[4.1081963, 3.4950666, 4.1081963], [3.7239995, 2.8491793, 3.7239995], [4.569839, 3.9529324, 4.569839]],\n [[10.616725, 9.081067, 10.616725], [9.309998, 7.12295, 9.309998], [11.078365, 9.538931, 11.078365]],\n ]\n ),\n]\n\nTEST_CASE_2 = [\n {\"keys\": \"img\", \"sigma1\": 1.0, \"sigma2\": 0.75, \"alpha\": 20},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[4.513644, 4.869134, 4.513644], [8.467242, 9.4004135, 8.467242], [10.416813, 12.0653515, 10.416813]],\n [[15.711488, 17.569994, 15.711488], [21.16811, 23.501041, 21.16811], [21.614658, 24.766209, 21.614658]],\n ]\n ),\n]\n\nTEST_CASE_3 = [\n {\"keys\": \"img\", \"sigma1\": (0.5, 1.0), \"sigma2\": (0.5, 0.75), \"alpha\": 20},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[3.3324685, 3.335536, 3.3324673], [7.7666636, 8.16056, 7.7666636], [12.662973, 14.317837, 12.6629715]],\n [[15.329051, 16.57557, 15.329051], [19.41665, 20.40139, 19.416655], [24.659554, 27.557873, 24.659554]],\n ]\n ),\n]\n\n\nclass TestGaussianSharpend(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value(self, argments, image, expected_data):\n result = GaussianSharpend(**argments)(image)\n np.testing.assert_allclose(result[\"img\"], expected_data, rtol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smooth.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smooth.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_smooth.py", "file_name": "test_gaussian_smooth.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 66, "span_ids": ["impl:7", "impl:5", "docstring", "TestGaussianSmooth", "TestGaussianSmooth.test_value"], "tokens": 750}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import GaussianSmooth\n\nTEST_CASE_1 = [\n {\"sigma\": 1.5},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [\n [0.59167546, 0.69312394, 0.59167546],\n [0.7956997, 0.93213004, 0.7956997],\n [0.7668002, 0.8982755, 0.7668002],\n ],\n [[1.6105323, 1.8866735, 1.6105323], [1.9892492, 2.3303251, 1.9892492], [1.7856569, 2.091825, 1.7856569]],\n ]\n ),\n]\n\nTEST_CASE_2 = [\n {\"sigma\": 0.5},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[0.8424794, 0.99864554, 0.8424794], [1.678146, 1.9892154, 1.678146], [1.9889624, 2.3576462, 1.9889624]],\n [[2.966061, 3.5158648, 2.966061], [4.1953645, 4.973038, 4.1953645], [4.112544, 4.8748655, 4.1125436]],\n ]\n ),\n]\n\nTEST_CASE_3 = [\n {\"sigma\": [1.5, 0.5]},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[0.8542037, 1.0125432, 0.8542037], [1.1487541, 1.3616928, 1.1487541], [1.1070318, 1.3122368, 1.1070318]],\n [[2.3251305, 2.756128, 2.3251305], [2.8718853, 3.4042323, 2.8718853], [2.5779586, 3.0558217, 2.5779586]],\n ]\n ),\n]\n\n\nclass TestGaussianSmooth(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value(self, argments, image, expected_data):\n result = GaussianSmooth(**argments)(image)\n np.testing.assert_allclose(result, expected_data, rtol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smoothd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smoothd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_smoothd.py", "file_name": "test_gaussian_smoothd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 66, "span_ids": ["TestGaussianSmoothd", "impl:7", "impl:5", "TestGaussianSmoothd.test_value", "docstring"], "tokens": 785}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import GaussianSmoothd\n\nTEST_CASE_1 = [\n {\"keys\": \"img\", \"sigma\": 1.5},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [\n [0.59167546, 0.69312394, 0.59167546],\n [0.7956997, 0.93213004, 0.7956997],\n [0.7668002, 0.8982755, 0.7668002],\n ],\n [[1.6105323, 1.8866735, 1.6105323], [1.9892492, 2.3303251, 1.9892492], [1.7856569, 2.091825, 1.7856569]],\n ]\n ),\n]\n\nTEST_CASE_2 = [\n {\"keys\": \"img\", \"sigma\": 0.5},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[0.8424794, 0.99864554, 0.8424794], [1.678146, 1.9892154, 1.678146], [1.9889624, 2.3576462, 1.9889624]],\n [[2.966061, 3.5158648, 2.966061], [4.1953645, 4.973038, 4.1953645], [4.112544, 4.8748655, 4.1125436]],\n ]\n ),\n]\n\nTEST_CASE_3 = [\n {\"keys\": \"img\", \"sigma\": [1.5, 0.5]},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[0.8542037, 1.0125432, 0.8542037], [1.1487541, 1.3616928, 1.1487541], [1.1070318, 1.3122368, 1.1070318]],\n [[2.3251305, 2.756128, 2.3251305], [2.8718853, 3.4042323, 2.8718853], [2.5779586, 3.0558217, 2.5779586]],\n ]\n ),\n]\n\n\nclass TestGaussianSmoothd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value(self, argments, image, expected_data):\n result = GaussianSmoothd(**argments)(image)\n np.testing.assert_allclose(result[\"img\"], expected_data, rtol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_two_save_one_load_TestHandlerCheckpointLoader.test_two_save_one_load.with_tempfile_TemporaryDi.torch_testing_assert_allc": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_two_save_one_load_TestHandlerCheckpointLoader.test_two_save_one_load.with_tempfile_TemporaryDi.torch_testing_assert_allc", "embedding": null, "metadata": {"file_path": "tests/test_handler_checkpoint_loader.py", "file_name": "test_handler_checkpoint_loader.py", "file_type": "text/x-python", "category": "test", "start_line": 60, "end_line": 80, "span_ids": ["TestHandlerCheckpointLoader.test_two_save_one_load"], "tokens": 283}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerCheckpointLoader(unittest.TestCase):\n\n def test_two_save_one_load(self):\n logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n net1 = torch.nn.PReLU()\n optimizer = optim.SGD(net1.parameters(), lr=0.02)\n data1 = net1.state_dict()\n data1[\"weight\"] = torch.tensor([0.1])\n net1.load_state_dict(data1)\n net2 = torch.nn.PReLU()\n data2 = net2.state_dict()\n data2[\"weight\"] = torch.tensor([0.2])\n net2.load_state_dict(data2)\n with tempfile.TemporaryDirectory() as tempdir:\n engine = Engine(lambda e, b: None)\n save_dict = {\"net\": net1, \"opt\": optimizer}\n CheckpointSaver(save_dir=tempdir, save_dict=save_dict, save_final=True).attach(engine)\n engine.run([0] * 8, max_epochs=5)\n path = tempdir + \"/checkpoint_final_iteration=40.pt\"\n engine = Engine(lambda e, b: None)\n CheckpointLoader(load_path=path, load_dict={\"net\": net2}, strict=True).attach(engine)\n engine.run([0] * 8, max_epochs=1)\n torch.testing.assert_allclose(net2.state_dict()[\"weight\"], torch.tensor([0.1]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_TestHandlerCheckpointSaver_TestHandlerCheckpointSaver.test_file.with_tempfile_TemporaryDi.for_filename_in_filenames.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_TestHandlerCheckpointSaver_TestHandlerCheckpointSaver.test_file.with_tempfile_TemporaryDi.for_filename_in_filenames.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_handler_checkpoint_saver.py", "file_name": "test_handler_checkpoint_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 108, "end_line": 173, "span_ids": ["TestHandlerCheckpointSaver", "TestHandlerCheckpointSaver.test_file"], "tokens": 388}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerCheckpointSaver(unittest.TestCase):\n @parameterized.expand(\n [\n TEST_CASE_1,\n TEST_CASE_2,\n TEST_CASE_3,\n TEST_CASE_4,\n TEST_CASE_5,\n TEST_CASE_6,\n TEST_CASE_7,\n TEST_CASE_8,\n ]\n )\n def test_file(\n self,\n save_final,\n final_filename,\n save_key_metric,\n key_metric_name,\n key_metric_n_saved,\n key_metric_filename,\n key_metric_save_state,\n key_metric_greater_or_equal,\n epoch_level,\n save_interval,\n n_saved,\n filenames,\n multi_devices=False,\n ):\n logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n data = [0] * 8\n\n # set up engine\n def _train_func(engine, batch):\n engine.state.metrics[\"val_loss\"] = engine.state.iteration\n\n engine = Engine(_train_func)\n\n # set up testing handler\n net = torch.nn.PReLU()\n if multi_devices:\n net = torch.nn.DataParallel(net)\n optimizer = optim.SGD(net.parameters(), lr=0.02)\n with tempfile.TemporaryDirectory() as tempdir:\n handler = CheckpointSaver(\n tempdir,\n {\"net\": net, \"opt\": optimizer},\n \"CheckpointSaver\",\n \"test\",\n save_final,\n final_filename,\n save_key_metric,\n key_metric_name,\n key_metric_n_saved,\n key_metric_filename,\n key_metric_save_state,\n key_metric_greater_or_equal,\n epoch_level,\n save_interval,\n n_saved,\n )\n handler.attach(engine)\n engine.run(data, max_epochs=2)\n engine.run(data, max_epochs=5)\n for filename in filenames:\n self.assertTrue(os.path.exists(os.path.join(tempdir, filename)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_classification_saver.py_csv_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_classification_saver.py_csv_", "embedding": null, "metadata": {"file_path": "tests/test_handler_classification_saver.py", "file_name": "test_handler_classification_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 61, "span_ids": ["TestHandlerClassificationSaver", "TestHandlerClassificationSaver.test_saved_content", "impl", "docstring"], "tokens": 327}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import csv\nimport os\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport torch\nfrom ignite.engine import Engine\n\nfrom monai.data.csv_saver import CSVSaver\nfrom monai.handlers import ClassificationSaver\n\n\nclass TestHandlerClassificationSaver(unittest.TestCase):\n def test_saved_content(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n return torch.zeros(8)\n\n engine = Engine(_train_func)\n\n # set up testing handler\n saver = CSVSaver(output_dir=tempdir, filename=\"predictions2.csv\")\n ClassificationSaver(output_dir=tempdir, filename=\"predictions1.csv\").attach(engine)\n ClassificationSaver(saver=saver).attach(engine)\n\n data = [{\"filename_or_obj\": [\"testfile\" + str(i) for i in range(8)]}]\n engine.run(data, max_epochs=1)\n\n def _test_file(filename):\n filepath = os.path.join(tempdir, filename)\n self.assertTrue(os.path.exists(filepath))\n with open(filepath, \"r\") as f:\n reader = csv.reader(f)\n i = 0\n for row in reader:\n self.assertEqual(row[0], \"testfile\" + str(i))\n self.assertEqual(np.array(row[1:]).astype(np.float32), 0.0)\n i += 1\n self.assertEqual(i, 8)\n\n _test_file(\"predictions1.csv\")\n _test_file(\"predictions2.csv\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_lr_scheduler.py_logging_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_lr_scheduler.py_logging_", "embedding": null, "metadata": {"file_path": "tests/test_handler_lr_scheduler.py", "file_name": "test_handler_lr_scheduler.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 66, "span_ids": ["TestHandlerLrSchedule", "TestHandlerLrSchedule.test_content", "impl", "docstring"], "tokens": 368}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nimport sys\nimport unittest\n\nimport numpy as np\nimport torch\nfrom ignite.engine import Engine, Events\n\nfrom monai.handlers import LrScheduleHandler\n\n\nclass TestHandlerLrSchedule(unittest.TestCase):\n def test_content(self):\n logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n data = [0] * 8\n\n # set up engine\n def _train_func(engine, batch):\n pass\n\n val_engine = Engine(_train_func)\n train_engine = Engine(_train_func)\n\n @train_engine.on(Events.EPOCH_COMPLETED)\n def run_validation(engine):\n val_engine.run(data)\n val_engine.state.metrics[\"val_loss\"] = 1\n\n # set up testing handler\n net = torch.nn.PReLU()\n\n def _reduce_lr_on_plateau():\n optimizer = torch.optim.SGD(net.parameters(), 0.1)\n lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=1)\n handler = LrScheduleHandler(lr_scheduler, step_transform=lambda x: val_engine.state.metrics[\"val_loss\"])\n handler.attach(train_engine)\n return lr_scheduler\n\n def _reduce_on_step():\n optimizer = torch.optim.SGD(net.parameters(), 0.1)\n lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.1)\n handler = LrScheduleHandler(lr_scheduler)\n handler.attach(train_engine)\n return lr_scheduler\n\n schedulers = _reduce_lr_on_plateau(), _reduce_on_step()\n\n train_engine.run(data, max_epochs=5)\n for scheduler in schedulers:\n np.testing.assert_allclose(scheduler._last_lr[0], 0.001)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_os_TestHandlerSegmentationSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_os_TestHandlerSegmentationSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_handler_segmentation_saver.py", "file_name": "test_handler_segmentation_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 52, "span_ids": ["TestHandlerSegmentationSaver.test_saved_content", "TestHandlerSegmentationSaver", "docstring"], "tokens": 309}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport torch\nfrom ignite.engine import Engine\nfrom parameterized import parameterized\n\nfrom monai.handlers import SegmentationSaver\n\nTEST_CASE_0 = [\".nii.gz\"]\n\nTEST_CASE_1 = [\".png\"]\n\n\nclass TestHandlerSegmentationSaver(unittest.TestCase):\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1])\n def test_saved_content(self, output_ext):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n return torch.randint(0, 255, (8, 1, 2, 2)).float()\n\n engine = Engine(_train_func)\n\n # set up testing handler\n saver = SegmentationSaver(output_dir=tempdir, output_postfix=\"seg\", output_ext=output_ext, scale=255)\n saver.attach(engine)\n\n data = [\n {\n \"filename_or_obj\": [\"testfile\" + str(i) + \".nii.gz\" for i in range(8)],\n \"patch_index\": list(range(8)),\n }\n ]\n engine.run(data, max_epochs=1)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg\" + f\"_{i}\" + output_ext)\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_logging_TestHandlerStats.test_metrics_print.for_idx_line_in_enumerat.if_grep_match_line_.if_idx_in_5_10_.self_assertTrue_has_key_w": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_logging_TestHandlerStats.test_metrics_print.for_idx_line_in_enumerat.if_grep_match_line_.if_idx_in_5_10_.self_assertTrue_has_key_w", "embedding": null, "metadata": {"file_path": "tests/test_handler_stats.py", "file_name": "test_handler_stats.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 59, "span_ids": ["TestHandlerStats.test_metrics_print", "TestHandlerStats", "docstring"], "tokens": 315}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nimport os\nimport re\nimport tempfile\nimport unittest\nfrom io import StringIO\n\nimport torch\nfrom ignite.engine import Engine, Events\n\nfrom monai.handlers import StatsHandler\n\n\nclass TestHandlerStats(unittest.TestCase):\n def test_metrics_print(self):\n log_stream = StringIO()\n log_handler = logging.StreamHandler(log_stream)\n log_handler.setLevel(logging.INFO)\n key_to_handler = \"test_logging\"\n key_to_print = \"testing_metric\"\n\n # set up engine\n def _train_func(engine, batch):\n return torch.tensor(0.0)\n\n engine = Engine(_train_func)\n\n # set up dummy metric\n @engine.on(Events.EPOCH_COMPLETED)\n def _update_metric(engine):\n current_metric = engine.state.metrics.get(key_to_print, 0.1)\n engine.state.metrics[key_to_print] = current_metric + 0.1\n\n # set up testing handler\n stats_handler = StatsHandler(name=key_to_handler, logger_handler=log_handler)\n stats_handler.attach(engine)\n\n engine.run(range(3), max_epochs=2)\n\n # check logging output\n output_str = log_stream.getvalue()\n log_handler.close()\n grep = re.compile(f\".*{key_to_handler}.*\")\n has_key_word = re.compile(f\".*{key_to_print}.*\")\n for idx, line in enumerate(output_str.split(\"\\n\")):\n if grep.match(line):\n if idx in [5, 10]:\n self.assertTrue(has_key_word.match(line))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_glob_TestHandlerTBStats.test_metrics_print.with_tempfile_TemporaryDi.self_assertTrue_len_glob_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_glob_TestHandlerTBStats.test_metrics_print.with_tempfile_TemporaryDi.self_assertTrue_len_glob_", "embedding": null, "metadata": {"file_path": "tests/test_handler_tb_stats.py", "file_name": "test_handler_tb_stats.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestHandlerTBStats.test_metrics_print", "TestHandlerTBStats", "docstring"], "tokens": 213}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import glob\nimport tempfile\nimport unittest\n\nfrom ignite.engine import Engine, Events\nfrom torch.utils.tensorboard import SummaryWriter\n\nfrom monai.handlers import TensorBoardStatsHandler\n\n\nclass TestHandlerTBStats(unittest.TestCase):\n def test_metrics_print(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n return batch + 1.0\n\n engine = Engine(_train_func)\n\n # set up dummy metric\n @engine.on(Events.EPOCH_COMPLETED)\n def _update_metric(engine):\n current_metric = engine.state.metrics.get(\"acc\", 0.1)\n engine.state.metrics[\"acc\"] = current_metric + 0.1\n\n # set up testing handler\n stats_handler = TensorBoardStatsHandler(log_dir=tempdir)\n stats_handler.attach(engine)\n engine.run(range(3), max_epochs=2)\n stats_handler.close()\n # check logging output\n self.assertTrue(len(glob.glob(tempdir)) > 0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_img2tensorboard.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_img2tensorboard.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_img2tensorboard.py", "file_name": "test_img2tensorboard.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 52, "span_ids": ["TestImg2Tensorboard.test_write_gray", "TestImg2Tensorboard", "impl", "docstring"], "tokens": 280}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport tensorboard\nimport torch\n\nfrom monai.visualize import make_animated_gif_summary\n\n\nclass TestImg2Tensorboard(unittest.TestCase):\n def test_write_gray(self):\n nparr = np.ones(shape=(1, 32, 32, 32), dtype=np.float32)\n summary_object_np = make_animated_gif_summary(\n tag=\"test_summary_nparr.png\",\n image=nparr,\n max_out=1,\n animation_axes=(3,),\n image_axes=(1, 2),\n scale_factor=253.0,\n )\n assert isinstance(\n summary_object_np, tensorboard.compat.proto.summary_pb2.Summary\n ), \"make_animated_gif_summary must return a tensorboard.summary object from numpy array\"\n\n tensorarr = torch.tensor(nparr)\n summary_object_tensor = make_animated_gif_summary(\n tag=\"test_summary_tensorarr.png\",\n image=tensorarr,\n max_out=1,\n animation_axes=(3,),\n image_axes=(1, 2),\n scale_factor=253.0,\n )\n assert isinstance(\n summary_object_tensor, tensorboard.compat.proto.summary_pb2.Summary\n ), \"make_animated_gif_summary must return a tensorboard.summary object from tensor input\"\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_run_training_test_run_training_test.return.trainer_state": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_run_training_test_run_training_test.return.trainer_state", "embedding": null, "metadata": {"file_path": "tests/test_integration_workflows_gan.py", "file_name": "test_integration_workflows_gan.py", "file_type": "text/x-python", "category": "test", "start_line": 36, "end_line": 126, "span_ids": ["run_training_test"], "tokens": 820}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_training_test(root_dir, device=\"cuda:0\"):\n real_images = sorted(glob(os.path.join(root_dir, \"img*.nii.gz\")))\n train_files = [{\"reals\": img} for img in zip(real_images)]\n\n # prepare real data\n train_transforms = Compose(\n [\n LoadImaged(keys=[\"reals\"]),\n AsChannelFirstd(keys=[\"reals\"]),\n ScaleIntensityd(keys=[\"reals\"]),\n RandFlipd(keys=[\"reals\"], prob=0.5),\n ToTensord(keys=[\"reals\"]),\n ]\n )\n train_ds = monai.data.CacheDataset(data=train_files, transform=train_transforms, cache_rate=0.5)\n train_loader = monai.data.DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=4)\n\n learning_rate = 2e-4\n betas = (0.5, 0.999)\n real_label = 1\n fake_label = 0\n\n # create discriminator\n disc_net = Discriminator(\n in_shape=(1, 64, 64), channels=(8, 16, 32, 64, 1), strides=(2, 2, 2, 2, 1), num_res_units=1, kernel_size=5\n ).to(device)\n disc_net.apply(normal_init)\n disc_opt = torch.optim.Adam(disc_net.parameters(), learning_rate, betas=betas)\n disc_loss_criterion = torch.nn.BCELoss()\n\n def discriminator_loss(gen_images, real_images):\n real = real_images.new_full((real_images.shape[0], 1), real_label)\n gen = gen_images.new_full((gen_images.shape[0], 1), fake_label)\n realloss = disc_loss_criterion(disc_net(real_images), real)\n genloss = disc_loss_criterion(disc_net(gen_images.detach()), gen)\n return torch.div(torch.add(realloss, genloss), 2)\n\n # create generator\n latent_size = 64\n gen_net = Generator(\n latent_shape=latent_size, start_shape=(latent_size, 8, 8), channels=[32, 16, 8, 1], strides=[2, 2, 2, 1]\n )\n gen_net.apply(normal_init)\n gen_net.conv.add_module(\"activation\", torch.nn.Sigmoid())\n gen_net = gen_net.to(device)\n gen_opt = torch.optim.Adam(gen_net.parameters(), learning_rate, betas=betas)\n gen_loss_criterion = torch.nn.BCELoss()\n\n def generator_loss(gen_images):\n output = disc_net(gen_images)\n cats = output.new_full(output.shape, real_label)\n return gen_loss_criterion(output, cats)\n\n key_train_metric = None\n\n train_handlers = [\n StatsHandler(\n name=\"training_loss\",\n output_transform=lambda x: {Keys.GLOSS: x[Keys.GLOSS], Keys.DLOSS: x[Keys.DLOSS]},\n ),\n TensorBoardStatsHandler(\n log_dir=root_dir,\n tag_name=\"training_loss\",\n output_transform=lambda x: {Keys.GLOSS: x[Keys.GLOSS], Keys.DLOSS: x[Keys.DLOSS]},\n ),\n CheckpointSaver(\n save_dir=root_dir, save_dict={\"g_net\": gen_net, \"d_net\": disc_net}, save_interval=2, epoch_level=True\n ),\n ]\n\n disc_train_steps = 2\n num_epochs = 5\n\n trainer = GanTrainer(\n device,\n num_epochs,\n train_loader,\n gen_net,\n gen_opt,\n generator_loss,\n disc_net,\n disc_opt,\n discriminator_loss,\n d_train_steps=disc_train_steps,\n latent_shape=latent_size,\n key_train_metric=key_train_metric,\n train_handlers=train_handlers,\n )\n trainer.run()\n\n return trainer.state", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_IntegrationWorkflowsGAN_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_IntegrationWorkflowsGAN_", "embedding": null, "metadata": {"file_path": "tests/test_integration_workflows_gan.py", "file_name": "test_integration_workflows_gan.py", "file_type": "text/x-python", "category": "test", "start_line": 129, "end_line": 161, "span_ids": ["impl", "IntegrationWorkflowsGAN", "IntegrationWorkflowsGAN.tearDown", "IntegrationWorkflowsGAN.test_training", "IntegrationWorkflowsGAN.setUp"], "tokens": 266}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@skip_if_quick\nclass IntegrationWorkflowsGAN(DistTestCase):\n def setUp(self):\n set_determinism(seed=0)\n\n self.data_dir = tempfile.mkdtemp()\n for i in range(40):\n im, _ = create_test_image_2d(64, 64, num_objs=3, rad_max=14, num_seg_classes=1, channel_dim=-1)\n n = nib.Nifti1Image(im, np.eye(4))\n nib.save(n, os.path.join(self.data_dir, f\"img{i:d}.nii.gz\"))\n\n self.device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu:0\")\n monai.config.print_config()\n logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n\n def tearDown(self):\n set_determinism(seed=None)\n shutil.rmtree(self.data_dir)\n\n @TimedCall(seconds=200, daemon=False)\n def test_training(self):\n torch.manual_seed(0)\n\n finish_state = run_training_test(self.data_dir, device=self.device)\n\n # assert GAN training finished\n self.assertEqual(finish_state.iteration, 100)\n self.assertEqual(finish_state.epoch, 5)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_to_dict.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_to_dict.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_list_to_dict.py", "file_name": "test_list_to_dict.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 53, "span_ids": ["impl:11", "TestListToDict.test_value_shape", "TestListToDict", "docstring"], "tokens": 398}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom parameterized import parameterized\n\nfrom monai.utils import list_to_dict\n\nTEST_CASE_1 = [\n [\"a=1\", \"b=2\", \"c=3\", \"d=4\"],\n {\"a\": 1, \"b\": 2, \"c\": 3, \"d\": 4},\n]\n\nTEST_CASE_2 = [\n [\"a=a\", \"b=b\", \"c=c\", \"d=d\"],\n {\"a\": \"a\", \"b\": \"b\", \"c\": \"c\", \"d\": \"d\"},\n]\n\nTEST_CASE_3 = [\n [\"a=0.1\", \"b=0.2\", \"c=0.3\", \"d=0.4\"],\n {\"a\": 0.1, \"b\": 0.2, \"c\": 0.3, \"d\": 0.4},\n]\n\nTEST_CASE_4 = [\n [\"a=True\", \"b=TRUE\", \"c=false\", \"d=FALSE\"],\n {\"a\": True, \"b\": True, \"c\": False, \"d\": False},\n]\n\nTEST_CASE_5 = [\n [\"a='1'\", \"b=2 \", \" c = 3\", \"d='test'\", \"'e'=0\", \"f\", \"g=None\"],\n {\"a\": 1, \"b\": 2, \"c\": 3, \"d\": \"test\", \"e\": 0, \"f\": None, \"g\": None},\n]\n\n\nclass TestListToDict(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_value_shape(self, input, output):\n result = list_to_dict(input)\n self.assertDictEqual(result, output)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_unittest_TEST_CASE_1._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_unittest_TEST_CASE_1._", "embedding": null, "metadata": {"file_path": "tests/test_lltm.py", "file_name": "test_lltm.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 24, "span_ids": ["docstring"], "tokens": 160}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks.layers import LLTM\nfrom tests.utils import SkipIfNoModule\n\nTEST_CASE_1 = [\n {\"input_features\": 32, \"state_size\": 2},\n torch.tensor([[-0.1622, 0.1663], [0.5465, 0.0459], [-0.1436, 0.6171], [0.3632, -0.0111]]),\n torch.tensor([[-1.3773, 0.3348], [0.8353, 1.3064], [-0.2179, 4.1739], [1.3045, -0.1444]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM_TestLLTM.test_value.None_3": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM_TestLLTM.test_value.None_3", "embedding": null, "metadata": {"file_path": "tests/test_lltm.py", "file_name": "test_lltm.py", "file_type": "text/x-python", "category": "test", "start_line": 27, "end_line": 39, "span_ids": ["TestLLTM", "TestLLTM.test_value"], "tokens": 172}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLLTM(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1])\n @SkipIfNoModule(\"monai._C\")\n def test_value(self, input_param, expected_h, expected_c):\n torch.manual_seed(0)\n x = torch.randn(4, 32)\n h = torch.randn(4, 2)\n c = torch.randn(4, 2)\n new_h, new_c = LLTM(**input_param)(x, (h, c))\n (new_h.sum() + new_c.sum()).backward()\n\n torch.testing.assert_allclose(new_h, expected_h, rtol=0.0001, atol=1e-04)\n torch.testing.assert_allclose(new_c, expected_c, rtol=0.0001, atol=1e-04)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM.test_value_cuda_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM.test_value_cuda_", "embedding": null, "metadata": {"file_path": "tests/test_lltm.py", "file_name": "test_lltm.py", "file_type": "text/x-python", "category": "test", "start_line": 41, "end_line": 59, "span_ids": ["impl:3", "TestLLTM.test_value_cuda"], "tokens": 233}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLLTM(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_1])\n @SkipIfNoModule(\"monai._C\")\n def test_value_cuda(self, input_param, expected_h, expected_c):\n device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu:0\")\n torch.manual_seed(0)\n x = torch.randn(4, 32).to(device)\n h = torch.randn(4, 2).to(device)\n c = torch.randn(4, 2).to(device)\n lltm = LLTM(**input_param).to(device)\n new_h, new_c = lltm(x, (h, c))\n (new_h.sum() + new_c.sum()).backward()\n\n torch.testing.assert_allclose(new_h, expected_h.to(device), rtol=0.0001, atol=1e-04)\n torch.testing.assert_allclose(new_c, expected_c.to(device), rtol=0.0001, atol=1e-04)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mednistdataset.py_os_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mednistdataset.py_os_", "embedding": null, "metadata": {"file_path": "tests/test_mednistdataset.py", "file_name": "test_mednistdataset.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 74, "span_ids": ["TestMedNISTDataset", "impl:3", "TestMedNISTDataset.test_values", "docstring"], "tokens": 574}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport shutil\nimport unittest\nfrom urllib.error import ContentTooShortError, HTTPError\n\nfrom monai.apps import MedNISTDataset\nfrom monai.transforms import AddChanneld, Compose, LoadImaged, ScaleIntensityd, ToTensord\nfrom tests.utils import skip_if_quick\n\nMEDNIST_FULL_DATASET_LENGTH = 58954\n\n\nclass TestMedNISTDataset(unittest.TestCase):\n @skip_if_quick\n def test_values(self):\n testing_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), \"testing_data\")\n transform = Compose(\n [\n LoadImaged(keys=\"image\"),\n AddChanneld(keys=\"image\"),\n ScaleIntensityd(keys=\"image\"),\n ToTensord(keys=[\"image\", \"label\"]),\n ]\n )\n\n def _test_dataset(dataset):\n self.assertEqual(len(dataset), int(MEDNIST_FULL_DATASET_LENGTH * dataset.test_frac))\n self.assertTrue(\"image\" in dataset[0])\n self.assertTrue(\"label\" in dataset[0])\n self.assertTrue(\"image_meta_dict\" in dataset[0])\n self.assertTupleEqual(dataset[0][\"image\"].shape, (1, 64, 64))\n\n try: # will start downloading if testing_dir doesn't have the MedNIST files\n data = MedNISTDataset(root_dir=testing_dir, transform=transform, section=\"test\", download=True)\n except (ContentTooShortError, HTTPError, RuntimeError) as e:\n print(str(e))\n if isinstance(e, RuntimeError):\n # FIXME: skip MD5 check as current downloading method may fail\n self.assertTrue(str(e).startswith(\"md5 check\"))\n return # skipping this test due the network connection errors\n\n _test_dataset(data)\n\n # testing from\n data = MedNISTDataset(root_dir=testing_dir, transform=transform, section=\"test\", download=False)\n data.get_num_classes()\n _test_dataset(data)\n data = MedNISTDataset(root_dir=testing_dir, section=\"test\", download=False)\n self.assertTupleEqual(data[0][\"image\"].shape, (64, 64))\n # test same dataset length with different random seed\n data = MedNISTDataset(root_dir=testing_dir, transform=transform, section=\"test\", download=False, seed=42)\n _test_dataset(data)\n shutil.rmtree(os.path.join(testing_dir, \"MedNIST\"))\n try:\n data = MedNISTDataset(root_dir=testing_dir, transform=transform, section=\"test\", download=False)\n except RuntimeError as e:\n print(str(e))\n self.assertTrue(str(e).startswith(\"Cannot find dataset directory\"))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_2d_TestNiftiLoadRead.test_write_2d.with_tempfile_TemporaryDi.None_5": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_2d_TestNiftiLoadRead.test_write_2d.with_tempfile_TemporaryDi.None_5", "embedding": null, "metadata": {"file_path": "tests/test_nifti_rw.py", "file_name": "test_nifti_rw.py", "file_type": "text/x-python", "category": "test", "start_line": 108, "end_line": 122, "span_ids": ["TestNiftiLoadRead.test_write_2d"], "tokens": 290}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNiftiLoadRead(unittest.TestCase):\n\n def test_write_2d(self):\n with tempfile.TemporaryDirectory() as out_dir:\n image_name = os.path.join(out_dir, \"test.nii.gz\")\n img = np.arange(6).reshape((2, 3))\n write_nifti(img, image_name, affine=np.diag([1]), target_affine=np.diag([1.4]))\n out = nib.load(image_name)\n np.testing.assert_allclose(out.get_fdata(), [[0, 1, 2], [3.0, 4, 5]])\n np.testing.assert_allclose(out.affine, np.diag([1.4, 1, 1, 1]))\n\n image_name = os.path.join(out_dir, \"test1.nii.gz\")\n img = np.arange(5).reshape((1, 5))\n write_nifti(img, image_name, affine=np.diag([1, 1, 1, 3, 3]), target_affine=np.diag([1.4, 2.0, 1, 3, 5]))\n out = nib.load(image_name)\n np.testing.assert_allclose(out.get_fdata(), [[0, 2, 4]])\n np.testing.assert_allclose(out.affine, np.diag([1.4, 2, 1, 1]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_3d_TestNiftiLoadRead.test_write_3d.with_tempfile_TemporaryDi.None_5": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_3d_TestNiftiLoadRead.test_write_3d.with_tempfile_TemporaryDi.None_5", "embedding": null, "metadata": {"file_path": "tests/test_nifti_rw.py", "file_name": "test_nifti_rw.py", "file_type": "text/x-python", "category": "test", "start_line": 124, "end_line": 138, "span_ids": ["TestNiftiLoadRead.test_write_3d"], "tokens": 296}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNiftiLoadRead(unittest.TestCase):\n\n def test_write_3d(self):\n with tempfile.TemporaryDirectory() as out_dir:\n image_name = os.path.join(out_dir, \"test.nii.gz\")\n img = np.arange(6).reshape((1, 2, 3))\n write_nifti(img, image_name, affine=np.diag([1]), target_affine=np.diag([1.4]))\n out = nib.load(image_name)\n np.testing.assert_allclose(out.get_fdata(), [[[0, 1, 2], [3, 4, 5]]])\n np.testing.assert_allclose(out.affine, np.diag([1.4, 1, 1, 1]))\n\n image_name = os.path.join(out_dir, \"test1.nii.gz\")\n img = np.arange(5).reshape((1, 1, 5))\n write_nifti(img, image_name, affine=np.diag([1, 1, 1, 3, 3]), target_affine=np.diag([1.4, 2.0, 2, 3, 5]))\n out = nib.load(image_name)\n np.testing.assert_allclose(out.get_fdata(), [[[0, 2, 4]]])\n np.testing.assert_allclose(out.affine, np.diag([1.4, 2, 2, 1]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_4d_TestNiftiLoadRead.test_write_4d.with_tempfile_TemporaryDi.None_5": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_4d_TestNiftiLoadRead.test_write_4d.with_tempfile_TemporaryDi.None_5", "embedding": null, "metadata": {"file_path": "tests/test_nifti_rw.py", "file_name": "test_nifti_rw.py", "file_type": "text/x-python", "category": "test", "start_line": 140, "end_line": 154, "span_ids": ["TestNiftiLoadRead.test_write_4d"], "tokens": 315}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNiftiLoadRead(unittest.TestCase):\n\n def test_write_4d(self):\n with tempfile.TemporaryDirectory() as out_dir:\n image_name = os.path.join(out_dir, \"test.nii.gz\")\n img = np.arange(6).reshape((1, 1, 3, 2))\n write_nifti(img, image_name, affine=np.diag([1.4, 1]), target_affine=np.diag([1, 1.4, 1]))\n out = nib.load(image_name)\n np.testing.assert_allclose(out.get_fdata(), [[[[0, 1], [2, 3], [4, 5]]]])\n np.testing.assert_allclose(out.affine, np.diag([1, 1.4, 1, 1]))\n\n image_name = os.path.join(out_dir, \"test1.nii.gz\")\n img = np.arange(5).reshape((1, 1, 5, 1))\n write_nifti(img, image_name, affine=np.diag([1, 1, 1, 3, 3]), target_affine=np.diag([1.4, 2.0, 2, 3, 5]))\n out = nib.load(image_name)\n np.testing.assert_allclose(out.get_fdata(), [[[[0], [2], [4]]]])\n np.testing.assert_allclose(out.affine, np.diag([1.4, 2, 2, 1]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_os_TestNiftiSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_os_TestNiftiSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_nifti_saver.py", "file_name": "test_nifti_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 33, "span_ids": ["TestNiftiSaver.test_saved_content", "TestNiftiSaver", "docstring"], "tokens": 191}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.data import NiftiSaver\nfrom monai.transforms import LoadImage\n\n\nclass TestNiftiSaver(unittest.TestCase):\n def test_saved_content(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n saver = NiftiSaver(output_dir=tempdir, output_postfix=\"seg\", output_ext=\".nii.gz\")\n\n meta_data = {\"filename_or_obj\": [\"testfile\" + str(i) + \".nii\" for i in range(8)]}\n saver.save_batch(torch.zeros(8, 1, 2, 2), meta_data)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg.nii.gz\")\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_TestNiftiSaver.test_saved_resize_content_TestNiftiSaver.test_saved_resize_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_TestNiftiSaver.test_saved_resize_content_TestNiftiSaver.test_saved_resize_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_nifti_saver.py", "file_name": "test_nifti_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 34, "end_line": 52, "span_ids": ["TestNiftiSaver.test_saved_resize_content"], "tokens": 222}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNiftiSaver(unittest.TestCase):\n\n def test_saved_resize_content(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n saver = NiftiSaver(\n output_dir=tempdir,\n output_postfix=\"seg\",\n output_ext=\".nii.gz\",\n dtype=np.float32,\n )\n\n meta_data = {\n \"filename_or_obj\": [\"testfile\" + str(i) + \".nii\" for i in range(8)],\n \"affine\": [np.diag(np.ones(4)) * 5] * 8,\n \"original_affine\": [np.diag(np.ones(4)) * 1.0] * 8,\n }\n saver.save_batch(torch.randint(0, 255, (8, 8, 2, 2)), meta_data)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg.nii.gz\")\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_os_TestPNGSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_os_TestPNGSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_png_saver.py", "file_name": "test_png_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 31, "span_ids": ["TestPNGSaver.test_saved_content", "TestPNGSaver", "docstring"], "tokens": 178}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport torch\n\nfrom monai.data import PNGSaver\n\n\nclass TestPNGSaver(unittest.TestCase):\n def test_saved_content(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n saver = PNGSaver(output_dir=tempdir, output_postfix=\"seg\", output_ext=\".png\", scale=255)\n\n meta_data = {\"filename_or_obj\": [\"testfile\" + str(i) + \".jpg\" for i in range(8)]}\n saver.save_batch(torch.randint(1, 200, (8, 1, 2, 2)), meta_data)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg.png\")\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_TestPNGSaver.test_saved_content_three_channel_TestPNGSaver.test_saved_content_three_channel.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_TestPNGSaver.test_saved_content_three_channel_TestPNGSaver.test_saved_content_three_channel.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_png_saver.py", "file_name": "test_png_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 33, "end_line": 42, "span_ids": ["TestPNGSaver.test_saved_content_three_channel"], "tokens": 159}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPNGSaver(unittest.TestCase):\n\n def test_saved_content_three_channel(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n saver = PNGSaver(output_dir=tempdir, output_postfix=\"seg\", output_ext=\".png\", scale=255)\n\n meta_data = {\"filename_or_obj\": [\"testfile\" + str(i) + \".jpg\" for i in range(8)]}\n saver.save_batch(torch.randint(1, 200, (8, 3, 2, 2)), meta_data)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg.png\")\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpen.py_unittest_TEST_CASE_2._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpen.py_unittest_TEST_CASE_2._", "embedding": null, "metadata": {"file_path": "tests/test_rand_gaussian_sharpen.py", "file_name": "test_rand_gaussian_sharpen.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 47, "span_ids": ["docstring"], "tokens": 506}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandGaussianSharpen\n\nTEST_CASE_1 = [\n {\"prob\": 1.0},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[5.2919216, 5.5854445, 5.29192], [11.3982, 12.62332, 11.398202], [14.870525, 17.323769, 14.870527]],\n [[20.413757, 22.767355, 20.413757], [28.495504, 31.558315, 28.495499], [29.99236, 34.505676, 29.992361]],\n ]\n ),\n]\n\nTEST_CASE_2 = [\n {\n \"sigma1_x\": (0.5, 0.75),\n \"sigma1_y\": (0.5, 0.75),\n \"sigma1_z\": (0.5, 0.75),\n \"sigma2_x\": 0.4,\n \"sigma2_y\": 0.4,\n \"sigma2_z\": 0.4,\n \"prob\": 1.0,\n },\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[4.1071496, 3.597953, 4.1071477], [10.062014, 9.825114, 10.0620165], [14.698058, 15.818766, 14.698058]],\n [[18.211048, 18.16049, 18.211048], [25.155039, 24.56279, 25.155039], [28.801964, 30.381308, 28.801964]],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpen.py_TEST_CASE_3_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpen.py_TEST_CASE_3_", "embedding": null, "metadata": {"file_path": "tests/test_rand_gaussian_sharpen.py", "file_name": "test_rand_gaussian_sharpen.py", "file_type": "text/x-python", "category": "test", "start_line": 49, "end_line": 100, "span_ids": ["impl:9", "TestRandGaussianSharpen", "impl:5", "TestRandGaussianSharpen.test_value"], "tokens": 710}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_3 = [\n {\n \"sigma1_x\": (0.5, 0.75),\n \"sigma1_y\": (0.5, 0.75),\n \"sigma1_z\": (0.5, 0.75),\n \"sigma2_x\": (0.5, 0.75),\n \"sigma2_y\": (0.5, 0.75),\n \"sigma2_z\": (0.5, 0.75),\n \"prob\": 1.0,\n },\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[4.81077, 4.4237204, 4.81077], [12.061236, 12.298177, 12.061236], [17.362553, 19.201174, 17.362553]],\n [[21.440754, 22.142393, 21.440754], [30.15308, 30.745445, 30.153086], [33.99255, 36.919838, 33.99255]],\n ]\n ),\n]\n\nTEST_CASE_4 = [\n {\n \"sigma1_x\": (0.5, 0.75),\n \"sigma1_y\": (0.5, 0.75),\n \"sigma1_z\": (0.5, 0.75),\n \"sigma2_x\": (0.5, 0.75),\n \"sigma2_y\": (0.5, 0.75),\n \"sigma2_z\": (0.5, 0.75),\n \"approx\": \"scalespace\",\n \"prob\": 1.0,\n },\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[4.430213, 3.2278745, 4.4302144], [10.325399, 8.507457, 10.325399], [17.494898, 16.5609, 17.494894]],\n [[20.87405, 18.06946, 20.87405], [25.813503, 21.268656, 25.8135], [33.93874, 31.402481, 33.938725]],\n ]\n ),\n]\n\n\nclass TestRandGaussianSharpen(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4])\n def test_value(self, argments, image, expected_data):\n converter = RandGaussianSharpen(**argments)\n converter.set_random_state(seed=0)\n result = converter(image)\n np.testing.assert_allclose(result, expected_data, rtol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpend.py_unittest_TEST_CASE_2._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpend.py_unittest_TEST_CASE_2._", "embedding": null, "metadata": {"file_path": "tests/test_rand_gaussian_sharpend.py", "file_name": "test_rand_gaussian_sharpend.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 48, "span_ids": ["docstring"], "tokens": 527}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandGaussianSharpend\n\nTEST_CASE_1 = [\n {\"keys\": \"img\", \"prob\": 1.0},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[5.2919216, 5.5854445, 5.29192], [11.3982, 12.62332, 11.398202], [14.870525, 17.323769, 14.870527]],\n [[20.413757, 22.767355, 20.413757], [28.495504, 31.558315, 28.495499], [29.99236, 34.505676, 29.992361]],\n ]\n ),\n]\n\nTEST_CASE_2 = [\n {\n \"keys\": \"img\",\n \"sigma1_x\": (0.5, 0.75),\n \"sigma1_y\": (0.5, 0.75),\n \"sigma1_z\": (0.5, 0.75),\n \"sigma2_x\": 0.4,\n \"sigma2_y\": 0.4,\n \"sigma2_z\": 0.4,\n \"prob\": 1.0,\n },\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[4.1071496, 3.597953, 4.1071477], [10.062014, 9.825114, 10.0620165], [14.698058, 15.818766, 14.698058]],\n [[18.211048, 18.16049, 18.211048], [25.155039, 24.56279, 25.155039], [28.801964, 30.381308, 28.801964]],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpend.py_TEST_CASE_3_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpend.py_TEST_CASE_3_", "embedding": null, "metadata": {"file_path": "tests/test_rand_gaussian_sharpend.py", "file_name": "test_rand_gaussian_sharpend.py", "file_type": "text/x-python", "category": "test", "start_line": 50, "end_line": 103, "span_ids": ["impl:9", "TestRandGaussianSharpend", "TestRandGaussianSharpend.test_value", "impl:5"], "tokens": 734}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_3 = [\n {\n \"keys\": \"img\",\n \"sigma1_x\": (0.5, 0.75),\n \"sigma1_y\": (0.5, 0.75),\n \"sigma1_z\": (0.5, 0.75),\n \"sigma2_x\": (0.5, 0.75),\n \"sigma2_y\": (0.5, 0.75),\n \"sigma2_z\": (0.5, 0.75),\n \"prob\": 1.0,\n },\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[4.81077, 4.4237204, 4.81077], [12.061236, 12.298177, 12.061236], [17.362553, 19.201174, 17.362553]],\n [[21.440754, 22.142393, 21.440754], [30.15308, 30.745445, 30.153086], [33.99255, 36.919838, 33.99255]],\n ]\n ),\n]\n\nTEST_CASE_4 = [\n {\n \"keys\": \"img\",\n \"sigma1_x\": (0.5, 0.75),\n \"sigma1_y\": (0.5, 0.75),\n \"sigma1_z\": (0.5, 0.75),\n \"sigma2_x\": (0.5, 0.75),\n \"sigma2_y\": (0.5, 0.75),\n \"sigma2_z\": (0.5, 0.75),\n \"approx\": \"scalespace\",\n \"prob\": 1.0,\n },\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[4.430213, 3.2278745, 4.4302144], [10.325399, 8.507457, 10.325399], [17.494898, 16.5609, 17.494894]],\n [[20.87405, 18.06946, 20.87405], [25.813503, 21.268656, 25.8135], [33.93874, 31.402481, 33.938725]],\n ]\n ),\n]\n\n\nclass TestRandGaussianSharpend(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4])\n def test_value(self, argments, image, expected_data):\n converter = RandGaussianSharpend(**argments)\n converter.set_random_state(seed=0)\n result = converter(image)\n np.testing.assert_allclose(result[\"img\"], expected_data, rtol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smooth.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smooth.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_gaussian_smooth.py", "file_name": "test_rand_gaussian_smooth.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 64, "span_ids": ["TestRandGaussianSmooth.test_value", "TestRandGaussianSmooth", "impl:7", "impl:5", "docstring"], "tokens": 840}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandGaussianSmooth\n\nTEST_CASE_1 = [\n {\"sigma_x\": (0.5, 1.5), \"prob\": 1.0},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[0.71806467, 0.9074683, 0.71806467], [1.0718315, 1.3545481, 1.0718315], [1.0337002, 1.306359, 1.0337002]],\n [[2.0318885, 2.5678391, 2.0318885], [2.6795788, 3.3863702, 2.6795788], [2.3475242, 2.9667296, 2.3475242]],\n ]\n ),\n]\n\nTEST_CASE_2 = [\n {\"sigma_x\": (0.5, 1.5), \"sigma_y\": (0.5, 1.0), \"prob\": 1.0},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[0.7686928, 0.9848021, 0.7686928], [1.1474025, 1.4699818, 1.1474024], [1.1065826, 1.4176859, 1.1065826]],\n [[2.1751494, 2.7866683, 2.1751497], [2.8685062, 3.6749542, 2.8685062], [2.5130394, 3.219552, 2.5130394]],\n ]\n ),\n]\n\nTEST_CASE_3 = [\n {\"sigma_x\": (0.5, 1.5), \"sigma_y\": (0.5, 1.0), \"approx\": \"scalespace\", \"prob\": 1.0},\n np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n np.array(\n [\n [[0.8128456, 0.96736777, 0.8128456], [1.2742369, 1.5164697, 1.2742369], [1.2800367, 1.5233722, 1.2800368]],\n [[2.3825073, 2.8354228, 2.3825073], [3.1855922, 3.7911744, 3.1855922], [2.8496985, 3.391427, 2.8496985]],\n ]\n ),\n]\n\n\nclass TestRandGaussianSmooth(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value(self, argments, image, expected_data):\n converter = RandGaussianSmooth(**argments)\n converter.set_random_state(seed=0)\n result = converter(image)\n np.testing.assert_allclose(result, expected_data, rtol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_unittest_for_spatial_dims_in_range.for_in_channels_in_range_.for_kernel_size_in_1_3_.TEST_CASE_RESBLOCK_append": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_unittest_for_spatial_dims_in_range.for_in_channels_in_range_.for_kernel_size_in_1_3_.TEST_CASE_RESBLOCK_append", "embedding": null, "metadata": {"file_path": "tests/test_segresnet_block.py", "file_name": "test_segresnet_block.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 35, "span_ids": ["docstring"], "tokens": 170}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.blocks.segresnet_block import ResBlock\n\nTEST_CASE_RESBLOCK = []\nfor spatial_dims in range(2, 4):\n for in_channels in range(1, 4):\n for kernel_size in [1, 3]:\n for norm in [\"group\", \"batch\", \"instance\"]:\n test_case = [\n {\n \"spatial_dims\": spatial_dims,\n \"in_channels\": in_channels,\n \"kernel_size\": kernel_size,\n \"norm\": norm,\n },\n (2, in_channels, *([16] * spatial_dims)),\n (2, in_channels, *([16] * spatial_dims)),\n ]\n TEST_CASE_RESBLOCK.append(test_case)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_TestResBlock_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_TestResBlock_", "embedding": null, "metadata": {"file_path": "tests/test_segresnet_block.py", "file_name": "test_segresnet_block.py", "file_type": "text/x-python", "category": "test", "start_line": 38, "end_line": 55, "span_ids": ["impl:10", "TestResBlock.test_ill_arg", "TestResBlock", "TestResBlock.test_shape"], "tokens": 143}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestResBlock(unittest.TestCase):\n @parameterized.expand(TEST_CASE_RESBLOCK)\n def test_shape(self, input_param, input_shape, expected_shape):\n net = ResBlock(**input_param)\n with eval_mode(net):\n result = net(torch.randn(input_shape))\n self.assertEqual(result.shape, expected_shape)\n\n def test_ill_arg(self):\n with self.assertRaises(AssertionError):\n ResBlock(spatial_dims=3, in_channels=8, norm=\"group\", kernel_size=2)\n with self.assertRaises(KeyError):\n ResBlock(spatial_dims=3, in_channels=8, norm=\"norm\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelay.py_time_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelay.py_time_", "embedding": null, "metadata": {"file_path": "tests/test_simulatedelay.py", "file_name": "test_simulatedelay.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 35, "span_ids": ["TestSimulateDelay.test_value", "TestSimulateDelay", "impl", "docstring"], "tokens": 161}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import time\nimport unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms.utility.array import SimulateDelay\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestSimulateDelay(NumpyImageTestCase2D):\n @parameterized.expand([(0.45,), (1,)])\n def test_value(self, delay_test_time: float):\n resize = SimulateDelay(delay_time=delay_test_time)\n start: float = time.time()\n result = resize(self.imt[0])\n stop: float = time.time()\n measured_approximate: float = stop - start\n np.testing.assert_allclose(delay_test_time, measured_approximate, rtol=0.5)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelayd.py_time_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelayd.py_time_", "embedding": null, "metadata": {"file_path": "tests/test_simulatedelayd.py", "file_name": "test_simulatedelayd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 35, "span_ids": ["TestSimulateDelay.test_value", "TestSimulateDelay", "impl", "docstring"], "tokens": 172}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import time\nimport unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms.utility.dictionary import SimulateDelayd\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestSimulateDelay(NumpyImageTestCase2D):\n @parameterized.expand([(0.45,), (1,)])\n def test_value(self, delay_test_time: float):\n resize = SimulateDelayd(keys=\"imgd\", delay_time=delay_test_time)\n start: float = time.time()\n _ = resize({\"imgd\": self.imt[0]})\n stop: float = time.time()\n measured_approximate: float = stop - start\n np.testing.assert_allclose(delay_test_time, measured_approximate, rtol=0.5)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedim.py_unittest_TEST_CASE_6._TypeError_dim_0_5_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedim.py_unittest_TEST_CASE_6._TypeError_dim_0_5_", "embedding": null, "metadata": {"file_path": "tests/test_squeezedim.py", "file_name": "test_squeezedim.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 32, "span_ids": ["docstring"], "tokens": 269}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import SqueezeDim\n\nTEST_CASE_1 = [{\"dim\": None}, np.random.rand(1, 2, 1, 3), (2, 3)]\n\nTEST_CASE_2 = [{\"dim\": 2}, np.random.rand(1, 2, 1, 8, 16), (1, 2, 8, 16)]\n\nTEST_CASE_3 = [{\"dim\": -1}, np.random.rand(1, 1, 16, 8, 1), (1, 1, 16, 8)]\n\nTEST_CASE_4 = [{}, np.random.rand(1, 2, 1, 3), (2, 1, 3)]\n\nTEST_CASE_4_PT = [{}, torch.rand(1, 2, 1, 3), (2, 1, 3)]\n\nTEST_CASE_5 = [ValueError, {\"dim\": -2}, np.random.rand(1, 1, 16, 8, 1)]\n\nTEST_CASE_6 = [TypeError, {\"dim\": 0.5}, np.random.rand(1, 1, 16, 8, 1)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_subpixel_upsample.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_subpixel_upsample.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_subpixel_upsample.py", "file_name": "test_subpixel_upsample.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 86, "span_ids": ["impl:27", "impl:17", "TestSUBPIXEL.test_subpixel_shape", "TestSUBPIXEL", "docstring"], "tokens": 647}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nimport torch.nn as nn\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.blocks import SubpixelUpsample\nfrom monai.networks.layers.factories import Conv\n\nTEST_CASE_SUBPIXEL = []\nfor inch in range(1, 5):\n for dim in range(1, 4):\n for factor in range(1, 3):\n test_case = [\n {\"dimensions\": dim, \"in_channels\": inch, \"scale_factor\": factor},\n (2, inch, *([8] * dim)),\n (2, inch, *([8 * factor] * dim)),\n ]\n TEST_CASE_SUBPIXEL.append(test_case)\n\nTEST_CASE_SUBPIXEL_2D_EXTRA = [\n {\"dimensions\": 2, \"in_channels\": 2, \"scale_factor\": 3},\n (2, 2, 8, 4), # different size for H and W\n (2, 2, 24, 12),\n]\n\nTEST_CASE_SUBPIXEL_3D_EXTRA = [\n {\"dimensions\": 3, \"in_channels\": 1, \"scale_factor\": 2},\n (2, 1, 16, 8, 4), # different size for H, W and D\n (2, 1, 32, 16, 8),\n]\n\nconv_block = nn.Sequential(\n Conv[Conv.CONV, 3](1, 4, kernel_size=1),\n Conv[Conv.CONV, 3](\n 4,\n 8,\n kernel_size=3,\n stride=1,\n padding=1,\n ),\n)\n\nTEST_CASE_SUBPIXEL_CONV_BLOCK_EXTRA = [\n {\"dimensions\": 3, \"in_channels\": 1, \"scale_factor\": 2, \"conv_block\": conv_block},\n (2, 1, 16, 8, 4), # different size for H, W and D\n (2, 1, 32, 16, 8),\n]\n\nTEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_2D_EXTRA)\nTEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_3D_EXTRA)\nTEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_CONV_BLOCK_EXTRA)\n\n\n# add every test back with the pad/pool sequential component omitted\nfor tests in list(TEST_CASE_SUBPIXEL):\n args: dict = tests[0] # type: ignore\n args = dict(args)\n args[\"apply_pad_pool\"] = False\n TEST_CASE_SUBPIXEL.append([args, tests[1], tests[2]])\n\n\nclass TestSUBPIXEL(unittest.TestCase):\n @parameterized.expand(TEST_CASE_SUBPIXEL)\n def test_subpixel_shape(self, input_param, input_shape, expected_shape):\n net = SubpixelUpsample(**input_param)\n with eval_mode(net):\n result = net.forward(torch.randn(input_shape))\n self.assertEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_unittest_TEST_CASES": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_unittest_TEST_CASES", "embedding": null, "metadata": {"file_path": "tests/test_tversky_loss.py", "file_name": "test_tversky_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 154, "span_ids": ["docstring"], "tokens": 53}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.losses import TverskyLoss\nfrom tests.utils import SkipIfBeforePyTorchVersion, test_script_save\n\nTEST_CASES =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_unittest_TEST_CASE_VNET_3D_3._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_unittest_TEST_CASE_VNET_3D_3._", "embedding": null, "metadata": {"file_path": "tests/test_vnet.py", "file_name": "test_vnet.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 52, "span_ids": ["impl:13", "docstring"], "tokens": 508}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.nets import VNet\nfrom tests.utils import test_script_save\n\ndevice = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n\nTEST_CASE_VNET_2D_1 = [\n {\"spatial_dims\": 2, \"in_channels\": 4, \"out_channels\": 1, \"act\": \"elu\", \"dropout_dim\": 1},\n (1, 4, 32, 32),\n (1, 1, 32, 32),\n]\nTEST_CASE_VNET_2D_2 = [\n {\"spatial_dims\": 2, \"in_channels\": 2, \"out_channels\": 2, \"act\": \"prelu\", \"dropout_dim\": 2},\n (1, 2, 32, 32),\n (1, 2, 32, 32),\n]\nTEST_CASE_VNET_2D_3 = [\n {\"spatial_dims\": 2, \"in_channels\": 1, \"out_channels\": 3, \"dropout_dim\": 3},\n (1, 1, 32, 32),\n (1, 3, 32, 32),\n]\nTEST_CASE_VNET_3D_1 = [\n {\"spatial_dims\": 3, \"in_channels\": 4, \"out_channels\": 1, \"act\": \"elu\", \"dropout_dim\": 1},\n (1, 4, 32, 32, 32),\n (1, 1, 32, 32, 32),\n]\nTEST_CASE_VNET_3D_2 = [\n {\"spatial_dims\": 3, \"in_channels\": 2, \"out_channels\": 2, \"act\": \"prelu\", \"dropout_dim\": 2},\n (1, 2, 32, 32, 32),\n (1, 2, 32, 32, 32),\n]\nTEST_CASE_VNET_3D_3 = [\n {\"spatial_dims\": 3, \"in_channels\": 1, \"out_channels\": 3, \"dropout_dim\": 3},\n (1, 1, 32, 32, 32),\n (1, 3, 32, 32, 32),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_TestVNet_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_TestVNet_", "embedding": null, "metadata": {"file_path": "tests/test_vnet.py", "file_name": "test_vnet.py", "file_type": "text/x-python", "category": "test", "start_line": 55, "end_line": 76, "span_ids": ["TestVNet", "TestVNet.test_vnet_shape", "TestVNet.test_script"], "tokens": 204}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestVNet(unittest.TestCase):\n @parameterized.expand(\n [\n TEST_CASE_VNET_2D_1,\n TEST_CASE_VNET_2D_2,\n TEST_CASE_VNET_2D_3,\n TEST_CASE_VNET_3D_1,\n TEST_CASE_VNET_3D_2,\n TEST_CASE_VNET_3D_3,\n ]\n )\n def test_vnet_shape(self, input_param, input_shape, expected_shape):\n net = VNet(**input_param).to(device)\n with eval_mode(net):\n result = net.forward(torch.randn(input_shape).to(device))\n self.assertEqual(result.shape, expected_shape)\n\n def test_script(self):\n net = VNet(spatial_dims=3, in_channels=1, out_channels=3, dropout_dim=3)\n test_data = torch.randn(1, 1, 32, 32, 32)\n test_script_save(net, test_data)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensemble.py_unittest_TEST_CASE_5._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensemble.py_unittest_TEST_CASE_5._", "embedding": null, "metadata": {"file_path": "tests/test_vote_ensemble.py", "file_name": "test_vote_ensemble.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 52, "span_ids": ["docstring"], "tokens": 411}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import VoteEnsemble\n\n# shape: [1, 2, 1, 1]\nTEST_CASE_1 = [\n {\"num_classes\": None},\n [torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[0]], [[1]]]])],\n torch.tensor([[[[1.0]], [[0.0]]]]),\n]\n\n# shape: [1, 2, 1, 1]\nTEST_CASE_2 = [\n {\"num_classes\": None},\n torch.stack([torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[0]], [[1]]]])]),\n torch.tensor([[[[1.0]], [[0.0]]]]),\n]\n\n# shape: [1, 1, 2, 1]\nTEST_CASE_3 = [\n {\"num_classes\": 3},\n [torch.tensor([[[[0], [2]]]]), torch.tensor([[[[0], [2]]]]), torch.tensor([[[[1], [1]]]])],\n torch.tensor([[[[0], [2]]]]),\n]\n\n# shape: [1, 1, 2, 1]\nTEST_CASE_4 = [\n {\"num_classes\": 5},\n [torch.tensor([[[[0], [2]]]]), torch.tensor([[[[0], [2]]]]), torch.tensor([[[[1], [1]]]])],\n torch.tensor([[[[0], [2]]]]),\n]\n\n# shape: [2]\nTEST_CASE_5 = [\n {\"num_classes\": 3},\n [torch.tensor([0, 2]), torch.tensor([0, 2]), torch.tensor([1, 1])],\n torch.tensor([0, 2]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensemble.py_TestVoteEnsemble_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensemble.py_TestVoteEnsemble_", "embedding": null, "metadata": {"file_path": "tests/test_vote_ensemble.py", "file_name": "test_vote_ensemble.py", "file_type": "text/x-python", "category": "test", "start_line": 55, "end_line": 75, "span_ids": ["TestVoteEnsemble.test_cuda_value", "TestVoteEnsemble", "TestVoteEnsemble.test_value", "impl:11"], "tokens": 216}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestVoteEnsemble(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_value(self, input_param, img, expected_value):\n result = VoteEnsemble(**input_param)(img)\n torch.testing.assert_allclose(result, expected_value)\n\n def test_cuda_value(self):\n img = torch.stack(\n [torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[0]], [[1]]]])]\n )\n expected_value = torch.tensor([[[[1.0]], [[0.0]]]])\n if torch.cuda.is_available():\n img = img.to(torch.device(\"cuda:0\"))\n expected_value = expected_value.to(torch.device(\"cuda:0\"))\n result = VoteEnsemble(num_classes=None)(img)\n torch.testing.assert_allclose(result, expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensembled.py_unittest_TEST_CASE_5._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensembled.py_unittest_TEST_CASE_5._", "embedding": null, "metadata": {"file_path": "tests/test_vote_ensembled.py", "file_name": "test_vote_ensembled.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 68, "span_ids": ["docstring:14", "docstring"], "tokens": 585}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import VoteEnsembled\n\n# shape: [1, 2, 1, 1]\nTEST_CASE_1 = [\n {\"keys\": [\"pred0\", \"pred1\", \"pred2\"], \"output_key\": \"output\", \"num_classes\": None},\n {\n \"pred0\": torch.tensor([[[[1]], [[0]]]]),\n \"pred1\": torch.tensor([[[[1]], [[0]]]]),\n \"pred2\": torch.tensor([[[[0]], [[1]]]]),\n },\n torch.tensor([[[[1.0]], [[0.0]]]]),\n]\n\n# shape: [1, 2, 1, 1]\nTEST_CASE_2 = [\n {\"keys\": \"output\", \"output_key\": \"output\", \"num_classes\": None},\n {\n \"output\": torch.stack(\n [torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[0]], [[1]]]])]\n )\n },\n torch.tensor([[[[1.0]], [[0.0]]]]),\n]\n\n# shape: [1, 1, 2, 1]\nTEST_CASE_3 = [\n {\"keys\": [\"pred0\", \"pred1\", \"pred2\"], \"output_key\": \"output\", \"num_classes\": 3},\n {\n \"pred0\": torch.tensor([[[[0], [2]]]]),\n \"pred1\": torch.tensor([[[[0], [2]]]]),\n \"pred2\": torch.tensor([[[[1], [1]]]]),\n },\n torch.tensor([[[[0], [2]]]]),\n]\n\n# shape: [1, 1, 2, 1]\nTEST_CASE_4 = [\n {\"keys\": [\"pred0\", \"pred1\", \"pred2\"], \"output_key\": \"output\", \"num_classes\": 5},\n {\n \"pred0\": torch.tensor([[[[0], [2]]]]),\n \"pred1\": torch.tensor([[[[0], [2]]]]),\n \"pred2\": torch.tensor([[[[1], [1]]]]),\n },\n torch.tensor([[[[0], [2]]]]),\n]\n\n# shape: [2]\nTEST_CASE_5 = [\n {\"keys\": [\"pred0\", \"pred1\", \"pred2\"], \"output_key\": \"output\", \"num_classes\": 3},\n {\"pred0\": torch.tensor([0, 2]), \"pred1\": torch.tensor([0, 2]), \"pred2\": torch.tensor([1, 1])},\n torch.tensor([0, 2]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensembled.py_TestVoteEnsembled_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensembled.py_TestVoteEnsembled_", "embedding": null, "metadata": {"file_path": "tests/test_vote_ensembled.py", "file_name": "test_vote_ensembled.py", "file_type": "text/x-python", "category": "test", "start_line": 71, "end_line": 91, "span_ids": ["TestVoteEnsembled.test_cuda_value", "TestVoteEnsembled", "impl:11", "TestVoteEnsembled.test_value"], "tokens": 227}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestVoteEnsembled(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_value(self, input_param, img, expected_value):\n result = VoteEnsembled(**input_param)(img)\n torch.testing.assert_allclose(result[\"output\"], expected_value)\n\n def test_cuda_value(self):\n img = torch.stack(\n [torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[0]], [[1]]]])]\n )\n expected_value = torch.tensor([[[[1.0]], [[0.0]]]])\n if torch.cuda.is_available():\n img = img.to(torch.device(\"cuda:0\"))\n expected_value = expected_value.to(torch.device(\"cuda:0\"))\n result = VoteEnsembled(keys=\"output\", num_classes=None)({\"output\": img})\n torch.testing.assert_allclose(result[\"output\"], expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_check_hash_check_hash.return.True": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_check_hash_check_hash.return.True", "embedding": null, "metadata": {"file_path": "monai/apps/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 89, "end_line": 120, "span_ids": ["check_hash"], "tokens": 285}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def check_hash(filepath: str, val: Optional[str] = None, hash_type: str = \"md5\") -> bool:\n \"\"\"\n Verify hash signature of specified file.\n\n Args:\n filepath: path of source file to verify hash value.\n val: expected hash value of the file.\n hash_type: 'md5' or 'sha1', defaults to 'md5'.\n\n \"\"\"\n if val is None:\n print(f\"Expected {hash_type} is None, skip {hash_type} check for file {filepath}.\")\n return True\n if hash_type.lower() == \"md5\":\n actual_hash = hashlib.md5()\n elif hash_type.lower() == \"sha1\":\n actual_hash = hashlib.sha1()\n else:\n raise NotImplementedError(f\"Unknown 'hash_type' {hash_type}.\")\n try:\n with open(filepath, \"rb\") as f:\n for chunk in iter(lambda: f.read(1024 * 1024), b\"\"):\n actual_hash.update(chunk)\n except Exception as e:\n print(f\"Exception in check_hash: {e}\")\n return False\n if val != actual_hash.hexdigest():\n print(f\"check_hash failed {actual_hash.hexdigest()}.\")\n return False\n\n print(f\"Verified '{_basename(filepath)}', {hash_type}: {val}.\")\n return True", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_os_get_config_values.return.output": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_os_get_config_values.return.output", "embedding": null, "metadata": {"file_path": "monai/config/deviceconfig.py", "file_name": "deviceconfig.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 62, "span_ids": ["get_config_values", "docstring"], "tokens": 293}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport platform\nimport re\nimport sys\nfrom collections import OrderedDict\n\nimport numpy as np\nimport torch\n\nimport monai\nfrom monai.utils import OptionalImportError, get_package_version, optional_import\n\ntry:\n import itk # type: ignore\n\n itk_version = itk.Version.GetITKVersion()\n del itk\nexcept (ImportError, AttributeError):\n itk_version = \"NOT INSTALLED or UNKNOWN VERSION.\"\n\ntry:\n _, HAS_EXT = optional_import(\"monai._C\")\n USE_COMPILED = HAS_EXT and os.getenv(\"BUILD_MONAI\", \"0\") == \"1\"\nexcept (OptionalImportError, ImportError, AttributeError):\n HAS_EXT = USE_COMPILED = False\n\npsutil, has_psutil = optional_import(\"psutil\")\npsutil_version = psutil.__version__ if has_psutil else \"NOT INSTALLED or UNKNOWN VERSION.\"\n\n__all__ = [\n \"print_config\",\n \"get_system_info\",\n \"print_system_info\",\n \"get_gpu_info\",\n \"print_gpu_info\",\n \"print_debug_info\",\n \"USE_COMPILED\",\n]\n\n\ndef get_config_values():\n \"\"\"\n Read the package versions into a dictionary.\n \"\"\"\n output = OrderedDict()\n\n output[\"MONAI\"] = monai.__version__\n output[\"Numpy\"] = np.version.full_version\n output[\"Pytorch\"] = torch.__version__\n\n return output", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_get_optional_config_values_get_optional_config_values.return.output": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_get_optional_config_values_get_optional_config_values.return.output", "embedding": null, "metadata": {"file_path": "monai/config/deviceconfig.py", "file_name": "deviceconfig.py", "file_type": "text/x-python", "category": "implementation", "start_line": 65, "end_line": 84, "span_ids": ["get_optional_config_values"], "tokens": 195}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_optional_config_values():\n \"\"\"\n Read the optional package versions into a dictionary.\n \"\"\"\n output = OrderedDict()\n\n output[\"Pytorch Ignite\"] = get_package_version(\"ignite\")\n output[\"Nibabel\"] = get_package_version(\"nibabel\")\n output[\"scikit-image\"] = get_package_version(\"skimage\")\n output[\"Pillow\"] = get_package_version(\"PIL\")\n output[\"Tensorboard\"] = get_package_version(\"tensorboard\")\n output[\"gdown\"] = get_package_version(\"gdown\")\n output[\"TorchVision\"] = get_package_version(\"torchvision\")\n output[\"ITK\"] = itk_version\n output[\"tqdm\"] = get_package_version(\"tqdm\")\n output[\"lmdb\"] = get_package_version(\"lmdb\")\n output[\"psutil\"] = psutil_version\n output[\"pandas\"] = get_package_version(\"pandas\")\n\n return output", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset_SmartCacheDataset._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset_SmartCacheDataset._", "embedding": null, "metadata": {"file_path": "monai/data/dataset.py", "file_name": "dataset.py", "file_type": "text/x-python", "category": "implementation", "start_line": 609, "end_line": 667, "span_ids": ["SmartCacheDataset"], "tokens": 912}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SmartCacheDataset(Randomizable, CacheDataset):\n \"\"\"\n Re-implementation of the SmartCache mechanism in NVIDIA Clara-train SDK.\n At any time, the cache pool only keeps a subset of the whole dataset. In each epoch, only the items\n in the cache are used for training. This ensures that data needed for training is readily available,\n keeping GPU resources busy. Note that cached items may still have to go through a non-deterministic\n transform sequence before being fed to GPU. At the same time, another thread is preparing replacement\n items by applying the transform sequence to items not in cache. Once one epoch is completed, Smart\n Cache replaces the same number of items with replacement items.\n Smart Cache uses a simple `running window` algorithm to determine the cache content and replacement items.\n Let N be the configured number of objects in cache; and R be the number of replacement objects (R = ceil(N * r),\n where r is the configured replace rate).\n For more details, please refer to:\n https://docs.nvidia.com/clara/tlt-mi/clara-train-sdk-v3.0/nvmidl/additional_features/smart_cache.html#smart-cache\n If passing slicing indices, will return a PyTorch Subset, for example: `data: Subset = dataset[1:4]`,\n for more details, please check: https://pytorch.org/docs/stable/data.html#torch.utils.data.Subset\n\n For example, if we have 5 images: `[image1, image2, image3, image4, image5]`, and `cache_num=4`, `replace_rate=0.25`.\n so the actual training images cached and replaced for every epoch are as below::\n\n epoch 1: [image1, image2, image3, image4]\n epoch 2: [image2, image3, image4, image5]\n epoch 3: [image3, image4, image5, image1]\n epoch 3: [image4, image5, image1, image2]\n epoch N: [image[N % 5] ...]\n\n The usage of `SmartCacheDataset` contains 4 steps:\n\n 1. Initialize `SmartCacheDataset` object and cache for the first epoch.\n 2. Call `start()` to run replacement thread in background.\n 3. Call `update_cache()` before every epoch to replace training items.\n 4. Call `shutdown()` when training ends.\n\n Note:\n This replacement will not work for below cases:\n 1. Set the `multiprocessing_context` of DataLoader to `spawn`.\n 2. Run on windows(the default multiprocessing method is `spawn`) with `num_workers` greater than 0.\n 3. Set the `persistent_workers` of DataLoader to `True` with `num_workers` greater than 0.\n\n If using MONAI workflows, please add `SmartCacheHandler` to the handler list of trainer,\n otherwise, please make sure to call `start()`, `update_cache()`, `shutdown()` during training.\n\n Args:\n data: input data to load and transform to generate dataset for model.\n transform: transforms to execute operations on input data.\n replace_rate: percentage of the cached items to be replaced in every epoch.\n cache_num: number of items to be cached. Default is `sys.maxsize`.\n will take the minimum of (cache_num, data_length x cache_rate, data_length).\n cache_rate: percentage of cached data in total, default is 1.0 (cache all).\n will take the minimum of (cache_num, data_length x cache_rate, data_length).\n num_init_workers: the number of worker threads to initialize the cache for first epoch.\n If num_init_workers is None then the number returned by os.cpu_count() is used.\n num_replace_workers: the number of worker threads to prepare the replacement cache for every epoch.\n If num_replace_workers is None then the number returned by os.cpu_count() is used.\n progress: whether to display a progress bar when caching for the first epoch.\n shuffle: whether to shuffle the whole data list before preparing the cache content for first epoch.\n it will not modify the original input data sequence in-place.\n seed: random seed if shuffle is `True`, default to `0`.\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.__init___SmartCacheDataset._restart.self__replace_mgr_start_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.__init___SmartCacheDataset._restart.self__replace_mgr_start_", "embedding": null, "metadata": {"file_path": "monai/data/dataset.py", "file_name": "dataset.py", "file_type": "text/x-python", "category": "implementation", "start_line": 669, "end_line": 755, "span_ids": ["SmartCacheDataset._compute_data_idx", "SmartCacheDataset.__init__", "SmartCacheDataset.randomize", "SmartCacheDataset.is_started", "SmartCacheDataset._restart", "SmartCacheDataset.start"], "tokens": 686}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SmartCacheDataset(Randomizable, CacheDataset):\n\n def __init__(\n self,\n data: Sequence,\n transform: Union[Sequence[Callable], Callable],\n replace_rate: float,\n cache_num: int = sys.maxsize,\n cache_rate: float = 1.0,\n num_init_workers: Optional[int] = None,\n num_replace_workers: Optional[int] = None,\n progress: bool = True,\n shuffle: bool = True,\n seed: int = 0,\n ) -> None:\n if shuffle:\n self.set_random_state(seed=seed)\n data = copy(data)\n self.randomize(data)\n\n super().__init__(data, transform, cache_num, cache_rate, num_init_workers, progress)\n if self._cache is None:\n self._cache = self._fill_cache()\n if self.cache_num >= len(data):\n warnings.warn(\n \"cache_num is greater or equal than dataset length, fall back to regular monai.data.CacheDataset.\"\n )\n if replace_rate <= 0:\n raise ValueError(\"replace_rate must be greater than 0, otherwise, please use monai.data.CacheDataset.\")\n\n self.num_replace_workers: Optional[int] = num_replace_workers\n if self.num_replace_workers is not None:\n self.num_replace_workers = max(int(self.num_replace_workers), 1)\n\n self._total_num: int = len(data)\n self._replace_num: int = min(math.ceil(self.cache_num * replace_rate), len(data) - self.cache_num)\n self._replacements: List[Any] = [None for _ in range(self._replace_num)]\n self._replace_data_idx: List[int] = list(range(self._replace_num))\n\n self._start_pos: int = 0\n self._update_lock: threading.Lock = threading.Lock()\n self._round: int = 1\n self._replace_done: bool = False\n self._replace_mgr: Optional[threading.Thread] = None\n\n self._compute_data_idx()\n\n def randomize(self, data: Sequence) -> None:\n try:\n self.R.shuffle(data)\n except TypeError as e:\n warnings.warn(f\"input data can't be shuffled in SmartCacheDataset with numpy.random.shuffle(): {e}.\")\n\n def _compute_data_idx(self):\n \"\"\"\n Update the replacement data position in the total data.\n\n \"\"\"\n for i in range(self._replace_num):\n pos: int = self._start_pos + self.cache_num + i\n if pos >= self._total_num:\n pos -= self._total_num\n self._replace_data_idx[i] = pos\n\n def is_started(self):\n \"\"\"\n Check whether the replacement thread is already started.\n\n \"\"\"\n if self._replace_mgr is None:\n return False\n return self._replace_mgr.is_alive()\n\n def start(self):\n \"\"\"\n Start the background thread to replace training items for every epoch.\n\n \"\"\"\n if self._replace_mgr is None or not self.is_started():\n self._restart()\n\n def _restart(self):\n \"\"\"\n Restart background thread if killed for some reason.\n\n \"\"\"\n self._round = 1\n self._replace_mgr = threading.Thread(target=self.manage_replacement, daemon=True)\n self._replace_mgr.start()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.update_cache_SmartCacheDataset.__len__.return.self_cache_num": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.update_cache_SmartCacheDataset.__len__.return.self_cache_num", "embedding": null, "metadata": {"file_path": "monai/data/dataset.py", "file_name": "dataset.py", "file_type": "text/x-python", "category": "implementation", "start_line": 740, "end_line": 828, "span_ids": ["SmartCacheDataset._replace_cache_thread", "SmartCacheDataset._compute_replacements", "SmartCacheDataset._try_shutdown", "SmartCacheDataset._try_manage_replacement", "SmartCacheDataset.shutdown", "SmartCacheDataset.__len__", "SmartCacheDataset.manage_replacement", "SmartCacheDataset.update_cache"], "tokens": 527}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SmartCacheDataset(Randomizable, CacheDataset):\n\n def update_cache(self):\n \"\"\"\n Update cache items for current epoch, need to call this function before every epoch.\n If the cache has been shutdown before, need to restart the `_replace_mgr` thread.\n\n \"\"\"\n if not self._replace_mgr.is_alive():\n self._restart()\n\n # make sure update is done\n while not self._try_update_cache():\n time.sleep(0.01)\n\n def _try_shutdown(self):\n \"\"\"\n Wait for thread lock to shut down the background thread.\n\n \"\"\"\n with self._update_lock:\n if self._replace_done:\n self._round = 0\n self._replace_done = False\n return True\n return False\n\n def shutdown(self):\n \"\"\"\n Shut down the background thread for replacement.\n\n \"\"\"\n if not self.is_started():\n return\n\n # wait until replace mgr is done the current round\n while not self._try_shutdown():\n time.sleep(0.01)\n self._replace_mgr.join()\n\n def _replace_cache_thread(self, index: int):\n \"\"\"\n Execute deterministic transforms on the new data for replacement.\n\n \"\"\"\n pos: int = self._replace_data_idx[index]\n self._replacements[index] = self._load_cache_item(pos)\n\n def _compute_replacements(self):\n \"\"\"\n Compute expected items for the replacement of next epoch, execute deterministic transforms.\n It can support multi-threads to accelerate the computation progress.\n\n \"\"\"\n with ThreadPool(self.num_replace_workers) as p:\n p.map(self._replace_cache_thread, list(range(self._replace_num)))\n\n self._replace_done = True\n\n def _try_manage_replacement(self, check_round):\n \"\"\"\n Wait thread lock and replace training items in the background thread.\n\n \"\"\"\n with self._update_lock:\n if self._round <= 0:\n # shutdown replacement\n self._replace_done = True\n return True, -1\n\n if self._round != check_round:\n self._compute_replacements()\n return False, self._round\n\n def manage_replacement(self):\n \"\"\"\n Background thread for replacement.\n\n \"\"\"\n check_round: int = -1\n done = False\n while not done:\n done, check_round = self._try_manage_replacement(check_round)\n time.sleep(0.01)\n\n def __len__(self):\n \"\"\"\n The dataset length is given by cache_num instead of len(data).\n\n \"\"\"\n return self.cache_num", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py__append_paths__append_paths.return.items": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py__append_paths__append_paths.return.items", "embedding": null, "metadata": {"file_path": "monai/data/decathlon_datalist.py", "file_name": "decathlon_datalist.py", "file_type": "text/x-python", "category": "implementation", "start_line": 59, "end_line": 81, "span_ids": ["_append_paths"], "tokens": 230}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def _append_paths(base_dir: str, is_segmentation: bool, items: List[Dict]) -> List[Dict]:\n \"\"\"\n Args:\n base_dir: the base directory of the dataset.\n is_segmentation: whether the datalist is for segmentation task.\n items: list of data items, each of which is a dict keyed by element names.\n\n Raises:\n TypeError: When ``items`` contains a non ``dict``.\n\n \"\"\"\n for item in items:\n if not isinstance(item, dict):\n raise TypeError(f\"Every item in items must be a dict but got {type(item).__name__}.\")\n for k, v in item.items():\n if k == \"image\":\n item[k] = _compute_path(base_dir, v, check_path=False)\n elif is_segmentation and k == \"label\":\n item[k] = _compute_path(base_dir, v, check_path=False)\n else:\n # for other items, auto detect whether it's a valid path\n item[k] = _compute_path(base_dir, v, check_path=True)\n return items", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_load_decathlon_datalist_load_decathlon_datalist.return._append_paths_base_dir_i": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_load_decathlon_datalist_load_decathlon_datalist.return._append_paths_base_dir_i", "embedding": null, "metadata": {"file_path": "monai/data/decathlon_datalist.py", "file_name": "decathlon_datalist.py", "file_type": "text/x-python", "category": "implementation", "start_line": 73, "end_line": 117, "span_ids": ["load_decathlon_datalist"], "tokens": 431}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def load_decathlon_datalist(\n data_list_file_path: str,\n is_segmentation: bool = True,\n data_list_key: str = \"training\",\n base_dir: Optional[str] = None,\n) -> List[Dict]:\n \"\"\"Load image/label paths of decathlon challenge from JSON file\n\n Json file is similar to what you get from http://medicaldecathlon.com/\n Those dataset.json files\n\n Args:\n data_list_file_path: the path to the json file of datalist.\n is_segmentation: whether the datalist is for segmentation task, default is True.\n data_list_key: the key to get a list of dictionary to be used, default is \"training\".\n base_dir: the base directory of the dataset, if None, use the datalist directory.\n\n Raises:\n ValueError: When ``data_list_file_path`` does not point to a file.\n ValueError: When ``data_list_key`` is not specified in the data list file.\n\n Returns a list of data items, each of which is a dict keyed by element names, for example:\n\n .. code-block::\n\n [\n {'image': '/workspace/data/chest_19.nii.gz', 'label': 0},\n {'image': '/workspace/data/chest_31.nii.gz', 'label': 1}\n ]\n\n \"\"\"\n if not os.path.isfile(data_list_file_path):\n raise ValueError(f\"Data list file {data_list_file_path} does not exist.\")\n with open(data_list_file_path) as json_file:\n json_data = json.load(json_file)\n if data_list_key not in json_data:\n raise ValueError(f'Data list {data_list_key} not specified in \"{data_list_file_path}\".')\n expected_data = json_data[data_list_key]\n if data_list_key == \"test\":\n expected_data = [{\"image\": i} for i in expected_data]\n\n if base_dir is None:\n base_dir = os.path.dirname(data_list_file_path)\n\n return _append_paths(base_dir, is_segmentation, expected_data)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_load_decathlon_properties_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_load_decathlon_properties_", "embedding": null, "metadata": {"file_path": "monai/data/decathlon_datalist.py", "file_name": "decathlon_datalist.py", "file_type": "text/x-python", "category": "implementation", "start_line": 131, "end_line": 156, "span_ids": ["load_decathlon_properties"], "tokens": 232}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def load_decathlon_properties(\n data_property_file_path: str,\n property_keys: Union[Sequence[str], str],\n) -> Dict:\n \"\"\"Load the properties from the JSON file contains data property with specified `property_keys`.\n\n Args:\n data_property_file_path: the path to the JSON file of data properties.\n property_keys: expected keys to load from the JSON file, for example, we have these keys\n in the decathlon challenge:\n `name`, `description`, `reference`, `licence`, `tensorImageSize`,\n `modality`, `labels`, `numTraining`, `numTest`, etc.\n\n \"\"\"\n if not os.path.isfile(data_property_file_path):\n raise ValueError(f\"Data property file {data_property_file_path} does not exist.\")\n with open(data_property_file_path) as json_file:\n json_data = json.load(json_file)\n\n properties = {}\n for key in ensure_tuple(property_keys):\n if key not in json_data:\n raise KeyError(f\"key {key} is not in the data property file.\")\n properties[key] = json_data[key]\n return properties", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_PatchDataset_PatchDataset.__len__.return.len_self_data_self_sam": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_PatchDataset_PatchDataset.__len__.return.len_self_data_self_sam", "embedding": null, "metadata": {"file_path": "monai/data/grid_dataset.py", "file_name": "grid_dataset.py", "file_type": "text/x-python", "category": "implementation", "start_line": 168, "end_line": 228, "span_ids": ["PatchDataset.__init__", "PatchDataset.__len__", "PatchDataset"], "tokens": 522}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class PatchDataset(Dataset):\n \"\"\"\n returns a patch from an image dataset.\n The patches are generated by a user-specified callable `patch_func`,\n and are optionally post-processed by `transform`.\n For example, to generate random patch samples from an image dataset:\n\n .. code-block:: python\n\n import numpy as np\n\n from monai.data import PatchDataset, DataLoader\n from monai.transforms import RandSpatialCropSamples, RandShiftIntensity\n\n # image dataset\n images = [np.arange(16, dtype=float).reshape(1, 4, 4),\n np.arange(16, dtype=float).reshape(1, 4, 4)]\n # image patch sampler\n n_samples = 5\n sampler = RandSpatialCropSamples(roi_size=(3, 3), num_samples=n_samples,\n random_center=True, random_size=False)\n # patch-level intensity shifts\n patch_intensity = RandShiftIntensity(offsets=1.0, prob=1.0)\n # construct the patch dataset\n ds = PatchDataset(dataset=images,\n patch_func=sampler,\n samples_per_image=n_samples,\n transform=patch_intensity)\n\n # use the patch dataset, length: len(images) x samplers_per_image\n print(len(ds))\n\n >>> 10\n\n for item in DataLoader(ds, batch_size=2, shuffle=True, num_workers=2):\n print(item.shape)\n\n >>> torch.Size([2, 1, 3, 3])\n\n \"\"\"\n\n def __init__(\n self, dataset: Sequence, patch_func: Callable, samples_per_image: int = 1, transform: Optional[Callable] = None\n ) -> None:\n \"\"\"\n Args:\n dataset: an image dataset to extract patches from.\n patch_func: converts an input image (item from dataset) into a sequence of image patches.\n patch_func(dataset[idx]) must return a sequence of patches (length `samples_per_image`).\n samples_per_image: `patch_func` should return a sequence of `samples_per_image` elements.\n transform: transform applied to each patch.\n \"\"\"\n super().__init__(data=dataset, transform=transform)\n\n self.patch_func = patch_func\n if samples_per_image <= 0:\n raise ValueError(\"sampler_per_image must be a positive integer.\")\n self.samples_per_image = int(samples_per_image)\n\n def __len__(self) -> int:\n return len(self.data) * self.samples_per_image", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ImageReader_ImageReader.verify_suffix.raise_NotImplementedError": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ImageReader_ImageReader.verify_suffix.raise_NotImplementedError", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 38, "end_line": 55, "span_ids": ["ImageReader.verify_suffix", "ImageReader"], "tokens": 142}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ImageReader(ABC):\n \"\"\"Abstract class to define interface APIs to load image files.\n users need to call `read` to load image and then use `get_data`\n to get the image data and properties from meta data.\n\n \"\"\"\n\n @abstractmethod\n def verify_suffix(self, filename: Union[Sequence[str], str]) -> bool:\n \"\"\"\n Verify whether the specified file or files format is supported by current reader.\n\n Args:\n filename: file name or a list of file names to read.\n if a list of files, verify all the suffixes.\n\n \"\"\"\n raise NotImplementedError(f\"Subclass {self.__class__.__name__} must implement this method.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ImageReader.read_ImageReader.get_data.raise_NotImplementedError": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ImageReader.read_ImageReader.get_data.raise_NotImplementedError", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 57, "end_line": 80, "span_ids": ["ImageReader.get_data", "ImageReader.read"], "tokens": 224}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ImageReader(ABC):\n\n @abstractmethod\n def read(self, data: Union[Sequence[str], str], **kwargs) -> Union[Sequence[Any], Any]:\n \"\"\"\n Read image data from specified file or files.\n Note that it returns the raw data, so different readers return different image data type.\n\n Args:\n data: file name or a list of file names to read.\n kwargs: additional args for actual `read` API of 3rd party libs.\n\n \"\"\"\n raise NotImplementedError(f\"Subclass {self.__class__.__name__} must implement this method.\")\n\n @abstractmethod\n def get_data(self, img) -> Tuple[np.ndarray, Dict]:\n \"\"\"\n Extract data array and meta data from loaded image and return them.\n This function must return 2 objects, first is numpy array of image data, second is dict of meta data.\n\n Args:\n img: an image object loaded from a image file or a list of image objects.\n\n \"\"\"\n raise NotImplementedError(f\"Subclass {self.__class__.__name__} must implement this method.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader.read_ITKReader.read.return.img__if_len_filenames_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader.read_ITKReader.read.return.img__if_len_filenames_", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 162, "end_line": 197, "span_ids": ["ITKReader.read"], "tokens": 375}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ITKReader(ImageReader):\n\n def read(self, data: Union[Sequence[str], str], **kwargs):\n \"\"\"\n Read image data from specified file or files.\n Note that the returned object is ITK image object or list of ITK image objects.\n\n Args:\n data: file name or a list of file names to read,\n kwargs: additional args for `itk.imread` API, will override `self.kwargs` for existing keys.\n More details about available args:\n https://github.com/InsightSoftwareConsortium/ITK/blob/master/Wrapping/Generators/Python/itkExtras.py\n\n \"\"\"\n img_: List[Image] = []\n\n filenames: Sequence[str] = ensure_tuple(data)\n kwargs_ = self.kwargs.copy()\n kwargs_.update(kwargs)\n for name in filenames:\n if os.path.isdir(name):\n # read DICOM series of 1 image in a folder, refer to: https://github.com/RSIP-Vision/medio\n names_generator = itk.GDCMSeriesFileNames.New()\n names_generator.SetUseSeriesDetails(True)\n names_generator.AddSeriesRestriction(\"0008|0021\") # Series Date\n names_generator.SetDirectory(name)\n series_uid = names_generator.GetSeriesUIDs()\n\n if len(series_uid) == 0:\n raise FileNotFoundError(f\"no DICOMs in: {name}.\")\n if len(series_uid) > 1:\n raise OSError(f\"the directory: {name} contains more than one DICOM series.\")\n\n series_identifier = series_uid[0]\n name = names_generator.GetFileNames(series_identifier)\n\n img_.append(itk.imread(name, **kwargs_))\n return img_ if len(filenames) > 1 else img_[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader._get_meta_dict_ITKReader._get_meta_dict.return.meta_dict": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader._get_meta_dict_ITKReader._get_meta_dict.return.meta_dict", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 226, "end_line": 254, "span_ids": ["ITKReader._get_meta_dict"], "tokens": 256}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ITKReader(ImageReader):\n\n def _get_meta_dict(self, img) -> Dict:\n \"\"\"\n Get all the meta data of the image and convert to dict type.\n\n Args:\n img: a ITK image object loaded from a image file.\n\n \"\"\"\n img_meta_dict = img.GetMetaDataDictionary()\n meta_dict = {}\n for key in img_meta_dict.GetKeys():\n # ignore deprecated, legacy members that cause issues\n if key.startswith(\"ITK_original_\"):\n continue\n if (\n key == \"NRRD_measurement frame\"\n and int(itk.Version.GetITKMajorVersion()) == 5\n and int(itk.Version.GetITKMinorVersion()) < 2\n ):\n warnings.warn(\n \"Ignoring 'measurement frame' field. \"\n \"Correct reading of NRRD05 files requires ITK >= 5.2: `pip install --upgrade --pre itk`\"\n )\n continue\n meta_dict[key] = img_meta_dict[key]\n meta_dict[\"origin\"] = np.asarray(img.GetOrigin())\n meta_dict[\"spacing\"] = np.asarray(img.GetSpacing())\n meta_dict[\"direction\"] = itk.array_from_matrix(img.GetDirection())\n return meta_dict", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader.read_NibabelReader.read.return.img__if_len_filenames_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader.read_NibabelReader.read.return.img__if_len_filenames_", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 345, "end_line": 366, "span_ids": ["NibabelReader.read"], "tokens": 216}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NibabelReader(ImageReader):\n\n def read(self, data: Union[Sequence[str], str], **kwargs):\n \"\"\"\n Read image data from specified file or files.\n Note that the returned object is Nibabel image object or list of Nibabel image objects.\n\n Args:\n data: file name or a list of file names to read.\n kwargs: additional args for `nibabel.load` API, will override `self.kwargs` for existing keys.\n More details about available args:\n https://github.com/nipy/nibabel/blob/master/nibabel/loadsave.py\n\n \"\"\"\n img_: List[Nifti1Image] = []\n\n filenames: Sequence[str] = ensure_tuple(data)\n kwargs_ = self.kwargs.copy()\n kwargs_.update(kwargs)\n for name in filenames:\n img = nib.load(name, **kwargs_)\n img = correct_nifti_header_if_necessary(img)\n img_.append(img)\n return img_ if len(filenames) > 1 else img_[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader_NumpyReader.verify_suffix.return.is_supported_format_filen": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader_NumpyReader.verify_suffix.return.is_supported_format_filen", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 377, "end_line": 407, "span_ids": ["NumpyReader.__init__", "NumpyReader.verify_suffix", "NumpyReader"], "tokens": 303}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NumpyReader(ImageReader):\n \"\"\"\n Load NPY or NPZ format data based on Numpy library, they can be arrays or pickled objects.\n A typical usage is to load the `mask` data for classification task.\n It can load part of the npz file with specified `npz_keys`.\n\n Args:\n npz_keys: if loading npz file, only load the specified keys, if None, load all the items.\n stack the loaded items together to construct a new first dimension.\n kwargs: additional args for `numpy.load` API except `allow_pickle`. more details about available args:\n https://numpy.org/doc/stable/reference/generated/numpy.load.html\n\n \"\"\"\n\n def __init__(self, npz_keys: Optional[KeysCollection] = None, **kwargs):\n super().__init__()\n if npz_keys is not None:\n npz_keys = ensure_tuple(npz_keys)\n self.npz_keys = npz_keys\n self.kwargs = kwargs\n\n def verify_suffix(self, filename: Union[Sequence[str], str]) -> bool:\n \"\"\"\n Verify whether the specified file or files format is supported by Numpy reader.\n\n Args:\n filename: file name or a list of file names to read.\n if a list of files, verify all the suffixes.\n \"\"\"\n suffixes: Sequence[str] = [\"npz\", \"npy\"]\n return is_supported_format(filename, suffixes)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader.read_NumpyReader.read.return.img__if_len_img__1_els": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader.read_NumpyReader.read.return.img__if_len_img__1_els", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 478, "end_line": 505, "span_ids": ["NumpyReader.read"], "tokens": 267}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NumpyReader(ImageReader):\n\n def read(self, data: Union[Sequence[str], str], **kwargs):\n \"\"\"\n Read image data from specified file or files.\n Note that the returned object is Numpy array or list of Numpy arrays.\n\n Args:\n data: file name or a list of file names to read.\n kwargs: additional args for `numpy.load` API except `allow_pickle`, will override `self.kwargs` for existing keys.\n More details about available args:\n https://numpy.org/doc/stable/reference/generated/numpy.load.html\n\n \"\"\"\n img_: List[Nifti1Image] = []\n\n filenames: Sequence[str] = ensure_tuple(data)\n kwargs_ = self.kwargs.copy()\n kwargs_.update(kwargs)\n for name in filenames:\n img = np.load(name, allow_pickle=True, **kwargs_)\n if name.endswith(\".npz\"):\n # load expected items from NPZ file\n npz_keys = [f\"arr_{i}\" for i in range(len(img))] if self.npz_keys is None else self.npz_keys\n for k in npz_keys:\n img_.append(img[k])\n else:\n img_.append(img)\n\n return img_ if len(img_) > 1 else img_[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader.read_PILReader.read.return.img__if_len_filenames_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader.read_PILReader.read.return.img__if_len_filenames_", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 562, "end_line": 585, "span_ids": ["PILReader.read"], "tokens": 215}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class PILReader(ImageReader):\n\n def read(self, data: Union[Sequence[str], str, np.ndarray], **kwargs):\n \"\"\"\n Read image data from specified file or files.\n Note that the returned object is PIL image or list of PIL image.\n\n Args:\n data: file name or a list of file names to read.\n kwargs: additional args for `Image.open` API in `read()`, will override `self.kwargs` for existing keys.\n Mode details about available args:\n https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.open\n\n \"\"\"\n img_: List[PILImage.Image] = []\n\n filenames: Sequence[str] = ensure_tuple(data)\n kwargs_ = self.kwargs.copy()\n kwargs_.update(kwargs)\n for name in filenames:\n img = PILImage.open(name, **kwargs_)\n if callable(self.converter):\n img = self.converter(img)\n img_.append(img)\n\n return img_ if len(filenames) > 1 else img_[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_random_patch_get_random_patch.return.tuple_slice_mc_mc_ps_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_random_patch_get_random_patch.return.tuple_slice_mc_mc_ps_", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 38, "end_line": 60, "span_ids": ["get_random_patch"], "tokens": 268}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_random_patch(\n dims: Sequence[int], patch_size: Sequence[int], rand_state: Optional[np.random.RandomState] = None\n) -> Tuple[slice, ...]:\n \"\"\"\n Returns a tuple of slices to define a random patch in an array of shape `dims` with size `patch_size` or the as\n close to it as possible within the given dimension. It is expected that `patch_size` is a valid patch for a source\n of shape `dims` as returned by `get_valid_patch_size`.\n\n Args:\n dims: shape of source array\n patch_size: shape of patch size to generate\n rand_state: a random state object to generate random numbers from\n\n Returns:\n (tuple of slice): a tuple of slice objects defining the patch\n \"\"\"\n\n # choose the minimal corner of the patch\n rand_int = np.random.randint if rand_state is None else rand_state.randint\n min_corner = tuple(rand_int(0, ms - ps + 1) if ms > ps else 0 for ms, ps in zip(dims, patch_size))\n\n # create the slices for each dimension which define the patch in the source array\n return tuple(slice(mc, mc + ps) for mc, ps in zip(min_corner, patch_size))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_compute_importance_map_compute_importance_map.return.importance_map": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_compute_importance_map_compute_importance_map.return.importance_map", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 666, "end_line": 718, "span_ids": ["compute_importance_map"], "tokens": 543}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def compute_importance_map(\n patch_size: Tuple[int, ...],\n mode: Union[BlendMode, str] = BlendMode.CONSTANT,\n sigma_scale: Union[Sequence[float], float] = 0.125,\n device: Union[torch.device, int, str] = \"cpu\",\n) -> torch.Tensor:\n \"\"\"Get importance map for different weight modes.\n\n Args:\n patch_size: Size of the required importance map. This should be either H, W [,D].\n mode: {``\"constant\"``, ``\"gaussian\"``}\n How to blend output of overlapping windows. Defaults to ``\"constant\"``.\n\n - ``\"constant``\": gives equal weight to all predictions.\n - ``\"gaussian``\": gives less weight to predictions on edges of windows.\n\n sigma_scale: Sigma_scale to calculate sigma for each dimension\n (sigma = sigma_scale * dim_size). Used for gaussian mode only.\n device: Device to put importance map on.\n\n Raises:\n ValueError: When ``mode`` is not one of [\"constant\", \"gaussian\"].\n\n Returns:\n Tensor of size patch_size.\n\n \"\"\"\n mode = BlendMode(mode)\n device = torch.device(device) # type: ignore[arg-type]\n if mode == BlendMode.CONSTANT:\n importance_map = torch.ones(patch_size, device=device).float()\n elif mode == BlendMode.GAUSSIAN:\n center_coords = [i // 2 for i in patch_size]\n sigma_scale = ensure_tuple_rep(sigma_scale, len(patch_size))\n sigmas = [i * sigma_s for i, sigma_s in zip(patch_size, sigma_scale)]\n\n importance_map = torch.zeros(patch_size, device=device)\n importance_map[tuple(center_coords)] = 1\n pt_gaussian = GaussianFilter(len(patch_size), sigmas).to(device=device, dtype=torch.float)\n importance_map = pt_gaussian(importance_map.unsqueeze(0).unsqueeze(0))\n importance_map = importance_map.squeeze(0).squeeze(0)\n importance_map = importance_map / torch.max(importance_map)\n importance_map = importance_map.float()\n\n # importance_map cannot be 0, otherwise we may end up with nans!\n min_non_zero = importance_map[importance_map != 0].min().item()\n importance_map = torch.clamp(importance_map, min=min_non_zero)\n else:\n raise ValueError(\n f\"Unsupported mode: {mode}, available options are [{BlendMode.CONSTANT}, {BlendMode.CONSTANT}].\"\n )\n\n return importance_map", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/smartcache_handler.py_from_typing_import_TYPE_C_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/smartcache_handler.py_from_typing_import_TYPE_C_", "embedding": null, "metadata": {"file_path": "monai/handlers/smartcache_handler.py", "file_name": "smartcache_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 79, "span_ids": ["SmartCacheHandler.__init__", "SmartCacheHandler.completed", "SmartCacheHandler.started", "SmartCacheHandler.epoch_completed", "SmartCacheHandler.attach", "docstring", "SmartCacheHandler"], "tokens": 506}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import TYPE_CHECKING\n\nfrom monai.data import SmartCacheDataset\nfrom monai.utils import exact_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Events\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", \"0.4.4\", exact_version, \"Engine\")\n\n\nclass SmartCacheHandler:\n \"\"\"\n Attach SmartCache logic to the engine in Ignite.\n Mainly include the `start`, `update_cache`, and `shutdown` functions of SmartCacheDataset.\n\n \"\"\"\n\n def __init__(self, smartcacher: SmartCacheDataset) -> None:\n \"\"\"\n Args:\n smartcacher: predefined SmartCacheDataset, will attach it to the engine.\n\n Raises:\n TypeError: When ``smartcacher`` is not a ``monai.data.SmartCacheDataset``.\n\n \"\"\"\n if not isinstance(smartcacher, SmartCacheDataset):\n raise TypeError(\"smartcacher must be a monai.data.SmartCacheDataset.\")\n self.smartcacher = smartcacher\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n engine.add_event_handler(Events.STARTED, self.started)\n engine.add_event_handler(Events.EPOCH_COMPLETED, self.epoch_completed)\n engine.add_event_handler(Events.COMPLETED, self.completed)\n\n def started(self, engine: Engine) -> None:\n \"\"\"Callback for train or validation/evaluation started Event.\n Start the replacement thread of SmartCacheDataset.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n self.smartcacher.start()\n\n def epoch_completed(self, engine: Engine) -> None:\n \"\"\"Callback for train or validation/evaluation epoch completed Event.\n Update cache content with replacement data.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n self.smartcacher.update_cache()\n\n def completed(self, engine: Engine) -> None:\n \"\"\"Callback for train or validation/evaluation completed Event.\n Stop the replacement thread of SmartCacheDataset.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n self.smartcacher.shutdown()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_compute_percent_hausdorff_distance_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_compute_percent_hausdorff_distance_", "embedding": null, "metadata": {"file_path": "monai/metrics/hausdorff_distance.py", "file_name": "hausdorff_distance.py", "file_type": "text/x-python", "category": "implementation", "start_line": 151, "end_line": 173, "span_ids": ["compute_percent_hausdorff_distance"], "tokens": 164}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def compute_percent_hausdorff_distance(\n edges_pred: np.ndarray,\n edges_gt: np.ndarray,\n distance_metric: str = \"euclidean\",\n percentile: Optional[float] = None,\n):\n \"\"\"\n This function is used to compute the directed Hausdorff distance.\n \"\"\"\n\n surface_distance = get_surface_distance(edges_pred, edges_gt, distance_metric=distance_metric)\n\n # for both pred and gt do not have foreground\n if surface_distance.shape == (0,):\n return np.nan\n\n if not percentile:\n return surface_distance.max()\n\n if 0 <= percentile <= 100:\n return np.percentile(surface_distance, percentile)\n raise ValueError(f\"percentile should be a value between 0 and 100, get {percentile}.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_get_mask_edges_get_mask_edges.return._edges_pred_edges_gt_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_get_mask_edges_get_mask_edges.return._edges_pred_edges_gt_", "embedding": null, "metadata": {"file_path": "monai/metrics/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 106, "end_line": 168, "span_ids": ["get_mask_edges"], "tokens": 621}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_mask_edges(\n seg_pred: Union[np.ndarray, torch.Tensor],\n seg_gt: Union[np.ndarray, torch.Tensor],\n label_idx: int = 1,\n crop: bool = True,\n) -> Tuple[np.ndarray, np.ndarray]:\n \"\"\"\n Do binary erosion and use XOR for input to get the edges. This\n function is helpful to further calculate metrics such as Average Surface\n Distance and Hausdorff Distance.\n The input images can be binary or labelfield images. If labelfield images\n are supplied, they are converted to binary images using `label_idx`.\n\n `scipy`'s binary erosion is used to to calculate the edges of the binary\n labelfield.\n\n In order to improve the computing efficiency, before getting the edges,\n the images can be cropped and only keep the foreground if not specifies\n ``crop = False``.\n\n We require that images are the same size, and assume that they occupy the\n same space (spacing, orientation, etc.).\n\n Args:\n seg_pred: the predicted binary or labelfield image.\n seg_gt: the actual binary or labelfield image.\n label_idx: for labelfield images, convert to binary with\n `seg_pred = seg_pred == label_idx`.\n crop: crop input images and only keep the foregrounds. In order to\n maintain two inputs' shapes, here the bounding box is achieved\n by ``(seg_pred | seg_gt)`` which represents the union set of two\n images. Defaults to ``True``.\n \"\"\"\n\n # Get both labelfields as np arrays\n if isinstance(seg_pred, torch.Tensor):\n seg_pred = seg_pred.detach().cpu().numpy()\n if isinstance(seg_gt, torch.Tensor):\n seg_gt = seg_gt.detach().cpu().numpy()\n\n if seg_pred.shape != seg_gt.shape:\n raise ValueError(\"seg_pred and seg_gt should have same shapes.\")\n\n # If not binary images, convert them\n if seg_pred.dtype != bool:\n seg_pred = seg_pred == label_idx\n if seg_gt.dtype != bool:\n seg_gt = seg_gt == label_idx\n\n if crop:\n if not np.any(seg_pred | seg_gt):\n return (np.zeros_like(seg_pred), np.zeros_like(seg_gt))\n\n seg_pred, seg_gt = np.expand_dims(seg_pred, 0), np.expand_dims(seg_gt, 0)\n box_start, box_end = generate_spatial_bounding_box(np.asarray(seg_pred | seg_gt))\n cropper = SpatialCrop(roi_start=box_start, roi_end=box_end)\n seg_pred, seg_gt = np.squeeze(cropper(seg_pred)), np.squeeze(cropper(seg_gt))\n\n # Do binary erosion and use XOR to get edges\n edges_pred = binary_erosion(seg_pred) ^ seg_pred\n edges_gt = binary_erosion(seg_gt) ^ seg_gt\n\n return (edges_pred, edges_gt)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_get_surface_distance_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_get_surface_distance_", "embedding": null, "metadata": {"file_path": "monai/metrics/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 174, "end_line": 209, "span_ids": ["get_surface_distance"], "tokens": 357}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_surface_distance(\n seg_pred: np.ndarray,\n seg_gt: np.ndarray,\n distance_metric: str = \"euclidean\",\n) -> np.ndarray:\n \"\"\"\n This function is used to compute the surface distances from `seg_pred` to `seg_gt`.\n\n Args:\n seg_pred: the edge of the predictions.\n seg_gt: the edge of the ground truth.\n distance_metric: : [``\"euclidean\"``, ``\"chessboard\"``, ``\"taxicab\"``]\n the metric used to compute surface distance. Defaults to ``\"euclidean\"``.\n\n - ``\"euclidean\"``, uses Exact Euclidean distance transform.\n - ``\"chessboard\"``, uses `chessboard` metric in chamfer type of transform.\n - ``\"taxicab\"``, uses `taxicab` metric in chamfer type of transform.\n \"\"\"\n\n if not np.any(seg_gt):\n dis = np.inf * np.ones_like(seg_gt)\n warnings.warn(\"ground truth is all 0, this may result in nan/inf distance.\")\n else:\n if not np.any(seg_pred):\n dis = np.inf * np.ones_like(seg_gt)\n warnings.warn(\"prediction is all 0, this may result in nan/inf distance.\")\n return np.asarray(dis[seg_gt])\n if distance_metric == \"euclidean\":\n dis = distance_transform_edt(~seg_gt)\n elif distance_metric in [\"chessboard\", \"taxicab\"]:\n dis = distance_transform_cdt(~seg_gt, metric=distance_metric)\n else:\n raise ValueError(f\"distance_metric {distance_metric} is not implemented.\")\n\n return np.asarray(dis[seg_pred])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetBasicBlock_UnetBasicBlock.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetBasicBlock_UnetBasicBlock.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/dynunet_block.py", "file_name": "dynunet_block.py", "file_type": "text/x-python", "category": "implementation", "start_line": 97, "end_line": 150, "span_ids": ["UnetBasicBlock", "UnetBasicBlock.forward", "UnetBasicBlock.__init__"], "tokens": 437}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class UnetBasicBlock(nn.Module):\n \"\"\"\n A CNN module module that can be used for DynUNet, based on:\n `Automated Design of Deep Learning Methods for Biomedical Image Segmentation `_.\n `nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation `_.\n\n Args:\n spatial_dims: number of spatial dimensions.\n in_channels: number of input channels.\n out_channels: number of output channels.\n kernel_size: convolution kernel size.\n stride: convolution stride.\n norm_name: feature normalization type and arguments.\n\n \"\"\"\n\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n kernel_size: Union[Sequence[int], int],\n stride: Union[Sequence[int], int],\n norm_name: Union[Tuple, str],\n ):\n super(UnetBasicBlock, self).__init__()\n self.conv1 = get_conv_layer(\n spatial_dims,\n in_channels,\n out_channels,\n kernel_size=kernel_size,\n stride=stride,\n conv_only=True,\n )\n self.conv2 = get_conv_layer(\n spatial_dims,\n out_channels,\n out_channels,\n kernel_size=kernel_size,\n stride=1,\n conv_only=True,\n )\n self.lrelu = get_act_layer((\"leakyrelu\", {\"inplace\": True, \"negative_slope\": 0.01}))\n self.norm1 = get_norm_layer(name=norm_name, spatial_dims=spatial_dims, channels=out_channels)\n self.norm2 = get_norm_layer(name=norm_name, spatial_dims=spatial_dims, channels=out_channels)\n\n def forward(self, inp):\n out = self.conv1(inp)\n out = self.norm1(out)\n out = self.lrelu(out)\n out = self.conv2(out)\n out = self.norm2(out)\n out = self.lrelu(out)\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetUpBlock_UnetUpBlock.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetUpBlock_UnetUpBlock.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/dynunet_block.py", "file_name": "dynunet_block.py", "file_type": "text/x-python", "category": "implementation", "start_line": 153, "end_line": 205, "span_ids": ["UnetUpBlock.__init__", "UnetUpBlock.forward", "UnetUpBlock"], "tokens": 414}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class UnetUpBlock(nn.Module):\n \"\"\"\n An upsampling module that can be used for DynUNet, based on:\n `Automated Design of Deep Learning Methods for Biomedical Image Segmentation `_.\n `nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation `_.\n\n Args:\n spatial_dims: number of spatial dimensions.\n in_channels: number of input channels.\n out_channels: number of output channels.\n kernel_size: convolution kernel size.\n stride: convolution stride.\n upsample_kernel_size: convolution kernel size for transposed convolution layers.\n norm_name: feature normalization type and arguments.\n\n \"\"\"\n\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n kernel_size: Union[Sequence[int], int],\n stride: Union[Sequence[int], int],\n upsample_kernel_size: Union[Sequence[int], int],\n norm_name: Union[Tuple, str],\n ):\n super(UnetUpBlock, self).__init__()\n upsample_stride = upsample_kernel_size\n self.transp_conv = get_conv_layer(\n spatial_dims,\n in_channels,\n out_channels,\n kernel_size=upsample_kernel_size,\n stride=upsample_stride,\n conv_only=True,\n is_transposed=True,\n )\n self.conv_block = UnetBasicBlock(\n spatial_dims,\n out_channels + out_channels,\n out_channels,\n kernel_size=kernel_size,\n stride=1,\n norm_name=norm_name,\n )\n\n def forward(self, inp, skip):\n # number of channels for skip should equals to out_channels\n out = self.transp_conv(inp)\n out = torch.cat((out, skip), dim=1)\n out = self.conv_block(out)\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_padding_get_padding.return.padding_if_len_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_padding_get_padding.return.padding_if_len_padding_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/dynunet_block.py", "file_name": "dynunet_block.py", "file_type": "text/x-python", "category": "implementation", "start_line": 272, "end_line": 284, "span_ids": ["get_padding"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_padding(\n kernel_size: Union[Sequence[int], int],\n stride: Union[Sequence[int], int],\n) -> Union[Tuple[int, ...], int]:\n\n kernel_size_np = np.atleast_1d(kernel_size)\n stride_np = np.atleast_1d(stride)\n padding_np = (kernel_size_np - stride_np + 1) / 2\n if np.min(padding_np) < 0:\n raise AssertionError(\"padding value should not be negative, please change the kernel size and/or stride.\")\n padding = tuple(int(p) for p in padding_np)\n\n return padding if len(padding) > 1 else padding[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_output_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_output_padding_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/dynunet_block.py", "file_name": "dynunet_block.py", "file_type": "text/x-python", "category": "implementation", "start_line": 287, "end_line": 302, "span_ids": ["get_output_padding"], "tokens": 170}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_output_padding(\n kernel_size: Union[Sequence[int], int],\n stride: Union[Sequence[int], int],\n padding: Union[Sequence[int], int],\n) -> Union[Tuple[int, ...], int]:\n kernel_size_np = np.atleast_1d(kernel_size)\n stride_np = np.atleast_1d(stride)\n padding_np = np.atleast_1d(padding)\n\n out_padding_np = 2 * padding_np + stride_np - kernel_size_np\n if np.min(out_padding_np) < 0:\n raise AssertionError(\"out_padding value should not be negative, please change the kernel size and/or stride.\")\n out_padding = tuple(int(p) for p in out_padding_np)\n\n return out_padding if len(out_padding) > 1 else out_padding[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_from_typing_import_Option_UpSample._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_from_typing_import_Option_UpSample._", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/upsample.py", "file_name": "upsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 35, "span_ids": ["UpSample", "docstring"], "tokens": 205}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Tuple, Union\n\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.layers.factories import Conv, Pad, Pool\nfrom monai.networks.utils import icnr_init, pixelshuffle\nfrom monai.utils import InterpolateMode, UpsampleMode, ensure_tuple_rep\n\n__all__ = [\"Upsample\", \"UpSample\", \"SubpixelUpsample\", \"Subpixelupsample\", \"SubpixelUpSample\"]\n\n\nclass UpSample(nn.Sequential):\n \"\"\"\n Upsamples data by `scale_factor`.\n Supported modes are:\n\n - \"deconv\": uses a transposed convolution.\n - \"nontrainable\": uses :py:class:`torch.nn.Upsample`.\n - \"pixelshuffle\": uses :py:class:`monai.networks.blocks.SubpixelUpsample`.\n\n This module can optionally take a pre-convolution\n (often used to map the number of features from `in_channels` to `out_channels`).\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_UpSample.__init___UpSample.__init__.if_up_mode_UpsampleMod.else_.raise_NotImplementedError": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_UpSample.__init___UpSample.__init__.if_up_mode_UpsampleMod.else_.raise_NotImplementedError", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/upsample.py", "file_name": "upsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 37, "end_line": 135, "span_ids": ["UpSample.__init__"], "tokens": 1119}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class UpSample(nn.Sequential):\n\n def __init__(\n self,\n dimensions: int,\n in_channels: Optional[int] = None,\n out_channels: Optional[int] = None,\n scale_factor: Union[Sequence[float], float] = 2,\n size: Optional[Union[Tuple[int], int]] = None,\n mode: Union[UpsampleMode, str] = UpsampleMode.DECONV,\n pre_conv: Optional[Union[nn.Module, str]] = \"default\",\n interp_mode: Union[InterpolateMode, str] = InterpolateMode.LINEAR,\n align_corners: Optional[bool] = True,\n bias: bool = True,\n apply_pad_pool: bool = True,\n ) -> None:\n \"\"\"\n Args:\n dimensions: number of spatial dimensions of the input image.\n in_channels: number of channels of the input image.\n out_channels: number of channels of the output image. Defaults to `in_channels`.\n scale_factor: multiplier for spatial size. Has to match input size if it is a tuple. Defaults to 2.\n size: spatial size of the output image.\n Only used when ``mode`` is ``UpsampleMode.NONTRAINABLE``.\n In torch.nn.functional.interpolate, only one of `size` or `scale_factor` should be defined,\n thus if size is defined, `scale_factor` will not be used.\n Defaults to None.\n mode: {``\"deconv\"``, ``\"nontrainable\"``, ``\"pixelshuffle\"``}. Defaults to ``\"deconv\"``.\n pre_conv: a conv block applied before upsampling. Defaults to None.\n When ``conv_block`` is ``\"default\"``, one reserved conv layer will be utilized when\n Only used in the \"nontrainable\" or \"pixelshuffle\" mode.\n interp_mode: {``\"nearest\"``, ``\"linear\"``, ``\"bilinear\"``, ``\"bicubic\"``, ``\"trilinear\"``}\n Only used when ``mode`` is ``UpsampleMode.NONTRAINABLE``.\n If ends with ``\"linear\"`` will use ``spatial dims`` to determine the correct interpolation.\n This corresponds to linear, bilinear, trilinear for 1D, 2D, and 3D respectively.\n The interpolation mode. Defaults to ``\"linear\"``.\n See also: https://pytorch.org/docs/stable/nn.html#upsample\n align_corners: set the align_corners parameter of `torch.nn.Upsample`. Defaults to True.\n Only used in the nontrainable mode.\n bias: whether to have a bias term in the default preconv and deconv layers. Defaults to True.\n apply_pad_pool: if True the upsampled tensor is padded then average pooling is applied with a kernel the\n size of `scale_factor` with a stride of 1. See also: :py:class:`monai.networks.blocks.SubpixelUpsample`.\n Only used in the pixelshuffle mode.\n \"\"\"\n super().__init__()\n scale_factor_ = ensure_tuple_rep(scale_factor, dimensions)\n up_mode = UpsampleMode(mode)\n if up_mode == UpsampleMode.DECONV:\n if not in_channels:\n raise ValueError(f\"in_channels needs to be specified in the '{mode}' mode.\")\n self.add_module(\n \"deconv\",\n Conv[Conv.CONVTRANS, dimensions](\n in_channels=in_channels,\n out_channels=out_channels or in_channels,\n kernel_size=scale_factor_,\n stride=scale_factor_,\n bias=bias,\n ),\n )\n elif up_mode == UpsampleMode.NONTRAINABLE:\n if pre_conv == \"default\" and (out_channels != in_channels): # defaults to no conv if out_chns==in_chns\n if not in_channels:\n raise ValueError(f\"in_channels needs to be specified in the '{mode}' mode.\")\n self.add_module(\n \"preconv\",\n Conv[Conv.CONV, dimensions](\n in_channels=in_channels, out_channels=out_channels or in_channels, kernel_size=1, bias=bias\n ),\n )\n elif pre_conv is not None and pre_conv != \"default\":\n self.add_module(\"preconv\", pre_conv) # type: ignore\n\n interp_mode = InterpolateMode(interp_mode)\n linear_mode = [InterpolateMode.LINEAR, InterpolateMode.BILINEAR, InterpolateMode.TRILINEAR]\n if interp_mode in linear_mode: # choose mode based on dimensions\n interp_mode = linear_mode[dimensions - 1]\n self.add_module(\n \"upsample_non_trainable\",\n nn.Upsample(\n size=size,\n scale_factor=None if size else scale_factor_,\n mode=interp_mode.value,\n align_corners=align_corners,\n ),\n )\n elif up_mode == UpsampleMode.PIXELSHUFFLE:\n self.add_module(\n \"pixelshuffle\",\n SubpixelUpsample(\n dimensions=dimensions,\n in_channels=in_channels,\n out_channels=out_channels,\n scale_factor=scale_factor_[0], # isotropic\n conv_block=pre_conv,\n apply_pad_pool=apply_pad_pool,\n bias=bias,\n ),\n )\n else:\n raise NotImplementedError(f\"Unsupported upsampling mode {mode}.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample_SubpixelUpsample._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample_SubpixelUpsample._", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/upsample.py", "file_name": "upsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 125, "end_line": 148, "span_ids": ["SubpixelUpsample"], "tokens": 265}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SubpixelUpsample(nn.Module):\n \"\"\"\n Upsample via using a subpixel CNN. This module supports 1D, 2D and 3D input images.\n The module is consisted with two parts. First of all, a convolutional layer is employed\n to increase the number of channels into: ``in_channels * (scale_factor ** dimensions)``.\n Secondly, a pixel shuffle manipulation is utilized to aggregates the feature maps from\n low resolution space and build the super resolution space.\n The first part of the module is not fixed, a sequential layers can be used to replace the\n default single layer.\n\n See: Shi et al., 2016, \"Real-Time Single Image and Video Super-Resolution\n Using a nEfficient Sub-Pixel Convolutional Neural Network.\"\n\n See: Aitken et al., 2017, \"Checkerboard artifact free sub-pixel convolution\".\n\n The idea comes from:\n https://arxiv.org/abs/1609.05158\n\n The pixel shuffle mechanism refers to:\n https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/PixelShuffle.cpp\n and:\n https://github.com/pytorch/pytorch/pull/6340/files\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.__init___SubpixelUpsample.__init__.if_apply_pad_pool_.self.pad_pool.nn_Sequential_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.__init___SubpixelUpsample.__init__.if_apply_pad_pool_.self.pad_pool.nn_Sequential_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/upsample.py", "file_name": "upsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 150, "end_line": 209, "span_ids": ["SubpixelUpsample.__init__"], "tokens": 572}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SubpixelUpsample(nn.Module):\n\n def __init__(\n self,\n dimensions: int,\n in_channels: Optional[int],\n out_channels: Optional[int] = None,\n scale_factor: int = 2,\n conv_block: Optional[Union[nn.Module, str]] = \"default\",\n apply_pad_pool: bool = True,\n bias: bool = True,\n ) -> None:\n \"\"\"\n Args:\n dimensions: number of spatial dimensions of the input image.\n in_channels: number of channels of the input image.\n out_channels: optional number of channels of the output image.\n scale_factor: multiplier for spatial size. Defaults to 2.\n conv_block: a conv block to extract feature maps before upsampling. Defaults to None.\n\n - When ``conv_block`` is ``\"default\"``, one reserved conv layer will be utilized.\n - When ``conv_block`` is an ``nn.module``,\n please ensure the output number of channels is divisible ``(scale_factor ** dimensions)``.\n\n apply_pad_pool: if True the upsampled tensor is padded then average pooling is applied with a kernel the\n size of `scale_factor` with a stride of 1. This implements the nearest neighbour resize convolution\n component of subpixel convolutions described in Aitken et al.\n bias: whether to have a bias term in the default conv_block. Defaults to True.\n \"\"\"\n super().__init__()\n\n if scale_factor <= 0:\n raise ValueError(f\"The `scale_factor` multiplier must be an integer greater than 0, got {scale_factor}.\")\n\n self.dimensions = dimensions\n self.scale_factor = scale_factor\n\n if conv_block == \"default\":\n out_channels = out_channels or in_channels\n if not out_channels:\n raise ValueError(\"in_channels need to be specified.\")\n conv_out_channels = out_channels * (scale_factor ** dimensions)\n self.conv_block = Conv[Conv.CONV, dimensions](\n in_channels=in_channels, out_channels=conv_out_channels, kernel_size=3, stride=1, padding=1, bias=bias\n )\n\n icnr_init(self.conv_block, self.scale_factor)\n elif conv_block is None:\n self.conv_block = nn.Identity()\n else:\n self.conv_block = conv_block\n\n self.pad_pool: nn.Module = nn.Identity()\n\n if apply_pad_pool:\n pool_type = Pool[Pool.AVG, self.dimensions]\n pad_type = Pad[Pad.CONSTANTPAD, self.dimensions]\n\n self.pad_pool = nn.Sequential(\n pad_type(padding=(self.scale_factor - 1, 0) * self.dimensions, value=0.0),\n pool_type(kernel_size=self.scale_factor, stride=1),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.forward_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.forward_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/upsample.py", "file_name": "upsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 213, "end_line": 232, "span_ids": ["SubpixelUpsample.forward", "impl:3"], "tokens": 183}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SubpixelUpsample(nn.Module):\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n x: Tensor in shape (batch, channel, spatial_1[, spatial_2, ...).\n \"\"\"\n x = self.conv_block(x)\n if x.shape[1] % (self.scale_factor ** self.dimensions) != 0:\n raise ValueError(\n f\"Number of channels after `conv_block` ({x.shape[1]}) must be evenly \"\n \"divisible by scale_factor ** dimensions \"\n f\"({self.scale_factor}^{self.dimensions}={self.scale_factor**self.dimensions}).\"\n )\n x = pixelshuffle(x, self.dimensions, self.scale_factor)\n x = self.pad_pool(x)\n return x\n\n\nUpsample = UpSample\nSubpixelupsample = SubpixelUpSample = SubpixelUpsample", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_from_typing_import_List__same_padding.return.padding_if_len_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_from_typing_import_List__same_padding.return.padding_if_len_padding_", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 43, "span_ids": ["same_padding", "docstring"], "tokens": 295}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import List, Optional, Sequence, Tuple, Union\n\nimport numpy as np\nimport torch\n\n__all__ = [\"same_padding\", \"stride_minus_kernel_padding\", \"calculate_out_shape\", \"gaussian_1d\", \"polyval\"]\n\n\ndef same_padding(\n kernel_size: Union[Sequence[int], int], dilation: Union[Sequence[int], int] = 1\n) -> Union[Tuple[int, ...], int]:\n \"\"\"\n Return the padding value needed to ensure a convolution using the given kernel size produces an output of the same\n shape as the input for a stride of 1, otherwise ensure a shape of the input divided by the stride rounded down.\n\n Raises:\n NotImplementedError: When ``np.any((kernel_size - 1) * dilation % 2 == 1)``.\n\n \"\"\"\n\n kernel_size_np = np.atleast_1d(kernel_size)\n dilation_np = np.atleast_1d(dilation)\n\n if np.any((kernel_size_np - 1) * dilation % 2 == 1):\n raise NotImplementedError(\n f\"Same padding not available for kernel_size={kernel_size_np} and dilation={dilation_np}.\"\n )\n\n padding_np = (kernel_size_np - 1) / 2 * dilation_np\n padding = tuple(int(p) for p in padding_np)\n\n return padding if len(padding) > 1 else padding[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_stride_minus_kernel_padding_stride_minus_kernel_padding.return.out_padding_if_len_out_pa": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_stride_minus_kernel_padding_stride_minus_kernel_padding.return.out_padding_if_len_out_pa", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 46, "end_line": 56, "span_ids": ["stride_minus_kernel_padding"], "tokens": 110}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def stride_minus_kernel_padding(\n kernel_size: Union[Sequence[int], int],\n stride: Union[Sequence[int], int],\n) -> Union[Tuple[int, ...], int]:\n kernel_size_np = np.atleast_1d(kernel_size)\n stride_np = np.atleast_1d(stride)\n\n out_padding_np = stride_np - kernel_size_np\n out_padding = tuple(int(p) for p in out_padding_np)\n\n return out_padding if len(out_padding) > 1 else out_padding[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_gaussian_1d_gaussian_1d._type_ignore": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_gaussian_1d_gaussian_1d._type_ignore", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 81, "end_line": 134, "span_ids": ["gaussian_1d"], "tokens": 608}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def gaussian_1d(\n sigma: torch.Tensor, truncated: float = 4.0, approx: str = \"erf\", normalize: bool = False\n) -> torch.Tensor:\n \"\"\"\n one dimensional Gaussian kernel.\n\n Args:\n sigma: std of the kernel\n truncated: tail length\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n\n - ``erf`` approximation interpolates the error function;\n - ``sampled`` uses a sampled Gaussian kernel;\n - ``scalespace`` corresponds to\n https://en.wikipedia.org/wiki/Scale_space_implementation#The_discrete_Gaussian_kernel\n based on the modified Bessel functions.\n\n normalize: whether to normalize the kernel with `kernel.sum()`.\n\n Raises:\n ValueError: When ``truncated`` is non-positive.\n\n Returns:\n 1D torch tensor\n\n \"\"\"\n sigma = torch.as_tensor(sigma, dtype=torch.float, device=sigma.device if isinstance(sigma, torch.Tensor) else None)\n device = sigma.device\n if truncated <= 0.0:\n raise ValueError(f\"truncated must be positive, got {truncated}.\")\n tail = int(max(float(sigma) * truncated, 0.5) + 0.5)\n if approx.lower() == \"erf\":\n x = torch.arange(-tail, tail + 1, dtype=torch.float, device=device)\n t = 0.70710678 / torch.abs(sigma)\n out = 0.5 * ((t * (x + 0.5)).erf() - (t * (x - 0.5)).erf())\n out = out.clamp(min=0)\n elif approx.lower() == \"sampled\":\n x = torch.arange(-tail, tail + 1, dtype=torch.float, device=sigma.device)\n out = torch.exp(-0.5 / (sigma * sigma) * x ** 2)\n if not normalize: # compute the normalizer\n out = out / (2.5066282 * sigma)\n elif approx.lower() == \"scalespace\":\n sigma2 = sigma * sigma\n out_pos: List[Optional[torch.Tensor]] = [None] * (tail + 1)\n out_pos[0] = _modified_bessel_0(sigma2)\n out_pos[1] = _modified_bessel_1(sigma2)\n for k in range(2, len(out_pos)):\n out_pos[k] = _modified_bessel_i(k, sigma2)\n out = out_pos[:0:-1]\n out.extend(out_pos)\n out = torch.stack(out) * torch.exp(-sigma2)\n else:\n raise NotImplementedError(f\"Unsupported option: approx='{approx}'.\")\n return out / out.sum() if normalize else out # type: ignore", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_polyval_polyval._type_ignore": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_polyval_polyval._type_ignore", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 137, "end_line": 160, "span_ids": ["polyval"], "tokens": 224}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def polyval(coef, x) -> torch.Tensor:\n \"\"\"\n Evaluates the polynomial defined by `coef` at `x`.\n\n For a 1D sequence of coef (length n), evaluate::\n\n y = coef[n-1] + x * (coef[n-2] + ... + x * (coef[1] + x * coef[0]))\n\n Args:\n coef: a sequence of floats representing the coefficients of the polynomial\n x: float or a sequence of floats representing the variable of the polynomial\n\n Returns:\n 1D torch tensor\n \"\"\"\n device = x.device if isinstance(x, torch.Tensor) else None\n coef = torch.as_tensor(coef, dtype=torch.float, device=device)\n if coef.ndim == 0 or (len(coef) < 1):\n return torch.zeros(x.shape)\n x = torch.as_tensor(x, dtype=torch.float, device=device)\n ans = coef[0]\n for c in coef[1:]:\n ans = ans * x + c\n return ans # type: ignore", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_0__modified_bessel_0.return.polyval__coef_y_torch": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_0__modified_bessel_0.return.polyval__coef_y_torch", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 163, "end_line": 181, "span_ids": ["_modified_bessel_0"], "tokens": 258}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def _modified_bessel_0(x: torch.Tensor) -> torch.Tensor:\n x = torch.as_tensor(x, dtype=torch.float, device=x.device if isinstance(x, torch.Tensor) else None)\n if torch.abs(x) < 3.75:\n y = x * x / 14.0625\n return polyval([0.45813e-2, 0.360768e-1, 0.2659732, 1.2067492, 3.0899424, 3.5156229, 1.0], y)\n ax = torch.abs(x)\n y = 3.75 / ax\n _coef = [\n 0.392377e-2,\n -0.1647633e-1,\n 0.2635537e-1,\n -0.2057706e-1,\n 0.916281e-2,\n -0.157565e-2,\n 0.225319e-2,\n 0.1328592e-1,\n 0.39894228,\n ]\n return polyval(_coef, y) * torch.exp(ax) / torch.sqrt(ax)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_1__modified_bessel_1.return._ans_if_x_0_0_else_ans": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_1__modified_bessel_1.return._ans_if_x_0_0_else_ans", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 184, "end_line": 204, "span_ids": ["_modified_bessel_1"], "tokens": 288}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def _modified_bessel_1(x: torch.Tensor) -> torch.Tensor:\n x = torch.as_tensor(x, dtype=torch.float, device=x.device if isinstance(x, torch.Tensor) else None)\n if torch.abs(x) < 3.75:\n y = x * x / 14.0625\n _coef = [0.32411e-3, 0.301532e-2, 0.2658733e-1, 0.15084934, 0.51498869, 0.87890594, 0.5]\n return torch.abs(x) * polyval(_coef, y)\n ax = torch.abs(x)\n y = 3.75 / ax\n _coef = [\n -0.420059e-2,\n 0.1787654e-1,\n -0.2895312e-1,\n 0.2282967e-1,\n -0.1031555e-1,\n 0.163801e-2,\n -0.362018e-2,\n -0.3988024e-1,\n 0.39894228,\n ]\n ans = polyval(_coef, y) * torch.exp(ax) / torch.sqrt(ax)\n return -ans if x < 0.0 else ans", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_i_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_i_", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 207, "end_line": 229, "span_ids": ["_modified_bessel_i"], "tokens": 300}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def _modified_bessel_i(n: int, x: torch.Tensor) -> torch.Tensor:\n if n < 2:\n raise ValueError(f\"n must be greater than 1, got n={n}.\")\n x = torch.as_tensor(x, dtype=torch.float, device=x.device if isinstance(x, torch.Tensor) else None)\n if x == 0.0:\n return x\n device = x.device\n tox = 2.0 / torch.abs(x)\n ans, bip, bi = torch.tensor(0.0, device=device), torch.tensor(0.0, device=device), torch.tensor(1.0, device=device)\n m = int(2 * (n + np.floor(np.sqrt(40.0 * n))))\n for j in range(m, 0, -1):\n bim = bip + float(j) * tox * bi\n bip = bi\n bi = bim\n if abs(bi) > 1.0e10:\n ans = ans * 1.0e-10\n bi = bi * 1.0e-10\n bip = bip * 1.0e-10\n if j == n:\n ans = bip\n ans = ans * _modified_bessel_0(x) / bi\n return -ans if x < 0.0 and (n % 2) == 1 else ans", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_GaussianFilter_GaussianFilter.forward.return.separable_filtering_x_x_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_GaussianFilter_GaussianFilter.forward.return.separable_filtering_x_x_", "embedding": null, "metadata": {"file_path": "monai/networks/layers/simplelayers.py", "file_name": "simplelayers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 367, "end_line": 414, "span_ids": ["GaussianFilter", "GaussianFilter.__init__", "GaussianFilter.forward"], "tokens": 466}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianFilter(nn.Module):\n def __init__(\n self,\n spatial_dims: int,\n sigma: Union[Sequence[float], float, Sequence[torch.Tensor], torch.Tensor],\n truncated: float = 4.0,\n approx: str = \"erf\",\n requires_grad: bool = False,\n ) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n must have shape (Batch, channels, H[, W, ...]).\n sigma: std. could be a single value, or `spatial_dims` number of values.\n truncated: spreads how many stds.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n\n - ``erf`` approximation interpolates the error function;\n - ``sampled`` uses a sampled Gaussian kernel;\n - ``scalespace`` corresponds to\n https://en.wikipedia.org/wiki/Scale_space_implementation#The_discrete_Gaussian_kernel\n based on the modified Bessel functions.\n\n requires_grad: whether to store the gradients for sigma.\n if True, `sigma` will be the initial value of the parameters of this module\n (for example `parameters()` iterator could be used to get the parameters);\n otherwise this module will fix the kernels using `sigma` as the std.\n \"\"\"\n super().__init__()\n self.sigma = [\n torch.nn.Parameter(\n torch.as_tensor(s, dtype=torch.float, device=s.device if isinstance(s, torch.Tensor) else None),\n requires_grad=requires_grad,\n )\n for s in ensure_tuple_rep(sigma, int(spatial_dims))\n ]\n self.truncated = truncated\n self.approx = approx\n for idx, param in enumerate(self.sigma):\n self.register_parameter(f\"kernel_sigma_{idx}\", param)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n x: in shape [Batch, chns, H, W, D].\n \"\"\"\n _kernel = [gaussian_1d(s, truncated=self.truncated, approx=self.approx) for s in self.sigma]\n return separable_filtering(x=x, kernels=_kernel)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_pull_grid_pull.return._GridPull_apply_input_gr": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_pull_grid_pull.return._GridPull_apply_input_gr", "embedding": null, "metadata": {"file_path": "monai/networks/layers/spatial_transforms.py", "file_name": "spatial_transforms.py", "file_type": "text/x-python", "category": "implementation", "start_line": 49, "end_line": 116, "span_ids": ["grid_pull"], "tokens": 795}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def grid_pull(input: torch.Tensor, grid: torch.Tensor, interpolation=\"linear\", bound=\"zero\", extrapolate: bool = True):\n \"\"\"\n Sample an image with respect to a deformation field.\n\n `interpolation` can be an int, a string or an InterpolationType.\n Possible values are::\n\n - 0 or 'nearest' or InterpolationType.nearest\n - 1 or 'linear' or InterpolationType.linear\n - 2 or 'quadratic' or InterpolationType.quadratic\n - 3 or 'cubic' or InterpolationType.cubic\n - 4 or 'fourth' or InterpolationType.fourth\n - 5 or 'fifth' or InterpolationType.fifth\n - 6 or 'sixth' or InterpolationType.sixth\n - 7 or 'seventh' or InterpolationType.seventh\n\n A list of values can be provided, in the order [W, H, D],\n to specify dimension-specific interpolation orders.\n\n `bound` can be an int, a string or a BoundType.\n Possible values are::\n\n - 0 or 'replicate' or 'nearest' or BoundType.replicate\n - 1 or 'dct1' or 'mirror' or BoundType.dct1\n - 2 or 'dct2' or 'reflect' or BoundType.dct2\n - 3 or 'dst1' or 'antimirror' or BoundType.dst1\n - 4 or 'dst2' or 'antireflect' or BoundType.dst2\n - 5 or 'dft' or 'wrap' or BoundType.dft\n - 7 or 'zero' or BoundType.zero\n\n A list of values can be provided, in the order [W, H, D],\n to specify dimension-specific boundary conditions.\n `sliding` is a specific condition than only applies to flow fields\n (with as many channels as dimensions). It cannot be dimension-specific.\n Note that:\n\n - `dft` corresponds to circular padding\n - `dct2` corresponds to Neumann boundary conditions (symmetric)\n - `dst2` corresponds to Dirichlet boundary conditions (antisymmetric)\n\n See Also:\n - https://en.wikipedia.org/wiki/Discrete_cosine_transform\n - https://en.wikipedia.org/wiki/Discrete_sine_transform\n - ``help(monai._C.BoundType)``\n - ``help(monai._C.InterpolationType)``\n\n Args:\n input: Input image. `(B, C, Wi, Hi, Di)`.\n grid: Deformation field. `(B, Wo, Ho, Do, 1|2|3)`.\n interpolation (int or list[int] , optional): Interpolation order.\n Defaults to `'linear'`.\n bound (BoundType, or list[BoundType], optional): Boundary conditions.\n Defaults to `'zero'`.\n extrapolate: Extrapolate out-of-bound data.\n Defaults to `True`.\n\n Returns:\n output (torch.Tensor): Deformed image `(B, C, Wo, Ho, Do)`.\n\n \"\"\"\n # Convert parameters\n bound = [_C.BoundType.__members__[b] if isinstance(b, str) else _C.BoundType(b) for b in ensure_tuple(bound)]\n interpolation = [\n _C.InterpolationType.__members__[i] if isinstance(i, str) else _C.InterpolationType(i)\n for i in ensure_tuple(interpolation)\n ]\n\n return _GridPull.apply(input, grid, interpolation, bound, extrapolate)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_count_grid_count.return._GridCount_apply_grid_sh": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_count_grid_count.return._GridCount_apply_grid_sh", "embedding": null, "metadata": {"file_path": "monai/networks/layers/spatial_transforms.py", "file_name": "spatial_transforms.py", "file_type": "text/x-python", "category": "implementation", "start_line": 240, "end_line": 313, "span_ids": ["grid_count"], "tokens": 822}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def grid_count(grid: torch.Tensor, shape=None, interpolation=\"linear\", bound=\"zero\", extrapolate: bool = True):\n \"\"\"\n Splatting weights with respect to a deformation field (pull adjoint).\n\n This function is equivalent to applying grid_push to an image of ones.\n\n `interpolation` can be an int, a string or an InterpolationType.\n Possible values are::\n\n - 0 or 'nearest' or InterpolationType.nearest\n - 1 or 'linear' or InterpolationType.linear\n - 2 or 'quadratic' or InterpolationType.quadratic\n - 3 or 'cubic' or InterpolationType.cubic\n - 4 or 'fourth' or InterpolationType.fourth\n - 5 or 'fifth' or InterpolationType.fifth\n - 6 or 'sixth' or InterpolationType.sixth\n - 7 or 'seventh' or InterpolationType.seventh\n\n A list of values can be provided, in the order [W, H, D],\n to specify dimension-specific interpolation orders.\n\n `bound` can be an int, a string or a BoundType.\n Possible values are::\n\n - 0 or 'replicate' or 'nearest' or BoundType.replicate\n - 1 or 'dct1' or 'mirror' or BoundType.dct1\n - 2 or 'dct2' or 'reflect' or BoundType.dct2\n - 3 or 'dst1' or 'antimirror' or BoundType.dst1\n - 4 or 'dst2' or 'antireflect' or BoundType.dst2\n - 5 or 'dft' or 'wrap' or BoundType.dft\n - 7 or 'zero' or BoundType.zero\n\n A list of values can be provided, in the order [W, H, D],\n to specify dimension-specific boundary conditions.\n `sliding` is a specific condition than only applies to flow fields\n (with as many channels as dimensions). It cannot be dimension-specific.\n Note that:\n\n - `dft` corresponds to circular padding\n - `dct2` corresponds to Neumann boundary conditions (symmetric)\n - `dst2` corresponds to Dirichlet boundary conditions (antisymmetric)\n\n See Also:\n\n - https://en.wikipedia.org/wiki/Discrete_cosine_transform\n - https://en.wikipedia.org/wiki/Discrete_sine_transform\n - ``help(monai._C.BoundType)``\n - ``help(monai._C.InterpolationType)``\n\n Args:\n grid: Deformation field `(B, Wi, Hi, Di, 2|3)`.\n shape: shape of the source image.\n interpolation (int or list[int] , optional): Interpolation order.\n Defaults to `'linear'`.\n bound (BoundType, or list[BoundType], optional): Boundary conditions.\n Defaults to `'zero'`.\n extrapolate (bool, optional): Extrapolate out-of-bound data.\n Defaults to `True`.\n\n Returns:\n output (torch.Tensor): Splat weights `(B, 1, Wo, Ho, Do)`.\n\n \"\"\"\n # Convert parameters\n bound = [_C.BoundType.__members__[b] if isinstance(b, str) else _C.BoundType(b) for b in ensure_tuple(bound)]\n interpolation = [\n _C.InterpolationType.__members__[i] if isinstance(i, str) else _C.InterpolationType(i)\n for i in ensure_tuple(interpolation)\n ]\n\n if shape is None:\n shape = tuple(grid.shape[2:])\n\n return _GridCount.apply(grid, shape, interpolation, bound, extrapolate)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_grad_grid_grad.return._GridGrad_apply_input_gr": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_grad_grid_grad.return._GridGrad_apply_input_gr", "embedding": null, "metadata": {"file_path": "monai/networks/layers/spatial_transforms.py", "file_name": "spatial_transforms.py", "file_type": "text/x-python", "category": "implementation", "start_line": 340, "end_line": 408, "span_ids": ["grid_grad"], "tokens": 798}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def grid_grad(input: torch.Tensor, grid: torch.Tensor, interpolation=\"linear\", bound=\"zero\", extrapolate: bool = True):\n \"\"\"\n Sample an image with respect to a deformation field.\n\n `interpolation` can be an int, a string or an InterpolationType.\n Possible values are::\n\n - 0 or 'nearest' or InterpolationType.nearest\n - 1 or 'linear' or InterpolationType.linear\n - 2 or 'quadratic' or InterpolationType.quadratic\n - 3 or 'cubic' or InterpolationType.cubic\n - 4 or 'fourth' or InterpolationType.fourth\n - 5 or 'fifth' or InterpolationType.fifth\n - 6 or 'sixth' or InterpolationType.sixth\n - 7 or 'seventh' or InterpolationType.seventh\n\n A list of values can be provided, in the order [W, H, D],\n to specify dimension-specific interpolation orders.\n\n `bound` can be an int, a string or a BoundType.\n Possible values are::\n\n - 0 or 'replicate' or 'nearest' or BoundType.replicate\n - 1 or 'dct1' or 'mirror' or BoundType.dct1\n - 2 or 'dct2' or 'reflect' or BoundType.dct2\n - 3 or 'dst1' or 'antimirror' or BoundType.dst1\n - 4 or 'dst2' or 'antireflect' or BoundType.dst2\n - 5 or 'dft' or 'wrap' or BoundType.dft\n - 7 or 'zero' or BoundType.zero\n\n A list of values can be provided, in the order [W, H, D],\n to specify dimension-specific boundary conditions.\n `sliding` is a specific condition than only applies to flow fields\n (with as many channels as dimensions). It cannot be dimension-specific.\n Note that:\n\n - `dft` corresponds to circular padding\n - `dct2` corresponds to Neumann boundary conditions (symmetric)\n - `dst2` corresponds to Dirichlet boundary conditions (antisymmetric)\n\n See Also:\n\n - https://en.wikipedia.org/wiki/Discrete_cosine_transform\n - https://en.wikipedia.org/wiki/Discrete_sine_transform\n - ``help(monai._C.BoundType)``\n - ``help(monai._C.InterpolationType)``\n\n\n Args:\n input: Input image. `(B, C, Wi, Hi, Di)`.\n grid: Deformation field. `(B, Wo, Ho, Do, 2|3)`.\n interpolation (int or list[int] , optional): Interpolation order.\n Defaults to `'linear'`.\n bound (BoundType, or list[BoundType], optional): Boundary conditions.\n Defaults to `'zero'`.\n extrapolate: Extrapolate out-of-bound data. Defaults to `True`.\n\n Returns:\n output (torch.Tensor): Sampled gradients (B, C, Wo, Ho, Do, 1|2|3).\n\n \"\"\"\n # Convert parameters\n bound = [_C.BoundType.__members__[b] if isinstance(b, str) else _C.BoundType(b) for b in ensure_tuple(bound)]\n interpolation = [\n _C.InterpolationType.__members__[i] if isinstance(i, str) else _C.InterpolationType(i)\n for i in ensure_tuple(interpolation)\n ]\n\n return _GridGrad.apply(input, grid, interpolation, bound, extrapolate)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_AffineTransform_AffineTransform.__init__.self.reverse_indexing.reverse_indexing": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_AffineTransform_AffineTransform.__init__.self.reverse_indexing.reverse_indexing", "embedding": null, "metadata": {"file_path": "monai/networks/layers/spatial_transforms.py", "file_name": "spatial_transforms.py", "file_type": "text/x-python", "category": "implementation", "start_line": 404, "end_line": 454, "span_ids": ["AffineTransform.__init__", "AffineTransform"], "tokens": 698}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AffineTransform(nn.Module):\n def __init__(\n self,\n spatial_size: Optional[Union[Sequence[int], int]] = None,\n normalized: bool = False,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.ZEROS,\n align_corners: bool = False,\n reverse_indexing: bool = True,\n ) -> None:\n \"\"\"\n Apply affine transformations with a batch of affine matrices.\n\n When `normalized=False` and `reverse_indexing=True`,\n it does the commonly used resampling in the 'pull' direction\n following the ``scipy.ndimage.affine_transform`` convention.\n In this case `theta` is equivalent to (ndim+1, ndim+1) input ``matrix`` of ``scipy.ndimage.affine_transform``,\n operates on homogeneous coordinates.\n See also: https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.affine_transform.html\n\n When `normalized=True` and `reverse_indexing=False`,\n it applies `theta` to the normalized coordinates (coords. in the range of [-1, 1]) directly.\n This is often used with `align_corners=False` to achieve resolution-agnostic resampling,\n thus useful as a part of trainable modules such as the spatial transformer networks.\n See also: https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html\n\n Args:\n spatial_size: output spatial shape, the full output shape will be\n `[N, C, *spatial_size]` where N and C are inferred from the `src` input of `self.forward`.\n normalized: indicating whether the provided affine matrix `theta` is defined\n for the normalized coordinates. If `normalized=False`, `theta` will be converted\n to operate on normalized coordinates as pytorch affine_grid works with the normalized\n coordinates.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"zeros\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n align_corners: see also https://pytorch.org/docs/stable/nn.functional.html#grid-sample.\n reverse_indexing: whether to reverse the spatial indexing of image and coordinates.\n set to `False` if `theta` follows pytorch's default \"D, H, W\" convention.\n set to `True` if `theta` follows `scipy.ndimage` default \"i, j, k\" convention.\n \"\"\"\n super().__init__()\n self.spatial_size = ensure_tuple(spatial_size) if spatial_size is not None else None\n self.normalized = normalized\n self.mode: GridSampleMode = GridSampleMode(mode)\n self.padding_mode: GridSamplePadMode = GridSamplePadMode(padding_mode)\n self.align_corners = align_corners\n self.reverse_indexing = reverse_indexing", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.__init___AHNet.__init__.if_pretrained_.self_copy_from_net2d_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.__init___AHNet.__init__.if_pretrained_.self_copy_from_net2d_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 346, "end_line": 451, "span_ids": ["AHNet.__init__"], "tokens": 1372}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AHNet(nn.Module):\n\n def __init__(\n self,\n layers: tuple = (3, 4, 6, 3),\n spatial_dims: int = 3,\n in_channels: int = 1,\n out_channels: int = 1,\n psp_block_num: int = 4,\n upsample_mode: str = \"transpose\",\n pretrained: bool = False,\n progress: bool = True,\n ):\n self.inplanes = 64\n super(AHNet, self).__init__()\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n conv_trans_type = Conv[Conv.CONVTRANS, spatial_dims]\n norm_type = Norm[Norm.BATCH, spatial_dims]\n pool_type: Type[Union[nn.MaxPool2d, nn.MaxPool3d]] = Pool[Pool.MAX, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n conv2d_type: Type[nn.Conv2d] = Conv[Conv.CONV, 2]\n norm2d_type: Type[nn.BatchNorm2d] = Norm[Norm.BATCH, 2]\n\n self.conv2d_type = conv2d_type\n self.norm2d_type = norm2d_type\n self.conv_type = conv_type\n self.norm_type = norm_type\n self.relu_type = relu_type\n self.pool_type = pool_type\n self.spatial_dims = spatial_dims\n self.psp_block_num = psp_block_num\n self.psp = None\n\n if spatial_dims not in [2, 3]:\n raise AssertionError(\"spatial_dims can only be 2 or 3.\")\n if psp_block_num not in [0, 1, 2, 3, 4]:\n raise AssertionError(\"psp_block_num should be an integer that belongs to [0, 4].\")\n\n self.conv1 = conv_type(\n in_channels,\n 64,\n kernel_size=(7, 7, 3)[-spatial_dims:],\n stride=(2, 2, 1)[-spatial_dims:],\n padding=(3, 3, 1)[-spatial_dims:],\n bias=False,\n )\n self.pool1 = pool_type(kernel_size=(1, 1, 2)[-spatial_dims:], stride=(1, 1, 2)[-spatial_dims:])\n self.bn0 = norm_type(64)\n self.relu = relu_type(inplace=True)\n if upsample_mode in [\"transpose\", \"nearest\"]:\n # To maintain the determinism, the value of kernel_size and stride should be the same.\n # (you can check this link for reference: https://github.com/Project-MONAI/MONAI/pull/815 )\n self.maxpool = pool_type(kernel_size=(2, 2, 2)[-spatial_dims:], stride=2)\n else:\n self.maxpool = pool_type(kernel_size=(3, 3, 3)[-spatial_dims:], stride=2, padding=1)\n\n self.layer1 = self._make_layer(Bottleneck3x3x1, 64, layers[0], stride=1)\n self.layer2 = self._make_layer(Bottleneck3x3x1, 128, layers[1], stride=2)\n self.layer3 = self._make_layer(Bottleneck3x3x1, 256, layers[2], stride=2)\n self.layer4 = self._make_layer(Bottleneck3x3x1, 512, layers[3], stride=2)\n\n # Make the 3D dense decoder layers\n densegrowth = 20\n densebn = 4\n ndenselayer = 3\n\n num_init_features = 64\n noutres1 = 256\n noutres2 = 512\n noutres3 = 1024\n noutres4 = 2048\n\n self.up0 = UpTransition(spatial_dims, noutres4, noutres3, upsample_mode)\n self.dense0 = DenseBlock(spatial_dims, ndenselayer, noutres3, densebn, densegrowth, 0.0)\n noutdense = noutres3 + ndenselayer * densegrowth\n\n self.up1 = UpTransition(spatial_dims, noutdense, noutres2, upsample_mode)\n self.dense1 = DenseBlock(spatial_dims, ndenselayer, noutres2, densebn, densegrowth, 0.0)\n noutdense1 = noutres2 + ndenselayer * densegrowth\n\n self.up2 = UpTransition(spatial_dims, noutdense1, noutres1, upsample_mode)\n self.dense2 = DenseBlock(spatial_dims, ndenselayer, noutres1, densebn, densegrowth, 0.0)\n noutdense2 = noutres1 + ndenselayer * densegrowth\n\n self.trans1 = Projection(spatial_dims, noutdense2, num_init_features)\n self.dense3 = DenseBlock(spatial_dims, ndenselayer, num_init_features, densebn, densegrowth, 0.0)\n noutdense3 = num_init_features + densegrowth * ndenselayer\n\n self.up3 = UpTransition(spatial_dims, noutdense3, num_init_features, upsample_mode)\n self.dense4 = DenseBlock(spatial_dims, ndenselayer, num_init_features, densebn, densegrowth, 0.0)\n noutdense4 = num_init_features + densegrowth * ndenselayer\n\n self.psp = PSP(spatial_dims, psp_block_num, noutdense4, upsample_mode)\n self.final = Final(spatial_dims, psp_block_num + noutdense4, out_channels, upsample_mode)\n\n # Initialise parameters\n for m in self.modules():\n if isinstance(m, (conv_type, conv_trans_type)):\n n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels\n m.weight.data.normal_(0, math.sqrt(2.0 / n))\n elif isinstance(m, norm_type):\n m.weight.data.fill_(1)\n m.bias.data.zero_()\n\n if pretrained:\n net2d = FCN(pretrained=True, progress=progress)\n self.copy_from(net2d)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_module_list_DynUNet.get_module_list.return.nn_ModuleList_layers_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_module_list_DynUNet.get_module_list.return.nn_ModuleList_layers_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/dynunet.py", "file_name": "dynunet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 170, "end_line": 207, "span_ids": ["DynUNet.get_module_list"], "tokens": 313}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DynUNet(nn.Module):\n\n def get_module_list(\n self,\n in_channels: List[int],\n out_channels: List[int],\n kernel_size: Sequence[Union[Sequence[int], int]],\n strides: Sequence[Union[Sequence[int], int]],\n conv_block: nn.Module,\n upsample_kernel_size: Optional[Sequence[Union[Sequence[int], int]]] = None,\n ):\n layers = []\n if upsample_kernel_size is not None:\n for in_c, out_c, kernel, stride, up_kernel in zip(\n in_channels, out_channels, kernel_size, strides, upsample_kernel_size\n ):\n params = {\n \"spatial_dims\": self.spatial_dims,\n \"in_channels\": in_c,\n \"out_channels\": out_c,\n \"kernel_size\": kernel,\n \"stride\": stride,\n \"norm_name\": self.norm_name,\n \"upsample_kernel_size\": up_kernel,\n }\n layer = conv_block(**params)\n layers.append(layer)\n else:\n for in_c, out_c, kernel, stride in zip(in_channels, out_channels, kernel_size, strides):\n params = {\n \"spatial_dims\": self.spatial_dims,\n \"in_channels\": in_c,\n \"out_channels\": out_c,\n \"kernel_size\": kernel,\n \"stride\": stride,\n \"norm_name\": self.norm_name,\n }\n layer = conv_block(**params)\n layers.append(layer)\n return nn.ModuleList(layers)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_deep_supervision_heads_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_deep_supervision_heads_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/dynunet.py", "file_name": "dynunet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 290, "end_line": 302, "span_ids": ["DynUNet.get_deep_supervision_heads", "DynUNet.initialize_weights", "impl:3"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DynUNet(nn.Module):\n\n def get_deep_supervision_heads(self):\n return nn.ModuleList([self.get_output_block(i + 1) for i in range(len(self.upsamples) - 1)])\n\n @staticmethod\n def initialize_weights(module):\n if isinstance(module, (nn.Conv3d, nn.Conv2d, nn.ConvTranspose3d, nn.ConvTranspose2d)):\n module.weight = nn.init.kaiming_normal_(module.weight, a=0.01)\n if module.bias is not None:\n module.bias = nn.init.constant_(module.bias, 0)\n\n\nDynUnet = Dynunet = dynunet = DynUNet", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_from_typing_import_Callab_Novograd.__setstate__.for_group_in_self_param_g.group_setdefault_amsgrad": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_from_typing_import_Callab_Novograd.__setstate__.for_group_in_self_param_g.group_setdefault_amsgrad", "embedding": null, "metadata": {"file_path": "monai/optimizers/novograd.py", "file_name": "novograd.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 71, "span_ids": ["Novograd", "Novograd.__setstate__", "Novograd.__init__", "docstring"], "tokens": 644}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Callable, Iterable, Optional, Tuple\n\nimport torch\nfrom torch.optim import Optimizer\n\n\nclass Novograd(Optimizer):\n \"\"\"\n Novograd based on `Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks\n `_.\n The code is adapted from the implementations in `Jasper for PyTorch\n `_,\n and `OpenSeq2Seq `_.\n\n Args:\n params: iterable of parameters to optimize or dicts defining parameter groups.\n lr: learning rate. Defaults to 1e-3.\n betas: coefficients used for computing running averages of gradient and its square. Defaults to (0.9, 0.98).\n eps: term added to the denominator to improve numerical stability. Defaults to 1e-8.\n weight_decay: weight decay (L2 penalty). Defaults to 0.\n grad_averaging: gradient averaging. Defaults to ``False``.\n amsgrad: whether to use the AMSGrad variant of this algorithm from the paper\n `On the Convergence of Adam and Beyond `_. Defaults to ``False``.\n \"\"\"\n\n def __init__(\n self,\n params: Iterable,\n lr: float = 1e-3,\n betas: Tuple[float, float] = (0.9, 0.98),\n eps: float = 1e-8,\n weight_decay: float = 0,\n grad_averaging: bool = False,\n amsgrad: bool = False,\n ):\n if 0.0 > lr:\n raise ValueError(\"Invalid learning rate: {}\".format(lr))\n if 0.0 > eps:\n raise ValueError(\"Invalid epsilon value: {}\".format(eps))\n if not 0.0 <= betas[0] < 1.0:\n raise ValueError(\"Invalid beta parameter at index 0: {}\".format(betas[0]))\n if not 0.0 <= betas[1] < 1.0:\n raise ValueError(\"Invalid beta parameter at index 1: {}\".format(betas[1]))\n if 0.0 > weight_decay:\n raise ValueError(\"Invalid weight_decay value: {}\".format(weight_decay))\n defaults = dict(\n lr=lr,\n betas=betas,\n eps=eps,\n weight_decay=weight_decay,\n grad_averaging=grad_averaging,\n amsgrad=amsgrad,\n )\n\n super(Novograd, self).__init__(params, defaults)\n\n def __setstate__(self, state):\n super(Novograd, self).__setstate__(state)\n for group in self.param_groups:\n group.setdefault(\"amsgrad\", False)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_Novograd.step_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_Novograd.step_", "embedding": null, "metadata": {"file_path": "monai/optimizers/novograd.py", "file_name": "novograd.py", "file_type": "text/x-python", "category": "implementation", "start_line": 73, "end_line": 137, "span_ids": ["Novograd.step"], "tokens": 542}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Novograd(Optimizer):\n\n def step(self, closure: Optional[Callable] = None):\n \"\"\"Performs a single optimization step.\n\n Arguments:\n closure: A closure that reevaluates the model and returns the loss. Defaults to ``None``.\n \"\"\"\n loss = None\n if closure is not None:\n loss = closure()\n\n for group in self.param_groups:\n for p in group[\"params\"]:\n if p.grad is None:\n continue\n grad = p.grad.data\n if grad.is_sparse:\n raise RuntimeError(\"Sparse gradients are not supported.\")\n amsgrad = group[\"amsgrad\"]\n\n state = self.state[p]\n\n # State initialization\n if len(state) == 0:\n state[\"step\"] = 0\n # Exponential moving average of gradient values\n state[\"exp_avg\"] = torch.zeros_like(p.data)\n # Exponential moving average of squared gradient values\n state[\"exp_avg_sq\"] = torch.zeros([]).to(state[\"exp_avg\"].device)\n if amsgrad:\n # Maintains max of all exp. moving avg. of sq. grad. values\n state[\"max_exp_avg_sq\"] = torch.zeros([]).to(state[\"exp_avg\"].device)\n\n exp_avg, exp_avg_sq = state[\"exp_avg\"], state[\"exp_avg_sq\"]\n if amsgrad:\n max_exp_avg_sq = state[\"max_exp_avg_sq\"]\n beta1, beta2 = group[\"betas\"]\n\n state[\"step\"] += 1\n\n norm = torch.sum(torch.pow(grad, 2))\n\n if exp_avg_sq == 0:\n exp_avg_sq.copy_(norm)\n else:\n exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2)\n\n if amsgrad:\n # Maintains the maximum of all 2nd moment running avg. till now\n torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)\n # Use the max. for normalizing running avg. of gradient\n denom = max_exp_avg_sq.sqrt().add_(group[\"eps\"])\n else:\n denom = exp_avg_sq.sqrt().add_(group[\"eps\"])\n\n grad.div_(denom)\n if group[\"weight_decay\"] != 0:\n grad.add_(p.data, alpha=group[\"weight_decay\"])\n if group[\"grad_averaging\"]:\n grad.mul_(1 - beta1)\n exp_avg.mul_(beta1).add_(grad)\n\n p.data.add_(exp_avg, alpha=-group[\"lr\"])\n\n return loss", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel_RandCropByPosNegLabel._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel_RandCropByPosNegLabel._", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 658, "end_line": 706, "span_ids": ["RandCropByPosNegLabel"], "tokens": 838}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabel(Randomizable, Transform):\n \"\"\"\n Crop random fixed sized regions with the center being a foreground or background voxel\n based on the Pos Neg Ratio.\n And will return a list of arrays for all the cropped images.\n For example, crop two (3 x 3) arrays from (5 x 5) array with pos/neg=1::\n\n [[[0, 0, 0, 0, 0],\n [0, 1, 2, 1, 0], [[0, 1, 2], [[2, 1, 0],\n [0, 1, 3, 0, 0], --> [0, 1, 3], [3, 0, 0],\n [0, 0, 0, 0, 0], [0, 0, 0]] [0, 0, 0]]\n [0, 0, 0, 0, 0]]]\n\n If a dimension of the expected spatial size is bigger than the input image size,\n will not crop that dimension. So the cropped result may be smaller than expected size, and the cropped\n results of several images may not have exactly same shape.\n\n Args:\n spatial_size: the spatial size of the crop region e.g. [224, 224, 128].\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n if its components have non-positive values, the corresponding size of `label` will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `spatial_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n label: the label image that is used for finding foreground/background, if None, must set at\n `self.__call__`. Non-zero indicates foreground, zero indicates background.\n pos: used with `neg` together to calculate the ratio ``pos / (pos + neg)`` for the probability\n to pick a foreground voxel as a center rather than a background voxel.\n neg: used with `pos` together to calculate the ratio ``pos / (pos + neg)`` for the probability\n to pick a foreground voxel as a center rather than a background voxel.\n num_samples: number of samples (crop regions) to take in each list.\n image: optional image data to help select valid area, can be same as `img` or another image array.\n if not None, use ``label == 0 & image > image_threshold`` to select the negative\n sample (background) center. So the crop center will only come from the valid image areas.\n image_threshold: if enabled `image`, use ``image > image_threshold`` to determine\n the valid image content areas.\n fg_indices: if provided pre-computed foreground indices of `label`, will ignore above `image` and\n `image_threshold`, and randomly select crop centers based on them, need to provide `fg_indices`\n and `bg_indices` together, expect to be 1 dim array of spatial indices after flattening.\n a typical usage is to call `FgBgToIndices` transform first and cache the results.\n bg_indices: if provided pre-computed background indices of `label`, will ignore above `image` and\n `image_threshold`, and randomly select crop centers based on them, need to provide `fg_indices`\n and `bg_indices` together, expect to be 1 dim array of spatial indices after flattening.\n a typical usage is to call `FgBgToIndices` transform first and cache the results.\n\n Raises:\n ValueError: When ``pos`` or ``neg`` are negative.\n ValueError: When ``pos=0`` and ``neg=0``. Incompatible values.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.__init___RandCropByPosNegLabel.__init__.self.bg_indices.bg_indices": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.__init___RandCropByPosNegLabel.__init__.self.bg_indices.bg_indices", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 708, "end_line": 732, "span_ids": ["RandCropByPosNegLabel.__init__"], "tokens": 260}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabel(Randomizable, Transform):\n\n def __init__(\n self,\n spatial_size: Union[Sequence[int], int],\n label: Optional[np.ndarray] = None,\n pos: float = 1.0,\n neg: float = 1.0,\n num_samples: int = 1,\n image: Optional[np.ndarray] = None,\n image_threshold: float = 0.0,\n fg_indices: Optional[np.ndarray] = None,\n bg_indices: Optional[np.ndarray] = None,\n ) -> None:\n self.spatial_size = ensure_tuple(spatial_size)\n self.label = label\n if pos < 0 or neg < 0:\n raise ValueError(f\"pos and neg must be nonnegative, got pos={pos} neg={neg}.\")\n if pos + neg == 0:\n raise ValueError(\"Incompatible values: pos=0 and neg=0.\")\n self.pos_ratio = pos / (pos + neg)\n self.num_samples = num_samples\n self.image = image\n self.image_threshold = image_threshold\n self.centers: Optional[List[List[np.ndarray]]] = None\n self.fg_indices = fg_indices\n self.bg_indices = bg_indices", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.randomize_RandCropByPosNegLabel.randomize.self.centers.generate_pos_neg_label_cr": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.randomize_RandCropByPosNegLabel.randomize.self.centers.generate_pos_neg_label_cr", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 734, "end_line": 749, "span_ids": ["RandCropByPosNegLabel.randomize"], "tokens": 173}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabel(Randomizable, Transform):\n\n def randomize(\n self,\n label: np.ndarray,\n fg_indices: Optional[np.ndarray] = None,\n bg_indices: Optional[np.ndarray] = None,\n image: Optional[np.ndarray] = None,\n ) -> None:\n self.spatial_size = fall_back_tuple(self.spatial_size, default=label.shape[1:])\n if fg_indices is None or bg_indices is None:\n fg_indices_, bg_indices_ = map_binary_to_indices(label, image, self.image_threshold)\n else:\n fg_indices_ = fg_indices\n bg_indices_ = bg_indices\n self.centers = generate_pos_neg_label_crop_centers(\n self.spatial_size, self.num_samples, self.pos_ratio, label.shape[1:], fg_indices_, bg_indices_, self.R\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.__call___RandCropByPosNegLabel.__call__.return.results": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.__call___RandCropByPosNegLabel.__call__.return.results", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 751, "end_line": 792, "span_ids": ["RandCropByPosNegLabel.__call__"], "tokens": 443}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabel(Randomizable, Transform):\n\n def __call__(\n self,\n img: np.ndarray,\n label: Optional[np.ndarray] = None,\n image: Optional[np.ndarray] = None,\n fg_indices: Optional[np.ndarray] = None,\n bg_indices: Optional[np.ndarray] = None,\n ) -> List[np.ndarray]:\n \"\"\"\n Args:\n img: input data to crop samples from based on the pos/neg ratio of `label` and `image`.\n Assumes `img` is a channel-first array.\n label: the label image that is used for finding foreground/background, if None, use `self.label`.\n image: optional image data to help select valid area, can be same as `img` or another image array.\n use ``label == 0 & image > image_threshold`` to select the negative sample(background) center.\n so the crop center will only exist on valid image area. if None, use `self.image`.\n fg_indices: foreground indices to randomly select crop centers,\n need to provide `fg_indices` and `bg_indices` together.\n bg_indices: background indices to randomly select crop centers,\n need to provide `fg_indices` and `bg_indices` together.\n\n \"\"\"\n if label is None:\n label = self.label\n if label is None:\n raise ValueError(\"label should be provided.\")\n if image is None:\n image = self.image\n if fg_indices is None or bg_indices is None:\n if self.fg_indices is not None and self.bg_indices is not None:\n fg_indices = self.fg_indices\n bg_indices = self.bg_indices\n else:\n fg_indices, bg_indices = map_binary_to_indices(label, image, self.image_threshold)\n self.randomize(label, fg_indices, bg_indices, image)\n results: List[np.ndarray] = []\n if self.centers is not None:\n for center in self.centers:\n cropper = SpatialCrop(roi_center=tuple(center), roi_size=self.spatial_size) # type: ignore\n results.append(cropper(img))\n\n return results", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_ResizeWithPadOrCrop_ResizeWithPadOrCrop.__init__.self.cropper.CenterSpatialCrop_roi_siz": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_ResizeWithPadOrCrop_ResizeWithPadOrCrop.__init__.self.cropper.CenterSpatialCrop_roi_siz", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 629, "end_line": 652, "span_ids": ["ResizeWithPadOrCrop", "ResizeWithPadOrCrop.__init__"], "tokens": 298}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ResizeWithPadOrCrop(Transform):\n \"\"\"\n Resize an image to a target spatial size by either centrally cropping the image or\n padding it evenly with a user-specified mode.\n When the dimension is smaller than the target size, do symmetric padding along that dim.\n When the dimension is larger than the target size, do central cropping along that dim.\n\n Args:\n spatial_size: the spatial size of output data after padding or crop.\n If has non-positive values, the corresponding size of input image will be used (no padding).\n mode: {``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``, ``\"mean\"``,\n ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n One of the listed string values or a user supplied function for padding. Defaults to ``\"constant\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n\n \"\"\"\n\n def __init__(\n self,\n spatial_size: Union[Sequence[int], int],\n mode: Union[NumpyPadMode, str] = NumpyPadMode.CONSTANT,\n ):\n self.padder = SpatialPad(spatial_size=spatial_size, mode=mode)\n self.cropper = CenterSpatialCrop(roi_size=spatial_size)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld_RandCropByPosNegLabeld._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld_RandCropByPosNegLabeld._", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 968, "end_line": 1022, "span_ids": ["RandCropByPosNegLabeld"], "tokens": 901}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabeld(Randomizable, MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandCropByPosNegLabel`.\n Crop random fixed sized regions with the center being a foreground or background voxel\n based on the Pos Neg Ratio.\n Suppose all the expected fields specified by `keys` have same shape,\n and add `patch_index` to the corresponding meta data.\n And will return a list of dictionaries for all the cropped images.\n\n If a dimension of the expected spatial size is bigger than the input image size,\n will not crop that dimension. So the cropped result may be smaller than the expected size,\n and the cropped results of several images may not have exactly the same shape.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n label_key: name of key for label image, this will be used for finding foreground/background.\n spatial_size: the spatial size of the crop region e.g. [224, 224, 128].\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n if its components have non-positive values, the corresponding size of `data[label_key]` will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `spatial_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n pos: used with `neg` together to calculate the ratio ``pos / (pos + neg)`` for the probability\n to pick a foreground voxel as a center rather than a background voxel.\n neg: used with `pos` together to calculate the ratio ``pos / (pos + neg)`` for the probability\n to pick a foreground voxel as a center rather than a background voxel.\n num_samples: number of samples (crop regions) to take in each list.\n image_key: if image_key is not None, use ``label == 0 & image > image_threshold`` to select\n the negative sample(background) center. so the crop center will only exist on valid image area.\n image_threshold: if enabled image_key, use ``image > image_threshold`` to determine\n the valid image content area.\n fg_indices_key: if provided pre-computed foreground indices of `label`, will ignore above `image_key` and\n `image_threshold`, and randomly select crop centers based on them, need to provide `fg_indices_key`\n and `bg_indices_key` together, expect to be 1 dim array of spatial indices after flattening.\n a typical usage is to call `FgBgToIndicesd` transform first and cache the results.\n bg_indices_key: if provided pre-computed background indices of `label`, will ignore above `image_key` and\n `image_threshold`, and randomly select crop centers based on them, need to provide `fg_indices_key`\n and `bg_indices_key` together, expect to be 1 dim array of spatial indices after flattening.\n a typical usage is to call `FgBgToIndicesd` transform first and cache the results.\n meta_keys: explicitly indicate the key of the corresponding meta data dictionary.\n used to add `patch_index` to the meta dict.\n for example, for data with key `image`, the metadata by default is in `image_meta_dict`.\n the meta data is a dictionary object which contains: filename, original_shape, etc.\n it can be a sequence of string, map to the `keys`.\n if None, will try to construct meta_keys by `key_{meta_key_postfix}`.\n meta_key_postfix: if meta_keys is None, use `key_{postfix}` to to fetch the meta data according\n to the key data, default is `meta_dict`, the meta data is a dictionary object.\n used to add `patch_index` to the meta dict.\n allow_missing_keys: don't raise exception if key is missing.\n\n Raises:\n ValueError: When ``pos`` or ``neg`` are negative.\n ValueError: When ``pos=0`` and ``neg=0``. Incompatible values.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.__init___RandCropByPosNegLabeld.__init__.self.centers.None": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.__init___RandCropByPosNegLabeld.__init__.self.centers.None", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1024, "end_line": 1057, "span_ids": ["RandCropByPosNegLabeld.__init__"], "tokens": 404}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabeld(Randomizable, MapTransform, InvertibleTransform):\n\n def __init__(\n self,\n keys: KeysCollection,\n label_key: str,\n spatial_size: Union[Sequence[int], int],\n pos: float = 1.0,\n neg: float = 1.0,\n num_samples: int = 1,\n image_key: Optional[str] = None,\n image_threshold: float = 0.0,\n fg_indices_key: Optional[str] = None,\n bg_indices_key: Optional[str] = None,\n meta_keys: Optional[KeysCollection] = None,\n meta_key_postfix: str = \"meta_dict\",\n allow_missing_keys: bool = False,\n ) -> None:\n MapTransform.__init__(self, keys, allow_missing_keys)\n self.label_key = label_key\n self.spatial_size: Union[Tuple[int, ...], Sequence[int], int] = spatial_size\n if pos < 0 or neg < 0:\n raise ValueError(f\"pos and neg must be nonnegative, got pos={pos} neg={neg}.\")\n if pos + neg == 0:\n raise ValueError(\"Incompatible values: pos=0 and neg=0.\")\n self.pos_ratio = pos / (pos + neg)\n self.num_samples = num_samples\n self.image_key = image_key\n self.image_threshold = image_threshold\n self.fg_indices_key = fg_indices_key\n self.bg_indices_key = bg_indices_key\n self.meta_keys = ensure_tuple_rep(None, len(self.keys)) if meta_keys is None else ensure_tuple(meta_keys)\n if len(self.keys) != len(self.meta_keys):\n raise ValueError(\"meta_keys should have the same length as keys.\")\n self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys))\n self.centers: Optional[List[List[np.ndarray]]] = None", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.randomize_RandCropByPosNegLabeld.randomize.self.centers.generate_pos_neg_label_cr": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.randomize_RandCropByPosNegLabeld.randomize.self.centers.generate_pos_neg_label_cr", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1059, "end_line": 1074, "span_ids": ["RandCropByPosNegLabeld.randomize"], "tokens": 180}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabeld(Randomizable, MapTransform, InvertibleTransform):\n\n def randomize(\n self,\n label: np.ndarray,\n fg_indices: Optional[np.ndarray] = None,\n bg_indices: Optional[np.ndarray] = None,\n image: Optional[np.ndarray] = None,\n ) -> None:\n self.spatial_size = fall_back_tuple(self.spatial_size, default=label.shape[1:])\n if fg_indices is None or bg_indices is None:\n fg_indices_, bg_indices_ = map_binary_to_indices(label, image, self.image_threshold)\n else:\n fg_indices_ = fg_indices\n bg_indices_ = bg_indices\n self.centers = generate_pos_neg_label_crop_centers(\n self.spatial_size, self.num_samples, self.pos_ratio, label.shape[1:], fg_indices_, bg_indices_, self.R\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_NormalizeIntensity._normalize_NormalizeIntensity._normalize.return.img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_NormalizeIntensity._normalize_NormalizeIntensity._normalize.return.img", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 438, "end_line": 455, "span_ids": ["NormalizeIntensity._normalize"], "tokens": 197}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NormalizeIntensity(Transform):\n\n def _normalize(self, img: np.ndarray, sub=None, div=None) -> np.ndarray:\n slices = (img != 0) if self.nonzero else np.ones(img.shape, dtype=bool)\n if not np.any(slices):\n return img\n\n _sub = sub if sub is not None else np.mean(img[slices])\n if isinstance(_sub, np.ndarray):\n _sub = _sub[slices]\n\n _div = div if div is not None else np.std(img[slices])\n if np.isscalar(_div):\n if _div == 0.0:\n _div = 1.0\n elif isinstance(_div, np.ndarray):\n _div = _div[slices]\n _div[_div == 0.0] = 1.0\n img[slices] = (img[slices] - _sub) / _div\n return img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSharpen_GaussianSharpen.__init__.self.approx.approx": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSharpen_GaussianSharpen.__init__.self.approx.approx", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 576, "end_line": 613, "span_ids": ["GaussianSharpen", "GaussianSharpen.__init__"], "tokens": 408}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianSharpen(Transform):\n \"\"\"\n Sharpen images using the Gaussian Blur filter.\n Referring to: http://scipy-lectures.org/advanced/image_processing/auto_examples/plot_sharpen.html.\n The algorithm is shown as below\n\n .. code-block:: python\n\n blurred_f = gaussian_filter(img, sigma1)\n filter_blurred_f = gaussian_filter(blurred_f, sigma2)\n img = blurred_f + alpha * (blurred_f - filter_blurred_f)\n\n A set of default values `sigma1=3.0`, `sigma2=1.0` and `alpha=30.0` is provide for reference.\n\n Args:\n sigma1: sigma parameter for the first gaussian kernel. if a list of values, must match the count\n of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension.\n if only 1 value provided, use it for all spatial dimensions.\n sigma2: sigma parameter for the second gaussian kernel. if a list of values, must match the count\n of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension.\n if only 1 value provided, use it for all spatial dimensions.\n alpha: weight parameter to compute the final result.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n see also :py:meth:`monai.networks.layers.GaussianFilter`.\n\n \"\"\"\n\n def __init__(\n self,\n sigma1: Union[Sequence[float], float] = 3.0,\n sigma2: Union[Sequence[float], float] = 1.0,\n alpha: float = 30.0,\n approx: str = \"erf\",\n ) -> None:\n self.sigma1 = sigma1\n self.sigma2 = sigma2\n self.alpha = alpha\n self.approx = approx", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.__call___RandGaussianSharpen.__call__.return.GaussianSharpen_sigma1_si": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.__call___RandGaussianSharpen.__call__.return.GaussianSharpen_sigma1_si", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1003, "end_line": 1009, "span_ids": ["RandGaussianSharpen.__call__"], "tokens": 125}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandGaussianSharpen(RandomizableTransform):\n\n def __call__(self, img: np.ndarray):\n self.randomize()\n if not self._do_transform:\n return img\n sigma1 = ensure_tuple_size(tup=(self.x1, self.y1, self.z1), dim=img.ndim - 1)\n sigma2 = ensure_tuple_size(tup=(self.x2, self.y2, self.z2), dim=img.ndim - 1)\n return GaussianSharpen(sigma1=sigma1, sigma2=sigma2, alpha=self.a, approx=self.approx)(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandHistogramShift.randomize_RandHistogramShift.randomize.for_i_in_range_1_num_con.self_floating_control_poi": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandHistogramShift.randomize_RandHistogramShift.randomize.for_i_in_range_1_num_con.self_floating_control_poi", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1037, "end_line": 1045, "span_ids": ["RandHistogramShift.randomize"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandHistogramShift(RandomizableTransform):\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n num_control_point = self.R.randint(self.num_control_points[0], self.num_control_points[1] + 1)\n self.reference_control_points = np.linspace(0, 1, num_control_point)\n self.floating_control_points = np.copy(self.reference_control_points)\n for i in range(1, num_control_point - 1):\n self.floating_control_points[i] = self.R.uniform(\n self.floating_control_points[i - 1], self.floating_control_points[i + 1]\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandHistogramShiftd.randomize_RandHistogramShiftd.randomize.for_i_in_range_1_num_con.self_floating_control_poi": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandHistogramShiftd.randomize_RandHistogramShiftd.randomize.for_i_in_range_1_num_con.self_floating_control_poi", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 936, "end_line": 944, "span_ids": ["RandHistogramShiftd.randomize"], "tokens": 146}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandHistogramShiftd(RandomizableTransform, MapTransform):\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n num_control_point = self.R.randint(self.num_control_points[0], self.num_control_points[1] + 1)\n self.reference_control_points = np.linspace(0, 1, num_control_point)\n self.floating_control_points = np.copy(self.reference_control_points)\n for i in range(1, num_control_point - 1):\n self.floating_control_points[i] = self.R.uniform(\n self.floating_control_points[i - 1], self.floating_control_points[i + 1]\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandHistogramShiftd.__call___RandHistogramShiftd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandHistogramShiftd.__call___RandHistogramShiftd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 946, "end_line": 957, "span_ids": ["RandHistogramShiftd.__call__"], "tokens": 168}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandHistogramShiftd(RandomizableTransform, MapTransform):\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n self.randomize()\n if not self._do_transform:\n return d\n for key in self.key_iterator(d):\n img_min, img_max = d[key].min(), d[key].max()\n reference_control_points_scaled = self.reference_control_points * (img_max - img_min) + img_min\n floating_control_points_scaled = self.floating_control_points * (img_max - img_min) + img_min\n dtype = d[key].dtype\n d[key] = np.interp(d[key], reference_control_points_scaled, floating_control_points_scaled).astype(dtype)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_LoadImage.__call___LoadImage.__call__.return.img_array_meta_data": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_LoadImage.__call___LoadImage.__call__.return.img_array_meta_data", "embedding": null, "metadata": {"file_path": "monai/transforms/io/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 136, "end_line": 173, "span_ids": ["LoadImage.__call__"], "tokens": 329}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LoadImage(Transform):\n\n def __call__(\n self,\n filename: Union[Sequence[str], str],\n reader: Optional[ImageReader] = None,\n ):\n \"\"\"\n Args:\n filename: path file or file-like object or a list of files.\n will save the filename to meta_data with key `filename_or_obj`.\n if provided a list of files, use the filename of first file.\n reader: runtime reader to load image file and meta data.\n\n \"\"\"\n if reader is None or not reader.verify_suffix(filename):\n for r in reversed(self.readers):\n if r.verify_suffix(filename):\n reader = r\n break\n\n if reader is None:\n raise RuntimeError(\n f\"can not find suitable reader for this file: {filename}. \\\n Please install dependency libraries: (nii, nii.gz) -> Nibabel, (png, jpg, bmp) -> PIL, \\\n (npz, npy) -> Numpy, others -> ITK. Refer to the installation instruction: \\\n https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies.\"\n )\n\n img = reader.read(filename)\n img_array, meta_data = reader.get_data(img)\n img_array = img_array.astype(self.dtype)\n\n if self.image_only:\n return img_array\n meta_data[Key.FILENAME_OR_OBJ] = ensure_tuple(filename)[0]\n # make sure all elements in metadata are little endian\n meta_data = switch_endianness(meta_data, \"<\")\n\n return img_array, meta_data", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_LoadImaged.__call___LoadImaged.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_LoadImaged.__call___LoadImaged.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/io/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 105, "end_line": 128, "span_ids": ["LoadImaged.__call__"], "tokens": 264}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LoadImaged(MapTransform):\n\n def __call__(self, data, reader: Optional[ImageReader] = None):\n \"\"\"\n Raises:\n KeyError: When not ``self.overwriting`` and key already exists in ``data``.\n\n \"\"\"\n d = dict(data)\n for key, meta_key, meta_key_postfix in self.key_iterator(d, self.meta_keys, self.meta_key_postfix):\n data = self._loader(d[key], reader)\n if self._loader.image_only:\n if not isinstance(data, np.ndarray):\n raise ValueError(\"loader must return a numpy array (because image_only=True was used).\")\n d[key] = data\n else:\n if not isinstance(data, (tuple, list)):\n raise ValueError(\"loader must return a tuple or list (because image_only=False was used).\")\n d[key] = data[0]\n if not isinstance(data[1], dict):\n raise ValueError(\"metadata must be a dict.\")\n meta_key = meta_key or f\"{key}_{meta_key_postfix}\"\n if meta_key in d and not self.overwriting:\n raise KeyError(f\"Meta data with key {meta_key} already exists and overwriting=False.\")\n d[meta_key] = data[1]\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_LabelToMask.__call___LabelToMask.__call__.return.np_any_data_axis_0_keep": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_LabelToMask.__call___LabelToMask.__call__.return.np_any_data_axis_0_keep", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 579, "end_line": 600, "span_ids": ["LabelToMask.__call__"], "tokens": 239}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LabelToMask(Transform):\n\n def __call__(\n self, img: np.ndarray, select_labels: Optional[Union[Sequence[int], int]] = None, merge_channels: bool = False\n ):\n \"\"\"\n Args:\n select_labels: labels to generate mask from. for 1 channel label, the `select_labels`\n is the expected label values, like: [1, 2, 3]. for One-Hot format label, the\n `select_labels` is the expected channel indices.\n merge_channels: whether to use `np.any()` to merge the result on channel dim. if yes,\n will return a single channel mask with binary data.\n \"\"\"\n if select_labels is None:\n select_labels = self.select_labels\n else:\n select_labels = ensure_tuple(select_labels)\n\n if img.shape[0] > 1:\n data = img[[*select_labels]]\n else:\n data = np.where(np.in1d(img, select_labels), True, False).reshape(img.shape)\n\n return np.any(data, axis=0, keepdims=True) if (merge_channels or self.merge_channels) else data", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_FgBgToIndices_FgBgToIndices.__init__.self.output_shape.output_shape": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_FgBgToIndices_FgBgToIndices.__init__.self.output_shape.output_shape", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 459, "end_line": 475, "span_ids": ["FgBgToIndices", "FgBgToIndices.__init__"], "tokens": 201}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class FgBgToIndices(Transform):\n def __init__(self, image_threshold: float = 0.0, output_shape: Optional[Sequence[int]] = None) -> None:\n \"\"\"\n Compute foreground and background of the input label data, return the indices.\n If no output_shape specified, output data will be 1 dim indices after flattening.\n This transform can help pre-compute foreground and background regions for other transforms.\n A typical usage is to randomly select foreground and background to crop.\n The main logic is based on :py:class:`monai.transforms.utils.map_binary_to_indices`.\n\n Args:\n image_threshold: if enabled `image` at runtime, use ``image > image_threshold`` to\n determine the valid image content area and select background only in this area.\n output_shape: expected shape of output indices. if not None, unravel indices to specified shape.\n\n \"\"\"\n self.image_threshold = image_threshold\n self.output_shape = output_shape", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_FgBgToIndicesd_FgBgToIndicesd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_FgBgToIndicesd_FgBgToIndicesd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 806, "end_line": 848, "span_ids": ["FgBgToIndicesd", "FgBgToIndicesd.__init__", "FgBgToIndicesd.__call__"], "tokens": 492}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class FgBgToIndicesd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.FgBgToIndices`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n fg_postfix: postfix to save the computed foreground indices in dict.\n for example, if computed on `label` and `postfix = \"_fg_indices\"`, the key will be `label_fg_indices`.\n bg_postfix: postfix to save the computed background indices in dict.\n for example, if computed on `label` and `postfix = \"_bg_indices\"`, the key will be `label_bg_indices`.\n image_key: if image_key is not None, use ``label == 0 & image > image_threshold`` to determine\n the negative sample(background). so the output items will not map to all the voxels in the label.\n image_threshold: if enabled image_key, use ``image > image_threshold`` to determine\n the valid image content area and select background only in this area.\n output_shape: expected shape of output indices. if not None, unravel indices to specified shape.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n def __init__(\n self,\n keys: KeysCollection,\n fg_postfix: str = \"_fg_indices\",\n bg_postfix: str = \"_bg_indices\",\n image_key: Optional[str] = None,\n image_threshold: float = 0.0,\n output_shape: Optional[Sequence[int]] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.fg_postfix = fg_postfix\n self.bg_postfix = bg_postfix\n self.image_key = image_key\n self.converter = FgBgToIndices(image_threshold, output_shape)\n\n def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:\n d = dict(data)\n image = d[self.image_key] if self.image_key else None\n for key in self.key_iterator(d):\n d[str(key) + self.fg_postfix], d[str(key) + self.bg_postfix] = self.converter(d[key], image)\n\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_map_binary_to_indices_map_binary_to_indices.return.fg_indices_bg_indices": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_map_binary_to_indices_map_binary_to_indices.return.fg_indices_bg_indices", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 182, "end_line": 211, "span_ids": ["map_binary_to_indices"], "tokens": 382}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def map_binary_to_indices(\n label: np.ndarray,\n image: Optional[np.ndarray] = None,\n image_threshold: float = 0.0,\n) -> Tuple[np.ndarray, np.ndarray]:\n \"\"\"\n Compute the foreground and background of input label data, return the indices after fattening.\n For example:\n ``label = np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]])``\n ``foreground indices = np.array([1, 2, 3, 5, 6, 7])`` and ``background indices = np.array([0, 4, 8])``\n\n Args:\n label: use the label data to get the foreground/background information.\n image: if image is not None, use ``label = 0 & image > image_threshold``\n to define background. so the output items will not map to all the voxels in the label.\n image_threshold: if enabled `image`, use ``image > image_threshold`` to\n determine the valid image content area and select background only in this area.\n\n \"\"\"\n # Prepare fg/bg indices\n if label.shape[0] > 1:\n label = label[1:] # for One-Hot format data, remove the background channel\n label_flat = np.any(label, axis=0).ravel() # in case label has multiple dimensions\n fg_indices = np.nonzero(label_flat)[0]\n if image is not None:\n img_flat = np.any(image > image_threshold, axis=0).ravel()\n bg_indices = np.nonzero(np.logical_and(img_flat, ~label_flat))[0]\n else:\n bg_indices = np.nonzero(~label_flat)[0]\n return fg_indices, bg_indices", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_pos_neg_label_crop_centers_generate_pos_neg_label_crop_centers.return.centers": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_pos_neg_label_crop_centers_generate_pos_neg_label_crop_centers.return.centers", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 314, "end_line": 391, "span_ids": ["generate_pos_neg_label_crop_centers"], "tokens": 786}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def generate_pos_neg_label_crop_centers(\n spatial_size: Union[Sequence[int], int],\n num_samples: int,\n pos_ratio: float,\n label_spatial_shape: Sequence[int],\n fg_indices: np.ndarray,\n bg_indices: np.ndarray,\n rand_state: Optional[np.random.RandomState] = None,\n) -> List[List[np.ndarray]]:\n \"\"\"\n Generate valid sample locations based on the label with option for specifying foreground ratio\n Valid: samples sitting entirely within image, expected input shape: [C, H, W, D] or [C, H, W]\n\n Args:\n spatial_size: spatial size of the ROIs to be sampled.\n num_samples: total sample centers to be generated.\n pos_ratio: ratio of total locations generated that have center being foreground.\n label_spatial_shape: spatial shape of the original label data to unravel selected centers.\n fg_indices: pre-computed foreground indices in 1 dimension.\n bg_indices: pre-computed background indices in 1 dimension.\n rand_state: numpy randomState object to align with other modules.\n\n Raises:\n ValueError: When the proposed roi is larger than the image.\n ValueError: When the foreground and background indices lengths are 0.\n\n \"\"\"\n if rand_state is None:\n rand_state = np.random.random.__self__ # type: ignore\n spatial_size = fall_back_tuple(spatial_size, default=label_spatial_shape)\n if not (np.subtract(label_spatial_shape, spatial_size) >= 0).all():\n raise ValueError(\"The size of the proposed random crop ROI is larger than the image size.\")\n\n # Select subregion to assure valid roi\n valid_start = np.floor_divide(spatial_size, 2)\n # add 1 for random\n valid_end = np.subtract(label_spatial_shape + np.array(1), spatial_size / np.array(2)).astype(np.uint16)\n # int generation to have full range on upper side, but subtract unfloored size/2 to prevent rounded range\n # from being too high\n for i, valid_s in enumerate(\n valid_start\n ): # need this because np.random.randint does not work with same start and end\n if valid_s == valid_end[i]:\n valid_end[i] += 1\n\n def _correct_centers(\n center_ori: List[np.ndarray], valid_start: np.ndarray, valid_end: np.ndarray\n ) -> List[np.ndarray]:\n for i, c in enumerate(center_ori):\n center_i = c\n if c < valid_start[i]:\n center_i = valid_start[i]\n if c >= valid_end[i]:\n center_i = valid_end[i] - 1\n center_ori[i] = center_i\n return center_ori\n\n centers = []\n fg_indices, bg_indices = np.asarray(fg_indices), np.asarray(bg_indices)\n if fg_indices.size == 0 and bg_indices.size == 0:\n raise ValueError(\"No sampling location available.\")\n\n if fg_indices.size == 0 or bg_indices.size == 0:\n warnings.warn(\n f\"N foreground {len(fg_indices)}, N background {len(bg_indices)},\"\n \"unable to generate class balanced samples.\"\n )\n pos_ratio = 0 if fg_indices.size == 0 else 1\n\n for _ in range(num_samples):\n indices_to_use = fg_indices if rand_state.rand() < pos_ratio else bg_indices\n random_int = rand_state.randint(len(indices_to_use))\n center = np.unravel_index(indices_to_use[random_int], label_spatial_shape)\n # shift center to range of valid centers\n center_ori = list(center)\n centers.append(_correct_centers(center_ori, valid_start, valid_end))\n\n return centers", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_set_determinism_set_determinism.if_seed_is_not_None_.else_restore_the_orig.torch.backends.cudnn.benchmark._flag_cudnn_benchmark": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_set_determinism_set_determinism.if_seed_is_not_None_.else_restore_the_orig.torch.backends.cudnn.benchmark._flag_cudnn_benchmark", "embedding": null, "metadata": {"file_path": "monai/utils/misc.py", "file_name": "misc.py", "file_type": "text/x-python", "category": "implementation", "start_line": 188, "end_line": 228, "span_ids": ["set_determinism"], "tokens": 361}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def set_determinism(\n seed: Optional[int] = np.iinfo(np.uint32).max,\n additional_settings: Optional[Union[Sequence[Callable[[int], Any]], Callable[[int], Any]]] = None,\n) -> None:\n \"\"\"\n Set random seed for modules to enable or disable deterministic training.\n\n Args:\n seed: the random seed to use, default is np.iinfo(np.int32).max.\n It is recommended to set a large seed, i.e. a number that has a good balance\n of 0 and 1 bits. Avoid having many 0 bits in the seed.\n if set to None, will disable deterministic training.\n additional_settings: additional settings\n that need to set random seed.\n\n \"\"\"\n if seed is None:\n # cast to 32 bit seed for CUDA\n seed_ = torch.default_generator.seed() % (np.iinfo(np.int32).max + 1)\n if not torch.cuda._is_in_bad_fork():\n torch.cuda.manual_seed_all(seed_)\n else:\n seed = int(seed) % MAX_SEED\n torch.manual_seed(seed)\n\n global _seed\n _seed = seed\n random.seed(seed)\n np.random.seed(seed)\n\n if additional_settings is not None:\n additional_settings = ensure_tuple(additional_settings)\n for func in additional_settings:\n func(seed)\n\n if seed is not None:\n torch.backends.cudnn.deterministic = True\n torch.backends.cudnn.benchmark = False\n else: # restore the original flags\n torch.backends.cudnn.deterministic = _flag_deterministic\n torch.backends.cudnn.benchmark = _flag_cudnn_benchmark", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_load_submodules_load_submodules.return.submodules_err_mod": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_load_submodules_load_submodules.return.submodules_err_mod", "embedding": null, "metadata": {"file_path": "monai/utils/module.py", "file_name": "module.py", "file_type": "text/x-python", "category": "implementation", "start_line": 64, "end_line": 82, "span_ids": ["load_submodules"], "tokens": 216}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def load_submodules(basemod, load_all: bool = True, exclude_pattern: str = \"(.*[tT]est.*)|(_.*)\"):\n \"\"\"\n Traverse the source of the module structure starting with module `basemod`, loading all packages plus all files if\n `load_all` is True, excluding anything whose name matches `exclude_pattern`.\n \"\"\"\n submodules = []\n err_mod: List[str] = []\n for importer, name, is_pkg in walk_packages(\n basemod.__path__, prefix=basemod.__name__ + \".\", onerror=err_mod.append\n ):\n if (is_pkg or load_all) and name not in sys.modules and match(exclude_pattern, name) is None:\n try:\n mod = import_module(name)\n importer.find_module(name).load_module(name) # type: ignore\n submodules.append(mod)\n except OptionalImportError:\n pass # could not import the optional deps., they are ignored\n\n return submodules, err_mod", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_glob_try_.finally_.print_f_BUILD_MONAI_CPP_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_glob_try_.finally_.print_f_BUILD_MONAI_CPP_", "embedding": null, "metadata": {"file_path": "setup.py", "file_name": "setup.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 51, "span_ids": ["docstring"], "tokens": 356}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import glob\nimport os\nimport re\nimport sys\nimport warnings\n\nimport pkg_resources\nfrom setuptools import find_packages, setup\n\nimport versioneer\n\n# TODO: debug mode -g -O0, compile test cases\n\nRUN_BUILD = os.getenv(\"BUILD_MONAI\", \"0\") == \"1\"\nFORCE_CUDA = os.getenv(\"FORCE_CUDA\", \"0\") == \"1\" # flag ignored if BUILD_MONAI is False\n\nBUILD_CPP = BUILD_CUDA = False\nTORCH_VERSION = 0\ntry:\n import torch\n\n print(f\"setup.py with torch {torch.__version__}\")\n from torch.utils.cpp_extension import BuildExtension, CppExtension\n\n BUILD_CPP = True\n from torch.utils.cpp_extension import CUDA_HOME, CUDAExtension\n\n BUILD_CUDA = (CUDA_HOME is not None) if torch.cuda.is_available() else FORCE_CUDA\n\n _pt_version = pkg_resources.parse_version(torch.__version__).release # type: ignore[attr-defined]\n if _pt_version is None or len(_pt_version) < 3:\n raise AssertionError(\"unknown torch version\")\n TORCH_VERSION = int(_pt_version[0]) * 10000 + int(_pt_version[1]) * 100 + int(_pt_version[2])\nexcept (ImportError, TypeError, AssertionError, AttributeError) as e:\n warnings.warn(f\"extension build skipped: {e}\")\nfinally:\n if not RUN_BUILD:\n BUILD_CPP = BUILD_CUDA = False\n print(\"Please set environment variable `BUILD_MONAI=1` to enable Cpp/CUDA extension build.\")\n print(f\"BUILD_MONAI_CPP={BUILD_CPP}, BUILD_MONAI_CUDA={BUILD_CUDA}, TORCH_VERSION={TORCH_VERSION}.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_torch_parallel_backend_omp_flags.return._fopenmp_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_torch_parallel_backend_omp_flags.return._fopenmp_", "embedding": null, "metadata": {"file_path": "setup.py", "file_name": "setup.py", "file_type": "text/x-python", "category": "implementation", "start_line": 54, "end_line": 82, "span_ids": ["torch_parallel_backend", "omp_flags"], "tokens": 214}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def torch_parallel_backend():\n try:\n match = re.search(\n \"^ATen parallel backend: (?P.*)$\",\n torch._C._parallel_info(),\n re.MULTILINE,\n )\n if match is None:\n return None\n backend = match.group(\"backend\")\n if backend == \"OpenMP\":\n return \"AT_PARALLEL_OPENMP\"\n if backend == \"native thread pool\":\n return \"AT_PARALLEL_NATIVE\"\n if backend == \"native thread pool and TBB\":\n return \"AT_PARALLEL_NATIVE_TBB\"\n except (NameError, AttributeError): # no torch or no binaries\n warnings.warn(\"Could not determine torch parallel_info.\")\n return None\n\n\ndef omp_flags():\n if sys.platform == \"win32\":\n return [\"/openmp\"]\n if sys.platform == \"darwin\":\n # https://stackoverflow.com/questions/37362414/\n # return [\"-fopenmp=libiomp5\"]\n return []\n return [\"-fopenmp\"]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_os_CLANG_FORMAT_PATH.os_path_join_CLANG_FORMAT": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_os_CLANG_FORMAT_PATH.os_path_join_CLANG_FORMAT", "embedding": null, "metadata": {"file_path": "tests/clang_format_utils.py", "file_name": "clang_format_utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 15, "end_line": 43, "span_ids": ["docstring"], "tokens": 323}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport platform\nimport stat\nimport sys\n\nfrom monai.apps.utils import download_url\n\n# String representing the host platform (e.g. Linux, Darwin).\nHOST_PLATFORM = platform.system()\n\n# MONAI directory root, derived from the location of this file.\nMONAI_ROOT = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))\n\n# This dictionary maps each platform to the S3 object URL for its clang-format binary.\nPLATFORM_TO_CF_URL = {\n \"Darwin\": \"https://oss-clang-format.s3.us-east-2.amazonaws.com/mac/clang-format-mojave\",\n \"Linux\": \"https://oss-clang-format.s3.us-east-2.amazonaws.com/linux64/clang-format-linux64\",\n}\n\n# This dictionary maps each platform to a relative path to a file containing its reference hash.\n# github/pytorch/pytorch/tree/63d62d3e44a0a4ec09d94f30381d49b78cc5b095/tools/clang_format_hash\nPLATFORM_TO_HASH = {\n \"Darwin\": \"b24cc8972344c4e01afbbae78d6a414f7638ff6f\",\n \"Linux\": \"9073602de1c4e1748f2feea5a0782417b20e3043\",\n}\n\n# Directory and file paths for the clang-format binary.\nCLANG_FORMAT_DIR = os.path.join(MONAI_ROOT, \".clang-format-bin\")\nCLANG_FORMAT_PATH = os.path.join(CLANG_FORMAT_DIR, \"clang-format\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_get_and_check_clang_format_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_get_and_check_clang_format_", "embedding": null, "metadata": {"file_path": "tests/clang_format_utils.py", "file_name": "clang_format_utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 46, "end_line": 80, "span_ids": ["get_and_check_clang_format", "impl:13"], "tokens": 285}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_and_check_clang_format():\n \"\"\"\n Download a platform-appropriate clang-format binary if one doesn't already exist at the expected location and verify\n that it is the right binary by checking its SHA1 hash against the expected hash.\n \"\"\"\n # If the host platform is not in PLATFORM_TO_HASH, it is unsupported.\n if HOST_PLATFORM not in PLATFORM_TO_HASH:\n print(\"Unsupported platform: {}\".format(HOST_PLATFORM))\n return False\n if HOST_PLATFORM not in PLATFORM_TO_CF_URL:\n print(\"Unsupported platform: {}\".format(HOST_PLATFORM))\n return False\n\n try:\n download_url(\n PLATFORM_TO_CF_URL[HOST_PLATFORM], CLANG_FORMAT_PATH, PLATFORM_TO_HASH[HOST_PLATFORM], hash_type=\"sha1\"\n )\n except Exception as e:\n print(f\"Download {CLANG_FORMAT_PATH} failed: {e}\")\n print(f\"Please remove {CLANG_FORMAT_PATH} and retry.\")\n return False\n\n # Make sure the binary is executable.\n mode = os.stat(CLANG_FORMAT_PATH).st_mode\n mode |= stat.S_IXUSR\n os.chmod(CLANG_FORMAT_PATH, mode)\n print(\"Using clang-format located at {}\".format(CLANG_FORMAT_PATH))\n\n return True\n\n\nif __name__ == \"__main__\":\n ok = get_and_check_clang_format()\n sys.exit(int(not ok))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/min_tests.py_if___name_____main____": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/min_tests.py_if___name_____main____", "embedding": null, "metadata": {"file_path": "tests/min_tests.py", "file_name": "min_tests.py", "file_type": "text/x-python", "category": "implementation", "start_line": 141, "end_line": 156, "span_ids": ["impl"], "tokens": 125}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "if __name__ == \"__main__\":\n\n # testing import submodules\n from monai.utils.module import load_submodules\n\n _, err_mod = load_submodules(sys.modules[\"monai\"], True)\n if err_mod:\n print(err_mod)\n # expecting that only engines and handlers are not imported\n assert sorted(err_mod) == [\"monai.engines\", \"monai.handlers\"]\n\n # testing all modules\n test_runner = unittest.TextTestRunner(stream=sys.stdout, verbosity=2)\n result = test_runner.run(run_testsuit())\n sys.exit(int(not result.wasSuccessful()))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_os_TEST_CASE_5._b4dc3c246b298eae37cefdf": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_os_TEST_CASE_5._b4dc3c246b298eae37cefdf", "embedding": null, "metadata": {"file_path": "tests/test_check_hash.py", "file_name": "test_check_hash.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 29, "span_ids": ["docstring"], "tokens": 139}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.apps import check_hash\n\nTEST_CASE_1 = [\"b94716452086a054208395e8c9d1ae2a\", \"md5\", True]\n\nTEST_CASE_2 = [\"abcdefg\", \"md5\", False]\n\nTEST_CASE_3 = [None, \"md5\", True]\n\nTEST_CASE_4 = [None, \"sha1\", True]\n\nTEST_CASE_5 = [\"b4dc3c246b298eae37cefdfdd2a50b091ffd5e69\", \"sha1\", True]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_TestCheckMD5_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_TestCheckMD5_", "embedding": null, "metadata": {"file_path": "tests/test_check_hash.py", "file_name": "test_check_hash.py", "file_type": "text/x-python", "category": "test", "start_line": 32, "end_line": 51, "span_ids": ["TestCheckMD5", "impl:11", "TestCheckMD5.test_result", "TestCheckMD5.test_hash_type_error"], "tokens": 178}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCheckMD5(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_result(self, md5_value, t, expected_result):\n test_image = np.ones((5, 5, 3))\n with tempfile.TemporaryDirectory() as tempdir:\n filename = os.path.join(tempdir, \"test_file.png\")\n test_image.tofile(filename)\n\n result = check_hash(filename, md5_value, hash_type=t)\n self.assertTrue(result == expected_result)\n\n def test_hash_type_error(self):\n with self.assertRaises(NotImplementedError):\n with tempfile.TemporaryDirectory() as tempdir:\n check_hash(tempdir, \"test_hash\", \"test_type\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_sys_TestCompose.test_dict_compose.self_assertDictEqual_c_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_sys_TestCompose.test_dict_compose.self_assertDictEqual_c_", "embedding": null, "metadata": {"file_path": "tests/test_compose.py", "file_name": "test_compose.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 58, "span_ids": ["TestCompose", "_RandXform.randomize", "TestCompose.test_empty_compose", "_RandXform", "TestCompose.test_non_dict_compose", "docstring", "TestCompose.test_dict_compose", "_RandXform.__call__"], "tokens": 281}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import sys\nimport unittest\n\nfrom monai.data import DataLoader, Dataset\nfrom monai.transforms import AddChannel, Compose\nfrom monai.transforms.transform import Randomizable\nfrom monai.utils import set_determinism\n\n\nclass _RandXform(Randomizable):\n def randomize(self):\n self.val = self.R.random_sample()\n\n def __call__(self, __unused):\n self.randomize()\n return self.val\n\n\nclass TestCompose(unittest.TestCase):\n def test_empty_compose(self):\n c = Compose()\n i = 1\n self.assertEqual(c(i), 1)\n\n def test_non_dict_compose(self):\n def a(i):\n return i + \"a\"\n\n def b(i):\n return i + \"b\"\n\n c = Compose([a, b, a, b])\n self.assertEqual(c(\"\"), \"abab\")\n\n def test_dict_compose(self):\n def a(d):\n d = dict(d)\n d[\"a\"] += 1\n return d\n\n def b(d):\n d = dict(d)\n d[\"b\"] += 1\n return d\n\n c = Compose([a, b, a, b, a])\n self.assertDictEqual(c({\"a\": 0, \"b\": 0}), {\"a\": 3, \"b\": 2})", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_random_compose_TestCompose.test_err_msg.with_self_assertRaisesReg.transforms_42_1_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_random_compose_TestCompose.test_err_msg.with_self_assertRaisesReg.transforms_42_1_", "embedding": null, "metadata": {"file_path": "tests/test_compose.py", "file_name": "test_compose.py", "file_type": "text/x-python", "category": "test", "start_line": 82, "end_line": 116, "span_ids": ["TestCompose.test_err_msg", "TestCompose.test_randomize_warn", "TestCompose.test_random_compose"], "tokens": 250}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCompose(unittest.TestCase):\n\n def test_random_compose(self):\n class _Acc(Randomizable):\n self.rand = 0.0\n\n def randomize(self, data=None):\n self.rand = self.R.rand()\n\n def __call__(self, data):\n self.randomize()\n return self.rand + data\n\n c = Compose([_Acc(), _Acc()])\n self.assertNotAlmostEqual(c(0), c(0))\n c.set_random_state(123)\n self.assertAlmostEqual(c(1), 1.61381597)\n c.set_random_state(223)\n c.randomize()\n self.assertAlmostEqual(c(1), 1.90734751)\n\n def test_randomize_warn(self):\n class _RandomClass(Randomizable):\n def randomize(self, foo1, foo2):\n pass\n\n def __call__(self, data):\n pass\n\n c = Compose([_RandomClass(), _RandomClass()])\n with self.assertWarns(Warning):\n c.randomize()\n\n def test_err_msg(self):\n transforms = Compose([abs, AddChannel(), round])\n with self.assertRaisesRegex(Exception, \"AddChannel\"):\n transforms(42.1)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_data_loader_TestCompose.test_data_loader.set_determinism_None_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_data_loader_TestCompose.test_data_loader.set_determinism_None_", "embedding": null, "metadata": {"file_path": "tests/test_compose.py", "file_name": "test_compose.py", "file_type": "text/x-python", "category": "test", "start_line": 114, "end_line": 135, "span_ids": ["TestCompose.test_data_loader"], "tokens": 231}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCompose(unittest.TestCase):\n\n def test_data_loader(self):\n xform_1 = Compose([_RandXform()])\n train_ds = Dataset([1], transform=xform_1)\n\n xform_1.set_random_state(123)\n out_1 = train_ds[0]\n self.assertAlmostEqual(out_1, 0.2045649)\n\n set_determinism(seed=123)\n train_loader = DataLoader(train_ds, num_workers=0)\n out_1 = next(iter(train_loader))\n self.assertAlmostEqual(out_1.cpu().item(), 0.84291356)\n\n if sys.platform != \"win32\": # skip multi-worker tests on win32\n train_loader = DataLoader(train_ds, num_workers=1)\n out_1 = next(iter(train_loader))\n self.assertAlmostEqual(out_1.cpu().item(), 0.180814653)\n\n train_loader = DataLoader(train_ds, num_workers=2)\n out_1 = next(iter(train_loader))\n self.assertAlmostEqual(out_1.cpu().item(), 0.04293707)\n set_determinism(None)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_unittest_TestConvolution2D.test_transpose2.self_assertEqual_out_shap": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_unittest_TestConvolution2D.test_transpose2.self_assertEqual_out_shap", "embedding": null, "metadata": {"file_path": "tests/test_convolutions.py", "file_name": "test_convolutions.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 66, "span_ids": ["TestConvolution2D.test_conv1", "TestConvolution2D.test_conv_only1", "TestConvolution2D.test_transpose2", "TestConvolution2D.test_dilation1", "TestConvolution2D.test_dropout1", "TestConvolution2D", "TestConvolution2D.test_transpose1", "docstring", "TestConvolution2D.test_stride1", "TestConvolution2D.test_conv1_no_acti"], "tokens": 628}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom monai.networks.blocks import Convolution, ResidualUnit\nfrom tests.utils import TorchImageTestCase2D, TorchImageTestCase3D\n\n\nclass TestConvolution2D(TorchImageTestCase2D):\n def test_conv1(self):\n conv = Convolution(2, self.input_channels, self.output_channels)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_conv1_no_acti(self):\n conv = Convolution(2, self.input_channels, self.output_channels, act=None)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_conv_only1(self):\n conv = Convolution(2, self.input_channels, self.output_channels, conv_only=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_stride1(self):\n for strides in [2, [2, 2], (2, 2)]:\n conv = Convolution(2, self.input_channels, self.output_channels, strides=strides)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0] // 2, self.im_shape[1] // 2)\n self.assertEqual(out.shape, expected_shape)\n\n def test_dilation1(self):\n conv = Convolution(2, self.input_channels, self.output_channels, dilation=3)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_dropout1(self):\n conv = Convolution(2, self.input_channels, self.output_channels, dropout=0.15)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_transpose1(self):\n conv = Convolution(2, self.input_channels, self.output_channels, is_transposed=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_transpose2(self):\n conv = Convolution(2, self.input_channels, self.output_channels, strides=2, is_transposed=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0] * 2, self.im_shape[1] * 2)\n self.assertEqual(out.shape, expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D_TestConvolution3D.test_conv_only1.self_assertEqual_out_shap": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D_TestConvolution3D.test_conv_only1.self_assertEqual_out_shap", "embedding": null, "metadata": {"file_path": "tests/test_convolutions.py", "file_name": "test_convolutions.py", "file_type": "text/x-python", "category": "test", "start_line": 69, "end_line": 86, "span_ids": ["TestConvolution3D", "TestConvolution3D.test_conv1_no_acti", "TestConvolution3D.test_conv1", "TestConvolution3D.test_conv_only1"], "tokens": 252}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestConvolution3D(TorchImageTestCase3D):\n def test_conv1(self):\n conv = Convolution(3, self.input_channels, self.output_channels, dropout=0.1, adn_ordering=\"DAN\")\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)\n\n def test_conv1_no_acti(self):\n conv = Convolution(3, self.input_channels, self.output_channels, act=None, adn_ordering=\"AND\")\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)\n\n def test_conv_only1(self):\n conv = Convolution(3, self.input_channels, self.output_channels, conv_only=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_stride1_TestConvolution3D.test_stride1.for_strides_in_2_2_2_.self_assertEqual_out_shap": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_stride1_TestConvolution3D.test_stride1.for_strides_in_2_2_2_.self_assertEqual_out_shap", "embedding": null, "metadata": {"file_path": "tests/test_convolutions.py", "file_name": "test_convolutions.py", "file_type": "text/x-python", "category": "test", "start_line": 88, "end_line": 99, "span_ids": ["TestConvolution3D.test_stride1"], "tokens": 131}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestConvolution3D(TorchImageTestCase3D):\n\n def test_stride1(self):\n for strides in [2, (2, 2, 2), [2, 2, 2]]:\n conv = Convolution(3, self.input_channels, self.output_channels, strides=strides)\n out = conv(self.imt)\n expected_shape = (\n 1,\n self.output_channels,\n self.im_shape[1] // 2,\n self.im_shape[0] // 2,\n self.im_shape[2] // 2,\n )\n self.assertEqual(out.shape, expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_dilation1_TestConvolution3D.test_transpose2.self_assertEqual_out_shap": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_dilation1_TestConvolution3D.test_transpose2.self_assertEqual_out_shap", "embedding": null, "metadata": {"file_path": "tests/test_convolutions.py", "file_name": "test_convolutions.py", "file_type": "text/x-python", "category": "test", "start_line": 101, "end_line": 123, "span_ids": ["TestConvolution3D.test_transpose1", "TestConvolution3D.test_dropout1", "TestConvolution3D.test_dilation1", "TestConvolution3D.test_transpose2"], "tokens": 328}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestConvolution3D(TorchImageTestCase3D):\n\n def test_dilation1(self):\n conv = Convolution(3, self.input_channels, self.output_channels, dilation=3)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)\n\n def test_dropout1(self):\n conv = Convolution(3, self.input_channels, self.output_channels, dropout=0.15)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)\n\n def test_transpose1(self):\n conv = Convolution(3, self.input_channels, self.output_channels, is_transposed=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)\n\n def test_transpose2(self):\n conv = Convolution(3, self.input_channels, self.output_channels, strides=2, is_transposed=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1] * 2, self.im_shape[0] * 2, self.im_shape[2] * 2)\n self.assertEqual(out.shape, expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foreground.py_unittest_TEST_CASE_4._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foreground.py_unittest_TEST_CASE_4._", "embedding": null, "metadata": {"file_path": "tests/test_crop_foreground.py", "file_name": "test_crop_foreground.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["impl:7", "docstring"], "tokens": 609}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import CropForeground\n\nTEST_CASE_1 = [\n {\"select_fn\": lambda x: x > 0, \"channel_indices\": None, \"margin\": 0},\n np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 1, 2, 1, 0], [0, 0, 0, 0, 0]]]),\n np.array([[[1, 2, 1], [2, 3, 2], [1, 2, 1]]]),\n]\n\nTEST_CASE_2 = [\n {\"select_fn\": lambda x: x > 1, \"channel_indices\": None, \"margin\": 0},\n np.array([[[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 3, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]]]),\n np.array([[[3]]]),\n]\n\nTEST_CASE_3 = [\n {\"select_fn\": lambda x: x > 0, \"channel_indices\": 0, \"margin\": 0},\n np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 1, 2, 1, 0], [0, 0, 0, 0, 0]]]),\n np.array([[[1, 2, 1], [2, 3, 2], [1, 2, 1]]]),\n]\n\nTEST_CASE_4 = [\n {\"select_fn\": lambda x: x > 0, \"channel_indices\": None, \"margin\": 1},\n np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]]),\n np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 0, 0, 0, 0]]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet.py_unittest_TEST_CASE_DEEP_SUPERVISION._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet.py_unittest_TEST_CASE_DEEP_SUPERVISION._", "embedding": null, "metadata": {"file_path": "tests/test_dynunet.py", "file_name": "test_dynunet.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 77, "span_ids": ["impl:36", "docstring"], "tokens": 600}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\nfrom typing import Any, Sequence, Union\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.nets import DynUNet\nfrom tests.utils import test_script_save\n\ndevice = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n\nstrides: Sequence[Union[Sequence[int], int]]\nkernel_size: Sequence[Any]\nexpected_shape: Sequence[Any]\n\nTEST_CASE_DYNUNET_2D = []\nfor kernel_size in [(3, 3, 3, 1), ((3, 1), 1, (3, 3), (1, 1))]:\n for strides in [(1, 1, 1, 1), (2, 2, 2, 1)]:\n for in_channels in [2, 3]:\n for res_block in [True, False]:\n out_channels = 2\n in_size = 64\n spatial_dims = 2\n expected_shape = (1, out_channels, *[in_size // strides[0]] * spatial_dims)\n test_case = [\n {\n \"spatial_dims\": spatial_dims,\n \"in_channels\": in_channels,\n \"out_channels\": out_channels,\n \"kernel_size\": kernel_size,\n \"strides\": strides,\n \"upsample_kernel_size\": strides[1:],\n \"norm_name\": \"batch\",\n \"deep_supervision\": False,\n \"res_block\": res_block,\n },\n (1, in_channels, in_size, in_size),\n expected_shape,\n ]\n TEST_CASE_DYNUNET_2D.append(test_case)\n\nTEST_CASE_DYNUNET_3D = [] # in 3d cases, also test anisotropic kernel/strides\nfor out_channels in [2, 3]:\n for res_block in [True, False]:\n in_channels = 1\n in_size = 64\n expected_shape = (1, out_channels, 64, 32, 64)\n test_case = [\n {\n \"spatial_dims\": 3,\n \"in_channels\": in_channels,\n \"out_channels\": out_channels,\n \"kernel_size\": (3, (1, 1, 3), 3, 3),\n \"strides\": ((1, 2, 1), 2, 2, 1),\n \"upsample_kernel_size\": (2, 2, 1),\n \"norm_name\": (\"INSTANCE\", {\"affine\": True}),\n \"deep_supervision\": False,\n \"res_block\": res_block,\n },\n (1, in_channels, in_size, in_size, in_size),\n expected_shape,\n ]\n TEST_CASE_DYNUNET_3D.append(test_case)\n\nTEST_CASE_DEEP_SUPERVISION = []", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet_block.py_unittest_None_1.for_kernel_size_in_1_3_.for_stride_in_1_2_.for_norm_name_in_batch_.for_in_size_in_15_16_.TEST_UP_BLOCK_append_test": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet_block.py_unittest_None_1.for_kernel_size_in_1_3_.for_stride_in_1_2_.for_norm_name_in_batch_.for_in_size_in_15_16_.TEST_UP_BLOCK_append_test", "embedding": null, "metadata": {"file_path": "tests/test_dynunet_block.py", "file_name": "test_dynunet_block.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 67, "span_ids": ["docstring"], "tokens": 492}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.blocks.dynunet_block import UnetBasicBlock, UnetResBlock, UnetUpBlock, get_padding\nfrom tests.utils import test_script_save\n\nTEST_CASE_RES_BASIC_BLOCK = []\nfor spatial_dims in range(2, 4):\n for kernel_size in [1, 3]:\n for stride in [1, 2]:\n for norm_name in [(\"GROUP\", {\"num_groups\": 16}), (\"batch\", {\"track_running_stats\": False}), \"instance\"]:\n for in_size in [15, 16]:\n padding = get_padding(kernel_size, stride)\n if not isinstance(padding, int):\n padding = padding[0]\n out_size = int((in_size + 2 * padding - kernel_size) / stride) + 1\n test_case = [\n {\n \"spatial_dims\": spatial_dims,\n \"in_channels\": 16,\n \"out_channels\": 16,\n \"kernel_size\": kernel_size,\n \"norm_name\": norm_name,\n \"stride\": stride,\n },\n (1, 16, *([in_size] * spatial_dims)),\n (1, 16, *([out_size] * spatial_dims)),\n ]\n TEST_CASE_RES_BASIC_BLOCK.append(test_case)\n\nTEST_UP_BLOCK = []\nin_channels, out_channels = 4, 2\nfor spatial_dims in range(2, 4):\n for kernel_size in [1, 3]:\n for stride in [1, 2]:\n for norm_name in [\"batch\", \"instance\"]:\n for in_size in [15, 16]:\n out_size = in_size * stride\n test_case = [\n {\n \"spatial_dims\": spatial_dims,\n \"in_channels\": in_channels,\n \"out_channels\": out_channels,\n \"kernel_size\": kernel_size,\n \"norm_name\": norm_name,\n \"stride\": stride,\n \"upsample_kernel_size\": stride,\n },\n (1, in_channels, *([in_size] * spatial_dims)),\n (1, out_channels, *([out_size] * spatial_dims)),\n (1, out_channels, *([in_size * stride] * spatial_dims)),\n ]\n TEST_UP_BLOCK.append(test_case)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indices.py_unittest_TEST_CASE_5._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indices.py_unittest_TEST_CASE_5._", "embedding": null, "metadata": {"file_path": "tests/test_fg_bg_to_indices.py", "file_name": "test_fg_bg_to_indices.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 57, "span_ids": ["impl:9", "docstring"], "tokens": 615}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import FgBgToIndices\n\nTEST_CASE_1 = [\n {\"image_threshold\": 0.0, \"output_shape\": None},\n np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]]),\n None,\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 4, 8]),\n]\n\nTEST_CASE_2 = [\n {\"image_threshold\": 0.0, \"output_shape\": None},\n np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]]),\n np.array([[[1, 1, 1], [1, 0, 1], [1, 1, 1]]]),\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n]\n\nTEST_CASE_3 = [\n {\"image_threshold\": 1.0, \"output_shape\": None},\n np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]]),\n np.array([[[3, 3, 3], [3, 1, 3], [3, 3, 3]]]),\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n]\n\nTEST_CASE_4 = [\n {\"image_threshold\": 1.0, \"output_shape\": None},\n np.array([[[0, 1, 2], [3, 0, 4], [5, 6, 0]]]),\n np.array([[[3, 3, 3], [3, 1, 3], [3, 3, 3]]]),\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n]\n\nTEST_CASE_5 = [\n {\"image_threshold\": 1.0, \"output_shape\": [3, 3]},\n np.array([[[0, 1, 2], [3, 0, 4], [5, 6, 0]]]),\n np.array([[[3, 3, 3], [3, 1, 3], [3, 3, 3]]]),\n np.array([[0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]]),\n np.array([[0, 0], [2, 2]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indices.py_TestFgBgToIndices_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indices.py_TestFgBgToIndices_", "embedding": null, "metadata": {"file_path": "tests/test_fg_bg_to_indices.py", "file_name": "test_fg_bg_to_indices.py", "file_type": "text/x-python", "category": "test", "start_line": 60, "end_line": 70, "span_ids": ["TestFgBgToIndices", "impl:11", "TestFgBgToIndices.test_type_shape"], "tokens": 118}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFgBgToIndices(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_type_shape(self, input_data, label, image, expected_fg, expected_bg):\n fg_indices, bg_indices = FgBgToIndices(**input_data)(label, image)\n np.testing.assert_allclose(fg_indices, expected_fg)\n np.testing.assert_allclose(bg_indices, expected_bg)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indicesd.py_unittest_TEST_CASE_5._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indicesd.py_unittest_TEST_CASE_5._", "embedding": null, "metadata": {"file_path": "tests/test_fg_bg_to_indicesd.py", "file_name": "test_fg_bg_to_indicesd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 52, "span_ids": ["impl:7", "docstring"], "tokens": 705}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import FgBgToIndicesd\n\nTEST_CASE_1 = [\n {\"keys\": \"label\", \"image_key\": None, \"image_threshold\": 0.0, \"output_shape\": None},\n {\"label\": np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]])},\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 4, 8]),\n]\n\nTEST_CASE_2 = [\n {\"keys\": \"label\", \"image_key\": \"image\", \"image_threshold\": 0.0, \"output_shape\": None},\n {\"label\": np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]]), \"image\": np.array([[[1, 1, 1], [1, 0, 1], [1, 1, 1]]])},\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n]\n\nTEST_CASE_3 = [\n {\"keys\": \"label\", \"image_key\": \"image\", \"image_threshold\": 1.0, \"output_shape\": None},\n {\"label\": np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]]), \"image\": np.array([[[3, 3, 3], [3, 1, 3], [3, 3, 3]]])},\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n]\n\nTEST_CASE_4 = [\n {\"keys\": \"label\", \"image_key\": \"image\", \"image_threshold\": 1.0, \"output_shape\": None},\n {\"label\": np.array([[[0, 1, 2], [3, 0, 4], [5, 6, 0]]]), \"image\": np.array([[[3, 3, 3], [3, 1, 3], [3, 3, 3]]])},\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n]\n\nTEST_CASE_5 = [\n {\"keys\": \"label\", \"image_key\": \"image\", \"image_threshold\": 1.0, \"output_shape\": [3, 3]},\n {\"label\": np.array([[[0, 1, 2], [3, 0, 4], [5, 6, 0]]]), \"image\": np.array([[[3, 3, 3], [3, 1, 3], [3, 3, 3]]])},\n np.array([[0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]]),\n np.array([[0, 0], [2, 2]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indicesd.py_TestFgBgToIndicesd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indicesd.py_TestFgBgToIndicesd_", "embedding": null, "metadata": {"file_path": "tests/test_fg_bg_to_indicesd.py", "file_name": "test_fg_bg_to_indicesd.py", "file_type": "text/x-python", "category": "test", "start_line": 55, "end_line": 65, "span_ids": ["impl:11", "TestFgBgToIndicesd", "TestFgBgToIndicesd.test_type_shape"], "tokens": 117}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFgBgToIndicesd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_type_shape(self, input_data, data, expected_fg, expected_bg):\n result = FgBgToIndicesd(**input_data)(data)\n np.testing.assert_allclose(result[\"label_fg_indices\"], expected_fg)\n np.testing.assert_allclose(result[\"label_bg_indices\"], expected_bg)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_unittest_TEST_CASES_NORM_F": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_unittest_TEST_CASES_NORM_F", "embedding": null, "metadata": {"file_path": "tests/test_gaussian.py", "file_name": "test_gaussian.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 221, "span_ids": ["docstring"], "tokens": 43}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks.layers.convutils import gaussian_1d\n\nTEST_CASES_NORM_F =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d_TestGaussian1d.test_gaussian.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d_TestGaussian1d.test_gaussian.None_2", "embedding": null, "metadata": {"file_path": "tests/test_gaussian.py", "file_name": "test_gaussian.py", "file_type": "text/x-python", "category": "test", "start_line": 224, "end_line": 253, "span_ids": ["TestGaussian1d.test_gaussian", "TestGaussian1d"], "tokens": 248}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestGaussian1d(unittest.TestCase):\n def test_gaussian(self):\n np.testing.assert_allclose(\n gaussian_1d(0.5, 8),\n torch.tensor(\n [\n 0.0000e00,\n 2.9802e-07,\n 1.3496e-03,\n 1.5731e-01,\n 6.8269e-01,\n 1.5731e-01,\n 1.3496e-03,\n 2.9802e-07,\n 0.0000e00,\n ]\n ),\n rtol=1e-4,\n )\n\n np.testing.assert_allclose(\n gaussian_1d(1, 1),\n torch.tensor([0.24173, 0.382925, 0.24173]),\n rtol=1e-4,\n )\n np.testing.assert_allclose(\n gaussian_1d(1, 1, normalize=True),\n torch.tensor([0.2790, 0.4420, 0.2790]),\n rtol=1e-4,\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_scalespace_gaussian_TestGaussian1d.test_scalespace_gaussian.None_3": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_scalespace_gaussian_TestGaussian1d.test_scalespace_gaussian.None_3", "embedding": null, "metadata": {"file_path": "tests/test_gaussian.py", "file_name": "test_gaussian.py", "file_type": "text/x-python", "category": "test", "start_line": 255, "end_line": 304, "span_ids": ["TestGaussian1d.test_scalespace_gaussian"], "tokens": 389}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestGaussian1d(unittest.TestCase):\n\n def test_scalespace_gaussian(self):\n np.testing.assert_allclose(\n gaussian_1d(0.5, 8, \"scalespace\"),\n torch.tensor(\n [\n 7.9472e-06,\n 2.5451e-04,\n 6.1161e-03,\n 9.8113e-02,\n 7.9102e-01,\n 9.8113e-02,\n 6.1161e-03,\n 2.5451e-04,\n 7.9472e-06,\n ]\n ),\n rtol=1e-4,\n )\n\n np.testing.assert_allclose(\n gaussian_1d(1, 1, \"scalespace\"),\n torch.tensor([0.20791, 0.46576, 0.20791]),\n rtol=1e-3,\n )\n\n np.testing.assert_allclose(\n gaussian_1d(1, 1, \"scalespace\", normalize=True),\n torch.tensor([0.2358, 0.5283, 0.2358]),\n rtol=1e-3,\n )\n\n np.testing.assert_allclose(\n gaussian_1d(5, 1, \"scalespace\"),\n torch.tensor(\n [\n 0.048225,\n 0.057891,\n 0.06675,\n 0.073911,\n 0.078576,\n 0.080197,\n 0.078576,\n 0.073911,\n 0.06675,\n 0.057891,\n 0.048225,\n ]\n ),\n rtol=1e-3,\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_norm_false_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_norm_false_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian.py", "file_name": "test_gaussian.py", "file_type": "text/x-python", "category": "test", "start_line": 306, "end_line": 327, "span_ids": ["TestGaussian1d.test_norm_false", "impl:3", "TestGaussian1d.test_wrong_sigma"], "tokens": 250}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestGaussian1d(unittest.TestCase):\n\n @parameterized.expand(TEST_CASES_NORM_F)\n def test_norm_false(self, variance, expected):\n extent = 6\n atol = 1e-4\n sigma = np.sqrt(variance)\n k_erf = gaussian_1d(sigma, truncated=extent / sigma, approx=\"erf\", normalize=False).numpy()\n k_sampled = gaussian_1d(sigma, truncated=extent / sigma, approx=\"sampled\").numpy()\n k_scalespace = gaussian_1d(sigma, truncated=extent / sigma, approx=\"scalespace\").numpy()\n np.testing.assert_allclose(k_erf, expected[0], atol=atol)\n np.testing.assert_allclose(k_sampled, expected[1], atol=atol)\n np.testing.assert_allclose(k_scalespace, expected[2], atol=atol)\n\n def test_wrong_sigma(self):\n with self.assertRaises(ValueError):\n gaussian_1d(1, -10)\n with self.assertRaises(NotImplementedError):\n gaussian_1d(1, 10, \"wrong_arg\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase_GaussianFilterTestCase.test_1d.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase_GaussianFilterTestCase.test_1d.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_filter.py", "file_name": "test_gaussian_filter.py", "file_type": "text/x-python", "category": "test", "start_line": 86, "end_line": 109, "span_ids": ["GaussianFilterTestCase.test_1d", "GaussianFilterTestCase"], "tokens": 190}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianFilterTestCase(unittest.TestCase):\n def test_1d(self):\n a = torch.ones(1, 8, 10)\n g = GaussianFilter(1, 3, 3).to(torch.device(\"cpu:0\"))\n expected = np.array(\n [\n [\n [\n 0.5654129,\n 0.68915915,\n 0.79146194,\n 0.8631974,\n 0.8998163,\n 0.8998163,\n 0.8631973,\n 0.79146194,\n 0.6891592,\n 0.5654129,\n ]\n ]\n ]\n )\n expected = np.tile(expected, (1, 8, 1))\n np.testing.assert_allclose(g(a).cpu().numpy(), expected, rtol=1e-5)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_unittest_create_spherical_seg_3d.return.image": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_unittest_create_spherical_seg_3d.return.image", "embedding": null, "metadata": {"file_path": "tests/test_hausdorff_distance.py", "file_name": "test_hausdorff_distance.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 48, "span_ids": ["create_spherical_seg_3d", "docstring"], "tokens": 321}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\nfrom typing import Tuple\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.metrics import HausdorffDistanceMetric\n\n\ndef create_spherical_seg_3d(\n radius: float = 20.0,\n centre: Tuple[int, int, int] = (49, 49, 49),\n im_shape: Tuple[int, int, int] = (99, 99, 99),\n) -> np.ndarray:\n \"\"\"\n Return a 3D image with a sphere inside. Voxel values will be\n 1 inside the sphere, and 0 elsewhere.\n\n Args:\n radius: radius of sphere (in terms of number of voxels, can be partial)\n centre: location of sphere centre.\n im_shape: shape of image to create\n\n See also:\n :py:meth:`~create_test_image_3d`\n \"\"\"\n # Create image\n image = np.zeros(im_shape, dtype=np.int32)\n spy, spx, spz = np.ogrid[\n -centre[0] : im_shape[0] - centre[0], -centre[1] : im_shape[1] - centre[1], -centre[2] : im_shape[2] - centre[2]\n ]\n circle = (spx * spx + spy * spy + spz * spz) <= radius * radius\n\n image[circle] = 1\n image[~circle] = 0\n return image", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_is_supported_format.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_is_supported_format.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_is_supported_format.py", "file_name": "test_is_supported_format.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 57, "span_ids": ["impl:13", "TestIsSupportedFormat.test_value", "TestIsSupportedFormat", "docstring"], "tokens": 319}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom parameterized import parameterized\n\nfrom monai.data import is_supported_format\n\nTEST_CASE_1 = [\n {\"filename\": \"testfile.nii.gz\", \"suffixes\": [\"nii\", \"nii.gz\"]},\n True,\n]\n\nTEST_CASE_2 = [\n {\"filename\": \"./testfile.nii.gz\", \"suffixes\": [\"nii\", \"nii.gz\"]},\n True,\n]\n\nTEST_CASE_3 = [\n {\"filename\": \"./test.data/file.nii.gz\", \"suffixes\": [\"nii\", \"nii.gz\"]},\n True,\n]\n\nTEST_CASE_4 = [\n {\"filename\": \"./test.data/file.nii\", \"suffixes\": [\"nii\", \"nii.gz\"]},\n True,\n]\n\nTEST_CASE_5 = [\n {\"filename\": \"C:\\\\documents\\\\testfile.nii.gz\", \"suffixes\": [\"nii\", \"nii.gz\"]},\n True,\n]\n\nTEST_CASE_6 = [\n {\"filename\": \"1.3.12.2.1107.5.4.4.145.nii.gz\", \"suffixes\": [\"nii.gz\"]},\n True,\n]\n\n\nclass TestIsSupportedFormat(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6])\n def test_value(self, input_param, result):\n self.assertEqual(is_supported_format(**input_param), result)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_json_TestLoadDecathlonDatalist.test_seg_values.with_tempfile_TemporaryDi.None_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_json_TestLoadDecathlonDatalist.test_seg_values.with_tempfile_TemporaryDi.None_1", "embedding": null, "metadata": {"file_path": "tests/test_load_decathlon_datalist.py", "file_name": "test_load_decathlon_datalist.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 39, "span_ids": ["TestLoadDecathlonDatalist", "TestLoadDecathlonDatalist.test_seg_values", "docstring"], "tokens": 289}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import json\nimport os\nimport tempfile\nimport unittest\n\nfrom monai.data import load_decathlon_datalist\n\n\nclass TestLoadDecathlonDatalist(unittest.TestCase):\n def test_seg_values(self):\n with tempfile.TemporaryDirectory() as tempdir:\n test_data = {\n \"name\": \"Spleen\",\n \"description\": \"Spleen Segmentation\",\n \"labels\": {\"0\": \"background\", \"1\": \"spleen\"},\n \"training\": [\n {\"image\": \"spleen_19.nii.gz\", \"label\": \"spleen_19.nii.gz\"},\n {\"image\": \"spleen_31.nii.gz\", \"label\": \"spleen_31.nii.gz\"},\n ],\n \"test\": [\"spleen_15.nii.gz\", \"spleen_23.nii.gz\"],\n }\n json_str = json.dumps(test_data)\n file_path = os.path.join(tempdir, \"test_data.json\")\n with open(file_path, \"w\") as json_file:\n json_file.write(json_str)\n result = load_decathlon_datalist(file_path, True, \"training\", tempdir)\n self.assertEqual(result[0][\"image\"], os.path.join(tempdir, \"spleen_19.nii.gz\"))\n self.assertEqual(result[0][\"label\"], os.path.join(tempdir, \"spleen_19.nii.gz\"))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_cls_values_TestLoadDecathlonDatalist.test_cls_values.with_tempfile_TemporaryDi.None_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_cls_values_TestLoadDecathlonDatalist.test_cls_values.with_tempfile_TemporaryDi.None_1", "embedding": null, "metadata": {"file_path": "tests/test_load_decathlon_datalist.py", "file_name": "test_load_decathlon_datalist.py", "file_type": "text/x-python", "category": "test", "start_line": 41, "end_line": 56, "span_ids": ["TestLoadDecathlonDatalist.test_cls_values"], "tokens": 225}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadDecathlonDatalist(unittest.TestCase):\n\n def test_cls_values(self):\n with tempfile.TemporaryDirectory() as tempdir:\n test_data = {\n \"name\": \"ChestXRay\",\n \"description\": \"Chest X-ray classification\",\n \"labels\": {\"0\": \"background\", \"1\": \"chest\"},\n \"training\": [{\"image\": \"chest_19.nii.gz\", \"label\": 0}, {\"image\": \"chest_31.nii.gz\", \"label\": 1}],\n \"test\": [\"chest_15.nii.gz\", \"chest_23.nii.gz\"],\n }\n json_str = json.dumps(test_data)\n file_path = os.path.join(tempdir, \"test_data.json\")\n with open(file_path, \"w\") as json_file:\n json_file.write(json_str)\n result = load_decathlon_datalist(file_path, False, \"training\", tempdir)\n self.assertEqual(result[0][\"image\"], os.path.join(tempdir, \"chest_19.nii.gz\"))\n self.assertEqual(result[0][\"label\"], 0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_seg_no_basedir_TestLoadDecathlonDatalist.test_seg_no_basedir.with_tempfile_TemporaryDi.None_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_seg_no_basedir_TestLoadDecathlonDatalist.test_seg_no_basedir.with_tempfile_TemporaryDi.None_1", "embedding": null, "metadata": {"file_path": "tests/test_load_decathlon_datalist.py", "file_name": "test_load_decathlon_datalist.py", "file_type": "text/x-python", "category": "test", "start_line": 58, "end_line": 82, "span_ids": ["TestLoadDecathlonDatalist.test_seg_no_basedir"], "tokens": 314}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadDecathlonDatalist(unittest.TestCase):\n\n def test_seg_no_basedir(self):\n with tempfile.TemporaryDirectory() as tempdir:\n test_data = {\n \"name\": \"Spleen\",\n \"description\": \"Spleen Segmentation\",\n \"labels\": {\"0\": \"background\", \"1\": \"spleen\"},\n \"training\": [\n {\n \"image\": os.path.join(tempdir, \"spleen_19.nii.gz\"),\n \"label\": os.path.join(tempdir, \"spleen_19.nii.gz\"),\n },\n {\n \"image\": os.path.join(tempdir, \"spleen_31.nii.gz\"),\n \"label\": os.path.join(tempdir, \"spleen_31.nii.gz\"),\n },\n ],\n \"test\": [os.path.join(tempdir, \"spleen_15.nii.gz\"), os.path.join(tempdir, \"spleen_23.nii.gz\")],\n }\n json_str = json.dumps(test_data)\n file_path = os.path.join(tempdir, \"test_data.json\")\n with open(file_path, \"w\") as json_file:\n json_file.write(json_str)\n result = load_decathlon_datalist(file_path, True, \"training\", None)\n self.assertEqual(result[0][\"image\"], os.path.join(tempdir, \"spleen_19.nii.gz\"))\n self.assertEqual(result[0][\"label\"], os.path.join(tempdir, \"spleen_19.nii.gz\"))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage_TestLoadImage.test_nibabel_reader.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage_TestLoadImage.test_nibabel_reader.with_tempfile_TemporaryDi.self_assertTupleEqual_res", "embedding": null, "metadata": {"file_path": "tests/test_load_image.py", "file_name": "test_load_image.py", "file_type": "text/x-python", "category": "test", "start_line": 78, "end_line": 94, "span_ids": ["TestLoadImage", "TestLoadImage.test_nibabel_reader"], "tokens": 227}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadImage(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_nibabel_reader(self, input_param, filenames, expected_shape):\n test_image = np.random.rand(128, 128, 128)\n with tempfile.TemporaryDirectory() as tempdir:\n for i, name in enumerate(filenames):\n filenames[i] = os.path.join(tempdir, name)\n nib.save(nib.Nifti1Image(test_image, np.eye(4)), filenames[i])\n result = LoadImage(**input_param)(filenames)\n\n if isinstance(result, tuple):\n result, header = result\n self.assertTrue(\"affine\" in header)\n self.assertEqual(header[\"filename_or_obj\"], os.path.join(tempdir, \"test_image.nii.gz\"))\n np.testing.assert_allclose(header[\"affine\"], np.eye(4))\n np.testing.assert_allclose(header[\"original_affine\"], np.eye(4))\n self.assertTupleEqual(result.shape, expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_reader_TestLoadImage.test_itk_reader.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_reader_TestLoadImage.test_itk_reader.with_tempfile_TemporaryDi.self_assertTupleEqual_res", "embedding": null, "metadata": {"file_path": "tests/test_load_image.py", "file_name": "test_load_image.py", "file_type": "text/x-python", "category": "test", "start_line": 96, "end_line": 112, "span_ids": ["TestLoadImage.test_itk_reader"], "tokens": 224}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadImage(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_6, TEST_CASE_7, TEST_CASE_8, TEST_CASE_9])\n def test_itk_reader(self, input_param, filenames, expected_shape):\n test_image = np.random.rand(128, 128, 128)\n with tempfile.TemporaryDirectory() as tempdir:\n for i, name in enumerate(filenames):\n filenames[i] = os.path.join(tempdir, name)\n itk_np_view = itk.image_view_from_array(test_image)\n itk.imwrite(itk_np_view, filenames[i])\n result = LoadImage(**input_param)(filenames)\n\n if isinstance(result, tuple):\n result, header = result\n self.assertTrue(\"affine\" in header)\n self.assertEqual(header[\"filename_or_obj\"], os.path.join(tempdir, \"test_image.nii.gz\"))\n np.testing.assert_allclose(header[\"affine\"], np.eye(4))\n np.testing.assert_allclose(header[\"original_affine\"], np.eye(4))\n self.assertTupleEqual(result.shape, expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_dicom_series_reader_TestLoadImage.test_itk_dicom_series_reader.self_assertTupleEqual_tup": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_dicom_series_reader_TestLoadImage.test_itk_dicom_series_reader.self_assertTupleEqual_tup", "embedding": null, "metadata": {"file_path": "tests/test_load_image.py", "file_name": "test_load_image.py", "file_type": "text/x-python", "category": "test", "start_line": 112, "end_line": 129, "span_ids": ["TestLoadImage.test_itk_dicom_series_reader"], "tokens": 218}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadImage(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_10, TEST_CASE_11])\n def test_itk_dicom_series_reader(self, input_param, filenames, expected_shape):\n result, header = LoadImage(**input_param)(filenames)\n self.assertTrue(\"affine\" in header)\n self.assertEqual(header[\"filename_or_obj\"], filenames)\n np.testing.assert_allclose(\n header[\"affine\"],\n np.array(\n [\n [0.488281, 0.0, 0.0, -125.0],\n [0.0, 0.488281, 0.0, -128.100006],\n [0.0, 0.0, 68.33333333, -99.480003],\n [0.0, 0.0, 0.0, 1.0],\n ]\n ),\n )\n self.assertTupleEqual(result.shape, expected_shape)\n self.assertTupleEqual(tuple(header[\"spatial_shape\"]), expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_register_TestLoadImage.test_register.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_register_TestLoadImage.test_register.with_tempfile_TemporaryDi.self_assertTupleEqual_res", "embedding": null, "metadata": {"file_path": "tests/test_load_image.py", "file_name": "test_load_image.py", "file_type": "text/x-python", "category": "test", "start_line": 146, "end_line": 158, "span_ids": ["TestLoadImage.test_register"], "tokens": 137}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadImage(unittest.TestCase):\n\n def test_register(self):\n spatial_size = (32, 64, 128)\n test_image = np.random.rand(*spatial_size)\n with tempfile.TemporaryDirectory() as tempdir:\n filename = os.path.join(tempdir, \"test_image.nii.gz\")\n itk_np_view = itk.image_view_from_array(test_image)\n itk.imwrite(itk_np_view, filename)\n\n loader = LoadImage(image_only=False)\n loader.register(ITKReader())\n result, header = loader(filename)\n self.assertTupleEqual(tuple(header[\"spatial_shape\"]), spatial_size)\n self.assertTupleEqual(result.shape, spatial_size)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_kwargs_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_kwargs_", "embedding": null, "metadata": {"file_path": "tests/test_load_image.py", "file_name": "test_load_image.py", "file_type": "text/x-python", "category": "test", "start_line": 169, "end_line": 192, "span_ids": ["TestLoadImage.test_kwargs", "impl:23"], "tokens": 206}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadImage(unittest.TestCase):\n\n def test_kwargs(self):\n spatial_size = (32, 64, 128)\n expected_shape = (128, 64, 32)\n test_image = np.random.rand(*spatial_size)\n with tempfile.TemporaryDirectory() as tempdir:\n filename = os.path.join(tempdir, \"test_image.nii.gz\")\n itk_np_view = itk.image_view_from_array(test_image)\n itk.imwrite(itk_np_view, filename)\n\n loader = LoadImage(image_only=False)\n reader = ITKReader(fallback_only=False)\n loader.register(reader)\n result, header = loader(filename)\n\n reader = ITKReader()\n img = reader.read(filename, fallback_only=False)\n result_raw, header_raw = reader.get_data(img)\n np.testing.assert_allclose(header[\"spatial_shape\"], header_raw[\"spatial_shape\"])\n self.assertTupleEqual(result.shape, result_raw.shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_TestLoadImaged.test_register_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_TestLoadImaged.test_register_", "embedding": null, "metadata": {"file_path": "tests/test_load_imaged.py", "file_name": "test_load_imaged.py", "file_type": "text/x-python", "category": "test", "start_line": 45, "end_line": 62, "span_ids": ["impl:7", "TestLoadImaged.test_register"], "tokens": 159}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadImaged(unittest.TestCase):\n\n def test_register(self):\n spatial_size = (32, 64, 128)\n test_image = np.random.rand(*spatial_size)\n with tempfile.TemporaryDirectory() as tempdir:\n filename = os.path.join(tempdir, \"test_image.nii.gz\")\n itk_np_view = itk.image_view_from_array(test_image)\n itk.imwrite(itk_np_view, filename)\n\n loader = LoadImaged(keys=\"img\")\n loader.register(ITKReader())\n result = loader({\"img\": filename})\n self.assertTupleEqual(tuple(result[\"img_meta_dict\"][\"spatial_shape\"]), spatial_size)\n self.assertTupleEqual(result[\"img\"].shape, spatial_size)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_binary_to_indices.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_binary_to_indices.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_map_binary_to_indices.py", "file_name": "test_map_binary_to_indices.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 66, "span_ids": ["impl:9", "TestMapBinaryToIndices.test_type_shape", "TestMapBinaryToIndices", "docstring"], "tokens": 580}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import map_binary_to_indices\n\nTEST_CASE_1 = [\n {\"label\": np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]]), \"image\": None, \"image_threshold\": 0.0},\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 4, 8]),\n]\n\nTEST_CASE_2 = [\n {\n \"label\": np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]]),\n \"image\": np.array([[[1, 1, 1], [1, 0, 1], [1, 1, 1]]]),\n \"image_threshold\": 0.0,\n },\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n]\n\nTEST_CASE_3 = [\n {\n \"label\": np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]]),\n \"image\": np.array([[[3, 3, 3], [3, 1, 3], [3, 3, 3]]]),\n \"image_threshold\": 1.0,\n },\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n]\n\nTEST_CASE_4 = [\n {\n \"label\": np.array([[[0, 1, 2], [3, 0, 4], [5, 6, 0]]]),\n \"image\": np.array([[[3, 3, 3], [3, 1, 3], [3, 3, 3]]]),\n \"image_threshold\": 1.0,\n },\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n]\n\n\nclass TestMapBinaryToIndices(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4])\n def test_type_shape(self, input_data, expected_fg, expected_bg):\n fg_indices, bg_indices = map_binary_to_indices(**input_data)\n np.testing.assert_allclose(fg_indices, expected_fg)\n np.testing.assert_allclose(bg_indices, expected_bg)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_normalize_intensity.py", "file_name": "test_normalize_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 55, "span_ids": ["docstring"], "tokens": 814}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import NormalizeIntensity\nfrom tests.utils import NumpyImageTestCase2D\n\nTEST_CASES = [\n [{\"nonzero\": True}, np.array([0.0, 3.0, 0.0, 4.0]), np.array([0.0, -1.0, 0.0, 1.0])],\n [\n {\"subtrahend\": np.array([3.5, 3.5, 3.5, 3.5]), \"divisor\": np.array([0.5, 0.5, 0.5, 0.5]), \"nonzero\": True},\n np.array([0.0, 3.0, 0.0, 4.0]),\n np.array([0.0, -1.0, 0.0, 1.0]),\n ],\n [{\"nonzero\": True}, np.array([0.0, 0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0, 0.0])],\n [{\"nonzero\": False}, np.array([0.0, 0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0, 0.0])],\n [{\"nonzero\": False}, np.array([1, 1, 1, 1]), np.array([0.0, 0.0, 0.0, 0.0])],\n [\n {\"nonzero\": False, \"channel_wise\": True, \"subtrahend\": [1, 2, 3]},\n np.ones((3, 2, 2)),\n np.array([[[0.0, 0.0], [0.0, 0.0]], [[-1.0, -1.0], [-1.0, -1.0]], [[-2.0, -2.0], [-2.0, -2.0]]]),\n ],\n [\n {\"nonzero\": True, \"channel_wise\": True, \"subtrahend\": [1, 2, 3], \"divisor\": [0, 0, 2]},\n np.ones((3, 2, 2)),\n np.array([[[0.0, 0.0], [0.0, 0.0]], [[-1.0, -1.0], [-1.0, -1.0]], [[-1.0, -1.0], [-1.0, -1.0]]]),\n ],\n [\n {\"nonzero\": True, \"channel_wise\": False, \"subtrahend\": 2, \"divisor\": 0},\n np.ones((3, 2, 2)),\n np.ones((3, 2, 2)) * -1.0,\n ],\n [\n {\"nonzero\": True, \"channel_wise\": False, \"subtrahend\": np.ones((3, 2, 2)) * 0.5, \"divisor\": 0},\n np.ones((3, 2, 2)),\n np.ones((3, 2, 2)) * 0.5,\n ],\n [\n {\"nonzero\": True, \"channel_wise\": True, \"subtrahend\": np.ones((3, 2, 2)) * 0.5, \"divisor\": [0, 1, 0]},\n np.ones((3, 2, 2)),\n np.ones((3, 2, 2)) * 0.5,\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity.test_channel_wise_TestNormalizeIntensity.test_channel_wise.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity.test_channel_wise_TestNormalizeIntensity.test_channel_wise.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_normalize_intensity.py", "file_name": "test_normalize_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 70, "end_line": 74, "span_ids": ["TestNormalizeIntensity.test_channel_wise"], "tokens": 138}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNormalizeIntensity(NumpyImageTestCase2D):\n\n def test_channel_wise(self):\n normalizer = NormalizeIntensity(nonzero=True, channel_wise=True)\n input_data = np.array([[0.0, 3.0, 0.0, 4.0], [0.0, 4.0, 0.0, 5.0]])\n expected = np.array([[0.0, -1.0, 0.0, 1.0], [0.0, -1.0, 0.0, 1.0]])\n np.testing.assert_allclose(expected, normalizer(input_data))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity.test_value_errors_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity.test_value_errors_", "embedding": null, "metadata": {"file_path": "tests/test_normalize_intensity.py", "file_name": "test_normalize_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 76, "end_line": 88, "span_ids": ["TestNormalizeIntensity.test_value_errors", "impl:3"], "tokens": 151}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNormalizeIntensity(NumpyImageTestCase2D):\n\n def test_value_errors(self):\n input_data = np.array([[0.0, 3.0, 0.0, 4.0], [0.0, 4.0, 0.0, 5.0]])\n normalizer = NormalizeIntensity(nonzero=True, channel_wise=True, subtrahend=[1])\n with self.assertRaises(ValueError):\n normalizer(input_data)\n normalizer = NormalizeIntensity(nonzero=True, channel_wise=True, subtrahend=[1, 2], divisor=[1])\n with self.assertRaises(ValueError):\n normalizer(input_data)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_os_TestNumpyReader.test_npy.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_os_TestNumpyReader.test_npy.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_numpy_reader.py", "file_name": "test_numpy_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 32, "span_ids": ["TestNumpyReader", "TestNumpyReader.test_npy", "docstring"], "tokens": 156}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport numpy as np\n\nfrom monai.data import NumpyReader\n\n\nclass TestNumpyReader(unittest.TestCase):\n def test_npy(self):\n test_data = np.random.randint(0, 256, size=[3, 4, 4])\n with tempfile.TemporaryDirectory() as tempdir:\n filepath = os.path.join(tempdir, \"test_data.npy\")\n np.save(filepath, test_data)\n\n reader = NumpyReader()\n result = reader.get_data(reader.read(filepath))\n self.assertTupleEqual(result[1][\"spatial_shape\"], test_data.shape)\n self.assertTupleEqual(result[0].shape, test_data.shape)\n np.testing.assert_allclose(result[0], test_data)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz1_TestNumpyReader.test_npz1.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz1_TestNumpyReader.test_npz1.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_numpy_reader.py", "file_name": "test_numpy_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 34, "end_line": 44, "span_ids": ["TestNumpyReader.test_npz1"], "tokens": 139}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNumpyReader(unittest.TestCase):\n\n def test_npz1(self):\n test_data1 = np.random.randint(0, 256, size=[3, 4, 4])\n with tempfile.TemporaryDirectory() as tempdir:\n filepath = os.path.join(tempdir, \"test_data.npy\")\n np.save(filepath, test_data1)\n\n reader = NumpyReader()\n result = reader.get_data(reader.read(filepath))\n self.assertTupleEqual(result[1][\"spatial_shape\"], test_data1.shape)\n self.assertTupleEqual(result[0].shape, test_data1.shape)\n np.testing.assert_allclose(result[0], test_data1)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz2_TestNumpyReader.test_npz2.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz2_TestNumpyReader.test_npz2.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_numpy_reader.py", "file_name": "test_numpy_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 46, "end_line": 57, "span_ids": ["TestNumpyReader.test_npz2"], "tokens": 183}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNumpyReader(unittest.TestCase):\n\n def test_npz2(self):\n test_data1 = np.random.randint(0, 256, size=[3, 4, 4])\n test_data2 = np.random.randint(0, 256, size=[3, 4, 4])\n with tempfile.TemporaryDirectory() as tempdir:\n filepath = os.path.join(tempdir, \"test_data.npz\")\n np.savez(filepath, test_data1, test_data2)\n\n reader = NumpyReader()\n result = reader.get_data(reader.read(filepath))\n self.assertTupleEqual(result[1][\"spatial_shape\"], test_data1.shape)\n self.assertTupleEqual(result[0].shape, (2, 3, 4, 4))\n np.testing.assert_allclose(result[0], np.stack([test_data1, test_data2]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz3_TestNumpyReader.test_npz3.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz3_TestNumpyReader.test_npz3.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_numpy_reader.py", "file_name": "test_numpy_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 59, "end_line": 70, "span_ids": ["TestNumpyReader.test_npz3"], "tokens": 197}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNumpyReader(unittest.TestCase):\n\n def test_npz3(self):\n test_data1 = np.random.randint(0, 256, size=[3, 4, 4])\n test_data2 = np.random.randint(0, 256, size=[3, 4, 4])\n with tempfile.TemporaryDirectory() as tempdir:\n filepath = os.path.join(tempdir, \"test_data.npz\")\n np.savez(filepath, test1=test_data1, test2=test_data2)\n\n reader = NumpyReader(npz_keys=[\"test1\", \"test2\"])\n result = reader.get_data(reader.read(filepath))\n self.assertTupleEqual(result[1][\"spatial_shape\"], test_data1.shape)\n self.assertTupleEqual(result[0].shape, (2, 3, 4, 4))\n np.testing.assert_allclose(result[0], np.stack([test_data1, test_data2]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npy_pickle_TestNumpyReader.test_npy_pickle.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npy_pickle_TestNumpyReader.test_npy_pickle.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_numpy_reader.py", "file_name": "test_numpy_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 72, "end_line": 81, "span_ids": ["TestNumpyReader.test_npy_pickle"], "tokens": 134}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNumpyReader(unittest.TestCase):\n\n def test_npy_pickle(self):\n test_data = {\"test\": np.random.randint(0, 256, size=[3, 4, 4])}\n with tempfile.TemporaryDirectory() as tempdir:\n filepath = os.path.join(tempdir, \"test_data.npy\")\n np.save(filepath, test_data, allow_pickle=True)\n\n reader = NumpyReader()\n result = reader.get_data(reader.read(filepath))[0].item()\n self.assertTupleEqual(result[\"test\"].shape, test_data[\"test\"].shape)\n np.testing.assert_allclose(result[\"test\"], test_data[\"test\"])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_kwargs_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_kwargs_", "embedding": null, "metadata": {"file_path": "tests/test_numpy_reader.py", "file_name": "test_numpy_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 83, "end_line": 96, "span_ids": ["TestNumpyReader.test_kwargs", "impl"], "tokens": 138}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNumpyReader(unittest.TestCase):\n\n def test_kwargs(self):\n test_data = {\"test\": np.random.randint(0, 256, size=[3, 4, 4])}\n with tempfile.TemporaryDirectory() as tempdir:\n filepath = os.path.join(tempdir, \"test_data.npy\")\n np.save(filepath, test_data, allow_pickle=True)\n\n reader = NumpyReader(mmap_mode=\"r\")\n result = reader.get_data(reader.read(filepath, mmap_mode=None))[0].item()\n self.assertTupleEqual(result[\"test\"].shape, test_data[\"test\"].shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_unittest_build_test_cases.return.test_cases": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_unittest_build_test_cases.return.test_cases", "embedding": null, "metadata": {"file_path": "tests/test_optim_novograd.py", "file_name": "test_optim_novograd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 38, "span_ids": ["build_test_cases", "docstring"], "tokens": 224}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\nfrom torch.autograd import Variable\n\nfrom monai.optimizers import Novograd\n\n\ndef build_test_cases(data):\n [weight, bias, input] = data\n weight = Variable(weight, requires_grad=True)\n bias = Variable(bias, requires_grad=True)\n input = Variable(input)\n\n default_params = {\"lr\": 1e-3, \"amsgrad\": False, \"grad_averaging\": False, \"weight_decay\": 0}\n\n test_case_same_param = [{\"params\": [weight, bias]}]\n test_case_diff_param = [\n {\"params\": [weight]},\n {\"params\": [bias], \"lr\": 1e-2, \"amsgrad\": True, \"grad_averaging\": True, \"weight_decay\": 0.1},\n ]\n\n test_cases = []\n test_cases.append([test_case_same_param, default_params, weight, bias, input])\n test_cases.append([test_case_diff_param, default_params, weight, bias, input])\n return test_cases", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TEST_CASES_ALL_if_torch_cuda_device_coun.TEST_CASES_ALL_build_t": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TEST_CASES_ALL_if_torch_cuda_device_coun.TEST_CASES_ALL_build_t", "embedding": null, "metadata": {"file_path": "tests/test_optim_novograd.py", "file_name": "test_optim_novograd.py", "file_type": "text/x-python", "category": "test", "start_line": 41, "end_line": 72, "span_ids": ["impl"], "tokens": 216}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASES_ALL = build_test_cases( # normal parameters\n [\n torch.randn(10, 5),\n torch.randn(10),\n torch.randn(5),\n ]\n)\n\nTEST_CASES_ALL += build_test_cases( # non-contiguous parameters\n [\n torch.randn(10, 5, 2)[..., 0],\n torch.randn(10, 2)[..., 0],\n torch.randn(5),\n ]\n)\n\nif torch.cuda.is_available():\n TEST_CASES_ALL += build_test_cases( # gpu parameters\n [\n torch.randn(10, 5).cuda(),\n torch.randn(10).cuda(),\n torch.randn(5).cuda(),\n ]\n )\nif torch.cuda.device_count() > 1:\n TEST_CASES_ALL += build_test_cases( # multi-gpu parameters\n [\n torch.randn(10, 5).cuda(0),\n torch.randn(10).cuda(1),\n torch.randn(5).cuda(0),\n ]\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd_TestNovograd.test_step.self_assertLess_fn_item": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd_TestNovograd.test_step.self_assertLess_fn_item", "embedding": null, "metadata": {"file_path": "tests/test_optim_novograd.py", "file_name": "test_optim_novograd.py", "file_type": "text/x-python", "category": "test", "start_line": 75, "end_line": 97, "span_ids": ["TestNovograd.test_step", "TestNovograd"], "tokens": 187}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNovograd(unittest.TestCase):\n \"\"\"\n This class takes `Pytorch's test_optim function\n `_ for reference.\n \"\"\"\n\n @parameterized.expand(TEST_CASES_ALL)\n def test_step(self, specify_param, default_param, weight, bias, input):\n optimizer = Novograd(specify_param, **default_param)\n\n def fn():\n optimizer.zero_grad()\n y = weight.mv(input)\n if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():\n y = y.cuda(bias.get_device())\n loss = (y + bias).pow(2).sum()\n loss.backward()\n return loss\n\n initial_value = fn().item()\n for _ in range(100):\n optimizer.step(fn)\n self.assertLess(fn().item(), initial_value)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd.test_ill_arg_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd.test_ill_arg_", "embedding": null, "metadata": {"file_path": "tests/test_optim_novograd.py", "file_name": "test_optim_novograd.py", "file_type": "text/x-python", "category": "test", "start_line": 99, "end_line": 115, "span_ids": ["TestNovograd.test_ill_arg", "impl:8"], "tokens": 191}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNovograd(unittest.TestCase):\n\n def test_ill_arg(self):\n param = {\"params\": [Variable(torch.randn(10), requires_grad=True)]}\n with self.assertRaisesRegex(ValueError, \"Invalid learning rate: -1\"):\n Novograd(param, lr=-1)\n with self.assertRaisesRegex(ValueError, \"Invalid epsilon value: -1\"):\n Novograd(param, eps=-1)\n with self.assertRaisesRegex(ValueError, \"Invalid beta parameter at index 0: 1.0\"):\n Novograd(param, betas=(1.0, 0.98))\n with self.assertRaisesRegex(ValueError, \"Invalid beta parameter at index 1: -1\"):\n Novograd(param, betas=(0.9, -1))\n with self.assertRaisesRegex(ValueError, \"Invalid weight_decay value: -1\"):\n Novograd(param, weight_decay=-1)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_unittest_TestParallelExecution.test_single_gpu.trainer_run_fake_data_str": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_unittest_TestParallelExecution.test_single_gpu.trainer_run_fake_data_str", "embedding": null, "metadata": {"file_path": "tests/test_parallel_execution.py", "file_name": "test_parallel_execution.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["TestParallelExecution.test_single_gpu", "fake_loss", "TestParallelExecution", "docstring", "fake_data_stream"], "tokens": 219}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\nimport warnings\n\nimport torch\n\nfrom monai.engines import create_multigpu_supervised_trainer\nfrom tests.utils import skip_if_no_cuda\n\n\ndef fake_loss(y_pred, y):\n return (y_pred[0] + y).sum()\n\n\ndef fake_data_stream():\n while True:\n yield torch.rand((10, 1, 64, 64)), torch.rand((10, 1, 64, 64))\n\n\nclass TestParallelExecution(unittest.TestCase):\n \"\"\"\n Tests single GPU, multi GPU, and CPU execution with the Ignite supervised trainer.\n \"\"\"\n\n @skip_if_no_cuda\n def test_single_gpu(self):\n device = torch.device(\"cuda:0\")\n net = torch.nn.Conv2d(1, 1, 3, padding=1).to(device)\n opt = torch.optim.Adam(net.parameters(), 1e-3)\n trainer = create_multigpu_supervised_trainer(net, opt, fake_loss, [device])\n trainer.run(fake_data_stream(), 2, 2)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_TestParallelExecution.test_multi_gpu_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_TestParallelExecution.test_multi_gpu_", "embedding": null, "metadata": {"file_path": "tests/test_parallel_execution.py", "file_name": "test_parallel_execution.py", "file_type": "text/x-python", "category": "test", "start_line": 43, "end_line": 65, "span_ids": ["TestParallelExecution.test_multi_gpu", "TestParallelExecution.test_cpu", "impl"], "tokens": 210}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestParallelExecution(unittest.TestCase):\n\n @skip_if_no_cuda\n def test_multi_gpu(self):\n device = torch.device(\"cuda\")\n net = torch.nn.Conv2d(1, 1, 3, padding=1).to(device)\n opt = torch.optim.Adam(net.parameters(), 1e-3)\n\n with warnings.catch_warnings():\n warnings.simplefilter(\"ignore\") # ignore warnings about imbalanced GPU memory\n\n trainer = create_multigpu_supervised_trainer(net, opt, fake_loss, None)\n\n trainer.run(fake_data_stream(), 2, 2)\n\n def test_cpu(self):\n net = torch.nn.Conv2d(1, 1, 3, padding=1)\n opt = torch.optim.Adam(net.parameters(), 1e-3)\n trainer = create_multigpu_supervised_trainer(net, opt, fake_loss, [])\n trainer.run(fake_data_stream(), 2, 2)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_sys_TestPatchDataset.test_shape.self_assertEqual_output_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_sys_TestPatchDataset.test_shape.self_assertEqual_output_", "embedding": null, "metadata": {"file_path": "tests/test_patch_dataset.py", "file_name": "test_patch_dataset.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 39, "span_ids": ["TestPatchDataset", "TestPatchDataset.test_shape", "identity", "docstring"], "tokens": 199}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import sys\nimport unittest\n\nimport numpy as np\n\nfrom monai.data import DataLoader, Dataset, PatchDataset\nfrom monai.transforms import RandShiftIntensity, RandSpatialCropSamples\nfrom monai.utils import set_determinism\n\n\ndef identity(x):\n # simple transform that returns the input itself\n return x\n\n\nclass TestPatchDataset(unittest.TestCase):\n def test_shape(self):\n test_dataset = [\"vwxyz\", \"hello\", \"world\"]\n n_per_image = len(test_dataset[0])\n\n result = PatchDataset(dataset=test_dataset, patch_func=identity, samples_per_image=n_per_image)\n\n output = []\n n_workers = 0 if sys.platform == \"win32\" else 2\n for item in DataLoader(result, batch_size=3, num_workers=n_workers):\n output.append(\"\".join(item))\n expected = [\"vwx\", \"yzh\", \"ell\", \"owo\", \"rld\"]\n self.assertEqual(output, expected)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_TestPatchDataset.test_loading_array_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_TestPatchDataset.test_loading_array_", "embedding": null, "metadata": {"file_path": "tests/test_patch_dataset.py", "file_name": "test_patch_dataset.py", "file_type": "text/x-python", "category": "test", "start_line": 42, "end_line": 88, "span_ids": ["TestPatchDataset.test_loading_array", "impl"], "tokens": 500}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPatchDataset(unittest.TestCase):\n\n def test_loading_array(self):\n set_determinism(seed=1234)\n # image dataset\n images = [np.arange(16, dtype=float).reshape(1, 4, 4), np.arange(16, dtype=float).reshape(1, 4, 4)]\n # image patch sampler\n n_samples = 8\n sampler = RandSpatialCropSamples(roi_size=(3, 3), num_samples=n_samples, random_center=True, random_size=False)\n\n # image level\n patch_intensity = RandShiftIntensity(offsets=1.0, prob=1.0)\n image_ds = Dataset(images, transform=patch_intensity)\n # patch level\n ds = PatchDataset(dataset=image_ds, patch_func=sampler, samples_per_image=n_samples, transform=patch_intensity)\n\n np.testing.assert_equal(len(ds), n_samples * len(images))\n # use the patch dataset, length: len(images) x samplers_per_image\n for item in DataLoader(ds, batch_size=2, shuffle=False, num_workers=0):\n np.testing.assert_equal(tuple(item.shape), (2, 1, 3, 3))\n np.testing.assert_allclose(\n item[0],\n np.array(\n [[[1.779992, 2.779992, 3.779992], [5.779992, 6.779992, 7.779992], [9.779992, 10.779992, 11.779992]]]\n ),\n rtol=1e-5,\n )\n if sys.platform != \"win32\":\n for item in DataLoader(ds, batch_size=2, shuffle=False, num_workers=2):\n np.testing.assert_equal(tuple(item.shape), (2, 1, 3, 3))\n np.testing.assert_allclose(\n item[0],\n np.array(\n [\n [\n [5.025618, 6.025618, 7.025618],\n [9.025618, 10.025618, 11.025618],\n [13.025618, 14.025618, 15.025618],\n ]\n ]\n ),\n rtol=1e-5,\n )\n set_determinism(seed=None)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_os_TEST_CASE_7._128_128_3_test_im": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_os_TEST_CASE_7._128_128_3_test_im", "embedding": null, "metadata": {"file_path": "tests/test_pil_reader.py", "file_name": "test_pil_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 34, "span_ids": ["docstring"], "tokens": 276}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport numpy as np\nfrom parameterized import parameterized\nfrom PIL import Image\n\nfrom monai.data import PILReader\n\nTEST_CASE_1 = [(128, 128), [\"test_image.png\"], (128, 128), (128, 128)]\n\nTEST_CASE_2 = [(128, 128, 3), [\"test_image.png\"], (128, 128, 3), (128, 128)]\n\nTEST_CASE_3 = [(128, 128, 4), [\"test_image.png\"], (128, 128, 4), (128, 128)]\n\nTEST_CASE_4 = [(128, 128), [\"test_image1.png\", \"test_image2.png\", \"test_image3.png\"], (3, 128, 128), (128, 128)]\n\nTEST_CASE_5 = [(128, 128, 3), [\"test_image.jpg\"], (128, 128, 3), (128, 128)]\n\nTEST_CASE_6 = [(128, 128, 3), [\"test_image.bmp\"], (128, 128, 3), (128, 128)]\n\nTEST_CASE_7 = [(128, 128, 3), [\"test_image.png\"], (128, 128, 2), (128, 128)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader_TestPNGReader.test_shape_value.if_result_0_shape_tes.else_.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader_TestPNGReader.test_shape_value.if_result_0_shape_tes.else_.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_pil_reader.py", "file_name": "test_pil_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 37, "end_line": 55, "span_ids": ["TestPNGReader", "TestPNGReader.test_shape_value"], "tokens": 261}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPNGReader(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6])\n def test_shape_value(self, data_shape, filenames, expected_shape, meta_shape):\n test_image = np.random.randint(0, 256, size=data_shape)\n with tempfile.TemporaryDirectory() as tempdir:\n for i, name in enumerate(filenames):\n filenames[i] = os.path.join(tempdir, name)\n Image.fromarray(test_image.astype(\"uint8\")).save(filenames[i])\n reader = PILReader(mode=\"r\")\n result = reader.get_data(reader.read(filenames))\n # load image by PIL and compare the result\n test_image = np.asarray(Image.open(filenames[0]))\n\n self.assertTupleEqual(tuple(result[1][\"spatial_shape\"]), meta_shape)\n self.assertTupleEqual(result[0].shape, expected_shape)\n if result[0].shape == test_image.shape:\n np.testing.assert_allclose(result[0], test_image)\n else:\n np.testing.assert_allclose(result[0], np.tile(test_image, [result[0].shape[0], 1, 1]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader.test_converter_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader.test_converter_", "embedding": null, "metadata": {"file_path": "tests/test_pil_reader.py", "file_name": "test_pil_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 57, "end_line": 76, "span_ids": ["TestPNGReader.test_converter", "impl:15"], "tokens": 216}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPNGReader(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_7])\n def test_converter(self, data_shape, filenames, expected_shape, meta_shape):\n test_image = np.random.randint(0, 256, size=data_shape)\n with tempfile.TemporaryDirectory() as tempdir:\n for i, name in enumerate(filenames):\n filenames[i] = os.path.join(tempdir, name)\n Image.fromarray(test_image.astype(\"uint8\")).save(filenames[i])\n reader = PILReader(converter=lambda image: image.convert(\"LA\"))\n result = reader.get_data(reader.read(filenames, mode=\"r\"))\n # load image by PIL and compare the result\n test_image = np.asarray(Image.open(filenames[0]).convert(\"LA\"))\n\n self.assertTupleEqual(tuple(result[1][\"spatial_shape\"]), meta_shape)\n self.assertTupleEqual(result[0].shape, expected_shape)\n np.testing.assert_allclose(result[0], test_image)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_polyval.py", "file_name": "test_polyval.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 28, "span_ids": ["docstring"], "tokens": 220}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks.layers import polyval\n\nTEST_CASES = [\n [[1.0, 2.5, -4.2], 5.0, 33.3],\n [[2, 1, 0], 3.0, 21],\n [[2, 1, 0], [3.0, 3.0], [21, 21]],\n [torch.as_tensor([2, 1, 0]), [3.0, 3.0], [21, 21]],\n [torch.as_tensor([2, 1, 0]), torch.as_tensor([3.0, 3.0]), [21, 21]],\n [torch.as_tensor([2, 1, 0]), np.array([3.0, 3.0]), [21, 21]],\n [[], np.array([3.0, 3.0]), [0, 0]],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_TestPolyval_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_TestPolyval_", "embedding": null, "metadata": {"file_path": "tests/test_polyval.py", "file_name": "test_polyval.py", "file_type": "text/x-python", "category": "test", "start_line": 31, "end_line": 53, "span_ids": ["impl:3", "TestPolyval", "TestPolyval.test_floats", "TestPolyval.test_gpu"], "tokens": 211}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPolyval(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_floats(self, coef, x, expected):\n result = polyval(coef, x)\n np.testing.assert_allclose(result.cpu().numpy(), expected)\n\n @parameterized.expand(TEST_CASES)\n def test_gpu(self, coef, x, expected):\n device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n x = torch.as_tensor(x, dtype=torch.float, device=device)\n x.requires_grad = True\n coef = torch.as_tensor(coef, dtype=torch.float, device=device)\n coef.requires_grad = True\n result = polyval(coef, x)\n if coef.shape[0] > 0: # empty coef doesn't have grad\n result.mean().backward()\n np.testing.assert_allclose(coef.grad.shape, coef.shape)\n np.testing.assert_allclose(result.cpu().detach().numpy(), expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smoothd.py_unittest_TEST_CASE_2._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smoothd.py_unittest_TEST_CASE_2._", "embedding": null, "metadata": {"file_path": "tests/test_rand_gaussian_smoothd.py", "file_name": "test_rand_gaussian_smoothd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 39, "span_ids": ["docstring"], "tokens": 512}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandGaussianSmoothd\n\nTEST_CASE_1 = [\n {\"keys\": \"img\", \"sigma_x\": (0.5, 1.5), \"prob\": 1.0},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[0.71806467, 0.9074683, 0.71806467], [1.0718315, 1.3545481, 1.0718315], [1.0337002, 1.306359, 1.0337002]],\n [[2.0318885, 2.5678391, 2.0318885], [2.6795788, 3.3863702, 2.6795788], [2.3475242, 2.9667296, 2.3475242]],\n ]\n ),\n]\n\nTEST_CASE_2 = [\n {\"keys\": \"img\", \"sigma_x\": (0.5, 1.5), \"sigma_y\": (0.5, 1.0), \"prob\": 1.0},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[0.7686928, 0.9848021, 0.7686928], [1.1474025, 1.4699818, 1.1474024], [1.1065826, 1.4176859, 1.1065826]],\n [[2.1751494, 2.7866683, 2.1751497], [2.8685062, 3.6749542, 2.8685062], [2.5130394, 3.219552, 2.5130394]],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smoothd.py_TEST_CASE_3_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smoothd.py_TEST_CASE_3_", "embedding": null, "metadata": {"file_path": "tests/test_rand_gaussian_smoothd.py", "file_name": "test_rand_gaussian_smoothd.py", "file_type": "text/x-python", "category": "test", "start_line": 41, "end_line": 64, "span_ids": ["impl:7", "TestRandGaussianSmoothd.test_value", "impl:5", "TestRandGaussianSmoothd"], "tokens": 363}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_3 = [\n {\"keys\": \"img\", \"sigma_x\": (0.5, 1.5), \"sigma_y\": (0.5, 1.0), \"approx\": \"scalespace\", \"prob\": 1.0},\n {\"img\": np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])},\n np.array(\n [\n [[0.8128456, 0.96736777, 0.8128456], [1.2742369, 1.5164697, 1.2742369], [1.2800367, 1.5233722, 1.2800368]],\n [[2.3825073, 2.8354228, 2.3825073], [3.1855922, 3.7911744, 3.1855922], [2.8496985, 3.391427, 2.8496985]],\n ]\n ),\n]\n\n\nclass TestRandGaussianSmoothd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_value(self, argments, image, expected_data):\n converter = RandGaussianSmoothd(**argments)\n converter.set_random_state(seed=0)\n result = converter(image)\n np.testing.assert_allclose(result[\"img\"], expected_data, rtol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shift.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shift.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_histogram_shift.py", "file_name": "test_rand_histogram_shift.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 49, "span_ids": ["TestRandHistogramShift", "impl:3", "TestRandHistogramShift.test_rand_histogram_shift", "docstring"], "tokens": 408}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandHistogramShift\n\nTEST_CASES = [\n [\n {\"num_control_points\": 5, \"prob\": 0.0},\n {\"img\": np.arange(8).reshape((1, 2, 2, 2))},\n np.arange(8).reshape((1, 2, 2, 2)),\n ],\n [\n {\"num_control_points\": 5, \"prob\": 0.9},\n {\"img\": np.arange(8).reshape((1, 2, 2, 2)).astype(np.float32)},\n np.array([[[[0.0, 0.57227867], [1.1391707, 1.68990281]], [[2.75833219, 4.34445884], [5.70913743, 7.0]]]]),\n ],\n [\n {\"num_control_points\": (5, 20), \"prob\": 0.9},\n {\"img\": np.arange(8).reshape((1, 2, 2, 2)).astype(np.float32)},\n np.array([[[[0.0, 1.17472492], [2.21553091, 2.88292011]], [[3.98407301, 5.01302123], [6.09275004, 7.0]]]]),\n ],\n]\n\n\nclass TestRandHistogramShift(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_rand_histogram_shift(self, input_param, input_data, expected_val):\n g = RandHistogramShift(**input_param)\n g.set_random_state(123)\n result = g(**input_data)\n np.testing.assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shiftd.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shiftd.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_rand_histogram_shiftd.py", "file_name": "test_rand_histogram_shiftd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 45, "span_ids": ["docstring"], "tokens": 484}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandHistogramShiftD\n\nTEST_CASES = [\n [\n {\"keys\": (\"img\",), \"num_control_points\": 5, \"prob\": 0.0},\n {\"img\": np.arange(8).reshape((1, 2, 2, 2)), \"seg\": np.ones(8).reshape((1, 2, 2, 2))},\n {\"img\": np.arange(8).reshape((1, 2, 2, 2)), \"seg\": np.ones(8).reshape((1, 2, 2, 2))},\n ],\n [\n {\"keys\": (\"img\",), \"num_control_points\": 5, \"prob\": 0.9},\n {\"img\": np.arange(8).reshape((1, 2, 2, 2)).astype(np.float32), \"seg\": np.ones(8).reshape((1, 2, 2, 2))},\n {\n \"img\": np.array(\n [[[[0.0, 0.57227867], [1.1391707, 1.68990281]], [[2.75833219, 4.34445884], [5.70913743, 7.0]]]]\n ),\n \"seg\": np.ones(8).reshape((1, 2, 2, 2)),\n },\n ],\n [\n {\"keys\": (\"img\",), \"num_control_points\": (5, 20), \"prob\": 0.9},\n {\"img\": np.arange(8).reshape((1, 2, 2, 2)).astype(np.float32), \"seg\": np.ones(8).reshape((1, 2, 2, 2))},\n {\n \"img\": np.array(\n [[[[0.0, 1.17472492], [2.21553091, 2.88292011]], [[3.98407301, 5.01302123], [6.09275004, 7.0]]]]\n ),\n \"seg\": np.ones(8).reshape((1, 2, 2, 2)),\n },\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shiftd.py_TestRandHistogramShiftD_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shiftd.py_TestRandHistogramShiftD_", "embedding": null, "metadata": {"file_path": "tests/test_rand_histogram_shiftd.py", "file_name": "test_rand_histogram_shiftd.py", "file_type": "text/x-python", "category": "test", "start_line": 48, "end_line": 62, "span_ids": ["impl:3", "TestRandHistogramShiftD.test_rand_histogram_shiftd", "TestRandHistogramShiftD"], "tokens": 130}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandHistogramShiftD(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_rand_histogram_shiftd(self, input_param, input_data, expected_val):\n g = RandHistogramShiftD(**input_param)\n g.set_random_state(123)\n res = g(input_data)\n for key in res:\n result = res[key]\n expected = expected_val[key] if isinstance(expected_val, dict) else expected_val\n np.testing.assert_allclose(result, expected, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_unittest_TEST_CASE_1._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_unittest_TEST_CASE_1._", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_crop_samples.py", "file_name": "test_rand_spatial_crop_samples.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 42, "span_ids": ["docstring"], "tokens": 407}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandSpatialCropSamples\n\nTEST_CASE_1 = [\n {\"roi_size\": [3, 3, 3], \"num_samples\": 4, \"random_center\": True, \"random_size\": False},\n np.arange(192).reshape(3, 4, 4, 4),\n [(3, 3, 3, 3), (3, 3, 3, 3), (3, 3, 3, 3), (3, 3, 3, 3)],\n np.array(\n [\n [\n [[21, 22, 23], [25, 26, 27], [29, 30, 31]],\n [[37, 38, 39], [41, 42, 43], [45, 46, 47]],\n [[53, 54, 55], [57, 58, 59], [61, 62, 63]],\n ],\n [\n [[85, 86, 87], [89, 90, 91], [93, 94, 95]],\n [[101, 102, 103], [105, 106, 107], [109, 110, 111]],\n [[117, 118, 119], [121, 122, 123], [125, 126, 127]],\n ],\n [\n [[149, 150, 151], [153, 154, 155], [157, 158, 159]],\n [[165, 166, 167], [169, 170, 171], [173, 174, 175]],\n [[181, 182, 183], [185, 186, 187], [189, 190, 191]],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TEST_CASE_2_TEST_CASE_2._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TEST_CASE_2_TEST_CASE_2._", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_crop_samples.py", "file_name": "test_rand_spatial_crop_samples.py", "file_type": "text/x-python", "category": "test", "start_line": 44, "end_line": 67, "span_ids": ["impl:3"], "tokens": 430}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_2 = [\n {\"roi_size\": [3, 3, 3], \"num_samples\": 8, \"random_center\": False, \"random_size\": True},\n np.arange(192).reshape(3, 4, 4, 4),\n [(3, 4, 4, 3), (3, 4, 3, 3), (3, 3, 4, 4), (3, 4, 4, 4), (3, 3, 3, 4), (3, 3, 3, 3), (3, 3, 3, 3), (3, 3, 3, 3)],\n np.array(\n [\n [\n [[21, 22, 23], [25, 26, 27], [29, 30, 31]],\n [[37, 38, 39], [41, 42, 43], [45, 46, 47]],\n [[53, 54, 55], [57, 58, 59], [61, 62, 63]],\n ],\n [\n [[85, 86, 87], [89, 90, 91], [93, 94, 95]],\n [[101, 102, 103], [105, 106, 107], [109, 110, 111]],\n [[117, 118, 119], [121, 122, 123], [125, 126, 127]],\n ],\n [\n [[149, 150, 151], [153, 154, 155], [157, 158, 159]],\n [[165, 166, 167], [169, 170, 171], [173, 174, 175]],\n [[181, 182, 183], [185, 186, 187], [189, 190, 191]],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TestRandSpatialCropSamples_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TestRandSpatialCropSamples_", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_crop_samples.py", "file_name": "test_rand_spatial_crop_samples.py", "file_type": "text/x-python", "category": "test", "start_line": 70, "end_line": 85, "span_ids": ["impl:5", "TestRandSpatialCropSamples", "TestRandSpatialCropSamples.test_shape"], "tokens": 136}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandSpatialCropSamples(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2])\n def test_shape(self, input_param, input_data, expected_shape, expected_last_item):\n xform = RandSpatialCropSamples(**input_param)\n xform.set_random_state(1234)\n result = xform(input_data)\n\n np.testing.assert_equal(len(result), input_param[\"num_samples\"])\n for item, expected in zip(result, expected_shape):\n self.assertTupleEqual(item.shape, expected)\n np.testing.assert_allclose(result[-1], expected_last_item)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_unittest_TEST_CASE_1._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_unittest_TEST_CASE_1._", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_crop_samplesd.py", "file_name": "test_rand_spatial_crop_samplesd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 39, "span_ids": ["docstring"], "tokens": 433}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import Compose, RandSpatialCropSamplesd, ToTensord\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\", \"seg\"], \"num_samples\": 4, \"roi_size\": [2, 2, 2], \"random_center\": True},\n {\"img\": np.arange(81).reshape(3, 3, 3, 3), \"seg\": np.arange(81, 0, -1).reshape(3, 3, 3, 3)},\n [(3, 3, 3, 2), (3, 2, 2, 2), (3, 3, 3, 2), (3, 3, 2, 2)],\n {\n \"img\": np.array(\n [\n [[[0, 1], [3, 4]], [[9, 10], [12, 13]], [[18, 19], [21, 22]]],\n [[[27, 28], [30, 31]], [[36, 37], [39, 40]], [[45, 46], [48, 49]]],\n [[[54, 55], [57, 58]], [[63, 64], [66, 67]], [[72, 73], [75, 76]]],\n ]\n ),\n \"seg\": np.array(\n [\n [[[81, 80], [78, 77]], [[72, 71], [69, 68]], [[63, 62], [60, 59]]],\n [[[54, 53], [51, 50]], [[45, 44], [42, 41]], [[36, 35], [33, 32]]],\n [[[27, 26], [24, 23]], [[18, 17], [15, 14]], [[9, 8], [6, 5]]],\n ]\n ),\n },\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_TEST_CASE_2_TEST_CASE_2._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_TEST_CASE_2_TEST_CASE_2._", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_crop_samplesd.py", "file_name": "test_rand_spatial_crop_samplesd.py", "file_type": "text/x-python", "category": "test", "start_line": 41, "end_line": 61, "span_ids": ["impl:3"], "tokens": 555}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_2 = [\n {\"keys\": [\"img\", \"seg\"], \"num_samples\": 8, \"roi_size\": [2, 2, 3], \"random_center\": False},\n {\"img\": np.arange(81).reshape(3, 3, 3, 3), \"seg\": np.arange(81, 0, -1).reshape(3, 3, 3, 3)},\n [(3, 3, 3, 3), (3, 2, 3, 3), (3, 2, 2, 3), (3, 2, 3, 3), (3, 3, 3, 3), (3, 3, 3, 3), (3, 2, 2, 3), (3, 3, 2, 3)],\n {\n \"img\": np.array(\n [\n [[[0, 1, 2], [3, 4, 5]], [[9, 10, 11], [12, 13, 14]], [[18, 19, 20], [21, 22, 23]]],\n [[[27, 28, 29], [30, 31, 32]], [[36, 37, 38], [39, 40, 41]], [[45, 46, 47], [48, 49, 50]]],\n [[[54, 55, 56], [57, 58, 59]], [[63, 64, 65], [66, 67, 68]], [[72, 73, 74], [75, 76, 77]]],\n ]\n ),\n \"seg\": np.array(\n [\n [[[81, 80, 79], [78, 77, 76]], [[72, 71, 70], [69, 68, 67]], [[63, 62, 61], [60, 59, 58]]],\n [[[54, 53, 52], [51, 50, 49]], [[45, 44, 43], [42, 41, 40]], [[36, 35, 34], [33, 32, 31]]],\n [[[27, 26, 25], [24, 23, 22]], [[18, 17, 16], [15, 14, 13]], [[9, 8, 7], [6, 5, 4]]],\n ]\n ),\n },\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize_with_pad_or_cropd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize_with_pad_or_cropd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_resize_with_pad_or_cropd.py", "file_name": "test_resize_with_pad_or_cropd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 58, "span_ids": ["TestResizeWithPadOrCropd.test_pad_shape", "impl:3", "TestResizeWithPadOrCropd", "docstring"], "tokens": 435}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import ResizeWithPadOrCropd\n\nTEST_CASES = [\n [\n {\"keys\": \"img\", \"spatial_size\": [15, 8, 8], \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n (3, 15, 8, 8),\n ],\n [\n {\"keys\": \"img\", \"spatial_size\": [15, 4, 8], \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n (3, 15, 4, 8),\n ],\n [\n {\"keys\": \"img\", \"spatial_size\": [15, 4, -1], \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n (3, 15, 4, 4),\n ],\n [\n {\"keys\": \"img\", \"spatial_size\": [15, 4, -1], \"mode\": \"reflect\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n (3, 15, 4, 4),\n ],\n [\n {\"keys\": \"img\", \"spatial_size\": [-1, -1, -1], \"mode\": \"reflect\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n (3, 8, 8, 4),\n ],\n]\n\n\nclass TestResizeWithPadOrCropd(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_pad_shape(self, input_param, input_data, expected_val):\n paddcroper = ResizeWithPadOrCropd(**input_param)\n result = paddcroper(input_data)\n np.testing.assert_allclose(result[\"img\"].shape, expected_val)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_senet.py_TestPretrainedSENET_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_senet.py_TestPretrainedSENET_", "embedding": null, "metadata": {"file_path": "tests/test_senet.py", "file_name": "test_senet.py", "file_type": "text/x-python", "category": "test", "start_line": 62, "end_line": 91, "span_ids": ["TestPretrainedSENET.test_senet_shape", "TestPretrainedSENET", "impl:24", "TestPretrainedSENET.test_pretrain_consistency"], "tokens": 336}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPretrainedSENET(unittest.TestCase):\n @parameterized.expand([TEST_CASE_PRETRAINED_1])\n def test_senet_shape(self, model, input_param):\n net = test_pretrained_networks(model, input_param, device)\n input_data = torch.randn(3, 3, 64, 64).to(device)\n expected_shape = (3, 2)\n net = net.to(device)\n with eval_mode(net):\n result = net(input_data)\n self.assertEqual(result.shape, expected_shape)\n\n @parameterized.expand([TEST_CASE_PRETRAINED_1])\n @skipUnless(has_cadene_pretrain, \"Requires `pretrainedmodels` package.\")\n def test_pretrain_consistency(self, model, input_param):\n input_data = torch.randn(1, 3, 64, 64).to(device)\n net = test_pretrained_networks(model, input_param, device)\n with eval_mode(net):\n result = net.features(input_data)\n cadene_net = pretrainedmodels.se_resnet50().to(device)\n with eval_mode(cadene_net):\n expected_result = cadene_net.features(input_data)\n # The difference between Cadene's senet and our version is that\n # we use nn.Linear as the FC layer, but Cadene's version uses\n # a conv layer with kernel size equals to 1. It may bring a little difference.\n self.assertTrue(torch.allclose(result, expected_result, rtol=1e-5, atol=1e-5))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_sliding_window_inference.py", "file_name": "test_sliding_window_inference.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 46, "span_ids": ["docstring"], "tokens": 927}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.inferers import SlidingWindowInferer, sliding_window_inference\nfrom tests.utils import skip_if_no_cuda\n\nTEST_CASES = [\n [(2, 3, 16), (4,), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 1D small roi\n [(2, 3, 16, 15, 7, 9), 4, 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 4D small roi\n [(1, 3, 16, 15, 7), (4, -1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(2, 3, 16, 15, 7), (4, -1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(3, 3, 16, 15, 7), (4, -1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(2, 3, 16, 15, 7), (4, -1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(1, 3, 16, 15, 7), (4, 10, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(1, 3, 16, 15, 7), (20, 22, 23), 10, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D large roi\n [(2, 3, 15, 7), (2, 6), 1000, 0.25, \"constant\", torch.device(\"cpu:0\")], # 2D small roi, large batch\n [(1, 3, 16, 7), (80, 50), 7, 0.25, \"constant\", torch.device(\"cpu:0\")], # 2D large roi\n [(1, 3, 16, 15, 7), (20, 22, 23), 10, 0.5, \"constant\", torch.device(\"cpu:0\")], # 3D large overlap\n [(1, 3, 16, 7), (80, 50), 7, 0.5, \"gaussian\", torch.device(\"cpu:0\")], # 2D large overlap, gaussian\n [(1, 3, 16, 15, 7), (4, 10, 7), 3, 0.25, \"gaussian\", torch.device(\"cpu:0\")], # 3D small roi, gaussian\n [(3, 3, 16, 15, 7), (4, 10, 7), 3, 0.25, \"gaussian\", torch.device(\"cpu:0\")], # 3D small roi, gaussian\n [\n (1, 3, 16, 15, 7),\n (4, 10, 7),\n 3,\n 0.25,\n \"gaussian\",\n torch.device(\"cuda:0\"),\n ], # test inference on gpu if availabe\n [(1, 3, 16, 15, 7), (4, 1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(5, 3, 16, 15, 7), (4, 1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference_TestSlidingWindowInference.test_sliding_window_default.None_3": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference_TestSlidingWindowInference.test_sliding_window_default.None_3", "embedding": null, "metadata": {"file_path": "tests/test_sliding_window_inference.py", "file_name": "test_sliding_window_inference.py", "file_type": "text/x-python", "category": "test", "start_line": 48, "end_line": 72, "span_ids": ["TestSlidingWindowInference", "TestSlidingWindowInference.test_sliding_window_default"], "tokens": 292}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSlidingWindowInference(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_sliding_window_default(self, image_shape, roi_shape, sw_batch_size, overlap, mode, device):\n n_total = np.prod(image_shape)\n if mode == \"constant\":\n inputs = torch.arange(n_total, dtype=torch.float).reshape(*image_shape)\n else:\n inputs = torch.ones(*image_shape, dtype=torch.float)\n if device.type == \"cuda\" and not torch.cuda.is_available():\n device = torch.device(\"cpu:0\")\n\n def compute(data):\n return data + 1\n\n if mode == \"constant\":\n expected_val = np.arange(n_total, dtype=np.float32).reshape(*image_shape) + 1.0\n else:\n expected_val = np.ones(image_shape, dtype=np.float32) + 1.0\n result = sliding_window_inference(inputs.to(device), roi_shape, sw_batch_size, compute, overlap, mode=mode)\n np.testing.assert_string_equal(device.type, result.device.type)\n np.testing.assert_allclose(result.cpu().numpy(), expected_val)\n\n result = SlidingWindowInferer(roi_shape, sw_batch_size, overlap, mode)(inputs.to(device), compute)\n np.testing.assert_string_equal(device.type, result.device.type)\n np.testing.assert_allclose(result.cpu().numpy(), expected_val)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_default_device_TestSlidingWindowInference.test_default_device.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_default_device_TestSlidingWindowInference.test_default_device.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_sliding_window_inference.py", "file_name": "test_sliding_window_inference.py", "file_type": "text/x-python", "category": "test", "start_line": 74, "end_line": 86, "span_ids": ["TestSlidingWindowInference.test_default_device"], "tokens": 168}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSlidingWindowInference(unittest.TestCase):\n\n def test_default_device(self):\n device = \"cuda\" if torch.cuda.is_available() else \"cpu:0\"\n inputs = torch.ones((1, 3, 16, 15, 7)).to(device=device)\n roi_shape = (4, 10, 7)\n sw_batch_size = 10\n\n def compute(data):\n return data + 1\n\n result = sliding_window_inference(inputs, roi_shape, sw_batch_size, compute)\n np.testing.assert_string_equal(inputs.device.type, result.device.type)\n expected_val = np.ones((1, 3, 16, 15, 7), dtype=np.float32) + 1\n np.testing.assert_allclose(result.cpu().numpy(), expected_val)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma_TestSlidingWindowInference.test_sigma.result_6.sliding_window_inference_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma_TestSlidingWindowInference.test_sigma.result_6.sliding_window_inference_", "embedding": null, "metadata": {"file_path": "tests/test_sliding_window_inference.py", "file_name": "test_sliding_window_inference.py", "file_type": "text/x-python", "category": "test", "start_line": 88, "end_line": 139, "span_ids": ["TestSlidingWindowInference.test_sigma"], "tokens": 573}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSlidingWindowInference(unittest.TestCase):\n\n def test_sigma(self):\n device = \"cuda\" if torch.cuda.is_available() else \"cpu:0\"\n inputs = torch.ones((1, 1, 7, 7)).to(device=device)\n roi_shape = (3, 3)\n sw_batch_size = 10\n\n class _Pred:\n add = 1\n\n def compute(self, data):\n self.add += 1\n return data + self.add\n\n result = sliding_window_inference(\n inputs,\n roi_shape,\n sw_batch_size,\n _Pred().compute,\n overlap=0.5,\n padding_mode=\"constant\",\n cval=-1,\n mode=\"constant\",\n sigma_scale=1.0,\n )\n\n expected = np.array(\n [\n [\n [\n [3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000],\n [3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000],\n [3.3333, 3.3333, 3.3333, 3.3333, 3.3333, 3.3333, 3.3333],\n [3.6667, 3.6667, 3.6667, 3.6667, 3.6667, 3.6667, 3.6667],\n [4.3333, 4.3333, 4.3333, 4.3333, 4.3333, 4.3333, 4.3333],\n [4.5000, 4.5000, 4.5000, 4.5000, 4.5000, 4.5000, 4.5000],\n [5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000],\n ]\n ]\n ]\n )\n np.testing.assert_allclose(result.cpu().numpy(), expected, rtol=1e-4)\n result = sliding_window_inference(\n inputs,\n roi_shape,\n sw_batch_size,\n _Pred().compute,\n overlap=0.5,\n padding_mode=\"constant\",\n cval=-1,\n mode=\"gaussian\",\n sigma_scale=1.0,\n )\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma.expected_7_TestSlidingWindowInference.test_sigma.None_3": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma.expected_7_TestSlidingWindowInference.test_sigma.None_3", "embedding": null, "metadata": {"file_path": "tests/test_sliding_window_inference.py", "file_name": "test_sliding_window_inference.py", "file_type": "text/x-python", "category": "test", "start_line": 140, "end_line": 165, "span_ids": ["TestSlidingWindowInference.test_sigma"], "tokens": 506}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSlidingWindowInference(unittest.TestCase):\n\n def test_sigma(self):\n # ... other code\n expected = np.array(\n [\n [\n [\n [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0],\n [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0],\n [3.3271625, 3.3271623, 3.3271623, 3.3271623, 3.3271623, 3.3271623, 3.3271625],\n [3.6728377, 3.6728377, 3.6728377, 3.6728377, 3.6728377, 3.6728377, 3.6728377],\n [4.3271623, 4.3271623, 4.3271627, 4.3271627, 4.3271627, 4.3271623, 4.3271623],\n [4.513757, 4.513757, 4.513757, 4.513757, 4.513757, 4.513757, 4.513757],\n [4.9999995, 5.0, 5.0, 5.0, 5.0, 5.0, 4.9999995],\n ]\n ]\n ]\n )\n np.testing.assert_allclose(result.cpu().numpy(), expected, rtol=1e-4)\n\n result = SlidingWindowInferer(roi_shape, sw_batch_size, overlap=0.5, mode=\"gaussian\", sigma_scale=1.0)(\n inputs, _Pred().compute\n )\n np.testing.assert_allclose(result.cpu().numpy(), expected, rtol=1e-4)\n\n result = SlidingWindowInferer(roi_shape, sw_batch_size, overlap=0.5, mode=\"gaussian\", sigma_scale=[1.0, 1.0])(\n inputs, _Pred().compute\n )\n np.testing.assert_allclose(result.cpu().numpy(), expected, rtol=1e-4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_unittest_create_spherical_seg_3d.return.image": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_unittest_create_spherical_seg_3d.return.image", "embedding": null, "metadata": {"file_path": "tests/test_surface_distance.py", "file_name": "test_surface_distance.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 48, "span_ids": ["create_spherical_seg_3d", "docstring"], "tokens": 318}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\nfrom typing import Tuple\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.metrics import SurfaceDistanceMetric\n\n\ndef create_spherical_seg_3d(\n radius: float = 20.0,\n centre: Tuple[int, int, int] = (49, 49, 49),\n im_shape: Tuple[int, int, int] = (99, 99, 99),\n) -> np.ndarray:\n \"\"\"\n Return a 3D image with a sphere inside. Voxel values will be\n 1 inside the sphere, and 0 elsewhere.\n\n Args:\n radius: radius of sphere (in terms of number of voxels, can be partial)\n centre: location of sphere centre.\n im_shape: shape of image to create\n\n See also:\n :py:meth:`~create_test_image_3d`\n \"\"\"\n # Create image\n image = np.zeros(im_shape, dtype=np.int32)\n spy, spx, spz = np.ogrid[\n -centre[0] : im_shape[0] - centre[0], -centre[1] : im_shape[1] - centre[1], -centre[2] : im_shape[2] - centre[2]\n ]\n circle = (spx * spx + spy * spy + spz * spz) <= radius * radius\n\n image[circle] = 1\n image[~circle] = 0\n return image", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom.test_keep_size_TestZoom.test_invalid_inputs.with_self_assertRaises_ra.zoom_fn_self_imt_0_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom.test_keep_size_TestZoom.test_invalid_inputs.with_self_assertRaises_ra.zoom_fn_self_imt_0_", "embedding": null, "metadata": {"file_path": "tests/test_zoom.py", "file_name": "test_zoom.py", "file_type": "text/x-python", "category": "test", "start_line": 40, "end_line": 53, "span_ids": ["TestZoom.test_keep_size", "TestZoom.test_invalid_inputs"], "tokens": 183}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestZoom(NumpyImageTestCase2D):\n\n def test_keep_size(self):\n zoom_fn = Zoom(zoom=[0.6, 0.6], keep_size=True, align_corners=True)\n zoomed = zoom_fn(self.imt[0], mode=\"bilinear\")\n np.testing.assert_allclose(zoomed.shape, self.imt.shape[1:])\n\n zoom_fn = Zoom(zoom=[1.3, 1.3], keep_size=True)\n zoomed = zoom_fn(self.imt[0])\n np.testing.assert_allclose(zoomed.shape, self.imt.shape[1:])\n\n @parameterized.expand(INVALID_CASES)\n def test_invalid_inputs(self, zoom, mode, raises):\n with self.assertRaises(raises):\n zoom_fn = Zoom(zoom=zoom, mode=mode)\n zoom_fn(self.imt[0])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom.test_padding_mode_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom.test_padding_mode_", "embedding": null, "metadata": {"file_path": "tests/test_zoom.py", "file_name": "test_zoom.py", "file_type": "text/x-python", "category": "test", "start_line": 55, "end_line": 65, "span_ids": ["TestZoom.test_padding_mode", "impl:5"], "tokens": 250}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestZoom(NumpyImageTestCase2D):\n\n def test_padding_mode(self):\n zoom_fn = Zoom(zoom=0.5, mode=\"nearest\", padding_mode=\"constant\", keep_size=True)\n test_data = np.array([[[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]])\n zoomed = zoom_fn(test_data)\n expected = np.array([[[0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0], [0.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0]]])\n np.testing.assert_allclose(zoomed, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_pre_render_pep440_pre.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_pre_render_pep440_pre.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 345, "end_line": 358, "span_ids": ["render_pep440_pre"], "tokens": 107}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_pep440_pre(pieces):\n \"\"\"TAG[.post0.devDISTANCE] -- No -dirty.\n\n Exceptions:\n 1: no tags. 0.post0.devDISTANCE\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"]:\n rendered += \".post0.dev%d\" % pieces[\"distance\"]\n else:\n # exception #1\n rendered = \"0.post0.dev%d\" % pieces[\"distance\"]\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_post_render_pep440_post.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_post_render_pep440_post.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 361, "end_line": 385, "span_ids": ["render_pep440_post"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_pep440_post(pieces):\n \"\"\"TAG[.postDISTANCE[.dev0]+gHEX] .\n\n The \".dev0\" means dirty. Note that .dev0 sorts backwards\n (a dirty tree will appear \"older\" than the corresponding clean one),\n but you shouldn't be releasing software with -dirty anyways.\n\n Exceptions:\n 1: no tags. 0.postDISTANCE[.dev0]\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"] or pieces[\"dirty\"]:\n rendered += \".post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n rendered += plus_or_dot(pieces)\n rendered += \"g%s\" % pieces[\"short\"]\n else:\n # exception #1\n rendered = \"0.post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n rendered += \"+g%s\" % pieces[\"short\"]\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/__init__.py_CrossValidation_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/__init__.py_CrossValidation_", "embedding": null, "metadata": {"file_path": "monai/apps/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 15, "span_ids": ["docstring"], "tokens": 54}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from .datasets import CrossValidation, DecathlonDataset, MedNISTDataset\nfrom .mmars import MODEL_DESC, RemoteMMARKeys, download_mmar, load_from_mmar\nfrom .utils import check_hash, download_and_extract, download_url, extractall", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_os___all__._MedNISTDataset_Decat": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_os___all__._MedNISTDataset_Decat", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 29, "span_ids": ["docstring"], "tokens": 111}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport sys\nfrom typing import Callable, Dict, List, Optional, Sequence, Union\n\nimport numpy as np\n\nfrom monai.apps.utils import download_and_extract\nfrom monai.data import (\n CacheDataset,\n load_decathlon_datalist,\n load_decathlon_properties,\n partition_dataset,\n select_cross_validation_folds,\n)\nfrom monai.transforms import LoadImaged, Randomizable\nfrom monai.utils import ensure_tuple\n\n__all__ = [\"MedNISTDataset\", \"DecathlonDataset\", \"CrossValidation\"]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_MedNISTDataset_MedNISTDataset.randomize.self_R_shuffle_data_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_MedNISTDataset_MedNISTDataset.randomize.self_R_shuffle_data_", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 32, "end_line": 102, "span_ids": ["MedNISTDataset.__init__", "MedNISTDataset", "MedNISTDataset.randomize"], "tokens": 778}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MedNISTDataset(Randomizable, CacheDataset):\n \"\"\"\n The Dataset to automatically download MedNIST data and generate items for training, validation or test.\n It's based on `CacheDataset` to accelerate the training process.\n\n Args:\n root_dir: target directory to download and load MedNIST dataset.\n section: expected data section, can be: `training`, `validation` or `test`.\n transform: transforms to execute operations on input data.\n download: whether to download and extract the MedNIST from resource link, default is False.\n if expected file already exists, skip downloading even set it to True.\n user can manually copy `MedNIST.tar.gz` file or `MedNIST` folder to root directory.\n seed: random seed to randomly split training, validation and test datasets, default is 0.\n val_frac: percentage of of validation fraction in the whole dataset, default is 0.1.\n test_frac: percentage of of test fraction in the whole dataset, default is 0.1.\n cache_num: number of items to be cached. Default is `sys.maxsize`.\n will take the minimum of (cache_num, data_length x cache_rate, data_length).\n cache_rate: percentage of cached data in total, default is 1.0 (cache all).\n will take the minimum of (cache_num, data_length x cache_rate, data_length).\n num_workers: the number of worker threads to use.\n if 0 a single thread will be used. Default is 0.\n\n Raises:\n ValueError: When ``root_dir`` is not a directory.\n RuntimeError: When ``dataset_dir`` doesn't exist and downloading is not selected (``download=False``).\n\n \"\"\"\n\n resource = \"https://drive.google.com/uc?id=13MhoPsNgI6qboJfLicFf_jNvsFUbIYsd\"\n md5 = \"0bc7306e7427e00ad1c5526a6677552d\"\n compressed_file_name = \"MedNIST.tar.gz\"\n dataset_folder_name = \"MedNIST\"\n\n def __init__(\n self,\n root_dir: str,\n section: str,\n transform: Union[Sequence[Callable], Callable] = (),\n download: bool = False,\n seed: int = 0,\n val_frac: float = 0.1,\n test_frac: float = 0.1,\n cache_num: int = sys.maxsize,\n cache_rate: float = 1.0,\n num_workers: int = 0,\n ) -> None:\n if not os.path.isdir(root_dir):\n raise ValueError(\"Root directory root_dir must be a directory.\")\n self.section = section\n self.val_frac = val_frac\n self.test_frac = test_frac\n self.set_random_state(seed=seed)\n tarfile_name = os.path.join(root_dir, self.compressed_file_name)\n dataset_dir = os.path.join(root_dir, self.dataset_folder_name)\n self.num_class = 0\n if download:\n download_and_extract(self.resource, tarfile_name, root_dir, self.md5)\n\n if not os.path.exists(dataset_dir):\n raise RuntimeError(\n f\"Cannot find dataset directory: {dataset_dir}, please use download=True to download it.\"\n )\n data = self._generate_data_list(dataset_dir)\n if transform == ():\n transform = LoadImaged(\"image\")\n CacheDataset.__init__(\n self, data, transform, cache_num=cache_num, cache_rate=cache_rate, num_workers=num_workers\n )\n\n def randomize(self, data: List[int]) -> None:\n self.R.shuffle(data)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_MedNISTDataset.get_num_classes_MedNISTDataset._generate_data_list.return.data": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_MedNISTDataset.get_num_classes_MedNISTDataset._generate_data_list.return.data", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 104, "end_line": 153, "span_ids": ["MedNISTDataset.get_num_classes", "MedNISTDataset._generate_data_list"], "tokens": 417}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MedNISTDataset(Randomizable, CacheDataset):\n\n def get_num_classes(self) -> int:\n \"\"\"Get number of classes.\"\"\"\n return self.num_class\n\n def _generate_data_list(self, dataset_dir: str) -> List[Dict]:\n \"\"\"\n Raises:\n ValueError: When ``section`` is not one of [\"training\", \"validation\", \"test\"].\n\n \"\"\"\n class_names = sorted((x for x in os.listdir(dataset_dir) if os.path.isdir(os.path.join(dataset_dir, x))))\n self.num_class = len(class_names)\n image_files = [\n [\n os.path.join(dataset_dir, class_names[i], x)\n for x in os.listdir(os.path.join(dataset_dir, class_names[i]))\n ]\n for i in range(self.num_class)\n ]\n num_each = [len(image_files[i]) for i in range(self.num_class)]\n image_files_list = []\n image_class = []\n class_name = []\n for i in range(self.num_class):\n image_files_list.extend(image_files[i])\n image_class.extend([i] * num_each[i])\n class_name.extend([class_names[i]] * num_each[i])\n\n data = []\n length = len(image_files_list)\n indices = np.arange(length)\n self.randomize(indices)\n\n test_length = int(length * self.test_frac)\n val_length = int(length * self.val_frac)\n if self.section == \"test\":\n section_indices = indices[:test_length]\n elif self.section == \"validation\":\n section_indices = indices[test_length : test_length + val_length]\n elif self.section == \"training\":\n section_indices = indices[test_length + val_length :]\n else:\n raise ValueError(\n f'Unsupported section: {self.section}, available options are [\"training\", \"validation\", \"test\"].'\n )\n\n for i in section_indices:\n data.append({\"image\": image_files_list[i], \"label\": image_class[i], \"class_name\": class_name[i]})\n\n return data", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.__init___DecathlonDataset._split_datalist.return._datalist_i_for_i_in_sel": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.__init___DecathlonDataset._split_datalist.return._datalist_i_for_i_in_sel", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 238, "end_line": 328, "span_ids": ["DecathlonDataset._split_datalist", "DecathlonDataset.get_properties", "DecathlonDataset.__init__", "DecathlonDataset._generate_data_list", "DecathlonDataset.randomize", "DecathlonDataset.get_indices"], "tokens": 748}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DecathlonDataset(Randomizable, CacheDataset):\n\n def __init__(\n self,\n root_dir: str,\n task: str,\n section: str,\n transform: Union[Sequence[Callable], Callable] = (),\n download: bool = False,\n seed: int = 0,\n val_frac: float = 0.2,\n cache_num: int = sys.maxsize,\n cache_rate: float = 1.0,\n num_workers: int = 0,\n ) -> None:\n if not os.path.isdir(root_dir):\n raise ValueError(\"Root directory root_dir must be a directory.\")\n self.section = section\n self.val_frac = val_frac\n self.set_random_state(seed=seed)\n if task not in self.resource:\n raise ValueError(f\"Unsupported task: {task}, available options are: {list(self.resource.keys())}.\")\n dataset_dir = os.path.join(root_dir, task)\n tarfile_name = f\"{dataset_dir}.tar\"\n if download:\n download_and_extract(self.resource[task], tarfile_name, root_dir, self.md5[task])\n\n if not os.path.exists(dataset_dir):\n raise RuntimeError(\n f\"Cannot find dataset directory: {dataset_dir}, please use download=True to download it.\"\n )\n self.indices: np.ndarray = np.array([])\n data = self._generate_data_list(dataset_dir)\n # as `release` key has typo in Task04 config file, ignore it.\n property_keys = [\n \"name\",\n \"description\",\n \"reference\",\n \"licence\",\n \"tensorImageSize\",\n \"modality\",\n \"labels\",\n \"numTraining\",\n \"numTest\",\n ]\n self._properties = load_decathlon_properties(os.path.join(dataset_dir, \"dataset.json\"), property_keys)\n if transform == ():\n transform = LoadImaged([\"image\", \"label\"])\n CacheDataset.__init__(\n self, data, transform, cache_num=cache_num, cache_rate=cache_rate, num_workers=num_workers\n )\n\n def get_indices(self) -> np.ndarray:\n \"\"\"\n Get the indices of datalist used in this dataset.\n\n \"\"\"\n return self.indices\n\n def randomize(self, data: List[int]) -> None:\n self.R.shuffle(data)\n\n def get_properties(self, keys: Optional[Union[Sequence[str], str]] = None):\n \"\"\"\n Get the loaded properties of dataset with specified keys.\n If no keys specified, return all the loaded properties.\n\n \"\"\"\n if keys is None:\n return self._properties\n if self._properties is not None:\n return {key: self._properties[key] for key in ensure_tuple(keys)}\n return {}\n\n def _generate_data_list(self, dataset_dir: str) -> List[Dict]:\n section = \"training\" if self.section in [\"training\", \"validation\"] else \"test\"\n datalist = load_decathlon_datalist(os.path.join(dataset_dir, \"dataset.json\"), True, section)\n return self._split_datalist(datalist)\n\n def _split_datalist(self, datalist: List[Dict]) -> List[Dict]:\n if self.section == \"test\":\n return datalist\n length = len(datalist)\n indices = np.arange(length)\n self.randomize(indices)\n\n val_length = int(length * self.val_frac)\n if self.section == \"training\":\n self.indices = indices[val_length:]\n else:\n self.indices = indices[:val_length]\n\n return [datalist[i] for i in self.indices]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation_CrossValidation.__init__.self.dataset_params.dataset_params": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation_CrossValidation.__init__.self.dataset_params.dataset_params", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 331, "end_line": 380, "span_ids": ["CrossValidation.__init__", "CrossValidation"], "tokens": 383}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CrossValidation:\n \"\"\"\n Cross validation dataset based on the general dataset which must have `_split_datalist` API.\n\n Args:\n dataset_cls: dataset class to be used to create the cross validation partitions.\n It must have `_split_datalist` API.\n nfolds: number of folds to split the data for cross validation.\n seed: random seed to randomly shuffle the datalist before splitting into N folds, default is 0.\n dataset_params: other additional parameters for the dataset_cls base class.\n\n Example of 5 folds cross validation training::\n\n cvdataset = CrossValidation(\n dataset_cls=DecathlonDataset,\n nfolds=5,\n seed=12345,\n root_dir=\"./\",\n task=\"Task09_Spleen\",\n section=\"training\",\n download=True,\n )\n dataset_fold0_train = cvdataset.get_dataset(folds=[1, 2, 3, 4])\n dataset_fold0_val = cvdataset.get_dataset(folds=0)\n # execute training for fold 0 ...\n\n dataset_fold1_train = cvdataset.get_dataset(folds=[1])\n dataset_fold1_val = cvdataset.get_dataset(folds=[0, 2, 3, 4])\n # execute training for fold 1 ...\n\n ...\n\n dataset_fold4_train = ...\n # execute training for fold 4 ...\n\n \"\"\"\n\n def __init__(\n self,\n dataset_cls,\n nfolds: int = 5,\n seed: int = 0,\n **dataset_params,\n ) -> None:\n if not hasattr(dataset_cls, \"_split_datalist\"):\n raise ValueError(\"dataset class must have _split_datalist API.\")\n self.dataset_cls = dataset_cls\n self.nfolds = nfolds\n self.seed = seed\n self.dataset_params = dataset_params", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation.get_dataset_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation.get_dataset_", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 382, "end_line": 399, "span_ids": ["CrossValidation.get_dataset"], "tokens": 163}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CrossValidation:\n\n def get_dataset(self, folds: Union[Sequence[int], int]):\n \"\"\"\n Generate dataset based on the specified fold indice in the cross validation group.\n\n Args:\n folds: index of folds for training or validation, if a list of values, concatenate the data.\n\n \"\"\"\n nfolds = self.nfolds\n seed = self.seed\n\n class _NsplitsDataset(self.dataset_cls): # type: ignore\n def _split_datalist(self, datalist: List[Dict]) -> List[Dict]:\n data = partition_dataset(data=datalist, num_partitions=nfolds, shuffle=True, seed=seed)\n return select_cross_validation_folds(partitions=data, folds=folds)\n\n return _NsplitsDataset(**self.dataset_params)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/apps/deepgrow/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py_logging_create_dataset.new_datalist._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py_logging_create_dataset.new_datalist._", "embedding": null, "metadata": {"file_path": "monai/apps/deepgrow/dataset.py", "file_name": "dataset.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 86, "span_ids": ["create_dataset", "docstring"], "tokens": 626}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nimport os\nfrom typing import Dict, List\n\nimport numpy as np\n\nfrom monai.transforms import AsChannelFirstd, Compose, LoadImaged, Orientationd, Spacingd\nfrom monai.utils import GridSampleMode\n\n\ndef create_dataset(\n datalist,\n output_dir: str,\n dimension: int,\n pixdim,\n image_key: str = \"image\",\n label_key: str = \"label\",\n base_dir=None,\n limit: int = 0,\n relative_path: bool = False,\n transforms=None,\n) -> List[Dict]:\n \"\"\"\n Utility to pre-process and create dataset list for Deepgrow training over on existing one.\n The input data list is normally a list of images and labels (3D volume) that needs pre-processing\n for Deepgrow training pipeline.\n\n Args:\n datalist: A list of data dictionary. Each entry should at least contain 'image_key': .\n For example, typical input data can be a list of dictionaries::\n\n [{'image': , 'label':