{"docstore/metadata": {"/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py__Configuration_file_for__exclude_patterns._": {"doc_hash": "2aac4befd043785765852e8359f5703a7820955c8ed0ad12185ceedb1888bfd2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py_generate_apidocs_generate_apidocs.subprocess_check_call_": {"doc_hash": "10a8ce9e198196367aa18a06320178578357ac476ce8abc0631470afa091b5d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/__init__.py_os_": {"doc_hash": "e04da295fff4d822a71ff27297a4c92234fbf277ed114e386ae4dcddd91b0463"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py__This_file_helps_to_comp_sys": {"doc_hash": "ae5674c5e0be0b96a99d8bbee67455b7bf99dd4aace251466af628cbd40c962e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_keywords_get_keywords.return.keywords": {"doc_hash": "87b91a61467dec11a0f5dbd405a26ea6e941be28cf983d33435a27de60840d7f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_VersioneerConfig_register_vcs_handler.return.decorate": {"doc_hash": "e7b4c413420038d0ed1830f98eacb147e5e649aa3425a1a612424583dea78728"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_run_command_run_command.return.stdout_p_returncode": {"doc_hash": "2a25c770a5c8893ea679e20337afa6c11a943e350ae7c6492873045a356c33e3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root": {"doc_hash": "e47e525037bc2ce6193b5076ff665e346e55f7c0c9f068cb139e329946e70db1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_get_keywords_git_get_keywords.return.keywords": {"doc_hash": "bb13ca9fef81c111de6c05b5abcafb2fb4e1c6f8d44fc541af7762d7ad8dabd3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_versions_from_keywords_git_versions_from_keywords.return._version_0_unknown_": {"doc_hash": "bce2c8e56390e5ec5d2b067c92ec4fc9bf5747e95fa7fa57616af8cd70247bce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces": {"doc_hash": "9dfe87dc4569270b529e1894d38f40d29e872a0514807adecf83ce094beeb615"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_plus_or_dot_render_pep440.return.rendered": {"doc_hash": "179e54ddc2f68ab800a32ab8a3aa4824128450a9304cf1ff5cf0633b10b38146"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_old_render_pep440_old.return.rendered": {"doc_hash": "842e375e39745e7489a13633cac168542114a64242c56a8d10d440d430fe1a2a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_render_git_describe.return.rendered": {"doc_hash": "ca541fbf5be193f49c52a416bac7e1d201efd978e8208ed40a48b29431f0b56e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_long_render_git_describe_long.return.rendered": {"doc_hash": "b4ee82712caa15ee150826c967776c9a320b1219fe2c0a210345babe4ec42a0d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_render.return._version_rendered_fu": {"doc_hash": "0f4687c560f37254bb87c5c3a17afa33761af6a46c8e77a09c24b698b000c7fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_versions_": {"doc_hash": "5b12f0f654d66aa0ffa27265afb6e1ed67f3e40ddb691234d16678c9fc0083d9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset_DecathlonDataset._": {"doc_hash": "774d5dc6bd2786fe7fb26aba940eff65dd2453da3918629ece592e8db95fd053"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.resource_DecathlonDataset.md5._": {"doc_hash": "8b2a68f6db6d7808a53ed532e3f7c638409fbb60194f495e7887a6712ec45e73"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/__init__.py_CSVSaver_": {"doc_hash": "67809a65e407973a789ad6828a8e8ec867b8d2a9ca492e0f1f2ee5d3ebfe9a83"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_CSVSaver.save.self__cache_dict_save_key": {"doc_hash": "7f92f80e19750b08e20098d7b72a2108986058f3adc9961faed6d5806a1444c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_batch_": {"doc_hash": "db2022c9ad9caa865118d6dd01e5d0d190d6e5cc5f280af08fad57d5757a1139"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_NiftiSaver.save_batch_": {"doc_hash": "694b02a547894e0fcbe41185b2fa21ef7fc3cdbb29aaca80a647e43a278da195"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_from_typing_import_Option_write_nifti._": {"doc_hash": "c394583f03d7389391408f21787d1b1efe734c32ce34d0b8c66f37a29d1b9c87"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_write_nifti.if_data_ndim_3_mult_": {"doc_hash": "f08b46b1b76e30b75496546f68a765aab74d01d1777bac9e5ac1e6cc0bbca948"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_PNGSaver.save_batch_": {"doc_hash": "3ad131fba7fdc30799ff70ed52f0b65c85846603429b6b144da8031ee8b09321"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_writer.py_from_typing_import_Option_": {"doc_hash": "ff9d87b4e3515d1f6dad944071720a01dd22b2594740fbea48dad830a9ba9c14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_from_typing_import_Option_create_test_image_2d.return.noisyimage_labels": {"doc_hash": "350c887863773ff148c41d7d95ef99c1b5d08f51def48bef39dacfd3c37fdddc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_create_test_image_3d_": {"doc_hash": "90a6a8b68a63fcc239cbc6ef4bfe89bbcb9f2171e0462be7d7569b8251d85bb7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_slices_iter_patch_slices.for_position_in_product_.yield_tuple_slice_s_s_": {"doc_hash": "09adc8f4e58daea6dce225e9c42840a852e09fe7e201242e435e94f04f01ca60"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_iter_patch.if_copy_back_.arr_arrpad_slices_": {"doc_hash": "fba1ab1636ee4fc82890f1671d28f4b02163f6924d409cf7783e4c0c4f3b1b16"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_valid_patch_size_get_valid_patch_size.return.tuple_min_ms_ps_or_ms_f": {"doc_hash": "35fe64943f900259d20a8956ca9cf3002209eadeeebfa11e12ae91a7894ab06d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_correct_nifti_header_if_necessary_correct_nifti_header_if_necessary.return.img_nii": {"doc_hash": "77d2edf222dd31d3d605c9a1b65d5e4b50f99e2c086f3863a94d810d797491a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_rectify_header_sform_qform_rectify_header_sform_qform.return.img_nii": {"doc_hash": "bba57837a85dacfcfc3b2df0e0243a9de35b7ca5febc850ade70fb381c7887af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_zoom_affine_zoom_affine.return.new_affine": {"doc_hash": "ed58a2995c833991ac8d1a619dec4b2ba8ccd6ee3696d9b08a209d23ca23bfb7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_to_affine_nd_to_affine_nd.return.new_affine": {"doc_hash": "77c1ade0e5a7a7383995cab43c005234bc422aeb4530667839cea372c15fb844"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_EnsembleEvaluator._iteration_": {"doc_hash": "ab3058b1907fab1cfbd292810c30f0d612415e430b513ada97a7edb5fb7a90fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_trainer_create_multigpu_supervised_trainer.return.create_supervised_trainer": {"doc_hash": "1c1444739f993ff54144b8828dac9d8a8e7e0e6ddba1a054a258740e51d35b99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_evaluator_": {"doc_hash": "a5c468707e679187d1719724fe0ff7e6f4dcabdd632f8283677d397f108a765a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_Trainer_Trainer.get_train_stats.return._total_epochs_self_sta": {"doc_hash": "5b688b79ae43b609f2f3bde7c8c3f5362c7ff9a74337b677ac022d5bf6f53224"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow_Workflow._": {"doc_hash": "433f15f5d280cf479c592b3dfd5cf8eb045c2c70ab2de67eac988f405ad8f2a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/__init__.py_CheckpointLoader_": {"doc_hash": "5e93b2930c86ff1a75e478390f827eb6e781b53f936042b160482dda6a4328e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver_CheckpointSaver._": {"doc_hash": "c84eaa5d5a9a95eff418dd647b46c0164403e2df0de40dba9185cd8bca3b0449"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.attach_CheckpointSaver.attach.if_self__interval_checkpo.if_self_epoch_level_.else_.engine_add_event_handler_": {"doc_hash": "cebcb1dd467255ba80392a282d73ca2cd398a7ad1bc8d65b41bdd345f051c469"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_LrScheduleHandler_": {"doc_hash": "f9a4d363e63810682baeb042d1b0441d6fab61dda2dc1ed473738357136a242b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_SegmentationSaver.attach_": {"doc_hash": "bb995fb70d1624c44e0b83d8af819ff1481520c34c6d7d014a8182bca37eba1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.attach_StatsHandler.attach.None_3.engine_add_event_handler_": {"doc_hash": "7d55afd0a799637cb76a410aa3f69ad84183de51cf3af240e22adf0ce1f03f82"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler._default_iteration_print_": {"doc_hash": "a19fda052525d33f637396ca3664d69a6d7859652ffa0e4d7cbeb184795da6b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.attach_TensorBoardStatsHandler.attach.None_1.engine_add_event_handler_": {"doc_hash": "0ce5a90f6c069e3abb6b4a4bf7adac4553e00121dc1a5b095b85fe52b46035ab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.epoch_completed_TensorBoardStatsHandler.iteration_completed.if_self_iteration_event_w.else_.self__default_iteration_w": {"doc_hash": "0882c4072a5962ce06f0e26be0fcd2abedd7eb7ceba6aad03e3ebc8a57495c08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_epoch_writer_TensorBoardStatsHandler._default_epoch_writer.writer_flush_": {"doc_hash": "108658b9c74afa0ae61370fc293d1f96b4a5a4216e43c572b4f85b4e232b8a70"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_iteration_writer_TensorBoardStatsHandler._default_iteration_writer.writer_flush_": {"doc_hash": "ff4054803ec9e1112ea5e52f952b925a0ff0f0ae8ec86882b303d3997bc91e5f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/validation_handler.py_from_typing_import_TYPE_C_": {"doc_hash": "0305e3b804d4f3ea7ee4751930923f2f6717c6f475c3d6e8a22c3acf0fd47642"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py__get_scan_interval_": {"doc_hash": "78961b565bd42ad9bedede4b640448d7860fb4cfdeb6485cc6694bb73d55e7fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/tversky.py_TverskyLoss.forward_": {"doc_hash": "71a4a686a8a5fab367abed71edc5666e88ce5854abc8153d4e0efba23820f029"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/downsample.py_from_typing_import_Option_": {"doc_hash": "de78e19d5d4549bff92dda0d0ad46fad85fd34f15cc2b1f24fb91e7df5c02e94"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_from_typing_import_Any_C_LayerFactory.add_factory_callable.self.__doc__._": {"doc_hash": "2b9f29e16cbb88cfc55ab9149a96b4c435ff3a4dcbbfe80b5a922a99789f87a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_LayerFactory.__getitem___LayerFactory.__getattr__.return.super___getattribute___": {"doc_hash": "7f669f5b46fbdfa4fcdd5e7e7ec960fe524d60cca6f84bf2deb47ae2596abbd9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_from_typing_import_Option_Classifier.__init__.if_last_act_is_not_None_.self_final_add_module_la": {"doc_hash": "4db0d940e37f6a3a8c2271852354199bb9c362478f633e78e1c3b3ff4ae6e2be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Discriminator_Discriminator.__init__.super___init___in_shape": {"doc_hash": "4e7836921fa72ab38be91c51b666a435ebfb22d980af7809897e3ead39ddc4ab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Critic_": {"doc_hash": "f843e62db39af2352f3be554a0dbbc735550a95c9598ba28796714fe961539da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__DenseBlock__DenseBlock.__init__.for_i_in_range_layers_.self_add_module_denselay": {"doc_hash": "86dcec24483ac5b8681be0f23b7adb61ca62072c81ee39841bd4965830059b46"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__Transition__Transition.__init__.self_add_module_pool_p": {"doc_hash": "4f04450454b34836d910d4a527393c3849dfb9fb4264360f02624f98e26c9d81"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet_DenseNet._": {"doc_hash": "1310f8c0cefd40ffdd147f354118d1cf16847bb16248105622e7b81d693bb124"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet.__init___DenseNet.forward.return.x": {"doc_hash": "436a64bec2a32c1c756b76718607dd64031d01c74bbc9d979860b3cbf5b053b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_from_typing_import_Option_Generator._": {"doc_hash": "a244c7f12cca13f9d073f128c7b70bc9e20cb4a73684eae100990f068f93830d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator.__init___Generator.__init__.for_i_c_s_in_enumerat.echannel.c": {"doc_hash": "41e5e682b380714e08c4e45f09303cfa6fcbc2f701fbd2e3ef63902abcc510cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator._get_layer_": {"doc_hash": "fb5a61e4e828d46267fb240fcdd0b355c0fa0d56a1261771657fac533603ce5d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet_HighResNet._": {"doc_hash": "eb5aefc7c8f63e3636df0678c75f2dd5ddd8bc3e3a1a7f1ad4d83984fe4fd6d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet.__init___": {"doc_hash": "33b46b53495e95a5219434886ca7032700ed04c4202f3cb45692ec6e347bb345"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regressor.py_Regressor._get_layer_": {"doc_hash": "2434ffe81bc83aaa7243eb8ec22540b1fe4788d756e427d0ea112fb5320449fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_down_layer_UNet._get_bottom_layer.return.self__get_down_layer_in_c": {"doc_hash": "0e5100c78494c795505b1b596187811e07b9645bde6aba6a7560d99b00180ad0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_up_layer_": {"doc_hash": "f4c74a51508efea0ec8c83bd8cb47ceeb3c190bb2583b5a2e0153129158d5aef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normalize_transform_normalize_transform.return.norm": {"doc_hash": "a91f8ac1d3743447289da8bf2338daa420ef4904d4fc727de58e300f61a8af03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_adaptor._inner_adaptor.return._inner": {"doc_hash": "788a31a193a148e651e3512fdc2282edcb2b5afd893c4de187c735020f7fb7a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_apply_alias_to_kwargs.return._inner": {"doc_hash": "119b24a527ed62673608fd476b7c77e359e81d0902e36fe6dc721916ae135ee6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_FunctionSignature_": {"doc_hash": "2c76e35889050fac8b55cfabf89b58ee11623333d06e8e6f959149f9003e5fec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/__init__.py__": {"doc_hash": "c23c3b22e4a81f73f6cb3229b775eae033de918fd6d04619cce6fa6ee87e622a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_DivisiblePad.__call___DivisiblePad.__call__.return.spatial_pad_img_": {"doc_hash": "164c356bbf0c624c6e46db6193348567bdc69f19846bb1d0e6dfc5c3a7d485ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCrop_RandSpatialCrop.__init__.self._slices.None": {"doc_hash": "fc5b3151d5dd18d4063a9c3d230b68225a2d3a55edbbb5210fb9a27e24b1964f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCropSamples_RandSpatialCropSamples.__call__.return._self_cropper_img_for___": {"doc_hash": "8a3f47b480a1b3d6bfffa48922b8b91caa29fef9eea89dfd76c43a76700c083c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadd_SpatialPadd.__call__.return.d": {"doc_hash": "55f600d1b68552474a81eacd121ac8ee0e8c2ba75e4cb56438d71ab29a8ff75a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BorderPadd_BorderPadd.__call__.return.d": {"doc_hash": "73168c2351ac74696e3e8a00d311dd440f6323065e16413b2b6aaf285605982a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_DivisiblePadd_DivisiblePadd.__call__.return.d": {"doc_hash": "d745ad1c1edc51d8066ff32d30bac1d72da6e49a274e87d13787e9b14e39c0e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialCropd_SpatialCropd.__call__.return.d": {"doc_hash": "c3e28f39ee59c56ed84ca3f3e393fdac612555b429f0f619a83e556b331e35f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterSpatialCropd_CenterSpatialCropd.__call__.return.d": {"doc_hash": "243eae1885f45b30059c062b82855993e3d8ba23d5710123af133d9b3fd8b12a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd_RandSpatialCropd.__init__.self._size.None": {"doc_hash": "5016205ab94140f2142eca523045f4f7c315e73d5e55c7f01dd24b846ca15252"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.__call___RandCropByPosNegLabeld.__call__.return.results": {"doc_hash": "242e3362fca4bd51f5f44023922467accf757ca69ff08bc9085a01bf0c0bc1ff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadD_": {"doc_hash": "339605922316684c0ab5ad587e80765a0dd2e3c37841ef6808307cd0d8f862e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/__init__.py__": {"doc_hash": "bff2377319ba4065211f7fda928cea2b03eb3bd5ba0890e9b2401f81cf62030b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityd_ScaleIntensityd.__call__.return.d": {"doc_hash": "b67f9c97889e33cc232e1a73f21fbd2798794aa264e9d4bc513abcceb25ce448"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandScaleIntensityd_RandScaleIntensityd.__call__.return.d": {"doc_hash": "9e1fb907e37192290c26c8bf359d6653bae985af9542aaf5ae9d3d5b5d4e7696"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_NormalizeIntensityd_NormalizeIntensityd.__call__.return.d": {"doc_hash": "56ac02f5d0e0136346a5fa08e5410ee761f443397f21379b9e4b0b63201e8d24"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ThresholdIntensityd_ThresholdIntensityd.__call__.return.d": {"doc_hash": "1b02773a621a052ef284a6352b14ca18a80f4ad15a06edb7d68198c8547de132"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRanged_ScaleIntensityRanged.__call__.return.d": {"doc_hash": "acf556e91154a4a8cd70c30bd03f834d21779053e86745a972aef7d6ec6dd210"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_AdjustContrastd_AdjustContrastd.__call__.return.d": {"doc_hash": "5278917bf4cf72b6a7f926c500410d636c48cfc77205eeceff78b27816aabaca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandAdjustContrastd_RandAdjustContrastd.__call__.return.d": {"doc_hash": "ac92174eafb8769c0eb9af8aad321ec52c276f0e065078c0c2749a11be1944fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRangePercentilesd_ScaleIntensityRangePercentilesd.__call__.return.d": {"doc_hash": "0b3d8a60dc398626867af65f6691965f6b7c1640949fb1c301dc1be68b81d98e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_MaskIntensityd_MaskIntensityd.__call__.return.d": {"doc_hash": "3426ca79d32952f0fb71d78ad3d9fb0bcfce3b54dfe209c23b8d4c0ea3f12b8c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianNoiseD_": {"doc_hash": "a4845cfda4211cdb416dc9e4a763c5eb435359746afd5172cff577a763ad6332"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/__init__.py__": {"doc_hash": "c7ecd1fe880f43eda25bfb18254cee43f6a4517366d3dae055caf0f318c3164e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/__init__.py__": {"doc_hash": "2aa1cc63a079d41dac679a652f4c5730dde4f0a58beb7aafeff87a474f74429e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_Activations_Activations.__init__.self.other.other": {"doc_hash": "4175f3b62de0ccf125fe5a9ff5601c5404c4f53bd69dc2763d511b2ae786aa99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent_KeepLargestConnectedComponent._": {"doc_hash": "82b20d6241f6d8c9f141443ac4a68f40aa672a90f65b9d54684ca751c7243209"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelToContour_LabelToContour.__init__.self.kernel_type.kernel_type": {"doc_hash": "6ce1b30ad58b6a85d4346d8c5425e1c2fca34d64fbb7e2cc1c9eca0cef5e0e17"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_MeanEnsemble_MeanEnsemble.__init__.self.weights.torch_as_tensor_weights_": {"doc_hash": "47616678d0c4150b2f66eab6750199265ee1a4df40da404131859269ec6bc4dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Activationsd_Activationsd.__call__.return.d": {"doc_hash": "8dd38e237d117328c28757363f0ce2730d44f20508ce4a0ab064c9b2e3079bdf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_KeepLargestConnectedComponentd_KeepLargestConnectedComponentd.__call__.return.d": {"doc_hash": "7997c8ed3eac3d0c506a9aefc8c2da3f83ec919c86d53fe700c43a20f0aefcbd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_LabelToContourd_LabelToContourd.__call__.return.d": {"doc_hash": "7ae5c3e82dff731ed004405a6f94c1289b166bd163a8ab66999138a9459453cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/__init__.py__": {"doc_hash": "d0d3ad5174a0e484e778a51a7be7261e800006dcbf11cc0d8b40ca762ab4c65e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resize_Resize.__init__.self.align_corners.align_corners": {"doc_hash": "3e16ec76c6a539a8cd7f21eadc7316ff3cee4e1f8089e125c20257bfd30940a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandFlip_RandFlip.__call__.return.self_flipper_img_": {"doc_hash": "cee43748f93e293190178330ee711610750e2be6bf295d2967dc46bf5f383c8d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid_RandDeformGrid.randomize.self.rand_mag.self_R_uniform_self_magni": {"doc_hash": "427b49dcb9921ad4f1161c52fe98c22bed8131bf0e8e9fab074e203d506c68fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid.__call___RandDeformGrid.__call__.return.control_grid": {"doc_hash": "f86e4e4853e4acfaece6ba9625a0f50c5de3d24278999d554be0850997fd449b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resample_Resample.__init__.self.device.device": {"doc_hash": "13e57792f7ad28d80affae22a889fde931033bdba6b6c692eb0668ec7f04a882"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic.set_random_state_Rand2DElastic.randomize.self_rand_affine_grid_ran": {"doc_hash": "f49396698cb1edec0139b0428767afec944c97129b64ca8a75df59f0f6a33b45"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic_Rand3DElastic.__init__.self.sigma.1_0": {"doc_hash": "6ffd2ad6829169649688495ae7885a0e2d0d69f2f4b7128b41bb094d746f5795"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic.set_random_state_Rand3DElastic.randomize.self_rand_affine_grid_ran": {"doc_hash": "52ae1087966a3d6fc17f35619a72090a1fffeee78928348f4e5a8775baaedf58"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd.__call___Spacingd.__call__.return.d": {"doc_hash": "b0654d3dc551aeefa31329a9a04f2f8d89bc788efadbc097c00b4980b850fd1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotate90d_Rotate90d.__call__.return.d": {"doc_hash": "42c8a4dd5e963042bb2ac299b8a1d52d9ac1d34b5f3da90226b0b38362cef989"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined_RandAffined.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"doc_hash": "b06c7e399e6559cefd4ccf1ed4b20b586381dcab39ce8d64819f2061ff7a48f5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined.set_random_state_RandAffined.__call__.return.d": {"doc_hash": "1de2a65a7beb78412c05da9f72ba103852699a73820baa3f8e267c7c4cecb030"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd_Rand2DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"doc_hash": "2ed9017d814688f9ee0984757f19e93fe209ce8eed33eff35317794168446754"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd.set_random_state_Rand2DElasticd.__call__.return.d": {"doc_hash": "830b406eef045e68970eec16d948c58168aac9e5c20c6d23d14612bf36bdd8b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd_Rand3DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"doc_hash": "30c5d1002878ac0842368130d23c4b906542f4557e9bff5355d24891687263b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd.set_random_state_Rand3DElasticd.__call__.return.d": {"doc_hash": "87945043d6664bda9a7ca2d4267900497d8723854a5b0a372f3ed3b4bdc62a56"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandFlipd_RandFlipd.__call__.return.d": {"doc_hash": "2f8940329623de1218c38aae7e73fbce47512853baa2c492bb930496e62d13c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.__call___RandRotated.__call__.return.d": {"doc_hash": "4d1116f6c6b6fa65e61b9a78670b525eaa813d9b00727c03a2725a28a05fae1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_SpacingD_": {"doc_hash": "efcf340610daf7b43901891f47cebef522a4efd862b3dc3e5732e06537f6d38c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/__init__.py__": {"doc_hash": "cd2a264a38cdcbe3032b67d2af4c4c91d246a1a09f44c26ab577c069fc11f107"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddChannel_AddChannel.__call__.return.img_None_": {"doc_hash": "f5adcdc6da43407a7e3c69bb87023e0c4ac32969edbf4f180aa5391319292280"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_DataStats.__call___DataStats.__call__.return.img": {"doc_hash": "45943c909ff759aba11d224f4501bb1541edfda277042c5b85c15751f73f9124"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_SimulateDelay_SimulateDelay.__call__.return.img": {"doc_hash": "081ceaead005b8325a7f49d79f3c27553c1d732525295f00f509fc12d4e271ea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_LabelToMask_LabelToMask.__init__.self.merge_channels.merge_channels": {"doc_hash": "a2b3e30ff7fdd2275d325c83c3909e753cee05ea9e176af3ebd28f5d64ad606f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelFirstd_AsChannelFirstd.__call__.return.d": {"doc_hash": "41b5e870a001a36b9d8ace77f7d914d60182a3c0b86c95b540adbf248ec08fc1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelLastd_AsChannelLastd.__call__.return.d": {"doc_hash": "b555cf1c23c9ed127d8bdb75a182179f6319a599bdcf7df5dfb6ff37b5cf8f90"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AddChanneld_AddChanneld.__call__.return.d": {"doc_hash": "d3fcfa09fdb932100e5e6bfc9a50813ff8de9d35d995a4dce0c65011b0373c47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RepeatChanneld_RepeatChanneld.__call__.return.d": {"doc_hash": "ecdc7cfc2660124f327ceb9bb7ddc5e169d1a46fd608cc364800d56b3e5ee7dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_CastToTyped_CastToTyped.__call__.return.d": {"doc_hash": "5bd5adede70cc885f22f571d2cd97a9b942dd310664c3062e285e5bc412f266d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToNumpyd_ToNumpyd.__call__.return.d": {"doc_hash": "8e24f8ff824a44f29fb31bf67df2315a868920cd219ee0b4762ea22dd131ac0f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SqueezeDimd_SqueezeDimd.__call__.return.d": {"doc_hash": "d20ff66b050c2240879e161f1b8ad6fdfe2dc9a36066a144367301be6138cd8b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SimulateDelayd_SimulateDelayd.__call__.return.d": {"doc_hash": "ddee304f482a9527608102f85de12f5b56564087ce2e2e38d6f6188ebb6a7686"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd_ConcatItemsd.__init__.self.dim.dim": {"doc_hash": "ac20b4a4eece155959cbd9a3295aa927feee6e6c1cc2b1530b163a82957e0fcf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd.__call___ConcatItemsd.__call__.return.d": {"doc_hash": "3ba3f69747b4f0cc83f3c66cfcef2d993b1bc62973b065f54a6552fb37fa38d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_LabelToMaskd_LabelToMaskd.__call__.return.d": {"doc_hash": "3b1eaae641cf179d0e09d90a198bba6eb92bb23414ff2283c3c01e125697eb11"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_IdentityD_": {"doc_hash": "4ee3a30d488608533c55401550d108365a165fc74c4c16644a7f9cda5b95857c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_rescale_array_rescale_array._rescale_by_minv_and_max": {"doc_hash": "fd2555de70a6d9e7208b24dd47d045167600716ccfc8f585c16a48234b1e60df"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_copypaste_arrays_copypaste_arrays.return.tuple_srcslices_tuple_d": {"doc_hash": "2fefb1b4dce4f02525f9c826e054be9f9d7ff6585500656ac1422e4586ed61bd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_spatial_bounding_box_generate_spatial_bounding_box.return.box_start_box_end": {"doc_hash": "06e5a84905b609ae251d3c7f4cb1ddd87f730fbc86bfdbc1e5c63fe10511bd02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_resolve_name_": {"doc_hash": "b56e236cfdcdce9dc75f3ad5f0bc05d687b3d0fb7de69033e2d1bfadd897e48f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_fall_back_tuple_fall_back_tuple.return.tuple_use_the_default": {"doc_hash": "bbe2c521d04567fa3488db7632d783383a77fef20b231bf9b88d77f6dfbcce50"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_is_scalar_tensor_get_seed.return._seed": {"doc_hash": "1a37948120243128a3651d87e8e76ef04847965401a3419b4f61e08d8eb7348f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_optional_import_optional_import.msg.descriptor_format_actual_": {"doc_hash": "b0f7d583b9b3c97db5d3fa9b6e832f2dcb781a490804f91a3260c7c5879a1748"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_make_animated_gif_summary_make_animated_gif_summary.return.summary_op": {"doc_hash": "66b88d55f657a76f3a58492474c12abea6c8ad3ba2e3dd20e27c3226b3185280"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/__init__.py_sys_": {"doc_hash": "b37e807e6619a0b2f7a1a6c198cb34607f180a2a1e1eff536484320d1aeb1c7e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activationsd.py_TestActivationsd_": {"doc_hash": "e7cfe7b97061ced98c7d2ef19c2ce7d8b4896b27f3d8b64510106b83bc1307cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_multi_in_single_out_TestAdaptors.test_multi_in_single_out.None_2.self_assertEqual_dres_lb": {"doc_hash": "26d9b3b8be0daebadcf5424eac739a9ea8adbd7f6688d5578fae19455c0f020a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_default_arg_single_out_TestAdaptors.test_dict_out.self_assertEqual_dres_b_": {"doc_hash": "a7c80dc0ab29bee80025d720f5933e32498f91a2c43c75a795393efc9c108ce7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestApplyAlias_": {"doc_hash": "fe6ddfa1c4a52a69452f45cc189680caf8d9500502b2a34a5878b3dadf1be28c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_channeld.py_unittest_": {"doc_hash": "df00cedfd752921a7b9f22fbbbeb070ef88fa4e8602b524349684e252a19aa1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrast.py_unittest_": {"doc_hash": "f2e987cc7bb4302282c493f6e9736c8e485ea8f1512cd0e686376508320d7599"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrastd.py_unittest_": {"doc_hash": "1572d0adb5490355886f10396c8c01fdea790646c4d1ba8b9ba1fcf5e4676864"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_unittest_TEST_NORM_CASES._": {"doc_hash": "074f9d5a0af74d584c580a6248ac456daa6f3f91dd018cc277186765d1a88a1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TEST_TO_NORM_AFFINE_CASES_TEST_ILL_TO_NORM_AFFINE_CASES._": {"doc_hash": "9cc9b92cf0a81d4e858702e1c2651f1bfafaca67e47d2043d41a80b50aa1c9ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestNormTransform_TestNormTransform.test_norm_xform.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "a98f83ec098f4478992746b00185f13b1f17fa78a31a29b1b76f51afc66f2c24"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine_TestToNormAffine.test_to_norm_affine.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "4901b3d49908b7e6ce10ed008a3cb05c783956eb3f9c24c7b6d4667b61ffd438"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform_TestAffineTransform.test_affine_shift.np_testing_assert_allclos": {"doc_hash": "06ba88815a60420dec188469cdafbc0866ba55b589b3740b6db3852d4d427077"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_1_TestAffineTransform.test_affine_shift_1.np_testing_assert_allclos": {"doc_hash": "f6811cb2f9ac65c045b25db6bed01abbed8e626c5c84f7c0e780079bee8e04a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_2_TestAffineTransform.test_affine_shift_2.np_testing_assert_allclos": {"doc_hash": "1b9d7eefa7dd2246a4b451d494263df7730540eaadd977b9fd19ad962e93657c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_TestAffineTransform.test_zoom.np_testing_assert_allclos": {"doc_hash": "b0e0d4a8e804cce0271ae3df9543dba737fd9209e8f4c61e60d0c049c827d39e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_1_TestAffineTransform.test_zoom_1.np_testing_assert_allclos": {"doc_hash": "81ae2847d3e7a2c8dc4a62345008db4daf0a1efa65f194d6862f76e4665ea61f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_2_TestAffineTransform.test_zoom_2.np_testing_assert_allclos": {"doc_hash": "8339940b0e6bbbfb9000b7417b43523199873fdf1fa851c7a15c1b8a569ef27a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_minimum_TestAffineTransform.test_affine_transform_minimum.np_testing_assert_allclos": {"doc_hash": "ab9f441d87bede1f6c648c1cea998c7ec31fa8b20710a4d5178a5333b86ad337"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_2d_TestAffineTransform.test_affine_transform_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "840246aac47a256f8b307190b62eeec537a0facfb9ffef82b47cf6ed28d13dc1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d_TestAffineTransform.test_affine_transform_3d.np_testing_assert_allclos": {"doc_hash": "7a89973294cd34028fd4e5bc458388aac7deecbccf270e99702223338418637c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "fb8ec1dd469c33c5366e5e15c9848effd3c3575fbd02770558efda13799dae25"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_ill_affine_transform_TestAffineTransform.test_ill_affine_transform.None_3.xform_image_affine_": {"doc_hash": "ecd12f0dea315af2aa6ec18b7973d9041a48525fb8ba07bc36d11b8d13939e53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_2d_TestAffineTransform.test_forward_2d.None_5": {"doc_hash": "8573b6534153052ece55147242c140b0b00fa7e8bc03bf1c4673244b82170eac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_3d_": {"doc_hash": "181116e2d9225391650b1156da8bd0f9d246a8271d38a1a1318937641cb2fb37"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_firstd.py_TestAsChannelFirstd_": {"doc_hash": "96222b0faed574d8f1ee5cc0f5ff3b01668029d03d417962d9c6ac5b547ca89f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_last.py_unittest_": {"doc_hash": "aed78348dfccf5c9fb4bf44aee6c6453a0d792ad9c3dab6b6ef50aee7f136d90"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_lastd.py_TestAsChannelLastd_": {"doc_hash": "46d0c71e6c4e99fd585e0a32a6c6d7be4b26f5c8d96da63227dcf247e0939e2a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discrete.py_unittest_": {"doc_hash": "9a3822a6b73d4947585dd9505cbe22264cf0f3fe52a953d33ab7bbd3ddb2b295"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discreted.py_TestAsDiscreted_": {"doc_hash": "e66b0d26818f0ca90f5442bd9385ec4c874a35c0b70ab4d7fded8cb58d5bca47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_padd.py_unittest_": {"doc_hash": "ec5796d6d76576a97ed81e27495eba61cf0d904f1d5b90eff5f27f396c14c4ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset_parallel.py_TestCacheDatasetParallel_": {"doc_hash": "d414e3a5da92438fb25cc12faa019a855fd97f162b7a2e5b1a45201a914e8c12"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_crop.py_TestCenterSpatialCrop_": {"doc_hash": "fd5e033448c38484ad716aa150b7f3dceb7e0c1d89e986be2ee870378579c417"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_cropd.py_TestCenterSpatialCropd_": {"doc_hash": "3f2ceddf98483b974a2d5e3688392848d3982a8184bc20aae7c7373658695775"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_list_dict_compose_TestCompose.test_list_dict_compose.for_item_in_value_.self_assertDictEqual_item": {"doc_hash": "8cdc84a619cf2134542693c7da7be654537901a01d4a59a667174c4f8339c137"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TestComputeMeanDice.test_value_class_": {"doc_hash": "130551f820298d7477212e178ae48341ec00ff5b2e0e019e9e14a1a81455389b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_unittest_TestConcatItemsd.test_tensor_values.None_2": {"doc_hash": "b6c73a1584293328beb8b757ea5e89eced653a5dd8a38cd3a37d1778c88dfd8e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestResidualUnit2D_": {"doc_hash": "61d334d445fcbec195a3fa5260191ad7b8d6bcdd63fe629e30a31a18165a22d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_unittest_TEST_CASE_4._img_seg_2_img": {"doc_hash": "ecaf59ec4f9cb9653b11bf1c83f6c29a22a7b6581aacd8c2e92b59f275450971"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd.test_tensor_values_TestCopyItemsd.test_tensor_values.None_2": {"doc_hash": "912372671459db85929ba9dd9eba466947c1ba0e2f30a213e1438f1390a88626"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine_TestCreateAffine.test_create_rotate.None_4": {"doc_hash": "6f971b4c7f60022496d6b65ef4b860ff8bc2999dbc46781090cca0ad9fb2c047"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_shear_TestCreateAffine.test_create_shear.test_assert_": {"doc_hash": "a9800b20bd42f70e6d35e87b20f5691f2dec77e176c0ed06b06346523e07ad63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_scale_TestCreateAffine.test_create_scale.None_4": {"doc_hash": "69f6e71beb32818100b2f0415fa5e225d0f38117628fcb2cbc1088c1fde52e26"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_translate_": {"doc_hash": "c87d2eeb72911fda802f3dae80f61cdea1a37c3552d910d2e11602f5435ef889"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_stats.py_TestDataStats_": {"doc_hash": "ddcc57f6cac80547c353d2b3fad5849aee9eeb234f9c00e3b1de3a31cbc00292"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_densenet.py_TestDENSENET_": {"doc_hash": "4d7dfd992b7b79bf6cac4ae8079ee835dd5690a37a68cc2758f23db67ec83310"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_unittest_TEST_CASES": {"doc_hash": "ce0949719e3c1ef9a4c680359bd150badb798e46b365efdaa4b04279adbcc87b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_opts.None_2.DiceLoss_reduction_None_": {"doc_hash": "e070729c0da0b4f75f62a28196fe0a3d3a2b55845e31c5e624bab89e885e03bc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss.test_input_warnings_": {"doc_hash": "73dd553a6c5dc13e2180082650c71393570edf09609bb0bb03f4d6070539305c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_divisible_padd.py_unittest_": {"doc_hash": "49337a15251bbfe12ecc548d89e3f7838f3e1ce491bf1aa32effaf752e84c48c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_downsample_block.py_unittest_": {"doc_hash": "4db0b07d13620912133807b4940518d00e33ce8836cf8980709e78ef18d891fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_flipd.py_unittest_": {"doc_hash": "bf7e84945008b25ca759f68cdfb3380f78f1d4c6f3993a59b62253deae2c0cb8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_unittest_TestFocalLoss.test_consistency_with_cross_entropy_2d.self_assertAlmostEqual_ma": {"doc_hash": "3aab9e5a4333389431aa855fe5602a93929b852798f5d68be835973f6452733d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_consistency_with_cross_entropy_classification_TestFocalLoss.test_consistency_with_cross_entropy_classification.self_assertAlmostEqual_ma": {"doc_hash": "08bfaa47e2568c32c82e1bec2dcc7a8c6237ab07a945f9c8987d83232783e8b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_2d_TestFocalLoss.test_bin_seg_2d.self_assertAlmostEqual_fo": {"doc_hash": "2db3de558be247339dd4e578cd43e0b66b333d91a2c4d686594af32f9a212580"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_empty_class_2d_TestFocalLoss.test_empty_class_2d.self_assertAlmostEqual_fo": {"doc_hash": "c18b964bd7923a597e17b5772f0eae05038c76feb4807971155dc2556eedfaf6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_multi_class_seg_2d_TestFocalLoss.test_multi_class_seg_2d.None_1": {"doc_hash": "02c1ba76627eefddc66b5eda07f44d1bc3938df3ac65a6c76a98e981c2c7fbdf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_3d_TestFocalLoss.test_bin_seg_3d.None_1": {"doc_hash": "91b5f41a37329a7c34928ae914164e93649a6e8a42bfee3656dc9f23e92f716f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_2d_GaussianFilterTestCase.test_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "89826ed9d6618f87e42c2d0b69cbfe1434420e0b542ea0a1525debdce19945d5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_GaussianFilterTestCase.test_3d.np_testing_assert_allclos": {"doc_hash": "b78212f0f7160dc9395d0be926b476d4f36018f12dd6085b74adfacdbe95ea6e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_sigmas_": {"doc_hash": "6583018c2fc411905c9b3a00e8eb0925a00ee13ffd0521f60713d9397eddd59a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_unittest_TEST_CASES": {"doc_hash": "d1cfae62dc4ea6168fd01e7c1c8d51666e6a96705deeb055afc2bd860bf8301e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss_TestGeneralizedDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_": {"doc_hash": "9a92420756e9c35982f141d11453e3919b3e75fe4f5eb6d2cfb54ea4a923d7ef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss.test_ill_opts_TestGeneralizedDiceLoss.test_ill_opts.None_2.GeneralizedDiceLoss_reduc": {"doc_hash": "8f314f22055cf461cd867706152abf8a774bb5e5fd2edc3b016a1411b66fd35e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_spatial_bounding_box.py_unittest_": {"doc_hash": "49c25b65d6835d60bedca9c68afaf0ceb7366ef5e29390246bcdf4c3e6577fca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_rocauc.py_unittest_": {"doc_hash": "aa05d16b6151f5d3aec9539913beb337bfad9983c9f672ecd47013dd8f7c21b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_TestHandlerSegmentationSaver.test_save_resized_content_": {"doc_hash": "cc50e2cbc2f226468fc788d799bf31cff43138994746723e64fc48933825a890"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_glob_TEST_CASES._20_20_2_20_20_": {"doc_hash": "3589ef8720d7255c70c22a42b285badaba96e8fa0028fbfa6c1c9b8999fe6ad6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_TestHandlerTBImage_": {"doc_hash": "52fc67aebbc1eedef0587b092f422ac1c74d32c785330396382c8d769c27a72f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_TestHandlerTBStats.test_metrics_writer_": {"doc_hash": "f6b9e42a2e33a8880211ca00610a6649251ed1554ccaa695eeebe9ef0ca8e6c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_validation.py_unittest_": {"doc_hash": "5f750b1c9e387cd2b494f32115c87e1cb217b25ba0ae3081afe64af8851ef001"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_unittest_TestCorrection.test_correct.np_testing_assert_allclos": {"doc_hash": "93cbe20008aa25c06a1dfbcb094fcdb63a67f15378e3ff27521e2995a172eaa8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_TestCorrection.test_affine_": {"doc_hash": "be2df905652f61cdf637b4262366af9a9265c10cf48b01a888366a5ff673f3c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identity.py_unittest_": {"doc_hash": "bde09e3408dcc0aac00975a1daa838b6d0fceb8a2683c35797046a933ff96880"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identityd.py_unittest_": {"doc_hash": "6ea6a4810d83adaa2428dfdfb5256347167b46e642afe29b5a1f3b43277d2f9a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_os_MedNISTDataset.__getitem__.return.self_transforms_self_imag": {"doc_hash": "9fd9bebd1ec23af7f5cacd08ca5c9aa406900c13cc9bb7e73966051926e62c53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_run_inference_test_run_inference_test.return.tps": {"doc_hash": "11e6a2431bb36bffd83ae5755709b2eba436d88e332553f34160c7179fd1014d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_IntegrationClassification2D.tearDown_": {"doc_hash": "28d01e7cb655565530ff7f3fdffea8a3b93f8876765338a69ba236d177a08fb3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_unittest_run_test._TestBatch.__len__.return.train_steps": {"doc_hash": "6903bc550e80d6085839481e84e6f818aae53eb4e3eb382ddd8b155577900a14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_run_test.net_run_test.return.epoch_loss_step": {"doc_hash": "a7c9bd78ccb02c00b58c8bb129e6992c64d3421a56e8b262bb870a9743cd28e1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_TestDeterminism_": {"doc_hash": "f77cca942d46f5c2819bfb48d7a71e990c9d932a31e986f47d41960cf18d5a98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_IntegrationSegmentation3D_IntegrationSegmentation3D.tearDown.shutil_rmtree_self_data_d": {"doc_hash": "71e2b724a0a95c923296ee182e41cd42fec17f687f83328626c175e03528cbe2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_run_test_run_test.return.saved_name": {"doc_hash": "caadfb4a3479056d0f88fe028a0a18d746ef455dfb8782cef34ea2402bad0006"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_compare_2d_compare_2d.return.model_img_a_detach_cpu": {"doc_hash": "1e344d42b8989a3de9f8aa2921be275c1a9cbabe8ade1de2607859ae605267d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_TestSpatialTransformerCore_": {"doc_hash": "cbfc28cef04ac266c156d8d7b58f293671200a5ca4459fa80440f58e810c0b35"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_inference_test_run_inference_test.return.evaluator_state_best_metr": {"doc_hash": "f7f387beda7e9a0627c1259e2769a67fd0bec24d345195527075bc9aa09f7198"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows_IntegrationWorkflows.tearDown.shutil_rmtree_self_data_d": {"doc_hash": "6005549b64ee9a35d61f57722ebea1c8741f7c1da38c68962fd870138e30af81"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_unittest_expected_output_for_cube": {"doc_hash": "157b240f7579d799c03562ee4387948c140d4fb735667c2a7723e9f6eb19f1f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_": {"doc_hash": "c12b5af3c33d65f151136de47ff6a38163b125f27d6461a2618cf0cfd6751809"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_TestContour_": {"doc_hash": "4ddaf866cf4b9f5e7f0e49ff05b6b260c9c28dbb5b3bfb500c159f2f12cb12d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_unittest_expected_output_for_cube": {"doc_hash": "59177e10928e931ecc6a601d7e84a584b2a7aaf32baf81c63f091b31d96f1eb4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_": {"doc_hash": "9ad31e141228c7018225342bf61f76f6917a892bfd59f641544d305aceced618"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_TestContourd_": {"doc_hash": "089daad2286aea9d8df1b356b82e054bac2cc54edbe4110df1ac7a988293872c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_mask.py_unittest_": {"doc_hash": "9abde20254ddf9a64307f2595bb7e2a7ad6a129ac00674810e791a344fc8777c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambda.py_unittest_": {"doc_hash": "fe73a74255bf3311e4db2491edfe725a43bf8e2a3b0a3056d1bea2d9baf1edd3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambdad.py_unittest_": {"doc_hash": "c11f28d97bc7df9da39eac7b73ab9f91e38633eaf2edea6deef6d033c02ae160"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_data_collate.py_unittest_": {"doc_hash": "ee4bd3ea12ddb291c3e6329a0f9d209af1fd1b6084f70acfcb5c09430c3f4291"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_os_TestLoadSpacingOrientation.test_load_spacingd.None_5": {"doc_hash": "ec4a1d3f998a8c4d961e44142da3f7f9b4068fc33b9c2b34441be75b0d6fc660"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_TestLoadSpacingOrientation.test_load_spacingd_rotate.if_anatomical_not_in_fi.else_.np_testing_assert_allclos": {"doc_hash": "667af69b8692aec770b7b8997e7a13c225c5dce19e06d537b807a0b1cad0cdfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_TestLoadSpacingOrientation.test_load_spacingd_non_diag.np_testing_assert_allclos": {"doc_hash": "cfffd9fcc9fb87453eafa0e90a8966de5632427fafa0b9d8f54275c125e9f930"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag.np_testing_assert_allclos": {"doc_hash": "e2c8e37c5d4ab3af417aac3cfeaca4d34923b2db6b876cbc35da4538b8a05c93"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt.np_testing_assert_allclos": {"doc_hash": "8731f11fcf860f7b2eb81e1ed380260844da8f499dd1e2532e6b5464feadc09c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_ornt_": {"doc_hash": "8e8b127b0064bd55c520e30a1c2ab005614e7e68badcb008a406efa598d87ae1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_transform.py_unittest_": {"doc_hash": "f901906da37659b7479b6bf768654388dd0ebb06c6b533364c50308f6f53c13e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_unittest_TEST_CASES": {"doc_hash": "2e80b64a9e6a9c669eb5bb8627616809fa26ef5e806c43513769d296f1517190"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_": {"doc_hash": "9a10dacd3c87ff66d71108cacce51c2b4550e0f9d993e2d0984cc193addc92f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_ill_opts_TestDiceLoss.test_ill_opts.None_2.MaskedDiceLoss_reduction_": {"doc_hash": "f6aae6ee3ce63654ce04fad035ef739434267de0272a457a66dc444f24a913f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_input_warnings_": {"doc_hash": "500897acc35cdf3c18f7c7a0a451e063d11614efc63e068c32a5ab617ab58057"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensemble.py_TestMeanEnsemble_": {"doc_hash": "4926302294e20b440e2e68e4241cfc3116db9d350e048223cfee53fadf36d0f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensembled.py_TestMeanEnsembled_": {"doc_hash": "e52217b025645fc11a9ae99a1bd77bd44a8fed1afec671996f60b247ca979fad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_header_revise.py_unittest_": {"doc_hash": "afb68eff5e92578578f94d55e82df3d07ad17462db6717510a10e101ef1ec12b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_5d_": {"doc_hash": "07c7fb6e6bb76fbd0539d7d1023667726813b4728df7960c5853d38589e37e00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_TestNormalizeIntensityd.test_channel_wise_": {"doc_hash": "ea46db8c4de2866f0bcf6a2fd7c25a2c988c79da2efa41f4379b80c7e66e2f20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_unittest_TestOptionalImport.test_import_wrong_number.None_2.print_my_module_randint_1": {"doc_hash": "dbf5690ee10001fab60702daa34aba0eb16ebf943892702f4b106a6350b54fc4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_good_number_TestOptionalImport.test_import_good_number.None_5": {"doc_hash": "494cfd606891dafef2826956fdd356353733fd17772cf76086e2dbd3cea6de70"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_exact_": {"doc_hash": "cddc54d3b868491642de3387187f1f4961d926776d5854aa8f54d00d6e5d14a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientation.py_ILL_CASES_": {"doc_hash": "1fe7beb01d5650c6dc2d1611bd1c2cee87bc2155db88131cb295e41d54d7264c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_unittest_TestOrientationdCase.test_orntd.self_assertEqual_code_": {"doc_hash": "18320a8c4c7d32eae2776183541c7a1d98611962403af8ff598b6b3b4eb469d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_2d_TestOrientationdCase.test_orntd_2d.None_2": {"doc_hash": "b06b3f5a65b553ae4c6b9ec2c6fdebfa976c4e4ba07d592e4cb1ce44e8f75b02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_1d_TestOrientationdCase.test_orntd_1d.None_2": {"doc_hash": "ff5412befe7d5c0b9946aabd362e0c46995c7d111780393f53b2550a66dd7662"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_plot_2d_or_3d_image.py_glob_TEST_CASE_5._1_3_10_10_10_": {"doc_hash": "64a6fd499d5e30327bfd36ca80393f46255e032c65520a5319e3209e1487b67a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_query_memory.py_unittest_": {"doc_hash": "08736eea0c19ab7279062412adc289aa4988081efbfe7db26ff2ad461b88543a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrast.py_unittest_": {"doc_hash": "3c1edd911ffc8d2d7a08b6e8e907958cda600b7a00bb31a2b10250331c5613fc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrastd.py_unittest_": {"doc_hash": "527e5b9d8c3e83c1f2291b126d426d41db6c45fc0f55cf32c868fb6176b3e458"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine_grid.py_TestRandAffineGrid_": {"doc_hash": "aa038ae77fcacb3960de9620a3c472b49f751c1ef5dab6d14e3da5ed45867251"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_labeld.py_TestRandCropByPosNegLabeld_": {"doc_hash": "54226a03e98b3405e790ecba1ac5c9131b02e9334f19295fb6002e0eb23b3ffe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_2d.py_TestRand2DElasticd_": {"doc_hash": "63a40162f19944c2ce1890bdda489cd9e29824b0778d3cfdb6e5a200a2926f62"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_3d.py_TestRand3DElasticd_": {"doc_hash": "35bba44f56cc5e24f1c9a848c89addf3df9b6fd56fbc679cba5de16467365aab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flip.py_unittest_": {"doc_hash": "72d4e633837fb892c960f1179185cff6e3066adb2535c7ea62591b2cd1c6bb18"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flipd.py_unittest_": {"doc_hash": "7994c996ae80f9c97dba45a35c5808de85c9e57c06f86d621e9af9e9e6fb61e2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate.py_TestRandRotate3D_": {"doc_hash": "1ae43f108f672e3050239c29824d6c4d815c6748a2b8cc72557a85534909f816"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90d.py_TestRandRotate90d.test_prob_k_spatial_axes_": {"doc_hash": "cf2577ccb32c78a6a1891416c1e39e6af0dfc4dc4fc01dc79585a3c60d07576d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotated.py_TestRandRotated3D_": {"doc_hash": "915fb7faca870257c00082032b8f24bbb09a3a59e17f681a086bf980fad502a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensity.py_unittest_": {"doc_hash": "eee36871572a83249677ffde86ed324fc2aa3b943860348dd0836cb4a23b33e6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensityd.py_unittest_": {"doc_hash": "ae01e6fc2b176975fc2684b77fba825b24ffafad4615dff72842e6303a893ec4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_shift_intensity.py_unittest_": {"doc_hash": "a1eec207a07ff7d7fb3f9cfa30769b72c35d1b3413b97fb447d1499ae77aa0cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop.py_TestRandSpatialCrop_": {"doc_hash": "5a3af7e4112839568360c5a29bfbda1b72ff9f0db822bfdf738efddf93f8add1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_cropd.py_TestRandSpatialCropd_": {"doc_hash": "1660a372b6dfde3df7897f37a89edf704fb5510b6fea6946a33c4817afaa5962"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randomizable.py_unittest_": {"doc_hash": "1023cca277e63a4d91461a6f31fdf7423611faed373798baf4ec11e5743961a5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channel.py_unittest_": {"doc_hash": "116904d99674168f614809ca983de956a6975df02ed7babd935e74ef50107e86"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channeld.py_unittest_": {"doc_hash": "2b37d249e9e5e97b473b139d6baa6142a020e2bc5df9cff9ddf02b6150ac5f65"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_TestRotate3D.test_correct_shape_": {"doc_hash": "b6da6ce6b5c11e0a142ab4b70cc119c01c07322a6f24420b19e8febd12581122"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate90d.py_unittest_": {"doc_hash": "2e5b1a9901ffaaa094231253f028149450c9702fe3a44d235d2fb98c774166ae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated2D_TestRotated2D.test_correct_results.self_assertLessEqual_np_c": {"doc_hash": "2e92bea3892adecc05bb010e70a9193e2ffa20d0cbfa7c41893ce179705aca9d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3D_TestRotated3D.test_correct_results.self_assertLessEqual_np_c": {"doc_hash": "714f15b8efc7ea5f5a6f3a368bbf4d19d307904d132bd3e6b5e53d3d4218f347"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3DXY_": {"doc_hash": "a6cb3a8d8c0bfe88072da2b1a843d478990511cbdc3cd369887c4bd12a765ee5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_ranged.py_unittest_": {"doc_hash": "6a17d1b37e56629a14aeebc5940b85c0005c9010a17f0aa77344063ba9f592ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_unittest_for_type_1_in_.for_type_2_in_.TEST_CASES_3D_append_test": {"doc_hash": "6bfb7948ca22a671c068b9e2da3f6d3561748797af0d529e0b03a929e789316d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_TestSEBlockLayer_": {"doc_hash": "eedb8b4e108730515e2c945d40954a68ff7496cdd42b95a7d3bb9eb47de7031a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_unittest_TEST_CASES._": {"doc_hash": "9ba26fe2202eb8150efa5e4ff85bd6db21b9a0394c68007d43127dc74f6bc3a5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration_TestSegLossIntegration.test_convergence._define_a_one_layer_mode": {"doc_hash": "6338926272160b572203cd69a9584312f54afa00763756b4bb3b9334a47291ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence.OnelayerNet_TestSegLossIntegration.test_convergence.OnelayerNet.forward.return.x": {"doc_hash": "998abf5d890aee7ca57f7c418908958a87abc578af65efa003f379a398979fd4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence._initialise_the_network_": {"doc_hash": "36055777668c0b15c149a120824729f062ab9ed67b4ea1ea9c1894f19e54fa2d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensity.py_unittest_": {"doc_hash": "eafcfe0ffa84f851d775de4ce015593b3658e1062cb38273ba8b338da7b32ee4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensityd.py_unittest_": {"doc_hash": "6f72df1d06965bd6d2e93c8dad4110f43c94d92fb9fa39468f2ae51915e108c4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_unittest_TEST_ILL_CASES._": {"doc_hash": "8befdf3c6ed9e0907cd29c84eda060906e3345e51db394ee818957d8ce751bf0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_TestChannelSELayer_": {"doc_hash": "a8c17159c450b22f4eddf3264fb237157c6bf74f0458c44d8398124b0314d480"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacing.py_TestSpacingCase_": {"doc_hash": "de97d445af94f00f46a572d78db13abdc5e1d392ad5473cec897feffdf72cc24"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_cropd.py_unittest_": {"doc_hash": "fd1ff9149a78675210a98e28d5a4e8d01dd71b158ced66b2919e180ab6f87638"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_padd.py_unittest_": {"doc_hash": "77f9041461dbf4785e5cc33b4dbc96295d600516e82b7581b8adee870ed9e01c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channel.py_unittest_": {"doc_hash": "4f7d194264dacae5f1905334c8ab76b3cbca05619d54b000fc6ba87d15d420ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channeld.py_unittest_": {"doc_hash": "a9480d30c0507a3e8642d02643dac0fb02e44ebe53b6aa8cf8838a8bdf9a64f4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedimd.py_TestSqueezeDim_": {"doc_hash": "c0fb0ef780311dea8f3c0a32c8264aec3fc5a8a8569a9ec64dbbfe9a4a7c1dcf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensity.py_unittest_": {"doc_hash": "826f8264af032b4d7d314b457e6d6bc5da35031a9b76c6ff8ebf31cd5f9fa482"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensityd.py_TestThresholdIntensityd_": {"doc_hash": "4c524c36f1873c0c8d2c922792fc1394776c4775e594cb22d6ad214b895d1e95"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_unittest_TEST_CASE_4._no_channel_0D_batch": {"doc_hash": "f39b2da576e3c007e2302a2a9b08246184fc8a6578dd0be7ab14e7147ca683e7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_TestToOneHot_": {"doc_hash": "3a657d69562fd4cf3e3b3fbe7e82af9ad68eec651ee575f82ee848154ca1833c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss_TestTverskyLoss.test_ill_shape.None_2.TverskyLoss_reduction_Non": {"doc_hash": "263a13605a29548fa24916068acc28f94996c25c7f1793cb89669e3942e5c47d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss.test_input_warnings_": {"doc_hash": "c8ba71213081eb356cd4ea5c756dc02c59b0b3ce1ad1188a5fc61879b65dae03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_unittest_INVALID_CASES._None_None_bilinear": {"doc_hash": "57584afa818973b01b97d12e5c6df15dec8b2d645b900fc0139d3ab050463275"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_unittest_VALID_CASES._": {"doc_hash": "e0b96f6d1ed34b28ec0ecc8125906ca7f9b10c00c9abc59745bd16978337ceca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_DIAGONAL_CASES_DIAGONAL_CASES._": {"doc_hash": "8a8bd01afc5596687781fded052e0366e694eefe3b112075d2272137934f9b1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_TestZoomAffine_": {"doc_hash": "bb8fb4f6755eab54647c64234fccbc08a52816da71293d07c72478fb6997c520"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_unittest_INVALID_CASES._no_zoom_None_bilin": {"doc_hash": "e517b86c3083dcf9c9c447f8a63925b0005528f1c65469ae28c6fbd182455875"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_TestZoomd.test_keep_size_": {"doc_hash": "1eccabde181bccd17900deb349edb1ec2705c06fe109a6adcf3ec3b2d1afebca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_NumpyImageTestCase2D_TorchImageTestCase2D.setUp.self.segn.torch_tensor_self_segn_": {"doc_hash": "68b9b6c21cf6e92645a618da69392d4c75243fcc5910e9170c3c9f4ccfc3aadd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_query_memory_": {"doc_hash": "1b85991ddf31f520bc0ebc540c3bf916731cc88969324bd7363731e13c2dd9ff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_config_from_root_get_config_from_root.return.cfg": {"doc_hash": "636bc04679b7c70a1fa18e7ac84773fc15772f0e8716aa4b69774539f08b0a97"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_NotThisMethod_register_vcs_handler.return.decorate": {"doc_hash": "37c56a26bfa3267b7ee4d7eb4b9f2825d576a46a924203ef084404ec204eb3a9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_run_command_run_command.return.stdout_p_returncode": {"doc_hash": "686989e23abae5b809b4c7229d942fb392850c570e837808fe58e06eade68363"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_get_keywords_git_get_keywords.return.keywords": {"doc_hash": "24589a0695cc6db686b17707d2ae846bb00b32afb520696f4ba33bdcef540ce7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_versions_from_keywords_git_versions_from_keywords.return._": {"doc_hash": "8e8f53330ccc17d402918cf8352ba39b12d06b3ba72330525d7752cf18238233"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces": {"doc_hash": "9340a2f5ae3766b743e79558e1c4892c28fe06a6b345fcd712d2a804f8368c77"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_vcs_install_do_vcs_install.run_command_GITS_add_": {"doc_hash": "ce6841ff519b17aa2d7473d5ad7ac0e07f12143a79c7f074763a9631c2fc7184"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root": {"doc_hash": "eb27147b4dca2b18020791f0e65c0fbf7aec6bd2532f6ea54436911b8190d4b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_SHORT_VERSION_PY_versions_from_file.return.json_loads_mo_group_1_": {"doc_hash": "829ef4bec48493276727c09a38f1d04cb9a3919a539c4da1d239fb522ea32147"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_write_to_version_file_plus_or_dot.return._": {"doc_hash": "75973a5ef462074580ea01f4ad51787ab7d7bc39ff5eda566ef9f40d05aeda5d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_post_render_pep440_post.return.rendered": {"doc_hash": "118807a5c2a97d74d8fe5f796e9018ac18aadcc9b3182b6181ecd25e8dcbd0d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_old_render_pep440_old.return.rendered": {"doc_hash": "97c87acb509ae5cbe63b80d324df13c6839f50c81c34d171697e57c312f2e180"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_render_git_describe.return.rendered": {"doc_hash": "a3d9b39392875e0334af8c64b46fe88c38f8d51c8b168839e4ae228db30b0daf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_long_render_git_describe_long.return.rendered": {"doc_hash": "cf56b90f4c7b7ac99479cdeafeebaf306a0ab42713bb536dffdfe85f0a8b1c00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_VersioneerBadRootError._The_project_root_direc": {"doc_hash": "8830b95a2390f35b59b15edddd77bdcb0dbc6a910169bd3a9f57b3c382046551"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_versions_get_versions.return._": {"doc_hash": "8c9846352af5fa04f4ae6f00259417363a735b385dc9858b46939a847d6928f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_version_get_cmdclass.from_distutils_core_impor": {"doc_hash": "1c049e56b5b17ba505fccb46547c16d5952097f16336fccd2dccb2548aa9bd98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_version_get_cmdclass.cmd_version.run.if_vers_error_.print_error_s_vers": {"doc_hash": "bf8482b590feaed74741d6cb9ac691b8bfd55f50f0717591038782e486f88099"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_sdist_get_cmdclass.return.cmds": {"doc_hash": "015db1e8482c2e175440634d93bd5281420a7f6cbc8ef3e10a0658e88e5f4a73"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_CONFIG_ERROR_INIT_PY_SNIPPET._": {"doc_hash": "d06ca46b62d1ae35674a46018618ee9c434fbfd9d1553dd0feba30be65ed1f96"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_setup_do_setup.return.0": {"doc_hash": "e8fcf2f3b4250714449e5c758c79747c92bef475be869d16721af41a42935536"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_scan_setup_py_": {"doc_hash": "e06f36e2fe2775a2e960e356ddf105fb556e2ab136048f23c6fde564ced2eb1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_from_typing_import_TYPE_C__default_eval_transform.return.y_pred_y": {"doc_hash": "2b04c9999e27867d46ddc168b9e334dbc91aefa8877d6cacc149144b88bd2a89"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer_GanTrainer._": {"doc_hash": "f5e124b63c077ed91c5f77dabd0887fbc1e8ffa8a2fb943e692fb60ad1b6e394"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer._iteration_": {"doc_hash": "5e02738e97a88be0bac9eb18af5f0f0b31f687e7602166e99d2e3688a2600d8f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "9e92c11ae26b7c739f49374c2798633131ec9025e00933de40aa915a255c3c14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader_CheckpointLoader.attach.engine_add_event_handler_": {"doc_hash": "74ed018de5f7333a80e4739df70953d0af48b6563ee5073a67a3b626aedf7b2f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader.__call___": {"doc_hash": "04c10d13d41b4c3804c346f09a51253246aba3e4eb2bfc38b81b085c5dc11dab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.exception_raised_CheckpointSaver.exception_raised.raise_e": {"doc_hash": "ac0c560e42c984b41f7bc0ad89d7c79a5b1a9749785943d6c205d7404881d24b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.metrics_completed_": {"doc_hash": "6a673d3250d2e08ab72380df3b5f075a86630ba8f4ee7c243b6478d0f264a61e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "5ae8207b9d38120452eb998f08bde55a8bf4dd4bf396e2f2a88a8a6de996ecd4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "6496f04728bb15918b7932e5e7e59126ab8a9896be1921dad0818f02f1c59dc2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_logging_DEFAULT_TAG._Loss_": {"doc_hash": "08e674d60e5ffab7ad8ed6c272a1f54e95ed905ca5e51bc1cbe600705404c290"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.epoch_completed_StatsHandler.iteration_completed.if_self_iteration_print_l.else_.self__default_iteration_p": {"doc_hash": "cf9f706f2dc5ec5ff9e8c532b777c35c0dcc25c2507692b3451138a14c337be9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.exception_raised_StatsHandler.exception_raised.raise_e": {"doc_hash": "758a9106ac5af455acc9dd0fd04e4a0c2113d3f9abbf2c75e73d44c1455995f9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_warnings_DEFAULT_TAG._Loss_": {"doc_hash": "6acbcf5f38f6d262e47ba404d8fb460ab55b7b8994af7067f3b5886cd2a1d4dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_warnings_DiceLoss._": {"doc_hash": "002a5b1b5cd4a5fe835e5174430a3849d07f7e253025fed1269c281df8669fb5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedDiceLoss.forward_GeneralizedDiceLoss.forward.return.f": {"doc_hash": "1ca13bc06fbc258587a454094fd2b915cffdbf7425aab237ff6b619d748fa031"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss.wasserstein_distance_map_GeneralizedWassersteinDiceLoss.wasserstein_distance_map.return.wasserstein_map": {"doc_hash": "bb7b6e798da164fc8c46bf2aca6fffc70ae7cfadb1ee489c91bdd89341c10656"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_from_typing_import_Option_Convolution._": {"doc_hash": "f9bc695fe0e8c931a344a8f2ed7a6e65f0d7d5f9474abb0f28029b59e47cfed2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit_ResidualUnit._": {"doc_hash": "791d77bc1516a93ee7d5d1b46838abea1d60d6838dba66a9dbb5e7c83cb0a371"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit.__init___": {"doc_hash": "5701b3b611ca375cb2d5e01a0a9facb9fc84947dd40da087c745473e09dd9b1b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_from_typing_import_Type_GCN.forward.return.x": {"doc_hash": "ee88cd89a6dcdfee42926018d12ff48a54a73140be25be76c607fe102d5da8aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_MCFCN_": {"doc_hash": "327370ddf895df0ceea13f5130166cfae61822b073dbdb871e70de035ab76ac2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/segresnet_block.py_ResBlock_": {"doc_hash": "f667ab975bf642aa27ef40e7f1d68453ea147d03f4d264ece49113936ad3ea10"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEResNeXtBottleneck_": {"doc_hash": "24c0a56fd5530790f05d71877527aac2caaa4b7d3c6c38f34b15c5f0e69f2b13"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_calculate_out_shape_calculate_out_shape.return.out_shape_if_len_out_shap": {"doc_hash": "2f7fc082bde8ce84222c9bacfaf84095be9dce50c1bd38b24ba0bc9a0a777dcf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTMFunction_LLTMFunction.backward.return.d_input_d_weights_d_bia": {"doc_hash": "b74aa2dd300073e30d9cbde4e3626c09843f96a400a6807b8848efc73e3a6eb6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTM_": {"doc_hash": "001298a071aa95aff22680eb95d641535097f8dcfc91842dd40efe4a31f52d8b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_math_Bottleneck3x3x1.__init__.self.pool.pool_type_kernel_size_1_": {"doc_hash": "f1b3cbd07e22e41e1dd74e2a50ee326c3216d217b422a224c97fd231db10fa1c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Bottleneck3x3x1.forward_Bottleneck3x3x1.forward.return.out": {"doc_hash": "1b0102c31efcc220393815798521f4633a01db2295ae54b324867abe4ad03ab6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Projection_Projection.__init__.self_add_module_conv_c": {"doc_hash": "ffb0c70a70dd8952d56ffa664079e57d214c5b93b41a8e25332a121a0a7ac491"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_DenseBlock_DenseBlock.__init__.for_i_in_range_num_layers.self_add_module_denselay": {"doc_hash": "f3c7b07978f6c0d2e8a918b39a195742ef0d34a733949cac6006d3ee51db1d1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_UpTransition_UpTransition.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_": {"doc_hash": "a3ee8165629526b8df6e2ef503109cfd53db8eaa0f31b2e842e761973c3b44f8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Final_Final.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_": {"doc_hash": "8137192353ddf087984e7fc0ea96dafbbf97efc80934eebf9f23d989b3f48fbb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer_Pseudo3DLayer.__init__.self.dropout_prob.dropout_prob": {"doc_hash": "b3da1a1b5482b398f740f0148165b601e6d98834a06a7fee4d9313fc6a9d3448"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer.forward_Pseudo3DLayer.forward.return.torch_cat_inx_new_featu": {"doc_hash": "aa405664fa773cee91a41b41763eb059f3803e2d418c9934bea9275d16b82221"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_PSP.forward_PSP.forward.return.x": {"doc_hash": "920eb23a4fd1172496239fad1262a432d0ea2a00d9ad5fb7af1c4763c3248d67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet_AHNet._": {"doc_hash": "53bf9d40408951e5876ce6939df2a387b54fc17d63aace0e14f103e499f25c18"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet._make_layer_AHNet._make_layer.return.nn_Sequential_layers_": {"doc_hash": "1400dfaf7b61771804cc762c12564df84359f088bee0745ff7a23c5b12b05d22"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.forward_AHNet.forward.return.self_final_x_": {"doc_hash": "d18ccd430d83130a0cd494ebeb792524a3477ba4dc8b22b03af981797a72537d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_from_typing_import_Dict__DEFAULT_LAYER_PARAMS_3D._": {"doc_hash": "e6b58bdb6851f8a0b4526e0be8ffe11f7fa84c01cf767a7949c22470ac94e775"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_from_typing_import_Dict__get_acti_layer.return.act_type_act_args_": {"doc_hash": "01171fcde1a0fdbd719d1ac43d6f2419fcdb4e637142cf25e63e4810d283cb32"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_LUConv__make_nconv.return.nn_Sequential_layers_": {"doc_hash": "4847a28190e8e854b68de19e946dbc4ad458a2d4c33aa5bc6eea16ba47c80847"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_InputTransition_InputTransition.forward.return.out": {"doc_hash": "821fb382d42000442b5214ae6b491719905b43fc8ab630a9eb5774438ad2fda3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_DownTransition_DownTransition.forward.return.out": {"doc_hash": "eff52b30bd90663290b5bfdae8c609984df728f62830c1b0be12f30442353a9a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_UpTransition_UpTransition.forward.return.out": {"doc_hash": "8382687c33531562b00dfef0690ac7f03724c59f7ad67b94a4e8d70a906f88f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_OutputTransition_OutputTransition.forward.return.out": {"doc_hash": "db29b14d22a43bc6350fae0df9869d1a3f4e540a346e08cafe77d3596a26f505"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet_VNet.__init__.self.out_tr.OutputTransition_spatial_": {"doc_hash": "a2fe4f233514316054d05a644f3c2f4c645fa87ea40af8b67845ea4dc108ed3b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet.forward_": {"doc_hash": "4768544f0ae8b416c2e6880dc36ca0d9911ea500695c4046139a7b10bbeb7d47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normal_init_normal_init.if_getattr_m_weight_N.elif_cname_find_BatchNor.nn_init_constant__m_bias_": {"doc_hash": "fe91485b445b2a78ae6a1252b156a3553b016e24e92d48a9d2512c26e59efdfa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_icnr_init_icnr_init.conv_weight_data_copy__ke": {"doc_hash": "01bffed4129fbbde7349e2502ad3c5b1ce6628aa1867c38b2984d3d7a584ad7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_from_typing_import_Callab_adaptor.map_only_names.return._v_ditems_k_for_k_v_in": {"doc_hash": "4d29ec5de78e077b173ecd46a02af570734e4483db91e5dc9f5681ad03f1793f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.randomize_RandSpatialCropd.randomize.if_self_random_center_.self._slices._slice_None_get_rand": {"doc_hash": "1d659197b35b1b991a59fea00a152c4756f936601c1a7f01698b9a6b52afdc99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.__call___RandSpatialCropd.__call__.return.d": {"doc_hash": "0ad0ce2d79c212d24fae68e0262b9809540225554876e338fb14afa923a18072"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSmooth_RandGaussianSmooth.__call__.return.GaussianSmooth_sigma_sigm": {"doc_hash": "24e5b2a00b1a74abbc6921deae2f68f6940c713d1df688a19c2bcd72ec38df6c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.randomize_RandGaussianSharpen.randomize.self.a.self_R_uniform_low_self_a": {"doc_hash": "01fb86d56ad4ec7561c81b10953a7514eb411a630f8b9e81c1b2070992966ec6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSmoothd_GaussianSmoothd.__call__.return.d": {"doc_hash": "6bf8c5e28619f51a1e2336b62a56c1e71dd4dae254b3a8e7936dfc730ca9b3eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSmoothd_RandGaussianSmoothd.__call__.return.d": {"doc_hash": "51c3725285e69e59d3652a850d711ee6ca432ea71db7892eaf533ef6b5c476a5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSharpend_GaussianSharpend.__call__.return.d": {"doc_hash": "a817a95338cc347050e4e00ecd837ced5331fe65d72677ab41b9f6103a6ae58d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_VoteEnsemble_VoteEnsemble.__init__.self.num_classes.num_classes": {"doc_hash": "fab4ce669a6f1753db9bc8f5aeebef1a4ec3bf5f5740615b9af379f6e46e15d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_MeanEnsembled_MeanEnsembled.__init__.super___init___keys_en": {"doc_hash": "40953363735081bf9c8f65a4ab451dfb5a780c523b65be266ce1a567965587c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate_RandRotate.__init__.self.z.0_0": {"doc_hash": "7e418909fb091d1829289ba1a22950ca37546d9b5d2a048207cf6ac310cbb7a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Orientationd.__call___Orientationd.__call__.return.d": {"doc_hash": "89d08fb8d10aa9fedd5e84a26e52f8fe62734284b2d65720b5c234ef198f95c3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_Lambda_Lambda.__init__.self.func.func": {"doc_hash": "1f19b77fa33ba449173b3d1c44856b9057b88b47290c8466b0c7412f70305267"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_importlib_alias.return._outer": {"doc_hash": "8f904e998bb3e55dc7a762c1b99a780a941194b142f914438fb72366f9e2547e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_ensure_tuple_rep_ensure_tuple_rep.raise_ValueError_f_Sequen": {"doc_hash": "c9a2ffa83c36b442607722a389c6cefd586d9e99e195626fe0a53a0d0d6a9bd8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_itertools_TestAdaptors.test_single_in_single_out.None_4": {"doc_hash": "97b42f768cf2d0fcc77e0f97f7d4aafe6ddb2536dfe76ab5b66626ce94915cac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine.test_to_norm_affine_ill_TestToNormAffine.test_to_norm_affine_ill.with_self_assertRaises_Va.to_norm_affine_affine_sr": {"doc_hash": "860e5aab62199adb26a0d6d1c124577538fd42a1638331d3b1926697040472b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset_TestArrayDataset.test_shape.with_tempfile_TemporaryDi.None_13": {"doc_hash": "b069cf6b9c0721930850269363811c970a1cd93b142512c511989199fc349239"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_default_none_TestArrayDataset.test_default_none.with_tempfile_TemporaryDi.np_testing_assert_allclos": {"doc_hash": "3ed7e0f15f78a727944dda70b4973d70cb8e0bc45d783a0d46278d5a15bbc77e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_TestArrayDataset.test_dataloading_img.with_tempfile_TemporaryDi.None_6": {"doc_hash": "ceba66a5ad1b2b061f8af22f09991bfca74850ba05a4fe057b4925a39169eb4e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_label_": {"doc_hash": "6e68d8fde09cc0a532a88ec4a682d96f626d5e7fec562cc60961f2a2f6514766"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_saver.py_csv_": {"doc_hash": "72ab1237f375c15e5b38013bf0c3002be25e1fc7c82c89a3b69bd57d909dcb5f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataset.py_os_": {"doc_hash": "4bb870784cc034495532e0a382f3b3a9015a9af5135c36216ebb480f165aa3a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decathlondataset.py_os_": {"doc_hash": "74c86720d167fb61e0ef0f00bc837cc3c70ffd9e318d4493db27887fb0a6bad6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensemble_evaluator.py_unittest_": {"doc_hash": "ee8fa5c54d18623af8fbb51ec9847a567bb4fb69ca6420b938b89f86fad8f9f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpen.py_unittest_": {"doc_hash": "06ddc6f7536db084068b58708b9c3a7df59ad44e92019e5fe5ef062da113f409"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpend.py_unittest_": {"doc_hash": "7d5f8c97f72ef8ef6d1861f6bc799e364e08ac69d8de595fac752093769c4d6f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smooth.py_unittest_": {"doc_hash": "c3c1b4754b64d8d4de81abe33fd29829b863acee615e16f5b51aace6c737d9e2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smoothd.py_unittest_": {"doc_hash": "232417c4c3c7ba8dd97707c5f7e07dbbb51e70c55187260956bca95a1b937d7c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_two_save_one_load_TestHandlerCheckpointLoader.test_two_save_one_load.with_tempfile_TemporaryDi.torch_testing_assert_allc": {"doc_hash": "3d7423719802826cd0159fb789a0c8d54934c448d73f28f8d46344a334e0b786"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_TestHandlerCheckpointSaver_TestHandlerCheckpointSaver.test_file.with_tempfile_TemporaryDi.for_filename_in_filenames.self_assertTrue_os_path_e": {"doc_hash": "84d29624b74dff9eb7c487674e9c1552c30a1b1720f7382a2f8dfd106cf36873"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_classification_saver.py_csv_": {"doc_hash": "253b00e99112d80642f68c762399baa96aa4fbb4c09b6ed97dc75d5e79fff670"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_lr_scheduler.py_logging_": {"doc_hash": "3a3070966dd16a84e3bed18a0a862bca3e746c71a54e63a125a755913c0d38dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_os_TestHandlerSegmentationSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "7a7073b878454cdae94504dae74c2c15f9f56e1047185845e5ae0bb07ecb0590"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_glob_TestHandlerTBStats.test_metrics_print.with_tempfile_TemporaryDi.self_assertTrue_len_glob_": {"doc_hash": "b3a942837781fa0d1c09e2aa76c73f0caa9496f14c020a9d513a0f6528632c4c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_img2tensorboard.py_unittest_": {"doc_hash": "ccb5ccee9c199b9f26815a8d28a3d12c85190ed450d453ffd2661bd3e9ef5332"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_run_training_test_run_training_test.return.trainer_state": {"doc_hash": "b0688cfa901f17247b835df74c988c4f810373be4e1a2929108200ea4e561ac7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_IntegrationWorkflowsGAN_": {"doc_hash": "5f993f31ba5d9d568e066edbcedfe104affbd9d5914288412b82d2af151e5882"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_to_dict.py_unittest_": {"doc_hash": "5364838acc9789ef33c03123ab3a8f8162b3dd2192cc402b74b780c79204f883"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_unittest_TEST_CASE_1._": {"doc_hash": "8c42a623fe78a0b74be5ca3e9a2a1f152b3071d8619ae530f692460d4a5494e7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM_TestLLTM.test_value.None_3": {"doc_hash": "76a8a69548e6a707e3c86c372d7da62eb762dbc8945609c5b2c8f7778f215dce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM.test_value_cuda_": {"doc_hash": "eaac8aba9628014245e1247940d88de453ddc39e991b1aa959e69713de999644"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mednistdataset.py_os_": {"doc_hash": "c74213bd2c8d65870156812f9744c71bd0c54539fece7918f656fbc6ffc0b06e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_os_TestNiftiSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "8abb42fbf35c8a02def9692a8d537ed69120800c2e0318171ed0f3a01f2bba5e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_TestNiftiSaver.test_saved_resize_content_TestNiftiSaver.test_saved_resize_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "af562dec2cbc777fafe2d062d790519d6b7790850689006765814ad45d99e319"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_os_TestPNGSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "286d896ca7ec803b3c30f74516f8b9c21afc4ff68f7be7eab7cb733b8cb6b33b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_TestPNGSaver.test_saved_content_three_channel_TestPNGSaver.test_saved_content_three_channel.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "f5f1bf9ebae38fa2a0de6f481db8f37e4ea955ecdaf6640b9003d0d8ec5aa2b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smooth.py_unittest_": {"doc_hash": "52e9590d67f4a3d7ccc3f67578078367474586d4ff02d5755580ae9514325055"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_unittest_for_spatial_dims_in_range.for_in_channels_in_range_.for_kernel_size_in_1_3_.TEST_CASE_RESBLOCK_append": {"doc_hash": "b0e576f85f47eae4177469ffaafd570800b7633be338fd712847b05a567dadd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_TestResBlock_": {"doc_hash": "75b86cdca74d23f9677c3e4c1ac14e077c5ebc8280fe0c92d527bace2124fe79"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelay.py_time_": {"doc_hash": "66eff671cdbc6ce373406acab6e6845ee32caab63e96426f276a6290067376d0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelayd.py_time_": {"doc_hash": "77af87875b52e1a337609b10d82adb559ed7c0925be2dee09691bb0f72be8d57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_subpixel_upsample.py_unittest_": {"doc_hash": "0d71d99235fc965df21181a12769aee3e17293803dc5ee2eeec46cf1cd1cf505"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_unittest_TEST_CASES": {"doc_hash": "62e0c005f7aad5a5f7efe1c3b0084bc4680ee297d93587d49d4e8fbcede836b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_unittest_TEST_CASE_VNET_3D_3._": {"doc_hash": "4848281718d42d40c7cb34ac2705eb9c5998e59bfcdfd163e89e3da6ed818f8b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_TestVNet_": {"doc_hash": "9cf009bb5d6b3bea5b81c9e534b263f626682da6f7683dc9e6fb3b83709fd00f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensembled.py_TestVoteEnsembled_": {"doc_hash": "c7d73a7b5f780f2c05ee3feeec1fba468a4062666c8375f020a7240cc623698f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_check_hash_check_hash.return.True": {"doc_hash": "f9d323575e762514cdbbe5553b6e962069f74590ca2122af63dfc51eec8ae3f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_os_get_config_values.return.output": {"doc_hash": "c8c582f6988806ffb3fa20c180ef73f4c60140f6739e3f2ad692502114b72162"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_get_optional_config_values_get_optional_config_values.return.output": {"doc_hash": "92b487465ca87867a0e69debb93670efe32c3f9d1c78d9a09d3570dca2d971a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset_SmartCacheDataset._": {"doc_hash": "4af4481c60f42b77641f7bfbb457aa0672ff5a58559682d639bdc0a25b381644"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.__init___SmartCacheDataset._restart.self__replace_mgr_start_": {"doc_hash": "31f2934ea46a7756f09017d916ad5211058269b6717ef1a9a8783932dfc7a442"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.update_cache_SmartCacheDataset.__len__.return.self_cache_num": {"doc_hash": "c922a65eb2ab8359a1e1330dba447752c4bd0e1fc71875f100c5c0122f2e7283"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py__append_paths__append_paths.return.items": {"doc_hash": "53747395b85f6af882082118feccfd38d2f568677ba7538c5f1ea69a0cbce2dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_load_decathlon_datalist_load_decathlon_datalist.return._append_paths_base_dir_i": {"doc_hash": "1da66e775f339471c1247d691114f89a36d59728efbae09bef72e48623451a7e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_PatchDataset_PatchDataset.__len__.return.len_self_data_self_sam": {"doc_hash": "c41c1ec8072a72c136824d40c9e8210762ca13b7409b23f38c2ae02406123e49"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader.read_ITKReader.read.return.img__if_len_filenames_": {"doc_hash": "074b20dedb33b5cca000fe28be4c32b3770998aa586f6f5a7489bc9d559cc21e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader._get_meta_dict_ITKReader._get_meta_dict.return.meta_dict": {"doc_hash": "f5148072c871510c3e371affa1c74b0eb5689f2344b3b44a10fa29fc010b4504"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader.read_NibabelReader.read.return.img__if_len_filenames_": {"doc_hash": "8792d8180338a027c9c25dc28f79ba535c1553610ba564f5ab0d668a0bc546b7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader_NumpyReader.verify_suffix.return.is_supported_format_filen": {"doc_hash": "964edecc98a2598e21c1417f7463bcbb6cc9d46f6cdfb13e6e58ec76e1e934e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader.read_NumpyReader.read.return.img__if_len_img__1_els": {"doc_hash": "9413b64353bbc001ea2e8e6a7a9953b952b8fe07f4684f2e3fa2ea58a53d4963"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader.read_PILReader.read.return.img__if_len_filenames_": {"doc_hash": "3ae6da16178341d1003c35617cbff76a653c59e62b431e60eae603192f832c7c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_random_patch_get_random_patch.return.tuple_slice_mc_mc_ps_": {"doc_hash": "446a949aff51d98b033d9acd957f915cd3f5ca7832b70fb88ce6ce50d0246c83"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_compute_importance_map_compute_importance_map.return.importance_map": {"doc_hash": "432a0ba9c0938b52a624c11f03679092fc1e628495614a85ca33d1b39c12105b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/smartcache_handler.py_from_typing_import_TYPE_C_": {"doc_hash": "45c8165f485f9e7a7862dddd37218c996c5ff6f3b70677edf6309fbdd325f430"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_compute_percent_hausdorff_distance_": {"doc_hash": "7f550d930190eb26d939b27e998716603802d80997e14b9a546d34c3ed81833d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_get_surface_distance_": {"doc_hash": "3e49d0c00d71a77874ddef340b160c398994b5c092cbeb007281708afed26c7c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetBasicBlock_UnetBasicBlock.forward.return.out": {"doc_hash": "48bb8f80f26eaafb6622493aec40a172fbd2592bc51cea3da8c6cd4930053425"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetUpBlock_UnetUpBlock.forward.return.out": {"doc_hash": "0a536a68bae1cd2617b5612d7a401a48ee76a61224b5a392a05ed9a471b1fb92"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_padding_get_padding.return.padding_if_len_padding_": {"doc_hash": "754a96fc2d828a00e0389bba1a95efa218505ffc7783728ac5f29e4f11c21ff9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_output_padding_": {"doc_hash": "fdadf168ad75ea55110aee37c69f6695b2fa22026119f215afd4117f25e68397"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_from_typing_import_Option_UpSample._": {"doc_hash": "5976b83cd4deaa275621917573cec24683ac3d4d90b70650fa834822c816a4df"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_UpSample.__init___UpSample.__init__.if_up_mode_UpsampleMod.else_.raise_NotImplementedError": {"doc_hash": "8c12eee310d148e304a17aec5778bea9d55cbadca564f05dc678c3d337f7fd06"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample_SubpixelUpsample._": {"doc_hash": "9e55a3f473f8af9ee6ebde34716b1c0d24846e4a29be309241b9eb3460caaf3e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.__init___SubpixelUpsample.__init__.if_apply_pad_pool_.self.pad_pool.nn_Sequential_": {"doc_hash": "2e5e21ea5603a22b32808051aa941da0e3f6baf014d0ec84fac294fcf410a723"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.forward_": {"doc_hash": "f7a99ff63c3bc29942135027efaa64cef1f00498ad8839eba087f08f5c8779a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_from_typing_import_List__same_padding.return.padding_if_len_padding_": {"doc_hash": "c283d6dca67b34f0f7fa52e9b016fb13f5ce5427a73d2491b55d5aa322e69c30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_stride_minus_kernel_padding_stride_minus_kernel_padding.return.out_padding_if_len_out_pa": {"doc_hash": "bbd27fb3c0b541910ad8e9acf3841b3f989b37e2b756f79313eaa3df31314fb8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_gaussian_1d_gaussian_1d._type_ignore": {"doc_hash": "d28d374e8e8f3285a32a90419ccabd3bfb8b2e3d6d494f469bfc0fe78c317ba9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_polyval_polyval._type_ignore": {"doc_hash": "1236f41ab6f04cc3c0fcdf05e119e782f609af4fbb7609e6ee95f2fa146465ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_0__modified_bessel_0.return.polyval__coef_y_torch": {"doc_hash": "b3ba14f54b6a7bd18af4ae492971b6073ae8786a43e293a7ee9d8672d807c00b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_1__modified_bessel_1.return._ans_if_x_0_0_else_ans": {"doc_hash": "7d8015613f7924e5a99c829f1d253f71f32f2e5a9e22b2b5f5d9c959aafbe72b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_i_": {"doc_hash": "efe26237e698f73f0823472daf5c9a9d499512187fbe050420af276662c60070"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_GaussianFilter_GaussianFilter.forward.return.separable_filtering_x_x_": {"doc_hash": "1aeb8096850afc77f3db25fb630a0bb7badc71ba225af1ec34f365f80a4232e2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_count_grid_count.return._GridCount_apply_grid_sh": {"doc_hash": "ce8b67d04ef7de08163285b243ffba11588977ad5f6917493bcb2948edb46a02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_grad_grid_grad.return._GridGrad_apply_input_gr": {"doc_hash": "af94b58d90e46d413c38452f0941f8b45db0e7da549080821440a77f9ed944c6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_AffineTransform_AffineTransform.__init__.self.reverse_indexing.reverse_indexing": {"doc_hash": "97fe66df7dfeb579c08c8408443fe875b5bfd359a867f3f922e66b31a383ffaf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.__init___AHNet.__init__.if_pretrained_.self_copy_from_net2d_": {"doc_hash": "246809a18a3110b8e3fe8f3ee878080606169f914171318295100834d8af339f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_module_list_DynUNet.get_module_list.return.nn_ModuleList_layers_": {"doc_hash": "b8ae86182508830cf5ede49deac0cbeae889c66c6a561d6cb17066a8479b4da4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_deep_supervision_heads_": {"doc_hash": "1b21abc49ab91ce3b8d2654cd725343f51c63ba772a866b26ce0102748c37708"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_from_typing_import_Callab_Novograd.__setstate__.for_group_in_self_param_g.group_setdefault_amsgrad": {"doc_hash": "4d4dcea0cbc3668cf2465dfd0a415bdec84921c9d942cd4b4b729b8a30b38915"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_Novograd.step_": {"doc_hash": "dad26db0230cd3487dc8b84fa5e7491860d4b4aa10b0eff5cc6a3ecc591328ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel_RandCropByPosNegLabel._": {"doc_hash": "6cd6698f61b36d5d33098367983a0d51dc5d10c6eb63f5f975f5cae99a6131ef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.randomize_RandCropByPosNegLabel.randomize.self.centers.generate_pos_neg_label_cr": {"doc_hash": "ad0e55f470342c6de5a748ca27f5546ae7d5fb08efe8f38a20155ffa8a058106"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.__call___RandCropByPosNegLabel.__call__.return.results": {"doc_hash": "8060c70ed909cddb7968aeb150233261675ab1d5dd7ceaf3e873575a3faf573c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_ResizeWithPadOrCrop_ResizeWithPadOrCrop.__init__.self.cropper.CenterSpatialCrop_roi_siz": {"doc_hash": "511bf79a3ffac2c83d23dc60a08ba6273461d3a4113e413b138e5882fc5efff0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld_RandCropByPosNegLabeld._": {"doc_hash": "b45e22937b05d43063e1cd0c07662b7b7064fc36de8e81a6b13cbedc02904a3d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.randomize_RandCropByPosNegLabeld.randomize.self.centers.generate_pos_neg_label_cr": {"doc_hash": "ac95e5eb2076b4c327ac11a35bb0bcc2baca570f49acc4a6f708feaa720e41a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_NormalizeIntensity._normalize_NormalizeIntensity._normalize.return.img": {"doc_hash": "629db33d01218a4dbbc0608b161886f08426de61d2a6c0150cf62cfcc9671297"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSharpen_GaussianSharpen.__init__.self.approx.approx": {"doc_hash": "3a8de32552aa3be722a7fbe4bfa28268a71bc306df8760e7f969056ce3077f01"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.__call___RandGaussianSharpen.__call__.return.GaussianSharpen_sigma1_si": {"doc_hash": "2cee1248a0f583b9403db8eb2d104445c211aadd23739c17cfa75c15c02eee57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandHistogramShift.randomize_RandHistogramShift.randomize.for_i_in_range_1_num_con.self_floating_control_poi": {"doc_hash": "66d2f171d1a71f2031a3df915731e7714b94fe348f7c9eac26e2b0e78cbc4d91"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_LoadImage.__call___LoadImage.__call__.return.img_array_meta_data": {"doc_hash": "90b5e42dba0713635e0990d895e6677cc85955ea259d02f2a444de8d03eaf730"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_LoadImaged.__call___LoadImaged.__call__.return.d": {"doc_hash": "8401c7d14df0856d5b28b0780c708e7d37762a23ac5cb1e720e544ea8abbd5a1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_FgBgToIndices_FgBgToIndices.__init__.self.output_shape.output_shape": {"doc_hash": "9b8a6ba6933a9352349a78d872aef46cd96778aace2113123c5fc71f31f68566"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_FgBgToIndicesd_FgBgToIndicesd.__call__.return.d": {"doc_hash": "a7cac871eaa81502f316fb4dacab8a3cf0694f417e07891cb4e504072b4b61da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_map_binary_to_indices_map_binary_to_indices.return.fg_indices_bg_indices": {"doc_hash": "803781e8e3eb3cb32f6cf50d92679514ab6bd362ea644a21c39594e5e15ae62b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_pos_neg_label_crop_centers_generate_pos_neg_label_crop_centers.return.centers": {"doc_hash": "ae4ea25ae71091de129106ebe73e2eb1dc788e7640f1e0bc991d17654c8c13b2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_load_submodules_load_submodules.return.submodules_err_mod": {"doc_hash": "7f3ab646f79f142da160448aeda23c0e1e02a2c8f1e51772eb279568c4f6d233"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_glob_try_.finally_.print_f_BUILD_MONAI_CPP_": {"doc_hash": "8d453dadd4ac1b10ad4a8c6cb3236b729a0b83e9f7afa7e86a90d5f20ea7a072"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_torch_parallel_backend_omp_flags.return._fopenmp_": {"doc_hash": "2e679da639fee8009f95804ca77354c302de248a6fe5da6513cfa061a0840a80"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_os_CLANG_FORMAT_PATH.os_path_join_CLANG_FORMAT": {"doc_hash": "121e28fac42608449516672665b8ff0231baa5a1f634d1891260969eb428f669"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_get_and_check_clang_format_": {"doc_hash": "5c9accffb8af51d6d35d6a3e2280f850f2ba36067984668f9b93ab4aaf90e32f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/min_tests.py_if___name_____main____": {"doc_hash": "9810ec74878878ef503ec5da45a3992c0101755c14de8ebef0bfd6d314759e81"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_os_TEST_CASE_5._b4dc3c246b298eae37cefdf": {"doc_hash": "3b95f1b2d4fb385423ad7fa3295fb356e19c202f509bccc4f2a0283ad86ea9a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_TestCheckMD5_": {"doc_hash": "a93cf6a126c86862c6af436d5efc299348239113ba58382b56b9b86ba6856a35"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_sys_TestCompose.test_dict_compose.self_assertDictEqual_c_": {"doc_hash": "d3a6a52a8852709b0be5ff205ae82879722449fbd7e29f682c810569a9196390"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_random_compose_TestCompose.test_err_msg.with_self_assertRaisesReg.transforms_42_1_": {"doc_hash": "2485d3f2ed220eb85a0edd5cfe97470b7a0cb186cf71907a5e9bb5f3e41d1b4a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_data_loader_TestCompose.test_data_loader.set_determinism_None_": {"doc_hash": "d8e86b3f059287eb29542891ca5ada2e8cba052eb35d6e659874b2da94b1b2e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_unittest_TestConvolution2D.test_transpose2.self_assertEqual_out_shap": {"doc_hash": "cf14830971fbd1eeeb8de1092a980c45797fc88decc4278e1cc7afee69b82e68"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D_TestConvolution3D.test_conv_only1.self_assertEqual_out_shap": {"doc_hash": "07c2326bd20d06c09a8315432b759242edcfda891d7a8ba1dbad203b238d3701"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_stride1_TestConvolution3D.test_stride1.for_strides_in_2_2_2_.self_assertEqual_out_shap": {"doc_hash": "865b420626de39c1d79e1bb55cfffa11faf028eedc356aa3977ecfa5863ac41d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_dilation1_TestConvolution3D.test_transpose2.self_assertEqual_out_shap": {"doc_hash": "ff2d7525765c03de93404d28fb18da114101822440549f0842bdc6eb1b3afa4f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet.py_unittest_TEST_CASE_DEEP_SUPERVISION._": {"doc_hash": "cee00168cb3c3f238815e87635854ebbcfddbea245bab49fb2c19d5fc173bc99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_unittest_TEST_CASES_NORM_F": {"doc_hash": "60884e489cf69562bb14ac0a506be7be7337c0cc7bf3cd1a26c612f5bd549586"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d_TestGaussian1d.test_gaussian.None_2": {"doc_hash": "11d864dac75b62e8f24d943a9ba46cf45b9fa0f620d1a2c7a2f46fd9310d8d4b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_scalespace_gaussian_TestGaussian1d.test_scalespace_gaussian.None_3": {"doc_hash": "286a81a31868883a0e89cfba1abdf8e95bc60e947aaef9523dd57284ef704b41"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_norm_false_": {"doc_hash": "154d7967035c9b87e8deb0f8f314e865ac32bd6e3e71f2d594efe8c8393c6f27"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase_GaussianFilterTestCase.test_1d.np_testing_assert_allclos": {"doc_hash": "d91ef843228182c8e4468c48c467040f1130fcd671118e4565400b615ef5bd03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_unittest_create_spherical_seg_3d.return.image": {"doc_hash": "4c2d252cef878e62dd743d533cfef79643f33d7697da799cd3c3c58c5ec1b69c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_is_supported_format.py_unittest_": {"doc_hash": "d92080363d37269af367fe5dd0c37845594c245a4f13d9345c90e37637d0dbcb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_json_TestLoadDecathlonDatalist.test_seg_values.with_tempfile_TemporaryDi.None_1": {"doc_hash": "73f11b05bdccdb939ad64ae45012222157b483c229d76bff873f95176bfa32fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_cls_values_TestLoadDecathlonDatalist.test_cls_values.with_tempfile_TemporaryDi.None_1": {"doc_hash": "ee9d54840a10548ab4c97b92073c06c5e59eae2e00a8c6d9284183978ae7663c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_seg_no_basedir_TestLoadDecathlonDatalist.test_seg_no_basedir.with_tempfile_TemporaryDi.None_1": {"doc_hash": "c1b28ba1510c11011c19f2d64231aa870b34acbd01b3871cf8c7d5e4f216e03b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_reader_TestLoadImage.test_itk_reader.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"doc_hash": "2320332b170e5f5604a6e83ff93c78c537ed4c1380f3d5142010b25facec1fdc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_register_TestLoadImage.test_register.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"doc_hash": "574aab5c1500fb4ce37d47cad6a78c6d3ae6d8caedb015f79304c42ec8d841fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_binary_to_indices.py_unittest_": {"doc_hash": "a7441eccfd19259c803adf676b4930dc7def54ad1e1ae93300dcb4453927fa49"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity.test_value_errors_": {"doc_hash": "7746b66f28bea36968b81c890a9478e96dbdd06c542b5d8a792c76c56253bc1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_unittest_build_test_cases.return.test_cases": {"doc_hash": "f6280697235f584768840e772782ec548a2ff18bec76ff62f797377611d94f47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TEST_CASES_ALL_if_torch_cuda_device_coun.TEST_CASES_ALL_build_t": {"doc_hash": "fad1b1050019fd98ebc6a5e5020cd102759af640d95eb5a6da13f600ae572f90"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd_TestNovograd.test_step.self_assertLess_fn_item": {"doc_hash": "d72403adeb02a6920ef9ecd9fc00fd152ae6fd2277c6efad142ba5b97e05b7c6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd.test_ill_arg_": {"doc_hash": "576f810224f2f4253b9379c8e2da401366c579e79e57c63ce4c9611a0975ecd6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_unittest_TestParallelExecution.test_single_gpu.trainer_run_fake_data_str": {"doc_hash": "4d6d616e54250dd4bd14d8fcf37494edba3a09ed13c1da190420ba87e8edc999"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_TestParallelExecution.test_multi_gpu_": {"doc_hash": "198483bdc3b3ad6d94a3840ab39fab49d790c143b974f0490c14422b56c21cca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_sys_TestPatchDataset.test_shape.self_assertEqual_output_": {"doc_hash": "e03b7ca0b3ab3854f5ff8e5a3730af8ef57555af4320da4f82a2e31eb9f5b974"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_TestPatchDataset.test_loading_array_": {"doc_hash": "40b8a3e403cbbd9b44f8e75384dbc1670ba12461f0e0c00dd4ce07278bba5b7f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_os_TEST_CASE_7._128_128_3_test_im": {"doc_hash": "b521820d36e3032646abf41ce0cf46a8e052d7279a5bd4481d8e97ebc478355b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader_TestPNGReader.test_shape_value.if_result_0_shape_tes.else_.np_testing_assert_allclos": {"doc_hash": "56d48b1aa90919f175e7de43bf0cfd6deabe5223aa4202a0457ae15896de4880"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader.test_converter_": {"doc_hash": "758e9edb74215a32e3fc7f54726a19640a456a38ca7a3f3dbf9503b6424c0f5d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_unittest_TEST_CASES._": {"doc_hash": "c3dc08a059582677b83251189066938271bcd1262746d3471fd005f1f3d5a373"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_TestPolyval_": {"doc_hash": "21c0d1f7d4c1f225f1180b86f4604b0e4b1e53a4f0769bdbe3763f72788e5464"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shift.py_unittest_": {"doc_hash": "98a0db940d3b314d43ed9a2f6408ea60a4a3efd7598642e6345e3fd8f68e2869"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shiftd.py_TestRandHistogramShiftD_": {"doc_hash": "85423bedd97a527cb8082a89dd06f15dd26bbb1368f5b3774c91674784c25497"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_unittest_TEST_CASE_1._": {"doc_hash": "c68a1808c69422a5d74b087babd3f238b30dd6e6de0ae204997b22881e533518"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TEST_CASE_2_TEST_CASE_2._": {"doc_hash": "4fa2ffcb3e0adc4f68b65fc94f9f2e02517e040953dc1b9d0301cdba9486c856"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TestRandSpatialCropSamples_": {"doc_hash": "b9430a5bc39d7d2c74cabb6b34c6eda9f1084ce5ed361b21b444778cbe06c9be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_unittest_TEST_CASES._": {"doc_hash": "c002b5afb5a09abd8b1a3c2aee1d44acaab35b4ebc4b3f7dd00a0f65a65abc3e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference_TestSlidingWindowInference.test_sliding_window_default.None_3": {"doc_hash": "210539bc196cc8c753488326d61b63d48e407e223d0329fffbcd3f255e2908be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_default_device_TestSlidingWindowInference.test_default_device.np_testing_assert_allclos": {"doc_hash": "50d262b29cbc943cd7c75390a52d14dd115b3843b5c18ffc589dd180a4019a96"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma_TestSlidingWindowInference.test_sigma.result_6.sliding_window_inference_": {"doc_hash": "6f9df54b079a44a7bdf231090fcfad4587b75402213c68e113ec213b2c436305"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma.expected_7_TestSlidingWindowInference.test_sigma.None_3": {"doc_hash": "420c113b08dec69b22172a989ec24e7d68eaca2f523ac2f912003e10280b842d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_unittest_create_spherical_seg_3d.return.image": {"doc_hash": "ddb08fd7c01a1eac738a6a629183c7d95a575139ce56aa5a890895c6d9127b65"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom.test_padding_mode_": {"doc_hash": "48e91b91c4b4a5e1441de4a65764bc7d9bf29796c6c4511fd7e724f93cc1caf1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_pre_render_pep440_pre.return.rendered": {"doc_hash": "63a806c3f81301b906859105a3d68df9a7dc14e614c39edc6264b8b0aa9448a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_post_render_pep440_post.return.rendered": {"doc_hash": "935b462cffa34a1800c0d952ae8b061e8a5f4a304dc06ae969e2dfe80d2fe01c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/__init__.py_CrossValidation_": {"doc_hash": "1d350063ac3433a65bcc27cdf13732db152a94d6664aae4d96d9651726a3219c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.__init___DecathlonDataset._split_datalist.return._datalist_i_for_i_in_sel": {"doc_hash": "5396f17c708a4974ea4159f373f7dfc17ce1a425d7ed0b918499aecbc8bcc220"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation_CrossValidation.__init__.self.dataset_params.dataset_params": {"doc_hash": "7192ab700adcb5e1bf61f64b780851da513fb927abda88674e386cc8cbd80adf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation.get_dataset_": {"doc_hash": "0f871a0a5e61f7e3586eb145113b8b7b670fb381e4965110a22be27568eaac86"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/__init__.py__": {"doc_hash": "a7945525415783e16b1f915e01a13899df488942373ffccbf12a9f8884db378c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py_logging_create_dataset.new_datalist._": {"doc_hash": "c54385e156ed86f265f797c59bee159994399bca5facb27701208598db7a4945"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py_create_dataset.for_idx_in_range_len_data_create_dataset.return.new_datalist": {"doc_hash": "67f335890774ce1c2d63094ab027d8cf78f2a7c86e0d1a85b35500ad7cbc8752"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py__default_transforms__default_transforms.return.Compose_": {"doc_hash": "f7623ae781ea04322a74c3b762d850c51319e810986d2c710b9279e11ff698fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py__save_data_2d__save_data_2d.return.data_list": {"doc_hash": "a405aceffa3da1626f383b44ba34f3406bb3940554deb14c78176501914f02a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py__save_data_3d_": {"doc_hash": "f9d2d590f61a4d7d09415b91fdfcb08f0f8c0c57b5d5df9b5c0be47627a1f005"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/interaction.py_Interaction.__call___": {"doc_hash": "d80ca8a0c098e3c00ea45d979c2c1af8ac97019545c5b60ef9afd3cd7f4944e6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py__Transforms_to_support_T_FindAllValidSlicesd.__call__.return.d": {"doc_hash": "afe5091062d972af0702edfd59d04af553ce4d086801129eee76be1005c4ed31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddInitialSeedPointd_AddInitialSeedPointd.randomize.self.sid.sid": {"doc_hash": "2e00da1a8ad3937fa67a9807ffe757f596a43531bbca965ed2b299feae7c972a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddInitialSeedPointd._apply_AddInitialSeedPointd.__call__.return.d": {"doc_hash": "2316b6643b3f89a9c0098664610cabe9c286ac11906398d5e25acc4610381ec4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_FindDiscrepancyRegionsd_FindDiscrepancyRegionsd.__call__.return.d": {"doc_hash": "4d56e399156607bd7dbc9f9c4daa1716e375e4864ab0fd01fd6239f8795d208a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddRandomGuidanced.find_guidance_AddRandomGuidanced.find_guidance.return.None": {"doc_hash": "fd9ad21c17d40c445571ee60d6334b6c5f8148dd7c8804b6d724d9e667943a31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddRandomGuidanced.add_guidance_AddRandomGuidanced.add_guidance.return.None_None": {"doc_hash": "8a7f8539a757eaa66abd10974baa2c0a171e8b733dd5670fd0b6d697657e137b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddRandomGuidanced._apply_AddRandomGuidanced.__call__.return.d": {"doc_hash": "259f7a38392605fc6141195c6dc72bcd804131cabb61186e30f8a2a426c6dfdd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropForegroundd_SpatialCropForegroundd._": {"doc_hash": "5cf15f3440502845e7709e071593dc04b650c2dbefad5b98417a069c0dc07e98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropForegroundd.__init___SpatialCropForegroundd.__init__.self.cropped_shape_key.cropped_shape_key": {"doc_hash": "de842d46ddda4043fc6f9d797a5c389fa8f19a80a99eb99a9ced893173b6067f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropForegroundd.__call___SpatialCropForegroundd.__call__.return.d": {"doc_hash": "762c21fdbb509bb05ced7bf1ac6d7e95520ec1635896b5e198f10e9f8dcbd3d0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py__Transforms_to_support_I_AddGuidanceFromPointsd.__init__.self.meta_key_postfix.meta_key_postfix": {"doc_hash": "1691884fe93bbb989794a991405edb096462e8e6fa1aab81e9881eebffd85ed4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddGuidanceFromPointsd._apply_AddGuidanceFromPointsd._apply.return.guidance": {"doc_hash": "affba473f01de52aa8ed3fd97fae68707003edb21f77e60a2915334e7cb8e317"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddGuidanceFromPointsd.__call___AddGuidanceFromPointsd.__call__.return.d": {"doc_hash": "a1a22e2ca77c1a49f593b83834397c7434cdea52c4978e52b14d31f82d9351eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropGuidanced_SpatialCropGuidanced.__init__.self.cropped_shape_key.cropped_shape_key": {"doc_hash": "82df1b0dff7b3322bd053d9db56b23d7175486db5fcbb1a9cb4aab5a19f76185"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropGuidanced.bounding_box_SpatialCropGuidanced.bounding_box.return.box_start_box_end": {"doc_hash": "2d16b9ddb035dd9f352d070301740f1627bfea779f9f5240a67ab55cdb8ff5ad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_SpatialCropGuidanced.__call___SpatialCropGuidanced.__call__.return.d": {"doc_hash": "adcd879026d05a220a8fe3e23dce28668bcec1b492ff953617c9977a688ccfc8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_ResizeGuidanced_ResizeGuidanced.__init__.self.cropped_shape_key.cropped_shape_key": {"doc_hash": "678c3ea6ab41009429c265f01d24ced51f53696a79d37d663c1777f5607c2213"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_ResizeGuidanced.__call___ResizeGuidanced.__call__.return.d": {"doc_hash": "38aa5ab1e86d2ff498e303c00e3125102ec6248077449e442fb0bbbf65b867ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_RestoreLabeld_RestoreLabeld._": {"doc_hash": "db7c37dbaad120762040937bc18aa083899e8a11aba7abf3d112edb7adfc3799"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_RestoreLabeld.__init___RestoreLabeld.__init__.self.cropped_shape_key.cropped_shape_key": {"doc_hash": "5e3249b44c47b302d22ca9153a2ef82fd6f825a761f90ebcef5b1abe7894bbab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_RestoreLabeld.__call___RestoreLabeld.__call__.return.d": {"doc_hash": "0dbf26f3efa089685a92a24899ae22cba4c0adce1848830b8638863a8b09958e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/__init__.py_MaskedInferenceWSIDataset_": {"doc_hash": "59240621a721a952420d2603b63259d4e5b7bbfe9e92f6b5c66c8610f6105daa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/utils.py_from_typing_import_List__compute_multi_instance_mask.return.multi_instance_mask": {"doc_hash": "4399c7da0a7ac9146d60be409dea6e5da6602c7574a8c480be9bf249c22b4697"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/utils.py_compute_isolated_tumor_cells_compute_isolated_tumor_cells.return.itc_list": {"doc_hash": "0707bb8741c3ef8f12808e9463cc99702f74f5e2d58c08483fe278952bf9086a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/utils.py_PathologyProbNMS_": {"doc_hash": "7023b8df6243a09c66daeec4b7ff99ec7904f66da366690b975c9cd858999fbc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_download_url_download_url.if_not_check_hash_filepat.raise_RuntimeError_": {"doc_hash": "4681181d0ca0c16ae2a61e94f480bd7d37cacdbf18ddfac7431e039c9238e774"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_download_and_extract_": {"doc_hash": "4f91eda3f1c6372d35d2053f43e06efd5378b01eb14eb836b9be2f10b6f9713b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/__init__.py_USE_COMPILED_": {"doc_hash": "bf018a4f23ffd2ffa8e439af568cf80aac822d924d51e8dfabb7e7df1493e2cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_print_config__dict_append.try_.except_BaseException_.in_dict_key_UNKNOWN_f": {"doc_hash": "dc245fee5a974b24a1c2d7e0dba32cfae1231966efd0f28c0a526c84021b7b8f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_get_system_info_get_system_info.return.output": {"doc_hash": "94ea69c6009e6d2cda34379a5c89da186461d3e7ce6f0ef6e031577c1d38d334"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_print_system_info_print_system_info.if_not_has_psutil_.else_.for_k_v_in_get_system_in.print_f_k_v_file_f": {"doc_hash": "3f6eeb652631a87e6dc58bbf3d47b4a00d11c42b384307e8ce1f576434a8613a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_get_gpu_info_get_gpu_info.return.output": {"doc_hash": "3101019a2f1f70120e3e6e58ad2660ff228e810c9dc61bb5bf7ae36d9d613080"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_print_gpu_info_": {"doc_hash": "7a662725f2f5773c37fa4847fd8c797eca551c6d43af88522b09bdb8067f7368"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataloader.py_torch_": {"doc_hash": "914d13c5ae77b631d884bf0d3bc30f5579b5f640bbd47327b926f87132082b07"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_Dataset_Dataset._transform.return.apply_transform_self_tran": {"doc_hash": "801ae8ee339386e1335ce8ef1cdd5e76224b8dde38810c7b270f8f26f6b4f326"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_Dataset.__getitem___Dataset.__getitem__.return.self__transform_index_": {"doc_hash": "521b7153ee416cfd3c4ee2e32606e718cad0458829c1557e83f01f237cd986bd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_PersistentDataset_PersistentDataset._": {"doc_hash": "9a87e72bbc4b52ce9f04d36e57eb7088a1b42508ee168e9091820719a0bdd976"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_PersistentDataset._pre_transform_PersistentDataset._pre_transform.return.item_transformed": {"doc_hash": "a75a7e1ee8272eae8208b8f3a7e61eef5afb88ebc500bd198f2a69ee433f4859"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_PersistentDataset._post_transform_PersistentDataset._post_transform.return.item_transformed": {"doc_hash": "1380c391f24daeef3f09e2fbc69e11914eb408de2c5d23a72e01d6d13a11ad32"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_PersistentDataset._cachecheck_PersistentDataset._transform.return.self__post_transform_pre_": {"doc_hash": "089915a34650993402a654196a1ca4081ae8cdd55e50768b1af158aa0b1b5dae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheNTransDataset_CacheNTransDataset.__init__.self.cache_n_trans.cache_n_trans": {"doc_hash": "053c2e8dc147d3dc7666473db40ce4dcecf10fe80210af3a98ec121e3005b273"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheNTransDataset._pre_transform_CacheNTransDataset._pre_transform.return.item_transformed": {"doc_hash": "558d2e1cdda407f6fc80750d3835469e4f2b41bd82e28e8dad2df292c85808ec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheNTransDataset._post_transform_CacheNTransDataset._post_transform.return.item_transformed": {"doc_hash": "64a36d4d42064c51c8c8361ca8bfaf0b62715ed71833d7fbee22a8af71a233bd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_LMDBDataset._fill_cache_start_reader_LMDBDataset._fill_cache_start_reader.return.lmdb_open_path_f_self_db": {"doc_hash": "5b48c2bad50ba0fc8c50793f41b82d3839120036b5c2d0bb729aacd3649a7e54"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_LMDBDataset._cachecheck_LMDBDataset.info.return.out": {"doc_hash": "e87cf5767a38e4ae67c714d9478e7c14608b00d935773a6cfc1aadee7a277330"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheDataset._fill_cache_CacheDataset._fill_cache.with_ThreadPool_self_num_.return.list_p_imap_self__load_ca": {"doc_hash": "37e209fe44f1a9aca5d5568e7c3446c379972e9a660cb25a6981c62c31c9bc34"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheDataset._load_cache_item_CacheDataset._load_cache_item.return.item": {"doc_hash": "aff212c436197daad87bad056d3c4c67fa169f20d0c96072268e9ebed5085c17"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheDataset._transform_CacheDataset._transform.return.data": {"doc_hash": "e0f9425f3a3576632ea7b0aaef7e48798d3fb6999c3196eede2115c5cba21a74"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset._try_update_cache_SmartCacheDataset._try_update_cache.with_self__update_lock_.return.True": {"doc_hash": "7d994136ffec33b61983020be80a0b18f9521fa947f3b70e458569feae7d31c4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_ZipDataset_ZipDataset._transform.return.tuple_data_": {"doc_hash": "07f301616f4bd7a6601dad49cf520bee7b5f476dfa311ee5cb9b0b09125265e9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_ArrayDataset_ArrayDataset.__getitem__.return.self_dataset_index_": {"doc_hash": "0361b2bc8157804063550cc08c4ac16b7bd85b9c191ccd8297461bd356a9e7cc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_from_typing_import_Callab_PatchIter.__call__.yield_from_iter_patch_": {"doc_hash": "8a3dd8516b57b279f7ca7ec3a48e1f99a21201b832286bc8c10f0c379ff9b39c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_GridPatchDataset_GridPatchDataset.__init__.self.with_coordinates.with_coordinates": {"doc_hash": "6c73fc9be9be66dc461c894aef7b54ae100a2be49ded419ecd8e90b497521f10"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_PatchDataset._transform_": {"doc_hash": "a2915ce3079a38248199e57931644666b62e62d7784cceac55596b4dfe9adf31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_dataset.py_from_typing_import_Any_C_ImageDataset.randomize.self._seed.self_R_randint_MAX_SEED_": {"doc_hash": "8e3b548cbb8539889531f4b91a66d9ff033e03a17b66da0455b3aca3008cc633"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_dataset.py_ImageDataset.__getitem___": {"doc_hash": "edff1bfba13d727929b067b81ce7319a52104acbd1e6345618e49767778a83d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader_ITKReader.verify_suffix.return.has_itk": {"doc_hash": "1e7ae5fecfd10077dd2fa028286976ef226c3c429cec0706306f5899e054d70e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader.get_data_ITKReader.get_data.return._stack_images_img_array_": {"doc_hash": "2fc1bc32ef7b8960265eeb5c8748e3d29ee434e0aae0f14dc8858cc1c5a6b54f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader_NibabelReader.verify_suffix.return.has_nib_and_is_supported_": {"doc_hash": "39acabed8ab779f3b008730a455c1471f47843e92758c777aa96f3bcf4b13e00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader.get_data_NibabelReader.get_data.return._stack_images_img_array_": {"doc_hash": "6b12f4111f1a62d10dbfcf1d7b7521c0b6abd2872a21d6810b8e63240c7a6450"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader.get_data_NumpyReader.get_data.return._stack_images_img_array_": {"doc_hash": "4ea8c4d7afb865da4546fd39114fbd7c5c9c2702a55778ba8f94d7850444f0c1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader_PILReader.verify_suffix.return.has_pil_and_is_supported_": {"doc_hash": "cfc969d8f57ffc35d7e37086df52be17e6ede61c58e991f3f571fc64f362a655"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader.get_data_PILReader.get_data.return._stack_images_img_array_": {"doc_hash": "a5f31f98f026c39b38b6b2facacd000d437488dc4a0154db6a43a50b237ebec4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader._get_meta_dict_PILReader._get_spatial_shape.return.np_asarray_img_width_im": {"doc_hash": "19507225a4be874cef2bda16f56ba116774a5aa52ad3e2c542b1b1985f8f9900"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader_WSIReader.verify_suffix.return.is_supported_format_filen": {"doc_hash": "820a0b8ee612b1ace9d6ee9c1324b4baaf450a55842cf1f43202718a1caed7b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader.read_WSIReader.read.return.img__if_len_filenames_": {"doc_hash": "f63b43b9bb240cd00a559a19e8c13d26a9299b9d30158e060f6db2a0a2cdffd8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader.get_data_WSIReader.get_data.return.patches_metadata": {"doc_hash": "ef4deb62fdd37a5c702d7948cfd6ad0c1c7e20bdc7367a19091ac0e127b0c1b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader._extract_region_WSIReader._extract_region.return.region": {"doc_hash": "98e45b19e6e4e75126213e49af87df157163389e8b9c22665c6620aa7d9b4410"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader.convert_to_rgb_array_WSIReader.convert_to_rgb_array.return.raw_region": {"doc_hash": "72506b967326f07e0b96bb445e916b61acc9c28c1061995a0a3dc9d90ece32a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader._extract_patches_": {"doc_hash": "8ae1221a0f922ff8d11066264762425833e489803b68b1e18bcb639f0b6863e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/samplers.py_from_typing_import_Option_DistributedSampler.__init__.if_not_even_divisible_.self.total_size.data_len": {"doc_hash": "781e788c349fcf2cc39a1b91dad59bb022960c4a4a914266f1c8e1a7d688a594"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/samplers.py_DistributedWeightedRandomSampler_": {"doc_hash": "e2188a8bb0ffcc210ea73ebff640298de7946007a73503da5a32413ccc900b8d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/test_time_augmentation.py_TestTimeAugmentation_TestTimeAugmentation._": {"doc_hash": "994c8895b2e36bcb3e389ca559365d9111897ac2fddbb659c6153879deec6eeb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/test_time_augmentation.py_TestTimeAugmentation.__init___TestTimeAugmentation.__init__.self__check_transforms_": {"doc_hash": "434183cc5e50556db65532fef67c1d1804d74daec670de3413138de2c59f25fc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/test_time_augmentation.py_TestTimeAugmentation.__call___": {"doc_hash": "5f17b65c643f28619328e969c0036bfe41ff7d7f792bd84f18837e644412bdf5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/thread_buffer.py_from_queue_import_Empty__ThreadBuffer.__iter__.try_.finally_._ensure_thread_completio": {"doc_hash": "5f63b90c9dd36215e5b790de02b0ad796ba8d930395e321c5b605f30aac401c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/thread_buffer.py_ThreadDataLoader_": {"doc_hash": "db8bfefcff29c76d37a73ea42f9ab53398573537c748c67155eb5e8e1cb24463"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_dense_patch_slices_dense_patch_slices.return._tuple_slice_s_s_patch": {"doc_hash": "11ee15ac2f4b146f64b806d045723d9c926b182b3f55b7e65f08cf7b78bf40e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_pad_list_data_collate_pad_list_data_collate.return.PadListDataCollate_method": {"doc_hash": "32b7ab3369fdb7dc269fc759d5db1b077188dcdb34c99794230c7433b230bd45"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_no_collation_set_rnd.return.seed": {"doc_hash": "931832cdf0f9968dd10ac61f17dc8222f0d6cd10fe57db886a9b8d1ff545193f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_is_supported_format_is_supported_format.return.True": {"doc_hash": "3467d4d5a0d4c0d62e0ff2453e890a6543c8de971ea8fb62be6974d6a4852db6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_partition_dataset_classes_partition_dataset_classes.return.datasets": {"doc_hash": "5944264aaa962725cf07a3e1150197123c700e5d79e13ce5cee29086fb9ce8c3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_select_cross_validation_folds_select_cross_validation_folds.return._data_item_for_fold_id_in": {"doc_hash": "7e4feb2d7d5808306cdece5b3662e2b6432b0d6a709cf7eec86e0cf14384fbfa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/__init__.py_EnsembleEvaluator_": {"doc_hash": "e6a591575ed2ec08a20678c2c6432ca5b5aef3611dd39d24fb1b24c0d1a6160b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_from_typing_import_TYPE_C___all__._Evaluator_Supervised": {"doc_hash": "07b2bcae996167afd8a51656211b45ac770c303ed6e6b8082ccaf2e517f0e642"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_Evaluator_Evaluator._": {"doc_hash": "61bc873cd9f16975adff96de9dcab550f38397c723d82b67dfd89cb744db12b7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_Evaluator.__init___Evaluator.get_validation_stats.return._best_validation_metric_": {"doc_hash": "7714ed231a43a1cae445cef3cd5485f0c760bf8c3c0ab6199b9fc6ceb8c805ff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_SupervisedEvaluator_SupervisedEvaluator._": {"doc_hash": "d956e4cf171dd57b32d25f643ae8fa02be9bf6013010cb0a32bdc628813781d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_SupervisedEvaluator.__init___SupervisedEvaluator.__init__.self.inferer.SimpleInferer_if_infere": {"doc_hash": "315ff7ec8440c438ee0029f2ed5bce216b6a8684ba5f9d8f784f584b47bcd2a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_SupervisedEvaluator._iteration_SupervisedEvaluator._iteration.return.engine_state_output": {"doc_hash": "ed8e409ddfc7aa78e281ba1460416e249d877443f677b260529555f387434381"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_EnsembleEvaluator_EnsembleEvaluator._": {"doc_hash": "846ff2c369ccc3c229c2a122a50361455714596bb9355ff048dec46507d70273"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_EnsembleEvaluator.__init___EnsembleEvaluator.__init__.self.inferer.SimpleInferer_if_infere": {"doc_hash": "8744de7524c9b675e0dace5d931e2636656c688749ca2fde3adcb756dc590b17"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_from_typing_import_TYPE_C___all__._Trainer_SupervisedTr": {"doc_hash": "c97aed270c394cdd17bcb48e7825713db4f80c936d82bb9cac90ca59cafef653"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_SupervisedTrainer_SupervisedTrainer._": {"doc_hash": "d4ee9643798d5c22a7b9523f2850dcf2c4f012c5bd9b46da8acbb134ee6b3c56"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_SupervisedTrainer._iteration_SupervisedTrainer._iteration.return.engine_state_output": {"doc_hash": "01ff1d9fa0e176a9d2f67ef4502ff1c5eb87332388af8dae5742995b018b2840"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_logging_if_TYPE_CHECKING_.else_.DiskSaver___optional_i": {"doc_hash": "3dafaedc9d4fa56aa2bd4bf94599e6511155d3196e1ff46e15a01d92c8b0ac93"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.__init___CheckpointSaver.__init__.if_save_interval_0_.self._interval_checkpoint.Checkpoint_": {"doc_hash": "416afb38fa806cf8f22e3024d98f9585947896ebb70033dca9aa9c70bb5978b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.load_state_dict_CheckpointSaver.load_state_dict.if_self__key_metric_check.else_.warnings_warn_no_key_met": {"doc_hash": "31477a69477fea982b5a0d68eed1f1d51d7ac4a2a8781f966566b671500c4b1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver._delete_previous_final_ckpt_CheckpointSaver.completed.self_logger_info_f_Train_": {"doc_hash": "a876bcb71e5664a1192e4590db2096d35718810994862fcf54203cce1ca0e8a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/classification_saver.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "3a95b1f9a2db4fa40220aac81c7850dc33c85e6143c62ad6a627098b166650bc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/earlystop_handler.py_from_typing_import_TYPE_C_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "2508fb186ae23b2c291990fe0baf7aec182e66fa24ca12d5a25d09a90120acc2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/earlystop_handler.py_EarlyStopHandler_": {"doc_hash": "7615b3fe7cff3f5ea98e5e59da56e70455c24c14ccba4c41bd74fd5978e59efb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/garbage_collector.py_gc_GarbageCollector.attach.if_not_engine_has_event_h.engine_add_event_handler_": {"doc_hash": "33fea49b5e88eea243402103c46cb03d26cd431134cd2fcdba4170cbf814aa1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/garbage_collector.py_GarbageCollector.__call___": {"doc_hash": "6dd7170ff0aa1273123330a644453b87ea43f863d5d48eb9e8dab4d798e6a01b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/hausdorff_distance.py_from_typing_import_Callab_": {"doc_hash": "1ab026c331918babe2dce810c22b7b95c16834cb96131b991249b4e180a97ec3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/mean_dice.py_from_typing_import_Callab_": {"doc_hash": "eaca3c96ca4ae92eff9766419927cd2f2486dccc0bfa8e199b5068171acfac6e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metric_logger.py_from_collections_import_d_MetricLoggerKeys.LOSS._Loss_": {"doc_hash": "7aaf0e405ea58e1af92bcfbea7d20faf32c3b6ddd0666a824730aaa2752eb4dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metric_logger.py_MetricLogger_": {"doc_hash": "a7561061d29c6fed68542eaccb3c8df94358be23852704205f963a89e9ff43f0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metrics_saver.py_from_typing_import_TYPE_C_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "f3be50322df761cbfa0d023c7e432ba673fbc67220007b4651918cdbe099b417"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metrics_saver.py_MetricsSaver.__call___": {"doc_hash": "d3a2de2b7ce1df3a729f6756838c3f5b2ad586fb54b5af615f7b11f7916d8184"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/parameter_scheduler.py_ParamSchedulerHandler._linear_ParamSchedulerHandler._linear.return.initial_value_delta": {"doc_hash": "6edd3943f38226dd63eef6c66840439b2f087e06ea7042f7d8b15ac888964946"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/parameter_scheduler.py_ParamSchedulerHandler._exponential_ParamSchedulerHandler._exponential.return.initial_value_gamma_": {"doc_hash": "52ace604bc43e1ba7637c8bcfe8a83cfc6e17f0a9fa3274676d2c6f3765acbd2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/parameter_scheduler.py_ParamSchedulerHandler._step_ParamSchedulerHandler._step.return.initial_value_gamma_": {"doc_hash": "695a7ce35530f64bbc797791843657d8195b103ebc93c0361f78600d90dd22e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/parameter_scheduler.py_ParamSchedulerHandler._multistep_": {"doc_hash": "54a1c59fab13c4d9c0a3c70cfac45fd8ce8138dad0d077c1a1c502f2766dfb6c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/surface_distance.py_from_typing_import_Callab_": {"doc_hash": "65c3adc5963bf94f3ea137936680294a277eecfa9e2b43b2a4dbadbd2a2771e3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardHandler_TensorBoardHandler.close.if_self_internal_writer_.self__writer_close_": {"doc_hash": "f11b089ba1a45988b0f3c2ce90035ccfbd9fc8973513364570aef81860a57ca4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/utils.py_os_stopping_fn_from_loss.return.stopping_fn": {"doc_hash": "c5eb3a02c8347f4a0124a97a350b590fc69c0a231cffc69743182eeed0c5672d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/__init__.py_Inferer_": {"doc_hash": "237e37b6b13e3d8780fbad6394789e67d1e0780ae44a997d51e113c1bbfa571e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_from_abc_import_ABC_abst_Inferer._": {"doc_hash": "73f3fb070eb67cc4ba5d69ad64d13b019902804ca0b0158f9250113f935cdf08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_Inferer.__call___Inferer.__call__.raise_NotImplementedError": {"doc_hash": "a6f1c47062c4a2bf9798b7413a5612748d3a793e8bff43b70983138e3599adba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SimpleInferer_SimpleInferer.__call__.return.network_inputs_args_": {"doc_hash": "e36021d424912413258da9ce1caf401cee8e26bdde146d2f9ed08170bf902f33"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SlidingWindowInferer_SlidingWindowInferer._": {"doc_hash": "dd8f08dc7ea6dbb71eecee7bf93ac7423ed865a81dc5b0ee1ea7a88b3c3a58e9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SlidingWindowInferer.__init___SlidingWindowInferer.__init__.self.device.device": {"doc_hash": "e84856f32e51e8bf2df131da21c368491af1d8a473ced1f806fd1d3e425e6c96"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SlidingWindowInferer.__call___SlidingWindowInferer.__call__.return.sliding_window_inference_": {"doc_hash": "15faeeec046b34c5891902e63f8aee806a4d3d93880117cd897c740b64f0d64f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SaliencyInferer_SaliencyInferer.__init__.self.kwargs.kwargs": {"doc_hash": "30dfbbebcf4c2063e5ac18019b7acce6129382faff4721b84fb5a7de67702f40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/inferer.py_SaliencyInferer.__call___": {"doc_hash": "2d89bae7ff1017abb7d8e251945cfbf1e7ef653a28f2efb076b9d7dbc6bcc9c4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py_from_typing_import_Any_C_sliding_window_inference._": {"doc_hash": "be20e03975dc9c7c7ea92daa691898478548377aa035a7d991b8e734e1ca3551"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py_sliding_window_inference.num_spatial_dims_sliding_window_inference._initialized.False": {"doc_hash": "35cfbe69307938f3916fdfeed18bcc72a04fbf3bc6a41cbb03e1bda3e65457a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py_sliding_window_inference.for_slice_g_in_range_0_t_sliding_window_inference.return.output_image_final_slicin": {"doc_hash": "671e5276a094a23457b62e2e65b61aa06d816000a49fdb5d7cb3176427c921f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/deform.py_from_typing_import_Union_spatial_gradient.return._x_slicing_s_x_slicing": {"doc_hash": "9585c71e39601d49be12df6ef8733777bca5c9ded9ee7d78d1daefc3cb1251ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/deform.py_BendingEnergyLoss.forward_": {"doc_hash": "d11740eb41044f1906aff85aab5cf85ff17697448e8868c475d47881e93515d4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceLoss.__init___DiceLoss.__init__.self.batch.batch": {"doc_hash": "f77d164fbbbbceccd174979fe0ef9d1c1c92c50644f111f4c8ef818b236d1375"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedDiceLoss_GeneralizedDiceLoss.w_func.return.torch_ones_like_grnd_": {"doc_hash": "768e1e4b7596ee26dccbb4c73d3768d5ddfb7b365e42280233d5de003686d467"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss_GeneralizedWassersteinDiceLoss._": {"doc_hash": "76e59f493431d181becc4549edd85c6f500ead37f9e6be62fdefa88c05149351"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss.__init___GeneralizedWassersteinDiceLoss.__init__.self.smooth_dr.float_smooth_dr_": {"doc_hash": "2e2c55a5653b60387d68c8923fe804e279058cc9be646699980be0242a76c9a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss.forward_GeneralizedWassersteinDiceLoss.forward.return.wass_dice_loss": {"doc_hash": "ff6045c72958663adbdf154ffcdc9078caf3217b26a7dc16f9bde91a5be9f2e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss._compute_alpha_generalized_true_positives_GeneralizedWassersteinDiceLoss._compute_alpha_generalized_true_positives.return.alpha": {"doc_hash": "c2b2f1934218110d953f47c6a336ab698050f24f2e18e2b89fcdca8e34a47321"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceCELoss_DiceCELoss.__init__.self.lambda_ce.lambda_ce": {"doc_hash": "bd197484a504d0a266386b72c42aca4da4453e283ba2e16c8f737ba92ecb52ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceCELoss.forward_DiceCELoss.forward.return.total_loss": {"doc_hash": "696e6c1302a276943a6939b505440e535db5eaa6b98d82ab0fa2908a16f63628"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceFocalLoss_DiceFocalLoss.__init__.self.lambda_focal.lambda_focal": {"doc_hash": "0553bf3c2c48a400d2d1b29a9f66913c88e798ffe4942f8438d1d77bb099c0de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceFocalLoss.forward_": {"doc_hash": "d25f374e7ccb3076e741298fe45aad745092d570cd436b1cfb040c5094d854b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_LocalNormalizedCrossCorrelationLoss_LocalNormalizedCrossCorrelationLoss.get_kernel_vol.return.torch_sum_vol_": {"doc_hash": "cd00c8e71677089170889904eedd7a4791197bdda3d3267857942c4c98faa83e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_LocalNormalizedCrossCorrelationLoss.forward_LocalNormalizedCrossCorrelationLoss.forward.raise_ValueError_f_Unsupp": {"doc_hash": "b8d118eaaf0889668d7e07eb4381591fc93e14a0c90df1b04726e2a84d0848e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_GlobalMutualInformationLoss_GlobalMutualInformationLoss.__init__.self.smooth_dr.float_smooth_dr_": {"doc_hash": "3b7ee42f2697d1c62ff26fe34c9502155d488a3a3858c34068c65dc2da6286ed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_GlobalMutualInformationLoss.forward_": {"doc_hash": "fc41ecd9e27dbeab4f07be198cadfa6ddf650a7d2c17745d169538b6f37d71d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/multi_scale.py_MultiScaleLoss_MultiScaleLoss.__init__.self.scales.scales": {"doc_hash": "a5df3d90577012c3315aae4626fb543bc46f7a008185a7e99a89b7e7b80a1e16"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/multi_scale.py_MultiScaleLoss.forward_": {"doc_hash": "51d3d5abbf8b9d4cc9c53dc34e83ee0d31e099d4fccc777c8488afe8921e6faa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/tversky.py_warnings_TverskyLoss.__init__.self.batch.batch": {"doc_hash": "104d80af7c8b092c4d51688ebc24949d0afcfcbda122f0926191ac7a47f6cf76"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/__init__.py_ConfusionMatrixMetric_": {"doc_hash": "436fc8bfbe010e25fae20330d1fe24761982fc6fb38b838eeedb118bdebe93b2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_get_confusion_matrix_get_confusion_matrix.return.torch_stack_tp_fp_tn_": {"doc_hash": "6265e11ba3eba4060ae100ec467ddb554f04e0580c131eff87285faaec2e778d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_compute_confusion_matrix_metric_compute_confusion_matrix_metric.nan_tensor.torch_tensor_float_nan_": {"doc_hash": "b2b811860d71413b6a889813fd7fa51cfaffc1de6283da4dc231d9714e41670a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_compute_confusion_matrix_metric.if_metric_tpr__compute_confusion_matrix_metric.return.numerator_denominator": {"doc_hash": "a6e93a7d7741c9fbacdfd03f5141fa8723c35cf3f76066a7f360fe76d420b350"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_check_confusion_matrix_metric_name_": {"doc_hash": "fcc156fbb857f9e0939b087a66866b8a483ce4877ca83a6e8f154c7f3a43028b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/froc.py_from_typing_import_List__compute_fp_tp_probs.return.fp_probs_tp_probs_num_t": {"doc_hash": "749e651c07ad000a45d13277984de51b7180cd92ce879646b536182cfad126ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/froc.py_compute_froc_curve_data_compute_froc_curve_data.return.fps_per_image_total_sens": {"doc_hash": "2f8bf27cc4f382f71c926ced81a9d8f5ce7a971cae369d30f005d62cd3dd4a24"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/froc.py_compute_froc_score_": {"doc_hash": "50f71073ac6ceaf3f282d2eb4e52b30ab1cf5e463b8c9ab2decc660141bf7720"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_compute_hausdorff_distance_compute_hausdorff_distance.return.torch_from_numpy_hd_": {"doc_hash": "6a80ce97e78d1a7fa81cab97552511808e76f096e43b65fb5117cef6a6030cdd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/meandice.py_compute_meandice_": {"doc_hash": "8d703bc5f88fa0311725876931f0d3e671e654133c84d0360e7fe22e35f58bd0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/rocauc.py_compute_roc_auc_": {"doc_hash": "0a62c050b1815b6fd19c7ce15262b4710a5a1bfc638c48e31e458836cdd2ba45"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/surface_distance.py_compute_average_surface_distance_": {"doc_hash": "ec35a95a73173e3ff7bfbbe75e116c76c7f78fe1d859d7603351792702177a64"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_ignore_background_ignore_background.return.y_pred_y": {"doc_hash": "7a907e91c20c0112f34f26a7fecb5630966c014536410ad049dcfaae268f291c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_do_metric_reduction_do_metric_reduction.return.f_not_nans": {"doc_hash": "b13a4aa9937f9a839422cbbc95719c7f51f357bda9a09d51fb32f005232dfd00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/__init__.py_ADN_": {"doc_hash": "1dcfef135d7ebf09463533791eeed172edcbd722044c0ae7a9c2c12bdecaa4f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/acti_norm.py_from_typing_import_Option_ADN._": {"doc_hash": "b7bdc53c27d06278fdff90973800255b7d14eb59443d197a7d2889d1b2154a14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/acti_norm.py_ADN.__init___": {"doc_hash": "cba63cf43fd1d3ae98a50e27c0ab55805a3e8c6b7cf4dfd158edb731a520c952"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/activation.py_SwishImplementation_SwishImplementation.backward.return.grad_output_sigmoid_in": {"doc_hash": "35f11877e62f493ef7b32fa298fe0f4e97406d04adc9511cf3e68fa61b495e68"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/activation.py_Mish_": {"doc_hash": "fd8b134d25408586c23ba2df4e57f52599945c0c3c8ebee12ec2043100195e48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_Convolution.__init___Convolution.__init__.if_not_conv_only_.self_add_module_": {"doc_hash": "5c2596b3704d1e3ce72939e0b471f249240a8421a6635276c614c66f438d92b9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_ResidualBlock_ResidualBlock.forward.return.out": {"doc_hash": "8ece04c2cf4ffe5da040d82b50627c641f425924f06838eed5ab19ee4d55d452"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetResidualBlock_LocalNetResidualBlock.forward.return.out": {"doc_hash": "51915669fa39eaaa04483b5eb54eb2789d5d3d4ea6e6168f41e59afff39ca824"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetDownSampleBlock_LocalNetDownSampleBlock.__init__.self.max_pool.Pool_Pool_MAX_spatial_di": {"doc_hash": "bd04d74297d285520d0663e4396a094f161d0f38a6deea630302d9277d727806"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetDownSampleBlock.forward_LocalNetDownSampleBlock.forward.return.x_mid": {"doc_hash": "0769757010b13aa7a178c2f0591e925f7dcaaaa40504acfa9148a8f820a570a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetUpSampleBlock_LocalNetUpSampleBlock.addictive_upsampling.return.out": {"doc_hash": "867ca1d9f6c3907d861489d85ecb0b82eba2b5d7acb93f9250b1e2482b88a0a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetUpSampleBlock.forward_LocalNetUpSampleBlock.forward.return.out": {"doc_hash": "352d57f44daa33e3991f97747dd5eb1f6b6bf0f8badfe07b42939583c13b6282"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_LocalNetFeatureExtractorBlock_": {"doc_hash": "390f748a3102cfe8a3d203cb46f4c7af54850e707954250c3e8da1d42ebbaeb0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_from_typing_import_List__get_conv_block.return.conv_block": {"doc_hash": "81df9eb3d27020e386548618a2d40c1dc13137a09e0dea19eb243f615b62df44"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_get_conv_layer_RegistrationResidualConvBlock.__init__.self.acts.nn_ModuleList_nn_ReLU_": {"doc_hash": "c13c99cce7bc340396d18b12a9b072b848a912599ee7dfdbf5b5eacfc979156e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_RegistrationResidualConvBlock.forward_RegistrationResidualConvBlock.forward.return.x": {"doc_hash": "091b8754ed749ee28f85822a865d8f86028044eb78cdb91b0a008aebd9c11412"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_RegistrationDownSampleBlock_RegistrationDownSampleBlock.__init__.if_pooling_.else_.self.layer.get_conv_block_": {"doc_hash": "44fb748ae68d9a78d05004e99d2cb91664329024bdeb9f8146a64d1bfad9330b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_RegistrationExtractionBlock_RegistrationExtractionBlock.__init__.self.layers.nn_ModuleList_": {"doc_hash": "a59c7fa45a98133c6bceacf6b8b95b7912d36abe47a33261bbb956361b8f0ba7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_RegistrationExtractionBlock.forward_": {"doc_hash": "d48160ceaf65566da371da9eaa21822507cd672d4f0ee30513c7e585382099a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_math_ChannelSELayer.__init__.self.fc.nn_Sequential_": {"doc_hash": "64c7b5485214b228d9a1f5d1ab0bf695ed1837d1edb42f3cf0beb95080e64209"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_ChannelSELayer.forward_ChannelSELayer.forward.return.result": {"doc_hash": "11c7c86b1f309e75c2a4c324e6459f7294e3576f53fe5c63580d1ef7f15ff383"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_ResidualSELayer_ResidualSELayer.__init__.super___init___": {"doc_hash": "0a9e62d7e613bcc1a23894c105cf6ff3f75a31bbec12231d3badaebbbdee5ecd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEBlock_SEBlock.forward.return.x": {"doc_hash": "996b7a66a7316d57ca31e59e52ef58de2c1a7fb8f56750e2e010db1f0965dc6b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/warp.py_warnings_Warp.get_reference_grid.return.grid": {"doc_hash": "c42b51e2ced060e551f427f9714b204f478e9634a84dab8a6c95fd654691d5db"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/warp.py_DVF2DDF_": {"doc_hash": "aeaf7b02aa617a244fd956f55919a71f5fb7666fdd9e43c0f839e87bc98786cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/__init__.py_calculate_out_shape_": {"doc_hash": "77236dea5fdb6eb9e6bbeea3af8901798265be0e2ded12cf5cdd9e5a930d825e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_split_args_split_args.return.name_obj_name_args": {"doc_hash": "651ef947c5d229a027e93ff8a05555909ff699d134ec765ea0245dc3fc58159c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py__Define_factories_for_th_convtrans_factory.return.types_dim_1_": {"doc_hash": "5ec6fb449969b144910bc1b1460d7778e0c58ec8f15efa6a88a55c60967c7079"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_maxpooling_factory_": {"doc_hash": "564cee47bca9af8063a6285834a0bc6139e309a0cd09185af707f51096434285"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/filtering.py_torch_BilateralFilter.backward.return.grad_input_None_None_N": {"doc_hash": "8f692c5da8d0ba3a54fb3301bc6b85c9119dcd1f58d0af6029b80471efe0b5e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/filtering.py_PHLFilter_": {"doc_hash": "20b1d08077d1ae391235c4a418ccee151c95dfe31700fb11d2e5a3955d7379e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_math___all__._": {"doc_hash": "0125f06b61c2a22c0ebadcd733c32063555141a5a69bd79242e8b4bab3944de9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_ChannelPad_ChannelPad.forward.return.x": {"doc_hash": "c1a527c4771f5920f4f31ab4406342e12c5fee1fd9c09a651a0bbca16b3fa427"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_SkipConnection_SkipConnection.forward.raise_NotImplementedError": {"doc_hash": "6fc2f75cc8815e939e80faa13652831da3eb6e7aba11637fa7f5619152dc8c2f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_Flatten_Reshape.forward.return.x_reshape_shape_": {"doc_hash": "d0701ac3e21e2197bac13ef963c47f5c2c27fe4208c2ecd98ad2d1d81ad68204"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py__separable_filtering_conv__separable_filtering_conv.return.conv_type_": {"doc_hash": "970b1dc6dedfaac6a9bc8e6123d8335ffc317eb9030eb6ee7bbdc2a8199f7dd2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_separable_filtering_separable_filtering.return._separable_filtering_conv": {"doc_hash": "f480a5bc5e8f8fc39b33b5171a463374abc80d97df9c20fba1c0122290d48d59"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_SavitzkyGolayFilter_SavitzkyGolayFilter.__init__.self.coeffs.self__make_coeffs_window_": {"doc_hash": "a4a706414018190281d90cecfd18d0ba1a8b68ec8c6d876e6f1a1fb152c2a3c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_SavitzkyGolayFilter.forward_SavitzkyGolayFilter.forward.return.separable_filtering_x_ke": {"doc_hash": "e7f5f525df70cfc45f29aa621828dc8d8081cf16b1eebf7a0242b939bcec4e54"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_SavitzkyGolayFilter._make_coeffs_SavitzkyGolayFilter._make_coeffs.return.torch_lstsq_y_a_solutio": {"doc_hash": "9a7cdf35a0db0ed5eae3d90bed874c5530680c206a428560c076478b2fdd75dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_HilbertTransform_HilbertTransform.__init__.self.n.n": {"doc_hash": "cdf1c46bfe5398b40e48bec053dd9d212c9e75c99e90ef1fdb9b2128e2202607"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_HilbertTransform.forward_HilbertTransform.forward.return.torch_as_tensor_ht_devic": {"doc_hash": "353973f792d6e25055501610195fc9e07b20bda3574f2a5d047923be178d193d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_from_typing_import_Option__GridPull.backward.if_ctx_needs_input_grad_1.return.None_grads_0_None_Non": {"doc_hash": "e642a779177cc4f9c1e46eeda0845ffd30385d514624e91b3d2031c0a8cb6001"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py__GridPush__GridPush.backward.if_ctx_needs_input_grad_1.return.None_grads_0_None_Non": {"doc_hash": "4f5c3c53de5829a956252df1cc9b5ffeb5170f6494ba7558a307c8ee8ddfcb02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_push_grid_push._Convert_parameters": {"doc_hash": "a83ded6679d26f9b4a14bdd97e43041cabc646e82e7f9038af1a4d472af52e42"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_push.bound_grid_push.return._GridPush_apply_input_gr": {"doc_hash": "2accff9ccaec5ec30880cd645ed27d6309e4fcdb0cfb620257749a0acffa4fa8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py__GridCount__GridCount.backward.return.None_None_None_None_N": {"doc_hash": "9253c7926b92d55eebdb0eed741970bc421891270aacbd9b86d2799979320025"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py__GridGrad__GridGrad.backward.if_ctx_needs_input_grad_1.return.None_grads_0_None_Non": {"doc_hash": "2ddd10e40748af04c4444504afa4716dd90c852da0778322f8be8e4ba837f39b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_AffineTransform.forward_AffineTransform.forward.src_size.tuple_src_shape_": {"doc_hash": "6aac4cc0b91ae9940ced1a9193a69746ebc8198dd96a67ff6ebea7807d44c9d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_AffineTransform.forward.dst_size_": {"doc_hash": "85e507181fd035f87388b165fb721dced12e80d35e04ffde0a08175cd12c08ad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/__init__.py_AHnet_": {"doc_hash": "d01cdee39b3e67269dd258e12102030adfe8dcb0ee54982c6098bf4c919218f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.copy_from_AHNet.copy_from.for_i_in_range_1_5_.for_m1_m2_in_zip_layer_2.if_isinstance_m1_self_no.copy_bn_param_m1_m2_": {"doc_hash": "f016fc751565a85257939208b749ecf3223e27b7e96205e211d0eb2bce9ea713"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_copy_conv_param_": {"doc_hash": "9427547bfe277cced9dfe3fd73f1df9db1f8000eb07733ecb481c5f6b3198d86"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_AutoEncoder._get_intermediate_module_AutoEncoder._get_intermediate_module.return.intermediate_layer_chann": {"doc_hash": "e03df4cd5792d844d369b7c9d55b702c26ca13b83259d05892456f84e1b20d7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_AutoEncoder._get_decode_module_AutoEncoder._get_decode_module.return.decode_layer_channels": {"doc_hash": "a3af0e2c18b203882ca770089fcacb71a0c35c1bfe18f76f3936693fa3542c4d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_AutoEncoder._get_decode_layer_": {"doc_hash": "941369e56e046dd51f76f6b644e090c383e856b0492c9173f1c183c283528c1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_Down_Down.__init__.self_add_module_convs_": {"doc_hash": "fa91cc97233c5a66524288648526600bc726a10c99ca880aa555b04d9b15b9aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_UpCat.forward_UpCat.forward.return.x": {"doc_hash": "532e254fdf7c89bd5ad33394e1e08827c8ff023cf98c55617254668d66f4cbba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_BasicUNet.forward_": {"doc_hash": "35fdf34c2179c5f3885be77f80df8f30d7ccdf8f6d4b3c23029f464112423a57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__load_state_dict__load_state_dict.model_load_state_dict_mod": {"doc_hash": "ffb31219b459efa7a468e882b83a67155ac991d4b5b9b1c4811c533d2b6b5a08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet121_DenseNet121.__init__.if_pretrained_._load_state_dict_self_d": {"doc_hash": "e1d82adf4098f3408548668fe6b8eccbd80f3c1072b1354cbd311c2f8578a464"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet169_DenseNet169.__init__.if_pretrained_._load_state_dict_self_d": {"doc_hash": "2757c76d582a28c8950233e45e5be7c1a950a1cc96927c0c2550aa7a55c587b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet201_DenseNet201.__init__.if_pretrained_._load_state_dict_self_d": {"doc_hash": "8b5527f2acae8a89492159daa5ec3c8a2faae57eefcbce02b2cb46f3622c2f89"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet264_": {"doc_hash": "8f6f254609d071591c66cbb1a1bb1af65bc41acf74e0b8060968ffe7c70b1cb2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_from_typing_import_List__DynUNetSkipLayer.forward.return.upout": {"doc_hash": "5773c9d4426e58bcf60e436140d0d12a1d7ecc17c0c66b4c3f316e7f4a9af7b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet_DynUNet._": {"doc_hash": "54a791b434d8bc125f0e27a171e966cee64b6b9c8b24918bf2aa59f148af0889"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_math_efficientnet_params._": {"doc_hash": "58b758d75dc178a1cb26af362ecd1dad55ff35d03dcf307c08434a41e280e251"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNet.forward_EfficientNet.forward.return.x": {"doc_hash": "562bd77a8e477a3a14f0256efc268b29b6457b70e295e2a19720502ae96e910d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNet._initialize_weights_EfficientNet._initialize_weights.for___m_in_self_named_mo.if_isinstance_m_nn_Conv.elif_isinstance_m_nn_Lin.m_bias_data_zero__": {"doc_hash": "da68408a73e47e11629096559261703c08a034aaba5075e48f0f6d58e58b551e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_get_efficientnet_image_size_get_efficientnet_image_size.return.res": {"doc_hash": "14ef23eeedbc833812f964d1d904c9664352235d2703e31ec3afa3f24998cfbf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_drop_connect_drop_connect.return.output": {"doc_hash": "e66142603e73737fece91ba328e56818baabec058e75f607dd8685d94128dd24"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__get_same_padding_conv_nd__get_same_padding_conv_nd.return._paddings_ret": {"doc_hash": "fc42ab96fe7c208ad61beefe7a8db3248e5381ed59be43c2015fa22e56267198"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__round_filters__round_filters.return.int_new_filters_": {"doc_hash": "3ba129f5a8e745caee11954a83c239e761f03b27506db827666c9908c3874c83"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__round_repeats__round_repeats.return.int_math_ceil_depth_coeff": {"doc_hash": "1253f81b05cea6c3d7ee7c900e95a4cef9c31c4ebd1e38f748dbd11a3cd7e133"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__calculate_output_image_size__calculate_output_image_size.return._int_math_ceil_im_sz_st": {"doc_hash": "5ffbac54785884a68ebe71f917a46cc5caf9da2f9cb81af27c1d16cdd704f08c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/fullyconnectednet.py_from_typing_import_Option__get_adn_layer.return.ADN_act_act_dropout_drop": {"doc_hash": "d7780b51c0a6009328ee58c792184f4f663cc55cc8021730830167042b6e9609"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/fullyconnectednet.py_FullyConnectedNet_FullyConnectedNet._get_layer.return.seq": {"doc_hash": "5c6b0afe2d29bc90ac2c01c4129c1a32ecc5b4fde9be0dba75d02db6b692b1af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/fullyconnectednet.py_VarFullyConnectedNet_": {"doc_hash": "6a37e33fc5b15eddc0270db6e938a0048c42ca1bd6677a5630f8d48121a82476"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResBlock_HighResBlock.forward.return.x_conv_torch_as_tensor_": {"doc_hash": "8093b94c162b55b51d823559d8c31ebb439ecec7f8439818155f94688b924ea8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_from_typing_import_List__RegUNet.build_layers.self_build_decode_layers_": {"doc_hash": "03cfd4768081140d295fd739cfa31561ecc85d134dd73ce4dda8b23a568f8514"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_RegUNet.build_encode_layers_RegUNet.build_encode_layers.self.bottom_block.self_build_bottom_block_": {"doc_hash": "ca46cc5a42fd5d887702c82916d47a583cd1f958e3b6f684282c9ae678120604"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_RegUNet.build_conv_block_RegUNet.build_bottom_block.return.nn_Sequential_": {"doc_hash": "4ae1fd7c04b8051c9e7228b6bddabdd1af6f3ab618d79eb3c76d7c6178d8fcc6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_RegUNet.build_decode_layers_RegUNet.build_decode_layers.self.output_block.self_build_output_block_": {"doc_hash": "243be43415066d57825b054c4494f5f1a29cb33ece2c196da7b814f0ba24788d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_RegUNet.build_up_sampling_block_RegUNet.build_output_block.return.RegistrationExtractionBlo": {"doc_hash": "8c8c4fcbfb7e71222bcb21ab738214d9e892c81e0defbc9dd94d345825567858"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_RegUNet.forward_RegUNet.forward.return.out": {"doc_hash": "f2047e0ae0e1e6de31003a9b7f37e016bf5b9f1202ad941fcb3e18be8ae28deb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_AffineHead_AffineHead.get_reference_grid.return.grid_to_dtype_torch_float": {"doc_hash": "6a60fef9d93c13b455b6bcff89d50f64984e8e04d2dc81221db25a412b9def31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_AffineHead.affine_transform_AffineHead.forward.return.out": {"doc_hash": "175511a2807ea45822ab890f021083f5be80f2d6db39dd64f74a3baaf0bcb974"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_GlobalNet_GlobalNet.build_output_block.return.AffineHead_": {"doc_hash": "3aba1d29c73a23e7e2d032f05e2c33ea3d004fbe419ac0d8513cd2af7d45cafe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_AdditiveUpSampleBlock_AdditiveUpSampleBlock.forward.return.out": {"doc_hash": "1b83739c2fe51ddb76744f5491a68db54e80ef120c11e48f88e8883672a0855f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regunet.py_LocalNet_": {"doc_hash": "269f8c43c0634969ccb4fa92e1a843d3f30a1e784c46152666d8f6d62505f524"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNet._make_down_layers_SegResNet._make_down_layers.return.down_layers": {"doc_hash": "a4b2a79da7bfe52a45d7c190319a798339431ccd1d8f6ee10ee828040c0fd696"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNet._make_up_layers_SegResNet._make_up_layers.return.up_layers_up_samples": {"doc_hash": "9c0f7eb141178caf0824903389d60743e329f0b7ccb1c3123f10557c220bbd04"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNet._make_final_conv_SegResNet.forward.return.x": {"doc_hash": "1643cc2f69683000293af6123a93c1e4492cf291f3aa90421135933c1b0b0a46"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNetVAE_SegResNetVAE._": {"doc_hash": "8707bc15e5ea718cd05276176a37ab3bb85244d641e25fd2efd05246fe161ecc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNetVAE.__init___SegResNetVAE.__init__.self.vae_conv_final.self__make_final_conv_in_": {"doc_hash": "7abba442d532f45cb4ffdea9db81bfeba140b13e6b63dd4cd578755c2c70eaa5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNetVAE._prepare_vae_modules_SegResNetVAE._prepare_vae_modules.self.vae_fc_up_sample.nn_Sequential_": {"doc_hash": "bde8cb090f48afa3498bf9f2cd5326458bb4c7d1f56f1257a867f32620c535ae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SENet_SENet._": {"doc_hash": "2aba69707f6b380ebab261f739032b12c30bfedca49ef55f1956b2b8bb2f3f8c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SENet.__init___SENet.__init__.for_m_in_self_modules_.if_isinstance_m_conv_typ.elif_isinstance_m_nn_Lin.nn_init_constant__torch_a": {"doc_hash": "a957f66b95a92ccedcff3ddd8804e30a168e3e87258de841eb1a02fd92d2cfb6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SENet._make_layer_SENet._make_layer.return.nn_Sequential_layers_": {"doc_hash": "4d6206f30b70802b7fcd4e96664aee479565d9ab11c86da4c40e83ba18ab4268"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SENet.features_SENet.forward.return.x": {"doc_hash": "edc0b671223ae08961ab19b4f05490701370a68d2240ab4748139ccba2feda68"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py__load_state_dict__load_state_dict.model_load_state_dict_mod": {"doc_hash": "36f6ea2ddfb3857d37a5e8ff5da8ecee8512e5eb430c24d03bd3a1c790d06226"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SENet154_SENet154.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "b0f44e42fffb84c9746ff2fa5129288330f4b8ee3e7cf32f762bbd31d8e988fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEResNet50_SEResNet50.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "fe72700e1f4c8735e23c2d5f4e1902c25188a39a72507f0451e6a719ad7b8a3b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEResNet101_SEResNet101.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "a8a849560990f6f22043f9f624f165e8efda98f92683beecea56e601b9b2ef84"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEResNet152_SEResNet152.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "7020bb790be45da24b545e864509f83bc57939940731f4e5dd45ed6f9b4cd79e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEResNext50_SEResNext50.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "492adb8ed826ee68519429da6fd1f4d78ddad22909f40be3348bd69ba59334b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEResNext101_SEResNext101.__init__.if_pretrained_._load_state_dict_self_s": {"doc_hash": "15655d1a96d9bf6a757a8e5b1ad16f6d9343241cc3609767a0c11b0834990039"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_SEnet_": {"doc_hash": "3c4abb5c670fc2315ffb97e07bbceb43f2181b9206127679cf2caed54aefe238"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_slice_channels_predict_segmentation.return.logits_argmax_1_keepdim_": {"doc_hash": "ded7cb4b3f3f8c24d468a1fb81336ef047ff187a96ad837d08a8d43820014143"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_to_norm_affine_to_norm_affine.return.src_xform_affine_torc": {"doc_hash": "ab63889711332fc353306e135c2ba98f470b4dcd7daf253abc4b687aa1385789"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_pixelshuffle_pixelshuffle.return.x": {"doc_hash": "de8be4a9fb28ff2d2244b13fa6c56803c08e7326a3de5a344ff37c56e6a3123a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_eval_mode_eval_mode.try_.finally_.for_n_in_training_.n_train_": {"doc_hash": "908471833007b507d22b929395564f4ead79a81ee3c0e172186ce041b063f4e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/__init__.py_LearningRateFinder_": {"doc_hash": "543f1ba6018ced858b5f45afbad84db56754b58a4438d5abbcf37fad2c58b046"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_DataLoaderIter_DataLoaderIter.__next__.return.self_inputs_labels_from_b": {"doc_hash": "0913d44b0a0d9b21d62b29190f0adcb92edfd8611609b26c18fc6c7ecc6c92d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_TrainDataLoaderIter_TrainDataLoaderIter.__next__.return.inputs_labels": {"doc_hash": "f7f0e8ac220f336177bb0a2c1affe4bac85349cc95858064271ee6bd342b156b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_ValDataLoaderIter_default_label_extractor.return.out": {"doc_hash": "9877be588eb8bd590346704461d08c2241afa0358e7befecba4f2aeedf016a73"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder_LearningRateFinder._Learning_rate_range_te": {"doc_hash": "44454694f4df19ce6da3cf642a391d21b52bcb15b62ea7849c608fade25ee7e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.__init___LearningRateFinder.reset.self_model_to_self_model_": {"doc_hash": "8c4169aa57733386a0d02389a57373c896f9c2d80e7149151bdc67ea4b3d11fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.range_test_LearningRateFinder.range_test.trange": {"doc_hash": "011d398e683adfc0d3cc2640cfb2005d887a437e625383a87e36a6b54971b4bc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.range_test.if_self_verbose_and_has_t_LearningRateFinder.range_test.if_auto_reset_.self_reset_": {"doc_hash": "1aecd658e752de1490bd613174e31e02844fad1f5b06b938e8882e724754cb7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder._set_learning_rate_LearningRateFinder._check_for_scheduler.for_param_group_in_self_o.if_initial_lr_in_param_.raise_RuntimeError_Optim": {"doc_hash": "100f4ce315d9e73bda5134d813b7011d01a8d66ac9693cb57caab1d5d1ad05e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder._train_batch_LearningRateFinder._train_batch.return.total_loss": {"doc_hash": "9f21a26671ce2bd8101a0c22630ebd95718972e5076871c114634bb97a21e2e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder._validate_LearningRateFinder._validate.return.running_loss_len_val_it": {"doc_hash": "121ce6b0d59c892a1cd6ad9668e25e247d06175cd674d64612d2a36f42d30417"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.get_lrs_and_losses_LearningRateFinder.get_lrs_and_losses.return.lrs_losses": {"doc_hash": "2d7471f5a3d826a952b5007abb5d837600a213fac0558b086e719ff195796fe1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.get_steepest_gradient_LearningRateFinder.get_steepest_gradient.try_.except_ValueError_.return.None_None": {"doc_hash": "bacf10281995d204880ab0f0a722cd393db26550fce1f819d438922edd110a6a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_LearningRateFinder.plot_": {"doc_hash": "9ca1cb06fcd79a4e9485787a244e60f8ef8756fe85d589a458ac84a85d179540"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/utils.py_from_typing_import_Callab_": {"doc_hash": "13c995fa171527e541f1c7d520e8071434b70c7b2a6e52d16428c55d301b978b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/__init__.py_FunctionSignature_AdjustContrast": {"doc_hash": "6e09e49c075c10ce953cc436cc1e218114f960b612d4d216236e5520b24e128a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_Compose.flatten_Compose.flatten.return.Compose_new_transforms_": {"doc_hash": "a4d28bf876745262bca133b1c09d219f6432f646d7915a5c48fe06682345e228"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandWeightedCrop_RandWeightedCrop.randomize._using_only_the_first_ch": {"doc_hash": "14a2178aa7bd3a68f2798750644ab39ee8fc2a960927851b96d1759f1ac97626"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandWeightedCrop.__call___RandWeightedCrop.__call__.return.results": {"doc_hash": "c671913789bbb6a71daeb6bed45e0fbdee067668a8b6a6546a06f67081392f63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/batch.py_from_copy_import_deepcopy_replace_element.return.batch": {"doc_hash": "a28008fb67d4b169ee2e0a785a3d7d0b64c25f96401e73d02836ed8f0593ae28"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/batch.py_PadListDataCollate.__call___PadListDataCollate.__call__.return.list_data_collate_batch_": {"doc_hash": "bf7e18c692a3205428167990a8e9568b8369f02f92e5b4f8f55d29512b564973"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/batch.py_PadListDataCollate.inverse_": {"doc_hash": "f1c443fe940efa6371edf97e46737cebc590fac3c0a307af45862df90a3e0b43"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadd.inverse_SpatialPadd.inverse.return.d": {"doc_hash": "19d675dff2da2cca5b1a549f2afe960cbd741038a5d6e68f6c147a83b37ced33"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BorderPadd.inverse_BorderPadd.inverse.return.d": {"doc_hash": "a45164954b207b4ab2b5cbfd616841a79cd114f15aa339fcf49432c45d03d53b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_DivisiblePadd.inverse_DivisiblePadd.inverse.return.d": {"doc_hash": "b57e3d6d8390a65a181c1bc15657babc3f208ec0f01c68e1fbc8e772f91669a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialCropd.inverse_SpatialCropd.inverse.return.d": {"doc_hash": "c8cd5f59daa893185fabba13d8eeaafedca813cebea3f51f8c507506d904bb3d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterSpatialCropd.inverse_CenterSpatialCropd.inverse.return.d": {"doc_hash": "2f204f37409ffbef93fdd94786a14af463082b7be09f34befdacef856183e541"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.inverse_RandSpatialCropd.inverse.return.d": {"doc_hash": "b9a093092722df99765ec215a8a6fa50d2ba87451c2421fc223b241a70532d71"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropSamplesd.__call___RandSpatialCropSamplesd.__call__.return.ret": {"doc_hash": "f816588a51e8f85e39df6b4470383fdf2e9911419197b0945aae6e626019fee4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CropForegroundd.__call___CropForegroundd.__call__.return.d": {"doc_hash": "bc8313eed9b3c6f38d3d1fbb9c5efc6f81e438156bc1dd30a785a33f64499bfd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CropForegroundd.inverse_CropForegroundd.inverse.return.d": {"doc_hash": "58b5ef13482ac96e644c30fd1c121d74dde02a6fe1a771f30ec2c4b2011afe22"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandWeightedCropd_RandWeightedCropd.randomize.self.centers.weighted_patch_samples_": {"doc_hash": "2cf147034177f8a3cbd5eae714adfb3817b5768356e092156bcff8b6c929c80e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandWeightedCropd.__call___RandWeightedCropd.__call__.return.results": {"doc_hash": "d32f8f1b60af52f35d4610374676e708d1d23f28f5a113ee5f4c38c5040a31a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_ResizeWithPadOrCropd_ResizeWithPadOrCropd.__init__.self.padcropper.ResizeWithPadOrCrop_spati": {"doc_hash": "517b61f7878d3180e86d5c0b4df5cae96a7b777b56969fb6e00ff526c1e8a5d4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_ResizeWithPadOrCropd.__call___ResizeWithPadOrCropd.__call__.return.d": {"doc_hash": "719c341416f8f3772c6d628ac8d18787fd1bf019e1e48157739fe6a637d5089f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_ResizeWithPadOrCropd.inverse_ResizeWithPadOrCropd.inverse.return.d": {"doc_hash": "53734c94645dcd53768427092da51a7fecb96d6ddb2df4fd2ed57f5a7edf24d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BoundingRectd_BoundingRectd.__init__.self.bbox_key_postfix.bbox_key_postfix": {"doc_hash": "08db5dd012c85da3a4ce8fa007ffcaf9e8238f1ecdb400c0c19d75a438c05822"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BoundingRectd.__call___BoundingRectd.__call__.return.d": {"doc_hash": "a9d9218bc3ab237cba5812ccc66c1064a699bade1292109fdb66b977aa7ebcf6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_DetectEnvelope_DetectEnvelope.__init__.self.n.n": {"doc_hash": "69952f0f8f74332685d7ebe51001dec5d1272eb3e19c57486de93c8367aa9fe3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_StdShiftIntensityd_StdShiftIntensityd.__call__.return.d": {"doc_hash": "3ed0d862a49188303f9a3629ea7e733e1bf74221b6cefc7005b9635211d32ffe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandStdShiftIntensityd_RandStdShiftIntensityd.__call__.return.d": {"doc_hash": "b11b15a765d384d41a33962450e7c03a28119eff1605ac03b4dc64a636736939"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse.py_InvertibleTransform.get_most_recent_transform_": {"doc_hash": "0e9eae7ee3472b313c6984776c3dd0c465b74dee02354fc505db9a27849be2b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_switch_endianness_switch_endianness.return.data": {"doc_hash": "73e26c3565d73044480b4db0056dda22d3717f16df064f8c53a55a8bb14d08d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_SaveImage_SaveImage._": {"doc_hash": "d74a053ed236353bba122aa91c773d34c892917e74ceecac154425defe2f026e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_SaveImaged_SaveImaged._": {"doc_hash": "f1303c06da44bc5210161dd51db2698ccd6483a489bb769657873b9db4115582"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_SaveImaged.__init___": {"doc_hash": "21b96035ce974a36bda9cf4c24f2bb0b78ec119a7cb8fb051240c112a1dbb062"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_warnings___all__._": {"doc_hash": "c6a779cda4d063f3ab7e2fdfc5bba965279cc34cddac4b935d3c7bd3f7d7870a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_ProbNMS_ProbNMS.__init__.self.box_upper_bd.self_box_size_self_box_": {"doc_hash": "55b3fe5ee1523e9331c7e2ac2a9df4f6ee5614764d23e33fc7e0718de84aad81"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_ProbNMS.__call___": {"doc_hash": "88258ae78b9033f5f839dfcaa30aa42a658ab86925bf4a11345d9344d9f806a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_VoteEnsembled_VoteEnsembled.__init__.super___init___keys_en": {"doc_hash": "6d2ecb0c99bb896fda657db91fb57f92ce3d950cd6e80d86e43f17eaf2a22653"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_ProbNMSd_ProbNMSd.__call__.return.d": {"doc_hash": "c33c18da5dd52e70f7d2f44d925b9848412a20e9e1329fb10c5bc2db78a79d57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_ActivationsD_": {"doc_hash": "997a5c08f8b3f1cb618dfbb06c30460c2fb5b495536ba9b8b32215e6ea7606c6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_warnings_RandRange.Optional_Union_Sequence_U": {"doc_hash": "c941450a0f17a6bcd76d2d2fa89f21ee55190fd7e9d8fd7ced2364fe668d0624"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_AffineGrid_AffineGrid.__init__.self.affine.affine": {"doc_hash": "5af31c9d8fce00c4d11010013f6c1aa53fdd4132245eb31fbc1a4c30f42555bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffineGrid_RandAffineGrid.__init__.self.affine.None": {"doc_hash": "879ee7a8322508d1a7fe742ac49a20064989ec3a7ae1a35a1babccda2c35f671"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffineGrid._get_rand_param_RandAffineGrid.randomize.self.scale_params.self__get_rand_param_self": {"doc_hash": "255f805046fb578a3ca178f59352b4e64fca458def82f6806ffb0ae8ff11e297"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffineGrid.__call___RandAffineGrid.get_transformation_matrix.return.self_affine": {"doc_hash": "d7340b73b2a67126371dbb7dc2525437899ed829154df295b2f74fb0cf5177cc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffine_RandAffine.__init__.self.padding_mode.GridSamplePadMode_padding": {"doc_hash": "b7d4ed79da83bb3ef4c1ae84a6e316086da2e10a21af87a8f7ebba145ad8b9e2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd.inverse_Spacingd.inverse.return.d": {"doc_hash": "f72472943001404a1c3dacfdd9dbff24e35385c6d3275183860f32c251f6f82e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Orientationd.inverse_Orientationd.inverse.return.d": {"doc_hash": "50112c74db39b9d93f37e8f5996374b14073d40652fca9dcee20088b06d55efa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotate90d.inverse_Rotate90d.inverse.return.d": {"doc_hash": "439f2bdcb442dbbc12f0ac012a14efaf38013bdae7c4dd6d6e29a44c87ec5915"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotate90d.inverse_RandRotate90d.inverse.return.d": {"doc_hash": "d2b8f634b43220b722e68818d2b986b07cc477456a4a5ae32c389b60565e9b6f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Resized_Resized.__init__.self.resizer.Resize_spatial_size_spati": {"doc_hash": "21459d3b9d9e03de71bba10687ad50bff222e360a6073d712ae543b2c918a6c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Resized.__call___Resized.__call__.return.d": {"doc_hash": "afdbf4c970b621b92158ec68bf6b116841d557c9221cf8f15b9e6184a8ed6622"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Resized.inverse_Resized.inverse.return.d": {"doc_hash": "1b6397340aab2a5ab3f0e43f714b05e7a0fd26926fe3e9f376f6bc2481ee4d16"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Affined_Affined.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"doc_hash": "7540770bf04ba82518305d32ae44a6e7abc0fa29755da1b68e20a17bd62dae40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Affined.__call___Affined.__call__.return.d": {"doc_hash": "9d838183c6b75b4833fce997d2e3969cc78366cc5f96b19a75565ce434db39fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Affined.inverse_Affined.inverse.return.d": {"doc_hash": "9a3861ba49011b5ff312c7e78271612279256fca1916ab84bbf756864e0c5a10"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined.inverse_RandAffined.inverse.return.d": {"doc_hash": "825f3facc5abdbcd24b0efc47719a16ed185d55465df3bbeebc827a19d7c5612"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandFlipd.inverse_RandFlipd.inverse.return.d": {"doc_hash": "220f16cb83d2701c0a04b39d62bab69bdbf9ecb7ecc03fedb0edf7b12259a468"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAxisFlipd.inverse_RandAxisFlipd.inverse.return.d": {"doc_hash": "14cbd9581f2fb64e01e80ee0ffdbf82116ec4135c5ee7710a3dc7524a4d85aea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotated_Rotated.__init__.self.dtype.ensure_tuple_rep_dtype_l": {"doc_hash": "2f683a6760b9d73b0bde7ea5a449c0b423caa2b5112fe8ae3cc0f0b2eafdef87"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotated.__call___Rotated.__call__.return.d": {"doc_hash": "047f46ea44de9d1e349b9c4c4c216fc71165a47d90aebf293294ec2b51eb107a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotated.inverse_Rotated.inverse.return.d": {"doc_hash": "ea2bcf4d970a3e624b18780fa1ee2d0e1493a9ea7374c59b2931e71688ff1a55"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.inverse_RandRotated.inverse.return.d": {"doc_hash": "ee8842964117b45ff49665407d01b047ea3162447c0bd1550d20921be69ddbba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Zoomd_Zoomd.__init__.self.zoomer.Zoom_zoom_zoom_keep_size": {"doc_hash": "c6cd70a08e0bd87dc3ca7461879de1da8e711644bfe31e055b89253bad692188"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Zoomd.__call___Zoomd.__call__.return.d": {"doc_hash": "ac061cf32a3b4f584d124986835e669f46a5f56efaa20cd70498546964628272"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Zoomd.inverse_Zoomd.inverse.return.d": {"doc_hash": "4abdcc6859815d5873aa7b0f259589311a2c4447c8a4801ff4a6ba01eae16e4a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandZoomd.__call___RandZoomd.__call__.return.d": {"doc_hash": "ba4411b73197a2c18895f6c936edd08e75b0f6a2315602a85e4ec17f111020c4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandZoomd.inverse_RandZoomd.inverse.return.d": {"doc_hash": "4c0e96a2406073b916015e996d69bfa218c8ad7f87352cb11012568bf72f802a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_Randomizable.randomize_Randomizable.randomize.raise_NotImplementedError": {"doc_hash": "9ad5059a5b25dc99203c35e4d08ae7623dce6f90c686d715432515b838c74afc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_Transform.__call___Transform.__call__.raise_NotImplementedError": {"doc_hash": "f59ddc669aed551c09e038c77aac1d494970e14dbb6c8026d4a90811944edb8d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_RandomizableTransform_RandomizableTransform.__init__.self.prob.min_max_prob_0_0_1_0_": {"doc_hash": "5e9ef281ee1ac270b14fd890c8895e8f0d3ac02b6bd75e9a88ead32a166d7f25"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_RandomizableTransform.randomize_RandomizableTransform.randomize.self._do_transform.self_R_rand_self_prob": {"doc_hash": "0a1fd5b6f876067d84f370f51f7bd310fc7052f8b240eaf99ac26fdf80379d62"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_MapTransform_MapTransform.__init__.for_key_in_self_keys_.if_not_isinstance_key_Ha.raise_TypeError_f_keys_mu": {"doc_hash": "6c236b0d29af7f9556cfc017eecad896301071ae2c6579dcc2e1c729c4ad5135"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_MapTransform.__call___MapTransform.__call__.raise_NotImplementedError": {"doc_hash": "8ff528bdde04b3b41a2081771f12b13232e10764efade54ede3c0fb9fa7b9805"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_MapTransform.key_iterator_": {"doc_hash": "cce94c7353e79b9052e57acb41e1749bd9a1bb512c0516ab03d21c30b0b7fbbd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_Lambda.__call___Lambda.__call__.raise_ValueError_Incompa": {"doc_hash": "c82db11042eabbd32efe765c31245da2dc3a9595ce1937bf8cdc2da232dd1925"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_FgBgToIndices.__call___FgBgToIndices.__call__.return.fg_indices_bg_indices": {"doc_hash": "3b71af9bcc8566a2a23eaba7310239895269e31e520fe0577ef7e6c66bbe7627"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddExtremePointsChannel_AddExtremePointsChannel.randomize.self._points.get_extreme_points_label_": {"doc_hash": "dc17827f04e57eee244f550994324fdb6c11bb108402b264c839d566b7e1b662"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py___all_____all__._": {"doc_hash": "c06b348e9e74d6436e9b6798eef6418392273028b31ee744d35c9e71daaacbf9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_EnsureChannelFirstd_EnsureChannelFirstd.__call__.return.d": {"doc_hash": "cff0bf719caf3a3bb9160f805d53a112d12e9a9847e38eae8ca85de6fd2127bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RemoveRepeatedChanneld_RemoveRepeatedChanneld.__call__.return.d": {"doc_hash": "2aa6ed662dcd4ccdb4519681b5324c7cdb04fb7b418a74f52dd4409fa9061351"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SplitChanneld_SplitChanneld.__init__.self.splitter.SplitChannel_channel_dim_": {"doc_hash": "0df23f39f64705842843ab45fa08a700549665afe43ae54e176c8972767eec7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SplitChanneld.__call___SplitChanneld.__call__.return.d": {"doc_hash": "d2189495a3e29a428cfb00ce888bc82f463952e1da85818f51b18b54ad3c1033"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToTensord_ToTensord.inverse.return.d": {"doc_hash": "8af50d84d4048e4ec2f42520eb5555c67efce582ec62df8ca688ab36354ed278"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToPILd_ToPILd.__call__.return.d": {"doc_hash": "1447dd25af3570d72b8f5222ac81d7da199133a86383e1bdc80494339b64f0ef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_DataStatsd_DataStatsd.__init__.self.printer.DataStats_logger_handler_": {"doc_hash": "58851704fc4ff3d095bc451bdafc3e72969c8e656de9834fd7beec373ddcd3fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_DataStatsd.__call___DataStatsd.__call__.return.d": {"doc_hash": "14d8c07872bce89c3b46695027e2c47c8ea514e7328f31210084d360aa88aa73"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_CopyItemsd_CopyItemsd.__init__.self.names.names": {"doc_hash": "334252e2afacb104d0cc67b7b239e430bb21fe1ccec9a00257f5482cfcbbb577"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_CopyItemsd.__call___CopyItemsd.__call__.return.d": {"doc_hash": "a41d114476c8d8ea75cd13d0ffaa2b9e0dddbdd21bfbb6e388e2167a34d9b22f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConvertToMultiChannelBasedOnBratsClassesd_ConvertToMultiChannelBasedOnBratsClassesd.__call__.return.d": {"doc_hash": "911fac161e333b03c9d9a6329df4f9068be6bd444bb94f99e767ff1833e01b02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AddExtremePointsChanneld_AddExtremePointsChanneld.randomize.self.points.get_extreme_points_label_": {"doc_hash": "f42626ae7f43c8ed7eb479ee052e4e7ae0ee50fd2d5bce862cc7b6e7c40dd567"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AddExtremePointsChanneld.__call___AddExtremePointsChanneld.__call__.return.d": {"doc_hash": "9232b6302bb941ddb054709a7fe2576bc4b5eabe4174e526a41b836d97aed87c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_TorchVisiond_TorchVisiond.__call__.return.d": {"doc_hash": "cb0498926ece312ee3ae6b87f37e5302f0472fe4a0940d0dc161580c6192fe1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RandTorchVisiond_RandTorchVisiond.__call__.return.d": {"doc_hash": "7938f67c6cc0a967efc2ded91c9c3dfef83ffad4e36a5618209938b0a180cf78"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_MapLabelValued_MapLabelValued.__call__.return.d": {"doc_hash": "66b503d7a5aa985f267d39bc0f5eaa07377e945b40a1ca09e38e5eace8fb6e4a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_rescale_instance_array_rescale_array_int_max.return.np_asarray_rescale_array_": {"doc_hash": "a2a2abe841d33466c07168c96a02c5e1c7e7a11ebe3a71c62e043f3fc7318fa4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_resize_center_resize_center.return.img_srcslices_": {"doc_hash": "6025aa33a57a64acb518b1f96026581ece15be5cea9fa0485cb3fac69f1079bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_get_extreme_points_get_extreme_points.if_np_size_indices_0_.raise_ValueError_get_ext": {"doc_hash": "ef35cc3bee1774f5f8600c52aee852b491e0dd97e269e18d8efe2cf1f1d5ecbf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_get_extreme_points._get_point_get_extreme_points.return.points": {"doc_hash": "006669c73313575745eedb4702a637eaec10cb68aeabee02491c4e33b467dd84"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_map_spatial_axes_map_spatial_axes.return.spatial_axes_": {"doc_hash": "a04c58291cbca6c5e0cb4b6922b2ea1437cdac3c43b154e849605dda6f7460d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_allow_missing_keys_mode_allow_missing_keys_mode.try_.finally_.for_t_o_s_in_zip_transfo.t.allow_missing_keys.o_s": {"doc_hash": "bd773f6278991c309f9eb17ca98bd8e1c117e2a19ffdecca3df70a664dcf8ffd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/__init__.py_alias_": {"doc_hash": "8cd2e2f1c0b5ac51a6497760231af09200072ca712d70f4476ec8a125d2fa457"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/decorators.py_from_functools_import_wra_": {"doc_hash": "a1bffb82352f4ced8704caf80bbd43be2a5b23a8631e52de1e7b8205a9b5eaa1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_from_enum_import_Enum___all__._": {"doc_hash": "d5413cbc8b768513395f4ebed765dc0fe97e9c1a64ec6759b2f077cc1e54901c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_NumpyPadMode_NumpyPadMode.EMPTY._empty_": {"doc_hash": "f1a1cc2228b7313c42b6d113ca1a7a39c2d1cf611afb192d47e67ec04569656e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_GridSampleMode_GridSampleMode.BICUBIC._bicubic_": {"doc_hash": "44e83d5b5369361cbfb8087e2f48a11d9dd6efd736e0c8d3c4fe9f4ddf658333"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_plot_metric_images_plot_metric_images.return.axes": {"doc_hash": "b9986c4c7ff6ebff44dbbe0aea77ebd7159ad4433827facdcba90d734d6e94f8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_plot_engine_status_plot_engine_status.return.fig_axes": {"doc_hash": "efb7b72ca7b664c897067801a96379ecffef759b0d4f2c12561290f6fbf6cce4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py__get_loss_from_output_StatusMembers.LOSS._Loss_": {"doc_hash": "f56b00fc21fcf11defe4d4c6b6a5d860ad0891b92109d1612e6f8d8919d2627e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_ThreadContainer_ThreadContainer.stop.self_join_": {"doc_hash": "15ca131e1ba5f2e418956d2d8a2e1acbb1e93274c798197556f5b3eb4ada207e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_ThreadContainer._update_status_ThreadContainer._update_status.with_self_lock_.self__status_dict_update_": {"doc_hash": "8c16841716a82c6e260843a11d2c37a05ab2a28d65e5261ea66d5f432119263b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_ThreadContainer.status_dict_ThreadContainer.status.return._join_msgs_": {"doc_hash": "7fe00d67591cad83fc6c6678ee30ddca7b38761f00ea413faaa3772e37e4cce5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_ThreadContainer.plot_status_": {"doc_hash": "1a826536bf9a2f19c492ab5657b732a3dc7e4e7b16ec2e184f635064cbd5729d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_list_to_dict_list_to_dict.return.d": {"doc_hash": "7fbe3c48b0e2a607d0d384a0eafbc9ca1b9dddb9d3043821bdbd9623666d3634"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_export_export.return._inner": {"doc_hash": "e883d6e9af40f9ec5dcea8c01b0540448a28fe3c2fe6ad0c90b3a2277346b9f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_get_full_type_name_min_version.return.mod_version_required": {"doc_hash": "3f0c12811a4e3e4d06a705b28f27f15ee695581033ce67a5ebd1d8cc2b5d0a2c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_exact_version_OptionalImportError._": {"doc_hash": "74ead79fe2423efc9f181f7c0f7240d3371f0c85641464b57628e8aa7a9dd442"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_optional_import.if_version_and_tb_is_None_optional_import.return._LazyRaise_False": {"doc_hash": "9b45b21f970cfe69498fc089deba68f0027e99bd554bb07cf11e3db4311a3629"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/profiling.py_time_torch_profiler_full.return.wrapper": {"doc_hash": "7394c6792a6abb6167cc1cadf60768e3635d7f9bc71d67a74b3fca32b7cd8a4c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/profiling.py_torch_profiler_time_cpu_gpu_torch_profiler_time_cpu_gpu.return.wrapper": {"doc_hash": "8a7d0630d874e7ef6007067f8a472935dde37628b136c09e2abb5358d53c0748"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/profiling.py_torch_profiler_time_end_to_end_torch_profiler_time_end_to_end.return.wrapper": {"doc_hash": "593f36ea7a5bc5dde46fe3cdb35d224d19ab308415958e906b1bff1ab776d094"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/profiling.py_PerfContext_": {"doc_hash": "c37f83a0a69f0e755691c43da66e2d9dfb53c1031543016f24654aa665034d39"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/state_cacher.py_copy_StateCacher.__init__.self.cached._": {"doc_hash": "43af44edf599600fcde3c930402db0749e7caad1f92f9e83b1d841bf79d97080"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/state_cacher.py_StateCacher.store_StateCacher.store.if_self_in_memory_.else_.if_hasattr_data_obj_dev.self_cached_key_device_": {"doc_hash": "3f396db30b1e5e36952be738b58cbb10a7465f88a45c75362fcecb06f74cc918"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/state_cacher.py_StateCacher.retrieve_": {"doc_hash": "010bef2e0457eedf2a52fd8df94b54be23aaa65d3d4f7e8f73c1a0aa4cd6b7cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/__init__.py_CAM_": {"doc_hash": "a889173571d340e785f6b9afdf5ff67d5e22e383df7e7f8214f8c436408fcee2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_ModelWithHooks_ModelWithHooks.forward_hook.return._hook": {"doc_hash": "8ed07de9ae9eabf5b25544c1e29264e87cff507c3ce78f237ced8f9285d0b790"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_ModelWithHooks.get_layer_ModelWithHooks.class_score.return.logits_class_idx_sque": {"doc_hash": "0b5124338be12bbcb1cc0e15c30ade430419b1255a26538b6c2be096e4acd5e6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_ModelWithHooks.__call___ModelWithHooks.get_wrapped_net.return.self_model": {"doc_hash": "924d71b5d9023af713a4f0775772ca0898cf8711dcb56720c25b89c9712da132"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAMBase_CAMBase.__init__.self.postprocessing.postprocessing": {"doc_hash": "eeabd5808cc33ad8abbbd6f42d564158e27129221b84bbf62fddb8c0f1bbb254"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAMBase.feature_map_size_CAMBase.feature_map_size.return.self_compute_map_torch_ze": {"doc_hash": "3e566ae150f59394c34789fca062c3250230fbbacf3a329b0ea5a98c17229979"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAMBase.compute_map_CAMBase.__call__.raise_NotImplementedError": {"doc_hash": "0082cf7a2ce1c8faedf68f82c150c66f6e575ad7838ef730e08cba97b6f9e6d5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAM_CAM.__init__.self.fc_layers.fc_layers": {"doc_hash": "eba138edfa505d4e37d761e770815cc175673a3b47d4ce8be16221482d731caa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAM.compute_map_CAM.compute_map._resume_the_spatial_dims": {"doc_hash": "2f931fb217a9cc1b1178703de0f98032da60c8ec3bebc76faf61cbfe065eaec6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_CAM.__call___CAM.__call__.return.self__upsample_and_post_p": {"doc_hash": "b444c105ebe410d0d269c96a5bca3e1545fdadd92bde96195ebf4b9ddb719d65"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_GradCAM_GradCAM._": {"doc_hash": "dd68fd770db5c1bf9fac6cf9371ba93b060a77e16da3821968869d37db45cd8d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_GradCAM.compute_map_GradCAM.compute_map.return.F_relu_acti_map_": {"doc_hash": "c8f4b0524893cd78f4ee033e951551e6a586bfb33e951f9d24df5f55e06c4f29"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_GradCAM.__call___GradCAM.__call__.return.self__upsample_and_post_p": {"doc_hash": "a456adbb807489895098613f588a9914e49742c223de93273eb620fa28692f72"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_GradCAMpp_": {"doc_hash": "60f5e927262263c9f44972f4ba95424d679966bc9e8ae22bc7c8b5b174d6e27b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_from_typing_import_TYPE_C___all__._make_animated_gif_summa": {"doc_hash": "dcc0cb79bd75b00813837d871a8a4f020ed416a1bb554446840746b3e8a0a0d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_from_collections_abc_impo__check_input_image.if_image_shape_0_1_.raise_RuntimeError_Expec": {"doc_hash": "da3b99080a2f99c856a753570534521d5f098d87220cc176bf94389d65e5b892"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py__check_input_bounding_box__check_input_bounding_box.return.b_box_min_b_box_max": {"doc_hash": "591043d1e2e08538092fe19c9a8ce913185dedc87eaf39b7e3acf142fbc483f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py__append_to_sensitivity_ims__get_as_np_array.return.out": {"doc_hash": "30bff1af47f08056777f3d8218b66dae031f6c36d8d2dc57daea32634729571c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_OcclusionSensitivity_OcclusionSensitivity._": {"doc_hash": "50ba1347ecb9ee3e59edb556846f4da090f450baa7648a1d8ba9c10e6ebff095"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_OcclusionSensitivity.__init___OcclusionSensitivity.__init__.self.verbose.verbose": {"doc_hash": "951a4402e3c05fbea63f47521c1394f9ae3a767a3a4a6d7e6526118d79153fe7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_OcclusionSensitivity._compute_occlusion_sensitivity_OcclusionSensitivity._compute_occlusion_sensitivity.verbose_range.trange_if_self_verbose_el": {"doc_hash": "6f4d7d0213b6c831e893fc5c0ea0e4b01314c4eb59793ab580112caf3ab60829"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_OcclusionSensitivity._compute_occlusion_sensitivity.for_i_in_verbose_range_nu_OcclusionSensitivity._compute_occlusion_sensitivity.return.sensitivity_ims_output_i": {"doc_hash": "77603d32c3c69a4358a27d1fc3d47b9a23b469089a1c99770ec9a18298acb8b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/occlusion_sensitivity.py_OcclusionSensitivity.__call___": {"doc_hash": "2e6448f0d6eb37ecf90807aa0e6afc2745eaf7e4e3e68505dd7dee51821a9aa1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/visualizer.py_from_typing_import_Callab_": {"doc_hash": "60f5f1aaa7bb59fce599092ca32fc1ff67ad3b5935f4ed6bc3c60c82c39acb6a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/runner.py_argparse_TimeLoggingTestResult.stopTest.super_stopTest_test_": {"doc_hash": "e03de69287e6e50c36383cd13491755d00e1786428d890152106bd4d322608b7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/runner.py_print_results_print_results.print_Remember_to_check_": {"doc_hash": "45fb95fd43502826c953cb71e9e17be236b33bc411e684e5d1f2c28974be77b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/runner.py_parse_args_parse_args.return.args": {"doc_hash": "034c55366badf38ae1f39c4e80251cdde4fc08a962be2d245e74a5d7a06f81e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/runner.py_get_default_pattern_": {"doc_hash": "9180f675def6ad59c3218cf9bbca478a5db9fa9808d06267dbadc01ded655e8c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activations.py_TestActivations_": {"doc_hash": "4ebe8f05e76ab7750b3067da056260d7db37480c5b974ed3c76fc89d5bc74a5a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_extreme_points_channel.py_unittest_": {"doc_hash": "2835b2a4aa4cf2216567e61b0b5d67045f3eaadb73a7d474484d86933eacfb30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_extreme_points_channeld.py_TestAddExtremePointsChanneld_": {"doc_hash": "4aac8eb00b79b00bbac0f68cb3170bf3ec0c24114aea5e13cfb8893c2d9cf063"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adn.py_unittest_TEST_CASES_3D._": {"doc_hash": "63512f1619c3a62fddcb457740a665cbd99e7cbb9a4ad85344b3eea62b09d547"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adn.py_TestADN2D_TestADN2D.test_no_input.with_self_assertRaises_Va.ADN_norm_instance_": {"doc_hash": "5f7188468be46901dd97e99183375ab449dba676e4ff5dbea11bd69081152cc5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adn.py_TestADN3D_": {"doc_hash": "a1fa29e9cda63a54d60629cc621ae7686761607a26d6ae3fffa51c9ce0689757"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_unittest_TEST_CASE_MCFCN_WITH_PRETRAIN_1._batch_5": {"doc_hash": "17f29015996aab874a7ba7815c10b8dff084fd1a0bd9b1c1cd39d0bbc9ee6b0a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TEST_CASE_MCFCN_WITH_PRETRAIN_2_TEST_CASE_AHNET_3D_WITH_PRETRAIN_2._": {"doc_hash": "0b879c752ab02b2a539a48a20412ef8a975a3d55f12fb840adb775498b86c2b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TEST_CASE_AHNET_3D_WITH_PRETRAIN_3_TestMCFCNWithPretrain.test_mcfcn_shape.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "cf01523dd311a76f019d8d19a188b6241b9ef3160e6722eaa944ce6be63faf11"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TestAHNET.test_script_TestAHNET.test_script.None_1": {"doc_hash": "174623bc0d8b7959f686c8a8153c2ba510e67bfeed9fc4a1e43478559bfaa5e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TestAHNETWithPretrain_TestAHNETWithPretrain.test_ahnet_shape.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "c52b4b4382d394e6178c4465c8d367c8632f993866889c3c54a841acb32943b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TestAHNETWithPretrain.test_initialize_pretrained_": {"doc_hash": "276fa30c0ae157dd4d9546a54612ea380f3bcba2e677390b64e805d71678532f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_os_TEST_CASE_4._Compose_LoadImage_image": {"doc_hash": "c509e37e3c69ff4f0566e3bbaf32f3328c7a696b68895a797bdcf1735c591282"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_autoencoder.py_unittest_TEST_CASE_FAIL._2_channel_2D_should": {"doc_hash": "4c6933a0cf6f9087f2bb701c3f2fb4d0223cf8dfe1653f62505d1f259043c30d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_autoencoder.py_TestAutoEncoder_": {"doc_hash": "c403d43dba915339bdbe78702cc8a00e66081c91110bb50e07d92eabb5c4270c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_basic_unet.py_unittest_CASES_3D._": {"doc_hash": "bd2e20d0514b461b602f5b400b203b221bb63f24addd5d1aea4e65286d16c130"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_basic_unet.py_TestBasicUNET_": {"doc_hash": "05b895ec7a1166e1db42c510c0b8fd25fd9e427ce2bb2811212cd5193d021cd6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bending_energy.py_unittest_TEST_CASES._": {"doc_hash": "79de4e51fc4095b957a5c919e95f4c7e92e439682991358296bc9d938ff55072"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bending_energy.py_TestBendingEnergy_": {"doc_hash": "1b0391daf7b837358ebc87c339dcc3bdc0b01827e9e18386f78f214264ee7112"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cpu.py_unittest_TEST_CASES": {"doc_hash": "8409a9af264de3c2091853535e634e27245c9dc2f0c90b10dc359e9a38527d6f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cpu.py_BilateralFilterTestCaseCpuApprox_BilateralFilterTestCaseCpuApprox.test_cpu_approx.np_testing_assert_allclos": {"doc_hash": "64513b1b873d112bde7d39977941b273a51d20919a0d14123452ef0be0dd5d04"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cpu.py_BilateralFilterTestCaseCpuApprox.test_cpu_approx_backwards_": {"doc_hash": "f5bab8fcc2ebd83632fc5ac91a4046179dc93661e01a30f6c5c5beb2eac7dd7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cuda.py_unittest_TEST_CASES": {"doc_hash": "2dd0c4f23de741d12c607c3aef460b51d676391426ed7cf33a6b4cac46746fba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cuda.py_BilateralFilterTestCaseCudaApprox_BilateralFilterTestCaseCudaApprox.test_cuda_approx.np_testing_assert_allclos": {"doc_hash": "d4f847d4081baf43629cca1636304ff55ca32be8a0ff32106855a67608d49d0c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_approx_cuda.py_BilateralFilterTestCaseCudaApprox.test_cpu_approx_backwards_": {"doc_hash": "5166551f74cdb0374c952619eaf9b14eb867b5ce61cc3df63418a230aed9e06d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_precise.py_unittest_TEST_CASES": {"doc_hash": "19bd757e329604494fb14731780a104993976323e68945fa1cf52b62f41a47d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_precise.py_BilateralFilterTestCaseCpuPrecise_BilateralFilterTestCaseCpuPrecise.test_cpu_precise.np_testing_assert_allclos": {"doc_hash": "c56a955bc5d99bb2b1dbd15d10eee2b2e07818770ec723a091a0017235307736"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_precise.py_BilateralFilterTestCaseCpuPrecise.test_cpu_precise_backwards_BilateralFilterTestCaseCpuPrecise.test_cpu_precise_backwards.gradcheck_BilateralFilter": {"doc_hash": "6287540b76d54ca5ebce06d04b066b500d0c8cb952c7ff26057f41029abba398"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_precise.py_BilateralFilterTestCaseCudaPrecise_BilateralFilterTestCaseCudaPrecise.test_cuda_precise.np_testing_assert_allclos": {"doc_hash": "cfcf10f2388150015514c1cdb9be8059af991a129692ab78b04db8747521d719"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bilateral_precise.py_BilateralFilterTestCaseCudaPrecise.test_cuda_precise_backwards_": {"doc_hash": "5e38a307eb72c87dcf916b300ad3767f8c08ba77c75c4b24bc952b14ab447c2c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bounding_rect.py_unittest_TEST_CASE_3._2_16_20_18_0_16": {"doc_hash": "2bbe823796619c18100055938d52276dd5f870ccfc3093cae51ea4d11f866623"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bounding_rect.py_TestBoundingRect_": {"doc_hash": "44b6c49240085d5391d9d2e872f1af2586ab580b473ca9a6ecb8294911514c01"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bounding_rectd.py_unittest_TEST_CASE_3._2_16_20_18_0_16": {"doc_hash": "aa55e5dc5b7cf1cb189ee7c5770b4c68299448e7cb789e7cff19b05ccc8d3ead"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_bounding_rectd.py_TestBoundingRectD_": {"doc_hash": "e92a001154af28ba7c8f2dc46488ba7cbe363c48c2197aa5a480f0d3a62e01b7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset_parallel.py_os_TEST_CASE_3._4_5_None_": {"doc_hash": "d9980ea0a094e1a03225c61d2e1f98f194057632e0d2a53a90e87a48257a5a19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachentransdataset.py_os_TEST_CASE_1._": {"doc_hash": "4f7d522052e1dcbf2ef5096cb959ff06ddc77192597217a5ff2fd7290166d0f9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachentransdataset.py_TestCacheNTransDataset_": {"doc_hash": "4e09efa90a07ee06dbe4b1da453b6665b5a0cce4cac306f5bc9d159ce55a4f72"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_crop.py_unittest_TEST_CASE_3._": {"doc_hash": "90b3917fbea1aa2b38e5bb800d6aa409170cf1aefc1be31c24d5a95d2f0a5ac3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_channel_pad.py_unittest_": {"doc_hash": "da05df37d647d0a60f3b115ce4c9ad79e88eed101ab7a6ae6772552607ac5d2e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_data_loader_2_TestCompose.test_data_loader_2.set_determinism_None_": {"doc_hash": "120d86d13d778424aeaa08dc0692ee40e22ea316eaf756eb681cf9545802ee9c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_flatten_and_len_": {"doc_hash": "ba0a329aaf44d6ec521dec17f8f1e639b8743a4d51eea57a0c0640411efb5c82"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_unittest_data._": {"doc_hash": "8a4f8c65f3861367ec7fac8195a23b560955384304fa72b6f3a28c9b96bbb533"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_froc.py_unittest_TEST_CASE_5._": {"doc_hash": "70427c8438fe764edfa14ede95753c86fe407f52d7e1d49ac0e47677bd45cf35"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_froc.py_TestComputeFpTp_TestComputeFpTp.test_value.np_testing_assert_equal_n": {"doc_hash": "cbbe76c8fd6998e918e1b930f5db7cd098bba71d84ea15aed5ac1e2ad481bbf9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_froc.py_TestComputeFrocScore_": {"doc_hash": "515ff4594e69adbe9e50565f063fdd512c4b06b5f53e1a513e422bfbc46bfb7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_unittest__should_return_Nan_for_a": {"doc_hash": "ae4845513561748106337616e02fabeda7164276f15545bff8d24893e377a758"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TEST_CASE_3_TEST_CASE_4._": {"doc_hash": "45e8594adc77385f53ecc8e7a028138f70f14c3b8e3b5416dcf6f5882cebb83d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TEST_CASE_5_TEST_CASE_6._": {"doc_hash": "6a7e27adeb03e1f49ce17bca480ab68dedb9a8278b0f7d89004187f821e89e31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TEST_CASE_7_TEST_CASE_9._": {"doc_hash": "2da9d03752a26a2037052142e13595b95e28ec6872d468987dc99a3b463434b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_TestConcatItemsd.test_numpy_values_TestConcatItemsd.test_numpy_values.None_2": {"doc_hash": "eb8c9b20e98f523f78a35accc8d5f8ae17a3b16cc7eb9a0ef614c3135ee8afdb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_TestConcatItemsd.test_single_numpy_TestConcatItemsd.test_single_numpy.None_1": {"doc_hash": "216834c086ebfb7c8eb7cdfc959b1d78628af5e2d5a1f8a0a8cd96e16b8f916a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_TestConcatItemsd.test_single_tensor_": {"doc_hash": "aa42c2d69a60918c0308c86f5c4812f989528b66a84a57f0cac8297d0f6ad3dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convert_to_multi_channel.py_unittest_": {"doc_hash": "8607b2367982296a551ac264c321bbd1e120993131d88f7a0eec211f8e27bd06"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convert_to_multi_channeld.py_unittest_": {"doc_hash": "d46d6bb2f88b69ab79ca48cffd97eb772d0b15f7d4c8033f7b499df33cadf1fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd.test_array_values_TestCopyItemsd.test_array_values.None_2": {"doc_hash": "086fe39aed3159055907659b645c07d205aac09d4ff9e04b604861717bd9ddb0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd.test_graph_tensor_values_": {"doc_hash": "25ef74fd0f95229880c2105425a728832a702fe520fefc7665b2e96bfc1e1c20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crf_cpu.py_unittest_TEST_CASES": {"doc_hash": "ef90ec450e5f6deefa57dd184803629868d7c917627fc46c9e8ded390acc6466"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crf_cpu.py_CRFTestCaseCpu_": {"doc_hash": "155e43d67dab8a1a944a1d7f7c155f9d1f85e0ec358bfa3ad23ce6b059a9c987"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crf_cuda.py_unittest_TEST_CASES": {"doc_hash": "90ad35b5113a9fd589bd359ff6b2bfcad515cdf72cf3e156002f2d17bef7d68b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crf_cuda.py_CRFTestCaseCuda_": {"doc_hash": "02e317bc0165a976e1efb538a81a493db0904aaf620d6b5e9ebd836fb94147f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foreground.py_TestCropForeground_": {"doc_hash": "1203cb0a8bd7a301af08e217f7668923d4db99392e041db8280083bbc728c273"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foregroundd.py_TestCropForegroundd_": {"doc_hash": "1e9aa4ed13a8646747e12f3a02ebb5deab21d3ee495e6d0e1c380916e35f505d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cross_validation.py_os_": {"doc_hash": "11670502e0208abceb4fbf744afa49d28cb7296c9efefdd24730388539e0f958"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_stats.py_logging_TEST_CASE_6._": {"doc_hash": "a6d1570e5ededf764aaf499a361dd757e4fc34c550fc12e12e3c170378d6aeee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_stats.py_TEST_CASE_7_TEST_CASE_8._": {"doc_hash": "f0b789a3a5e9922acdfbe97098525521660566b722ce5728f76c858851256bf2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decollate.py_TestDeCollate_TestDeCollate.check_match.if_isinstance_in1_dict_.else_.raise_RuntimeError_f_Not_": {"doc_hash": "2f17f5e21903c59a2f80633836558c2b000067ab26104b2d5e6de7d162faec9d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_dataset.py_os_TEST_CASE_8._": {"doc_hash": "79849522d6bbb10b8810f092a3cccfdfe555906771cd256e59eec01017f97ef0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_dataset.py_TestCreateDataset_TestCreateDataset._create_data.return.datalist": {"doc_hash": "5da54030bf8ce548661604527b3a1896c7fedc6452f120a15a647a57f4b67fd0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_dataset.py_TestCreateDataset.test_create_dataset_TestCreateDataset.test_create_dataset.if_expected_region_is_not.self_assertEqual_deepgrow": {"doc_hash": "737d601f213d0b30ce8101a6f36eb23f52a99c047ae8d872500caaba55861f5f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_dataset.py_TestCreateDataset.test_invalid_dim_": {"doc_hash": "d0d7ccd647b63c78082eed3e12f1d115924a1dc53cc77bda014958944fed0a30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_ADD_GUIDANCE_TEST_CASE_1_ADD_GUIDANCE_TEST_CASE_1._": {"doc_hash": "25a972a8bae760d908034498cd0e14e60f28b03e70c9917adf3ad09eaa78953e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_RESULT_4_8_4_8_4_8_n_TestFindAllValidSlicesd.test_correct_results.np_testing_assert_allclos": {"doc_hash": "8d51c71f6f5c5f4ecb8397e0131f74c8d632faa1baf9f9eceaedea25b4d0af73"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_TestAddGuidanceFromPointsd_TestAddGuidanceFromPointsd.test_correct_results.None_1": {"doc_hash": "71f29d9215129e59cf9979dd2eb837a598dccc4623dc518c2ff612a3c4f5ff5f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_TestSpatialCropGuidanced_": {"doc_hash": "9719954890f98949cbc15e75062166357f72415278ce95dbe3201ae7a51845d5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_densenet.py_unittest_TEST_PRETRAINED_2D_CASE_3._": {"doc_hash": "9ec01fe4264b3bd7e8ed13135ccf18dc63bf8a8d3343dca79ae72c7e247d6f5b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_densenet.py_TestPretrainedDENSENET_TestPretrainedDENSENET.test_pretrain_consistency.self_assertTrue_torch_all": {"doc_hash": "d4d6f455bd382f3789138bb2159dfbdd26b8eec3199f25369b8e0919f84daf81"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_detect_envelope.py_unittest__MULTI_CHANNEL_VALUE_TES": {"doc_hash": "b5c395da256d1878717f96e81ec96f56c46a8e26c29b05c92cd2ea8b8e20bbee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_detect_envelope.py_TEST_CASE_2_CHAN_3D_SINE_TEST_CASE_INVALID_OBJ._a_string___call_": {"doc_hash": "0e956419cb988b5fc56d3041e80415df4b5391e918f9ff9fd1019982fef9d0e7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_detect_envelope.py__method_expected_to_rais_TestDetectEnvelope.test_value.np_testing_assert_allclos": {"doc_hash": "25948980d7c5c0e85ac32e564088864062039ab95433defe0a4acb0e9e131b20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_detect_envelope.py_TestDetectEnvelope.test_value_error_TestDetectEnvelope.test_value_error.if_method___init___.else_.raise_ValueError_Expecte": {"doc_hash": "8f081ca438cecc198fafd24069b36fdd4cc3089c01bcccb3f155e12ca989b1eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_detect_envelope.py_TestHilbertTransformNoFFTMod_": {"doc_hash": "079feea90e86b848dd3dd182ce5a6435cd4d5e169916b3d2cd9f84c59313f22e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_ce_loss.py_unittest_TEST_CASES._": {"doc_hash": "53478ec28947c804d70c4327ed5efc84fb6f105a6c3b5cddfceb841bdfde39f8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_ce_loss.py_TestDiceCELoss_": {"doc_hash": "c758fd8223190c0848b88ebeba9c56d937a145bfdb193ac825dfe0c538b638cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_focal_loss.py_unittest_TestDiceFocalLoss.test_result_onehot_target_include_bg.for_reduction_in_sum_.for_focal_weight_in_None.for_lambda_focal_in_0_5_.np_testing_assert_allclos": {"doc_hash": "29ba33c7cf22ba94997f581d9d09ce7840a373962d213d4e908b8d8f0c4fc7f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_focal_loss.py_TestDiceFocalLoss.test_result_no_onehot_no_bg_TestDiceFocalLoss.test_result_no_onehot_no_bg.for_reduction_in_sum_.for_focal_weight_in_2_0_.for_lambda_focal_in_0_5_.np_testing_assert_allclos": {"doc_hash": "a01731649c3ad75336b62794ce90c6fbac62573beb26dafc0eb29041545d2648"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_focal_loss.py_TestDiceFocalLoss.test_ill_shape_": {"doc_hash": "8419eb5f5323f1a88c2636ac892b7f73d90c0b8516fcdf3b2dc233fb2a9ca7f9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_discriminator.py_unittest_CASES._TEST_CASE_0_TEST_CASE_1": {"doc_hash": "817be37c362e0de355c165905acf6e6fb01d8938fa4d9c5312a21b8e0aef9dad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_discriminator.py_TestDiscriminator_": {"doc_hash": "9f7bf0f8a6aadb4872736d55ad84a0419e47cc7434aa0784bdd6f6f7b74a8877"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dvf2ddf.py_unittest_TEST_CASES._": {"doc_hash": "a29324dac815f31824d6a9862db6c5b346e08a6afa2c1a37764e22b749461c07"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dvf2ddf.py_TestDVF2DDF_": {"doc_hash": "995f6e4abbe8ca2548b1015b8adf923e89956cf4ce2324c55132a04c17671231"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet.py_for_spatial_dims_in_2_3_for_spatial_dims_in_2_3.for_res_block_in_True_F.for_deep_supr_num_in_1_.for_strides_in_1_2_1_.TEST_CASE_DEEP_SUPERVISIO": {"doc_hash": "92a85f7e3d1102f4f9c5f0f538e9c7d58e17fa611cc461821ef29d2d5d2ff5b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet.py_TestDynUNet_": {"doc_hash": "329d61e5b0dc2374aefaf274736e95e4cadf945e02c41c7b6c7ce144cfeff39b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet_block.py_TestResBasicBlock_TestResBasicBlock.test_script.for_net_type_in_UnetResB.test_script_save_net_tes": {"doc_hash": "dc27214c3d63c42d60c0bf53ce652337a30097026e782547f383c6f83fbface6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet_block.py_TestUpBlock_": {"doc_hash": "3718e0f087a78124846fdafffc6c41f574b6bdf21aeefa80d25ddca1fca5fd42"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_get_expected_model_shape_get_expected_model_shape.return.model_input_shapes_model_": {"doc_hash": "b4059cd6302e4dded310512b7b4bffea3d56da4699998007088daf8098f5cfe0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_make_shape_cases_make_shape_cases.return.ret_tests": {"doc_hash": "98486c6d1b68ee7489e0b60374a96f3fca4334c43ad4827169353e7196934eee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_TestEFFICIENTNET_TestEFFICIENTNET.test_shape.self_assertEqual_result_s": {"doc_hash": "8741b012f4e05afca1f48acf439e6ddd7e822b2556a5e63e8798d31fb814ecc7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_TestEFFICIENTNET.test_non_default_shapes_TestEFFICIENTNET.test_non_default_shapes.for_candidate_size_in_non.self_assertEqual_result_s": {"doc_hash": "1cd4ae3d724ff43eb2c0d00fc82c196a1ad80e00dd2c011b1801515b46f81ee1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_TestEFFICIENTNET.test_kitty_pretrained_TestEFFICIENTNET.test_kitty_pretrained.self_assertEqual_pred_lab": {"doc_hash": "33ba71f29f3f4545bbe4f4b0305e53d0b7a45d33ca116e41e02b9cf8bcb61d86"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_TestEFFICIENTNET.test_drop_connect_layer_TestEFFICIENTNET.test_drop_connect_layer.for_rand_tensor_shape_in_.None_1.self_assertTrue_abs_p_cal": {"doc_hash": "996c3dd89f97defe6f9343ac43abbd6b6d8eb5ab0a40eb4cb43503f0b2c9d643"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_enum_bound_interp.py_unittest_TestEnumBoundInterp.test_bound.self_assertEqual_int_b_ze": {"doc_hash": "c63883a1b38b761a80f257bafe87f88810fe4314f3c1c4ff5a5847f5a568280d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_enum_bound_interp.py_TestEnumBoundInterp.test_interp_": {"doc_hash": "d185320bf2a410f3f50471dd7564447f0dc0033d066c6b62959916f424308cfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_eval_mode.py_unittest_": {"doc_hash": "afb089157622c0988787481ef83c348a399709a630e2ac4d5fd5620745a205de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_evenly_divisible_all_gather_dist.py_unittest_": {"doc_hash": "f0b593ca063cca94af1b8c867693c590a22b7c69d31dee9041861a1074207255"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_file_basename.py_os_": {"doc_hash": "2bc46049003c8e540719c1111743be33fd3a3ff13394aea4d89ae817212e244c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_consistency_with_cross_entropy_2d_onehot_label_TestFocalLoss.test_consistency_with_cross_entropy_2d_onehot_label.self_assertAlmostEqual_ma": {"doc_hash": "66fb3606e31fcd05250bcdd3ea299d8ca4606c7cf74c0b9b8fb287761883b6a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_ill_opts_TestFocalLoss.test_ill_shape.with_self_assertRaisesReg.FocalLoss_reduction_mean": {"doc_hash": "86ccf932ca469b6449106526246ab55ba383e4f041a38ad41a89b9d7f20c22bc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_ill_class_weight_": {"doc_hash": "9d3ade0370a6ab151e4b7dd179b3e9f709d4142c3ca0e7cc325d1f9960797b33"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fullyconnectednet.py_unittest_VFC_CASES._VFC_TEST_CASE_0_": {"doc_hash": "dbd49b0b25937fd82bc4174b3aa155cfe0f941663fdb386912751996a241dd85"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fullyconnectednet.py_TestFullyConnectedNet_": {"doc_hash": "4760da3cb06f52e528166a3e9078df7b1e538a5a2e7ad50f028da625c73630a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_unittest_TEST_CASES_SLOW._": {"doc_hash": "f6611bf0532543dc268c60622fe55a848c81d813cac5686979be5b6d6666e955"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_TestGaussianFilterBackprop_TestGaussianFilterBackprop.test_train_slow.self_code_to_run_input_ar": {"doc_hash": "3ae38977c09d7182f5c7412f9a7c57bc1a47c3812c5167d8ea6b57808bfcbab0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_unittest_TestGeneralizedWassersteinDiceLoss.test_bin_seg_2d.for_weight_mode_in_defa.None_2": {"doc_hash": "23989a8bd7d5c7b15db4a364e7a9747a6753643a7f985b200ecee86529797ecb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_TestGeneralizedWassersteinDiceLoss.test_different_target_data_type_TestGeneralizedWassersteinDiceLoss.test_different_target_data_type.for_w_mode_in_default_.for_t_in_target_list_.self_assertAlmostEqual_lo": {"doc_hash": "15f62c9635fcb84d165688fd1f46dcc3942b00e6df8050d706ac0af653da9a9d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_TestGeneralizedWassersteinDiceLoss.test_empty_class_2d_TestGeneralizedWassersteinDiceLoss.test_empty_class_2d.for_w_mode_in_default_.None_1": {"doc_hash": "317991eb6d1f3e2b79d3d0db35e5e4dbbf8656f4334a6fbd016920597551b188"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_TestGeneralizedWassersteinDiceLoss.test_bin_seg_3d_TestGeneralizedWassersteinDiceLoss.test_bin_seg_3d.for_w_mode_in_default_.None_1": {"doc_hash": "90f41cbb4209db4c16bb924bc58e0d3524bd6e293be2f4f9a712379058919d4c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_TestGeneralizedWassersteinDiceLoss.test_convergence_TestGeneralizedWassersteinDiceLoss.test_convergence.for_w_mode_in_default_.self_assertGreater_diff_s": {"doc_hash": "1ad81f745d915af3e5983044d89a1cdbf15984b6d75fa4a3c52380af5d58cb48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_wasserstein_dice_loss.py_TestGeneralizedWassersteinDiceLoss.test_script_": {"doc_hash": "c705ee5e223e0621d65957e2c1b1ebb121f51d983162ee01ef19cef187a8b3a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_param_groups.py_TestGenerateParamGroups.test_wrong_": {"doc_hash": "ea3fa1b39e9cd15f900592ac09e3cddb6f5b9099cfc4f64ea874fc3bac3819ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generator.py_unittest_CASES._TEST_CASE_0_TEST_CASE_1": {"doc_hash": "c1ea74f8af7c44a214236913477f1669ec613789b7665e57d433887569ab7bdb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generator.py_TestGenerator_": {"doc_hash": "316b71698d0a8248b0132bed6014e5cd53877d1d45df40f6d0e77d319276b148"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_get_extreme_points.py_unittest_": {"doc_hash": "c2e687bc6801c0ca5e8c776fc850a7d58331dcdfd5d8e86f704ddd43ea5e7747"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_get_package_version.py_unittest_": {"doc_hash": "f09e3a8f061d1291fdb1747fef687321a2d28206fb01e4cfce322f24e4586581"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_globalnet.py_unittest_device._cuda_if_torch_cuda_is_a": {"doc_hash": "6ea4065cc0d311e1fe6966fe1390bd5a28a24d3abf041c3b2a698b4e52cdde93"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_globalnet.py_TestGlobalNet_": {"doc_hash": "39a2113372bb12674630d36de0d07964c14f7a92efe09fc981bb47e1eedde623"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_grid_dataset.py_TestGridPatchDataset.test_loading_array_": {"doc_hash": "4063e9a13cbfdaceed9edd4aa739ad1be372f26a0cdc52f90b9a524a4120663b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_grid_pull.py_unittest_for_bound_in_bounds_.for_interp_in_interps_.for_input_g_in_True_Fal.for_grid_g_in_True_Fals.TEST_1D_GP_append_test_ca": {"doc_hash": "101c5dcbaee231724e5cc2e6593887d466eb5fcf7e7251a22859047565f4b3fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_grid_pull.py_TestGridPull_": {"doc_hash": "fe583bc5bdceca73108d1a25c93e1b7c8a87a06dc50d2cb307075c6725c74233"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_logging_TestHandlerCheckpointLoader.test_one_save_one_load.with_tempfile_TemporaryDi.try_.except_ValueError_.None_1": {"doc_hash": "d19c811bfb071710327d34040bc3f45494fa90087fb6c4e2d7fe745bfc71d03a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_save_single_device_load_multi_devices_TestHandlerCheckpointLoader.test_save_single_device_load_multi_devices.with_tempfile_TemporaryDi.torch_testing_assert_allc": {"doc_hash": "60119581d4b2c802b5bbfd6021e5e497f77583425b7ff023ad987d547a044fe5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_partial_under_load_TestHandlerCheckpointLoader.test_partial_under_load.with_tempfile_TemporaryDi.torch_testing_assert_allc": {"doc_hash": "a99dd85d272a656a53ecbb84bcc475f09c973c581788ac3714ea6e175ce10288"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_partial_over_load_TestHandlerCheckpointLoader.test_partial_over_load.with_tempfile_TemporaryDi.torch_testing_assert_allc": {"doc_hash": "566ed305f697820b43c2cc8f409a591b918d9158dedc4de109464f48be2a89eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_strict_shape_": {"doc_hash": "046e84ae1858633b0cab863279c6460ac788fffa8ededbc0fc7d5647ff10aaa1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_logging_TEST_CASE_8._False_None_True_val_": {"doc_hash": "024b7e1728da4077a9b99b07c08ff20dff4f5be3bb66b0ca846fb422d548a66b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_TestHandlerCheckpointSaver.test_exception_TestHandlerCheckpointSaver.test_exception.with_tempfile_TemporaryDi.self_assertTrue_os_path_e": {"doc_hash": "d7cf1dca11596522c146af99418624bd07e6fa6b02f9817712b88d005a416cfc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_TestHandlerCheckpointSaver.test_load_state_dict_": {"doc_hash": "94b14b842c530d624a50146d7e04900d4edfbfbe18ac70760809f2304266f303"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_classification_saver_dist.py_csv_": {"doc_hash": "02bd18656ad7428af50ab20c132e77203ee396301832da6ec678b23d6f3392d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_confusion_matrix.py_unittest_data_2._": {"doc_hash": "a56f2855009502158357c989f80ff4e34dd31bd5a10d433505ee428bf384d202"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_confusion_matrix.py_TestHandlerConfusionMatrix.test_compute_seg_TestHandlerConfusionMatrix.test_compute_seg.self_assertAlmostEqual_av": {"doc_hash": "67deb538dc86c52dc31829717a8b03ed0cc37e3d3b52a52347ae4189ddc17a1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_confusion_matrix.py_TestHandlerConfusionMatrix.test_shape_mismatch_": {"doc_hash": "5941ff0f731cc84fddb0d682892e53b0addcb0b09df90edf85dac422c67e4e87"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_confusion_matrix_dist.py_unittest_": {"doc_hash": "9c54969a6f80e860d3e55d57b541b0d049b92439a91c33532d337ec5d6823008"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_garbage_collector.py_gc_TEST_CASE_2._0_1_2_Events_EPOCH_": {"doc_hash": "3846a0c34ecf94afa6c8f86347610374d2c30f54ffd78717cc6c0e7f0c255b4c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_garbage_collector.py_TestHandlerGarbageCollector_": {"doc_hash": "83107ed5034435a97dff5f86e9de1572ecd777df250d89cd97421c1f4648f14b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_hausdorff_distance.py_unittest_create_spherical_seg_3d.return.image": {"doc_hash": "69154c768d79f5ebdebc33061f7f35c642766ac12d1d945a49ed890cc0b9cb03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_hausdorff_distance.py_sampler_sphere_TEST_SAMPLE_4._sampler_sphere_zeros_sa": {"doc_hash": "718c0a4f41f99786fb25e5a380c69113f12ac32ccc61965ee35a43f7ec82d710"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_mean_dice.py_TestHandlerMeanDice.test_shape_mismatch_": {"doc_hash": "e1800d23d3eb128a796f5824d2b92983dcf4b7f02ed5aa378df3ee498a3dced8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_metric_logger.py_unittest_": {"doc_hash": "625f490d0e1fc8bd29eccc46b21d637e61f65320231aa4777d95bd7449ba6aa1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_metrics_saver.py_csv_": {"doc_hash": "12bad35edb435bb7a5d8d83bf3999dcc5b100a3220e902d4445256ce12c79605"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_metrics_saver_dist.py_csv_DistributedMetricsSaver._run.engine_run_data_max_epoc": {"doc_hash": "7b2aaba0e1a75f2d8ed906d675eefc1398b49f0d694ea20c014989d163883a13"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_metrics_saver_dist.py_DistributedMetricsSaver._run.None_2_": {"doc_hash": "14df3bfc36cd665b9febc082c1d58c9d7493d0d303beec75332e6c3b3f541aef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_parameter_scheduler.py_unittest_TestHandlerParameterScheduler.test_linear_scheduler.None_8": {"doc_hash": "52f58dd7bffe0d1066b02a583657ff02e3fc6ef5caa6b6a7c4cc71065c6e0401"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_parameter_scheduler.py_TestHandlerParameterScheduler.test_exponential_scheduler_TestHandlerParameterScheduler.test_exponential_scheduler.torch_testing_assert_allc": {"doc_hash": "fda4ab2707e75b1794425587c25d7cd8a623a4330effd0f691cd4db3084a0361"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_parameter_scheduler.py_TestHandlerParameterScheduler.test_step_scheduler_TestHandlerParameterScheduler.test_step_scheduler.torch_testing_assert_allc": {"doc_hash": "819381223fdf1d4a3fc39cc14fe971bf2159310726a0355a79049bf506750bad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_parameter_scheduler.py_TestHandlerParameterScheduler.test_multistep_scheduler_TestHandlerParameterScheduler.test_multistep_scheduler.torch_testing_assert_allc": {"doc_hash": "91c80da20175da576eed01191e1798f166d10eb2a037ce353895e6bf552f3ce5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_parameter_scheduler.py_TestHandlerParameterScheduler.test_custom_scheduler_": {"doc_hash": "2f1483fe5a87a6c8591d471117af05bce9e0229296c934c64118836ee4e9fe67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_prob_map_producer.py_os_TEST_CASE_2._temp_image_inference_ou": {"doc_hash": "0c8224ed6904f6b27a2ffa8359a25a8b7d900ed746fd0f0e34246006d18d01c7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_prob_map_producer.py_TestDataset_TestEvaluator._iteration.return.batchdata": {"doc_hash": "020e5902e88b45f808c23c528399f033be9d76b053a324880b50ce0895747c1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_prob_map_producer.py_TestHandlerProbMapGenerator_": {"doc_hash": "40300c5ae7cd98e42581ba0f4135b0be0984d486baaaaf91a9ed6be2350d03b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_rocauc_dist.py_unittest_": {"doc_hash": "fa9b289d4476cdc47dc9b80c4bf65f5ad57c8aabd508dc9687e8dd18ed97173a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_surface_distance.py_unittest_create_spherical_seg_3d.return.image": {"doc_hash": "2fee026d03bd2f148a58a59f904f9f2476d059dcf7028c8b79e852291ba80170"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_surface_distance.py_sampler_sphere_TEST_SAMPLE_4._sampler_sphere_zeros_sa": {"doc_hash": "b98cdb1309189c7ab0beb67b5a4eab1292145181d274d7be3d805929e4db991e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hashing.py_unittest_": {"doc_hash": "a23e7c14f26ddcb1b27aa0924aa351b70e9e775d73daf8694155d139a7029864"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_TEST_CASES_TEST_CASES_NANS._": {"doc_hash": "a50736c1ce09177b7d69f274332d9957dac754eb1bb408aaac95ad18f5d18eb0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_TestHausdorffDistance_TestHausdorffDistance.test_value.for_metric_in_euclidean.for_directed_in_True_Fa.ct_1": {"doc_hash": "ceaef5e04247af907e3768f82091c2d86319d4d7bde669c9d1f285692dace479"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_TestHausdorffDistance.test_nans_": {"doc_hash": "65a7edbd5368350892545240f9cf913cba0364a00b812808525db79d037fe529"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_highresnet.py_unittest_TEST_CASE_4._4_channel_1D_batch_": {"doc_hash": "cd32c08a754182330baf36ca23740d2fe28341c534461f6bb311369f2302e817"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_highresnet.py_TestHighResNet_": {"doc_hash": "b62c43bc35be427c026e7d0f72667f7ecb346154e10ffedb02af0de0452b1aa0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py_unittest_create_expected_numpy_output.return.ht": {"doc_hash": "27c0980f5b6e1d4e66f01c78f45a426d4b7a3a70104bf62c3c01435459abfde8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py_cpu__GPU_TEST_DATA": {"doc_hash": "6229c9fe2df632739bf84b88e0d6398a53eec817e7187889216d4bc3de83e28c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py_if_torch_cuda_is_availabl_if_torch_cuda_is_availabl.TEST_CASE_2D_2CH_SINE_GPU._": {"doc_hash": "78ff870f733849bd2c32134bafcde2756ff4ac8b091e1311a37c5ab9326da660"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py__TESTS_CHECKING_PADDING__TestHilbertTransformCPU.test_value.np_testing_assert_allclos": {"doc_hash": "508e73fbc72108efd52de29f5b84182a4cbcaa7e801a439559b83ac54b62ab28"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py_TestHilbertTransformGPU_TestHilbertTransformGPU.test_value.np_testing_assert_allclos": {"doc_hash": "00e13709d30866edc78e87f29afdbd6eb6190a342acf60753b4ae8001d6cbde2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hilbert_transform.py_TestHilbertTransformNoFFTMod_": {"doc_hash": "0bbcf6297b8c260b78a8ebc817c1c83221cb5cb9a478dea7f72bbb3957a3d027"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_init_reader.py_unittest_": {"doc_hash": "e0e2b983bdf46403deeb651d62e7d7e8f76dddace2fcac98376c8462599733d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_run_training_test_run_training_test.model_filename.os_path_join_root_dir_b": {"doc_hash": "8952bdd7323e8228330a3795d0fd7bf413d7ee8957ef70bb0473622f29b0cc57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_run_training_test.for_epoch_in_range_epoch__run_training_test.return.epoch_loss_values_best_m": {"doc_hash": "b9946c4595540ee3311a4f351b367a75118264594fb5293c5d4e0ba65447f75e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_IntegrationClassification2D_IntegrationClassification2D.setUp.self.device._cuda_0_if_torch_cuda_is": {"doc_hash": "9e7621d74fc1cf10d2db90ad399a0312b39ca39d5c77f0e8ba7dcc7f5043a9bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_os_TASK._integration_segmentation": {"doc_hash": "4283c4bf11e61ee8782be55c484331c066df3b979540bdbc3c8c4439b5833a46"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_run_training_test_run_training_test._create_UNet_DiceLoss_a": {"doc_hash": "fc0b7df8e1bdff6d6b578e2e1b1305a68cb8d921d075957dd0d9eee36114cfee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_run_training_test.model_run_training_test.return.epoch_loss_values_best_m": {"doc_hash": "df266e017fd33c5ba6a7fa6c082fe2c0d6682d63b24a9b6fa1a6f7abee6a0557"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_IntegrationSegmentation3D.train_and_infer_": {"doc_hash": "68b31c0d8ae13660ce597c41a743321396c6c5416db57048a51029264fd40a2d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_os_from_tests_utils_import_D": {"doc_hash": "6f40b88b8862b1b701f5f3e43b5bb75e0dd0a7b5be662016f252121820261a41"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_TestIntegrationSlidingWindow_TestIntegrationSlidingWindow.tearDown.if_os_path_exists_self_se.os_remove_self_seg_name_": {"doc_hash": "2b1a7002f5e77a2eaf588adebb3c970ce4875e1dca27daaf6334a84689cdac1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_TestIntegrationSlidingWindow.test_training_": {"doc_hash": "9f6e6483841ba48491add65fe8c5d16a1be047a997d20799802db110277673a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_unet_2d.py_unittest_run_test.return.loss": {"doc_hash": "260e955088170267efc49856dea848808730a43cdf45e8b9d6f4f901b9af025c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_unet_2d.py_TestIntegrationUnet2D_": {"doc_hash": "a3b39035d36da9469ac671225ce197dd1c8dd38a033cb0243aac2122cbeb8aa9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_logging_TASK._integration_workflows_": {"doc_hash": "4e29d3f2d5a0330487948e4ad7debfd76e2cebb6eb36fa21438955e31c0f9d9c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_training_test_run_training_test._TestEvalIterEvents._forward_completed.pass": {"doc_hash": "29496f6bbabc6441ed90e13f130f72d87169299dca2c494f2bf7684c597a22a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_training_test._TestTrainIterEvents_run_training_test._TestTrainIterEvents._model_completed.pass": {"doc_hash": "67b92c7be4dd4d66043625f323daa9accfe69b988edfb309def519cf16168dfa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_training_test.train_handlers_run_training_test.return.evaluator_state_best_metr": {"doc_hash": "af3a3cc024450b93ccf9413c2330178bfadb5f2f80a375b5b49ba75221415bc9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_logging_from_tests_utils_import_D": {"doc_hash": "da4c310e15728c7aaa288e01c78602a0edf63838388e0139f37bd59845f18c99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_random__non_sensical_tests_cro": {"doc_hash": "eb9f2da03ae822465af96396e5c10f64b305af46ba83c0b42b20de4374cd2c17"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse_TestInverse._Test_inverse_methods_": {"doc_hash": "27ccd996e30251b1f6c204d14aaf11680a12cdd450b0e516a4594b8b1e5d45d9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse.setUp_TestInverse.setUp.self_all_data_3D_loa": {"doc_hash": "ea1c031e14b9aaf10febc094470709023c4896b0daf162672e93bb75ffe5d829"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse.tearDown_TestInverse.check_inverse.for_key_in_keys_.if_isinstance_orig_np_nd.try_.except_AssertionError_.raise": {"doc_hash": "ebb78a971196ba25f20281752a860f96781e94245b463f2d1fa63445e8a0421a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse._skip_this_test_if_multi_TestInverse.test_fail.with_self_assertRaises_Ru.t2_inverse_data_": {"doc_hash": "db1e0d0d73d90ff378a331b736f3cbd35f5787f2de592a624f736b9f188afd63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse.test_inverse_inferred_seg_": {"doc_hash": "e3c3455ece4511c5a9eaedee1649220519036c351305b18200b9ef991e529e3b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse_collation.py_sys_TESTS_2D._": {"doc_hash": "2a67c7cd6b009d872c2ec923152abf2f1d17d26571bb2aedb9cb04ab878af906"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse_collation.py_TestInverseCollation_TestInverseCollation.setUp.self.batch_size.7": {"doc_hash": "1b336cc11794a22d8cc548189859fcb3ea6dbc2aaacee84676e7e39b57a6c24c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse_collation.py_TestInverseCollation.tearDown_": {"doc_hash": "8429f623543983872bb300862542cb03a666f08ff863179dc02f61317f8948d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_iterable_dataset.py_os_": {"doc_hash": "d6c4d47aa0dde0b5f2431420cf08857ef10ca3fcdf7d59ac1d4d33ba213ec093"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lesion_froc.py_os_WIDTH.800": {"doc_hash": "2107bc5d41c7e70512b10edb5c1713d05e615e3137e0982c16f42bc59972a2ec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lesion_froc.py_prepare_test_data_prepare_test_data.None_10": {"doc_hash": "8fd6f368aedd7adb18d04a42de4c30c3e16721aea7db27a265ceb80e63b1d32e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lesion_froc.py_TEST_CASE_0_TEST_CASE_6._": {"doc_hash": "4154d50b5d9224907acde4457495b3ef2baf112ef20990beaffef2965dc6f321"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lesion_froc.py_TEST_CASE_7_TEST_CASE_9._": {"doc_hash": "ae8496058147ca6324a5ea92fa8eaf726fd19378daec16a2c5162bfc244c8660"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lesion_froc.py_TestEvaluateTumorFROC_": {"doc_hash": "92ed35bf8a82e88070ea9865abdc1bf4f04d0a5053f7c3291465b90a2e746fa9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lmdbdataset.py_TestLMDBDataset_TestLMDBDataset.test_cache.self_assertTrue_isinstanc": {"doc_hash": "9935f0eae8ffb62e02d73ffc16cd517ec66cc375d31666d837d07d38db0df308"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_seg_no_labels_TestLoadDecathlonDatalist.test_seg_no_labels.with_tempfile_TemporaryDi.self_assertEqual_result_0": {"doc_hash": "0b714702338233dccb5a782ffa03c479301f48abf711a19bca0bf3818d0aaa22"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_additional_items_": {"doc_hash": "7a3eb57b90c6d1a90f2dca2acfc61d8609ab5144957fc16ecce0acbf47ec0889"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_load_png_TestLoadImage.test_load_png.with_tempfile_TemporaryDi.np_testing_assert_allclos": {"doc_hash": "3c641051eda78c19708bd41a045c554c2fc1c910a995ecc2fecab99a33b8f078"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_os_TEST_CASE_2._keys_KEYS_reader_": {"doc_hash": "9c80570996e25bd812d8fcf393046f6b59c55e9a10e2d13840ca07b328110723"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_TestLoadImaged_TestLoadImaged.test_shape.for_key_in_KEYS_.self_assertTupleEqual_res": {"doc_hash": "58abc7f066c382909ed8c18e1aa2abf0daac0d082a509394533a26753faf4904"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_local_normalized_cross_correlation_loss.py_unittest_TEST_CASES._": {"doc_hash": "e32b707dadd736b2e0f4a95169679fcfaa98d5a02864132ba7c47b7ee1aa21dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_local_normalized_cross_correlation_loss.py_TestLocalNormalizedCrossCorrelationLoss_TestLocalNormalizedCrossCorrelationLoss.test_ill_shape.None_1.loss_forward_": {"doc_hash": "9a62d106ceae051881053bd1bda50edc3b804138f5ba2bed1afa337458021c8b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_local_normalized_cross_correlation_loss.py_TestLocalNormalizedCrossCorrelationLoss.test_ill_opts_": {"doc_hash": "e93ec8d796c599c9a9c2e2ccce76d20a85b580ea8f9ce16ba1e2a773df84acab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet.py_unittest_TEST_CASE_LOCALNET_3D._": {"doc_hash": "e454b3f70076169d7d4f2c0c4496716ab72483f5a34da7a8a59802b2e5488333"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet.py_TestLocalNet_": {"doc_hash": "d7f6f8e2fbe5adfbaee99c822bb2a91f23a4db20b9e1bb910551e5cef92beb95"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_unittest_in_size.4": {"doc_hash": "1c29e4d7536462f5d3cc316a6f134f119ca9e11cbb37e872069047c6a191786f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_TestLocalNetDownSampleBlock_TestLocalNetDownSampleBlock.test_shape.with_eval_mode_net_.self_assertEqual_mid_shap": {"doc_hash": "07db2b298135e70524ee98abf2089d8bfb2ee8b3d91de660c8221e9c40e05e40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_TestLocalNetDownSampleBlock.test_ill_arg_TestLocalNetDownSampleBlock.test_ill_shape.with_self_assertRaises_Va.with_eval_mode_net_.net_torch_randn_input_sha": {"doc_hash": "a1f8c5a9f8de111055c5a01a3e7530eb766c2fa93d126e25d74fa0f79e1998ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_TestLocalNetUpSampleBlock_TestLocalNetUpSampleBlock.test_shape.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "6c05d0f0b7dc547069a1d3b27dfb46874e6ec21df7114fd8a2d2049824cbb4bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_TestLocalNetUpSampleBlock.test_ill_arg_TestLocalNetUpSampleBlock.test_ill_shape.with_self_assertRaises_Va.with_eval_mode_net_.net_torch_randn_input_sha": {"doc_hash": "c883f5c9907e5b434ec67f068ebd3f189d5d8927b3ce57c0926b30c0e77bfe7c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_localnet_block.py_TestExtractBlock_": {"doc_hash": "98b6606ac4ae28fb9fe1f73e748078742acf7bd931d0521f2d2462a1c9b016ef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lr_finder.py_os_device._cuda_if_torch_cuda_is_a": {"doc_hash": "5610f94b0a3ab8785d596cbfb9260d00fa4423586e5a94c60ceb290f3a0cd054"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lr_finder.py_TestLRFinder_": {"doc_hash": "9b9e8bd02e795095b05ff09e51e83722805ae89e4bdc0b5fd25f1745366dcfdd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_label_valued.py_unittest_TEST_CASE_7._": {"doc_hash": "7061ab4386567796a9b3afbbd57c8638b12d95decd8e6189cdcd5cfb734b5dac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_label_valued.py_TestMapLabelValued_": {"doc_hash": "b2fe6dc48affbbcbd4adc2ff1c71473a9e0fb8fb44faa070f6d13fe971c59640"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mask_intensityd.py_unittest_TEST_CASE_3._": {"doc_hash": "e83ff25801c5412a3f55a9a321f64368647769a5879368778290b6ecfa2b5640"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mask_intensityd.py_TEST_CASE_4_": {"doc_hash": "07c0af2b8a7d81e1f3f574c5e1a73064bd976aa308572d3ebfdc8894db3b8531"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_inference_wsi_dataset.py_os_TEST_CASE_1._": {"doc_hash": "857316700b0e76fcc49f00b0cc7faa5f0f9021a7ed065c0db6aedc72c89464c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_inference_wsi_dataset.py_TestMaskedInferenceWSIDataset_": {"doc_hash": "5f44a02b28f7778880877d80f9acdd0b2ecfcc28d3c3de4324cbcd9de367193f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_module_list.py_glob_": {"doc_hash": "d9c1fbe1339bb8afdd54eb521947cf42d4981e6b415afdb83fced097b7b00262"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_multi_scale.py_unittest_TEST_CASES._": {"doc_hash": "9ebbb5a5745d457119113a83a2c78f870d7d8ae1b41e45c9f111edd934a1e70f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_multi_scale.py_TestMultiScale_": {"doc_hash": "c9378de5c41c73d12ec94cc761759490877a7d820ea822467755995e2970524b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_endianness.py_os_for_endianness_in_.for_use_array_in_True_F.for_image_only_in_True_.TESTS_append_endianness_": {"doc_hash": "1f5d0b8e71b35cabc3526f8690ff6a7f7552d575f0dcd2bef7a68fb082dffb9f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_endianness.py_TestNiftiEndianness.test_switch_": {"doc_hash": "6ab8663a1314c444396a2a4f3603620561ec47f4167b9d5ded59bf9fe6334bfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_TestNiftiSaver.test_saved_3d_resize_content_TestNiftiSaver.test_saved_3d_resize_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "a9556701a387152f445d2ffdaf377ea0606f507ac32972d6651f736a5ab36ae7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_TestNiftiSaver.test_squeeze_end_dims_": {"doc_hash": "888e093c56333b43484ff77c052b16d33da45a85640d1434dda689fc65166fa3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_npzdictitemdataset.py_TestNPZDictItemDataset.test_load_file_": {"doc_hash": "655c94150c2c8eb81e5c5d74cddd67480ea4c4e998248d01f20cccc0e985bbfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_occlusion_sensitivity.py_TestComputeOcclusionSensitivity_": {"doc_hash": "8a98ea519779c4301e7223eb584fb0fdfbbfb87d6f8f768cef780e01682950c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pad_collation.py_random__Dataset.__getitem__.return.self_transforms_self_imag": {"doc_hash": "d60e743b484e46d23ad55788fc6de9a2b99373ccd8b38c248b4a4bef57f9d587"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pad_collation.py_TestPadCollation_TestPadCollation.tearDown.set_determinism_None_": {"doc_hash": "3a50d8ba848d74879035d81e1ed475a5259d1a6a69d5406a9f40e4044fb8a6dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pad_collation.py_TestPadCollation.test_pad_collation_": {"doc_hash": "e237e49e39b0d014ab9122ed6a0dfd234a555e9cf3d3a60cf6642e1011245f88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_partition_dataset_classes.py_unittest_TEST_CASE_3._": {"doc_hash": "d111b53ab826abb75402b8e62316c5372e082ef11de2407331b622803e7ac3b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_partition_dataset_classes.py_TEST_CASE_4_": {"doc_hash": "85f8772ac1bde584ac705f4de745ed6668d4df39de80c5f735ae1007749e4ff9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_wsi_dataset.py_os_TEST_CASE_3._": {"doc_hash": "7fc851fdf05457525d7328a9d55aa68b87e6c9f0c976238018f4781deab5d88d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_wsi_dataset.py_TEST_CASE_OPENSLIDE_0_TEST_CASE_OPENSLIDE_1._": {"doc_hash": "296462e0189ce0b79d3114f2774a3de72c34ab062adbd9d5f11a596a832b1a97"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_wsi_dataset.py_TestPatchWSIDataset_TestPatchWSIDataset.test_read_patches_cucim.for_i_in_range_len_sample.None_3": {"doc_hash": "dc0ed3e5bc21f34f729a4cf8b350469a7c103623a5a6a873ee46d943bb92ccb2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_wsi_dataset.py_TestPatchWSIDataset.test_read_patches_openslide_": {"doc_hash": "8ee7868293a391c7b3b29df172bdd2de518833cf7844b9b56749dd70a8489def"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_prob_nms.py_unittest_": {"doc_hash": "a5e9b9e7a5fb3658e680dc2fc4ec9cacdb53f5c66f4cf6f831668c6e35cba7de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_persistentdataset.py_TestDataset_TestDataset.test_cache.with_tempfile_TemporaryDi.None_5": {"doc_hash": "698d2631ab876a047dacb6a746b91555c0622f8116407c083f79002c2f303a36"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_persistentdataset.py_TestDataset.test_shape_": {"doc_hash": "908da78174181870938b305de9c6030cfa698f9d5cc9e665e6b59f6ce9086ef2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_phl_cpu.py_unittest_TEST_CASES": {"doc_hash": "369a3b1b76844af58d41d725860f2a4b724fdd105c4d0215f0f45c613683b2ea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_phl_cpu.py_PHLFilterTestCaseCpu_": {"doc_hash": "52467a8ab5acc2f5fbf3566ec6e46367d58fbca328351935d6f5c391579ca262"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_phl_cuda.py_unittest_TEST_CASES._": {"doc_hash": "3f88be7c73b2f9504bec51d1059132496354439d946c8355ed6aa7f1b386403e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_phl_cuda.py_PHLFilterTestCaseCuda_": {"doc_hash": "e0ec7426f421210b6a0ec75943ccc4de6944df1d36ee39c40ba2a1657720357e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_TestPNGSaver.test_saved_content_spatial_size_TestPNGSaver.test_saved_content_spatial_size.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"doc_hash": "f73a35d03c6978863407cd911d934b38fcd7633658be1392ee6f02e2325ae96e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_TestPNGSaver.test_saved_specified_root_": {"doc_hash": "c593f5d0f13a5e68a07c024986af37f42b66c73e821b3b833373dc003b4de476"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_print_info.py_unittest_": {"doc_hash": "752f0a7590e0aac73dddca14268a8f2454a49713487de5eaea202caab09ad417"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_axis_flip.py_unittest_": {"doc_hash": "41c7d155a162145a46176a66c3c76048c4d9301af6bfd5355000a3144ebc4870"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_axis_flipd.py_unittest_": {"doc_hash": "2a0ca2c0f055cc3582772be8eb851324f71b4d2f1eece491a0b3662374c5a5bd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_noised.py_unittest_seed.0": {"doc_hash": "f77b927de686b9155f4ae63f219e043e5533cadc88b35c984bccf24ec12cd441"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_lambdad.py_unittest_": {"doc_hash": "b1ef6a76ffbf185e5f669bceaf00239997500bf6b170bbcc8ff0182875167b59"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_std_shift_intensity.py_unittest_": {"doc_hash": "383f2ae2ceaae1e989e80993025688470035e4c9f7db29128141ee0b9e147f61"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_std_shift_intensityd.py_unittest_": {"doc_hash": "d64e363212eb6ea673f59316e873274db1977cf8b6343b356f9a3c0caf4f5894"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_TestRandZoom.test_auto_expand_3d_": {"doc_hash": "dbadc86c8e2ed97fcb3c6b15129bbd0eb8d32f7ecaa5ce78a926fa3b02cd796f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoomd.py_TestRandZoomd.test_auto_expand_3d_": {"doc_hash": "57a3f1cf79c4ccc366bd047a4d8e7351e969102d56c391b2e2212aaff760bc7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randtorchvisiond.py_unittest_TEST_CASE_2._": {"doc_hash": "c834af5213c5f820162f34acef66cfe2ce28699cd5558cdb3817ae92f39ebae7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randtorchvisiond.py_TEST_CASE_3_TEST_CASE_3._": {"doc_hash": "0dbf162743c5ae84585a0202f26517de149f1485f52992ff7240cfb10ee92087"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randtorchvisiond.py_TestRandTorchVisiond_": {"doc_hash": "c537137a4b771d017afa8f094c07613c1d4d203e886c1ac429192d875b80470f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_reg_loss_integration.py_unittest_TEST_CASES._": {"doc_hash": "456b0c22f1fd926f64f3a6374491bb334183b1bad134c9e41fa5c62f441f3903"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_reg_loss_integration.py_TestRegLossIntegration_": {"doc_hash": "5ed1bd355c15619fbc5e74560a5df286622590ebf5d73ff8309f86280b3e46c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_regunet.py_unittest_TEST_CASE_REGUNET_3D._": {"doc_hash": "7efbc6d5cf56b39a4cfc0231a4f95d4db7bb4c35d588374373b36f77ac4b3488"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_regunet.py_TestREGUNET_": {"doc_hash": "6317f924a722aae974ab13fb630abb746403ebe111ade5e2c162c40ac6c29c6b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_regunet_block.py_unittest_TestRegistrationResidualConvBlock.test_shape.with_eval_mode_net_.self_assertEqual_x_shape_": {"doc_hash": "f8fe762e7f5c4f170fc3c4f247b613c69edbbfd7840aa03495424e171649142f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_regunet_block.py_TestRegistrationDownSampleBlock_": {"doc_hash": "79c2fe1fa14feb094a064420a88bb11fc71b1811b658453b33f6c1ae57e39260"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_remove_repeated_channel.py_unittest_": {"doc_hash": "cd90b837891a6f1f16b0bc65b2a28581a9fe0c81e05ab33d4751f81e1efb5fff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_remove_repeated_channeld.py_unittest_": {"doc_hash": "a66be2fef67540f2f24d668bb1dbaf66dc999bb063dc5cb0fcddb55b1a3e0e36"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_TestRotate2D_TestRotate2D.test_correct_results.self_assertLessEqual_np_a": {"doc_hash": "48893c90798678ca33eb14798267faf39c85442b6275aba1b1ae003fa5960013"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_TestRotate3D_TestRotate3D.test_correct_results.self_assertLessEqual_expe": {"doc_hash": "5a959525d549d21c1df5cea8f5e197f05d2646e12dc8480fc577060a41531a68"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_saliency_inferer.py_unittest_": {"doc_hash": "8de9d438f70b775db80e0297bbb0019d2b784d9a45faf69546acdfd49e320b75"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_save_image.py_TestSaveImage_": {"doc_hash": "9b61049048945e044f71b24f675cd2fab5002b7451831ee12f64463f506bc604"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_save_imaged.py_TestSaveImaged_": {"doc_hash": "5fb55b2990d8b9673349d5f82c2ad9e2d9e5605bc4ece2d729f4f28e1110cfc3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_unittest_TEST_CASE_SINGLE_VALUE_REP._": {"doc_hash": "2c8eb6ca57eb01b0ea3f775abfbdd3f6cda89b5b4f380598d8b8a992ed3f5cca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_TEST_CASE_1D_REP_TEST_CASE_SINE_SMOOTH._": {"doc_hash": "269cbbba90d7d568e5b2df3ca50146e4483bcac93a4c6b13501c104d7d61066d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_TestSavitzkyGolayCPU_TestSavitzkyGolayCPU.test_value.np_testing_assert_allclos": {"doc_hash": "b1144ab43eecc7679474d491ba2bfa007b4e261d5280f622b6889561085535da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_TestSavitzkyGolayCPUREP_TestSavitzkyGolayCPUREP.test_value.np_testing_assert_allclos": {"doc_hash": "bd69eb55be154b3df2b55345fb03418446d423899ede9c926051f8c5c52fd8b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_TestSavitzkyGolayGPU_TestSavitzkyGolayGPU.test_value.np_testing_assert_allclos": {"doc_hash": "34e8b88a650c34738ed90a202a2e08c6a7008d4c43262863c7471f13bb822f5e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_filter.py_TestSavitzkyGolayGPUREP_": {"doc_hash": "d24eec184ad94da79e04f85f677e5b06b14a93e76985c0523ce3df15a633aded"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_blocks.py_unittest_for_type_1_in_relu_r.for_type_2_in_prelu_.TEST_CASES_3D_append_test": {"doc_hash": "d84a8fdb28de400c839b9d8318b7b138a696959692f5a9e8f3d67d0d3dfa5d1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_blocks.py_TestChannelSELayer_TestChannelSELayer.test_ill_arg.with_self_assertRaises_Va.ChannelSELayer_spatial_di": {"doc_hash": "6206a83458b452327041a4f86ae2b1793fe03fcccab608d1f672821d12465a20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_blocks.py_TestResidualSELayer_": {"doc_hash": "e66cc40a6fa1958edabc63d223b805cf3264e18d9d1cddd446f16f8ffb768841"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet.py_unittest_None_2.for_init_filters_in_8_1.for_out_channels_in_range.for_upsample_mode_in_Upsa.TEST_CASE_SEGRESNET_VAE_a": {"doc_hash": "07383308237f269ed71f6b5ecd57c1d83d0ba426818e4369048e42eeccea4aa6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet.py_TestResNet_TestResNet.test_script.test_script_save_net_tes": {"doc_hash": "53f86daeb18e8e12f169c73737701db2a52dc8becc592e66e068b0dd96a4dbd9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet.py_TestResNetVAE_": {"doc_hash": "bf7f8276b87e029dbd01a7f44e87cdbb1d1538d82c3273512901c42cbdc60073"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_select_cross_validation_folds.py_unittest_TEST_CASE_2._": {"doc_hash": "b149b35e4b3b8330d64ed0a7cd1d323f6ffc72580069578e8e267d5f7f93e63f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_select_cross_validation_folds.py_TestSelectCrossValidationFolds_": {"doc_hash": "76d5f48a453862eaca2a1a33b3db2a17e2b2d4fabc06780834661d3628d8d12e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_select_itemsd.py_sys_": {"doc_hash": "34f463d4731a6f33073dcf850551a913d3e6c1ab3818c77bdabf9f9f2d13f4dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_senet.py_TestSENET_TestSENET.test_script.test_script_save_net_inp": {"doc_hash": "0c1e26f00756fc0c47ae4205b89d831f9c55a52ba9030cf08bfcf9dd4f486283"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_skip_connection.py_unittest_for_type_1_in_cat_ad.TEST_CASES_3D_append_test": {"doc_hash": "9a2d04eb158be59ff6ce3c750504f59b1b3e43f930f43931774df32b2142e541"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_skip_connection.py_TestSkipConnection_": {"doc_hash": "1a064f9dbd9ec78f5bda6eb43b1675747813e997b796f8c8dcdb14438c79233f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sw_device_TestSlidingWindowInference.test_sw_device.np_testing_assert_allclos": {"doc_hash": "fc36ce1cc8c61e7f8ef117aa3576f4c352895744b0709787be6e0bafa70086bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_cval_TestSlidingWindowInference.test_cval.None_1": {"doc_hash": "6877029f5f97ff8441c2152c9a1429411ccabdcbe63d564117e6555b387b2f7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_args_kwargs_": {"doc_hash": "088be45d5ad4ec06b28cb020492e13939587e231e6a215c92cfdb1f749fdd314"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcache_patch_wsi_dataset.py_os_TEST_CASE_0._": {"doc_hash": "4085abddf318deee2257bd8c86f7112b6e59e34d4c50defdf230172dd2c1b891"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcache_patch_wsi_dataset.py_TEST_CASE_1_TEST_CASE_1._": {"doc_hash": "7e14bf69a604ef3706a0565e250213af7b40c8f90d19268b9d01bff72b743735"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcache_patch_wsi_dataset.py_TEST_CASE_2_TEST_CASE_2._": {"doc_hash": "97a834e14ab003403e497b5b0b7d4f2ef35d6befb0f822440a4f0527b3cd8fbe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcache_patch_wsi_dataset.py_TestSmartCachePatchWSIDataset_": {"doc_hash": "9d385dccfceadab965ea03843fd2015062aa3b67808062b6f94f2bf5409cfaeb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcachedataset.py_TestSmartCacheDataset_TestSmartCacheDataset.test_shape.with_tempfile_TemporaryDi.for___in_range_2_.dataset_shutdown_": {"doc_hash": "238967922d5e188337fb99e3683e79c499a93a0a27868a0842d30c4ed64979d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_crop.py_TestSpatialCrop_": {"doc_hash": "bb7eba3395e34e20dbcd3563f95b1f1da9569aa10df90be59415c745a3a312d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_state_cacher.py_TestStateCacher_": {"doc_hash": "07346335abbc21737b86c1bc22791e49d1de412e0ec8cae938c9618bafd54b3a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensity.py_TestStdShiftIntensity.test_channel_wise_": {"doc_hash": "55d4662c5aa65512d2ca476b6a2d317e083421f4fc37519e4861db2a33362389"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensityd.py_unittest_TestStdShiftIntensityd.test_zerostd.for_nonzero_in_True_Fal.for_channel_wise_in_True.np_testing_assert_allclos": {"doc_hash": "3a4c6bc82070b1d79bf0ddf6aa75327ced42ecffa1d20cb25ee94338c4c3bf7e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensityd.py_TestStdShiftIntensityd.test_nonzero_TestStdShiftIntensityd.test_nonzero.np_testing_assert_allclos": {"doc_hash": "a7738fb22774d599d0cd56ee38fea68fdd76ade91adad2a9aff136164a455a14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensityd.py_TestStdShiftIntensityd.test_channel_wise_": {"doc_hash": "561a412fa3bd9c220cd8f1c2d8f783f2583bca3fe61cbe471b46432d97e3e877"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_TEST_CASES_TEST_CASES_NANS._": {"doc_hash": "fe4d5c49768e4fcd2f43478632d9f13049aa6b8015a0ad1ffba2d7c0309b4611"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_TestAllSurfaceMetrics_TestAllSurfaceMetrics.test_value.for_symmetric_in_True_F.ct_1": {"doc_hash": "0f3ca323f4e7148a538dcb2a191fda6d803240f5c6e096b24ff9e84b8a09f53d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_TestAllSurfaceMetrics.test_nans_": {"doc_hash": "a7c10d8972444253cc57611fc5ca373a4a4a75a8e8421e877aac35243aaa8f48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_testtimeaugmentation.py_unittest_trange.partial_tqdm_trange_desc": {"doc_hash": "2018dbe3438493571e763cc48bbad5a0c2ac9a250459369670125dbafa72f9e6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_testtimeaugmentation.py_TestTestTimeAugmentation_TestTestTimeAugmentation.tearDown.set_determinism_None_": {"doc_hash": "8f563fd3b4f0a7dbce4fe71f1bdf29daf3e704609b8ab44b62a57bc92d4c2a28"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_testtimeaugmentation.py_TestTestTimeAugmentation.test_test_time_augmentation_TestTestTimeAugmentation.test_test_time_augmentation.self_assertIsInstance_vvc": {"doc_hash": "8debfb6d937fbcdafad2a549b577e4468eeec356858dc6362f442fcf248c7781"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_thread_buffer.py_sys_TestDataLoader.test_values.for_d_in_tbuffer_.None_3": {"doc_hash": "cde67ff2975a408896e4eeb512148a6e160672d86b143b6044dbf507b1fef283"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threadcontainer.py_os_compare_images___optio": {"doc_hash": "c67d8f9f5980354daffc52b45b9a0514638684c62c33f69d8bb4cb3c8842d74b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threadcontainer.py_TestThreadContainer_TestThreadContainer.test_container.con_join_": {"doc_hash": "20b8a45506f11de2031de2fd395129df3ee81b1740d5b0bbb31f1a78a8784f36"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threadcontainer.py_TestThreadContainer.test_plot_": {"doc_hash": "9cf5864a391317454a13edd1fdbcff9f273ab24c0be5393e40572af048e857dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvisiond.py_unittest_TEST_CASE_2._": {"doc_hash": "d0d16b84607d9080b05bf8b903a4d566d4d5efcde351833cfe5af473be5e2ad3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvisiond.py_TEST_CASE_3_": {"doc_hash": "63cd93b37f095dcd1b3f4634dfbea9262126fbac8d0d37114a2222cef575f562"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_train_mode.py_unittest_": {"doc_hash": "3f10953c62c270fb2b45ec568fecb5479a817272f5f094882476a775ec246122"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unet.py_unittest_TEST_CASE_4._4_channel_3D_batch_": {"doc_hash": "5b73418c080b2ce715e91675f2540aa73d675fe7cbb5335eb57d35e8e4ca1051"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unet.py_TestUNET_": {"doc_hash": "b07f81170d843c3d59600c6d518475a5ef8ff1a2d0e3c3d0a00efd4afde7e7a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_varautoencoder.py_unittest_CASES._TEST_CASE_0_TEST_CASE_1": {"doc_hash": "5eb68436019687c38a9c72ea5f54079cc1cd99edd3f6aa723b78ee27c7618a92"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_varautoencoder.py_TestVarAutoEncoder_": {"doc_hash": "4d92912597c408e5a96337574719b31f2be9dec2c0c1f00c9d8b9c4e4e2157e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_cam.py_unittest_TEST_CASE_3._": {"doc_hash": "c8642f36015efef5e5160ab7e746b1520d7d246cb641383240ea4991778da21c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_cam.py_TestClassActivationMap_": {"doc_hash": "067165446db50106b9a08a85d8729e583ca0ac35fe77e5388e7799c7660c3e7b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_gradcam.py_unittest_TEST_CASE_3._": {"doc_hash": "0f6ca1833d29e76414b7210bc202e46e9a3bf9c246c408c1b6652c13f1290a59"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_gradcam.py_TestGradientClassActivationMap_": {"doc_hash": "91b55e69b9fe8b958caf7b0dca2e1743530e0fb10270f307a5970d4f902da962"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_gradcampp.py_unittest_TEST_CASE_3._": {"doc_hash": "14e6db0003c3ac469ca10de55abcff93d5a463f69b376379c3a6a03ef03190bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vis_gradcampp.py_TestGradientClassActivationMapPP_": {"doc_hash": "8dbb22693511f989f3c4f5d42ed9c75a62096f685a336609b603c1876208e6e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_CPP_TEST_CASES_if_USE_COMPILED_.TEST_CASES_CPP_TEST_CA": {"doc_hash": "dbc7f149329cfd6552f0fa71669fa8888c8e1984cfc45ed11aa47279e0fbc0e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_with_allow_missing_keys.py_unittest_TestWithAllowMissingKeysMode.test_map_transform.for_amk_in_True_False_.if_not_amk_.with_self_assertRaises_Ke._.t_self_data_": {"doc_hash": "cb6e61dfbd73314b75ef3aad892a97758e6fd51a72e7e18dd3b24b7d82c12165"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_with_allow_missing_keys.py_TestWithAllowMissingKeysMode.test_compose_TestWithAllowMissingKeysMode.test_compose.with_self_assertRaises_K._.t_self_data_": {"doc_hash": "01139a1baf93b9ea91196f793432cf9df0a3895521ce480d951db9f541ca9797"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_with_allow_missing_keys.py_TestWithAllowMissingKeysMode.test_array_transform_": {"doc_hash": "7290de0092561db42c9578e32a78cd87bc620f1f640e6cd22bad98931d06f730"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_write_metrics_reports.py_csv_": {"doc_hash": "5de2550ed8a5653463e52707252e543e3e9a3e8e33e2ca58ef007f859bf994fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zipdataset.py_unittest_TEST_CASE_4._": {"doc_hash": "08b6e70cbf62bb27769403b53079c3b32f704ed3b25cbe53a8bd905e37e8f67f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zipdataset.py_TestZipDataset_": {"doc_hash": "21c11b983f9239b4112a6fa7468776fd07f28d59e8cce446a7c20732e07db217"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/testing_data/cpp_resample_answers.py_csv_": {"doc_hash": "9102e06e198ded2ad7de45a1314959f4363797019e0411daedbd894c453b7d68"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_SkipIfBeforePyTorchVersion_SkipIfBeforePyTorchVersion.__call__.return.unittest_skipIf_": {"doc_hash": "6f781276334c509422053604d168db8c1a8ae912bc18bc39835a68f0ac76381c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_SkipIfAtLeastPyTorchVersion_SkipIfAtLeastPyTorchVersion.__call__.return.unittest_skipIf_": {"doc_hash": "e96bbea9d65828462084e44a71aa2cebb5eca7979763856364a5dfd4a91c73b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_make_rand_affine_DistTestCase.__setstate__.self___dict___update_data": {"doc_hash": "aa137aa5ac5903ca44cafd1c5c958fefa15e3f24e3e56f0b4dd6f3e36882fde6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_DistCall_DistCall.__init__.self.verbose.verbose": {"doc_hash": "29320b591a9130baa5912d2a1cbf6f8d750d611e1570fa7ba6952da527ec42e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_DistCall.run_process_DistCall.run_process.try_.finally_.try_.except_RuntimeError_as_e_.warnings_warn_f_While_clo": {"doc_hash": "5b4159af64bfed4b5160ef20f0501c4a160cd46311f80eb7d7d0f575c1f33bf2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_DistCall.__call___DistCall.__call__.return._wrapper": {"doc_hash": "0e5b7bb7b17f336db00e0672d9763fa40a5ff65bb3b651f0e6190523b2de1b40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_TimedCall_TimedCall.run_process.try_.except_Exception_as_e_.results_put_e_": {"doc_hash": "fd95ae9498746b5101a667ae274556b8f5d64ef3643a4e8048a8d486eeb7a6ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_TimedCall.__call___TimedCall.__call__.return._wrapper": {"doc_hash": "f02c2078f2cf325dd696f69a32a572f25cbedd3909997f259a4ea6efe4b6899c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py__original_funcs__call_original_func.return.f_args_kwargs_": {"doc_hash": "08e046bf084fa3b6198fd0bf396892883865d9da41977985ae882a42366c8726"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_NumpyImageTestCase3D_TorchImageTestCase3D.setUp.self.segn.torch_tensor_self_segn_": {"doc_hash": "83af6baeae2f81bfc025fe0399c06156259c1d38d7e899b1353cbca394533950"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py__Version_0_19_get_root.return.root": {"doc_hash": "82fa0c85cbc7c0384e0e0ba382598cf66a92347c0a0cc89580af4a77d00fee25"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_render_pep440.return.rendered": {"doc_hash": "01c58b16a9d2f48e661b642e5765298512fe65731c12944e3d8aa7eec9436b43"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_pre_render_pep440_pre.return.rendered": {"doc_hash": "068e049023aaab824be0d73855e398d30258feb5e3bb632365748c5e1a4e90eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmds_version_cmd_ver_get_cmdclass.if_setuptools_in_sys_mo.else_.from_distutils_command_bu": {"doc_hash": "c8e402f8dc78bf342b152a6b691e971e8aa2717b30c5601f2bd7bd281d42ec3a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_build_ext_get_cmdclass.cmd_build_ext.run.write_to_version_file_tar": {"doc_hash": "f905a223aa951770fd030bd6e05830c702d1e3e81832360427986c65dca9723d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmds_build_ext_cmd_b_get_cmdclass.if_sdist_in_cmds_.else_.from_distutils_command_sd": {"doc_hash": "6f1cc06e745b451d11be008b4389e0bfb92b446b3e6c8217c2908620314cfa15"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_extensions/__init__.py_load_module_": {"doc_hash": "6ec454f48e81b85d01f6f84fa55c4504b9d74600e556ce5a7522ec574e12dc54"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_extensions/loader.py_platform_timeout.try_.finally_.if_timer_is_not_None_.try_.finally_.pass": {"doc_hash": "b3ff11d1b02a3c43e1b77d5ab876c7898a1ddcadea1bba3821eeb33a7f4cfdb1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_extensions/loader.py_load_module_": {"doc_hash": "b4bf33a58aded25bcb272b8227ff6bcb5b005aeafd9c2095d52b56373a9e5c4a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/interaction.py_from_typing_import_Callab_Interaction.__init__.self.key_probability.key_probability": {"doc_hash": "723ae12dec77f28dd614e2c60aa21cd6562de1bf608a3ccee91c5a6cd3a477c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_Fetch2DSliced_Fetch2DSliced._apply.return.image_idx_idx": {"doc_hash": "221df7a1efa1c7d09c6e71a727735f369a06740cd3c5eae10dd6c2793bc5d80a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_Fetch2DSliced.__call___": {"doc_hash": "215b0ba06eb3b470f9705c1e3a455484f11681b6a72b8e883c798575f8b04358"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/__init__.py_download_mmar_": {"doc_hash": "e239f9e9177b95cc06211d42d580c9ba6e6a857916acc0069fd9d1ac4a954d24"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py_download_mmar_download_mmar.return.model_dir": {"doc_hash": "091c8f204b7070ef10223d803317d9f9b763bd9d1c6f04d35871d229057078f5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py_load_from_mmar_load_from_mmar._parse_model_config_fo": {"doc_hash": "2511e5c6b04fc67aff91a2ac746963d985f73d3d01911b2eea8a5aee805b13a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py_load_from_mmar.if_model_config_get_name_load_from_mmar.return.model_inst": {"doc_hash": "65644065df8c8dd9f87b808c766e4eef1bcfe074aa31b4284b7a5e10ae694560"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py__get_val_": {"doc_hash": "fb291d3bf64be37c4a6ad67b660a8dea1112c845b6c3adb8068f4d6790b6bad0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py__download_with_progress__download_with_progress.try_.except_URLError_HTTPErr.raise_e": {"doc_hash": "a5ae290961aa5e0629c63b36f103eae7aaa4495492e42a923b6106a78be2938f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_extractall_extractall.raise_NotImplementedError": {"doc_hash": "3724ebb73adb9320f29e872f3b4f8502a58fd646a441e0107dd32b3445a632dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_os_CSVSaver.finalize.self_reset_cache_": {"doc_hash": "b9c3689569d3cbc90a44fe74742495a6a1f6c053c88806d3eb2a7f7cdef1e692"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_collections.abc_pd___optional_import_": {"doc_hash": "fc257338cf6e890db32f31f418cb47af6f8e88e82210e6016f5f15614c669ff9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheDataset_CacheDataset._": {"doc_hash": "de48f63f49a9f393fa02394f4fcbd05d8ae638c19a2ca5f6eefd2bdacfd12125"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_NPZDictItemDataset_NPZDictItemDataset._transform.raise_AssertionError_Wit": {"doc_hash": "6175e365ef2df8e2b1a1db726b49dc85a15ad166bbd21514455f686be500bf02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CSVDataset_CSVDataset._": {"doc_hash": "e6c9571c7f6f6e413ecca1d0da2b76796ae4aa1e70e749c0adb1f37b6bd80201"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CSVDataset.__init___": {"doc_hash": "31730a794b8beddab2cb86e0db8b16cd76ce32d60180df547d50147211e1abe5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader._get_meta_dict_NibabelReader._get_affine.return.np_array_img_affine_copy": {"doc_hash": "68101969c62c4daa42315da1a545a15caa918bd9400ff7852fa5e6af632e51bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader._get_spatial_shape_NibabelReader._get_array_data.return._array": {"doc_hash": "8a1d3b5cdb42e899136fda0e2976013a4563718f4911c2ae2c3f3e2f7dd686b4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_CSVIterableDataset_CSVIterableDataset._": {"doc_hash": "482a3c63926f763ba3e150f7417db3510e95714ec0da448bd896aebd1459ce94"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_NiftiSaver.__init___NiftiSaver.__init__.self.print_log.print_log": {"doc_hash": "1cc9585fd0ba7d48df717bf0ca8609020b74e8d28287297597420961bb047c1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_NiftiSaver.save_NiftiSaver.save.if_self_print_log_.print_f_file_written_pa": {"doc_hash": "7cdad6f3aa38e4a95cc4fc465bdfb47b496dda86e5a3211e8c4ed9c1104bbfa6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_PNGSaver.save_PNGSaver.save.if_self_print_log_.print_f_file_written_pa": {"doc_hash": "9f13a276849677c689fd2176ae91a33243cba8a67067258203a48f5573695aab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_partition_dataset_partition_dataset.if_shuffle_.rs_shuffle_indices_": {"doc_hash": "2b8150042ca7eed21ef8e50900e17004d24b8041476b52ec5bf76a0553a340cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_partition_dataset.if_ratios__partition_dataset.return.datasets": {"doc_hash": "d4bd76b298a4a185c87ca99104f38e49bd2165a076a0b7ff7d8019f3e83543a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_json_hashing_sorted_dict.return._k_sorted_dict_v_if_isi": {"doc_hash": "e15b5f01df49ecd538c5f21ccb309be8edefd4855c60f858f6d420f5a56282f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_convert_tables_to_dicts_convert_tables_to_dicts.data_.df_loc_rows_if_col_names": {"doc_hash": "3f1be9de5c7ebd1008903662bf26f5369ad5e79a629fe1e1c69c7c074e099f92"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_convert_tables_to_dicts.if_isinstance_col_types__": {"doc_hash": "4c268d2ad6446c8cf731a433cdc7b2d00fbaa0fcd2378659b99499cbfd65b240"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_IterationEvents_IterationEvents.INNER_ITERATION_COMPLETED._inner_iteration_complete": {"doc_hash": "3794c05a4b22a3adbb77653da88d48575a0a37c09c7df2ba14443c1af664312d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_GanKeys_get_devices_spec.return.devices": {"doc_hash": "ae8a1def2114e40f09f30d0727d2307033645201543bd9c5a6233753bcd7d39d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_default_prepare_batch_default_prepare_batch.return.batchdata_CommonKeys_IMAG": {"doc_hash": "832d0b494c9bf5eca04a3bb5a2016c842de0e24ac86f72a376f6c508a50a4d67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/classification_saver.py_ClassificationSaver_ClassificationSaver.__init__.self._filenames._": {"doc_hash": "0395dd2ae06ea03cb11592d2372b1fd8b18bd062b530995f76a1b463dc63cc0d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/classification_saver.py_ClassificationSaver._finalize_": {"doc_hash": "f87044fb9adbd045b07206d760330c60d14c6048811de251b2c7184d6ed55d88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/confusion_matrix.py_from_typing_import_Callab_": {"doc_hash": "ca799382057fa3d66f7dce5ff5b4166463960eac4d0283ae55ffc5cba8337cb2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/ignite_metric.py_warnings_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "d27f0a68d0118e479fd1d726c81b581d9c1ebf48651342c12e2adbdb2f3325a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/ignite_metric.py_IgniteMetric_IgniteMetric.reset.self_metric_fn_reset_": {"doc_hash": "a0a618a4b0401f1cb2950855e620d1461cc87007046eb29034d8d36a5e2bf469"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/ignite_metric.py_IgniteMetric.update_IgniteMetric.update.self_metric_fn_y_pred_y_": {"doc_hash": "3b14d2746b45ac55e7a4bc11fe5d1c46d3afeb70d815c31c6100ad35c2bc3c40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/ignite_metric.py_IgniteMetric.attach_": {"doc_hash": "e732297923364a008ceb0baa813185be213011fdd3a682292ed99b08ef2e8f01"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metrics_saver.py_MetricsSaver_MetricsSaver._": {"doc_hash": "97310272973a7e8a678d0b47464571307c17a5c753b19469d4d2fa11c0d0ceb4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/regression_metrics.py_PeakSignalToNoiseRatio_": {"doc_hash": "f37df9785202c462c0c0ccb2a5759feb7f7a3975c3fec9f50e442f303bc58de8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/roc_auc.py_from_typing_import_Callab_": {"doc_hash": "c4b53796277b645fa834ce450842ee2ce5d524d565559910bf70ed59525a38e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_SegmentationSaver_SegmentationSaver._": {"doc_hash": "f48cabc6e96c0a454dc8af2436754d274d6e9aaa85fdc7f125d7e78fd2e35260"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_SegmentationSaver.__init___SegmentationSaver.__init__.self._name.name": {"doc_hash": "6dddca133504598b59b4e7c89afc838ff01462c99ed3c00fec1501d062ca2e73"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardImageHandler_TensorBoardImageHandler._": {"doc_hash": "ff263fab016c890c8c015a6e394bbe55324484836991799d90516ef9453f0cea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/utils.py_write_metrics_reports_write_metrics_reports.if_not_os_path_exists_sav.os_makedirs_save_dir_": {"doc_hash": "786eee96807c4e7a2269fbd0cc8453a0e36f8a1a6b6291ba513a74a3df27f2ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/utils.py_write_metrics_reports.if_metrics_is_not_None_an_write_metrics_reports.if_metric_details_is_not_.for_k_v_in_metric_detail.if_summary_ops_is_not_Non.with_open_os_path_join_sa.for_i_c_in_enumerate_np_.f_write_f_class_labels_i": {"doc_hash": "e5c40d7e215e1ada68c9db153715df0d4a8db062f9c36025c45ff46316fc8413"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_MaskedDiceLoss_MaskedDiceLoss.forward.return.self_spatial_weighted_inp": {"doc_hash": "947cb5051882f63dea98846b1680d30b2f1019b3a1cbd875b7d75d565928a636"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/spatial_mask.py_inspect_MaskedLoss.__init__.if_not_callable_self_loss.raise_ValueError_The_los": {"doc_hash": "0a798e4949d31a7d4108be9890c47307bce0b70e3d8ea2d67eb1cbabbc185786"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/spatial_mask.py_MaskedLoss.forward_": {"doc_hash": "5278cd8a2637f64b3e007609d64e4058b58c5af9b6f256220119b2c2ef28accb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_warnings_ConfusionMatrixMetric._": {"doc_hash": "af14a11471ccd2b5998885bd9c2e7ff402054f25a1b25c6df6a9644f1deb9591"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_ConfusionMatrixMetric.__init___ConfusionMatrixMetric.__init__.self.get_not_nans.get_not_nans": {"doc_hash": "c036de823fe87bc31c7267ae7439abd2742d21799355dbb3b547c6d28d6e1cfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_ConfusionMatrixMetric.aggregate_ConfusionMatrixMetric.aggregate.return.results": {"doc_hash": "b1befc04afd4e614a1afbbe458e76b7038be830798df91f207b29ca87d60d856"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_warnings_HausdorffDistanceMetric.__init__.self.get_not_nans.get_not_nans": {"doc_hash": "2b10e0f9fd32afa9f241cfda1b71c7ff569454c0ffe684591c5fd78f7988628b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_HausdorffDistanceMetric._compute_tensor_HausdorffDistanceMetric.aggregate.return._f_not_nans_if_self_get": {"doc_hash": "b48dde4904b674b19b33a7966d4bf29ca0f3a900b17948d9a7e53469de17c358"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/meandice.py_warnings_DiceMetric.__init__.self.get_not_nans.get_not_nans": {"doc_hash": "b46e1790991c210e75a02a24c90c2b66879a5ed703750dcf2aaee53a6e514bd2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/meandice.py_DiceMetric._compute_tensor_DiceMetric.aggregate.return._f_not_nans_if_self_get": {"doc_hash": "296e4f94cb008b7d327a421ab8b91702d3346105a75c4dd41d08ee8cf4efd6b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_from_abc_import_ABC_abst_Metric.__call__.raise_NotImplementedError": {"doc_hash": "83e16e6af09124978340d36854e509c627afa6bcd9268aef728376195f133dc6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_Cumulative_Cumulative.reset.self._synced.False": {"doc_hash": "7509a03a9f2174c42768b84e7433fdbd080242d0153cd4ab2b7be9ab5d33fe47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_math_RegressionMetric.aggregate.return._f_not_nans_if_self_get": {"doc_hash": "69e095067f4288e90d2ffbfabd5c61ab52dff3fa5a6b2c69df03b1744349b8be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_RegressionMetric._check_shape_RegressionMetric._check_shape.if_len_y_pred_shape_2_.raise_ValueError_either_": {"doc_hash": "4f16dd5bb14c4c39df2b57612ca8267e99beb4a9664b5fb5a6963a9e3933ffb4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_RegressionMetric._compute_metric_RegressionMetric._compute_tensor.return.self__compute_metric_y_pr": {"doc_hash": "504be40481343cb014cc854260a1e2ed3392c920e3f760cde1fd6ec17a743867"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_PSNRMetric_": {"doc_hash": "b8c596da0d616132c0f3e9563678130841d036a162ac3f972900b54da2395521"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/rocauc.py_ROCAUCMetric.aggregate_ROCAUCMetric.aggregate.return.compute_roc_auc_y_pred_y_": {"doc_hash": "e21f095c22d5f3e802730c12fdbee8fb6f112ff31758748548049ba7ee599d38"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/rocauc.py__calculate__calculate.return.auc_nneg_n_nneg_": {"doc_hash": "d3ff6242bbb07eae9d6330ea3ffb0b7342edd525eeda9a3eaed0a5a3869da14f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/surface_distance.py_warnings_SurfaceDistanceMetric.__init__.self.get_not_nans.get_not_nans": {"doc_hash": "f07aac664209f5f622622ca426a7b35f65b5a026c565fdd53140d98f8e91195e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/surface_distance.py_SurfaceDistanceMetric._compute_tensor_SurfaceDistanceMetric.aggregate.return._f_not_nans_if_self_get": {"doc_hash": "10bf98e415926878a2e07b771d45040fdaf70caa3ccae4cdb9a83671d9020a98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/aspp.py_from_typing_import_Option_": {"doc_hash": "8c964d6bf6955b634fde8fe20fc21cd28e5f9873c42c15955ad6a53d7c1b742e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/crf.py_from_typing_import_Option_CRF.__init__.self.compatibility_matrix.compatibility_matrix": {"doc_hash": "4532621045b8711768462d5c6acc8140a8ccb5dae21f3873b32af9917890b764"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/crf.py_CRF.forward_": {"doc_hash": "e5aed92772205d36f787f384879b40c3042e12886b79eb1312eebb450bae4f90"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_from_typing_import_Option_UnetResBlock.forward.return.out": {"doc_hash": "b7e61c092af3d25f79c0b343e43b36f3876122cd908f493793e1a0c3fcbdb6d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/segresnet_block.py_from_typing_import_Tuple__get_upsample_layer.return.UpSample_": {"doc_hash": "325b58081d94cbc6e0e3d7c407ec31b66257de024a22a1082d5cf71e10b4aff0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/gmm.py_torch_": {"doc_hash": "5e8d4d4cbcacf5d2797a60ebe850ba0ef05143b676487c06c4b082bd518249bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/utils.py_from_typing_import_Option_get_norm_layer.return.norm_type_kw_args_": {"doc_hash": "45b9288933dea40ea990249dfc75753e86b11afafc74b3e0bb86c75deecfd767"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/utils.py_get_act_layer_get_act_layer.return.act_type_act_args_": {"doc_hash": "4ec3d5e0d862dd5acdc8fde169c431434c4eb967d7f9f6f8c3e4b2cb52a20abb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/utils.py_get_dropout_layer_get_dropout_layer.return.drop_type_drop_args_": {"doc_hash": "b3244584df5afb39c9fbd70f5c4e44506c44a294ceae57de629d939f5cf73fd4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/utils.py_get_pool_layer_": {"doc_hash": "c5e0eeff698728c6b9e87dd0039c2a5c5703b02d9b683c2695128cec0402c469"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_re___all__._": {"doc_hash": "9a66addc902c64227146efb9921bd32197dd18d79415385d2947dfe49a88206f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__DenseLayer__DenseLayer.forward.return.torch_cat_x_new_feature": {"doc_hash": "d4d41930778203ae7c0a3fcd145809efb80042f413414e72141717b3531badae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNet_EfficientNet.__init__": {"doc_hash": "159428a3904df4c95db0305767f615096a51b693d9726adc3f24c4a6dd29516a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNet.__init__.__EfficientNet.__init__.self__initialize_weights_": {"doc_hash": "a0cf11bb86c24f2ca962aea4c2d831b8776ca779a92c1c5dff74b50003253459"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__make_same_padder__make_same_padder.return.nn_Identity_": {"doc_hash": "d8b91a2f959c7efbc3aa4867c14a91134d800a9dfbd143449f8f9c12f8512f91"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_BlockArgs_BlockArgs.from_string.return.BlockArgs_": {"doc_hash": "5f989fcdf4266f17a6c98a899a1e08ab7a4eaa5d675d4031d94c6f0b69d572e1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_BlockArgs.to_string_": {"doc_hash": "0efe39e2d82eeca7135295fa247e3e7e59b83aacbf90584df3888257e5e807d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_get_conv1_get_conv1.return._": {"doc_hash": "b9706516b1019eee509f10c59a8c8a9f975c49d0237fa4909a9be46268d6d24e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNetBlock_ResNetBlock.forward.return.out": {"doc_hash": "172166d03f3c4f5af411e4a9170ba2b67123ec0e5106ead13b37beb6b336df22"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNetBottleneck_ResNetBottleneck.__init__.self.stride.stride": {"doc_hash": "8f398d28524d78dcd4c34556b8aa163f327ec1e8bf8ce15b8d2094719d8a0ef7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNetBottleneck.forward_ResNetBottleneck.forward.return.out": {"doc_hash": "00becb3f5a022af518e3ee86310e1c4530c3b91e92b405edefe4947d0f656a15"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNet_ResNet._": {"doc_hash": "ff239aac8eac22683740ea9ad99de6559c464d475a63f5b5b5a91efe13db9fd6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNet.__init___ResNet.__init__.for_m_in_self_modules_.if_isinstance_m_conv_typ.elif_isinstance_m_nn_Lin.nn_init_constant__torch_a": {"doc_hash": "2aeffc6e674bba9fb5567a39e6b3b22522781df3fba9a847495d750dd34dbd69"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNet._downsample_basic_block_ResNet._downsample_basic_block.return.out": {"doc_hash": "1293f0d4940c4a1c1779b34e57ef0f7a94827a39bdcea68f40359491c57f2257"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNet._make_layer_ResNet._make_layer.return.nn_Sequential_layers_": {"doc_hash": "a72ef1b80c2cfbd51b99e9c9bcec05379da0a0ee102befd35577cd9475631f16"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_ResNet.forward_ResNet.forward.return.x": {"doc_hash": "5d90f14f3a791021964cb42158003bc77c0152c6c86097850608b43100fa76cc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py__resnet__resnet.return.model": {"doc_hash": "436d17a82bf342ea894ae506a6120b16ecc46e67d66951998c115251ca010efd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet10_resnet10.return._resnet_resnet10_ResNe": {"doc_hash": "d1a0573ffa062674117fd1c7524bb36f0e91a01a7183b746a06c92106d1bad63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet18_resnet18.return._resnet_resnet18_ResNe": {"doc_hash": "308e35c938516c27c576d441a890f8eeb19aa2f373fec44c6993990fd936abd2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet34_resnet34.return._resnet_resnet34_ResNe": {"doc_hash": "4407091e4ed30f69165e4363e21bd6edf809905161a98ac6a17a29a9bf444291"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet50_resnet50.return._resnet_resnet50_ResNe": {"doc_hash": "51160f5a29696aa9d6a18463c3b5c8643633df2648db43beb71cf34cbc0bdf08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet101_resnet101.return._resnet_resnet101_ResN": {"doc_hash": "4bddb50207d212995d82d1465edba7e437bcdf6042d35f4f3ba7194266582f86"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet152_resnet152.return._resnet_resnet152_ResN": {"doc_hash": "e411e0d179add1f787884f38fae399f11f9210d93db6f13e8f69781db08487fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_resnet200_": {"doc_hash": "d1a7689c488b87645d88a7ab845222c77d10002c4adb12a98ae3aa711ab851b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNet.__init___SegResNet.__init__.if_dropout_prob_is_not_No.self.dropout.Dropout_Dropout_DROPOUT_": {"doc_hash": "2da7aea89899e77f2ec86d8ba5aac3c98eb893a54f3b559efffb1d1f30112ba2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/torchvision_fc.py_from_typing_import_Any_D_TorchVisionFCModel.__init__.super___init___": {"doc_hash": "30e9b43475209dcd28300bf18105a4dc5fa5db35bbf083f9d0b7ddfaad4c0a84"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/torchvision_fc.py_TorchVisionFullyConvModel_": {"doc_hash": "af137f7e8d84833663815b485d937df5e4f14da400fcaafbe27cd7fa95241ab8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_re___all__._": {"doc_hash": "a1160b9e973e20effc2bc66bc8e6cd696e54333b7c2097ad2782127cb89f8630"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_one_hot_one_hot.return.labels": {"doc_hash": "e0862076df1df5c4eca7b712534e6753241e746047112d1ff250705e4ea7965a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_train_mode_train_mode.try_.finally_.for_n_in_eval_list_.n_eval_": {"doc_hash": "d3beee49d8528e17e4a8836668d531765f17b71d1a2473741b68e17f068547d4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_copy_model_state_copy_model_state.for_s_val_in_src_dict_it.if_dst_key_in_dst_dict_an.updated_keys_append_dst_k": {"doc_hash": "857770fe8e7c660bb278b82ce2faa63666f2a2ad3b90b64513fa53aba839d263"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_Compose_Compose._": {"doc_hash": "0006de2f8a303ee08e37bb790ef22cdb41c1be452b7003706ce354e37d3c1054"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_Compose.__init___Compose.randomize.for__transform_in_self_tr.try_.except_TypeError_as_type_.warnings_warn_": {"doc_hash": "434ea76e0ffc60b9d4adc592424787540249d8bfa8303fe332cfd18b4bcc4a2d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_from_itertools_import_cha___all__._": {"doc_hash": "b3e1bfa8c7ca22487dbf4112fad94a7759849f15df26ed6bae2b9f0b8ce4ad5d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_SpatialPad._determine_data_pad_width_SpatialPad._determine_data_pad_width.return._0_max_sp_i_data_shap": {"doc_hash": "5210c77cfffa937a18772680ade3481986323ad235c486316af4a7cbf718f630"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CenterScaleCrop_CenterScaleCrop.__call__.return.sp_crop_img_img_": {"doc_hash": "9b79154fc42dbb64d330f8464af5d64773716c4dcd0bee56f8447f539878f348"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandScaleCrop_RandScaleCrop.__init__.self.max_roi_scale.max_roi_scale": {"doc_hash": "f2be0492423656a131c397184d12a645351f4766913fe077da0ddee46dd732a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandScaleCrop.__call___RandScaleCrop.__call__.return.super___call___img_img_": {"doc_hash": "d5b9c6f807981a7d720c3ffd07ba5367d0f8ec67d8929cfd2c8f7dac163805f8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CropForeground.compute_bounding_box_CropForeground.compute_bounding_box.return.box_start__box_end_": {"doc_hash": "aa3cfaea40598d3112f3df74f27f4cd924ba39dab7b00812be3a65bd2cb1774a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterScaleCropd_CenterScaleCropd.__init__.self.roi_scale.roi_scale": {"doc_hash": "aa62490482b5f783c8a6596bc426a083925474f5fb041629c81a12af2ac06466"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterScaleCropd.__call___CenterScaleCropd.__call__.return.d": {"doc_hash": "319b541a93444177e768c121666d55d169d2828688ef1122440ceb820eab15d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterScaleCropd.inverse_CenterScaleCropd.inverse.return.d": {"doc_hash": "03135032a23bacc50a506fd616f1980e038cae34230c85876935d832bb21d0fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandScaleCropd_RandScaleCropd.__init__.self.max_roi_scale.max_roi_scale": {"doc_hash": "16b8f5889e30246e4b9a608c6032563a5e7459cb6afa70b1fa7fc1dbc4c04a77"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandScaleCropd.__call____nullcontext.yield_x": {"doc_hash": "38c31c7e6561946479d16e73318e43c935986ee141cc8b21148df12cf8ce02e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropSamplesd.__init___RandSpatialCropSamplesd.randomize.pass": {"doc_hash": "48aa1383117c602fcea13dd652b83e5f610e827acfa082a8480192bf8306bfd7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropSamplesd.inverse_RandSpatialCropSamplesd.inverse.with_context_manager_self.return.self_cropper_inverse_d_": {"doc_hash": "f844f1e6f0f1c61ccd28c2d96a2fa6e53155165823acecffb28681168de77ccd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandWeightedCropd.inverse_RandWeightedCropd.inverse.return.d": {"doc_hash": "88145fd02b0c51212d70fec512a6ab4de58f2a3aedd6082f7c71d995898884d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.inverse_RandCropByPosNegLabeld.inverse.return.d": {"doc_hash": "4260c44ca70b1f522869a349b2c4f91c1c41a66a78d81ac7282702168afdb314"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandRicianNoise_RandRicianNoise.__init__.self._noise2": {"doc_hash": "18d1707e8fab64c307a39f20d604af29702d6855fce175810b6a50925eadf5f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandRicianNoise._add_noise_RandRicianNoise._add_noise.return.np_sqrt_img_self__nois": {"doc_hash": "ecc41002160e7c0c66e5d60aa34c1be6e5177c225aa5bb86704ac8abcee7b09c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GibbsNoise._apply_mask_GibbsNoise._apply_mask.return.k_masked": {"doc_hash": "fca9cf5aa0c64c266e891db8b555adfb59b8a23956cd112838ed7045abf7f33f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandKSpaceSpikeNoise_RandKSpaceSpikeNoise.__init__.super___init___prob_": {"doc_hash": "4aaa9f3ff322d08cf46e10bff7f962c7c9960e42ba9e817be33d04d798d305ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandRicianNoised_RandRicianNoised.__call__.return.d": {"doc_hash": "f637d8aa18fcaf31731f7832dae1ed2ceeaf6b4e13b20e29373628f331dc8853"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GibbsNoised_GibbsNoised.__call__.return.d": {"doc_hash": "e882d8c5851ae6213d426bb0fdd87a420d886dfd6f8d811e880080379060b328"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse_batch_transform.py_warnings___all__._BatchInverseTransform_": {"doc_hash": "c67b2630667b7ee2e2d6d072a8fe99a1748d6c0d7d6f84f5b9b9baabfafa89ed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse_batch_transform.py__BatchInverseDataset__BatchInverseDataset.__len__.return.len_self_data_": {"doc_hash": "b2a63738bd53ebcf3f869d3389a61954e27d1b8cf83112e105cfbf67a704e456"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse_batch_transform.py_BatchInverseTransform_BatchInverseTransform.__init__.self.pad_collation_used.loader_collate_fn___doc__": {"doc_hash": "d8d3f1ce187e17141200bb30c7043f8aa873aadefd9a5cdcc2b420c00c0e8cb3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_LoadImaged_LoadImaged._": {"doc_hash": "f4e5d96aee0e58f51cb2d90ad33c10f7e8abc1b5568a875eefd9df16864bc965"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_LoadImaged.__init___LoadImaged.register.self__loader_register_rea": {"doc_hash": "096c1a3867ad6e480a5921442b07ee9f8d1a225e732f62ec584e50c77e9ec99b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Invertd_Invertd._": {"doc_hash": "4651782a96ed1b5375c8b1ff0ca6d339778cb896504e3d2f4ed8c69b4a49f115"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Invertd.__init___Invertd.__init__.self._totensor.ToTensor_": {"doc_hash": "5cffdc84015738250518a11176008558dbf6bee4265a45f8416778398334c2b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Invertd.__call___Invertd.__call__.return.d": {"doc_hash": "4c409e6449be99c48f740b7bd3c895e5cc204d1a668100d99dd932926bca3116"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rotate_Rotate.__init__.self._rotation_matrix.None": {"doc_hash": "1284ddd84a34abc1718e85eb62d9f18efecf666403973ce1a16a9bdff46493a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rotate.__call___Rotate.get_rotation_matrix.return.self__rotation_matrix": {"doc_hash": "ea21571214ece5b4671c115f33c6239b374b5bc15d33d26ed1447c5b8b2786c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Affine.__call___Affine.__call__.return.ret_if_self_image_only_el": {"doc_hash": "40424002f12e1fa52e84f33040fc667f04262a3aa4c9ae022e04a909d9e9c117"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffine.get_identity_grid_RandAffine.randomize.self_rand_affine_grid_ran": {"doc_hash": "6c188af76c00784f28575eb543be862cedd42ddb6dc8489bc924d13c6909972d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd.__init___Spacingd.__init__.self.meta_key_postfix.ensure_tuple_rep_meta_key": {"doc_hash": "7c92e978fcc978415a9094dd77ef1ac7231a0a1162f141380167cdf471b074f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Orientationd_Orientationd.__init__.self.meta_key_postfix.ensure_tuple_rep_meta_key": {"doc_hash": "99181a3e120864f9034b638b1af3dc60d76b8ce89aa9e7c2f7f4efc81ff1c8f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_apply_transform_apply_transform.try_.except_Exception_as_e_.raise_RuntimeError_f_appl": {"doc_hash": "44d449f6021528d2829258167475fa96e3e88ecf49ccd5dc8d6a7f78b9674feb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_ThreadUnsafe_Randomizable.R.np_random_RandomState_": {"doc_hash": "94df816717498ec45f1f8bcf50e9b79b766cd51cf870284e7f6c2689b3692b19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_Randomizable.set_random_state_Randomizable.set_random_state.return.self": {"doc_hash": "c5c2a8467e39f878f786a23b8f8703d906a6770d05ecc0dae1c85102f743ee92"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_EnsureChannelFirst.__call___EnsureChannelFirst.__call__.return.AsChannelFirst_channel_di": {"doc_hash": "dfed1e7b45d7a53979db0038b01ef680aa01fea9f71c307be0c217d7daf02f85"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_DataStats_DataStats.__init__.if_logger_handler_is_not_._logger_addHandler_logger": {"doc_hash": "d41d0a600cd6c3766c018ed98d9bbd327fbca8b47bfc430c753cfe5647cb3e88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToCupyd_ToCupyd.__call__.return.d": {"doc_hash": "4e9c796ec5994dd5def791209f58a695788ec8170f9c9bf55620d10d225af6f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_Transposed_Transposed.__call__.return.d": {"doc_hash": "79b93582209688fefe783c32f74a4c5a0bc9bba8903d81358d1db489fa8162eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_Transposed.inverse_Transposed.inverse.return.d": {"doc_hash": "cc9a4eae7117e1af8273ae581abbda25e76840733d78ba46f56831ea8e5ac2dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_convert_inverse_interp_mode_convert_inverse_interp_mode.return.trans_info": {"doc_hash": "2b27a2cb3071d0b2d2a2d444a4f598ccc316588a3123ba0a4667b42c6ff0f8e2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_copy_to_device_copy_to_device.return.obj": {"doc_hash": "01f926442915ab98bc028f82c6940f27f7a1e35d2e6fc2e8e2189399e300faff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/class_activation_maps.py_warnings_default_normalizer.return._compute_x_": {"doc_hash": "81d335079dc8434e92dfff17d53c001cd30d0557f2d8d70922f6278d3c0e6c3e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_get_extensions_get_extensions.return.ext_modules": {"doc_hash": "4db1ec555640cf7324f9b07eccd17accf3684ea5763f53218e3b3bbd6a904699"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_get_cmds_": {"doc_hash": "a33861eb4f0fdc108a48aefeb2fef8f621937a5c9fa08dd6abe8a24fe3c6c545"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/min_tests.py_glob_run_testsuit.exclude_cases._these_cases_use_exte": {"doc_hash": "98078c110f374221209484b2839063ebcf0f35acf37b0b915d247d159e7ecd19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/min_tests.py_run_testsuit.assert_sorted_exclude_cas_run_testsuit.return.test_suite": {"doc_hash": "dfda98cc933b901998f5c0b3f64177d11150317f084f01ea9ce6cbe7638ad301"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_coordinate_channels.py_TestAddCoordinateChannels_": {"doc_hash": "1760dac21d25f45164fba6cd466f39e71030122b9e0980e828a500be653d90c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_coordinate_channelsd.py_TestAddCoordinateChannels_": {"doc_hash": "871d473f9397caf124906202b06c8c58f2a5f5a578678219ccca19de3ea0148b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_ill_affine_transform.with_self_assertRaises_Ru_TestAffineTransform.test_ill_affine_transform.None_6.AffineTransform_1_2_i": {"doc_hash": "4b482a44cb39bcaf08121a355430e3d6286587dffc236b3dd58e891f41e91894"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset.py_os_for_c_in_0_1_2_.if_sys_platform_not_in_.for_l_in_1_2_.TEST_DS_append_True_c_": {"doc_hash": "683099304f7e9d2fcdaf9f4ec0e29a9c190e41eafff0c4b08e3b78a9f8b03f72"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset.py_TestCacheThread_": {"doc_hash": "d4a1a9e879e8210e4bb080a41f3b47113a5cb9a8ace1029a6d761e334645d1ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset_persistent_workers.py_unittest_": {"doc_hash": "be715bd9dca3b6d52f9776628397641d643001b8f13dabb90eb46efb4da70e0f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_scale_crop.py_unittest_TEST_CASE_3._": {"doc_hash": "e1b0700ec795e3602cf6e5e6bbf4194e899b2059c19da0246a23c8df603d0603"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_scale_crop.py_TestCenterScaleCrop_": {"doc_hash": "0fdf39aef313ae89e36e513f4f6c76596e915f7c24792b56eab33228fec6d33c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_scale_cropd.py_TestCenterScaleCropd_": {"doc_hash": "e39edd19519e92f355eca61c56442fa78ff7cadfe6276267a312f9d1f7ab005f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_non_dict_compose_with_unpack_TestCompose.test_list_non_dict_compose_with_unpack.self_assertEqual_c_": {"doc_hash": "8e9f9ddcc44fc25d5158824a7c57bccbff8838b2021d0b67c5bec1a78cb96748"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_list_dict_compose_no_map_TestCompose.test_list_dict_compose_no_map.for_item_in_value_.self_assertDictEqual_item": {"doc_hash": "b0025ee6d32f5c6f47f24cfdeca4d0ee96899a0e4f7505757eb89e6a7456f6a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_data_nan__2_test_metric_with_com": {"doc_hash": "3329c7971506120a1254320eeb6fd69a5b25beaa33d675ff8ef1219f1fc2f04b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TEST_CASES_COMPUTE_SAMPLE_result.None": {"doc_hash": "ff285a6366e6d3308a9b798d75d72eae205229ccf81bfb0db4ef7e9b5d629857"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_for_idx_in_range_len_metr_TEST_CASES_CLF._data_clf_copy_result_": {"doc_hash": "fdc438168cd4c7456ec2806b0c1016bbbeab20beb5951e2eab34b15c9c268b7e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TestConfusionMatrix_TestConfusionMatrix.test_value.None_1": {"doc_hash": "09fd0eaf0ad818ff58d0511ff51bceb1c47a27f9427c94a4a52ac6501330618e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TestConfusionMatrix.test_compute_sample_TestConfusionMatrix.test_compute_sample.np_testing_assert_allclos": {"doc_hash": "062cfa9bef43176fa89ae3f7ae87fe745583ca9a584acc62f4c1b96cc4362370"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TestConfusionMatrix.test_compute_sample_multiple_metrics_TestConfusionMatrix.test_compute_sample_multiple_metrics.for_idx_in_range_len_resu.np_testing_assert_allclos": {"doc_hash": "0d33f6b2db37f78dbf22ea4165545766581db2c00da981c9da0b7eaccc8519fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TestConfusionMatrix.test_compute_sample_with_nan_TestConfusionMatrix.test_compute_sample_with_nan.None_2": {"doc_hash": "a10d6547105a80976f945ab7590a987217cd288ce6a892d764c11de65b9d6a88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_confusion_matrix.py_TestConfusionMatrix.test_clf_with_nan_": {"doc_hash": "9c55a3fcd2781ad5e8ac48f2bf991093f63f399a8a450ebe53394a4612f5b191"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TEST_CASE_10_TestComputeMeanDice._DiceMetric_class_tests": {"doc_hash": "e8ce99d0a2d63af829faf8ec7746fe26c319fb21e55fee48deb33786018cf5c6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_unittest_psnrmetric_np.return.np_mean_20_np_log10_max": {"doc_hash": "779347eef772ae5ded45f9da41f3fec29ae255cd52816506c05c75dc87158918"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_TestRegressionMetrics_TestRegressionMetrics.test_shape_reduction.for_batch_in_batch_dims_.for_spatial_in_spatial_di.for_base_in_base_dims_.for_mt_fn_in_metrics_.None_7": {"doc_hash": "2a7a6c47298a5d7cecfd1dc7de6d29ae4a595b7289501cc318da0085c15159d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_TestRegressionMetrics.test_compare_numpy_TestRegressionMetrics.test_compare_numpy.for_batch_in_batch_dims_.for_spatial_in_spatial_di.for_base_in_base_dims_.for_mt_fn_mt_fn_np_in_zi.np_testing_assert_allclos": {"doc_hash": "6e5033deb15c748c8b04d8f4012ea308981dc9f03c7019f8a2f8ce2e73ab7e07"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_TestRegressionMetrics.test_ill_shape_TestRegressionMetrics.test_ill_shape.None_1.for_mt_fn_in_metrics_.mt_fn_y_pred_in_tensor_": {"doc_hash": "13bc8fa3bc29ace6314ba0f0969fb5f4c123e6617ca4c02f245ddf948ccd1da6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_TestRegressionMetrics.test_same_input_TestRegressionMetrics.test_same_input.for_batch_in_batch_dims_.for_spatial_in_spatial_di.for_base_in_base_dims_.for_mt_fn_rs_in_zip_metr.np_testing_assert_allclos": {"doc_hash": "885694bdc6750cd413a365e1673a5d515ad382a1fac2ce93f198ab76901ee5c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_regression_metrics.py_TestRegressionMetrics.test_diff_input_": {"doc_hash": "d6ef8045c2c72d053f0d9e77269561a5fe37143b39c707a8b16486816738a954"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_roc_auc.py_TestComputeROCAUC_TestComputeROCAUC.test_value.np_testing_assert_allclos": {"doc_hash": "c58a292a3ce4cf67441e252fad909b93e000713550ba25aef0cdce4eefb8a8e6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_roc_auc.py_TestComputeROCAUC.test_class_value_": {"doc_hash": "ce28abea21ca583603771a5c0a9d262c6f061f004c1817805c1e9a191248d282"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_TestModuleState_TestModuleState.test_set_state.self_assertEqual_len_unch": {"doc_hash": "3c23aec5c0ec88d46d28d88ecf008b3e1d7368a106ab5875962237e9c8401901"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_TestModuleState.test_set_full_state_TestModuleState.test_set_full_state.self_assertEqual_len_unch": {"doc_hash": "2ab1c6ed3a00f5b2615bf714a2205dd26604193f646cc9805fee5c4c6db338ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_TestModuleState.test_set_exclude_vars_TestModuleState.test_set_exclude_vars.self_assertEqual_len_unch": {"doc_hash": "c568f7aafc6837d8ed23cd7ea22a9f2d7ee33b8644bd5585356c133cf0aaa7a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_TestModuleState.test_set_map_across_TestModuleState.test_set_map_across.self_assertEqual_len_unch": {"doc_hash": "be635b46ea60e3dbf2877b0cb694df6e257337d6a71343089208d310322e1f95"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_TestModuleState.test_set_prefix_": {"doc_hash": "5c5ea94ffa1cf92bedcb5faf8744aac0dcb28d432e1d2679e037c53685158aba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_dataset.py_os_TestCSVDataset.test_values.with_tempfile_TemporaryDi._test_group_columns": {"doc_hash": "4b68f5bcbcc3e96c87e3af1545d54ae7bebccd8b7a672b62e71e0cf27f1a28d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataloader.py_TestDataLoader_TestDataLoader.test_exception.with_self_assertRaisesReg.for___in_dataloader_.pass": {"doc_hash": "961c6d0158f216fccc7162bae653a668d4fb3b57f12673990c377987a0b9767e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataloader.py__RandomDataset_": {"doc_hash": "d6915a1bcea406dbac2884e098fbf115a098107f5506f692b8eddbe9722c69ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decollate.py_sys__ListCompose.__call__.return.img_metadata": {"doc_hash": "b6ca254e8fc7bf7a1001d5646b64cdfb0794f3cbe9e4f42f21b84eacc9b4705e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decollate.py_TestDeCollate.check_decollate_TestDeCollate.check_decollate.for_b_batch_data_in_enum.for_decollated_in_decoll.for_i_d_in_enumerate_dec.self_check_match_dataset_": {"doc_hash": "fe56bc296dcf73fc67921b7db48cabf864b74d3e260f7ec350d12e4ec2bc1afa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decollate.py_TestDeCollate.test_decollation_dict_TestDeCollate.test_decollation_list.self_check_decollate_data": {"doc_hash": "0b31cc7e1697acadb894aaf6b3f59f44bbf41764fb3481e01a8a9f811c2ca7b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_TestSpatialCropForegroundd_TestSpatialCropForegroundd.test_correct_shape.np_testing_assert_equal_r": {"doc_hash": "4d051552fd9dc9d3b79a348ba7b1718082a7f1f611c5489555b3c46c746e6d47"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_TestSpatialCropForegroundd.test_foreground_position_TestSpatialCropForegroundd.test_foreground_position.None_3": {"doc_hash": "b052491d02d4a4230ee646e9f77485e655468e480a0ce7790b4879c7fe621c6f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_TestDeprecated.test_arg_warn2_TestDeprecated.test_arg_except2.self_assertRaises_Depreca": {"doc_hash": "bba026d9d9667ba6d56d1a744d695e6b10d6ae364ad0c1938c1205b879cd72d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_download_and_extract.py_TestDownloadAndExtract.test_default_": {"doc_hash": "4c019a7ef3392dfbd766045afe90e7adda1b4ec69cf12b58478ca360e2d4b577"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_get_block_args_get_block_args.return._": {"doc_hash": "6028bfb277bd2dfd3dd8b06a4cc034dcf0fb9e780fe8f80086cb1ab01197436c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_first.py_TestEnsureChannelFirst.test_itk_dicom_series_reader_TestEnsureChannelFirst.test_load_png.with_tempfile_TemporaryDi.self_assertEqual_result_s": {"doc_hash": "7693f6f810af0492b181b8dd0aaddf3dc472ee4de87fe503911a9a589f43ca00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_first.py_TestEnsureChannelFirst.test_check_": {"doc_hash": "308ca13515a7a017a642e42d3e059583a69345626623e78253e6d8c9f1c261d4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_firstd.py_TestEnsureChannelFirstd.test_load_png_TestEnsureChannelFirstd.test_load_png.with_tempfile_TemporaryDi.self_assertEqual_result_": {"doc_hash": "54ccfd524f36abf27f7d7137f87ce74d975b73f6d93989fdbd42b51ec56ce7eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_firstd.py_TestEnsureChannelFirstd.test_exceptions_": {"doc_hash": "212b7d051c2b060d512de46ab5f56f5e88293118e02b607845489424ce563364"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_param_groups.py_unittest_TEST_CASE_6._": {"doc_hash": "8e28bce475999a75d90c1315f60c7d18c41cfcc9c8b71d3db9f899d95616e105"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_param_groups.py_TestGenerateParamGroups_TestGenerateParamGroups.test_lr_values.self_assertListEqual_n_e": {"doc_hash": "ad961fe26fdf81a0123c724625eabdfceb273a5c28915f39840dc6b1eb46d63c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_get_layers.py_unittest_TEST_CASE_DROPOUT._": {"doc_hash": "44718fee3941cd33aeccf3b70d283611ecf9981f1baa0b6803441c6a405df0fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_get_layers.py_TestGetLayers_": {"doc_hash": "476d5404033df56e4decd2e69eff55cc4a537ab9b78fa6bbb348446f8cd46cfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noised.py_unittest_KEYS._im_label_": {"doc_hash": "728022b6e3bcb3bad7fc0cdb30fb32f82a41865d70ef92417f32703abaf3b00c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noised.py_TestGibbsNoised.test_same_result_TestGibbsNoised.test_same_result.for_k_in_KEYS_.self_assertIsInstance_out": {"doc_hash": "d50d40d435068c5ea3147a3c996a24ecdcf9e419f8aa68552d3adbad6f65db11"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noised.py_TestGibbsNoised.test_dict_matches_": {"doc_hash": "ef20cce9c6c0c74d3df84ad8387457c053b38c58fe4658931ef8a87999b2eaac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gmm.py_os_TEST_CASES": {"doc_hash": "c8fdcb5f8e90f37612b24b454b5b41ad7fe83eb7dca1573d2341ad44985b97ae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gmm.py_GMMTestCase_": {"doc_hash": "e99187021e4415df1d448b74f311cb6e3a76fa81ff8cfb53536a80feb8f93c12"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_mean_dice.py_TestHandlerMeanDice_TestHandlerMeanDice.test_compute.self_assertTupleEqual_tup": {"doc_hash": "7751f788980c49239be2257834dc07e3101423d0fdb47c306ddb9a56cb6d0c9e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_post_processing.py_unittest_TEST_CASE_2._": {"doc_hash": "97cd9c06dcfd8c99284bf7baed3cb9d85ada6bb598c180050b6f15a47248a5c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_post_processing.py_TestHandlerPostProcessing_": {"doc_hash": "d0570e5bb017645a9bf6a2e32fd087391b0526fbe3cd0a785c9c6aa71a96a951"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics.py_unittest_psnrmetric_np.return.np_mean_20_np_log10_max": {"doc_hash": "b15b6a5a9974e8abe32c51bbef3fd4de4f6997df48c951a2140cbe3855a3b47c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics.py_TestHandlerRegressionMetrics_TestHandlerRegressionMetrics.test_compute.for_mt_fn_mt_fn_np_in_zi.for_batch_in_batch_dims_.for_spatial_in_spatial_di.for_base_in_base_dims_.np_testing_assert_allclos": {"doc_hash": "90b5fab6694dd5efa3e83b5793a8dca63adc96f4d5776707ef25c610b04a6091"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics.py_TestHandlerRegressionMetrics.test_compute_engine_TestHandlerRegressionMetrics.test_compute_engine.for_mt_fn_name_mt_fn_mt.for_batch_in_batch_dims_.for_spatial_in_spatial_di.for_base_in_base_dims_.np_testing_assert_allclos": {"doc_hash": "1dd5cf76f752c332d628e5d992dae89513a7e650b23aa22f010278e9ce80c10b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics.py_TestHandlerRegressionMetrics.test_ill_shape_": {"doc_hash": "3e84782aca2d81274fc27411a664a53cdd07a40445e89370445a39dcd125ac48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics_dist.py_unittest_SPATIAL_DIM.3": {"doc_hash": "3840477a13330df4ec79189f307353f06e2db784c73cb6ccab5c70b713b6b0da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics_dist.py_DistributedMeanSquaredError_DistributedMeanSquaredError._compute.np_testing_assert_allclos": {"doc_hash": "b991298cc3046a4c9bf7d2e2623c1646883ebad0efbe5d4bdaf6586f26b0e471"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics_dist.py_DistributedMeanAbsoluteError_DistributedMeanAbsoluteError._compute.np_testing_assert_allclos": {"doc_hash": "c23ec0f1a34daeec8c09afec9ca388d70a813959cb0972f4f0df13354f971499"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics_dist.py_DistributedRootMeanSquaredError_DistributedRootMeanSquaredError._compute.np_testing_assert_allclos": {"doc_hash": "0d577680ef1341288a41579dd60aac7612933557e5162cd521855712ba9d578d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_regression_metrics_dist.py_DistributedPeakSignalToNoiseRatio_": {"doc_hash": "c942eaef572418018de09881e64193199d222976bab283f9224ae1b8a025a70e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_smartcache.py_sys_": {"doc_hash": "e85851dd037c9970f0f757cc6c5fb74a90629e1647c4828f0a22284e76a05464"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_image_dataset.py_os__TestCompose.__call__.return.data_meta": {"doc_hash": "f93daa444575738d4417e20993e401af77e8f879a6247cef01a78a4f29baf690"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_image_dataset.py_TestImageDataset_TestImageDataset.test_use_case.with_tempfile_TemporaryDi.None_3": {"doc_hash": "df08c8db904e69c038fac6c971aae190d9220d93cb788a6c3f1ba35e92269029"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_image_dataset.py_TestImageDataset.test_dataset_": {"doc_hash": "d2a4f05ee368faf6f3bc5f654ceb200f2a5023e5aab6977a47090b822421c898"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_run_inference_test_run_inference_test.return.dice_metric_aggregate_i": {"doc_hash": "7612af4defd956b74484166d12e9cb9d436af89a044c067b188da85b378df3a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows.train_and_infer_IntegrationWorkflows.train_and_infer.results_append_infer_metr": {"doc_hash": "e163b7341a62eb73c8d8650467041e405fc0c3c34bae96f47ab18be409a6d6cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TestInverse.test_inverse_TestInverse.test_inverse.for_i_t_in_enumerate_rev.if_isinstance_t_Invertib.if_isinstance_fwd_bck_li.else_.self_check_inverse_name_": {"doc_hash": "25a9767cec533f96ebd649ad84afba66b6449daf81637561c5b3c50d1c204625"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_invertd.py_sys_KEYS._image_label_": {"doc_hash": "aea6e572657a1b087637ebe56b508c070a806056850434cbdaedf22cceca2224"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noise.py_TestKSpaceSpikeNoise.test_highlighted_kspace_pixel_": {"doc_hash": "40898639e7f898d6bc545a0f8faa893ef44e55c2c710025b293c967a8108a102"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noised.py_unittest_KEYS._image_label_": {"doc_hash": "995d8c7c527faaa679ac673ef1bc1882b98484998a80f04a9a65c3bef88a8cc3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noised.py_TestKSpaceSpikeNoised_TestKSpaceSpikeNoised.get_data.return._k_v_for_k_v_in_zip_KEY": {"doc_hash": "5d01c08a2a78e3b5a216ca19ad7810f39f415ae6b5c67a6b2ac0ae4d90783920"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_highlighted_kspace_pixel_TestKSpaceSpikeNoised.test_highlighted_kspace_pixel.for_k_in_KEYS_.np_testing_assert_allclos": {"doc_hash": "dd5ca440ff3934f0a708b4bdf3f577b79bdc10cab5e0c3218098901b1768af77"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_dict_matches_": {"doc_hash": "a42f62a17817abad3b93e46405edcc8b0290b7fb73078db28848ad4cfa93b9a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lmdbdataset.py_os__InplaceXform.__call__.return.data": {"doc_hash": "064cc30cb450319972ae90e7457fe5c414929b29cf3f5657c2b9a441c8f3922e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lmdbdataset.py_TestMPLMDBDataset_": {"doc_hash": "4f24f17d81763fb75298cf953a8e6421af0dfe09bbbe4934f266b7eba95b0655"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_loss.py_unittest_TEST_CASES._": {"doc_hash": "719e4b4b2ac403ac3338ade5fc180fd6845283b5c14405a4fb0d98a4c09bd98a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_loss.py_TestMaskedLoss.test_ill_opts_TestMaskedLoss.test_ill_opts.None_2.masked_input_torch_zeros_": {"doc_hash": "6bb196573c6e7931ba0cdf1cf6eee75e9370d63905aefefdcd15cfcf50eb00b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_loss.py_TestMaskedLoss.test_script_": {"doc_hash": "e1dd7cb6e36a14ca2a7ac5148551721ef3565cc30187b03e542e87eb91732294"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mmar_download.py_os_TEST_CASES._clara_pt_prostate_mri_": {"doc_hash": "e3fff1b8d561d6010885d7c1fe5fe61a1d7038b4c1f35e04677c58280beebdaa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mmar_download.py_TEST_EXTRACT_CASES_TEST_EXTRACT_CASES._": {"doc_hash": "834449f7d90b07d61846361460a5c02dca1fc3977c0d61e5b6c5bdc9d07ea786"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mmar_download.py_TestMMMARDownload_TestMMMARDownload.test_download.try_.except_ContentTooShortEr._skipping_this_test_due_": {"doc_hash": "039045010b7849f99c7e4b2d634ad7edc76e564ace5a6ea4b4b6b220d89217ae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mmar_download.py_TestMMMARDownload.test_load_ckpt_TestMMMARDownload.test_load_ckpt.np_testing_assert_allclos": {"doc_hash": "dd1a2d6fed7f0e7ae948c24efd680b780add825c956dd0916b272455d16922d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mmar_download.py_TestMMMARDownload.test_unique_": {"doc_hash": "d1ae5416e93710f28fb99517928736f66a026769b1b1a3435296e07d32c9d0b2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_net_adapter.py_unittest_TEST_CASE_4._": {"doc_hash": "4133a502558df5e3b4b09040916ffb33ae41b3103fc7b9d8115c472aa1496d22"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_net_adapter.py_TestNetAdapter_": {"doc_hash": "92becccf5db1b52ad5b5d03774571fee2bc01af83bb4a3207406587a30a370cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_network_consistency.py_json_if_extra_test_data_dir_is.for_data_path_in_glob_os_.TESTS_append_net_name_d": {"doc_hash": "e278e0a9d37c07c58019e4156c34cd2fae13632a48bfaf80c7b6ecb281c101e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_network_consistency.py_TestNetworkConsistency_": {"doc_hash": "d13fa10b5760cacf49966c29c841b86bb97a971b2e26f4562c0605d5fe0ca823"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_endianness.py_TestNiftiEndianness_TestNiftiEndianness.test_endianness.if_isinstance_ret_dict_.np_testing_assert_allclos": {"doc_hash": "c7676d2f0021c072b0de0dfc867c7f3b6d075992a5e16c615bb5a97bd05dfcb7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_consistency_TestNiftiLoadRead.test_consistency.None_3.os_remove_test_image_": {"doc_hash": "e40c37121d2e5708d815bb98ed0de9ef4bcad1a568c3f92d73626c549072a526"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_npzdictitemdataset.py_tempfile_TestNPZDictItemDataset.test_load_stream.None_3": {"doc_hash": "fa3714ff3288acf360fdc13f982cc18aaa551bc90a3ac9478a10e66c419a2770"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_canonical_TestOrientationdCase.test_orntd_canonical.None_3": {"doc_hash": "d37fc0c3cb7f93231874cbc0944c1b995ea0dad728c92ae8b97c7c82cd67e070"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_no_metadata_": {"doc_hash": "f38c50b021f43109bfb588207890ffe7ce0cf14b8da559fc96e989800dbd9213"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_persistentdataset.py_os__InplaceXform.__call__.return.data": {"doc_hash": "cae347aafb73b397bb6b3d62b3b585fd8f479104c1abbf2ff3f3fbc5c8c08167"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_persistentdataset_dist.py_os_TestDistDataset.test_mp_dataset.None_6": {"doc_hash": "35a34989a395bae815274c90bc31c987d62b0e6e3c19e47d856d17f22e6f4ffb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_persistentdataset_dist.py_TestDistCreateDataset_": {"doc_hash": "42f4af036f7e7722ad6f2985be5f12613d6bbf623480aab89c416cd0684eb17a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine.py_TestRandAffine.test_skipped_transform_consistency_": {"doc_hash": "f46a188557f800a28a454cac004d3f6673146aa571975e8a869d090b1692d1b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noise.py_TestRandGibbsNoise.test_same_result_TestRandGibbsNoise.test_same_result.self_assertIsInstance_out": {"doc_hash": "68b8ac43c9e26ca5682bbeda6ac97d5fc3e5e054b21dc7e1096fa2b3ff676696"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noise.py_TestRandGibbsNoise.test_identity_": {"doc_hash": "a288fa789bf6996e8194a2ae96e041b28de04f713ff1a4927b336bc98117952a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_unittest_KEYS._im_label_": {"doc_hash": "3f39c2b00be4b0f00c22eda5224ed04fd490c1d23f0f5cd1c351a7265827a784"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_TestRandGibbsNoised.test_same_result_TestRandGibbsNoised.test_same_result.for_k_in_KEYS_.self_assertIsInstance_out": {"doc_hash": "dfb984dcae7d29200d98b00bb8356eeef73e733c0a2f9117c136d5ab6e34c8dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noise.py_TestRandKSpaceSpikeNoise_TestRandKSpaceSpikeNoise.test_0_prob.np_testing_assert_allclos": {"doc_hash": "9e297dbc15f0a091b7bb18a1e242ab1a97ed899dbe663f758db500a55510598d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noise.py_TestRandKSpaceSpikeNoise.test_1_prob_TestRandKSpaceSpikeNoise.test_1_prob.np_testing_assert_allclos": {"doc_hash": "95e79c7a8e9fd3d50d25f1af25e041c04cd123f0bc87dbcf0331cfe34cd34673"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noise.py_TestRandKSpaceSpikeNoise.test_intensity_": {"doc_hash": "b61df4fe4ab26c5c8a0b3c8344c85fce01fd81ba80531e7defbd911b6ed19468"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noised.py_unittest_KEYS._image_label_": {"doc_hash": "c492168fc801aba6372fdde70b6842888fb8ca3cf16be950dd847a77839a9d71"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noised.py_TestKSpaceSpikeNoised_TestKSpaceSpikeNoised.get_data.return._k_v_for_k_v_in_zip_KEY": {"doc_hash": "8d9b5fb6442564eb6f77b533ada163ec124c05df51441f0a6ce78ef34a18cac6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rician_noised.py_unittest_seed.0": {"doc_hash": "2b7e6c310610d82931fab16387420a07f7fc1bb656caf62dc490232ee49efa44"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_crop.py_unittest_TEST_CASE_6._": {"doc_hash": "b3dead65b10e0e038ee67def712b066aa46b16f50f648c7e34dc9a7ff6b3c205"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_crop.py_TestRandScaleCrop_": {"doc_hash": "21c9353ed2aa3c884ac6e9c9c0f79a709f5716ce1600e4ae9d90d986aee32563"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_cropd.py_unittest_TEST_CASE_6._": {"doc_hash": "6dd107942130901a03a6d24b6c30a25959d2a0c1d30ad5fa48cd5975b6602b31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_cropd.py_TestRandScaleCropd_": {"doc_hash": "4bd32ee4d6995f4d1fac925612ad99d057c128d8a7641fd939c497b8ba543c0c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop.py_unittest_TEST_CASE_5._": {"doc_hash": "84ddf19effa4514f4d45e5ab928586102fbf2ddd068350706ff42f655f224b48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_TestRandSpatialCropSamplesd.test_deep_copy_": {"doc_hash": "88eedb26032102df62e0f0c9d97e11ff583c51bd06cbdb5b290a3866fa162e31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_cropd.py_unittest_TEST_CASE_5._": {"doc_hash": "278b11253982e28df1f4795dc377a0e2560a1466f5c9c5d99933d684940feac1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop3D.test_rand_weighted_crop_patch_index_": {"doc_hash": "928d08a859c27ffc2ef8a9d264238cf44f5281810e55bb1e15cf3a5f0ca47576"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resnet.py_unittest_TEST_SCRIPT_CASES._": {"doc_hash": "db2233ed6af500ad016268faa993159b2c267d39f034a627431b166488a7c6d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resnet.py_TestResNet_": {"doc_hash": "167460840ad21bfb7821deee721000b15934b256e8ce03585e89635ce8b0b653"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_save_classificationd.py_csv_": {"doc_hash": "283ef62809c5b10b843addd1d4df35f7a0cd44c6ca81d8a1238ad5b07e9b6ddf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_set_visible_devices.py_os_": {"doc_hash": "d6b0359ea09d5420d01b84713d7dbbeb21f19d9451076069894bc20548a2e0c6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcachedataset.py_copy_TEST_CASE_5._0_5_2_Compose_LoadIma": {"doc_hash": "cc4923b176fdf0f1b4f6936f7360f17592c8b68f503b1475579789a2fb445bee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcachedataset.py_TestSmartCacheDataset.test_update_cache_TestSmartCacheDataset.test_update_cache.for_string_new_string_re.assert_string_new_stri": {"doc_hash": "0d6d1b78b85a5221ef957947c7a94038d8e5fa53e4770d305d5e3c08172c0bb5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupyd.py_TestToCupyd.test_list_tuple_": {"doc_hash": "d0e4b4cac50c189fb951f80b16e3fe25dde0d40bf35ed3a971a13bec359c24e3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_numpyd.py_TestToNumpyd.test_numpy_input_": {"doc_hash": "d12981f4b984ee7a9677045c844bcc920c63d6e02573b57580db84a2dcbedcc2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fc_model.py_unittest_TEST_CASE_PRETRAINED_1._": {"doc_hash": "42a13e8b87832be42a693842772ca096f10e46b8de435185fc3ecd57089c7c02"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fc_model.py_TEST_CASE_PRETRAINED_2_TEST_CASE_PRETRAINED_5._": {"doc_hash": "a82344e27d60d95d24f0b973d059e34f222b6665889e1760e68b2f767174147b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fc_model.py_TestTorchVisionFCModel_TestTorchVisionFCModel.test_without_pretrained.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "bec9390d9a6d373b8ec1e2907b9beaa4a67cbab176ae495c71f9e4c8a4f5df08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fc_model.py_TestTorchVisionFCModel.test_with_pretrained_": {"doc_hash": "0af9531ce7c5f83402446e6f855a8ea0ebb26ef7f6d2c89f7898e1d9c214ab58"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fully_conv_model.py_unittest_TEST_CASE_PRETRAINED_2._": {"doc_hash": "ad1b4104fb48c222090fed646cbaeaa3c3dde74631a938ff141ee95cac33c461"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_transpose.py_unittest_": {"doc_hash": "8d9ca01436683ac33eca7b5222f5b48ea5ecbd7a19ed4707106bcfb826588dc4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_transposed.py_TestTranspose_": {"doc_hash": "7919bdfab81a8b45494089c3d0f68c61283dd0cda44572ef0a3941f82be2b586"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_upsample_block.py_unittest_TEST_CASES._": {"doc_hash": "96ec4cbff7240218a2eca4e037aef0da232d0d113e506b0ce4c9721f4fdedcc8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_upsample_block.py_TEST_CASES_EQ_": {"doc_hash": "6fe70de6cec75a590f9e39628107f81497d8097c2bc0a6da85e98b37b92dacd7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/model_desc.py_os_": {"doc_hash": "cc63b0ff56a4a93b17639aaa22d79f94c2f41a9d1d7a868936be79649c8e3609"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py__General_configuratio_": {"doc_hash": "9c13b1c6b4fcee2b4f9a8149c2844b6f107108cdcfd206b5063e91b6aebaac1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepedit/__init__.py__": {"doc_hash": "e6613d65ddce8866cd2546266bed013146c17a3fdac9388f9d8e975e801af1e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepedit/transforms.py_json_DiscardAddGuidanced.__call__.return.d": {"doc_hash": "13650e1253412297007a6d24c7852a45b4fe5f297af2319851ed193f24cab294"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepedit/transforms.py_ResizeGuidanceCustomd_ResizeGuidanceCustomd.__call__.return.d": {"doc_hash": "247cf2a00deb9fe0e5355c99175b03e8314b2a86f2e40f38c93e22af4cb0954b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepedit/transforms.py_ClickRatioAddRandomGuidanced_ClickRatioAddRandomGuidanced.randomize.self._will_interact.self_R_choice_True_Fals": {"doc_hash": "c223c4e322b4d0640c1750f3543776db88d2d2deceae2931b6ada4be94753f26"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepedit/transforms.py_ClickRatioAddRandomGuidanced.find_guidance_ClickRatioAddRandomGuidanced.find_guidance.return.None": {"doc_hash": "4f38d49192c14aa745c41fbef0e25d4d2d9b219c1dbbdd837a9b3e67275a49be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepedit/transforms.py_ClickRatioAddRandomGuidanced.add_guidance_ClickRatioAddRandomGuidanced.add_guidance.return.None_None": {"doc_hash": "84ca1971cac749501847b9c9537539904e912a6f43f3e622e93cfd7a48e726ef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepedit/transforms.py_ClickRatioAddRandomGuidanced._apply_": {"doc_hash": "4c02af7ef0df8e8d17c19aff8de0bdbb4296017d74ce1a74eab72953294f314c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddGuidanceSignald_AddGuidanceSignald.__init__.self.number_intensity_ch.number_intensity_ch": {"doc_hash": "3c91b01e3b11bd85840e011cd6410d405bb7e2bbfd339370a7c8ca54e5cfbd40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddGuidanceSignald._get_signal_AddGuidanceSignald.__call__.return.d": {"doc_hash": "5259fb55ac2dd625d116e99727c48633423a16b360fd449ba1b1cc6839d80b34"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_AddRandomGuidanced_AddRandomGuidanced.randomize.self._will_interact.self_R_choice_True_Fals": {"doc_hash": "163d2cd074689195b30416e569382226084513462f9b0174acb6b6540542bef5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py_json_get_model_spec.raise_ValueError_f_Unknow": {"doc_hash": "19045f79e277541f3efa2ff5f3dad40fbab01d25070b64a45e055d7a873c5890"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/mmars/mmars.py__get_all_ngc_models__get_ngc_doc_url.return.f_https_ngc_nvidia_com_": {"doc_hash": "d3ab57ade532f7e5f7d9e4e44024cb2c30bec6eed71d344a588746b17f7ea496"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/data/__init__.py_MaskedInferenceWSIDataset_": {"doc_hash": "e3a3e06fc2f5cf3fb385e8964c77eb4fa9a03330d83dc7288c4996b166de9c06"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/data/datasets.py_os_PatchWSIDataset._fetch_wsi_objects.for_image_path_in_self_im.self_wsi_object_dict_imag": {"doc_hash": "720811b3b9e6643e520470e70281793c99ca0d726aebb9345fd7af4b4f2c3637"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/data/datasets.py_PatchWSIDataset.__getitem___PatchWSIDataset.__getitem__.return.patches": {"doc_hash": "590b44544a92e5c53af855f10277c9b102fc4eca6ecdf3e6e0e725278a3cd844"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/data/datasets.py_SmartCachePatchWSIDataset_SmartCachePatchWSIDataset.__init__.super___init___": {"doc_hash": "06ea87622f205587cf3778daf9865c250eb64f78259852658a9cfc8f5b73af73"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/data/datasets.py_MaskedInferenceWSIDataset_MaskedInferenceWSIDataset._prepare_data.return.prepared_data": {"doc_hash": "dcccf18e93960fc11e92738a99155001e72541162b9d92eac46fce292bf249a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/data/datasets.py_MaskedInferenceWSIDataset._prepare_a_sample_MaskedInferenceWSIDataset._prepare_a_sample.return._": {"doc_hash": "8ccbd0673aa4ab3ea737854c0097065f6b8e1eb08b892cfea52e79b68e47084b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/data/datasets.py_MaskedInferenceWSIDataset._calculate_mask_level_MaskedInferenceWSIDataset._calculate_mask_level.return.int_level_ratios_0_": {"doc_hash": "b9bea84742d01094ab8cce601af55ad87d56ccf0565a560ac43c9aaea48ee3ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/data/datasets.py_MaskedInferenceWSIDataset._load_a_patch_": {"doc_hash": "1cc64ae0c873739d8fecc8e35f62489692f179582c36bbfc15e192019d9ff4ae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/handlers/__init__.py_ProbMapProducer_": {"doc_hash": "022e95d41c0a007ea6dd2efa90d598cde5f14ffabdba5fdd45ca39b504515b9e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/handlers/prob_map_producer.py_logging_ProbMapProducer.__init__.self.num_images.0": {"doc_hash": "a338021e88022085ba4bf6f4357942d88fbc498eac07faac856891ebf215aa57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/handlers/prob_map_producer.py_ProbMapProducer.attach_ProbMapProducer.attach.None_3.engine_add_event_handler_": {"doc_hash": "c9765c7e87b9a460e7cec00e347e50e22070c21ff36019564962bf1a601caa97"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/handlers/prob_map_producer.py_ProbMapProducer.__call___ProbMapProducer.__call__.for_i_name_in_enumerate_.if_self_counter_name_.self_save_prob_map_name_": {"doc_hash": "3f21bacb74e20982235975bbfa48c73432125ec32807b54a039c28002c201eb9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/handlers/prob_map_producer.py_ProbMapProducer.save_prob_map_": {"doc_hash": "317261240ccc179b4ac6ef1d903edc666232af118f060fc78df49a8a35333a13"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics/__init__.py_LesionFROC_": {"doc_hash": "89d2211876b24639fd20c423063d7e121da36d841631f27b8b67c8b21ea1a63b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics/lesion_froc.py_from_typing_import_TYPE_C_if_not_has_tqdm_.tqdm.return.x": {"doc_hash": "34fea75ed09b22daad72b7e95e75938c7a66706cf6a48abe79c57cfceae6d922"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics/lesion_froc.py_LesionFROC_LesionFROC.__init__.self.nms.PathologyProbNMS_sigma_nm": {"doc_hash": "991e0c8ff0c1b6e044d2431349e01bbcb95067b1ad603f90a61a18ac2c07e880"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics/lesion_froc.py_LesionFROC.prepare_inference_result_LesionFROC.prepare_inference_result.return.np_array_probs_np_array": {"doc_hash": "d1c989252777fa950616c792b61d889a61bfd907abde0f95ff6f177529275bc1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics/lesion_froc.py_LesionFROC.prepare_ground_truth_LesionFROC.prepare_ground_truth.return.tumor_mask_itc_labels": {"doc_hash": "85d92e3a0a9422aa9a43cebacbd65541b58c1103cb3d62a23a70f272abe0a419"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics/lesion_froc.py_LesionFROC.evaluate_": {"doc_hash": "e956fd2098e1cabee39a8fc70803504a27eeafa9102e9b3ae3ca25f0cf03839b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/__init__.py_SplitOnGrid_": {"doc_hash": "813f24e20fcbf706a591387d7106364d0766618d6387508c542fc486aeac6629"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/spatial/__init__.py_SplitOnGrid_": {"doc_hash": "e770de95a57693d1f7760e0951ee8e5a83138254ee9a290dbc264e0b8c717e6f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/spatial/array.py_from_typing_import_Option_SplitOnGrid.__init__.if_isinstance_patch_size_.else_.self.patch_size.patch_size": {"doc_hash": "452a4b37555afd2a71e3093c2d2b16cbd77a47027683a2e92a54a0c53bab9d1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/stain/__init__.py_ExtractHEStains_": {"doc_hash": "7f9183ef47123b11ef740c8bda9c3afa6e5eafb8598119d013ea1cc3a6c34f92"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/stain/array.py_from_typing_import_Union_ExtractHEStains.__init__.self.max_cref.np_array_max_cref_": {"doc_hash": "d923410a3675339f45c2c74d514cc535aeb7faa1fb7fa70a6812e76d0a2c3cd8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/stain/array.py_ExtractHEStains._deconvolution_extract_stain_ExtractHEStains._deconvolution_extract_stain.return.he": {"doc_hash": "ac51bee5f858e82e3aa86df8ecf0fb458bf9fea33d5ae2edabbf4c8a00fb906a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/stain/array.py_ExtractHEStains.__call___ExtractHEStains.__call__.return.target_he": {"doc_hash": "42f897a9465fe68e97f795b0d1159eabdb5ab921938ce02190a91438f4df3340"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/stain/array.py_NormalizeHEStains_NormalizeHEStains.__init__.self.stain_extractor.ExtractHEStains_tli_self_": {"doc_hash": "ce963305dc0ca11b6350b45f8235c77f9c3669525602d90854117cbbe954fe9b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/stain/array.py_NormalizeHEStains.__call___": {"doc_hash": "24ca5d5aa8eb86d2c5f8624fe8afaba250fcd63712a3c0d5554644b8ab09974b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/stain/dictionary.py_from_typing_import_Dict__ExtractHEStainsd.__call__.return.d": {"doc_hash": "275d95a200dfb5f8ec4f84b94da2d1eae6e93bd58f646986fb1cfc403c49c38a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/stain/dictionary.py_NormalizeHEStainsd_": {"doc_hash": "3b491ca76ca41c51421f1340bbaad21b2e52af37280cb2b4a11966b1a7aa8e24"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_PersistentDataset.__init___PersistentDataset.set_data.if_self_cache_dir_is_not_.self_cache_dir_mkdir_pare": {"doc_hash": "3cfedc5d4fee04c2415d74293f99b530704f4e57120fb8d783d74dc7969f5d38"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_LMDBDataset_LMDBDataset.set_data.self._read_env.self__fill_cache_start_re": {"doc_hash": "f7bd5d33181411b8288df1d81dce9e32155ea5bb7856afc4b9f5fad3fb716a45"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_CacheDataset.__init___CacheDataset.set_data.self._cache.self__fill_cache_": {"doc_hash": "492bc769cd849808c5a6258d117ca4112fad3b335be44e6f6481a4a62cdfe942"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset_summary.py_from_itertools_import_cha_DatasetSummary.collect_meta_data.for_data_in_self_data_loa.self_all_meta_data_append": {"doc_hash": "2d4961e1b18b51fbb9c734ff2c99f77e604ecba09dfd6f431a727166349f2bfb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset_summary.py_DatasetSummary.get_target_spacing_DatasetSummary.get_target_spacing.return.tuple_output_": {"doc_hash": "07daf0242d0bef9bb72931ad47f3d150f99500a8badf19cd46b6861c9a4aff25"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset_summary.py_DatasetSummary.calculate_statistics_DatasetSummary.calculate_statistics.self.data_std._torch_sqrt_voxel_square_": {"doc_hash": "c1b3abd6342d526f258b7db21ebd5139f8af4909ea014b241361b90012722e1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset_summary.py_DatasetSummary.calculate_percentiles_": {"doc_hash": "e60249ae67349c1758df0eeb7db6a5b53d71760cb9f5e4507e9470509e024eb3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ImageReader_ImageReader._": {"doc_hash": "905eeb9f14aa3ae611e7415b45c8e288b5377564febcb51d4fc6eb86e4d97554"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ImageReader.verify_suffix_ImageReader.verify_suffix.raise_NotImplementedError": {"doc_hash": "6addd27f54a548660c0b8019fa086299629bcf47a6434389ff52642e6629ca7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ImageReader.read_ImageReader.read.raise_NotImplementedError": {"doc_hash": "9391733b0095a69d6d6d15973e8f9c0664d24bb208a5d6b0239d5eba2177f22f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ImageReader.get_data_ImageReader.get_data.raise_NotImplementedError": {"doc_hash": "67d8305e9ec7633b103fd2cb154559a7b536617fdcf56e366bfb40c26c8519f9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader._get_affine_ITKReader._get_affine.return.affine": {"doc_hash": "5ee73e88c67f57dad5ec96eaef864e13db7a4b50baaff043e21d6d61e52dbe98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_write_nifti.if_isinstance_data_torch_write_nifti.output_spatial_shape_.list_output_spatial_shape": {"doc_hash": "aabbcf7c1fca433be6ef77870a4c65ae8f2f4abe8b4428912268af8de55ccee8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_list_data_collate_list_data_collate.try_.except_TypeError_as_re_.raise_TypeError_re_str_f": {"doc_hash": "56e9f7e167f4c96dca2d5c065fa4e6ab7e3be8ec22d7679dd204b95f19e0e84f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_resample_datalist_resample_datalist.return.ret": {"doc_hash": "a04f62b74da88e208b8d7c1aa325df8621cb90789fae9d05fc74c1b4168953f4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_SupervisedTrainer.__init___SupervisedTrainer.__init__.self.optim_set_to_none.optim_set_to_none": {"doc_hash": "122007111b55763793b2c8824c6065669880a2dba34b0a8bda5277145cef12c8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer.__init___GanTrainer.__init__.self.optim_set_to_none.optim_set_to_none": {"doc_hash": "8cc788cfdfe405844868818c9ed86a293bc241d2772c3b5a9d49097f12de3ae4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_from_abc_import_ABC_abst___all__._": {"doc_hash": "77ed6aef4656686c954c88e2c3bc2fa8e4bc0dc30e15955949b4c70ac503c69f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_PrepareBatch_PrepareBatchDefault.__call__.return.default_prepare_batch_bat": {"doc_hash": "61e79bb892802e3927644db810fdee3a62bddd7264cfb7a8e44029f1d309cea1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_PrepareBatchExtraInput_PrepareBatchExtraInput.__init__.self.extra_keys.extra_keys": {"doc_hash": "dbb5aa1695602827b80fd2e688e893795477d03e5c84878d9139bb7a32fd4791"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_PrepareBatchExtraInput.__call___default_make_latent.return.torch_randn_num_latents_": {"doc_hash": "bd9accd6a01e6215e1de606b9b2e655f5b7a6e004e478df4b71fe870784e7e10"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/utils.py_engine_apply_transform_": {"doc_hash": "ed9e4a9e0e46c31bc2fef71f953ebc954ecced14472ad9b4d856742ee9dfadc7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow.__init___Workflow.__init__.if_handlers_is_not_None_.self__register_handlers_h": {"doc_hash": "5df33363eabf724a81a11c5483e5d4b6aa51a8633707fdfc85681d5362c48f8c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow._register_decollate_Workflow._register_decollate._decollate_data.None_1.engine.state.output.transform_engine_state_ou": {"doc_hash": "e82b4e22dc87ffb4124a34c85bc12d07ee7f32ad8d9e9d4bc7f8e557967ecbd8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow._register_postprocessing_Workflow._register_postprocessing._run_postprocessing.if_not_isinstance_engine_.else_.for_i_b_o_in_enumerat.engine_state_batch_i_en": {"doc_hash": "a48cd092c5ed6206402f038adb80a4ecde4c01c1ee9b4c4b3f47d3225a5d155b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow._register_metrics_Workflow._register_metrics.for_name_metric_in_metri.metric_attach_self_name_": {"doc_hash": "bbb3b86080235e937ffdc00568e379f051403b2a3140514bc8cd693b414a69af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/classification_saver.py_ClassificationSaver.attach_ClassificationSaver._started.self._filenames._": {"doc_hash": "b6acb8164e55e0ad271f815f5f073af7e1a8b0a378253b4df74425276b826bff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/classification_saver.py_ClassificationSaver.__call___ClassificationSaver.__call__.for_m_o_in_zip_meta_data.self__outputs_append_o_": {"doc_hash": "b027792246c3eade957f6badc72fc7256e655c9283344d58e4b772e82ca28643"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/decollate_batch.py_from_typing_import_TYPE_C_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "6ed5852bdfaea2b705fefa15691d9da5e7b71b196bd321533cd34effb4ca72e6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/decollate_batch.py_DecollateBatch_": {"doc_hash": "4ad8bf99f305d08a78eb32defa0c663beacae75c3541fbca2ac5a9db0f15c174"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/metrics_saver.py_MetricsSaver.__init___MetricsSaver._get_filenames.if_self_metric_details_is.for_m_in_meta_data_.self__filenames_append_f_": {"doc_hash": "f956c76d43590f67a6ad548b379f8ff14a011162e3b649849e332f8a98833fa5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/mlflow_handler.py_from_typing_import_TYPE_C_DEFAULT_TAG._Loss_": {"doc_hash": "f893dfacd3369b8ca8a1837b53d6f3d5cee29fb187b68a92d9b8ecff41eee80b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/mlflow_handler.py_MLFlowHandler_MLFlowHandler._": {"doc_hash": "2b0b1f9af39924bc6b331947336d4690cf888c9b9f801dc81328775b32330cc2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/mlflow_handler.py_MLFlowHandler.__init___MLFlowHandler.__init__.self.tag_name.tag_name": {"doc_hash": "8392d6d76f3a328ea8470ec9cc25015dc60dd1320df4628466fd29ba70017229"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/mlflow_handler.py_MLFlowHandler.attach_MLFlowHandler.attach.None_2.engine_add_event_handler_": {"doc_hash": "0a4031e64cb63ad481df97d44a915df55fece12d06bc4d6245f1e0a9005747c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/mlflow_handler.py_MLFlowHandler.start_MLFlowHandler.iteration_completed.if_self_iteration_logger_.else_.self__default_iteration_l": {"doc_hash": "de194a220e67820d3bc7a29d3fe66a521566adfe168c173f56ab8506e7175b65"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/mlflow_handler.py_MLFlowHandler._default_epoch_log_MLFlowHandler._default_epoch_log.if_self_state_attributes_.mlflow_log_metrics_attrs_": {"doc_hash": "9019dd15622997c417c03906e2916336dc1cdd1b608ab9f9447487cea90f9572"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/mlflow_handler.py_MLFlowHandler._default_iteration_log_": {"doc_hash": "bc00103b9e30d91fc6a2263c6f205e5a47e556c6868bb234d180904b9eda0dc3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/nvtx_handlers.py_from_typing_import_TYPE_C___all__._RangeHandler_RangePu": {"doc_hash": "6de0872c9a4d355ec54b7776bd81c5dd0892322820ec97c83d608e213bf792da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/nvtx_handlers.py_RangeHandler_RangeHandler.__init__.self.depth.None": {"doc_hash": "fc05d18e574d85c663f6755424a1b15291bfe1d359911f5b970b3da9251cc294"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/nvtx_handlers.py_RangeHandler.resolve_events_RangeHandler.resolve_events.raise_ValueError_f_Exactl": {"doc_hash": "a82774f44aa985eb1e7714d4dd055ab7286e9f1630db6f7b4a2dc554486c4d91"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/nvtx_handlers.py_RangeHandler.create_paired_events_RangeHandler.range_pop._nvtx_rangePop_": {"doc_hash": "c019baada75e62dcea4c34d83715decafb3fa0fcddf5ec8bb624650d18318e9e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/nvtx_handlers.py_RangePushHandler_RangePushHandler.range_push.self.depth._nvtx_rangePushA_self_msg": {"doc_hash": "3c833d77492f94315e37f04cb6d7320d06bc0edfbb4b5eb885b59321c1539e23"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/nvtx_handlers.py_RangePopHandler_RangePopHandler.range_pop._nvtx_rangePop_": {"doc_hash": "144217a7a50534bc3c387b52d9fa964ed9a051d0fdf98261d77b07f33a5f3e7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/nvtx_handlers.py_MarkHandler_": {"doc_hash": "629d76327646f37c2992be27e47af620beae5e02e38c6f48bc038f92d98dcbb6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/parameter_scheduler.py_logging_if_TYPE_CHECKING_.else_.Events___optional_impo": {"doc_hash": "694ee2872d54ad93cc1b7ac5aa2b61a750d09816427b8da4be9c6c3f2b2b9766"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/parameter_scheduler.py_ParamSchedulerHandler_ParamSchedulerHandler.attach.engine_add_event_handler_": {"doc_hash": "3823c1a8f31f2e12aea82df3e948681ab4bc0e32a655886c736d107dad82d2e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/postprocessing.py_from_typing_import_TYPE_C_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"doc_hash": "7a9bb0cc42dc8ced70bf9308a10205ae19b4aa065d6d812585366133dfb83fa7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/postprocessing.py_PostProcessing_PostProcessing.attach.if_self_event_MODEL_C.else_.engine_add_event_handler_": {"doc_hash": "abb1af4e7912db442aa66548b82ca245c0cd70680a793f16ba5361c600d79602"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/postprocessing.py_PostProcessing.__call___": {"doc_hash": "d2224986670a68568fa1282fbcb0ae8681d6c5d45d02503578f1e307bce69483"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/regression_metrics.py_from_typing_import_Callab_MeanSquaredError.__init__.super___init___metric_f": {"doc_hash": "579cc264ec0d87ed3d5f6eb66d5d2c34d2defa6da79bb8d6e0d6c396ea1efa1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/regression_metrics.py_MeanAbsoluteError_MeanAbsoluteError.__init__.super___init___metric_f": {"doc_hash": "a617ca057a488e5a76a2204206917d5176acf20afe65eda194914942a3b65e56"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/regression_metrics.py_RootMeanSquaredError_RootMeanSquaredError.__init__.super___init___metric_f": {"doc_hash": "dc1afd281d026fa47055c3fc4d6517427bef0760276ceded8c800547a29f3b67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler._default_epoch_print_StatsHandler._default_epoch_print.if_self_state_attributes_.self_logger_info_out_str_": {"doc_hash": "c99386fa3837ac84030d5cd70b643b83d110697c92825cc3c34038f9ac737d71"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler_TensorBoardStatsHandler._": {"doc_hash": "1198d983e5ca84600aeae67125c6f27eaf196960d31bbbb1d1d39405c16b893c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.__init___TensorBoardStatsHandler.__init__.self.tag_name.tag_name": {"doc_hash": "f98a6e782b62322444380e0860b217531ea2ba9e6356700768909f41f3796898"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/utils.py_from_engine_from_engine.keys.ensure_tuple_keys_": {"doc_hash": "2bc3c64b0ac65b18663cef8794dcfea49e308ac706f9db0491bdd9113af54086"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/utils.py_from_engine._wrapper_": {"doc_hash": "b3d922761aeb16e0c3f599650ed6fa3637fcaa6e87d96f8191a54e5c84e03df8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss._compute_generalized_true_positive_GeneralizedWassersteinDiceLoss._compute_generalized_true_positive.return.torch_sum_alpha_extended_": {"doc_hash": "a6c197eb8c236adbfbfa33b3994a7f4c41165fcf28f38b6424c6eb65c784ffbf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss._compute_denominator_GeneralizedWassersteinDiceLoss._compute_denominator.return.torch_sum_alpha_extended_": {"doc_hash": "180af90b13aa1a347be38129ac057f3c5c8328f5baf07340d7e492a0e14075d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceCELoss.ce_DiceCELoss.ce.return.self_cross_entropy_input_": {"doc_hash": "156c579ea412ddfbaab0316d3a24805dac68040dcd45920b166bb3f841e910f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_from_typing_import_Option_kernel_dict._": {"doc_hash": "6d203a3403e7f73718b7f096cd0bfce82ef2bd987c9e9531986fdb29495bf492"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_GlobalMutualInformationLoss.parzen_windowing_GlobalMutualInformationLoss.parzen_windowing.return.pred_weight_pred_probabi": {"doc_hash": "64270dc1443c248ffff630c87ef15db96dadffe39d40dd022de0547e06ee21d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_GlobalMutualInformationLoss.parzen_windowing_b_spline_GlobalMutualInformationLoss.parzen_windowing_b_spline.return.weight_probability": {"doc_hash": "30a5ca7bd2942c70177391ee4526cc24790e0148c53e4fc7cdfea5e15787b592"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/image_dissimilarity.py_GlobalMutualInformationLoss.parzen_windowing_gaussian_GlobalMutualInformationLoss.parzen_windowing_gaussian.return.weight_probability": {"doc_hash": "ef60f5404db0525125176968812df1552b6db06fd5bb25a6e5a5b9f615b26859"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/multi_scale.py_from_typing_import_List__kernel_fn_dict._gaussian_make_gaussia": {"doc_hash": "753f5acdeac211f5df8cc8e52ab6961c636c04282d8c4e9583702133c5720019"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/confusion_matrix.py_ConfusionMatrixMetric._compute_tensor_ConfusionMatrixMetric._compute_tensor.return.get_confusion_matrix_y_pr": {"doc_hash": "ebd668ee29e2882f6abf0fb35a2cde7f5bc220c19bc53c7c96b28c3a40814123"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_CumulativeIterationMetric_CumulativeIterationMetric._": {"doc_hash": "2e8edd3f3df2eb5aede3020e1e1b84e6118ec2278e8739f660a7c191996e95d0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_CumulativeIterationMetric.__call___": {"doc_hash": "dea4443c5a530152a6f41b8dcaba8cba2a073dddb4f815c5e30db6a9a172e568"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_MSEMetric_MSEMetric._compute_metric.return.compute_mean_error_metric": {"doc_hash": "90ce0ad3b185fc9a548041ebaa9c8113b9dba753484e5a71cec080871d7d0a19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_MAEMetric_MAEMetric._compute_metric.return.compute_mean_error_metric": {"doc_hash": "41cba7036288c0966699da6aa7010dcee02d0cf16634cffb04f5742b1cc98f60"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/regression.py_RMSEMetric_RMSEMetric._compute_metric.return.torch_sqrt_mse_out_": {"doc_hash": "38d4dd96afc6b37c0a58345cb22e8e00fe50123f58df7e38375f79a12aa7c7c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_from_typing_import_Tuple____all__._ignore_background_do": {"doc_hash": "c5bab3cf154f4a347cfb7affc81e73d3326aba8c3aa3f39d9080ced8d3ac4cf3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/__init__.py_convert_to_torchscript_": {"doc_hash": "52d306769e645c55d12a4483fce1a3fb1cd0afcfeb07edb80938ffb7fd35a07b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/activation.py_torch_None_1.else_.monai_swish.return.SwishImplementation_apply": {"doc_hash": "3ce8345dac855241e67c81054625f92b976808f7db187ed024efeda8f64e9fab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/activation.py_Swish_Swish.forward.return.input_torch_sigmoid_sel": {"doc_hash": "91128b9deb7cab24c1e6234bdd3dd36e3321f752400862395dd47138a19f051b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/activation.py_MemoryEfficientSwish_MemoryEfficientSwish.forward.return.monai_swish_input_self_i": {"doc_hash": "fb58e948d2a90cde151f8db9eaa543eaac4d31ffa6b8d285a9b1fd9cadf6b97e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetOutBlock_UnetOutBlock.forward.return.self_conv_inp_": {"doc_hash": "75a3e0af91e45f3f1b1cc3fbef9c7a8ea339d2b98ccc64246fb385b8814892f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_conv_layer_get_conv_layer.return.Convolution_": {"doc_hash": "ea78d03f07154ce9050745970e2c4c96b15e93960dacbc89c1e3ea5472a937c3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_Refine_Refine.forward.return.residual_x": {"doc_hash": "87146b62047fb3b4437faaad1815735d46c16b9400b12f6748159a7b0b013a03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_FCN_FCN.__init__.if_self_upsample_mode_.self.up_conv.UpSample_spatial_dims_2_": {"doc_hash": "cbaa87350c47d1916e6a5adf8792a17ade099297dc7632223d2e6853740b0cd2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_FCN.forward_FCN.forward.return.self_refine10_F_interpola": {"doc_hash": "9437b26212bc351aa8bdb29f674c466478572b2a626cb0acbcc34aa63975f28f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_from_typing_import_Option_get_conv_block.return.mod": {"doc_hash": "13ce1dcce1a31933e112fa0811f76edd08bd56ca21d605f30731bb5b6d83238d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/localnet_block.py_get_conv_layer_get_deconv_block.return.mod": {"doc_hash": "9c50e733aae43c83d690babd80ded4d7788392fb72982440af92574abdfe80de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/mlp.py_nn_": {"doc_hash": "bb7733ff84f6c13736793f72c4f91a2e01ef09c288bfdb1e7e3fb7ea4481e608"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/patchembedding.py_math_PatchEmbeddingBlock._": {"doc_hash": "8805fe810ef01f971cc9a0cf1c58f4841fb15d6dec27dffe05c0ea16974ca28c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/patchembedding.py_PatchEmbeddingBlock.__init___PatchEmbeddingBlock.__init__.self_apply_self__init_wei": {"doc_hash": "50bb905d72b05ceed17bb0bf70def69508f781686f028476b92da8ff98812117"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/patchembedding.py_PatchEmbeddingBlock._init_weights_PatchEmbeddingBlock._init_weights.if_isinstance_m_nn_Linea.elif_isinstance_m_nn_Lay.nn_init_constant__m_weigh": {"doc_hash": "ea587a994885a16d039ece65c8a35e06b3a1b0801407271f13f1f5160df6a813"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/patchembedding.py_PatchEmbeddingBlock.trunc_normal__": {"doc_hash": "3ee279d5d2ef06f94b33f9877016e99d9df054e824e37760675c67615e406f5e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/regunet_block.py_RegistrationDownSampleBlock.forward_get_deconv_block.return.mod": {"doc_hash": "fcaf0b2ed8f930c3849d1a033cc7751bf7f05fb794819d1084718bdf09b44a19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/selfattention.py_torch_SABlock.__init__.self.scale.self_head_dim_0_5": {"doc_hash": "0c7825c9d0e761795e4edfdb10ed391a43952bd3a68c1e43115ba31f9c594777"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/selfattention.py_SABlock.forward_": {"doc_hash": "7f4c4810f24c0695874d9a3c3175d4bacc3d14cf97b9d3e8b1a13100346bbb37"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEBottleneck_SEBottleneck.__init__.super___init___": {"doc_hash": "6f1c764c521993fc40fba5c1f6c134da47b993d42c25e276bbcfbd0d537bad78"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEResNetBottleneck_SEResNetBottleneck.__init__.super___init___": {"doc_hash": "476d0c831dbd50c89dc284db7a654080b362247e161cd961cc19720fb7d823ab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/transformerblock.py_nn_": {"doc_hash": "7d4d44ca45a19afa2fe12ac28377d544bdac97f786a7bbc1f6e8861359024c30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/unetr_block.py_from_typing_import_Sequen_UnetrUpBlock.forward.return.out": {"doc_hash": "a3c0e33ff7aa9214cc55abe83d90fd9facd8e21b5690377602d86d561e8c4e05"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/unetr_block.py_UnetrPrUpBlock_UnetrPrUpBlock.forward.return.x": {"doc_hash": "a27c0fe47d8df2823e0e61e1bcbc28ceadf96a8691a4c7b39cd3440b21491467"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/unetr_block.py_UnetrBasicBlock_": {"doc_hash": "65dfbbc85189352e637b745920ce67de71f642b5eb475feb6699f68a13779fb3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/warp.py_Warp.forward_Warp.forward.return.grid_pull_image_grid_bo": {"doc_hash": "2b340bec81b675a95ed78eb8e717f0ddf6f5d4f6c8dae27f346708af3ca3bc2c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_LayerFactory.factory_function_LayerFactory.get_constructor.return.func_args_": {"doc_hash": "a93abfe7f483aca8177d8514284a17fdf32844ecea888ba0dd731b4f659907a1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_pull_grid_pull.return.out": {"doc_hash": "2a031104e9e8be2810bdb2506be899086f4bec53a5958dec5db8f694abdf13e3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_PSP_PSP.__init__.if_self_upsample_mode_.for_i_in_range_psp_block_.self_up_modules_append_co": {"doc_hash": "e9bf8a42a8e5968e441f921627084fc276c560ab4cb2fce25a798680781190d5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_from_typing_import_Any_O_AutoEncoder._": {"doc_hash": "124e96c9f4130b3d75df22c1441f7cebe24a7025c88c48894c955116c7462d60"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_AutoEncoder.__init___AutoEncoder.__init__.self_decode___self__ge": {"doc_hash": "1af3f167aff2dfdefaa30ab0bb54a08b81206015be36cdbb8ab6d0823cf38780"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_AutoEncoder._get_encode_module_AutoEncoder._get_encode_module.return.encode_layer_channels": {"doc_hash": "d55266ea271929d253d34128740d255835b023a2001f79fc3cc3b9ccd11bd831"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/autoencoder.py_AutoEncoder._get_encode_layer_AutoEncoder._get_encode_layer.return.mod": {"doc_hash": "0e5830e52737ed4e2d5ae4dd2c154865a83c70c10f6972ad93531fa8c7d55cc0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_from_typing_import_Option_TwoConv.__init__.self_add_module_conv_1_": {"doc_hash": "53d10158c625aa9af1327cad207913f13db2411ac348130571c07bb2c6901fa2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_UpCat_UpCat.__init__.self.convs.TwoConv_spatial_dims_cat": {"doc_hash": "a0a229fa4849660793456dade33a712bef75f6b287f27b148e1ca7f25b1b3168"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/basic_unet.py_BasicUNet_BasicUNet.__init__.self.final_conv.Conv_conv_spatial_dims": {"doc_hash": "7f5aec86ef62a5713c5409c3619b34a4ab840d7a905f306d85d9094d266b1325"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_url_map_url_map._": {"doc_hash": "ccaafb0be800fb8f28ed4c5f5a57219c9856dd724dcff934c43528bdea597982"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_MBConvBlock_MBConvBlock.__init__.self._swish.Act_memswish_inplace_T": {"doc_hash": "7d254a9819cca755af072cf49506d15ad2078ae7da9ac827198efa6fad0bf223"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_MBConvBlock.forward_MBConvBlock.set_swish.self._swish.Act_memswish_inplace_T": {"doc_hash": "bbfa12b4311115f89cc070c0e98db1fb1142310bbaa89f39ea19d27511839e90"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNet.set_swish_EfficientNet.set_swish.for_sub_stack_in_self__bl.for_block_in_sub_stack_.block_set_swish_memory_ef": {"doc_hash": "f5911941322ebf081b08db36125d1e9bb59bd352ae9b05540d2f6dd0a57ad05d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNetBN_EfficientNetBN.__init__.if_pretrained_and_spatia._load_state_dict_self_mo": {"doc_hash": "95a536deaa306d2ed424d4d3703f0799b0130daca8efa2763bc2be2209b24a84"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNetBNFeatures_EfficientNetBNFeatures.__init__.if_pretrained_and_spatia._load_state_dict_self_mo": {"doc_hash": "ef0530d5671c22b70c53dae2a3c82a8fa4a3a11134b5f1ecd2850ad8169f022d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py_EfficientNetBNFeatures.forward_EfficientNetBNFeatures.forward.return.features": {"doc_hash": "ecfea3afcfe1051b911405dbc505a262031b3f726ca48f36bede85308ba59429"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/efficientnet.py__load_state_dict__load_state_dict.if_model_url_is_None_.else_.model_load_state_dict_mod": {"doc_hash": "ef7dd27ca92e89d8bffb8bf89893885c01c727b02a167ff5b3065e037f37bb37"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/netadapter.py_from_typing_import_Any_D_NetAdapter._": {"doc_hash": "33007ef4c894ab985489cb12dd42713d5618533191d0f1c991d14f544c1ca0dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/netadapter.py_NetAdapter.__init___": {"doc_hash": "b4e7192521026e6a33ffd59aa1f564ccb33a4fb6aa244039ab10342c8c1fe7aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regressor.py_from_typing_import_Option_Regressor._": {"doc_hash": "8d2db49dd62208c3b0d4abd261188d7a867557afc770f881863b924e4007a175"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regressor.py_Regressor.__init___Regressor.__init__.self.final.self__get_final_layer_ec": {"doc_hash": "c38c3d1f82b6b6635df413973404e64587ff3b531e9c9398942da72efffe3ae0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_from_typing_import_List____all__._SegResNet_SegResNetV": {"doc_hash": "e7ceb68a354482df7468776f238f67845c85ab29a070c7b62810255d0fda9caa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNet_SegResNet._": {"doc_hash": "0e53eba0e5ad79e9063a5c4d3642acc89033aa07c6c1b127e936c7c315ed441f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/senet.py_re_SE_NET_MODELS._": {"doc_hash": "e3f46779fe91cccf1267d15fdb6474147c8310eaf740fed4a08c645038957487"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/transchex.py_math___all__._BertPreTrainedModel_": {"doc_hash": "f4ad83600aee5bde27220d8946ea09fdb659758555e9aa42581fb26f4f93f0ab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/transchex.py_BertPreTrainedModel_BertPreTrainedModel.init_bert_weights.if_isinstance_module_nn_.module_bias_data_zero__": {"doc_hash": "bebba73bfec1f7d1c8bd526569f957e86a331384c0a4f04aacbaed076f06596c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/transchex.py_BertPreTrainedModel.from_pretrained_BertPreTrainedModel.from_pretrained.return.model": {"doc_hash": "badfa524fdbeb932eec09cc56ce0cace45007760a076949e0f9c0141eb29263a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/transchex.py_BertAttention_BertAttention.transpose_for_scores.return.x_permute_0_2_1_3_": {"doc_hash": "89710f48c400dc8764d65ee5b2fdad6cd8424d5705b67ae206339af80faf923c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/transchex.py_BertAttention.forward_BertAttention.forward.return.context_layer": {"doc_hash": "d0307430dfa920ba58d9cc6519db347900e6d97a0a2b992336dfc5ddef8f49a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/transchex.py_BertOutput_BertOutput.forward.return.hidden_states": {"doc_hash": "df4fd9d835dc59550ba3130d719565361330e14944e1d8c0a06b8697fa84c25f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/transchex.py_BertMixedLayer_Pooler.forward.return.pooled_output": {"doc_hash": "5fabe5da38e0e346f2474edc427e115099f97f1b6bad000efe00fe2a80aeb919"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/transchex.py_MultiModal_MultiModal.__init__.self_apply_self_init_bert": {"doc_hash": "b2d6a7ec78206393fc23a58c7bb43151740abaf38f43dd30e7f1ccb2e0a0b8cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/transchex.py_MultiModal.forward_MultiModal.forward.return.hidden_state_mixed": {"doc_hash": "dbe4c0c8e1c91e88359a5f46b93bb17d931de5bfee239f590c350c6dc33e12b2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/transchex.py_Transchex_Transchex.__init__.self.cls_head.torch_nn_Linear_hidden_si": {"doc_hash": "0880f93cfb4f7c95d3d2a3f354f372062f63494e8fdc0b683260c239432e7d06"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/transchex.py_Transchex.forward_": {"doc_hash": "556bad005c282f4ec827c836c9e44b2c37c22ae10988b61299cde4332c8be29d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_warnings_UNet._": {"doc_hash": "a48407732d7c6bfa7d4cc982928fda2be52b352f8a0dae703fce2d3de17626dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet.__init___UNet.__init__.self.model._create_block_in_channels": {"doc_hash": "18fb5f092bfc45851a0a5bec022d5ce3abbcf2f86169caa8b7f346b2120bd6aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unetr.py_from_typing_import_Sequen_UNETR.__init__.self.out.UnetOutBlock_spatial_dims": {"doc_hash": "77b00b6b21f3aa9f168d16df5b16f9f24207bdce48f8fe550064dc5e81315ced"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unetr.py_UNETR.proj_feat_": {"doc_hash": "ae31fdba278b103d9042dd8ab80be0ea2373e3e54d999f2ebf188456a5e88577"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/varautoencoder.py_from_typing_import_Option_VarAutoEncoder._": {"doc_hash": "21c89ba90cabaafa9f0c750ef1dd4ca0745c37405221da64aab28723529e47d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/varautoencoder.py_VarAutoEncoder.__init___": {"doc_hash": "3ceb93f73274db3bf63d559009b7d02e529997c511fd184e571bdcb6bed655f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vit.py_from_typing_import_Sequen_ViT.__init__.if_self_classification_.self.classification_head.nn_Sequential_nn_Linear_h": {"doc_hash": "426a1866d3014be8a3555c16625f101d651045e02ef250f2bf7e318f2a0825fb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vit.py_ViT.forward_": {"doc_hash": "642fa6d9f8faba30813e4e180c2d1465163307c72bbd7a633cc2e5beaaf83d7b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_copy_model_state.for_s_in_mapping_if_mappi_copy_model_state.return.dst_dict_updated_keys_u": {"doc_hash": "45e93d23d46713fad7a530a84bc289ef9f1ce28735be814e4e982e832de2a892"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_convert_to_torchscript_": {"doc_hash": "401c29fca521ff7fded1a92f201d26bc6ff26107e9fbdfcc255448fc3784bd08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_scheduler.py_math__LRSchedulerMONAI.__init__.super___init___optimize": {"doc_hash": "61afef1ead2bd7db9e492eb8bd8eaf38ebab4407c69bdd6b71dd6f3050ec8ac3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_scheduler.py_LinearLR_ExponentialLR.get_lr.return._base_lr_self_end_lr_": {"doc_hash": "b916ced1fed5f3137f6e6dfa2a6c3d99b9fb6a53b169b129bff2496021407d7f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_scheduler.py_WarmupCosineSchedule_": {"doc_hash": "69daafaff893df530570d875d181d9908b66c87aefa9614a336070607d3c22c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/__init__.py_AddChanneld_AddChanneld": {"doc_hash": "4dbdfaac4e4091ddab9850ce8c24d51ad0beead26d6de4fcb8ce111b1d6223c3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/__init__.py_Fourier_": {"doc_hash": "663a9013376d3f96323f70f517b49e6f2d7d11c54f83a5d9f5bb3e0b26ae0478"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_warnings___all__._Compose_OneOf_": {"doc_hash": "f6eaaf0854682cc46c9da39653d31bba22fbb0fcb7d28255244c38735e408503"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_Compose.__len___Compose.inverse.return.data": {"doc_hash": "ab820a6d231d3d7e8a78063a8e8d3e31618bcbc23bfa41f1a2275b9c7749dc51"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_OneOf_OneOf._normalize_probabilities.return.list_weights_": {"doc_hash": "3b5852749969ce853840b9bf5234ce2e3a048e0907a226a332ef450edb2728d5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_OneOf.flatten_OneOf.flatten.return.OneOf_transforms_weights": {"doc_hash": "aa437a011205c030d2f9ef88fdd2bc4d4de072571e283f4a2015750f9e029d20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_OneOf.__call___OneOf.__call__.return.data": {"doc_hash": "14d739fb8d0a74d4fa910e54459814dd5d546670d2e98858adc6c93f5116722c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/compose.py_OneOf.inverse_": {"doc_hash": "b20874072adc9129f233323c284a25e53803140663f8097573a5340f96b2588b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_Pad_Pad._pt_pad.return.pad_pt_img_unsqueeze_0_": {"doc_hash": "00ce14048cf8dd7ba7ffc12738305f590fdf2cf775515bfd3b431037b5145aeb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_Pad.__call___Pad.__call__._type_ignore": {"doc_hash": "d7369ebbf10d28410d20bc4dab4e45989cc19bb3f194b325be058e5df6810ecd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_SpatialPad_SpatialPad.__init__.self.kwargs.kwargs": {"doc_hash": "6cf9feaa3863cc1b65440804a7d405cc80ab2b110e787d983018bfff038ddf3f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_SpatialPad.__call___SpatialPad.__call__.return.padder_img_": {"doc_hash": "d3b823761f56eda5a225bbf6993833698369424f2ffcb74114c306e1e4f02862"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_BorderPad_BorderPad.__init__.self.kwargs.kwargs": {"doc_hash": "cd9f9741536d30343fe78ba3170ff94351476153e604e78da1748c235d977aeb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_BorderPad.__call___BorderPad.__call__.return.padder_img_": {"doc_hash": "8c6e07da8b4cb9b98c4ba0b90e13c2b54ddb2531a76f6f75a610eee49f623271"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_DivisiblePad_DivisiblePad.__init__.self.kwargs.kwargs": {"doc_hash": "6c022ba8e02329cc6145f6b22918dbc15e3b1dc576820db4eb0d7c63087f7929"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_SpatialCrop_SpatialCrop.backend._TransformBackends_TORCH_": {"doc_hash": "1d0fca5d9570784734d33da865dcf290f9029e62348ed510101b5536a6a434dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_SpatialCrop.__init___SpatialCrop.__call__.return.img_tuple_slices_": {"doc_hash": "5ae5d1218022ce066dd6549bf31a5699e61367b7ae6f61f4c63ed8d911178768"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CenterSpatialCrop_CenterSpatialCrop.__init__.self.roi_size.roi_size": {"doc_hash": "61b553529e18190b43146e79517e282954ddacc987f400026a4ea4d789555017"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CenterSpatialCrop.__call___CenterSpatialCrop.__call__.return.cropper_img_": {"doc_hash": "5b1c3080563ce6856479be13226a95057643206107ce1a3f1b948f1b11b498d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCrop.randomize_RandSpatialCrop.randomize.if_self_random_center_.self._slices._slice_None_get_rand": {"doc_hash": "9104f7b74d94d87d13d2941e7cffd6f0ebaaab42ee0fac007bd40ae2cf6d4544"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCrop.__call___RandSpatialCrop.__call__.return.cropper_img_": {"doc_hash": "6d6f84b6c72ac6257a2391f94a4fa35e0f1d5280356bead35afe20138fc9f302"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CropForeground_CropForeground.backend._TransformBackends_TORCH_": {"doc_hash": "634361c41ad1bef64354e70a7b565c2c4ae92838396b6b202b45dc7b9fb6b063"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CropForeground.__init___CropForeground.__init__.self.np_kwargs.np_kwargs": {"doc_hash": "c72d6ec1cec00159befcde9b5a743a96cd9b455d8bede7bd9c253c109a63b623"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CropForeground.crop_pad_CropForeground.crop_pad.return.BorderPad_spatial_border_": {"doc_hash": "f9325eb7fa2e92e41ab386c510aec7686513d0c03a229d28704b3487154fae5f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_CropForeground.__call___CropForeground.__call__.return.cropped": {"doc_hash": "40fa20728f17181b5a99e187896f0fce6c82548e3a4d372e313c1758b7a32b44"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.backend_RandCropByPosNegLabel.__init__.self.allow_smaller.allow_smaller": {"doc_hash": "3f558e375312a401fc5d912c340669c47953a95abe17a6311170538319c6ae51"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByLabelClasses_RandCropByLabelClasses._": {"doc_hash": "11883880fed64b67b9bbe5a8e89e16557175ff041c499df08649919b97422024"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByLabelClasses.backend_RandCropByLabelClasses.__init__.self.allow_smaller.allow_smaller": {"doc_hash": "00a208ecd3017e15b07eb2685dfc9c29aedffe8de3e9b1586f702634edf8ea8e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByLabelClasses.randomize_RandCropByLabelClasses.randomize.self.centers.generate_label_classes_cr": {"doc_hash": "a89c91384d9875df2a29c6e0beed9de8521fecec8406a869e99a610ab1c60742"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByLabelClasses.__call___RandCropByLabelClasses.__call__.return.results": {"doc_hash": "4bc62c489f7a0f13e83faccef069df936769715b800b11a4c925918f83bfe1dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_ResizeWithPadOrCrop.__call___ResizeWithPadOrCrop.__call__._type_ignore": {"doc_hash": "cd1b0f74e8b11f54245b42e6964cdec335e86b8b6058f16ca865364c24535d2a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_BoundingRect_BoundingRect.__init__.self.select_fn.select_fn": {"doc_hash": "9c56aa6baff78436f70fc00ea3c0c318134c8636e8ac9179f140e0552391532e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_BoundingRect.__call___": {"doc_hash": "e71d3a000ab51f9449d32d5bf52a5b0d18bb4608d6da7658b65698151e144a08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/batch.py_PadListDataCollate_PadListDataCollate.__init__.self.np_kwargs.np_kwargs": {"doc_hash": "a6ec2c11296a6dbaf8429931805e7a02da897785ce9bf1acc15a059bda3a4167"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropSamplesd_RandSpatialCropSamplesd.backend.RandSpatialCropd_backend": {"doc_hash": "d606a562954835e1f84b1c1019a6bb5cbb794f3871ac8b1eba10547b5d21b83d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CropForegroundd_CropForegroundd.backend.CropForeground_backend": {"doc_hash": "1fe13196753f2a2724a5e40e677ef4ef004c55face26e5ba7d4f6a7d06566c9b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CropForegroundd.__init___CropForegroundd.__init__.self.mode.ensure_tuple_rep_mode_le": {"doc_hash": "bcaca789652e7db095561a14068319232fc9689f1896c2cd7863c620c0a314ff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.backend_RandCropByPosNegLabeld.__init__.self.allow_smaller.allow_smaller": {"doc_hash": "84684281c8053aa55f3b9a799e66124528fc2202795a49e443388b1a187b12eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByLabelClassesd_RandCropByLabelClassesd._": {"doc_hash": "5c9e67444025359f7d5a49845f2011173dc9058c80353bff8cefa53a270526fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByLabelClassesd.backend_RandCropByLabelClassesd.__init__.self.allow_smaller.allow_smaller": {"doc_hash": "399427f6c9b440f91c89ac8efd4dd00734780c180de8af4f2f2d6a4dd8416779"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByLabelClassesd.randomize_RandCropByLabelClassesd.randomize.self.centers.generate_label_classes_cr": {"doc_hash": "4c3c5f703e8ba4019b88bf55f26e5928bccb8b67e45067a9cfdfa4026956b1a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByLabelClassesd.__call___RandCropByLabelClassesd.__call__.return.results": {"doc_hash": "581982dea905a2d432db36bc59e2d2b5537d691f94717893af2e896a6ba49319"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByLabelClassesd.inverse_RandCropByLabelClassesd.inverse.return.d": {"doc_hash": "77e18e3a7cfab86d21e0a8c335fcc1a64e8bdaf5cb02c45d530aa15dffc01df4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_from_abc_import_abstractm___all__._": {"doc_hash": "8928e7e352144896750236b9cb2f5ffba810bad2a786ce03b902aa6a5a111297"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianNoise.__call___RandGaussianNoise.__call__.return.img_noise": {"doc_hash": "44657e125843430ea077aee4c4cb3558554b7bcdc594095527f5e5f34085a17c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandRicianNoise.__call___RandRicianNoise.__call__.return.img": {"doc_hash": "c22d5af409d4ed62928d55c47084e243e9c2cbbae31b41f64590fb889d608d2d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ShiftIntensity_ShiftIntensity.__call__.return.out": {"doc_hash": "5a7fb5cb34cfed5381d72ea65dbdc348e322028855b68224ad03149d05f98b32"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandShiftIntensity_RandShiftIntensity.randomize.self._offset.self_R_uniform_low_self_o": {"doc_hash": "7d34c05042208f0617b2767502249a978cbc4ef4d7053c6357ba206d8364d2c8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandShiftIntensity.__call___RandShiftIntensity.__call__.return.self__shfiter_img_self__": {"doc_hash": "15612f0e9272cff2e19064ac13e6440e3d38d5dcedcd81c00cffdd927e3adbda"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_StdShiftIntensity_StdShiftIntensity.__init__.self.dtype.dtype": {"doc_hash": "94986c3ed61732109cc29a0c8c7ad7f5dfe1e26a94aca957b6da3c34ace4270f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_StdShiftIntensity._stdshift_StdShiftIntensity.__call__.return.img": {"doc_hash": "330a3c9627af2a16dd280a1456895f277700712052dca833abd17c7e950faddd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandStdShiftIntensity_RandStdShiftIntensity.__call__.return.shifter_img_img_": {"doc_hash": "7da7a96caba462e31a810804ac7e0cc2e3d81102d4dae94e9126dbd6cac6755e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensity_ScaleIntensity.__init__.self.dtype.dtype": {"doc_hash": "9818a3d56a33713d7267b84b72d0aa7dbd3911fde93c3147bfa01dc18ce22c4d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandScaleIntensity_RandScaleIntensity.__call__.return.ScaleIntensity_minv_None_": {"doc_hash": "4f1cc4ecf34da85b8e7287db00f524f102fe25aa6f6e5fb056302a49a43cc687"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandBiasField_RandBiasField.__init__.self._coeff._1_0_": {"doc_hash": "32ff317c49cfa7e2aec05479f604c4eadbff27edc70fb0da733aece9435283a9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandBiasField._generate_random_field_RandBiasField._generate_random_field.raise_NotImplementedError": {"doc_hash": "3b5a0634a84562b3e9dbbe69085f5f40af508fe872a399bba5fc9d9d0e4570ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandBiasField.randomize_RandBiasField.__call__.return.out": {"doc_hash": "025e2ca6ec37eb6aaed6762d60dc113ea6f2e0799b338a0a949a5d07b1a47bc0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_NormalizeIntensity_NormalizeIntensity._std.return.x_item_if_x_numel_": {"doc_hash": "5f0da9bbaa0129afb1949ce239a9da5b09f6ae2b67f875c9424612b18da64e5b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_NormalizeIntensity.__call___NormalizeIntensity.__call__.return.out": {"doc_hash": "93727cf7d8a538a7e20eaf40123b6050f6f127396bcf10121590b1adc5256af4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ThresholdIntensity_ThresholdIntensity.__call__.return.res": {"doc_hash": "7f05caaf5e9b3ac460ecef62561bc09b7033deece2f01d51c379f3d7e41fb658"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_AdjustContrast_AdjustContrast.__call__.return.ret": {"doc_hash": "7a9ea9c88ed75b02b9ce12cabdc5e686e5af745c3ce64fe5808df46491574ded"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandAdjustContrast_RandAdjustContrast.__call__.return.AdjustContrast_self_gamma": {"doc_hash": "5c11cfe48445c5dc0036f130b63b4486da1f3464a1a023ffd221076c30e56424"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles_ScaleIntensityRangePercentiles.backend.ScaleIntensityRange_backe": {"doc_hash": "daefd8fc1855e4657b5af489dd00d51ce07b769ac6ba25fdf5cc5013ec5b2dbd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_MaskIntensity_MaskIntensity.__init__.self.select_fn.select_fn": {"doc_hash": "a4708442ca4f402b2a56415ca29645cc34059a125914b1796acac9d3f75a294a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_MaskIntensity.__call___MaskIntensity.__call__.return.img_mask_data_": {"doc_hash": "5eb1ec915576833a1ffa7071158151eef1dedbde1fc24059ae1a135980c00d66"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_SavitzkyGolaySmooth_SavitzkyGolaySmooth.__init__.self.img_t.torch_tensor_0_0_": {"doc_hash": "0f3479c001fe4fe7ff818fc5cac9341ff0e64da0db4baa59df5f0b5fc4e0f067"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_SavitzkyGolaySmooth.__call___SavitzkyGolaySmooth.__call__.return.out": {"doc_hash": "9c98828387a0c2b10377bbe5b1fc26c0b445b1e074e2d4f1ca2da0ff92fb0a48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_DetectEnvelope.__call___DetectEnvelope.__call__.return.out": {"doc_hash": "36fa371f17944486fff9d342abab34b388651e93e23a702d4e463770d8f159f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSmooth_GaussianSmooth.__init__.self.approx.approx": {"doc_hash": "f569283318ff37c7426faa667a532b38af86487792798af847286ce8b3046727"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSmooth.__call___GaussianSmooth.__call__.return.out": {"doc_hash": "5818536f4aa95dac801f77f09a96f365b1291b0fa67139c799514dc786fe8601"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSharpen.__call___GaussianSharpen.__call__.return.out": {"doc_hash": "dbd07384fada127e79a49c1d473739b640f07ae4c0b6970a7b4061841141f8df"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen_RandGaussianSharpen.__init__.self.a.None": {"doc_hash": "e9a7e94e69da46e110463ffac10e29b63f0ded2e8925c6eb4d9f21993df5d11f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandHistogramShift_RandHistogramShift.__init__.self.floating_control_points": {"doc_hash": "3399952ca64d22940fb93c2c7dfbd5c48aea262da603897ea59664e1cddd745e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandHistogramShift.__call___RandHistogramShift.__call__.return.img": {"doc_hash": "e03e3e48af3e3f35a44cca3c262143bd4271f7b384d70a1f3eed64be9766d974"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GibbsNoise_GibbsNoise.__call__.return.img": {"doc_hash": "4aa51f8222e83c2859a693d861df79061bad7494b104cee3bc22fbdc5e8f4e1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGibbsNoise_RandGibbsNoise.__call__.return.GibbsNoise_self_sampled_a": {"doc_hash": "6e2ebf743ff8388d772ce84037f37c53b37385fa63e420b398a4e38817f10f73"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_KSpaceSpikeNoise_KSpaceSpikeNoise.__init__.if_isinstance_self_loc_0_.raise_ValueError_There_m": {"doc_hash": "87b106ef15ce9bbc051e9689aff7689dd241b3cc70025ef2e2b7a8d54c78aa22"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_KSpaceSpikeNoise.__call___KSpaceSpikeNoise.__call__.return.img": {"doc_hash": "2bce5e437dea6544151ea31c07ab21481a198492aa41833fe5e6f895ab708929"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_KSpaceSpikeNoise._check_indices_KSpaceSpikeNoise._check_indices.for_i_in_range_len_img_sh.if_img_shape_i_max_x_.raise_ValueError_": {"doc_hash": "af86fbb3951634f12b164ccd4de2961d10db5517ef88784b52ca80fc4d555e0c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_KSpaceSpikeNoise._set_spike_KSpaceSpikeNoise._set_spike.if_len_k_shape_len_id.elif_len_k_shape_3_an._type_ignore": {"doc_hash": "c55f8aaa5c8b1f77c9787a3bca72efb5de4ba5122929caeb755a7352cbc38622"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandKSpaceSpikeNoise.__call___RandKSpaceSpikeNoise.__call__.return.KSpaceSpikeNoise_self_sam": {"doc_hash": "df66a70ee7bea98c75231d877b9e5af0d48f91db9c0b4a3e30c63b3442d97ce1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandKSpaceSpikeNoise.randomize_RandKSpaceSpikeNoise.randomize.if_self_channel_wise_.else_.if_isinstance_intensity_r.else_.self.sampled_k_intensity._self_R_uniform_intensity": {"doc_hash": "2021fb81e8ca2331922e42941914bacb17403691400247c3ce9503ecccd6f4ea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandKSpaceSpikeNoise._make_sequence_RandKSpaceSpikeNoise._set_default_range.return.tuple_i_0_95_i_1_1_": {"doc_hash": "e7b775fd587cf010b0ab639793aa459f7b3a88f89c177ee6eae0e88c9ab02061"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandCoarseTransform_RandCoarseTransform.__init__.self.hole_coords._": {"doc_hash": "2eac4fe2930909b0156bd7b007ed452b59785307140360b3c374d6bf4c66c94d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandCoarseTransform.randomize_RandCoarseTransform.randomize.for___in_range_num_holes_.self_hole_coords_append_": {"doc_hash": "a6fe304e69a71bd92f8c271b9cc57d101ae1ad4309fa208dde15a5379abc8cb5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandCoarseTransform._transform_holes_RandCoarseTransform.__call__.return.ret": {"doc_hash": "4c2bffad01141bdbc8dbbe3207deedd39862c37dfc2c17cc15e38622a6573dd6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandCoarseDropout_RandCoarseDropout.__init__.self.fill_value.fill_value": {"doc_hash": "bc3cb82c12a72b9df6e64eb96babf2b2ea10edc67c8dc8f4031ba5d80379e0c8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandCoarseDropout._transform_holes_RandCoarseDropout._transform_holes.return.ret": {"doc_hash": "e1ae187f79604176df35211a031961e659e901d223aa10f8f717562ed4561064"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandCoarseShuffle_RandCoarseShuffle._": {"doc_hash": "98520a8e03d559ba05518cc54cc4db6a66723a7856c280496c77fa1ccee25f48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandCoarseShuffle._transform_holes_RandCoarseShuffle._transform_holes.return.img": {"doc_hash": "188758ff5abd96f14a00244e262988d6e29636dd16df02cc5764daeb58737893"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ShiftIntensityd_ShiftIntensityd.__init__.self.shifter.ShiftIntensity_offset_": {"doc_hash": "79dcc1c29b8c7520fa7a3e976fffe17a992ee988f965f94397686df2d11d2d74"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ShiftIntensityd.__call___ShiftIntensityd.__call__.return.d": {"doc_hash": "f1231e6783f4831d7cd9d344f3106787ffc8396da9caa4fc40d59e3a3217c5ef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandShiftIntensityd_RandShiftIntensityd.set_random_state.return.self": {"doc_hash": "9e50aeb1af2f79ebde2f02821097a61c8548a5b646ac956970644575c7012ef7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandShiftIntensityd.__call___RandShiftIntensityd.__call__.return.d": {"doc_hash": "998d514db1c44c89ba6ea9476658e667c5849c90cbf23e353d2a3abeabace85b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandBiasFieldd_RandBiasFieldd.set_random_state.return.self": {"doc_hash": "97f85dc00c80397e1031a748c99ef805e5fb7458601332bd82bd670fc73212c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandBiasFieldd.__call___RandBiasFieldd.__call__.return.d": {"doc_hash": "06b7a4057529b1930ade884b6c71514a879fee3bf4b61492d3d06ef77c73c9c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSharpend_RandGaussianSharpend.__call__.return.d": {"doc_hash": "54cbe8b277ab6dab60a6320893995ab4db6c0b6d56aab9dcb87e3c86d02382ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandHistogramShiftd_RandHistogramShiftd.__call__.return.d": {"doc_hash": "b896251c22ddabc5cccf7afaabeb396be5ed8b24593f3ee4aecbd07c8576c22e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGibbsNoised_RandGibbsNoised.__call__.return.d": {"doc_hash": "fb4b69cf7558929ec8388b25e23edcfea2bad85949ec41cb7e63c133b5682fcb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_KSpaceSpikeNoised_KSpaceSpikeNoised.__call__.return.d": {"doc_hash": "0bccc230acacd2c58f991ea9cb3fcf2c540e0219b67b2f43fa0dfc5489cf7d71"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandKSpaceSpikeNoised_RandKSpaceSpikeNoised.__call__.return.d": {"doc_hash": "3c077b8cf6d0a4ed0f25c6c71e0beea814cfddc8cf6c20ed3bdcc7320acd16b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandCoarseDropoutd_RandCoarseDropoutd.__init__.self.dropper.RandCoarseDropout_": {"doc_hash": "d5822f279a9d735b5bf934ec5691d7aad0d7cd48b37590851aac00a4b1914346"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandCoarseDropoutd.set_random_state_RandCoarseDropoutd.__call__.return.d": {"doc_hash": "7cd01a62f39800aa8052bda7f8be2612fdbd03ce92c5d1071eedc5e961128c68"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_HistogramNormalized_HistogramNormalized.__call__.return.d": {"doc_hash": "02a611e5ea9b2d23e225a1d210aef8f4a2d22785dfbb0acf406e268ae8c41106"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse_batch_transform.py_BatchInverseTransform.__call___BatchInverseTransform.__call__.try_.except_RuntimeError_as_re.raise_RuntimeError_re_str": {"doc_hash": "6b36404520430894c2de9d5d57a8ddeb9d889b70fd143c44c61cea4c0509e10e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse_batch_transform.py_Decollated.__call___": {"doc_hash": "270e0d9bc94b310af2660049a152ccf1c220ab999265ae596aa57e4a395aa0be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_inspect_SUPPORTED_READERS._": {"doc_hash": "148950b20d57b7e81d26e7e8bb87b2f3058f1d0c3aa5fe552bd5182e14a2d2c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_LoadImage_LoadImage._": {"doc_hash": "b76b76da707b5b491c3c635b4369130d1cca2c6d494f39fa521fc598d9f1f66c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_LoadImage.__init___LoadImage.register.self_readers_append_reade": {"doc_hash": "f991074dac0e3b426098deb55ef3a67d3db76f64634fe3d9550c8870922fe224"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_SaveImage.__init___": {"doc_hash": "df354aef825a1f448211785172aa7d4168c24092cb4d279ed652611d3dbc4941"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/nvtx.py_from_monai_transforms_tra_": {"doc_hash": "b4b90abf57e6670dcb94c9fe79b76faa88015e1d608573fd5e9e9a936f080407"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelFilter_LabelFilter.__init__.self.applied_labels.ensure_tuple_applied_labe": {"doc_hash": "c1365fce58765e1c55f794cb980c57135e5f3b2ab536f558209ca8f0f1d2e84d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_FillHoles_FillHoles.__init__.self.connectivity.connectivity": {"doc_hash": "3a5c888af4f20222d8efb68988e3980d289622f2d359fbe1fed2c393eb49ddf1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_FillHoles.__call___FillHoles.__call__.return.out": {"doc_hash": "6954dfca3cefc0f73a1096871a020d44eb12967d6c38c71041641ae11fdfe4be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_Ensemble_Ensemble.post_convert.return.out": {"doc_hash": "5b78a0280733e3881e9061b104fe9ed421369106c74605d6622f90727b6842b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_MeanEnsemble.__call___MeanEnsemble.__call__.return.self_post_convert_out_pt_": {"doc_hash": "1693ec8f4d10e711224bdcb5f6be0a44317eb9d7f5b2d685398df319fbd0ac97"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_VoteEnsemble.__call___VoteEnsemble.__call__.return.self_post_convert_out_pt_": {"doc_hash": "5f22fc15a7b4003e72795f732a1393e297ee3650308fa5699b82f37901c1d343"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_LabelFilterd_LabelFilterd.__call__.return.d": {"doc_hash": "8289b514657b0fa15d0c7976bb6160e3ad49edc0d8a4fff74c8e1920e528e6b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_FillHolesd_FillHolesd.__call__.return.d": {"doc_hash": "acfede833e1d1ddb320f05f1f0c38c98d3de2125542cb222c01c5d8fcd14132e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_SaveClassificationd_SaveClassificationd.__init__.self.meta_key_postfix.ensure_tuple_rep_meta_key": {"doc_hash": "845cfcc5f21e64f77ad0d45d664618281948c7c5e4a4cf55759543d16b40fe21"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_SaveClassificationd.__call___SaveClassificationd.get_saver.return.self_saver": {"doc_hash": "9bf208b12ee5ff62d6144c854b7f86fd27529ff3bc67a3691c04965cd7740c34"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Spacing_Spacing.__init__.self.image_only.image_only": {"doc_hash": "b697577731170ee9a5ace9155bb9c672d47f018ca3d9f7af8be2db12bb0f6cc5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Spacing.__call___Spacing.__call__._no_resampling_if_it_s_i": {"doc_hash": "5ef7f95ac05f679c04c53cefce2d5dce4920d5def01b9f8d9be5e6bad1f84a2e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Spacing.__call__.if_np_allclose_transform__Spacing.__call__.return.output_data_affine_new_": {"doc_hash": "cab5a51a22da753b3f5934605dd6ef12aabceae3e6bb3adf88fef37534c3ae39"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Orientation_Orientation.__init__.self.image_only.image_only": {"doc_hash": "b7389c317630413523ae7130ad851308d1a974440428e59a117b67e3e6d60a37"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Orientation.__call___Orientation.__call__.return.out_affine_new_affine": {"doc_hash": "4f35977dbba3b7b5bc2c827792b9228554f352f2f86aead553dfd9aea2f15b41"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Flip_Flip.__call__.return.torch_flip_img_map_spati": {"doc_hash": "9ccce7ba9f3b79ece990348fc8ce877c76c7ac2a266c3ec504d1bd7b2b445b20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resize.__call___Resize.__call__.return.out": {"doc_hash": "497dcfa71f2dd0db7396f2e06983dbd999f35df639ffca93f1c0f95a8d879015"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Zoom_Zoom.__init__.self.kwargs.kwargs": {"doc_hash": "4b12e090fd2de17608bcaf838f5c5996aa3ab103ffdcf97e72ac7bfed879102f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Zoom.__call___Zoom.__call__.return.out": {"doc_hash": "6db8ea728c70b4bdaca38edfb7cb6db4bd5ddefba574a73fa95fd14cf5e67003"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rotate90_Rotate90.__init__.self.spatial_axes.spatial_axes_": {"doc_hash": "a1db03f5ec9840f691dfb94986f08f07c38db0e52a4382f5dc5b9ef71f0c1271"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rotate90.__call___Rotate90.__call__.return.out": {"doc_hash": "986d8b66f57b0a2c3ca9a63e0ba1f3ddc9220e93df20b0db1e3e5f3ed5bf2a6b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate90_RandRotate90.randomize.self._rand_k.self_R_randint_self_max_k": {"doc_hash": "bf181e22fbf399aac805bb8cd96f911f7252a3fe071193270db066a34b50c7c6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate90.__call___RandRotate90.__call__.return.Rotate90_self__rand_k_se": {"doc_hash": "d9b6849719829a8c99349b832da4b8dfa2f8008af5ceb87e3d88206eec959d1e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate.randomize_RandRotate.__call__.return._img_rotator_get_rotatio": {"doc_hash": "8d05e8872242d109792caa336b98aa4f60dbf658a282b7fad1c8797c8e090095"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAxisFlip_RandAxisFlip.randomize.self._axis.self_R_randint_data_ndim_": {"doc_hash": "366b8b61defd2e2e6dd5276ca4f1f423dff4cdb9f24c2e570d1873b248ae8482"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAxisFlip.__call___RandAxisFlip.__call__.return.Flip_spatial_axis_self__a": {"doc_hash": "5150066018d2ab0a7bdc07e79e410bb74f8e8104602a9b7ff7f39ccc48382263"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandZoom_RandZoom.backend.Zoom_backend": {"doc_hash": "cd54977f85d700e99d7c6ca3d5dadc567ea8efaeec7aba44beac7297f5a67153"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandZoom.__init___RandZoom.__init__.self._zoom._1_0_": {"doc_hash": "cc59591187b027603821c73a66929a632595ba91f29f7b068e61facf12644514"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandZoom.randomize_RandZoom.randomize.if_len_self__zoom_1_.elif_len_self__zoom_2.self._zoom.ensure_tuple_rep_self__zo": {"doc_hash": "91a7aebc7d9ab20cbf6fac8f8b195d6715efecf7a7ba605b3bccea45843fa967"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandZoom.__call___RandZoom.__call__.return.Zoom_": {"doc_hash": "b97e5745f36aa4fe40369748ced0f6ac5e2eaf2d487e39e2efc4501b23cae52d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_AffineGrid.__call___AffineGrid.__call__.return.grid_affine": {"doc_hash": "3dfbe0bc70922101f185ece3948845abeeb8f8e8cc4f5f087e1ff9e855448418"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resample.__call___Resample.__call__.return.out_val": {"doc_hash": "c62d7f9eadbd040536bbb9674e6e5fcf3f2129f123a47fdc29b3d4d1a19e2d52"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Affine_Affine.__init__.self.padding_mode.look_up_option_padding_mo": {"doc_hash": "6e93e5a42d6ecf484114e2f9c0afe60130b339d59a3cc36c230312426c979a55"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffine._init_identity_cache_RandAffine._init_identity_cache.return.create_grid_spatial_size_": {"doc_hash": "141ce5c401cbfdfa5f1b5ffbe14cee76e9c44e94d3ea7529665e91996f27b866"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandAffine.__call___RandAffine.__call__.return.out": {"doc_hash": "6338c4bf3427c1438e345abeaa298868fabbddee909e19b54397a0aa894ef514"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic_Rand2DElastic.__init__.self.padding_mode.look_up_option_padding_mo": {"doc_hash": "32e79bfd028e25e376bc55a360c06c1d7cb34ec9f9c17508e8972e053b872595"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic.__call___Rand2DElastic.__call__.return.out": {"doc_hash": "3c87b4b7e50978b7d88fa913f2f12d52e32c48aa5b3ae7a71c420fc9e9380b71"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic.__call___Rand3DElastic.__call__.return.out": {"doc_hash": "e1f199e67f85ed3a07db043cd3d29fa908eb73efc63d6e5894731461150a7774"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_GridDistortion_GridDistortion.__init__.self.device.device": {"doc_hash": "8273c4899c73b6cc75c5aebafdcd3a1c37981c47448eddda9e644a4165074349"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_GridDistortion.__call___GridDistortion.__call__._type_ignore": {"doc_hash": "c35f50cb612a855fd06364fd45eb290352076aed1b6a91907426cc92674717f0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandGridDistortion_RandGridDistortion.randomize.self.distort_steps.tuple_": {"doc_hash": "b2c0f75a9e886eb4e81c6622fb3a9615c9271b86441feb0d553fb264eba5c772"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandGridDistortion.__call___": {"doc_hash": "35c20d50665e7421c8dab37b4b467ae08a85111af737791424aeeafab4d3ed30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotate90d_RandRotate90d.randomize.super_randomize_None_": {"doc_hash": "d8c35ce4b64da13239e4619cf5fea531d45a309a8f113f438dc921bab02c735e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotate90d.__call___RandRotate90d.__call__.return.d": {"doc_hash": "aeb1d315abb2632d4cef49addcb79e9ed08c9b5686329de7e31a6ee893a085cc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Flipd_Flipd.inverse.return.d": {"doc_hash": "5d1349dd5b90a1296155fdd0bf59fc9356bce10d4f0149fd5b473027d2188b9f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAxisFlipd_RandAxisFlipd.set_random_state.return.self": {"doc_hash": "5e555ba4e7ab6fdc19a1618ba3ba0c9edc3ed51f7899c250b602a91e38b29d69"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAxisFlipd.__call___RandAxisFlipd.__call__.return.d": {"doc_hash": "aac6c5fa645267dbb8c4bb116d893bfefbccfc4f75091d1c5593861308b6510b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated_RandRotated.backend.RandRotate_backend": {"doc_hash": "4d5adca762def4d96f1196dfdcfbe1f81b856b980a3c068dc3625897972e066f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.__init___RandRotated.set_random_state.return.self": {"doc_hash": "eac95f9e4165be32d39fce6679d3339770539a5d9a322d6a56fc4916f94dfa64"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandZoomd_RandZoomd.backend.RandZoom_backend": {"doc_hash": "3c4582161ecb43edc72d43a6e34669eec89eb1e612f0903cd23c7ae9b6f5e21b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandZoomd.__init___RandZoomd.set_random_state.return.self": {"doc_hash": "73053712eadb5426c4453a1edeb439d7592be09d7095855e3508d5054eeb6ee3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_GridDistortiond_GridDistortiond.__call__.return.d": {"doc_hash": "afbe7743b9dba9babc206b720d1f011a5e4e6d09b809899c7d7eef977e63b6d5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandGridDistortiond_RandGridDistortiond.set_random_state.return.self": {"doc_hash": "02f139cb1cca1b2ae3de89ccd6ceea06a3eb28b9505eedfab83cf71e67d1426f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandGridDistortiond.__call___RandGridDistortiond.__call__.return.d": {"doc_hash": "3a008edecfdba6a46ca5332ecbff6a6e2576c64cdbbf7ff0e85d5589619b0add"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_logging_ReturnType.TypeVar_ReturnType_": {"doc_hash": "47d92daef00fb19bad2410c94a0761c690fd456159d216e227bf7b5225a776b7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py__apply_transform__apply_transform.return.transform_parameters_": {"doc_hash": "c9fda8165740e8bb8a19a067e85918e042b4c5fb6cff8105731251032723ad6e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_logging_Identity.__call__.return.img": {"doc_hash": "4706217735cff0a123043d24193d22c16f4e66c7d390fb66500a6a22836cb338"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AsChannelFirst_AsChannelFirst.__call__.return.moveaxis_img_self_channe": {"doc_hash": "745f857b827053d51327ce343f47183015e5501422a827db8dae30d8c09e3c68"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AsChannelLast_AsChannelLast.__call__.return.moveaxis_img_self_channe": {"doc_hash": "bc6a13d3d750ebb2967602162610fa63e2859c8f6ade6aac05562f3619541753"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_RepeatChannel_RepeatChannel.__call__._type_ignore": {"doc_hash": "fad382efd698da414ae77805814c5e0250160d3b017df644ec2c351eff3662fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_RemoveRepeatedChannel_RemoveRepeatedChannel.__call__.return.img_self_repeats_": {"doc_hash": "12f7599b092a2b71e11d0978e3f26ddd08ed4f0da63d4d05f3121854ee67a34e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_SplitChannel_SplitChannel.__call__.return.outputs": {"doc_hash": "e0f005d11e83ac7d868a540d4b94e6d4e91f4e88786ccf89808c2cf0f2cff2e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_CastToType_CastToType.__call__.return.img_out": {"doc_hash": "a3cd4cbcd5f709a5bf00389c370a7e7ee94d209b4339e2e8ac0d19573df857c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_EnsureType.__call___EnsureType.__call__.return.out": {"doc_hash": "822b27c57984ee8a68e2a4ce4a3ebc927e0487c12decc01bea9482f37273edd9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_ToPIL_ToPIL.__call__.return.pil_image_fromarray_img_": {"doc_hash": "804fc1f407626f7991ad197fc8b65e122b2cb1e2b5a3f66b3f2fe7ed6d2db137"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_Transpose_Transpose.__call__._type_ignore": {"doc_hash": "f71cb6c101781d55fdfdf93999445527d421b4e84636ebea51a3853d30b52abe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_SqueezeDim_SqueezeDim.__call__.return.img_squeeze_self_dim_": {"doc_hash": "d06feec234565beffae6980ad18f879e3f13ca646b0b1957ae3acf9709b7aba9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_RandLambda_RandLambda.__call__.return.super___call___img_img_": {"doc_hash": "54ad0785cc24700c31cb5b19cdbdd27a5b1ae73aa7b6270f8d2ff4d3d1208a0f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_LabelToMask.__call___LabelToMask.__call__.return.data": {"doc_hash": "e73020abcf52c641ecc9c2079886573ee45da9d4efe37883d65a27f449ceff1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_ClassesToIndices_ClassesToIndices.__init__.self.output_shape.output_shape": {"doc_hash": "091eea673a8b75eee16047b17e81d0424bf9ba36ff443b6c11dec63643a73b69"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_ClassesToIndices.__call___ClassesToIndices.__call__.return.indices": {"doc_hash": "45821df494be500ef84a6023dfb988507354a8d50ac946230923bde460719912"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_ConvertToMultiChannelBasedOnBratsClasses_ConvertToMultiChannelBasedOnBratsClasses.__call__.return.torch_stack_result_dim_0": {"doc_hash": "321793b686fecbd6331eb325b4990a76f45b4159ef5b695a97f8700e737da4b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddExtremePointsChannel.__call___AddExtremePointsChannel.__call__.return.concatenate_img_points_": {"doc_hash": "1f4b680e18021f5dbdbe7e68953f9714d5bf7f4436b323fc8d453b1c5e0ddecd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_TorchVision_TorchVision.__call__.return.out": {"doc_hash": "6653aae573f741bdc72ca3b8288c2ebfbdce9eb39ae0ea2a33fa7b0bb5db33f4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_MapLabelValue_MapLabelValue.__init__.self.dtype.get_equivalent_dtype_dtyp": {"doc_hash": "009073aa3288a7c6953282c40cd19b352ccb16203b943340de78602262d98ca1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_MapLabelValue.__call___MapLabelValue.__call__.return.out": {"doc_hash": "939b927830acb6609993b8f57b0b06b7ccddf55cce515a7cad7d3bf68a3b237e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_IntensityStats_IntensityStats.__init__.self.channel_wise.channel_wise": {"doc_hash": "3e0bf4a4145ee350b7eedcb2773e443a85022082f94ea824b27f6e48fc25570c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_IntensityStats.__call___IntensityStats.__call__.return.img_meta_data": {"doc_hash": "471f6bcab2751408e9a5190d63e53f335012f96819a0d7d55b3fc1dbe758962f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_ToDevice_ToDevice.__call__.return.img_to_self_device_sel": {"doc_hash": "a1928d8178e24f4307de578387d82ef8ae4434c83a15ece8d52141ac97885fe8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_CuCIM_CuCIM.__call__.return.self_transform_data_sel": {"doc_hash": "50718d1adc0fd972246f88cc8e9361210fbb5a78df462c63b56a81383224913e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_logging_from_monai_utils_type_con": {"doc_hash": "15457193cce383489d5f2615d67de47632e17308e7e54cad77eddfdf1ed5add0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_EnsureTyped_EnsureTyped.inverse.return.d": {"doc_hash": "09b7f1df3ad309fa4abd4db5646e5fd46ae6b387b315d3e3a85275aeb1ae9c39"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_DeleteItemsd_DeleteItemsd.__init__.self.use_re.ensure_tuple_rep_use_re_": {"doc_hash": "99d7d11c2ee6c941277fc7600978da6e5f5ef79c5624b06bd26ab4a8edf31a90"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_DeleteItemsd.__call___SelectItemsd.__call__.return._key_data_key_for_key_i": {"doc_hash": "f7857f522a515d3b99731ae11aa9319866383471bc44836218a6391d62c24070"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_Lambdad_Lambdad.inverse.return.d": {"doc_hash": "a5914cef5bf55c7c480ef5cd1349b00bab8f87bf746d94b4dfe288a7cd129794"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RandLambdad_RandLambdad._inverse_transform.return.self__lambd_data_func_fu": {"doc_hash": "4b3811dc3db80eea56d12f044d5e0ffba8e41d64af67af64ce5c0d7dc76ee297"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ClassesToIndicesd_ClassesToIndicesd.__call__.return.d": {"doc_hash": "ac04124f630ada0bd00fb75664df1ee16f74a53087f3c70624f5a55df382435f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_IntensityStatsd_IntensityStatsd.backend.IntensityStats_backend": {"doc_hash": "1b39353589fdb268a8fba5dd6f7d0f9f757c6f5202d0699270888fc07c96b7cd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_IntensityStatsd.__init___IntensityStatsd.__init__.self.meta_key_postfix.ensure_tuple_rep_meta_key": {"doc_hash": "7eb12a1994658a4efbe389425464b5ac9061646bb85b35aed5fac1bbe5a987f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_IntensityStatsd.__call___IntensityStatsd.__call__.return.d": {"doc_hash": "3caa67a523c0ee8529b09aa2cf408502bae063e89c7c7b1687b635116f00198a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToDeviced_ToDeviced.__call__.return.d": {"doc_hash": "9aefbece0c7066306884c694060effba80bd3dfe7556dda927884472f9f60c38"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_CuCIMd_CuCIMd.__call__.return.d": {"doc_hash": "6c37487d83c078a6385edcf06fb7e3b4473964cfb85ca0a06d498abd0777ed5c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RandCuCIMd_RandCuCIMd.__call__.return.super___call___data_": {"doc_hash": "bd2760f0a5d984567aa9b44890806ee3e7f0643f27002ac2cd80846798a535b7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_itertools_img_bounds.return.np_concatenate_np_where_": {"doc_hash": "7f9629b7594e3daceb9e2900ec8382d3501ebd548c32b656091ed8e66c33f71b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_in_bounds_zero_margins.return.not_np_any_img_margin": {"doc_hash": "16b58643e174e550495f4de237d96e0dda0b273be8ad7a1f404ffec495aaebc2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_map_classes_to_indices_map_classes_to_indices.return.indices": {"doc_hash": "9e753da20bbb52f08850639fcd93d6dbd4eb2d0ba3f694739977dff97dc1383c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_weighted_patch_samples_weighted_patch_samples.return._unravel_index_i_v_size_": {"doc_hash": "bd9dc2a2c2c06d09cd056bd3abd4cc4092879d9d652af343105d33c1922f9a31"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_label_classes_crop_centers_generate_label_classes_crop_centers.return.centers": {"doc_hash": "9877d29c95f262975755163286060a354d927984288698fbf97889d9969f57c3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_grid_create_grid.raise_ValueError_f_backen": {"doc_hash": "3dd7233b68628f4e54016e8ad5eea2f00811b7db933bcc847fd3b98c0e63501e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py__create_grid_numpy__create_grid_numpy.return.np_concatenate_coords_n": {"doc_hash": "d79359dcf300077cb0b5156f0c14fbfa07623c8b2d019d4c2f0699187d4dcd78"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py__create_grid_torch__create_grid_torch.return.torch_stack_coords_tor": {"doc_hash": "986bc009bdbc218e12fe56e1823729b465dc5bcac7fb0d53cba9fc9e1baac474"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_control_grid_create_control_grid.return.create_grid_": {"doc_hash": "edcde7a64c334d0bc5c8cf1c278b9ba6a4d1fc973c6d8ba1bd7f79d4ed268c5b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_rotate_create_rotate.raise_ValueError_f_backen": {"doc_hash": "75a1f041acc6d834aeec1b178ec45e6892816f3ae3d9ab83ad5607c44408089f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py__create_rotate__create_rotate.raise_ValueError_f_Unsupp": {"doc_hash": "a481fba64dfd8579e157d4b96fe56c9c833816924aa18b8a0cbec51732fbb4ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_shear_create_shear.raise_ValueError_f_backen": {"doc_hash": "95904caf04b42ca3b3bfafa036baf8aa3c0e2f5fb79076a6c9b9f4756c719858"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py__create_shear__create_shear.raise_NotImplementedError": {"doc_hash": "0ed90b2d0643a1ca4cf9821220b059a68d4aaf80e7b1350decb258a63889c1a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_scale__create_scale._type_ignore": {"doc_hash": "2e3295342b6f3af8981ff7e6135f10d310a9960df8ca6c57360d7a31e926e837"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_create_translate__create_translate._type_ignore": {"doc_hash": "89372feaa4d5c9dc092ad7fe253266ad376d3ab55973eb06618cfb547d3e1d1b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_fill_holes_fill_holes.return.img_arr": {"doc_hash": "a95ea48aea0ec344a2d896ac5a67b2e3b9bb9ba39269f1a7103e30abea1b79a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_extreme_points_to_image_extreme_points_to_image.return.points_image_rescale_m": {"doc_hash": "d9e2c4c9e1f7b9a7c758084193f0fc3c1bec8db1652b068b80d80352fef4c4ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_compute_divisible_spatial_size_compute_divisible_spatial_size.return.new_size": {"doc_hash": "b3ea70589bce8c00025186f4d3ec933ac41b2d325176263f569b85982ab8faab"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_Fourier_Fourier.shift_fourier.return.k": {"doc_hash": "f7b929d0db8f34cf41c029259ad0e4b4915bf528b38138ed75fea29d55b0ad8b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_Fourier.inv_shift_fourier_Fourier.inv_shift_fourier.return.out": {"doc_hash": "fefd02c3b334a2b9237ad5f8420561912590dd7a54e707ba0c6b558ee84ddaa6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_get_number_image_type_conversions_get_number_image_type_conversions.return.num_conversions": {"doc_hash": "c7b49323e1368471eadf75f20fdc0b54a27034326c18d1e52933ef2370ce4981"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_get_transform_backends_get_transform_backends.return.backends": {"doc_hash": "d057cb330fb0f48c076d41d10ba36c350af28b84d690cc14eccf236c159051d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_print_transform_backends_print_transform_backends.print_color_f_Number_of_u": {"doc_hash": "fd5f65e53c3265469a3a08cb6e9302a03d1c0cf6e0fcf1afe330a95bdf796d20"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_get_data_get_data.return.padder_data_": {"doc_hash": "6cea9f0cb5018d4459acf98b9145654c3c0689951d06b07e6a48d3b178f6c70d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_update_docstring_update_docstring.with_open_code_path_w_.f_writelines_contents_": {"doc_hash": "8da75a569105c53b2703b1f079f959a30b3e8a06b17b2d852ac3dad5f74da40f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_get_stacked_2d_ims_get_stacked_before_after.return._get_stacked_2d_ims_d_is": {"doc_hash": "5165e9838a44a4c77f332b1235eac69a1839ce79494819b8916cee05322af104"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_save_image_save_image.plt_close_fig_": {"doc_hash": "a61c28b906571a28a58bc5e12c63751cb5a96ec7c259e218c6f491385477ea45"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_get_images_get_images.return.out_shape_str": {"doc_hash": "9faa0ef6a6deb5a2aae7e31771c45604c0b2bfd8bf5968ad4f6a4188f9307e57"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_create_transform_im_create_transform_im.if_update_doc_.update_docstring_rst_path": {"doc_hash": "7545541339e259777691ae725594efce2bae8e4c18bdd43006c9c0bdfa7fe0e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_percentile_percentile.return.result": {"doc_hash": "7112211346e5eecf929d88e76b7d5f861422f30f1e883ad3a70fd39d8c4d2ae3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_where_nonzero.return.torch_nonzero_x_flatten_": {"doc_hash": "f0f97ed67cfc95c3f695cced3f2ef67eb825292fc042dc6444d4748e51ef2811"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_floor_divide_floor_divide.return.np_floor_divide_a_b_": {"doc_hash": "da9804db7c7d3b40420e0d6efcf6a52708e9683db9bd3d29da71fe61d3d59761"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_unravel_index_unravel_index.return.np_asarray_np_unravel_ind": {"doc_hash": "a1f6bc3ae152f22caa75ab01ef88b0f41fcf0053b3be779db4acc7e2131cf2e2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_unravel_indices_ravel.return.np_ravel_x_": {"doc_hash": "81e9d756aede3675bdf55bf0fa431122676a2d2e394f83351294011d90a980c3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_any_np_pt_any_np_pt.return.x": {"doc_hash": "de3b21447281886d7f9ebc4030c10c2740612a6aeea12e345e52aaf5c153348a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_maximum_maximum.return.np_maximum_a_b_": {"doc_hash": "7fbfdc7e7bee70889cd9d10bfa3421a74476332e3780fc74d5c083092fd38d6d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/deprecate_utils.py_inspect_deprecated.if_since_is_None_and_remo.else_.is_removed.removed_is_not_None_and_v": {"doc_hash": "d8f6310241fbea3d1bb4d3333f7bcb56d9ea2b1126dab0033ce5ff7fba8ed5a9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/deprecate_utils.py_deprecated._decorator_deprecated.return._decorator": {"doc_hash": "e9fb7613fc1068cc4121c1b945cef08c58999efbb7943e81104b94a4a4115c78"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/deprecate_utils.py_deprecated_arg_deprecated_arg.if_since_is_None_and_remo.else_.is_removed.removed_is_not_None_and_v": {"doc_hash": "e44ae74741125194abcefaf5a80a1c889460ba229ae57d929279da947ac1c193"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/deprecate_utils.py_deprecated_arg._decorator_deprecated_arg._decorator.sig.inspect_signature_func_": {"doc_hash": "cae06451d5baf19fe01e8b2666ad24b948ed670f61b9d222c2d9f2829e17b3de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/deprecate_utils.py_deprecated_arg._decorator._wrapper_": {"doc_hash": "acefed43fc90efdcf41a99f266093c408f07cd6a09526837656263e101a0a77e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/dist.py_from_typing_import_List_get_dist_device.return.None": {"doc_hash": "22615bd842b00f0ccd723118060472f40ef02d6c0dffcea72f90ac739f64d32b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/dist.py_evenly_divisible_all_gather_evenly_divisible_all_gather.length.data_shape_0_if_ndims_": {"doc_hash": "5c86c934fb8d859f91c78f686d9ec82f0e0b04cea1d2f761ba8299a6b55938eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/dist.py_evenly_divisible_all_gather._torch_all_gather_evenly_divisible_all_gather._torch_all_gather.return._o_squeeze_0_if_ndims_": {"doc_hash": "a30735b51aacfd4708993c51e946de0b219e9f452c19b10b349261495b035073"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/dist.py_evenly_divisible_all_gather._ignite_all_gather_evenly_divisible_all_gather.return.torch_cat_output_dim_0_": {"doc_hash": "51ee81aa4c43e2b51eb4d57627cb6c7cc23f4a7bb5933e33fab2ad473cfde17b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/dist.py_string_list_all_gather_": {"doc_hash": "8789a59821b29ddec23a0e6cc3c9f8f44ea947c06c6d0a80cdd5053f9a9d34e4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_from_enum_import_Enum_LOSS_NAME._loss_": {"doc_hash": "a2a22bca3025f8dade6a6bf45ecf1e0d1c02b6c73952640222af268913f5cff5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_plot_metric_graph_plot_metric_graph.ax_xaxis_set_major_locato": {"doc_hash": "e1eea33d7ea60c6921eddc479431993831efd09744c38f2febf8b56c6d088af5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/jupyter_utils.py_tensor_to_images_tensor_to_images.return.None": {"doc_hash": "e8ee7d2f86cd67976feeefb4f07df8aa9c9a75b85c4858a316235e5731e6e654"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_set_determinism_set_determinism.if_use_deterministic_algo.if_hasattr_torch_use_de.else_.warnings_warn_use_determ": {"doc_hash": "618d77637ddabd134754a02bebe9a58a292e44d3279a985704689145b2552cb3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_ImageMetaKey_has_option.return.all_key_in_sig_parameters": {"doc_hash": "042e7a3f14cd8466368af22da0558e0bdbf316d4f11b38df85803b6f51aa7d3e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_enum___all__._": {"doc_hash": "8795663d8e6cc3a4b50677e78187d5045f00bbe3e3fa4a015294311a3c27e726"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_look_up_option_look_up_option.raise_ValueError_f_Unsupp": {"doc_hash": "830335238b0d1a608c1105fb52080ac8a2a96fc7823ab182b38f31c827fe0c33"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_damerau_levenshtein_distance_damerau_levenshtein_distance.return.d_string_1_length_1_st": {"doc_hash": "71d65ddafc22ef74d90e63e691cd544b8fbc0119653f5573f6dfe554e72ab5d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_get_package_version_get_torch_version_tuple.return.tuple_int_x_for_x_in_tor": {"doc_hash": "ef40f8c81efecec29867ef79e07d74ba5a4e4d7cedd1aa7b803ca6569eb64564"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/nvtx.py_from_collections_import_d_Range.__init__.self.append_method_name.append_method_name": {"doc_hash": "a12e2914853d8e98fedd5eedb1b62ac8b5cffbdcf70974aac8b2613ce632daf8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/nvtx.py_Range.__call___Range.__call__.return.obj": {"doc_hash": "9a3bd26bb770e70908fabc27a0d6d307acb3857361f60719507875256e7a2b4b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/nvtx.py_Range._decorate_method_Range._decorate_method.None_2.else_.setattr_owner_method_ra": {"doc_hash": "840ae36d2f55b1a90b53dc8d62c4061730e03e39706d3412bb36c852dcdce155"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/nvtx.py_Range._get_method_": {"doc_hash": "7bf3e44264fb0ab409f145c5dbce0465e006723514aba334e6df0b3ff3e1218a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/type_conversion.py_re_dtype_numpy_to_torch.return.look_up_option_dtype__np": {"doc_hash": "1847864b3c65adee72a33c81b36c3de0bb68026d0cb56cc4b35881e2edb6903e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/type_conversion.py_get_equivalent_dtype_get_dtype.return.type_data_": {"doc_hash": "99dbb25d019c55958af383b3b1a7d7944b77a861581103df8fa1e4f0325def61"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/type_conversion.py_convert_to_tensor_convert_to_tensor.return.data": {"doc_hash": "a33ee252d7bac6cea81ab2fa8a4e8b651c822da7d51e25d8605f82513a5a843a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/type_conversion.py_convert_to_numpy_convert_to_numpy.return.data": {"doc_hash": "ddf68132eda210fd95153811cc7e7eb51351da009d683007cf4f36d54fea83f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/type_conversion.py_convert_to_cupy_convert_to_cupy.return.data": {"doc_hash": "1d66a003edd27d3535f3c72a2daa6463b4ce245613fb12e64ca733ba582e5933"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/type_conversion.py_convert_data_type_convert_data_type.return.data_orig_type_orig_dev": {"doc_hash": "20033c9adfa642613813e3316ec7c305bf5ab7052dc7ace68dbdfc8baca71cd0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/type_conversion.py_convert_to_dst_type_": {"doc_hash": "fdfc2f4045a19db205338b1442a4edd8ec762931343af575424f87e691c850d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/hvd_evenly_divisible_all_gather.py_if___name_____main____": {"doc_hash": "464c713b530d88e7aeb959d3ec5c9acf0da793494f6bb0782d99a980040d619d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/ngc_mmar_loading.py_os_": {"doc_hash": "0700954883e86c42af19c17077ba47a8119d4b14bc2f1cb6a2cf2999586da56b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_coordinate_channels.py_unittest_for_p_in_TEST_NDARRAYS_.TEST_CASES_ERROR_2_append": {"doc_hash": "58335c1dfe01c759a9f53eb2b2ee9f7dca0943c6b615f26f2d004dc23f638d7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_coordinate_channelsd.py_unittest_for_p_in_TEST_NDARRAYS_.TEST_CASES_ERROR_2_append": {"doc_hash": "112c2df5b4167aa11adec9367cc54314462744bf248ebf04850626aa5ef97fc3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_extreme_points_channeld.py_unittest_for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.None_1": {"doc_hash": "dab013266c9007da7b7b9c779facbd49c020d71510c6ab1864a8ca7bcde9cf9c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_grid.py_unittest_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_4": {"doc_hash": "ab9db1b204cefc76d0a7fa5a45c362062036fbff232314874a3fc04d88bf69ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_grid.py__rtol_": {"doc_hash": "e560709995f73467801f1c399d4e26d4067d7900554d5822df4c62a03105bd1d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ahnet.py_TestAHNET_TestAHNET.test_ahnet_shape_3d.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "e9bf7b7c7127aeefb954e02edc20bc1e7d0275882a958f3c788cb874afa0579a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_alias.py_glob_": {"doc_hash": "cb6b383a465fb61b3736db950a2e4ff6d3e3cf014026b8efd3feb9b2b8d6ba88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_first.py_unittest_for_p_in_TEST_NDARRAYS_.None_2": {"doc_hash": "819dccc28f6a8b1c6d0bfb34a8102be32443bfb777fce6db75a4240dbf39ce80"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_first.py_TestAsChannelFirst_": {"doc_hash": "bb24dd04b4c6c20488678295e326a8ac73b94fb241083470d580d658ecac1050"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_firstd.py_unittest_for_p_in_TEST_NDARRAYS_.None_2": {"doc_hash": "8825191cca8452ee184a476e046874be51f115e60e4b6d6985d187c288b1f078"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_lastd.py_unittest_for_p_in_TEST_NDARRAYS_.None_2": {"doc_hash": "ba03872e540118fabcc92f013437cba3e8e9087f2a152b66cb32629f879ebef1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_pad.py_unittest_TEST_CASE_4._": {"doc_hash": "b03faa06e3ceba41ce5ffd3af955535b43470887cb579fefb2407936bb5bd12a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_pad.py_TestBorderPad_TestBorderPad.test_pad_shape.for_p_in_TEST_NDARRAYS_.self_assertAlmostEqual_r2": {"doc_hash": "d0a3acb6567e24cbc466e8f303ca5799a71653e601ea4f10c72c274b58abd271"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_pad.py_TestBorderPad.test_pad_kwargs_": {"doc_hash": "b19242bb3bde64711dc62619fc903decfbd332b75308f779b941312fd5888c44"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset.py_TestCacheDataset_TestCacheDataset.test_shape.if_transform_is_None_.else_.for_d_in_data3_.self_assertTupleEqual_d_": {"doc_hash": "8f80538f263d5f73244ade82bdd59a92e496ceed748d80b6dd6c3eb872ec14b9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset.py_TestCacheDataset.test_set_data__StatefulTransform.__call__.return.data_100_self_propert": {"doc_hash": "447f0ae5e9e02324258aba0807df60026e521d1957981cbcd235008ae30fd7bb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cast_to_type.py_unittest_TESTS_CUPY._": {"doc_hash": "b716d62482a6ec5c0107b2c6799302fec313702571be58fbb0c7bf71d3e84d7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cast_to_type.py_TestCastToType_": {"doc_hash": "e3f4333cf5d53c04ca8b2bb1dce4ce7a7c9404eee5fd5281fc8ec9b521dc9ff3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cast_to_typed.py_unittest_TESTS_CUPY._": {"doc_hash": "54a461fa05d5ba0a824577b2e40f9d4c39c8c4838f2f7add10019b37dca25500"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cast_to_typed.py_TestCastToTyped_": {"doc_hash": "aef2b75444800d5cefcd3336a6e87214425e687eba2921a145158773a430f659"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_cropd.py_unittest_None_1.TEST_CASES_append_": {"doc_hash": "78f195682e9b1ebc28232ee548b2b51edf4c7032ff29c562c35075bc29cb9363"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_classes_to_indices.py_unittest_": {"doc_hash": "8c5ce9e99a353a70aa157013f82bd46a700e0888c8464e09ad35cd5d1250a620"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_classes_to_indicesd.py_unittest_for_p_in_TEST_NDARRAYS_.None_4": {"doc_hash": "9a9178e0f0c16792cbe9e658ef4a3d6b788ec5acbdfd91e184449c637e0c5cc4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_classes_to_indicesd.py_TestClassesToIndicesd_": {"doc_hash": "7d18a246233f9695db6b040ccfb7e61ca5db245fb0c8f6fea20704174b0ff280"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose_get_number_conversions.py_unittest_for_is_dict_in_False_Tr.if_torch_cuda_is_availabl.TESTS_append_TCPU_TG": {"doc_hash": "b010f54026b9218a203d7b1486ced56db6b1040d9e92b4fd97a4df60e6830e4b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose_get_number_conversions.py_TestComposeNumConversions_": {"doc_hash": "9d72b347ba4e81f7d2acd6bf436fb707712a222f6856215262a48c566955ba00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convert_data_type.py_unittest_TestTensor.pass": {"doc_hash": "3c2464e8aeaa7d66ed19e632987876f2084f988f531d2cc1cd58b53cfd62e708"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convert_data_type.py_TestConvertDataType_TestConvertDataType.test_neg_stride._.convert_data_type_np_arra": {"doc_hash": "bffd658bcdefbd2cdcce576ded9883cbf581e3358d6cc5d41a113e46db885689"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convert_data_type.py_TestConvertDataType.test_convert_list_TestConvertDataType.test_convert_list.if_isinstance_in_type_n.self_assertEqual_converte": {"doc_hash": "c378048642c878ae5ddcbac196d33122072bed9fc9ae3170f927de172311d93e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convert_data_type.py_TestConvertDataSame_": {"doc_hash": "840ab76f55ab73b9871340aceaf4baca1f7b798d057f3823172f4ebc96345c6e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convert_to_torchscript.py_os_": {"doc_hash": "426c9e4f6fac96a4513f3af5fb1141965115642b2392f2baeee209dfd5d397dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_model_state.py_unittest_for__x_in___devices_.for__y_in___devices_.TEST_CASES_append__x__y": {"doc_hash": "b6b1db84f6cdcb710cfeeeed4b32375a3fcf9bc2cf9f6c3fc8b939056b3f7658"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_correct_crop_centers.py_unittest_": {"doc_hash": "8f74cdb08a0a3e0493dbe438efb46b90f2480b7e7e991b7d28b22d66665ff66d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_unittest_TestCreateGrid.test_create_grid.test_assert_": {"doc_hash": "90a60ec02785a3c46544de7ec84e6b31cd708ca8318565bb61069bf76494a077"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_grid.None_8_TestCreateGrid.test_create_grid.None_8": {"doc_hash": "fdc7ecf49d45b00fec9214483599bbaa02205abd8e0e9b02a02b351d6088c5fc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid_TestCreateGrid.test_create_control_grid.None_2": {"doc_hash": "e77a37d65907352fd3238d4f6de09b74452f0525a8ed9e95f0ec4bfdbdbcec58"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid.None_3_TestCreateGrid.test_create_control_grid.None_3": {"doc_hash": "82ab9ead628db93d5ad52dc18d8014759d06608691884b77cd4711b493b09fd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateGrid.test_create_control_grid.None_4_TestCreateGrid.test_create_control_grid.None_4": {"doc_hash": "31c53673b5a128ffd8b0a7e5d3a8004a4716df958176f53690750b6d32371cfa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_test_assert_test_assert.for_b_in_torch_numpy.assert_allclose_m_expect": {"doc_hash": "842bc1bb03fb529c06198fde53eab796224fac8211f1b1e28787a995362adc5f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foreground.py_unittest_for_p_in_TEST_NDARRAYS_.None_6": {"doc_hash": "9de04ed52a0d2f750faff01425e521970fc77e4c84e92de1f31c20d086e034aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_crop_foregroundd.py_unittest_for_p_in_TEST_NDARRAYS_.None_5": {"doc_hash": "f4d995e3ea26397591122ad7d406517054f697147309027956c2fe711a6cb37b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_dict_transform.py_unittest_TEST_CASE_FLIP_1._": {"doc_hash": "312d7abe86667fe1cc599421b6af54ea2892618e3cda8e3c2b6a334f3b6e7c89"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_dict_transform.py_TEST_CASE_ROTATE_1_TEST_CASE_ZOOM_1._": {"doc_hash": "d953c14d750fb02299e7a943e52cffccd37e3fbc87266e3937c09a8309b69a95"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_dict_transform.py_TestCuCIMDict_TestCuCIMDict.test_tramsforms_numpy_single.cp_testing_assert_allclos": {"doc_hash": "c9090e4ce590795091935b731f86e7f67dba48ea4297bf2d86b7ec514b14ac3c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_dict_transform.py_TestCuCIMDict.test_tramsforms_numpy_batch_TestCuCIMDict.test_tramsforms_numpy_batch.cp_testing_assert_allclos": {"doc_hash": "64a699f9cef27b82adf199bf2eb017cc3aea4f489397824a23918ff131792480"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_dict_transform.py_TestCuCIMDict.test_tramsforms_cupy_single_TestCuCIMDict.test_tramsforms_cupy_single.cp_testing_assert_allclos": {"doc_hash": "e28ce5626773279aebd03927f7e87651fd4c26e10539724c55270bf08dcb592d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_dict_transform.py_TestCuCIMDict.test_tramsforms_cupy_batch_": {"doc_hash": "4aa1e64b1c3b0bc5f5f58816808a56a175bfbfc580e93497909af88377a5cd5f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_transform.py_unittest_TEST_CASE_FLIP_1._": {"doc_hash": "552adce059c5d4fa45de3f712b67eb8900bc3a22bf5ec88379db3eb412a0adf4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_transform.py_TEST_CASE_ROTATE_1_TEST_CASE_ZOOM_1._": {"doc_hash": "96c7d624df2b8c2801630a53642fea4ec87eba5e4b43fc9ba3b2d17dcaca37e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_transform.py_TestCuCIM_TestCuCIM.test_tramsforms_numpy_single.cp_testing_assert_allclos": {"doc_hash": "41a4cb7429e6fa8deb1bfe1cac1b8c60a3e1b1b69f9bf3dc41e7ff82d2304437"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_transform.py_TestCuCIM.test_tramsforms_numpy_batch_TestCuCIM.test_tramsforms_numpy_batch.cp_testing_assert_allclos": {"doc_hash": "61c95dd015be52ec82c9aeb9cd314b913865f64fed2cd3272d0ac55bb6263d91"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_transform.py_TestCuCIM.test_tramsforms_cupy_single_TestCuCIM.test_tramsforms_cupy_single.cp_testing_assert_allclos": {"doc_hash": "79866c67f05ae20c5ae7166227500f7c8682611ddd910b551e93111dc6cd7d72"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cucim_transform.py_TestCuCIM.test_tramsforms_cupy_batch_": {"doc_hash": "20d08e6fd8db05d295f28c639cf62832cb94bd316e5fd6a603aaf027cf96cb9b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_statsd.py_logging_TEST_CASE_5._": {"doc_hash": "95bc5a4678b68817c547eed95cdaefd32842c8c6222918191df8a268a7e8528c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_statsd.py_TEST_CASE_6_TEST_CASE_9._": {"doc_hash": "214c42a55478d218bc0e5a48da92d43ca98fc28b81daaa83cb595bce9cfc9130"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_statsd.py_TestDataStatsd_": {"doc_hash": "ceef5ff81d8dea3c1229aa5e72e94d815499a1bc45d93bc05d427d042df86ff6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataloader.py_sys_TEST_CASE_2._label_torch_as_tens": {"doc_hash": "5e285e1dcce150a2eaad774b9660d610b801b1afbc9ec0c1b1246c45575166ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataset_summary.py_TestDatasetSummary.test_anisotropic_spacing_": {"doc_hash": "7f5694e95c331b71a1747efee599f1b647a4a942976c11e6d613982419ba2d27"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decollate.py_TestBasicDeCollate.test_decollated_": {"doc_hash": "6d21b31f02a9565e8f87b6a2098617720a93b4a10e32ae2f1ea10d631a01f05b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepedit_transforms.py_unittest_CLICK_RATIO_ADD_RANDOM_GUIDANCE_TEST_CASE_1._": {"doc_hash": "6e1be1fc7ee091d97a410e8cb08542e7d6c7ac0083441eee2aef183123a3dee3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepedit_transforms.py_DATA_3_": {"doc_hash": "0aa000e809d22db1b3d561bc2728d36012783860ef10dbd4e79aa99f36eb4d10"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_interaction.py_unittest_add_one.if_engine_state_best_metr.else_.engine.state.best_metric.engine_state_best_metric_": {"doc_hash": "53313d487a33e12455ba7bcd96c2ab13b4cae16d4063d91faff6a45b5c2cf558"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_interaction.py_TestInteractions_": {"doc_hash": "715bc3352f639f990fc5193d414bce8398f8323912f6710d32ec1a2257156f53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_unittest_DATA_2._": {"doc_hash": "d21b50f714dc8df03ed4a0f513346ab3ea9e9e72b57c00e6a7f4093bb5200f8b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_DATA_3_DATA_9._": {"doc_hash": "5b396ca3e2c337a449c64f0f0e106e2d0913e7de7d87fb056c206686af40e55b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_DATA_10_CROP_TEST_CASE_1._": {"doc_hash": "4729be5fbe6cd8b5d81af4896578cd498050a44448bb81717930bb8196792a6c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_CROP_TEST_CASE_2_ADD_INITIAL_POINT_TEST_CASE_1._": {"doc_hash": "3833d2a20c8496a4b2e287b7df02496837b312719724b721f0a3986707c40617"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_FIND_DISCREPANCY_TEST_CASE_1_SPATIAL_CROP_GUIDANCE_TEST_CASE_1._": {"doc_hash": "0a833b0e9a358cb928d1ac5102381216d8a2e09305a36065e6021411275601dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_SPATIAL_CROP_GUIDANCE_TEST_CASE_2_RESULT.np_zeros_10_20_20_": {"doc_hash": "bc451e6bd6989ba7a4a94dd749fbba4743ccdfc94d9c22c37e15ba64ad53fe06"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deepgrow_transforms.py_TestAddInitialSeedPointd_TestAddRandomGuidanced.test_correct_results.self_assertEqual_result_a": {"doc_hash": "9b62c9af44ff1ca628aa40f0539db75362c666c8cbfebbf22cb11367491ee515"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_delete_itemsd.py_sys_TEST_CASE_3._keys_meta_dict_0008": {"doc_hash": "891b34c0521af57b33578747958b2fafefa13170ff7122541c3fe75570f1a5a5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_delete_itemsd.py_TestDeleteItemsd_TestDeleteItemsd.test_memory.self_assertGreaterEqual_": {"doc_hash": "ec245d0d2507d32a389c5c045b1ed72bb073392f4e96db3c4f26e22d6b485164"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_delete_itemsd.py_TestDeleteItemsd.test_re_": {"doc_hash": "473d97e4423613a7ec7888b56adeb119d9a46b491581202024cd24aa59ea7e88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_unittest_TestDeprecatedRC.test_warning_beyond.self_assertRaises_Depreca": {"doc_hash": "f3b63b10e1c6156832c20c2659c81fd128a29d46e9ebf1e4d379e4e5ab0cec08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_TestDeprecated_TestDeprecated.test_arg_warn1.self_assertWarns_Deprecat": {"doc_hash": "49270f702da526e5b2b7a13892a930a7d3d187f50bfb8e97bdb3a31a670a510d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_TestDeprecated.test_2arg_warn1_TestDeprecated.test_2arg_warn1.None_2": {"doc_hash": "22acc3bb92b61a52a12db9fde64836cf286c2d99af37df5ddf96f2cfc9f116bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_TestDeprecated.test_future_TestDeprecated.test_arg_except2_unknown.self_assertRaises_Depreca": {"doc_hash": "8f156920987e20f1c9574d6de030695b30b4aa97f633b721d1bea7f67e7fdb60"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_divisible_pad.py_unittest_for_p_in_TEST_NDARRAYS_.TESTS_append_": {"doc_hash": "6254b8f2999ddeedd8fe45ee65ea986a44e3750984177e4253851a2f243e4036"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_divisible_pad.py_TestDivisiblePad_": {"doc_hash": "9f445b4630bd3969115406300f4d735be21829bdb577c588c623a2e8ce33193c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_download_and_extract.py_os_TestDownloadAndExtract.test_actions.None_1.except_RuntimeError_as_e_.self_assertTrue_str_e_st": {"doc_hash": "9dd484a2b76a848863b6f0164171ed203fe7a3a34c73fe50c25724fb80f53723"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_os_get_model_names.return._f_efficientnet_b_d_for": {"doc_hash": "aee3f7a9c47ae709b4d1321f8a20655685c144692064c3dd9171dcd5f2d86bdd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py__create_list_of_selected_None_26": {"doc_hash": "bae102c18dd40794693739e385a8b659f43aef726ef07056cabade46d48715cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_None_2_CASE_EXTRACT_FEATURES._": {"doc_hash": "39b5717badccb9e076433e6535633045cecaa6d613ef149e03b8701cea2c772e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_TestEFFICIENTNET.test_block_args_decode_TestEFFICIENTNET.test_script.test_script_save_net_tes": {"doc_hash": "ba7e354141226c360f69d5a2cc5c3a4beece3d7f848269190369cf1334d2acc4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_efficientnet.py_TestExtractFeatures_": {"doc_hash": "f82af68289a7b5fac5ae335a39c18bf3104c4d954517768a5f6d3b9263e5add9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_first.py_os_TEST_CASE_7._image_only_False_r": {"doc_hash": "c2903b88e330050bf7ffac5de0a5633c030ad071f85496e4dc279a4c94114205"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_first.py_TestEnsureChannelFirst_TestEnsureChannelFirst.test_load_nifti.with_tempfile_TemporaryDi.for_p_in_TEST_NDARRAYS_.self_assertEqual_result_s": {"doc_hash": "61918e0b3d841f72cd9ce0d928b3749ab2cc7c99603f553fe4c08d93518d6442"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_firstd.py_os_TEST_CASE_3._keys_img_test_": {"doc_hash": "9bed8ad8a33a08151b9d4623da959d27b3c6f0003e470e48906b7a7f65ffe859"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_channel_firstd.py_TestEnsureChannelFirstd_TestEnsureChannelFirstd.test_load_nifti.with_tempfile_TemporaryDi.for_p_in_TEST_NDARRAYS_.self_assertEqual_result_": {"doc_hash": "a03cc99a27bc30a703fbe3161a4a50a8890c29e2f86f6c53f7e653ab995edbdc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_type.py_unittest_TestEnsureType.test_array_input.for_test_data_in_test_dat.for_dtype_in_tensor_.self_assertTupleEqual_res": {"doc_hash": "8d9b0ad2f8c45b8999897e64c65e196ca38bc5c1c2ab5e614057f781bdd47c26"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_type.py_TestEnsureType.test_single_input_TestEnsureType.test_string.for_dtype_in_tensor_.self_assertEqual_result_1": {"doc_hash": "d0b8fe73ae88582f505a5412b79ce376605a784c50e826784f69c9d41e27f921"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_type.py_TestEnsureType.test_list_tuple_TestEnsureType.test_list_tuple.for_dtype_in_tensor_.None_5": {"doc_hash": "1300f38986d02e0c793ac4ac4ec0c05440a4b7820f0eb4ec046a32ef233663cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_type.py_TestEnsureType.test_dict_": {"doc_hash": "378c6399c9426ad24f65b9fe1b5526a0def1f79d35d5027bf0122910f1548ea2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_typed.py_unittest_TestEnsureTyped.test_array_input.for_test_data_in_test_dat.for_dtype_in_tensor_.self_assertTupleEqual_res": {"doc_hash": "71a4d1e61df2d145c06de2b0422d37cc7bc5852e59a9633e955a3c3fcef87561"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_typed.py_TestEnsureTyped.test_single_input_TestEnsureTyped.test_single_input.for_test_data_in_test_dat.for_dtype_in_tensor_.self_assertEqual_result_n": {"doc_hash": "07fa55a754390b30fdacabaf5da8ec76ad1b8c0f9df841d56710949b4c55caee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_typed.py_TestEnsureTyped.test_string_TestEnsureTyped.test_string.for_dtype_in_tensor_.self_assertEqual_result_0": {"doc_hash": "a278d63352ea21fb74393fb3b8b14a5d36b9d2785900b0fc7f78ffaf837e20f9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_typed.py_TestEnsureTyped.test_list_tuple_TestEnsureTyped.test_list_tuple.for_dtype_in_tensor_.None_5": {"doc_hash": "f3b3b4d82129e3117086e2f21fb3daf052f90710b0d774c90290efc886f49a00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensure_typed.py_TestEnsureTyped.test_dict_": {"doc_hash": "7ba177fedde05fdd3f9d28992aef3efb0c542985736802e8fe1935701d24a726"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indices.py_unittest_": {"doc_hash": "ac441f11bddfdb655fbfad8a6773325aa4d36a6f57d6957b6fbe3030fc0451a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fg_bg_to_indicesd.py_unittest_": {"doc_hash": "8e1a95436094010366a59bdbe9f6ec587d8d022ed7af93fc0d9ef7c1e8cfa195"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fill_holes.py_unittest_TEST_CASE_9._open_full_connectivity_": {"doc_hash": "21d998c4c170c1d95dd864bbf3801cc0bdc63be9c68694302b93ed69bd954d0d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fill_holes.py_TEST_CASE_10_TEST_CASE_22._": {"doc_hash": "bfd35c03e547e02b23a17a3f5f8211a2e2ddb82dfc1855b7ef15f77e09e243fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fill_holes.py_VALID_CASES_INVALID_CASES._ITEST_CASE_1_": {"doc_hash": "072ffdca4cfe10822afb2a58c618e43db8b2990ff3abec4dc894d587c2a215b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fill_holes.py_TestFillHoles_": {"doc_hash": "84c78379b678bb99d124b81850dda755c07a1e8282135c52cd50607928272526"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fill_holesd.py_unittest_TEST_CASE_9._open_full_connectivity_": {"doc_hash": "a590b430d28d64edee4e592f208d6541a90118f1d2c6570bf72c2550638e5cca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fill_holesd.py_TEST_CASE_10_TEST_CASE_22._": {"doc_hash": "2c92dcdd220e06d105396983520db11a1b76fdc4bac7e39c6cd076edafc8074f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fill_holesd.py_VALID_CASES_INVALID_CASES._ITEST_CASE_1_": {"doc_hash": "4c6faa735f4e62d3ec77c4d37d8cfe3ef222e2a99fb7db8e583064af0399f58e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fill_holesd.py_TestFillHoles_": {"doc_hash": "739ffb16aac5785f9070602afb3fe00dca411a220697c80fde65331cea9c200b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_flip.py_unittest_VALID_CASES._no_axis_None_one": {"doc_hash": "9942a7c4228fbcd48c6e951e187f204a54540e1f1caf1142b35d899bdae2a463"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_flip.py_TestFlip_": {"doc_hash": "b3a57f5d796f9ecfcfbdb41bbddc36bf637edfeb4a77adfbadcead78ca60a65d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_consistency_with_cross_entropy_classification_01_TestFocalLoss.test_consistency_with_cross_entropy_classification_01.self_assertNotAlmostEqual": {"doc_hash": "015b5a6af2389ae938dbe7b6c04ed4ae2222dc4aec7a65dfbd69111d1b638b5a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_foreground_TestFocalLoss.test_foreground.None_1": {"doc_hash": "ab0d5e6f88341fd6dcaa716e282cb8dfbffdbbe770a374875bfcee1480230c30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fourier.py_unittest_TestFourier.test_forward.np_testing_assert_allclos": {"doc_hash": "bd32054de05ae460ae937d24e3fb8854b6a2026062f43c4c6e69a0569b329ae1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_fourier.py_TestFourier.test_backward_": {"doc_hash": "a9c98aa7c542387bc716521b97f999d84e24afdd08d15a7f59293fe6885e09ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_label_classes_crop_centers.py_unittest_TEST_CASE_2._": {"doc_hash": "11ba3a89f9054abd15c8f42ab36d19ff333563be969d40273d6e750812aab3ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_label_classes_crop_centers.py_TestGenerateLabelClassesCropCenters_": {"doc_hash": "383bd0029261b90a2b47b1c78f012a2c0f3caca532f26b346035074850249721"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_pos_neg_label_crop_centers.py_unittest_TESTS_append_": {"doc_hash": "4f18627cbdc61e8e052d21834b8c49d9b43e3868acfb61dae907afb822221009"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_pos_neg_label_crop_centers.py_TestGeneratePosNegLabelCropCenters_": {"doc_hash": "3db589624e6c2c6ea46685ebe579d853584c6847750353bcbf9c1971eb97d508"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_get_equivalent_dtype.py_unittest_": {"doc_hash": "3245a0fa8fc39cb5a18853d155f91f185ed62cfa5850e0e849e5b48452a20a53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noise.py_unittest_for_shape_in_128_64_.for_input_type_in_TEST_ND.TEST_CASES_append_shape_": {"doc_hash": "beb161fecbaf966fb3f5bbe71b003b7300cb6e7d982464e64b4d1ba3845a57a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noise.py_TestGibbsNoise_TestGibbsNoise.get_data.return.input_type_im_": {"doc_hash": "17d3fea71adbad0f287cc29f2a686aa4554ff0a7dda73cefcf37570b502b3a2f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noise.py_TestGibbsNoise.test_same_result_TestGibbsNoise.test_same_result.self_assertIsInstance_out": {"doc_hash": "2f582a63a9cce7493945a87acabfc24b8b2b46e0b16bc3cde4946f0272d33a5c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noise.py_TestGibbsNoise.test_identity_": {"doc_hash": "be0b1f9020ea6edc0a5db34b623622dc98581d5cc1838baadb51ab7780fa6853"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noised.py_TestGibbsNoised_TestGibbsNoised.get_data.return._k_input_type_deepcopy_v": {"doc_hash": "d2b49e22e5e3dc1973b3b80c05db8a583902fc086b1da67851ca5358deeb213c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noised.py_TestGibbsNoised.test_identity_TestGibbsNoised.test_identity.for_k_in_KEYS_.np_testing_assert_allclos": {"doc_hash": "3d095deb5cbf28890a0982266c0e9bde852f2a8992d63c1c700239b0b7d69ae2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gibbs_noised.py_TestGibbsNoised.test_alpha_1_TestGibbsNoised.test_alpha_1.for_k_in_KEYS_.np_testing_assert_allclos": {"doc_hash": "9e5f2d660c418f673d6bfe8621e811ce8b5c2c024934a17c8190098c007467fd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_grid_distortion.py_unittest_": {"doc_hash": "e49765924f4d2e65cd95b6e9412631d861a0e1aba20f346e828a19dd61f78169"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_grid_distortiond.py_unittest_for_p_in_TEST_NDARRAYS_.TESTS_append_": {"doc_hash": "02a29b41b989f8fd5c87cbdba4b426c802ba26d256d81a895e8b5702d4799c7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_grid_distortiond.py_TestGridDistortiond_": {"doc_hash": "b08ec672e01785bb5b4a7870260cc684699a2b2bf11fcebce0d9c06533242f26"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_decollate_batch.py_unittest_": {"doc_hash": "564590daf572add7c32bea43e2208084d0d81cce96c92945b865dddf433e2e78"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_early_stop.py_unittest_": {"doc_hash": "e0ac20fab04c31e42a9b8113469cc49f07bc2b6e955bb54dfe03f076936684c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_mlflow.py_glob_": {"doc_hash": "a7e3402b260ad116672fb8bbff5fc8f4258a7628f703f8cc15cbf005c58484c6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_nvtx.py_unittest_TEST_CASE_1._image_TENSOR_1_T": {"doc_hash": "61363efad98a2086ff0cc6ea2a363da808c3aa13630305d995c292ed1a247151"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_nvtx.py_TestHandlerDecollateBatch_": {"doc_hash": "bec73a40737bb88b6eea06e3194b7cb23e4c53b69cd0e83d1441f4b6cfd2ca08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_file_TestHandlerStats.test_exception.with_self_assertRaises_Ru.engine_run_range_3_max_": {"doc_hash": "8449369f47bfdfb30f31edcca511ed48dc4f171fba669a7fbfd34655ddb46c2f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_attributes_print_": {"doc_hash": "dcb92317c7716faffae7f70e86fb2ff898b96ed1ca62a91b3375ce626eceb0c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_histogram_normalize.py_unittest_": {"doc_hash": "a4d0fdd1bf6d4ecaae40fd100e19cc9294dbf846ecff4020e24d7d40cfc1d560"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_histogram_normalized.py_unittest_": {"doc_hash": "a87b109f470f3b0af8a39d1973cae1b4ac3cafbbeb52492286bf8e11921ed8c6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_fast_train.py_math_from_tests_utils_import_D": {"doc_hash": "e5498f1d46e05e723cc8927624add834dec869930e72fa00317034e526145d7e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_fast_train.py_IntegrationFastTrain_IntegrationFastTrain._test_the_fast_training_": {"doc_hash": "11683d30e3890024b1f501305a1818edf9e14ce83508cab9c7c058330b7e4d58"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_fast_train.py_IntegrationFastTrain.test_train_timing_IntegrationFastTrain.test_train_timing.train_transforms.Compose_": {"doc_hash": "d8af3bd5e2ffba4a879ffb6f66609b969901db7586804bab572704387def089f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_fast_train.py_IntegrationFastTrain.test_train_timing.val_transforms_IntegrationFastTrain.test_train_timing.total_start.time_time_": {"doc_hash": "3cc6976c07956b06480efdf94e754edfa510b454d1e24dc670796dd977749d53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_fast_train.py_IntegrationFastTrain.test_train_timing.for_epoch_in_range_max_ep_": {"doc_hash": "dae8ab955a94c0006edca654bbb89f6d04aefe7b9f66e3e0113b327261a7a15e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_unittest_STNBenchmark.forward.return.self_stn_x_": {"doc_hash": "ec017198a35b6b43439fcb9c1374d26255da0fa81da1d8d1201d0768f49412be"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_training_test.val_handlers_run_training_test.train_postprocessing.Compose_": {"doc_hash": "a191d1b58cd5a1f2ad07fb51a674496bef905177bb9cdc785ea6d000eea9d99f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_intensity_stats.py_unittest_for_p_in_TEST_NDARRAYS_.TESTS_extend_": {"doc_hash": "40055f4e8d1a1c150a37199a518a7fd94e1434acdaef738e8f4919013f323ea0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_intensity_stats.py_TestIntensityStats_": {"doc_hash": "99ed95b97aae145b9a868dc2ef814ddb244ea42e0ff54beab60df7eb2523b540"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_intensity_statsd.py_sys_TEST_CASE_4._": {"doc_hash": "5e882b2874a60f9306a0aede823ac2475feafd9fd6241d48d5bae1891259b9f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_intensity_statsd.py_TestIntensityStatsd_TestIntensityStatsd.test_dataloader.mp_set_start_method_orig_": {"doc_hash": "d7f29f559d1087cc605720e1748f1d30c48a1b4a5f79fb9ebc8af8457e6da6ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_intensity_statsd.py_TestIntensityStatsd.test_mask_": {"doc_hash": "161c4674eaf83725f74cb0cb5f3378bb2f1ef8c55f2f2c34f6a10939c15ce7c2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_for_t_in__None_14": {"doc_hash": "34b1c4d90cfb53572b895f9307867509fcea0945fa852cf8c007c0e6b05ab646"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TESTS_append_CropForegr_TESTS_append_Zoomd_3d_": {"doc_hash": "a088449ff215016ce2ac0f3ab3ac059f9cf8c7cbda14ce0100a9f5d16db4fad8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_TESTS_append_RandZoom_3_TESTS_append_RandCropBy": {"doc_hash": "8f1e2c30871135be338a7a34fc09ae43c2ece93f58140ea7d6043d520be5f527"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_inverse.py_None_46_no_collation.return.x": {"doc_hash": "9583474dec6d282843275409b15cc80c3a1f002df517868962abca0131ff84fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_invertd.py_TestInvertd_TestInvertd.test_invert.inverter_1.Invertd_": {"doc_hash": "9222ed0f3a6f99cce71e71d79ad67994e3615e52c6a7c42a9a68f3875475a073"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_invertd.py_TestInvertd.test_invert.expected_keys_": {"doc_hash": "ce28fc0bb9816f8f830a7e482043580d3c945c1ca40b11a47dc0b277547ed80a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noise.py_unittest_for_shape_in_128_64_.for_p_in_TEST_NDARRAYS_.TESTS_append_shape_p_": {"doc_hash": "9a399bf6a8f756b9689da120717b9e566d57656c34e8a4a58af573f280987015"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noise.py_TestKSpaceSpikeNoise_TestKSpaceSpikeNoise.test_same_result.np_testing_assert_allclos": {"doc_hash": "a5198b77382518fbc2538f1efa07683df13e961ea83385fa226da2f79897a83c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_same_result_TestKSpaceSpikeNoised.test_same_result.for_k_in_KEYS_.np_testing_assert_allclos": {"doc_hash": "4c4643083b0b8fca6d445e011ec49be1a3816f5417be7811d09429deb14f649b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_unittest_grid_3._": {"doc_hash": "ae0fced5a3ed69bec8c08bf40d122d18e51d038eed11e3bba9bd51b326d1f591"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_filter.py_unittest_INVALID_CASES._ITEST_CASE_1_": {"doc_hash": "8562d900f7882f34150652833957595452bb75b76b828b2cc88eaa5f5f4f4b10"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_filter.py_TestLabelFilter_": {"doc_hash": "16d245bd5895494a83b15bf278215e6ccb450d6f701422e399ad9a23b3fce54d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_maskd.py_unittest_for_p_in_TEST_NDARRAYS_.None_4": {"doc_hash": "056b898fc0b4631872c7c56a03d606110cf724b814f1f5e800b0479c32af8001"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_maskd.py_TestLabelToMaskd_": {"doc_hash": "20fc5056f8f7238810be2635968e09f04216480fabbae3f6fa3bb473a842f88b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lmdbdataset.py_TestLMDBDataset.test_shape_TestLMDBDataset.test_shape.with_tempfile_TemporaryDi.None_1.else_.with_self_assertRaises_Ru._filename_list_updated_": {"doc_hash": "b51cd9740a39ddd1100e15dd2897cff84e8598075caea59b47723c8a357f01e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_kwargs_TestLoadImage.test_kwargs.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"doc_hash": "3f68f85dc77b93c0eaef9f0070eb8510638981b4ff79f557188d923106d2884e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_TestLoadImaged.test_register_TestLoadImaged.test_register.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"doc_hash": "f6f7597844461d21903511cce07b69c66da96be7aaa6856e825a91e8e719e80b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_TestLoadImaged.test_channel_dim_TestLoadImaged.test_no_file.None_1.LoadImaged_keys_img_re": {"doc_hash": "6b2b460df035236572e7405c15a15ef64c12d379bb346ae0cb0c5831d858b88a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_TestConsistency_TestConsistency._cmp.with_tempfile_TemporaryDi.np_testing_assert_allclos": {"doc_hash": "963dab415bae763f48864c87b2c95104e7597bb29561887687e23e704c6cb347"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_TestConsistency.test_dicom_TestConsistency.test_dicom.None_2": {"doc_hash": "a1969036432f765de8dbe06017ccb46d840242b6d92d82ba401de710043ff9f5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_TestConsistency.test_multi_dicom_TestConsistency.test_multi_dicom.None_2": {"doc_hash": "5c2d184a5e3eba634b23de81e67c48e6213be3e8b9a82d4b77ff641843287b30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_imaged.py_TestConsistency.test_png_": {"doc_hash": "26311f586e8813254ab3b84b181d56cf18ab28450343c8ace6ef9230bb212510"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_loader_semaphore.py_mp_": {"doc_hash": "c563cdda833dcefcb43d12349ae60f7710fef0d302b5fd5267b96e4fcad2afe1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_look_up_option.py_unittest_TEST_CASES._": {"doc_hash": "ef37da043ad7aa80daf80935ae5a469e00eddd1dc17faefa3ad60037d15e6e58"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_look_up_option.py_TestLookUpOption_": {"doc_hash": "d87fed1066f16ff4d70c4975159c5718502cadb230ec29931ca97887f240d02b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lr_scheduler.py_unittest_TEST_CASE_LRSCHEDULER._": {"doc_hash": "55eb5494d4109d71619aa3b32f88eff78dea351136f2d4691d586912e85cc379"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lr_scheduler.py_TestLRSCHEDULER_": {"doc_hash": "f1724fd1107266f125cc0a9a30350a4f75b6b6a2ce3c5e3e3284a2c539333369"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_classes_to_indices.py_unittest_": {"doc_hash": "83ad2b2778c6785044a2b27ced407bb9dfe9617d3b94511d9d4c9aa44a72a3ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_label_value.py_unittest_": {"doc_hash": "d2d0e0d39e4e9a89fc15330514337eae98bfdd2a0738945b172c79f9efb494f3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mask_intensity.py_unittest_TEST_CASE_4._": {"doc_hash": "1294b981fdb70dda5f9f5c3a088cfc0d1e3618bc46b60c9810dba2e49117014e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mask_intensity.py_TEST_CASE_5_TEST_CASE_5._": {"doc_hash": "6457e936fd4d363d30da48f0f19d5b05b5bad900c34bfd1da24f58c3ca4f2163"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mask_intensity.py_TestMaskIntensity_": {"doc_hash": "9f8a67f44a1b8d9b7fe2c7e97a43b9c0b8c4b9495024c431c821b4849d4dfb6b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_inference_wsi_dataset.py_TEST_CASE_2_TEST_CASE_OPENSLIDE_1._": {"doc_hash": "d3240d64d966989f122b74fca4cfe2236eb0687bd089609d7b81ba7678effa8b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_loss.py_TestMaskedLoss_TestMaskedLoss.test_shape.None_1": {"doc_hash": "6aa39ab8a9a7d0d0b82515797f93f7fdf8ec4a70e9607ee206a617d3e0c1e4b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensemble.py_unittest_for_p_in_TEST_NDARRAYS_.None_5": {"doc_hash": "76328e3c2f862435767e334786fea4d2e800258ef66ab3fdaa506affc294761c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensembled.py_unittest_for_p_in_TEST_NDARRAYS_.None_5": {"doc_hash": "04ea1247d5fa3f55172a6612c38e6265fa8e2d1a7156484c255aac3c2d18da06"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mlp.py_unittest_": {"doc_hash": "894cfb7de003a36b81dd9c2596371efbec34f78e210e5e67b8face89faa851c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_os_for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.None_4": {"doc_hash": "412c195bca57fdf9818cc50a2f75789d09088d84c326c5f9534f0b756c71cd9c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead_TestNiftiLoadRead.test_orientation.assert_allclose_saved_dat": {"doc_hash": "16119188d2c2445e273c74e7a17a02528c0f39361dc55e5ea0f07914a7fd098c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_2d_TestNiftiLoadRead.test_write_2d.with_tempfile_TemporaryDi.for_p_in_TEST_NDARRAYS_.None_5": {"doc_hash": "543a84b501990c8748735c5090401ca2f47691c665cba9106ed5816fe57260f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_3d_TestNiftiLoadRead.test_write_3d.with_tempfile_TemporaryDi.for_p_in_TEST_NDARRAYS_.None_5": {"doc_hash": "03f7065da9aec7e491fa247a963807138e882e38f9cd9582961e9bbddc8ba587"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_4d_TestNiftiLoadRead.test_write_4d.with_tempfile_TemporaryDi.for_p_in_TEST_NDARRAYS_.None_5": {"doc_hash": "37fb0a6ca54e959497553ab2731be1edf954bb34fdc27edf85619b04932a1959"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_unittest_for_p_in_TEST_NDARRAYS_.None_8": {"doc_hash": "f528487fec42e258d7ccb75a18ba4b1dd88d21190e2eb411af46cc3233c610b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity_TestNormalizeIntensity.test_nonzero.assert_allclose_normalize": {"doc_hash": "80088f801d8f317c578b7b470a9871f7cd048948bbf76e597c64a8c51f924445"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity.test_channel_wise_TestNormalizeIntensity.test_channel_wise.assert_allclose_normalize": {"doc_hash": "e204bd161b19b5e8c33e0342a154fb5a2af3b163bfa559792518814c7933bc4b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_unittest_for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.None_2": {"doc_hash": "c987f761f77b4fe26f38efe0ed679bc466cb25f2430bc117b7a2e92c3b1c0714"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_TestNormalizeIntensityd_TestNormalizeIntensityd.test_nonzero.assert_allclose_normalize": {"doc_hash": "88f9c6f445040f14a117d9fd9f15fefd3d0aafc70fc58a9488a57a78a92bb052"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nvtx_decorator.py_TestNVTXRangeDecorator_TestNVTXRangeDecorator.test_tranform_array.None_6": {"doc_hash": "7fbbb61335280bda641437f21109775eb53f18493b246177c902a62e43089e5a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nvtx_decorator.py_TestNVTXRangeDecorator.test_tranform_dict_TestNVTXRangeDecorator.test_tranform_dict.None_6": {"doc_hash": "fc3804ef7b04ce794936fc5f84f8bac8e3f95fad04f064f88ee84111641cbcfe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nvtx_decorator.py_TestNVTXRangeDecorator.test_tranform_randomized_TestNVTXRangeDecorator.test_tranform_randomized.for_tran_in_transforms_tr.if_isinstance_tran_Rando.break": {"doc_hash": "459f8d1b8fb9a8d9c9cbfb9301b9617af3077889c31b5a8d72b0bee313ca0b6d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nvtx_decorator.py_TestNVTXRangeDecorator.test_network_TestNVTXRangeDecorator.test_network.None_6": {"doc_hash": "e1101aca655908f9d60956e6ab3491953e75b497595076f61f4d42dbbd5ad9b9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nvtx_decorator.py_TestNVTXRangeDecorator.test_loss_": {"doc_hash": "b2f563065c5d53874a8ba9f3b41e8c7f3b1f6ac72a67508e4d590ae8bbf717ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nvtx_transform.py_unittest_TEST_CASE_DICT_1._image_np_random_rand": {"doc_hash": "6e22b8adea2cbf8c29b293cbe7b6af78329eb27d12646cb386ea2a1a44d170a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nvtx_transform.py_TestNVTXTransforms_TestNVTXTransforms.test_nvtx_transfroms_alone.for_tran_in_transforms_tr.if_isinstance_tran_Rando.break": {"doc_hash": "ff3d6a4d747da7d1e31261afc8150468176bbe3c09bc575dc920935f44204589"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nvtx_transform.py_TestNVTXTransforms.test_nvtx_transfroms_array_TestNVTXTransforms.test_nvtx_transfroms_array.None_3": {"doc_hash": "6e667c2c497f75dcc11ac5fdb4db1b907dee987ddb4a269e5c369b737b7b6897"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nvtx_transform.py_TestNVTXTransforms.test_nvtx_transfroms_dict_": {"doc_hash": "553907e78d8cb7942921dac960f5d1fbdaef7ec91418892e85e2d3fcbd7749e6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_one_of.py_unittest_TEST_INVERSES._": {"doc_hash": "583971585807c9070fa1603b769dfd0b0fbd105370a117193dece897f77627dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_one_of.py_TestOneOf_TestOneOf.test_len_and_flatten.self_assertTupleEqual_p_f": {"doc_hash": "a4edaec5d97bea1633680a416f440e10636fb22f0ea5b0023f06e12cd3b7cb45"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_one_of.py_TestOneOf.test_compose_flatten_does_not_affect_one_of_TestOneOf.test_compose_flatten_does_not_affect_one_of._match_p_f_": {"doc_hash": "b67d28cacb3586983912df54b761c1c87d004be0fd139673880587bc7da661e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_one_of.py_TestOneOf.test_one_of_": {"doc_hash": "11317bbf69f645c8521c7861c1be09adfe27dffd10203cd69419a2b19e9aec00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_partition_dataset.py_unittest_": {"doc_hash": "9bbf442212067185056f167146d9d0d1289920f7bd4e15408880962a85b8e16a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patchembedding.py_unittest_for_dropout_rate_in_0_5_.for_in_channels_in_1_4_.for_hidden_size_in_360_.for_img_size_in_96_128_.for_patch_size_in_8_16_.for_num_heads_in_8_12_.for_pos_embed_in_conv_.for_nd_in_2_3_.TEST_CASE_PATCHEMBEDDINGB": {"doc_hash": "a667281148a1ef9bfe3e57324975ab45bf8e5199a05eb78f001cee96e656ad63"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patchembedding.py_TestPatchEmbeddingBlock_": {"doc_hash": "178ba21a8157c93078f9f48db36e1f74708997b0becc1297a8e90f042c23bda4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain.py_unittest_None_21": {"doc_hash": "ddd8b79dc5c18012652b8a81951833041ca90cc091b4bfe165472accec6cf7df"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain.py_NORMALIZE_STAINS_TEST_CASE_4_NORMALIZE_STAINS_TEST_CASE_4._": {"doc_hash": "d515b673f2b138982d5a18ce2bfb40a5341e6c0ad53d58be408195303468635c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain.py_TestExtractHEStains_TestExtractHEStains.test_transparent_image.if_image_is_None_.else_.with_self_assertRaises_Va.ExtractHEStains_image_": {"doc_hash": "21e9f47e619b6c46599b6d2462ce88350da3b4a800a728207f0eb02b00a04ace"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain.py_TestExtractHEStains.test_identical_result_vectors_TestExtractHEStains.test_identical_result_vectors.if_image_is_None_.else_.np_testing_assert_array_e": {"doc_hash": "a2810818f3ff63dbab90e92fe6bb18712e4ab226238d252331fc4dffca1c6afb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain.py_TestExtractHEStains.test_result_value_TestExtractHEStains.test_result_value.if_image_is_None_.else_.np_testing_assert_allclos": {"doc_hash": "213d6906f02addd65296941fe98074336a460ffd794b8fcfa0401acb33aa5e93"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain.py_TestNormalizeHEStains_TestNormalizeHEStains.test_transparent_image.if_image_is_None_.else_.with_self_assertRaises_Va.NormalizeHEStains_image": {"doc_hash": "e0d12adff1dd37ab59f7e16f8d165ef44145405c5bdb8ba277ced7a7ff9511bc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain.py_TestNormalizeHEStains.test_result_value_": {"doc_hash": "7b531b58e41ba2bd7b88da2f03480e978e6c32c58a083eb5c45491d7b970c8aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain_dict.py_unittest_NORMALIZE_STAINS_TEST_CASE_4._": {"doc_hash": "79a5fc8e2275a3b17d5631c2d5737e790b178ccce789af7ffe5c5419d0f1be4b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain_dict.py_TestExtractHEStainsD_TestExtractHEStainsD.test_transparent_image.if_image_is_None_.else_.with_self_assertRaises_Va.ExtractHEStainsD_key_": {"doc_hash": "eaf7d03d675aba61fe197f1ade9dc2c768f11e8df8065b89b0a676d0609b7262"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain_dict.py_TestExtractHEStainsD.test_identical_result_vectors_TestExtractHEStainsD.test_identical_result_vectors.if_image_is_None_.else_.np_testing_assert_array_e": {"doc_hash": "e0bd668aaec3e5b97d24064e033211df9fb68b190fe2626c38e159d4cbce5bc9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain_dict.py_TestExtractHEStainsD.test_result_value_TestExtractHEStainsD.test_result_value.if_image_is_None_.else_.np_testing_assert_allclos": {"doc_hash": "6e9edb7600a50ac0cfaddd30cf4ccfda85e4dbbc3c4a072eb82c01dd84429de8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain_dict.py_TestNormalizeHEStainsD_TestNormalizeHEStainsD.test_transparent_image.if_image_is_None_.else_.with_self_assertRaises_Va.NormalizeHEStainsD_key_": {"doc_hash": "e7e677387df8a8428962bac8b1a5c4cb7f04e4411eeeff31d756b7df71f9adf7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pathology_he_stain_dict.py_TestNormalizeHEStainsD.test_result_value_": {"doc_hash": "1424fceea5a3e59f45d0cc54f6d7a480fdaf429ec0a6c982de410bdc43e4ba5b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_rw.py_os_TestPngWrite.test_write_gray_1height.with_tempfile_TemporaryDi.np_testing_assert_allclos": {"doc_hash": "24772e64d01cc099504478b32a76b1fb168b11ef1a02b915192a0d47b5589171"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_rw.py_TestPngWrite.test_write_gray_1channel_TestPngWrite.test_write_gray_1channel.with_tempfile_TemporaryDi.np_testing_assert_allclos": {"doc_hash": "5574f68c4df2a15fb87501cbafa52d3c2f068a15fa3efa18cc09652ddc36a4c4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_rw.py_TestPngWrite.test_write_rgb_TestPngWrite.test_write_rgb.with_tempfile_TemporaryDi.np_testing_assert_allclos": {"doc_hash": "0eb7a261687ab259c3536845c6e84bcdb18948343d610045acdc2058df429772"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_rw.py_TestPngWrite.test_write_2channels_": {"doc_hash": "038e4dcf648cdfa107cd9c0840fa296acb9810a07e8ab0799c0d8175d1cf4f99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_prepare_batch_default.py_unittest_": {"doc_hash": "fa2e38892573427367e0be2ac7611bab2b8943b3bcb18f7d3845e5d22a29afd0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_prepare_batch_extra_input.py_unittest_TestNet.forward.return._x_x_t1_t1_t2_": {"doc_hash": "38f5c6d6ce1565893d70114bf1260d96007f5b79a24ae65614479cc4e93096f5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_prepare_batch_extra_input.py_TestPrepareBatchExtraInput_": {"doc_hash": "9048511324636e6703134c1a9146023e038d6581db70de3af711899826c87e0e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_print_transform_backends.py_unittest_": {"doc_hash": "08d1b3caa3b05448c1cd7a8f1f8e8c32fb5c84bc314431a23062b46507f81a19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine.py_unittest_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_8": {"doc_hash": "74798ff8597ea43e2acd978be78dc785801801d1031e4fceab082e4bb741879c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine.py_TEST_CASES_SKIPPED_CONSISTENCY_TestRandAffine.test_ill_cache.None_1.RandAffine_cache_grid_Tru": {"doc_hash": "8ea503b528536035f800b46f2bea08bfa3d0c79a8fb5212e0d177fa0818b87fc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine_grid.py_unittest_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_2": {"doc_hash": "a40917a69c3cbeca3fe6321f6a40051c373ae60827a1382b5b47f0d4285d07af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine_grid.py_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_3_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_3": {"doc_hash": "26cf67ba4fc9f83864831dbf66e859239a220cf84f9dcd6fa11874ff441a9888"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affined.py_unittest_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_8": {"doc_hash": "cb9a803657b1c1ca99d27c12753ced2447c9bd2faa9f79f70c7de21d7b3a4cd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affined.py_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_9_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_9": {"doc_hash": "fd585b0c8fbf811e6de22070b0272e24070fb407058714cdda02e23e5ea352e6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affined.py_TestRandAffined_": {"doc_hash": "0155d7c0111fac86ce9f6979877e0d5e469a71b2a55ee512a648102bf5e9824c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_bias_field.py_unittest_TEST_CASES_2D_ONES._": {"doc_hash": "f3adc52d0217b5018b78bfb44a1445add0f5ce7a05536baf8e0da919c5d3d971"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_bias_field.py_TestRandBiasField_TestRandBiasField.test_output_shape.for_fn_in_np_random_tor.for_degree_in_1_2_3_.None_2": {"doc_hash": "0476c8961fa90e4a4830e7ade6ef9c56806aab0492a00c7c7e18cae12948f9e7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_bias_field.py_TestRandBiasField.test_zero_range_": {"doc_hash": "5b5069c130d4194514ec9e70fffbb3baf8cda97e249fc92d1ea2aaf5176b2a72"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_bias_fieldd.py_unittest_TEST_CASES_2D_ONES._": {"doc_hash": "6e4c4b7928309cb4e25d43a71376394783c2e280d14ef6aa5676d0d495ce51ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_bias_fieldd.py_TestRandBiasFieldd_": {"doc_hash": "f643bb59eac04bf220e635da6d0d0d7495049de4676a3f7541f61d6486ec71a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_coarse_dropout.py_unittest_TEST_CASE_7._": {"doc_hash": "b7f761937596164004e5d31b25217049170e1194c84a7294f0e45e3bd7e58981"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_coarse_dropout.py_TestRandCoarseDropout_": {"doc_hash": "fee3b1c255e8e84b0fdab4a5508c8b688bf3c7a4e6d702b1ba8995e810f10555"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_coarse_dropoutd.py_unittest_TEST_CASE_6._": {"doc_hash": "d5019616d195419fa485a81810bc7a5efde49ccd985dcb1e262d8adfc802ec1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_coarse_dropoutd.py_TestRandCoarseDropoutd_": {"doc_hash": "7cffb66c6bbd66c8a7236281fb676682e4b70ab66706d457d15718b06c18c778"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_coarse_shuffle.py_unittest_": {"doc_hash": "24fb6bba390b68d45a622c39008099dd90d23b03e9427d7ab96b7f4ef767c528"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_coarse_shuffled.py_unittest_": {"doc_hash": "0a122ab3be113ceab0b489ecd0217ed53f6925c6944d1612878b0e7a878fc8dc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_label_classes.py_unittest_for_p_in_TEST_NDARRAYS_.None_4": {"doc_hash": "ac25a033f48cd1f07417c531353927773a4f0560a8ef95e1f3b663257a01699b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_label_classes.py_TestRandCropByLabelClasses_": {"doc_hash": "e95027ba1670ef2e74d155fad427fa11f2a86abaec5949fbcdbcf7d59d5b8150"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_label_classesd.py_unittest_for_p_in_TEST_NDARRAYS_.None_3": {"doc_hash": "ee42d7f6c0e2691e0df9ffbfe1a29818e0d86ca22bafc3af2416cce94481c1f1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_label_classesd.py_TestRandCropByLabelClassesd_": {"doc_hash": "f9cf68d9c3b441088ed536d878078d0d5a1c3a26074fffd52ad79ec01d40bc79"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_label.py_unittest_None_3": {"doc_hash": "e5b38c76ffd85521248cf040e8ff60f5d1f5cdc2b5923d6634691a26c0457b8f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_label.py_None_4_None_4": {"doc_hash": "734489bc4f551fed56f5d3ed968a896b7c8503d1e9a8cd986d7697ae1018b960"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_label.py_TestRandCropByPosNegLabel_": {"doc_hash": "950ec4cef76b9c7298b7a52f4c05b09c33bebee33899e0a0d12d14030d97eb19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_labeld.py_unittest_TESTS._": {"doc_hash": "b966e6b2730e616e24c619aaccdc19b48184ab57d3632fcdee8a80c4a58b5e00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_dict_transform.py_unittest_TEST_CASE_RAND_ROTATE_1._": {"doc_hash": "e6e1ad3f7d9244b6fc32309bd878bb96cb28b46da896c1bfc022d4a4bcf13db4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_dict_transform.py_TEST_CASE_RAND_ROTATE_2_TEST_CASE_RAND_ZOOM_2._": {"doc_hash": "9219f11f76d3abc0beba97a44e0e481ee1996b5d55f55015699f05908a578da9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_dict_transform.py_TestRandCuCIMDict_TestRandCuCIMDict.test_tramsforms_numpy_single.None_5": {"doc_hash": "d634b8ecdda66627aae02024ca8c990668d099434f97bd8783d98df1ea0735f9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_dict_transform.py_TestRandCuCIMDict.test_tramsforms_numpy_batch_TestRandCuCIMDict.test_tramsforms_numpy_batch.None_5": {"doc_hash": "1b609575161fcd8eeb028e960c4a564ad70bdcb511762562af9695194b48b78c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_dict_transform.py_TestRandCuCIMDict.test_tramsforms_cupy_single_TestRandCuCIMDict.test_tramsforms_cupy_single.None_5": {"doc_hash": "64c0d497e16614b89ce99ff6743888d42fcb2af7b3d4afabd4cd4c1065deaafb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_dict_transform.py_TestRandCuCIMDict.test_tramsforms_cupy_batch_": {"doc_hash": "fa95c3a23c38514d9e1e76d98d7680b08d69c8e1f0968680609752b8bfb73375"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_transform.py_unittest_TEST_CASE_RAND_ROTATE_1._": {"doc_hash": "e1a3e72672295c6b886ff918fe8a071cbf2a8de42b9be8fb2f7cf844248b7f43"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_transform.py_TEST_CASE_RAND_ROTATE_2_TEST_CASE_RAND_ZOOM_2._": {"doc_hash": "8af3b00ec38d9f3817fe3f03560341dd6e77a3b83e6a9c91ac27a243c656285a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_transform.py_TestRandCuCIM_TestRandCuCIM.test_tramsforms_numpy_single.None_5": {"doc_hash": "3b257b1a3145a7db96958e8039cf6299c66d895393bf689b490a791c44e6e306"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_transform.py_TestRandCuCIM.test_tramsforms_numpy_batch_TestRandCuCIM.test_tramsforms_numpy_batch.None_5": {"doc_hash": "f072cbb1cb6d16ee66bba32b4721f09f5f310519ad480719a7cfc644857a0ad8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_transform.py_TestRandCuCIM.test_tramsforms_cupy_single_TestRandCuCIM.test_tramsforms_cupy_single.None_5": {"doc_hash": "1bdd6d544bc55e38b59962538bebe6d1b59f328a18d65353d2711a50e17aa4ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_cucim_transform.py_TestRandCuCIM.test_tramsforms_cupy_batch_": {"doc_hash": "884d19e30578a47bae427cbee95ed5c86e78bc82105c64032739bb5e6548566d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_deform_grid.py_unittest_": {"doc_hash": "a8e47791243ac49186c7760cefbb5e9f197dbed92b407d581c6957730d15cf5a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_2d.py_unittest_": {"doc_hash": "a80b154b51cbe6f2b227ae48a48d7f54c7bba642027e1c347b282bdcbf3e4665"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elastic_3d.py_unittest_": {"doc_hash": "cef5aa07a8a1bcde834f25536f3a4de51be9f17de56ab8b1df9ca010e8b57074"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_2d.py_unittest_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_5": {"doc_hash": "70621b8f099900fdbcc16091b12a901bb12099583f76013eadb370f86530ab87"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_3d.py_unittest_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_5": {"doc_hash": "1feb4349e1f9ea89e605f186dac3325440835fc90990cc5f1b118532316be5cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_noise.py_unittest_": {"doc_hash": "1106ddb0498e252c48ae909b275ee3b5f9e07c8e912de77a9c32b91b4cddadb2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_noised.py_TestRandGaussianNoised_": {"doc_hash": "e911e5d3aaf008a62a45f55d462cd66119889a4dd1e7b0058df2d8eda818d174"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpen.py_unittest_": {"doc_hash": "3c006cc792cccecb2e4fb16e146b6db9d4a578b32a2160cd71c30ab366c865fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_sharpend.py_unittest_": {"doc_hash": "40b551cdf1b1352360d1705879b0b4225bb164fcb0c21ff5cfaeadc4f45e1ee1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smoothd.py_unittest_": {"doc_hash": "57ab66eec5e660e3229c45a736241d1de85bcf55c713ee6b10139d41cb97f7a5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noise.py_unittest_for_shape_in_128_64_.for_input_type_in_TEST_ND.TEST_CASES_append_shape_": {"doc_hash": "cf9393a14be397e2b6d4b92d599adebf4609b08a1c3cd70a76e3d70d321472aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noise.py_TestRandGibbsNoise_TestRandGibbsNoise.test_0_prob.torch_testing_assert_allc": {"doc_hash": "8413d8673dbd0d08b2bd1632b5eeb37e98a9a1d0a86ece54d9dd6059ba3a6cd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_TestRandGibbsNoised_TestRandGibbsNoised.test_0_prob.for_k_in_KEYS_.torch_testing_assert_allc": {"doc_hash": "4f02a875409961a979a75e9a8caf2f77fe193b72db15a0d4b2527813fbb7eff2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_TestRandGibbsNoised.test_identity_TestRandGibbsNoised.test_identity.for_k_in_KEYS_.np_testing_assert_allclos": {"doc_hash": "eceea64edb875d599598cac5586c4755fed0bc8d11c257db56655a3924cee5d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_TestRandGibbsNoised.test_alpha_1_TestRandGibbsNoised.test_alpha_1.for_k_in_KEYS_.np_testing_assert_allclos": {"doc_hash": "91a6b5955f9ce620f45dd3b2fa48569856c25c3bd618bd8fa9e5059971647d83"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gibbs_noised.py_TestRandGibbsNoised.test_dict_matches_": {"doc_hash": "174b9956dde2e567cd7743bc507012642ed4342a07b3ecc139b77ec8edc81354"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_grid_distortion.py_unittest_": {"doc_hash": "bdd60a55fbce60809ee22dd3c8bc785df9ebbc33b2f2f59712a5d2538049d7cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_grid_distortiond.py_unittest_for_p_in_TEST_NDARRAYS_.TESTS_append_": {"doc_hash": "814223c16d8c0b458f0c4f0bff83b53a99b06beb0da943427749adcd296693c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_grid_distortiond.py_TestRandGridDistortiond_": {"doc_hash": "e284d1a6a433f10e69848645a17d6358c3b9b630e1a81b9cdb55875ce3a23449"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shiftd.py_unittest_for_p_in_TEST_NDARRAYS_.None_2": {"doc_hash": "c47a9f022fd2dd005a0fc641f9197b9e86ff679320893011a07641dca56602cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noise.py_unittest_for_shape_in_128_64_.for_p_in_TEST_NDARRAYS_.for_channel_wise_in_True.TESTS_append_shape_p_c": {"doc_hash": "13592f23a64c96525a47b02d92738294d44a9f2baa2f93f3bd37f517f5ca8d64"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noise.py_TestRandKSpaceSpikeNoise.test_same_result_TestRandKSpaceSpikeNoise.test_same_result.np_testing_assert_allclos": {"doc_hash": "7c2012ebad1d13a43a3d23f00aa6f3ceac046cfe45dbf95d57290e0a0422c0c5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_same_result_TestKSpaceSpikeNoised.test_same_result.for_k_in_KEYS_.np_testing_assert_allclos": {"doc_hash": "faa3dd42b53cde8c30b7f1ca831435fe12abd07b6b2a8ecfea3136d004e59051"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_k_space_spike_noised.py_TestKSpaceSpikeNoised.test_0_prob_": {"doc_hash": "f90ef96b44e8d60e94c1aa306351db98a9b010ef9acba0d9dfe38c360f00132a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_lambda.py_unittest_": {"doc_hash": "252d7233dcdbc9b0de20ba034350d9821410a0be4c4eb188c7d7b6331e2f0564"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rician_noise.py_unittest_": {"doc_hash": "c0372676ff16d4074cd166c583368d9744983312a4a855fe38f89770bed1f8f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rician_noised.py_TestRandRicianNoisedNumpy_": {"doc_hash": "6b5218de1c93f9dbcf5a6c6f4efa4c30998d7cc705dd02c39f78feffcee9ca27"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate.py_unittest_None_1.TEST_CASES_3D_append_p_": {"doc_hash": "22b8c371a19af1fa67aca1180b14401d5ed4f6b90fc52912519cd08189e820a5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate.py_TestRandRotate2D_TestRandRotate2D.test_correct_results.self_assertLessEqual_np_a": {"doc_hash": "3ed552e404ca3b272e8c971ba899770ce20056214dde21ab8ec7e9b138e0b259"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90.py_unittest_TestRandRotate90.test_k.for_p_in_TEST_NDARRAYS_.assert_allclose_rotated_": {"doc_hash": "4cae65d0fd0a1a730a86196f10aa2f65dc701c5073a4e06f491e948fe00bca36"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90.py_TestRandRotate90.test_spatial_axes_TestRandRotate90.test_spatial_axes.for_p_in_TEST_NDARRAYS_.assert_allclose_rotated_": {"doc_hash": "87d4907b09ed27ec24c76a675b67ee0dc883566eb8bc3c1b4d9ec0bfa78c74a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90.py_TestRandRotate90.test_prob_k_spatial_axes_": {"doc_hash": "2b9a06dd7e463cdf303afb051f7049a08f1f2e133e0c701b69eac3df66c12188"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90d.py_unittest_TestRandRotate90d.test_k.for_p_in_TEST_NDARRAYS_.assert_allclose_rotated_k": {"doc_hash": "9baf228c689d8f4064f536db3b955554c6a600abd72dfe69f09ca35df29a181d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90d.py_TestRandRotate90d.test_spatial_axes_TestRandRotate90d.test_spatial_axes.for_p_in_TEST_NDARRAYS_.assert_allclose_rotated_k": {"doc_hash": "f7b11ab0b8d181c5faaec0634a1a9a2765e5fce7764abf6f7d1f3b5669dc6d34"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotated.py_unittest_TEST_CASES_3D._": {"doc_hash": "9ab5ebe731a74297d96e47178375e1290e477a5bd3c960dca3eaace9a250368b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotated.py_None_1_None_1.None_7": {"doc_hash": "ac5ada52a1fa4f2945ebb3e3d5e4055b589186ecac5ac5acfba516387c41ec39"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotated.py_TestRandRotated2D_TestRandRotated2D.test_correct_results.self_assertLessEqual_np_a": {"doc_hash": "9f448f17f423488ee6db3fa091a0b78eaf8b8b59583ec28ac4a5c26fc7e35800"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_shift_intensityd.py_unittest_TestRandShiftIntensityd.test_value.for_p_in_TEST_NDARRAYS_.assert_allclose_result_ke": {"doc_hash": "e6466d33df9f714000408945e073df8e603c413701a8d013b72a43a101b7bfb8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_shift_intensityd.py_TestRandShiftIntensityd.test_factor_": {"doc_hash": "a40c78e8711b505f981b24fe7ede61b8409796bcd513090d89d8a04db1b686a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_unittest_TEST_CASE_2._": {"doc_hash": "de87959739d8cae4a3dbce1a643615d0c4dbe9183b798eb04d296927d54ebd07"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_for_p_in_TEST_NDARRAYS__for_p_in_TEST_NDARRAYS_.TEST_CASE_2_append_": {"doc_hash": "1e8145beefae6299b5b5c3e1deac6a624559c605c35bc1913b3698c01d316245"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samplesd.py_TestRandSpatialCropSamplesd_TestRandSpatialCropSamplesd.test_shape.assert_allclose_item_seg": {"doc_hash": "38d0b3012bd27931f47669b52b8d49bce04596d99869db73406e27532b52615a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_crop.py_unittest_TESTS._": {"doc_hash": "afb5df3d182df77e3a03e9ddc753b8c5a3434f3c86d3cf0f8c5cb884dad97f7c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_crop.py_for_p_in_TEST_NDARRAYS__for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.None_7": {"doc_hash": "441cd85db6644f1dc1e5f3aedc056f188ffba0f6e28207e4dc7e1628e9deda74"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_crop.py_TestRandWeightedCrop_": {"doc_hash": "a158f47fc89439dd29b1a27c6bbb5307b9d5482690f3514fe04fb7838a6b4295"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_unittest_TestRandWeightedCrop.test_rand_weighted_crop_small_roi.for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.for_c_e_in_zip_crop_cent.assert_allclose_c_e_typ": {"doc_hash": "87ed99e5bb6f29d94abec857a3708ef7a57671df477f3889c852183e85890836"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop.test_rand_weighted_crop_default_roi_TestRandWeightedCrop.test_rand_weighted_crop_default_roi.for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.assert_allclose_result_1_": {"doc_hash": "78355003b68040770b34b89b2224df1d54f5a302fdc78148afc48a2afbcc7888"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop.test_rand_weighted_crop_large_roi_TestRandWeightedCrop.test_rand_weighted_crop_large_roi.for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.assert_allclose_result_1_": {"doc_hash": "b77a772e78e12e9521b398adacef25479781c9f1c5d14b9a92449a00cf53785c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop.test_rand_weighted_crop_bad_w_TestRandWeightedCrop.test_rand_weighted_crop_bad_w.for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.for_c_e_in_zip_crop_cent.assert_allclose_c_e_typ": {"doc_hash": "11a13b0b6d39987108c06f45239218e65421e064fcfceae264626d4f5baefe30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop3D_TestRandWeightedCrop3D.test_rand_weighted_crop_small_roi.for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.for_c_e_in_zip_crop_cent.assert_allclose_c_e_typ": {"doc_hash": "ecc920f3bbcee7d6f1f042d4874835e752b600e01438af5f50d593856038bd94"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop3D.test_rand_weighted_crop_default_roi_TestRandWeightedCrop3D.test_rand_weighted_crop_default_roi.for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.for_c_e_in_zip_crop_cent.assert_allclose_c_e_typ": {"doc_hash": "fc34160f58891c2bc1837b0ef5a7213c89824443e809ac8739ebecef9b6c6a26"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop3D.test_rand_weighted_crop_large_roi_TestRandWeightedCrop3D.test_rand_weighted_crop_large_roi.for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.for_c_e_in_zip_crop_cent.assert_allclose_c_e_typ": {"doc_hash": "d87b44d70ee497c24f72e5552424227e4c7f73f537eea7c2f3ea0dd3d8d6c3c3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_weighted_cropd.py_TestRandWeightedCrop3D.test_rand_weighted_crop_bad_w_TestRandWeightedCrop3D.test_rand_weighted_crop_bad_w.for_p_in_TEST_NDARRAYS_.for_q_in_TEST_NDARRAYS_.for_c_e_in_zip_crop_cent.assert_allclose_c_e_typ": {"doc_hash": "dea871401b85648005e8527fb94e8a9e14b068b3d17d22ea981b935f74d80668"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_unittest_TestRandZoom.test_correct_results.for_p_in_TEST_NDARRAYS_.assert_allclose_zoomed_p": {"doc_hash": "bd39e496ed394b85cf66772e5f44e8a5cc87bb8b2e67c915499be4a258558791"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_TestRandZoom.test_keep_size_TestRandZoom.test_keep_size.for_p_in_TEST_NDARRAYS_.None_2": {"doc_hash": "af941dfa4f80f9e24752ef89340789112d5f925388d1da81aee0a4c83913dc5c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoom.py_TestRandZoom.test_invalid_inputs_TestRandZoom.test_invalid_inputs.for_p_in_TEST_NDARRAYS_.with_self_assertRaises_ra.random_zoom_p_self_imt_0_": {"doc_hash": "e1ec20576840ddf52dc83eea4bc81e09bd2b41ff47656d286a66ddc09a636fb4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoomd.py_unittest_TestRandZoomd.test_correct_results.for_p_in_TEST_NDARRAYS_.assert_allclose_zoomed_ke": {"doc_hash": "26c9dbd2816193cd3660c9d6eae36c8db4316163947e43a90a9f8cf70f49a1eb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoomd.py_TestRandZoomd.test_keep_size_TestRandZoomd.test_keep_size.for_p_in_TEST_NDARRAYS_.np_testing_assert_array_e": {"doc_hash": "c7d74c8cf4bacb2cc8280a7c34dd8c55ef2551dffac90ef05d794a0d0f77a74b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_zoomd.py_TestRandZoomd.test_invalid_inputs_TestRandZoomd.test_invalid_inputs.for_p_in_TEST_NDARRAYS_.with_self_assertRaises_ra.random_zoom_key_p_self_": {"doc_hash": "fb6e4ba68c63887089fc521e30a659878ce894c78277931aefb05564aafc5757"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resample_datalist.py_unittest_": {"doc_hash": "44c9bd9f5c0cad84fcb15a8fac9077cde001601ab38d7b17ecae44d58764bac6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resampler.py_unittest_": {"doc_hash": "63b010647a63564fc6dae9ef03d37dd63e9b098eb08926ccaa359e0d12d347ad"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize.py_unittest_TEST_CASE_2._spatial_size_6_mod": {"doc_hash": "8c1b91aae41bb79a0bd9f125bbb151a28ca1ac67546b8161e153ab1fce2820a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize.py_TestResize_TestResize.test_correct_results.for_p_in_TEST_NDARRAYS_.assert_allclose_out_expe": {"doc_hash": "0a7c0890bfb596fd54a345f133ef28646d8492a2fb0f8592d2155230376fb236"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize.py_TestResize.test_longest_shape_": {"doc_hash": "1678441481636c41cbd3a912a2ed3e9ae51a56d2bf32eb8a2ba9dd8c7e57de58"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize_with_pad_or_crop.py_unittest_TEST_CASES._": {"doc_hash": "0cf262767d778b35a4b8ea58ef13e4748656414e48680afd92938b1f69c7fcc1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize_with_pad_or_crop.py_TestResizeWithPadOrCrop_": {"doc_hash": "408b9e6523ee4b22323e0ee4ec4823631ff7d4ab9293a66ac2ab6a13ee441538"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize_with_pad_or_cropd.py_unittest_TEST_CASES._": {"doc_hash": "b58930914f2545436793e35af5a7802cbf9b8d10f2e82ad77888106289f0518d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resize_with_pad_or_cropd.py_TestResizeWithPadOrCropd_": {"doc_hash": "7d7d0959ce2ce8369c7a53960b7a2779acca39679cd5ffaacfc32529aa9d80d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resized.py_unittest_TEST_CASE_3._": {"doc_hash": "37d99d782ab1e2582a0d02e4fa6122027ba2643b351781d79153226c3c974a09"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resized.py_TestResized_TestResized.test_correct_results.for_p_in_TEST_NDARRAYS_.assert_allclose_out_expe": {"doc_hash": "1d653bcbe554423d78ab87dc539d5f436341a87b2c0ddfd395b93ce7ab9a301f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_resized.py_TestResized.test_longest_shape_": {"doc_hash": "8476b520f5241ca05ea29ad09324112f7f95e08b97014b721ed638ba8e06a332"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_unittest_None_2.None_2": {"doc_hash": "0aafae8f2d7b43c2b71cc72e8ac1eb1f83d1697169f53e5a83483c56dfc2c03d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate90.py_unittest_TestRotate90.test_spatial_axes.for_p_in_TEST_NDARRAYS_.assert_allclose_rotated_": {"doc_hash": "ca2dec0643c906ee8145b208e4713eebf67f4d82b1c28cbceb5cfb39c321ca4b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate90.py_TestRotate90.test_prob_k_spatial_axes_": {"doc_hash": "55fb381c71e6c4eb5e0759aee12d0efce244ba8974935e17aa0d3647cefa0233"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_unittest_None_1.None_4": {"doc_hash": "844392b8921a9b7d140ad54a663884d139925fd9c1cc51ba295df07527f94739"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_save_image.py_os_TEST_CASE_2._torch_randint_0_255_1": {"doc_hash": "f4ccd227355877fc02fc8efdf827d65cca47c64e303b6c9faa8be669a9454c53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_save_imaged.py_os_TEST_CASE_2._": {"doc_hash": "73c3c06c53fed91f98c30921f3f7cae5b7f44084a2529f79068f86eb0ccb5211"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_smooth.py_unittest_TEST_CASE_SINE_SMOOTH._": {"doc_hash": "b0de07fca956247bdc53e4ddefa84168d67b5bb56b986354c19483c2728ecb1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity.py_TestScaleIntensity.test_channel_wise_": {"doc_hash": "950a90fdc2281e0f9ea0e99875eec17cb8a178839f77c7d2fb6d6c50efb8d20e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_unittest_TestScaleIntensityRangePercentiles.test_scaling.for_p_in_TEST_NDARRAYS_.assert_allclose_result_p": {"doc_hash": "a735415f157e2b0be67dda5b414e7254dafc9853b97cc3c17fcf28cf3ad2a6db"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensityd.py_unittest_TestScaleIntensityd.test_factor_scale.for_p_in_TEST_NDARRAYS_.assert_allclose_result_ke": {"doc_hash": "41c72b9dbcd26ad699b27002da64e57ee0bcca4baa7046df05d47686e81cf670"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensityd.py_TestScaleIntensityd.test_channel_wise_": {"doc_hash": "c01a73e66914e5e5f73894f5015945c2e625bb587357149585b2e385ef334ffd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_selfattention.py_unittest_for_dropout_rate_in_np_li.for_hidden_size_in_360_.for_num_heads_in_4_6_8.TEST_CASE_SABLOCK_append_": {"doc_hash": "b85af32c390d6b85f8a282014a307b75486b89851a949ee7c5094720fce8964c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_selfattention.py_TestResBlock_": {"doc_hash": "cca5c775abece86739f245608910e5c573e64bca49c8e7b560adf7f6a4dd0df5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_senet.py_os_TEST_CASE_PRETRAINED_1._SEResNet50_spatial_di": {"doc_hash": "4d71582ff7ed3c8abf8435bdbfa93aef4cb6bdf86cd780814e89407739d4b1f5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_senet.py_TestPretrainedSENET_TestPretrainedSENET.setUp.if_test_is_quick_.se_mod.SE_NET_MODELS.testing_data_urls": {"doc_hash": "70692ad90038e13ae2c34859bf0f7e4af20cb93ee037e2f0d06dfbcf0ac20813"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_senet.py_TestPretrainedSENET.tearDown_TestPretrainedSENET.test_senet_shape.with_eval_mode_net_.self_assertEqual_result_s": {"doc_hash": "127643f0360d69d0ee2154d49ac244333e82a6946e5bd39496a987c766aa3d99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_senet.py_TestPretrainedSENET.test_pretrain_consistency_": {"doc_hash": "208cf88af8968a7f59f8e214f9c1c0ff9f9f990c90b17cedf86d496601350659"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_set_determinism.py_unittest_TestSetDeterminism.test_values.set_determinism_seed_None": {"doc_hash": "3c2efb580c8c377cd75abdc1353225e068410f1af572c075e513d30da5dfdbea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_set_determinism.py_TestSetFlag_": {"doc_hash": "1dfa0d6c15e39d858c24cd80e8541d549f42ce20ad6b3bdfa3669d658d8add9e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcachedataset.py_TestSmartCacheDataset.test_shuffle_TestSmartCacheDataset.test_shuffle.dataset_shutdown_": {"doc_hash": "a71fa710abf51469be494bc48303aa30cbc92d083ef96658cb19d6459b183230"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smartcachedataset.py_TestSmartCacheDataset.test_set_data_": {"doc_hash": "b0fd153a034c5001475b201892ad34b5afe24caad69f95fa392ef726fffb5441"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacing.py_unittest_for_p_in_TEST_NDARRAYS_.None_9": {"doc_hash": "a9587d008f00c1725703dbc14b0ae5ca8fbf65d29ae1141c8ce3f34aa8da036c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacing.py_for_p_in_TEST_NDARRAYS_.None_10_for_p_in_TEST_NDARRAYS_.None_14": {"doc_hash": "744dfe56e7754f06007dfb672dc6620df6ece536fb5745f7db0a1dd05ca1ab03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_unittest_for_p_in_TEST_NDARRAYS_.None_4": {"doc_hash": "5238f68644b99c352f0d2ba6d9cd651cd3c3223bf7700ace0ea5c51393de6885"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacingd.py_TestSpacingDCase_": {"doc_hash": "ef254dd10ebb8d25d29a7311ccedf38deaf417d145944718f5758e8f8ed9e069"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_crop.py_unittest_TEST_ERRORS._roi_slices_slice_s": {"doc_hash": "f9618d0d9bcef3dec2ef738f652db2a29f0138eef2b2d86cd22108eedc81009e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_pad.py_unittest_for_mode_in_MODES_.None_1": {"doc_hash": "f8cbace6fe9836f56fbf61f6b0353e13cf97889159371e8eff7a937f92bd1cbb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_pad.py_TestSpatialPad_TestSpatialPad.test_pad_shape.for_p_in_TEST_NDARRAYS_.for_results_in_results_1.if_input_param_mode_no.torch_testing_assert_allc": {"doc_hash": "94f7db10904e75db62c7334b1e874116ccca5b57e8d73f1c642865f02cb6a902"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_pad.py_TestSpatialPad.test_pad_kwargs_": {"doc_hash": "56e97440dc3b6e774f494af4927544b18543c6615fa7b303427b18a50bd12fd0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_on_grid_dict.py_TestSplitOnGridDict_": {"doc_hash": "833a32edf58530862193f70dd6d595c0414f2868a3ffb96652b0007b6a7844a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedim.py_unittest_": {"doc_hash": "54643cb8cecdb9ff18a132040a16ae17c04f79e7452aae0ed75243bb5eac37de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedimd.py_unittest_for_p_in_TEST_NDARRAYS_.None_6": {"doc_hash": "488060bbea6b392add77bacd96e30340d69e18d1e46869d0d16c10fc86ee0199"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensity.py_unittest_TestStdShiftIntensity.test_zerostd.for_p_in_TEST_NDARRAYS_.for_nonzero_in_True_Fal.for_channel_wise_in_True.torch_testing_assert_allc": {"doc_hash": "74d45103b2182e24d73c292ab984c3ed51b54eff50809af50321c6b53059fa8e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_std_shift_intensity.py_TestStdShiftIntensity.test_nonzero_TestStdShiftIntensity.test_nonzero.for_p_in_TEST_NDARRAYS_.torch_testing_assert_allc": {"doc_hash": "6338144aa0e76ce77b9e2d6fda0f864412bd1778eca57ecc9b9299cabd14f94c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_synthetic.py_unittest_TEST_CASES._": {"doc_hash": "a23c0c94f13f6480d14688cf4c9b47f99c23f1924ff57ad651063fcbcf72fcfa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_synthetic.py_TestDiceCELoss_TestDiceCELoss.test_create_test_image.None_4": {"doc_hash": "c426813cf00c32e623b816e3d32e18f036217ee568bb80792a2143a4aa72e410"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_synthetic.py_TestDiceCELoss.test_ill_radius_": {"doc_hash": "836d336b403a17dadcb6056fa4179b3f6a8a4c759349325af5a079e8cb9bb0aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_testtimeaugmentation.py_TestTestTimeAugmentation.test_requires_meta_dict_": {"doc_hash": "56766727b8ab14664776db42c1ade823554ccd97c8152907c7cdd546875b4536"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_thread_buffer.py_TestDataLoader.test_dataloader_TestDataLoader.test_dataloader.None_1.None_1": {"doc_hash": "8545e0742bac89d57c42a8d75ec79297de699fe60272239a89df10481d7470a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensityd.py_unittest_for_p_in_TEST_NDARRAYS_.None_2": {"doc_hash": "3480a2189ca41de2f3715a4fb5316c50b52c3fc2870e07e03351c66f49d8fbe3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupy.py_unittest_TestToCupy.test_cupy_input_dtype.cp_testing_assert_allclos": {"doc_hash": "2bd65891c55321d86596afe820c8a465530f5f6a1227858503eec4596e4bab30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupy.py_TestToCupy.test_numpy_input_TestToCupy.test_tensor_input.cp_testing_assert_allclos": {"doc_hash": "f29e0404154f41ed3ad220e98c418ccb24f1325dccd75b16773d170497944603"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupy.py_TestToCupy.test_tensor_cuda_input_TestToCupy.test_tensor_cuda_input.cp_testing_assert_allclos": {"doc_hash": "f77cc6c8b2e9964fbcda4c80b1f545bb67b498e4cfde0a82c7df52ad155846a5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupy.py_TestToCupy.test_tensor_cuda_input_dtype_": {"doc_hash": "dc07d25942edadad116fd72fb804d3659c5a79f3cf7ed6c4c7cb6b6a85e001a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupyd.py_TestToCupyd.test_tensor_cuda_input_TestToCupyd.test_tensor_cuda_input.cp_testing_assert_allclos": {"doc_hash": "505fe1ad68fbaf9510b4d3cf18170f4bc0ed9e56aeaf234e97c8c0bd4a7df23c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_device.py_unittest_": {"doc_hash": "b98d9903e1e7a3af591e7284b16cbf8f58afc0a65c9e6e6462c1780bc0320288"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_deviced.py_unittest_": {"doc_hash": "6a6f896cea7d33e710271af9ba8f3efd29d8ddf725abfc13db49f3f07d1b114a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_numpyd.py_unittest_TestToNumpyd.test_cupy_input.assert_allclose_result_t": {"doc_hash": "389f0779caacca645931a3d2ef24b7f9b661818a2e23b7dbdeba39be8c785320"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_pil.py_unittest_": {"doc_hash": "caab902c53e854586fc5c558c0922c446c566d67ec1d51955d8217d55ae98bc4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_pild.py_unittest_": {"doc_hash": "d9e5e8a89cb4633b4c67160acd10a99095c3674e67b21c7a53ae0162d4d65bdb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_tensor.py_unittest_None_1.TESTS_SINGLE_append_p_5_": {"doc_hash": "6617786b96e72d16434d054f3686d14118cb475d49a4df2a629d81425212ccfe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_tensor.py_TestToTensor_": {"doc_hash": "8cad2b055da3f9b973b0ba2afbc6d9194e0f5d06df684b4078b459bf6fbc7e69"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision.py_unittest_": {"doc_hash": "d07b24e67ff0ae7d9430c7819bcf86d2a8d88c1ad12f353b370ff2af388dbd25"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchvision_fully_conv_model.py_TestTorchVisionFullyConvModel_": {"doc_hash": "7cf8f2de4f21cf737cd0380b2e63b1e39088bbcec582f225de0203c1ec914cb2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_transchex.py_unittest_for_drop_out_in_0_4_.for_in_channels_in_3_.for_img_size_in_224_.for_patch_size_in_16_32.for_num_language_layers_i.for_num_vision_layers_in_.for_num_mixed_layers_in_.for_num_classes_in_8_.TEST_CASE_TRANSCHEX_appen": {"doc_hash": "acb0f355db182d1dfb24acfbe61d794a63c23ef65bee409a5c32773928a045aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_transchex.py_TestTranschex_": {"doc_hash": "5919eeccf5d8a9f8de47e5d495f06a11cd14cea1a9d3f5a4d4686c0a9ea4cb6d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_transformerblock.py_unittest_for_dropout_rate_in_np_li.for_hidden_size_in_360_.for_num_heads_in_4_8_1.for_mlp_dim_in_1024_307.TEST_CASE_TRANSFORMERBLOC": {"doc_hash": "cb46721864b1fb679fb9cac22e2b725b62b0f56e2badc6ffdfe79ec891820f7b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_transformerblock.py_TestTransformerBlock_": {"doc_hash": "ae985e49048f893335ad020a8f6a2c2298738c045498cd4e170966d1d1c78183"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_transposed.py_unittest_for_p_in_TEST_NDARRAYS_.None_3": {"doc_hash": "bd4d27bd24594061bb840a638e4ed9a0055da01d6bb65442dc4be8f29403ec51"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unet.py_TEST_CASE_5_ILL_CASES._": {"doc_hash": "37202b2f9d71f56405c17c8cfc33944069ab3d820eadf07de3bbb766db05cd67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unetr.py_unittest_for_dropout_rate_in_0_4_.for_in_channels_in_1_.for_out_channels_in_2_.for_hidden_size_in_768_.for_img_size_in_96_128_.for_feature_size_in_16_.for_num_heads_in_8_.for_mlp_dim_in_3072_.for_norm_name_in_instan.for_pos_embed_in_percep.for_nd_in_2_3_.TEST_CASE_UNETR_append_te": {"doc_hash": "95f6ba53ec1334056ddcf84093fb13a3acbac94f9d292d7560a7d10d5120f5e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unetr.py_TestPatchEmbeddingBlock_": {"doc_hash": "96d2f24c311c369f01426f81551559018d1118b6a93f9da8cf13cd7105f9b5d6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unetr_block.py_unittest_None_2.for_kernel_size_in_1_3_.for_upsample_kernel_size_.for_stride_in_1_2_.for_res_block_in_False_.for_norm_name_in_instan.for_in_size_in_15_16_.TEST_PRUP_BLOCK_append_te": {"doc_hash": "7e7f69bda10b4d5b7c4386523e8e7efff1cac25ffed77221a72d5060a467684e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unetr_block.py_TestResBasicBlock_TestResBasicBlock.test_script.with_eval_mode_net_.test_script_save_net_tes": {"doc_hash": "8aef436ebd1c6039750929e396681c73c84b3a577d22975687c35b2b98c0f3e3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unetr_block.py_TestUpBlock_TestUpBlock.test_script.test_script_save_net_tes": {"doc_hash": "43de05580f0814be97cf1f2ff3a53789989dd0248b2660b403314f9724c9b15d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_unetr_block.py_TestPrUpBlock_": {"doc_hash": "233dc9658f5c2690cd0a55be853bf8e1bf2277960376457d7883f86effa43676"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_version_leq.py_itertools_": {"doc_hash": "a8653217dafb2134a3e8be6bde9331c55340a1e11c8c9db256fd9f7301f18f32"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vit.py_unittest_for_dropout_rate_in_0_6_.for_in_channels_in_4_.for_hidden_size_in_768_.for_img_size_in_96_128_.for_patch_size_in_16_.for_num_heads_in_12_.for_mlp_dim_in_3072_.for_num_layers_in_4_.for_num_classes_in_8_.for_pos_embed_in_conv_.for_classification_in_Fa.for_nd_in_2_3_.TEST_CASE_Vit_append_test": {"doc_hash": "bdc3118b09d657ac6b1a2c4e1eee3d37417df35d19099a6f817ff9984f41c1d5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vit.py_TestPatchEmbeddingBlock_": {"doc_hash": "8ce40084c4737f185c399cef2bd041a9d41b205e53e7f65c3de2b07f6c5becd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensemble.py_unittest_": {"doc_hash": "c517c4f7c7355549c7ed5cf97be38566454402943eefb22d0936a576986e1f5a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensembled.py_unittest_for_p_in_TEST_NDARRAYS_.None_4": {"doc_hash": "015f647f150b562654d1290f8add7cbe89082ae028427ba9ff7db09d9c1d31af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom_TestZoom.test_correct_results.for_p_in_TEST_NDARRAYS_.assert_allclose_zoomed_p": {"doc_hash": "5a43d7f559f870d39c0a8a04748e2e50119ebf99d11ef22c2c773a458ac12c99"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom.test_keep_size_TestZoom.test_invalid_inputs.for_p_in_TEST_NDARRAYS_.with_self_assertRaises_ra.zoom_fn_p_self_imt_0_": {"doc_hash": "f42a52d60bac8ff32f69d4018fe064385c9ebd70a8e7b4f45f61da333a0d51c4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_TestZoomd_TestZoomd.test_correct_results.for_p_in_TEST_NDARRAYS_.assert_allclose_zoomed_ke": {"doc_hash": "c10dce8910c3355ffb6f205f37cecfcffc847e95e1f2f62151c9364811f71f39"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/testing_data/integration_answers.py_np_EXPECTED_ANSWERS": {"doc_hash": "2a23935132580f258867ef3a590968a6a56e8a9f57166203198dd98095a7c731"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/testing_data/integration_answers.py_test_integration_value_": {"doc_hash": "9962ec9ff340a37216d3be273766313cfb0f9a3cbb24bfdf252882df32fed8ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_copy_clone.return.copy_deepcopy_data_": {"doc_hash": "d73bd25bf84f4d7337998349b84b0ec13fae512b0db729ecf27ed0f55cb41445"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_assert_allclose_assert_allclose.np_testing_assert_allclos": {"doc_hash": "b5e17353b1b0964b453edc9eb0838e25f6507024cdb435e44c23ada61d929a32"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_skip_if_quick_skip_if_windows.return.unittest_skipIf_sys_platf": {"doc_hash": "4c4f6c47a53db69099e804497c4caa0d5f9ab414e4dd824041aeafc46c3b75f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_test_script_save_test_script_save.with_tempfile_TemporaryDi.convert_to_torchscript_": {"doc_hash": "ae9aaaa4601e477f3838f1ba140c194ecf7604d0a64386bb69e2e6a7be640b66"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_json__compute_path_1._": {"doc_hash": "1a43fb2c076d6af1cf52d7c4a0c92e0fe2a816ad328e4e35066163de8c8ea72b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py__compute_path_2__compute_path_2.return.element": {"doc_hash": "c062831c97029e001690ce89929e97f2551b8c4819123f8800f212b290508ab1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_load_decathlon_properties_load_decathlon_properties.return.properties": {"doc_hash": "83c291f222f9aaaef6ae7bb112c3ed523661349cc88f6b78950b24e96687cecc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_check_missing_files_check_missing_files.return.missing_files": {"doc_hash": "266d076200db1dbad2d7ee071cd76a7f0ac6113f35700eab874d02effe2870b9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_create_cross_validation_datalist_": {"doc_hash": "262d95c1032b4512fd2fd659d0ffd27169caede987aed7013b7f90d07251fb37"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_from_typing_import_Any_C_IterableDataset.__iter__.for_i_item_in_enumerate_.if_i_num_workers_id_.yield_item": {"doc_hash": "130dbe16010ea6e7bf636e375449a97cde11cb7ed8aa434ec5ed5d305c403693"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_ShuffleBuffer_ShuffleBuffer.__init__.self._idx.0": {"doc_hash": "759a38db99f200f46650e5fbb9fd06ff9ad6014e4c6f599e947bec98cba63543"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_ShuffleBuffer.__iter___ShuffleBuffer.set_random_state.raise_NotImplementedError": {"doc_hash": "b9f38c5c5419bb3b400f40f52bbac8e9ea4d8041491dda178c705fd98159fe67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/test_time_augmentation.py_warnings__identity.return.x": {"doc_hash": "3bf73bc3ee23d8f098f2ed421bd2e9fe435b19361dca9657b7e980a6d4cfd1ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/test_time_augmentation.py_TestTimeAugmentation._check_transforms_TestTimeAugmentation._check_transforms.for_r_i_in_zip_randoms_.if_r_and_not_i_.warnings_warn_": {"doc_hash": "c341e9eebb4dff652005626c33f6db07d70803b1f3f7fa90b9c2d3248ff30690"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow._register_metrics._compare_metrics_Workflow._register_metrics._compare_metrics.if_key_metric_name_is_not.if_self_metric_cmp_fn_cur.None_1": {"doc_hash": "d20912aba554b1322998c0237fd430d56d54f8f4a18aa73f1493592b788591ef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/ignite_metric.py_IgniteMetric.compute_IgniteMetric.compute.return.result": {"doc_hash": "f6d07f593c9e41c3fca3d849b7a75fb471ff57f50536bd2973de701649700233"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/__init__.py_ContrastiveLoss_": {"doc_hash": "958be0c8093c31c0ff7cb6a1cc71c53c870acbc5de780846e5b91668d49060b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/contrastive.py_ContrastiveLoss.forward_": {"doc_hash": "7da3de94f061305cb87b8faedba4ee201d30c36690ffcb88c006cf1ea8b3632c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceLoss.forward_DiceLoss.forward.f.1_0_2_0_intersection": {"doc_hash": "954c483513546c88564e0ae4135896ac250401e451dbbf38f03b2c629afcb0a8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_DiceLoss.forward.if_self_reduction_Loss_DiceLoss.forward.return.f": {"doc_hash": "5f3c4dc3158d511eeeb49358464eaff9a373fe665afbbdb8428cfb8f8d9c3ab7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/focal_loss.py_warnings_FocalLoss._": {"doc_hash": "f086ebd5f869cca787cc547e55ac7475776073208174f86fde2bf4cd6197c37a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/focal_loss.py_FocalLoss.__init___FocalLoss.__init__.self.weight.weight": {"doc_hash": "f6a97bc9514178f57b5276087074ce4414e16cd50c80414d4a245c43905bdcd0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/focal_loss.py_FocalLoss.forward_FocalLoss.forward.p.F_logsigmoid_i_t_2_": {"doc_hash": "d034ccdebd83ed388144351919cc23b9437e23b28b5076e713fe990f92b260b3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/focal_loss.py_FocalLoss.forward.flat_loss_": {"doc_hash": "168f4d83979dfe20356f8eda8436438ec6288cb214685ae9701b101c12fb9238"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/cumulative_average.py_torch_CumulativeAverage.reset.self.not_nans.None": {"doc_hash": "fa1cfe0e81b0cc3506591e70a0d41aff2ea6ac85abbac8a769a9e29c7492d189"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/cumulative_average.py_CumulativeAverage.aggregate_": {"doc_hash": "d1b37ee26e62bde335ddea20738adefa795183736ac9b80a5c1c4a6a85aaddca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_IterationMetric_IterationMetric.__call__.raise_ValueError_y_pred_": {"doc_hash": "a3e1307d04b7861317d2e7724782f72aff7dcf6e49c5d2ac778b8a6126dfea89"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_IterationMetric._compute_list_IterationMetric._compute_list.return.ret": {"doc_hash": "152bde967bf29c7599b4aa42d914dd65e551f791b97e8b1331f267a1351aeb42"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_IterationMetric._compute_tensor_IterationMetric._compute_tensor.raise_NotImplementedError": {"doc_hash": "7cb3e1ee7eabfd57a440d6330b1b751ef49a8ccfd560ebb62e4e7523b61756f8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_Cumulative.extend_Cumulative.extend.self._synced.False": {"doc_hash": "52ff2f75b8921a73b752f4d5180eace148f8e2f184b76be5cba58dd89317cfd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_Cumulative.append_Cumulative.append.self._synced.False": {"doc_hash": "172a399e8eee8deffe2cad96eb6179914265ac09a0a5c1456d7f2f502473d83e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_Cumulative.aggregate_Cumulative._sync.self._synced.True": {"doc_hash": "d7eb1a99e490035afbb4e93f51d74b60f6620acfd21d44e020e0747501ae31f8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/metric.py_Cumulative.__len___Cumulative.get_buffer.return.self__synced_tensors_0_i": {"doc_hash": "b0dac648da0d9313c2a1a3cbd22f2aab99a49f7c7ce62d11bbfbf248efa32c2e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_apply_filter_apply_filter.return.output_view_batch_chns_": {"doc_hash": "590775e8fba9adbde55766cb911de879d48ce61998ad0ceda4a8dd8f46393ccc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.check_kernel_stride_DynUNet.check_kernel_stride.for_idx_k_i_in_enumerate.if_not_isinstance_stride_.if_len_stride_self_sp.raise_ValueError_error_ms": {"doc_hash": "e7e4653099a4a7d60e747e4e50609b8fffb132f44a80dee0e7c7197f5c0cf50b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.check_deep_supr_num_DynUNet.get_downsamples.return.self_get_module_list_inp_": {"doc_hash": "a2d40b77e11389ef6977cb5a1c810bc82f5de842ba98b372a237f0435432e3d9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_upsamples_DynUNet.get_upsamples.return.self_get_module_list_": {"doc_hash": "7c79ada64f45228a801c86445347f1ae17d05d12c1d595a678b94fb7127c2a03"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vitautoenc.py_ViTAutoEnc.forward_": {"doc_hash": "d0f3a39990e42ecc69fe62abdcd28105971169b2b8b15d0c04421709ce56c0a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensity.__call___ScaleIntensity.__call__.return.ret": {"doc_hash": "c94aa71f2537c6ee728df8cf377e2b519ebde3c1d8d0693979dd1ab2a3671b23"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRange_ScaleIntensityRange.__init__.self.dtype.dtype": {"doc_hash": "e86b7998cdefd9802f0244ca5c5d32dc7d9ebfc70663e018b90379af238d289c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRange.__call___ScaleIntensityRange.__call__.return.ret": {"doc_hash": "f263795b5f157841ab4e5e9556df6a86a4ba4964d29adab0417510aeb1a85079"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles.__init___ScaleIntensityRangePercentiles.__init__.self.dtype.dtype": {"doc_hash": "a47d5d03d956faf4b427cad97c54c3c87a8407c24e502f7963f0975e1f645d21"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_HistogramNormalize_HistogramNormalize.__init__.self.dtype.dtype": {"doc_hash": "4525cf2045703e9e976759c8b6a6d3416a1bfddd1c2a5f4723def656fbd99daa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_HistogramNormalize.__call___": {"doc_hash": "e4e24fa4262b50c5a5e52425919665bb6e52c02bc64b3181ec46d9f1f4477c1a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse.py_os_TraceableTransform.trace_key.return.str_key_TraceKeys_KEY_": {"doc_hash": "9e36792b012c1934f460aef49f4b23621ae61a18bbd9c4c1d9be503e844147fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse.py_TraceableTransform.push_transform_TraceableTransform.pop_transform.return.data_get_self_trace_key_k": {"doc_hash": "ec26fdf9add987597a832e9a479bb9e108b0602f6d5b01a1f721e0e7a1197de8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse.py_InvertibleTransform_InvertibleTransform._Classes_for_invertible": {"doc_hash": "a9943d260772c1d0403ce940c913a128937c04f08e6185d849f8878a5b7303ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse.py_InvertibleTransform.check_transforms_match_InvertibleTransform.check_transforms_match.raise_RuntimeError_f_Erro": {"doc_hash": "4c3e129660a0c3a727be52b3770d3b4fbb1c6a995cb729a5c96f48e03f77a0a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_Activations.__call___Activations.__call__.return.out": {"doc_hash": "fc5f02bab8f37f1f17e09eeb9ed7866c08abd1302a3b973ddc91890e943aa250"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_AsDiscrete.__call___AsDiscrete.__call__.return.img": {"doc_hash": "564eda76e97e479148e96f0735cb711691f80a51da405ea2fa31043684c56703"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent.backend_KeepLargestConnectedComponent.__init__.self.connectivity.connectivity": {"doc_hash": "2e7022d0cf860111d7e8bd9a152fa6c195a787aa034dc353ec9462261c7a359b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent.__call___KeepLargestConnectedComponent.__call__.return.img": {"doc_hash": "4af736b7aa5d3b06947ad66a7cc9d5cd10a7ba70fcf393fbd5fadb619bec48d0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelFilter.__call___LabelFilter.__call__.return.np_asarray_np_where_np_is": {"doc_hash": "f912e74fa9af222957f88cea301a17900a0227b708e14b1a0e9f618251722028"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelToContour.__call___LabelToContour.__call__.return.output": {"doc_hash": "ebe338eca358372d6561285d715a9e5e1a49bee7ed8d4ba548a65da7e8149b79"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_get_largest_connected_component_mask_get_largest_connected_component_mask.return.largest_cc": {"doc_hash": "712cbb0be05341de69031779022d9b91a337ebb547968247efafde5494a07d8b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_equalize_hist_equalize_hist.return.img_reshape_orig_shape_": {"doc_hash": "6bb66c4fded6cc38e04c6b426a3082a497ce5d51f3f45f65d6afd84e5c53eb74"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_pre_process_data_get_2d_slice.return.out": {"doc_hash": "d899595c64b63fa128115765a1564d59aa881e657cedeb37a71f73c4a160f29c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_from_typing_import_Option___all__._": {"doc_hash": "1d4381001107273645ae9d8d77a14ba9e51621250c6f7ccb4fc764142274e95d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_InterpolateMode_ForwardMode.EVAL._eval_": {"doc_hash": "346698d25f12bc57ae1a36bf49ec60fd7835c4eaa5b6690952f9ba0ecbf4ccef"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_TraceKeys_InverseKeys.NONE._none_": {"doc_hash": "da809b8511af5ed355d4ef022cd2ff952f96e40aef3d495396326aeb6f5bf6dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_require_pkg_require_pkg._": {"doc_hash": "6b2f1443789cb57e223cbfbbca08db4787451262cdaa8b5c343554e23fc709d9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_require_pkg._decorator_require_pkg.return._decorator": {"doc_hash": "8e55daa969775a891334e8a8cc761f8b27b17ef5fd0bceaa47efd802c4a87772"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py__image3_animated_gif__image3_animated_gif.return.summary_value_image_summ": {"doc_hash": "2c6c910824f9ef729accca3086c783a965cf5ddf57f6fc06febdd8d7be9818d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_add_animated_gif_add_animated_gif.for_s_in_summary_.writer__get_file_writer_": {"doc_hash": "0f338a7069285deb4524e7d808ef52826b71ee63d79751e84b9814611b3cb72d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/utils.py_from_typing_import_Option___all__._matshow3d_blend_imag": {"doc_hash": "d85e55018e966a2010de3aaff2e2b918cbac1378d3709d53601c8dfe5eae7e90"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/utils.py_blend_images_": {"doc_hash": "35529bca998adb34df5f6e66f2c5384697e1a381a475396259801a51e4eb281a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activations.py_unittest_TEST_CASE_5._": {"doc_hash": "efc9b43801f4adbe372f07f0d23b1a47f65501878b8a1ec7e692874a041e6acd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activations.py_TEST_CASE_6_TEST_CASE_6._": {"doc_hash": "bf61e72f5a025d69144ce1185781065d12a390e24a6b3e3d1b67f33e603dd23e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activationsd.py_unittest_for_p_in_TEST_NDARRAYS_.None_2": {"doc_hash": "cf4398c0e4b87fd439bc050185d7ce85b3f1a76a707979428f35513e82bafb71"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_apply_filter.py_unittest_ApplyFilterTestCase.test_1d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "50f502dfa4639d24853d6855999aa8c5634fc0cbf7aabcbc0098e3ec96f4169d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_apply_filter.py_ApplyFilterTestCase.test_2d_ApplyFilterTestCase.test_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "8bb3a2e08c4d7d941ac33ff7b061f5703b1592187e2a8ab8ec3b91859888682a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_apply_filter.py_ApplyFilterTestCase.test_3d_ApplyFilterTestCase.test_3d.for_kernel_in_k_k_None_.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "f8ac67c5c09695e70add52e6ae2c3ec71afbf93538e54216121dddd42cf3ce17"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_apply_filter.py_ApplyFilterTestCase.test_wrong_args_": {"doc_hash": "1b9e545d9a7ccbc09703377fc68aebe1c019c0bc0401fd77d747ff3ac5a2fc80"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_blend_images.py_unittest_for_p_in_TEST_NDARRAYS_.None_1": {"doc_hash": "7d1d026a0a775f0b4ab3261143bdfc5876111cf8d670065f2174a6af85adedea"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_blend_images.py_TestBlendImages_": {"doc_hash": "87f79dce292d1ba41717d8caefe89c5a71e76e38d8a6013e70e06b3bf7ad6681"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_missing_files.py_os_": {"doc_hash": "24b0c4bf6e2c0c3a183678dd85d1f8dfb6a637a57da6616ab169b1b6cecb554e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_contrastive_loss.py_unittest_TEST_CASES._": {"doc_hash": "abff6ef9413462c02e515fa35438341156a4ceba3f86f278b67ea89c36d8f075"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_contrastive_loss.py_TestContrastiveLoss_": {"doc_hash": "54347479d93fd4583b61ded71e953df6a63d9f196ad3c2b6a1aebdabcd054727"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_cross_validation_datalist.py_os_": {"doc_hash": "986f8eb735bd31c1db1f79f35e9f2e3276eb6f8775ea36a7479d17afc364d2d9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cumulative.py_unittest_": {"doc_hash": "d31094679892cc2cd967d3d2ea59008e2f9313047bcdbd0823e3d7c15830f8a7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cumulative_average.py_unittest_TEST_CASE_4._torch_as_tensor_0_1_t": {"doc_hash": "9949bcce25fbef415e48588165a982052e2d27e7b49d3edd6c647003db0fbccd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cumulative_average.py_TestCumulativeAverage_": {"doc_hash": "f642dbe4ac2b1bda20eff1a801511349ab7975756eb57207d746d064d8da3595"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cumulative_average_dist.py_unittest_": {"doc_hash": "e024b3afadcac17a681c684372ef4cbf7ee77d26c2a068d519e0d28464bd5713"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet_block.py_unittest_None_1.for_kernel_size_in_1_3_.for_stride_in_1_2_.for_norm_name_in_batch_.for_in_size_in_15_16_.for_trans_bias_in_True_.TEST_UP_BLOCK_append_test": {"doc_hash": "034ac9760df6c3841b24ae9e15675bc645db91849e0cadb9faf402b6b827ed89"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_consistency_with_cross_entropy_2d_no_reduction_TestFocalLoss.test_consistency_with_cross_entropy_2d_no_reduction._self_assertAlmostEqual_": {"doc_hash": "b514a5df5e6464041bcdb88b9fe7dadf3f4745ac51e005fb9d4b29e4a1134edc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_global_mutual_information_loss.py_os_EXPECTED_VALUE._": {"doc_hash": "08d1ff0aa01f48b9a69b7dd929e03df07976c4b06f581dbbe7b015797d997f50"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_global_mutual_information_loss.py_TestGlobalMutualInformationLoss_TestGlobalMutualInformationLoss.test_bspline.transformation.return.transformation_img_FI": {"doc_hash": "db4f2a0ff5800ec2797d28d525940a0a375997f617061412015e74bc2798617d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_global_mutual_information_loss.py_TestGlobalMutualInformationLoss.test_bspline.a1_TestGlobalMutualInformationLoss.test_bspline.for_mode_in_transform_par.for_transform_params_exp.np_testing_assert_allclos": {"doc_hash": "fe47871a3c1f7a3605345c95a2aeef9bb370bbae28c29c5f24df037f29f8952b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_global_mutual_information_loss.py_TestGlobalMutualInformationLoss.test_ill_shape_": {"doc_hash": "4e279b119f5cabb37fe27649091eee48b7d533c65926e85576e2c0de6fd477df"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_confusion_matrix.py_TestHandlerConfusionMatrix_TestHandlerConfusionMatrix.test_compute.torch_testing_assert_allc": {"doc_hash": "4480be387cff70cfe08f1e99dcc2dc1fee7a9f6512bd660e4b0a2b49e5215d6d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_hausdorff_distance.py_TestHandlerHausdorffDistance_TestHandlerHausdorffDistance.test_compute.None_8": {"doc_hash": "ae307ec3cc9e6e1ab5f6657d689615d8599262f508c73757cd72e8274c2e83ba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_hausdorff_distance.py_TestHandlerHausdorffDistance.test_shape_mismatch_": {"doc_hash": "3bb5a6b7dfc7324ceff579ff780d38bb5a67bea64f51c75560607079d9d479fc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_mean_dice.py_unittest_TEST_CASE_3._": {"doc_hash": "f91c46eebd0a8daa27777cc0a565a6b70f867d92610f7ad3e8a7c03989c92821"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_surface_distance.py_TestHandlerSurfaceDistance_TestHandlerSurfaceDistance.test_compute.None_8": {"doc_hash": "0512bd5c11743e28a5458c716dc0bec5ad076b3cdb850708aa2e69cae5b2a653"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_surface_distance.py_TestHandlerSurfaceDistance.test_shape_mismatch_": {"doc_hash": "2c3d91e5cc578fc24809350d1b72e38a6ac2a380293485e63558ea7f75cc2b7e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_unittest_grid_3._": {"doc_hash": "aefefe9f2c7d0c81575b7d3ccb4951884619d713f418763798feed2c8da2eb53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_grid_4_TESTS._": {"doc_hash": "bb62802bbf1e7340d7b6e1cc5eecd1ba8f97372385b3ee58adb550bb97c46902"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_for_p_in_TEST_NDARRAYS__for_p_in_TEST_NDARRAYS_.None_9": {"doc_hash": "6aed24fb2a4ed7328f3fd0a426136c1def2dbb11d960a06045865f2d46a80bfa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_for_p_in_TEST_NDARRAYS_.None_10_for_p_in_TEST_NDARRAYS_.None_12": {"doc_hash": "b23598d0fcdf6f0085aeddff97acc39ff9ee64c1ab0faade6c6007e174fa8181"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_INVALID_CASES_": {"doc_hash": "c285ed68e497c1b6e4b4f224a1229fe8dfa0378a133a24bd51e0ff77e73a8722"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_grid_4_VALID_CASES._": {"doc_hash": "58420cfece8b72d39f2d95510cbfcb7fd5b72b429241e182dc8eaf7d15d38c2e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_for_p_in_TEST_NDARRAYS__for_p_in_TEST_NDARRAYS_.None_9": {"doc_hash": "d969759f536f323c1a483239bca50a98d65d6da716c8046f98b2bc3becf93c75"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_for_p_in_TEST_NDARRAYS_.None_10_for_p_in_TEST_NDARRAYS_.None_12": {"doc_hash": "941fcbf7337f2ba32f374218d027d828f965e159fc9061344c3564de0649f1aa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_filterd.py_unittest_INVALID_CASES._ITEST_CASE_1_": {"doc_hash": "6dcdef1ceda35f5ffe83c56b6b9e62e0784657146462bd381144ba3564525882"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_filterd.py_TestLabelFilter_": {"doc_hash": "9516b5b031bddf1172dcfcfad390b1718a465b854aed4a803905aee9bd8e00df"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_gen_fixed_cube_gen_fixed_cube.return.array_type_cube_array_t": {"doc_hash": "340a59d7b852a6a0ef1a4782bfc51692956541a607682982b39a86c9f0302477"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_gen_fixed_cube_gen_fixed_cube.return.array_type_cube_array_t": {"doc_hash": "1f53f180422c65173b71414e83ba6e301dfb860be513ed1269c4c4a2ac6eb9a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_TestNiftiSaver.test_saved_3d_no_resize_content_TestNiftiSaver.test_saved_3d_no_resize_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertEqual_img_shap": {"doc_hash": "1df90af8fa36a91a0e84c3fa777c00986c0492c670e27009e154e5787ab1fbd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_os_TestNumpyReader.test_npy.None_2": {"doc_hash": "3d3f38c55419edbe0d0b866e07257dd76df3655ff6ec72152b8520a3c66cd176"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz1_TestNumpyReader.test_npz1.None_2": {"doc_hash": "1c61f384943182db46cd6ac5f359cb5fdf0ff157d47c328e66c6317d0f1c59b6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz2_TestNumpyReader.test_npz2.None_2": {"doc_hash": "2907ef4b772464c68b86af011f368f29824804804d08490634adc19d39dad7fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npz3_TestNumpyReader.test_npz3.None_2": {"doc_hash": "3643545047913ac6be02e181442736b37f7e8116d7e0ebe3cf3e0e141c76d06d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_npy_pickle_TestNumpyReader.test_npy_pickle.None_1": {"doc_hash": "8a3abbc83c269cdde9181a4894f2986e0cedbf11c35ead8f38bd0a8fe60a63d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_kwargs_TestNumpyReader.test_kwargs.np_testing_assert_allclos": {"doc_hash": "2110f1660f4e64668a99bae323ad830b8938b37027e9c501521e50742c95a548"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_dataloader_TestNumpyReader.test_dataloader.with_tempfile_TemporaryDi.for_i_in_range_4_.for_d_in_loader_.for_c_in_d_image_.torch_testing_assert_allc": {"doc_hash": "1c757a3d4ef33c3568184c191299a15d75f3394e449730291f51f18a04b1a242"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_numpy_reader.py_TestNumpyReader.test_channel_dim_": {"doc_hash": "e56e6799ba6d8f173bc7fc1416a1bdeccf0bd775ef57666d8b2d8371a7bb8411"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_plot_2d_or_3d_image.py_TestPlot2dOr3dImage_TestPlot2dOr3dImage.test_tb_image.with_tempfile_TemporaryDi.self_assertTrue_len_glob_": {"doc_hash": "4be256f9da642a57b80b3be59ea6509b4bcbb90da3b29e9dcd1f01a24b033dd7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_plot_2d_or_3d_image.py_TestPlot2dOr3dImage.test_tbx_image_": {"doc_hash": "071a532198ecf70248939f29d6b52586007c3f4f9d894c22a55e06dab657a99b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_probnms.py_unittest_": {"doc_hash": "dd9568a5b2aaca65bd01f4533cd80e5094d252b81dbe21843bc0380e1a7f5df7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_probnmsd.py_unittest_": {"doc_hash": "8f02caf7a1816aa1ff028b04601feacc1e34099062711dc91fbc908fdd445102"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_require_pkg.py_unittest_": {"doc_hash": "574fea0d033e0afa3548ac26725cb30a2e93b999824f98a649f67de4b582ffe2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity.py_unittest_TestScaleIntensity.test_range_scale.for_p_in_TEST_NDARRAYS_.assert_allclose_result_e": {"doc_hash": "8134815ca39059f125b7506805c259556dc3339368187be8a7263e568b18a907"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity.py_TestScaleIntensity.test_factor_scale_TestScaleIntensity.test_max_none.for_p_in_TEST_NDARRAYS_.assert_allclose_result_e": {"doc_hash": "cdf1ffef9a7ad5e8d9147633a8046e43f0dbcd15f71848eb2848278925ac229c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity.py_TestScaleIntensity.test_int_TestScaleIntensity.test_int.for_p_in_TEST_NDARRAYS_.assert_allclose_result_e": {"doc_hash": "aff56bcde1ec974da23a7dabd725a3415f38e451bf4295d39700c733a22be527"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range.py_unittest_IntensityScaleIntensityRange.test_image_scale_intensity_range.for_p_in_TEST_NDARRAYS_.assert_allclose_scaled_p": {"doc_hash": "a51ae5b7d005f8f02be85ca8517daddb122db488bcc9a25cadbcd36b19020cb4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range.py_IntensityScaleIntensityRange.test_image_scale_intensity_range_none_clip_": {"doc_hash": "7f7cdcbcb6130ac6a23040ebb13c60a43cf14f100a2d957f983a0937a82b9aa5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_TestScaleIntensityRangePercentiles.test_relative_scaling_TestScaleIntensityRangePercentiles.test_relative_scaling.None_1.assert_allclose_result_p": {"doc_hash": "4c617e67601b0dd049dcaceb83a949e63fb4efa58b959c52b55e46b398ae12a5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_unittest_TestScaleIntensityRangePercentilesd.test_scaling.for_p_in_TEST_NDARRAYS_.assert_allclose_p_expecte": {"doc_hash": "8b1ad362a719dad85411fc5b01ec622c7dcf532909f1da6ad1ba53143a684437"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_TestScaleIntensityRangePercentilesd.test_relative_scaling_TestScaleIntensityRangePercentilesd.test_relative_scaling.np_testing_assert_allclos": {"doc_hash": "e715e20017f7a855ffe22997bcd1c0d4b8d345c3b5db1d214967cb994c5f735d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_separable_filter.py_unittest_SeparableFilterTestCase.test_1d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "41229e0ea9c4bf6be59bda2962c7df034527926d4822e167616f417eff8f9f06"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_separable_filter.py_SeparableFilterTestCase.test_2d_SeparableFilterTestCase.test_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"doc_hash": "5502c1ce5d400d0b6007813e5d88bdf20c3731511caed178d13bb046a924cea6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_separable_filter.py_SeparableFilterTestCase.test_3d_": {"doc_hash": "98708250ebc3d68552092b9bd4ec2d929b282f5c47db45b768499b704b9a142b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_testtimeaugmentation.py_TestTestTimeAugmentation.test_fail_non_random_TestTestTimeAugmentation.test_warn_random_but_has_no_invertible.with_self_assertWarns_Use.tta_self_get_data_1_20_": {"doc_hash": "537a6d09c5503bbbe308e8ceeed64519d318a96a708a13d52224d751c98e7cf3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_testtimeaugmentation.py_TestTestTimeAugmentation.test_warn_random_but_all_not_invertible_TestTestTimeAugmentation.test_image_no_label.tta_self_get_data_1_20_": {"doc_hash": "30cd7f734d84620f17d9ec6b1800da6f8a21590b166c7adc9bdfdbaa78238dd7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_traceable_transform.py_unittest_": {"doc_hash": "11ab4d7c37e51ae066d83059f287cc3f9300bacc45b4c083d49c4cfaa447ce30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vitautoenc.py_TestPatchEmbeddingBlock_": {"doc_hash": "5f6406823e4fbb899b9d2e21ba5f9d5497e8fa24f67a1fc63224b1f8c85068f5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_wsireader.py_WSIReaderTests.Tests.test_with_dataloader_WSIReaderTests.Tests.test_with_dataloader.self_assertTupleEqual_dat": {"doc_hash": "3706c74b18c5a92f7531898e508ca7fa8e66d6fd62ab403143fe6940533638dd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_wsireader.py_TestCuCIM_": {"doc_hash": "f126f9684299ea652887af005ee93b6a74b79249e1e90e16541cfea0047e9935"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_sys___all__._MedNISTDataset_Decat": {"doc_hash": "bec5e3313d85d848b9450f67719a291a7d43fe6958af021351d8eb170621d0fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/metrics/lesion_froc.py_LesionFROC.compute_fp_tp_LesionFROC.compute_fp_tp.return.np_array_total_fp_probs_": {"doc_hash": "b0b1962a290163d1bd5eeb3b574d25ba3426569e4855033a9e5dd5be113de11c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/spatial/array.py_SplitOnGrid.__call___SplitOnGrid.get_params.return.patch_size_steps": {"doc_hash": "632ea76a4e724e3240ffd7c4c5787b3470f7ddd09b725103bdb0af44ac35b889"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/spatial/array.py_TileOnGrid_TileOnGrid.__init__.if_self_filter_mode_not_i.raise_ValueError_Unsuppo": {"doc_hash": "4b001499c8b545515dfd2e1539aac6dceb6564fdcfb1ca1697bbe165c0ac0d08"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/spatial/array.py_TileOnGrid.randomize_TileOnGrid.randomize.if_self_tile_count_is_not.else_.self.random_idxs.np_array_0_": {"doc_hash": "7b892892c3a4390ff7aba0e5f36868aead6100ac4ad0c19404cf5223ec49e800"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/spatial/array.py_TileOnGrid.__call___": {"doc_hash": "1ab85b2d3224c93e7cadeea49554cde902a4e03b513afebecc91cc19753dee83"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/spatial/dictionary.py_copy___all__._SplitOnGridd_SplitOn": {"doc_hash": "2fe0b7966e0111b17b833f7a3bf9182489789594acdb5604f363673d187f7d2c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/spatial/dictionary.py_SplitOnGridd_SplitOnGridd.__call__.return.d": {"doc_hash": "70d55a3f5bffbadfe4d80814b741ecc80e47e2d23d1e16362fa541cddacbcfb4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/spatial/dictionary.py_TileOnGridd_TileOnGridd.randomize._type_ignore": {"doc_hash": "f83207e7b67ed28ab1bb8c4c5aac7fe4dcf14ea929d3ef6f1dc280be99ec84c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/pathology/transforms/spatial/dictionary.py_TileOnGridd.__call___": {"doc_hash": "12f67643dfc0aab35672298f7532dbc93aa6471d5d0b358dfc63596bf9e29055"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_hashlib_SUPPORTED_HASH_TYPES._md5_hashlib_md5_sha": {"doc_hash": "4b8199bc0cce9c960ad7610d9fb12707584912a559ea1ab18c90e0d019d4138c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_get_logger__basename.return.Path_f_p_rstrip_sep_": {"doc_hash": "bf9068468616f34d4d2c29b53af66010e51317b83f192a0b34fbab4179752f1b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/type_definitions.py_os_": {"doc_hash": "0f9cc3ad827d909e2325f70f8e3dd92265535870c02dc4d9c1cabbdb836e8409"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_warnings___all__._ImageReader_ITKReade": {"doc_hash": "a0628b9a2662028f4d2ac45e2e1638a1fbb8aaa56fbe3a1c2797993cf8f7574a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_from_typing_import_Dict__NiftiSaver._": {"doc_hash": "d7f9de50cb70fc46ff32dc8d250f3a9aa24031d7033cb446d9825fb6103eb90e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_from_typing_import_Dict__PNGSaver.__init__.self._data_index.0": {"doc_hash": "33e0a3b9c3666f851692bc666dc9eba9837835a7e8246f401e30cff648e58e6a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py__non_zipping_check__non_zipping_check.return.batch_size_non_iterable_": {"doc_hash": "4515e6c6a9783db91bd19c5b82a10e72272593e34694f4405f75f45e43556a72"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_decollate_batch_decollate_batch.if_isinstance_batch_flo.return.batch": {"doc_hash": "36a1a30bdb141dfd30e7df7cf1cdb7fb835fec899c2ad3aa4f2c457447241a7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_decollate_batch.if_isinstance_batch_torc_decollate_batch.raise_NotImplementedError": {"doc_hash": "be5a9de49f086ec9cdf9637755c4a0764d207ea732ae34c234f0a63cd7ff1d2f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_compute_shape_offset_compute_shape_offset.return.out_shape_astype_int_cop": {"doc_hash": "7bd0dfb0914ec4a1bbadee44ddffc10d135966950368ae47f463c24e579f2743"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardImageHandler.__init___TensorBoardImageHandler.__init__.self.max_channels.max_channels": {"doc_hash": "8afae127662e8d3489d2c17614c2e0d76807bb8a793ba5a8a4ac809f3fd73df1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardImageHandler.attach_": {"doc_hash": "46c0b1bb05ad756b24b849328949d1989a2b8075ba7f1b086cccc36469e1c822"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_get_mask_edges_get_mask_edges.return.edges_pred_edges_gt": {"doc_hash": "3726581b90aefe7331c0e8bb2deb57ec96d9ec6ea9b62e3cde81e6b3f4a37832"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dints_block.py_from_typing_import_Tuple__FactorizedIncreaseBlock.__init__.None_4": {"doc_hash": "30b88fcc33ae91625c4713aad7f2cd7be13bb834bb252a1b1b816135dbd328c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dints_block.py_FactorizedReduceBlock_FactorizedReduceBlock.__init__.self.norm.get_norm_layer_name_norm_": {"doc_hash": "38fa142c0cd279d9e80ac4bcf87ebc26aa23228bd9b79ed665f80537c04baf44"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dints_block.py_FactorizedReduceBlock.forward_FactorizedReduceBlock.forward.return.out": {"doc_hash": "af228f89b1fdcf6d6c47ccac4581b349178c71bbc02a881015fc554e1bb3c3e5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dints_block.py_P3DActiConvNormBlock_P3DActiConvNormBlock.__init__.self_add_module_norm_g": {"doc_hash": "32d8f5a21e0181f53a47637c497acdadf6262937c26305ec34a86fc636d3616a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dints_block.py_ActiConvNormBlock_": {"doc_hash": "a7da60aed61ee1e3fe93bf4ff06aa01789fbea427dcc402be259e5ab5f8c1261"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_warnings__CloseWithRAMCost.forward.return.torch_tensor_0_0_require": {"doc_hash": "12f38e28e9314032a3085ef478accc297daa390a90a51e80171a6179d8ddbbc1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py__ActiConvNormBlockWithRAMCost__ActiConvNormBlockWithRAMCost.__init__.self.ram_cost.1_in_channel_out_chan": {"doc_hash": "741ac26fbbf16e3af5e5d9786d16b4bfe7b208c2654542a4737e984b312fc47e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py__P3DActiConvNormBlockWithRAMCost__P3DActiConvNormBlockWithRAMCost.__init__.self.ram_cost.2_2_in_channel_out_": {"doc_hash": "d350f8f8f645f1d5186a9eac7c684d5059831e942c827eaad3d00678d3d6f22a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py__FactorizedIncreaseBlockWithRAMCost__FactorizedIncreaseBlockWithRAMCost.__init__.self.ram_cost.2_in_channel_out_chan": {"doc_hash": "30f9540405d1d32dfe67ea657422e97717d7294fcc50d25ebd7866e1e7858960"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py__FactorizedReduceBlockWithRAMCost__FactorizedReduceBlockWithRAMCost.__init__.self.ram_cost.in_channel_out_channel_": {"doc_hash": "6219de5642e74dc8b78dd1d27cb2529f3f2b454f423d02b234b37c6bcd257200"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_MixedOp_MixedOp.forward.return.out": {"doc_hash": "1bc38e76033c0724c8ade11a7f2056c2c5c94c91aa92f4afe63c31b6ecc59497"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_Cell_Cell.OPS3D._": {"doc_hash": "a2cc7c3d83b3aab1757ec4bb51ccd7aee719742cd67833ddf2cfff9492e1e311"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_Cell.__init___Cell.forward.return.x": {"doc_hash": "e7e6fd4c9796ba7f8da7f5848f78bc39f49731f118f767aeccac4baebcc76262"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_DiNTS_DiNTS._": {"doc_hash": "76957553eabe8a42c3dbfe78f9b4cf321381061c55bc99829c8f93b87693256a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_DiNTS.__init___DiNTS.__init__.for_res_idx_in_range_self.if_use_downsample_.else_.self_stem_up_str_res_idx_": {"doc_hash": "96ea07e5e8a6a6a11c7ab1b35471e749940f79fbf2f383e11176bb4315654bfe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_DiNTS.weight_parameters_DiNTS.forward.return.prediction": {"doc_hash": "0694bcf0eadb299abdb6900cb968b4b1dbc0b1197a805cddb291b21d4929475e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologyConstruction_TopologyConstruction._": {"doc_hash": "d44314bc2930fb36153c1cc0afe5b5d6209cf4931d052dd7574a3eb0471e6ce8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologyConstruction.__init___TopologyConstruction.forward.pass": {"doc_hash": "2282556eeea3842a2d0c6c2c291d95817a3d241e00945ca9ab3241cf6ec6ecca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologyInstance_TopologyInstance.__init__.super___init___": {"doc_hash": "42a49e723bcaf3181f2c0fd576ed45611d9f28b19700836e38e79f435adfe7ed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologyInstance.forward_TopologyInstance.forward.return.inputs": {"doc_hash": "4b581fcd26bffa74dfa23bec131759425f430a32db301d6759ccf15b28f0123b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologySearch_TopologySearch._": {"doc_hash": "e8d1fc997a713e2f45e786c7a6963b85001a99b62f9af9aa5dae2cf33cd2560a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologySearch.__init___TopologySearch.__init__.self._arch_param_names._log_alpha_a_log_alph": {"doc_hash": "a2ecb75bd6b3c05c547a21640a8201c8e7a1ca8fae86d3a359c267d4a3b75fc5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologySearch.gen_mtx_TopologySearch.gen_mtx.return.transfer_mtx_node_act_li": {"doc_hash": "45974aae2cc8e4b25c80c5af9f7e090d26820b3e7e7c8cf579a9b565bd9c6f62"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologySearch.weight_parameters_TopologySearch.get_prob_a.return.None_arch_code_prob_a": {"doc_hash": "8bfb942f659aec3dec86f7335d631d541af7ab79193a2ea5a2fbdc79c710ba10"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologySearch.get_ram_cost_usage_TopologySearch.get_ram_cost_usage.return.usage_32_8_1024_": {"doc_hash": "89dcff80dc65ede7152eccaa74e8e6c5fe9918bebeda9e7a8ef85748d3379cd4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologySearch.get_topology_entropy_TopologySearch.get_topology_entropy.return.ent": {"doc_hash": "81d3681a5d2b6aab5011cb7a959fb167536c6e2b119d42b816161cd657297e22"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologySearch.decode_TopologySearch.decode.dist_matrix_predecessors": {"doc_hash": "93dc2e47571b97d878d0e3927fd6c12f4b3dbb9a96f232ffdf5bda3533e54f0b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologySearch.decode.index_a_idx_1_1_TopologySearch.decode.return.node_a_arch_code_a_arch": {"doc_hash": "7533057008714b95ade10476ecdc94f57bfde30d0f40221ae1d62797f1002ffb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dints.py_TopologySearch.forward_": {"doc_hash": "c560c285a9d9d09a79d84d5bba653fd8d305662ae7fe772bc45c6761f86ace87"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/milmodel.py_from_typing_import_Dict__MILModel._": {"doc_hash": "6dc640847d10751a2cf0b5ef328b6a76360c9de77061456142625fa7ae597889"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/milmodel.py_MILModel.__init___MILModel.__init__.self.net.net": {"doc_hash": "94f2beaeb37643d2a048abc71e60848929685841290cfa59cdc02fec418d4757"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/milmodel.py_MILModel.calc_head_": {"doc_hash": "2043c50d733f02836a39d4107225467ee9677af3f2d5c74a6bedf88750c73063"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/resnet.py_from_functools_import_par_get_avgpool.return._0_1_1_1_1_1_1_": {"doc_hash": "54e7599a6e454b5c5ab45e8aef178f83410cb8886ce69c9aba7fe170f7b3524b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/segresnet.py_SegResNetVAE._get_vae_loss_": {"doc_hash": "c372978cacce2d45d7b67967bbb6f9823631b496fcdba83d6a6f22ca425eb150"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianNoise_RandGaussianNoise.__init__.self.noise.None": {"doc_hash": "1520dda9b5b420a03304803404e781f3e139e9a7345048bfb841360655ed86a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianNoise.randomize_RandGaussianNoise.randomize._type_ignore": {"doc_hash": "aab8c712b2bd908a7aa542db2649623769dd91761bc07a5d5b758bab3d2b6118"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianNoised_RandGaussianNoised.set_random_state.return.self": {"doc_hash": "1d20b6bd7e712db6aebf516474b6f4e9d2a06677be65cdfb2f46f8d5c8222bc6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianNoised.__call___RandGaussianNoised.__call__.return.d": {"doc_hash": "de4a746749a7582910db94c8190cb302de17b9915d4fc673cb6eece37eb774af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandCoarseShuffled_RandCoarseShuffled.set_random_state.return.self": {"doc_hash": "d7a0a5e26378aa93a361e571660421abd863a351cbe8279afb2ca772ca0f925c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandCoarseShuffled.__call___RandCoarseShuffled.__call__.return.d": {"doc_hash": "2e0c7859bafc839e20c69c9eec62074f2c871b1cda3b8bbd8f27a940cada66d4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/inverse_batch_transform.py_Decollated_Decollated.__init__.self.fill_value.fill_value": {"doc_hash": "7fd2717d64312f8e7aefdb5d270a3c4ab4cf5bafc8976b5a80fff5a9569a2f56"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_AsDiscrete_AsDiscrete.backend._TransformBackends_TORCH_": {"doc_hash": "734dda46b3d68662499b19569c704716c9b84f4cd6a80e45f324f2bf015ebc7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_AsDiscrete.__init___AsDiscrete.__init__.self.rounding.rounding": {"doc_hash": "a493963704ade7b815585254b888deaae43288c155828e717be7105b49eb8bac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_AsDiscreted_AsDiscreted.__call__.return.d": {"doc_hash": "3c3095fc415fc13178ddfd5ae6efa30a8b4e1f94df7112355cb73780c4aad7ed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Ensembled_Ensembled.__init__.self.output_key.output_key_if_output_key_": {"doc_hash": "df9748e0f1eb3bbc069190395c75730af4371a2a865709e7833ff3a9da9823b4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Ensembled.__call___Ensembled.__call__.return.d": {"doc_hash": "00f43e1e3ca323d622aa09dcd956b38b41084234f8864114a5b51151af777653"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/__init__.py__": {"doc_hash": "95add40824344bb429e3b7950e1411bf1abc4e68d7a661b2dd7623a620b0bf98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/array.py_from_typing_import_Any_O___all__._SmoothField_RandSmoo": {"doc_hash": "04e775c62a45a6696e95f12016382dc0bb3b4d64061db1250f7a64ab4eafe346"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/array.py_RandSmoothFieldAdjustContrast.__call___RandSmoothFieldAdjustContrast.__call__.return.out": {"doc_hash": "36e36ba18bef03be84336f819a60bb15026ac2765342902a891980757a96d971"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_from_copy_import_deepcopy_InterpolateModeSequence.Union_Sequence_Union_Inte": {"doc_hash": "04a68e3ac754b6d9c8d6e99d9f59422254ad7260d5c16d92322dc1ae80f6825e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_PadModeSequence_Spacingd.backend.Spacing_backend": {"doc_hash": "a8f39729dec5cb3cff3780b41b70297c8e46f485b005ff54b86fba8911c250af"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_ToTensor_ToTensor.__call__.return.convert_to_tensor_img_dt": {"doc_hash": "06334f7a3ab5bbbbba769ef3e0893fc5ec71f9daa61d17939b3d458812a0e462"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_EnsureType_EnsureType.__init__.self.wrap_sequence.wrap_sequence": {"doc_hash": "ebe3c7f77da0884e6181fcfcb104feaabe08c8e5143f5968d515e9700ab2a3c0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_ToNumpy_ToNumpy.__call__.return.convert_to_numpy_img_dty": {"doc_hash": "8045d939dcb5435ca326f8dd926455e5bbe49fed82d7bc3f665bfa98c2955aa4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_ToCupy_ToCupy.__call__.return.convert_to_cupy_data_dty": {"doc_hash": "de93fcb7d34d035d4570d90b733a431bf3b0aaf972199dd239b7e0d9be304559"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_version_leq_version_leq.return.True": {"doc_hash": "a1d52623d7fecef05adec44715c35af009d428abfdffa4a0fc0a0adf3359fedc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_pytorch_after_": {"doc_hash": "52dd49c5c2334875a1a3fe15eb255c81214198037df5b908146818f410570bba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_plot_2d_or_3d_image_plot_2d_or_3d_image.if_d_ndim_3_.return": {"doc_hash": "4ea7c9ac2dd44bcefb70fbdad75b9a4e76d413bdf4190df175d2b21437fc6aa6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_plot_2d_or_3d_image.if_d_ndim_4__": {"doc_hash": "421ade109bed6aaf838a4a5fc4c3afa3c59bf79002947f086e026d9fd41a88b4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_acn_block.py_unittest_": {"doc_hash": "053ca7839cabb92288d1b654b8f3665512ef95e306daccbea27c2cb211fdc90c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine.py_unittest_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_7": {"doc_hash": "c269ff3a459265dde61b28276882a562c571b696290d1a91ec68524b7062c4b2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine.py_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_8_": {"doc_hash": "75096f1e63f55f0d31a1e6dc31a922447b7048b554f8a7fceec79f5695178b14"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_grid.py_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_5_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_5": {"doc_hash": "b8197c3fc0a41f18ae11d8173d2d4800692285a922e9a29867211af5aa191bcb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affined.py_unittest_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_6": {"doc_hash": "97a8276761afab22ca479908b4e4a7570dbe3be1bfed5a40f8bfc150f6aa5f7d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affined.py_for_p_in_TEST_NDARRAYS_.for_device_in_None_cpu.None_7_": {"doc_hash": "05911d7cfdfddcb3a2fe639ade6c2909d5024415ba800124e818dd1d52cdabe6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discreted.py_unittest_for_p_in_TEST_NDARRAYS_.None_5": {"doc_hash": "e17d53ac6703ddf6f0a4ee3f0ae6829615e49cc045f3ae9c29afa1fc9cd50f35"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_scale_cropd.py_unittest_TEST_CASE_4._": {"doc_hash": "a8f42e5fa78c20ecdc9817b49cecbd6de7dc8ed8c308eba2f4b5707ae10fee9a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decollate.py_TestBasicDeCollate_TestBasicDeCollate.test_dict_examples._verify_padding_fill_val": {"doc_hash": "7335dbd557f3777ec2ae4f2ea16dd146ea2d4edc48671769a2dcdb3737bf3884"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dints_cell.py_unittest_": {"doc_hash": "4f45a096a53816f12c05ea3e82c21def25b4d5956c2b5f8f2eae55a122d369cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dints_mixop.py_unittest_TEST_CASES_2D._": {"doc_hash": "19e70609cc2e5be6243e13a4fc29042b045bc3c46c43fcc0d931384466ff933e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dints_mixop.py_TestMixOP_": {"doc_hash": "91839bbcb275a3cf1c9c73523f8196b244acd4da2291b4f93bcb74e38113891e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dints_network.py_unittest_None_1.TEST_CASES_2D_": {"doc_hash": "82d266ef1530881b86b004e7c3c40e70a185dd27d47a0b445045fa7420ba791c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dints_network.py_TestDints_TestDints.test_dints_inference.grid_gen_mtx_depth_4_": {"doc_hash": "c59f2e7a774653d1e9c9e6f5bb80656bb23347a1eb48dcd03675012c38ca8309"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dints_network.py_TestDints.test_dints_search_TestDints.test_dints_search.self_assertTrue_isinstanc": {"doc_hash": "e9cf167678fbd84c39cb0952c54aedd322abc299c37d26da428e998a43a3a2ee"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dints_network.py_TestDintsTS_": {"doc_hash": "c873ed82cd92c3db2fed314deb879c18d73affae5a126908b56a637f21fbfcd9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_factorized_increase.py_unittest_": {"doc_hash": "5df2d22f80e19f3a207a358ddd896f036c0880ce46ce8a691731f68aaa7c53ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_factorized_reduce.py_unittest_": {"doc_hash": "32a1e33bdae8bd99b0edbed1ff527a709ad78256c4333539fae3602be0864a52"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows.train_and_infer._test_saved_files_": {"doc_hash": "181f0c28cbd34bfbe494d3d90789ea927794277a1daa2f15261e9364d7206fe2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_milmodel.py_unittest_None_2": {"doc_hash": "d1b7894ea62dc16f763ee244d3e3271e449216913884cb338f7a78d3f89e23f0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_milmodel.py_TestMilModel_": {"doc_hash": "3bd2f3f5214d1ff360da21c6337c21a3a8449b4e0249aecb73ff9f27b425be19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_p3d_block.py_unittest_TEST_CASES_3D._": {"doc_hash": "dfc66d88bbc230fadf7d065bbbbef75c5620d577c084887f7a40960150dce6ca"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_p3d_block.py_TestP3D_": {"doc_hash": "ca77d2e5b22052a3538e9527ba5077c5331878aa1779e377f8ab7ca6643f8d43"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pytorch_version_after.py_unittest_": {"doc_hash": "2711b7cf142f64606f4fde7e7e3a3d3929d999bc338c6dfcea5625aaa9fa16a4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smooth_field.py_TestSmoothField_": {"doc_hash": "a15b59aedd50bf97164a7b993df58ac0df7f34ce18afeaac382d2f234a3e86c8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_on_grid.py_unittest_TEST_MULTIPLE._": {"doc_hash": "6390a2eb270ccb87e6954e73eaf2d394f7f780e19cf3c582347649ece64e1984"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_on_grid.py_None_1_": {"doc_hash": "c7956aa91f3d342498493cbd2f075add2d50df7affc8956d0813dc99aee7bfed"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_on_grid_dict.py_unittest_TEST_CASE_MC_0._": {"doc_hash": "72c83de38feffca20c923bc78781cbaa1b0cb72996ea28b1c9749beced4bd1b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_on_grid_dict.py_TEST_CASE_MC_1_None_1.None_2": {"doc_hash": "c0fc3985a9b0422c69bacda04df3d3b3f77380c024d12034526732198c1721d3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_thread_buffer.py_TestDataLoader.test_time_TestDataLoader.test_time.if_sys_platform_darwi.else_.self_assertTrue_": {"doc_hash": "a5fc9d7416e31dcbe18e5cbcb5e03ffb9e22c1d3018d2fdf7fc45c4bf3258fcc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_thread_buffer.py_TestDataLoader.test_dataloader_repeats_": {"doc_hash": "a01bb202d8a8c24d5d6f74148a2dbb5b2b9a3513a122a7ef28f463f9618827a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tile_on_grid.py_unittest_None_4.for_tc_in_TEST_CASES2_.TESTS2_append_p_tc_": {"doc_hash": "65a6c2fea366f0cea7ffc3fa60cb87fcc92c5c4aa9fee68bfe1d2c9b44a88d82"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tile_on_grid.py_make_image_make_image.return.imlarge_tiles": {"doc_hash": "9bbb9681d5df0f042cfcb6566992444e26b8f943553512bbc223a49e5ea9428f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tile_on_grid.py_TestTileOnGrid_": {"doc_hash": "331f7061fab0c5e9334908aedd06eb4e974badc4115fde0e1572680582bd16f7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tile_on_grid_dict.py_unittest_None_5.for_step_in_4_8_.TEST_CASES_append_tile": {"doc_hash": "82c8c92e779c5d4305b2fe67c4f98b98f8c99df66ea8a8f165e15877e1dcad1b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tile_on_grid_dict.py_make_image_make_image.return.imlarge_tiles": {"doc_hash": "1d67c4778fa0aa6c8af4706a2f20d3e0eb8d35d062d301d11ea5fc0691fc278c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tile_on_grid_dict.py_TestTileOnGridDict_TestTileOnGridDict.test_tile_patch_single_call.assert_allclose_output_t": {"doc_hash": "00fdfc20730d29ce076889395ef9f24331bc0bb4e5941050956d41b0e0daf04d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tile_on_grid_dict.py_TestTileOnGridDict.test_tile_patch_random_call_": {"doc_hash": "e2065050709954eb94e9edec0fa9f214f55882ce690a08dc8b38276afd64b250"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_numpy.py_TestToNumpy.test_list_tuple_": {"doc_hash": "d52dfbea2b3d40f9cebb2562657033c3be5516639a7d0e41111af29b3f3c9986"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_MedNISTDataset_MedNISTDataset.dataset_folder_name._MedNIST_": {"doc_hash": "b8d71c09230e8631756ef94679e270a44d4bf3f89049d8d813ff17e687c96e3d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_MedNISTDataset.__init___MedNISTDataset.get_num_classes.return.self_num_class": {"doc_hash": "70b05413bf0bb5f40a8006e0f69fa027d3c70c094fc6e10eaebdd1d4453346a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_MedNISTDataset._generate_data_list_MedNISTDataset._generate_data_list.return._": {"doc_hash": "67430452aefeb87e5249bbcc7c86e51f18eee42d765fa7caf61433e47e63eb80"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_DatasetFunc_DatasetFunc.__init__.self_reset_": {"doc_hash": "a9588b4b04fad50c8affd9a77316a26d08b8f9a7afaf64453612266125a49d53"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_DatasetFunc.reset_DatasetFunc.reset.self.data.self_func_src_self_kwa": {"doc_hash": "de21fee819d6167aaac97a3f9308be5cb640207828d02de25ad4d39af3ebfe62"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader._check_level_WSIReader._check_level.return.level": {"doc_hash": "49cacbbb09008b6110d956c29ff8139e059ea44348edacdff8045400f17b1349"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_WSIReader._get_image_size_WSIReader._get_image_size.return.size": {"doc_hash": "d3d8e2aa45bf5ac031a39bb37c66e267056c0a3a8c6d9019f5dd942d9226177d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_CSVIterableDataset.__init___CSVIterableDataset.__init__._type_ignore": {"doc_hash": "fbc1f2524d2e0c1f72d42e083e7cd33843f97bc0a5ef7ee3989fccbfde610cbb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_CSVIterableDataset.reset_CSVIterableDataset.reset.return.self_iters": {"doc_hash": "f3a6fcd24fa64be45e86249f5f16277ff70ee90b56ca4b305f8d76e7e05c3ee1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_CSVIterableDataset.close_CSVIterableDataset.close.for_i_in_self_iters_.i_close_": {"doc_hash": "61361ad86d37f49d6a9b352446456fe4f99adf207c9481c0eada7549e61d7b34"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/iterable_dataset.py_CSVIterableDataset._flattened_": {"doc_hash": "7dd4eac7396a9441f35f4466dab1fdeee2f5750b89a8d4b7dce04c01439e281a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/torchscript_utils.py_datetime_save_net_with_metadata.torch_jit_save_jit_obj_f": {"doc_hash": "771ab1a28bbf2e2ef374c1a531af2878266861ca3951a571770b40eddf0a776f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/torchscript_utils.py_load_net_with_metadata_": {"doc_hash": "50ed60401c8a28d066b827b645478829bbd8647142b0639b978b020e0c4528b0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_hashlib_SUPPORTED_PICKLE_MOD._pickle_pickle_": {"doc_hash": "7911172ea22a01c29286068488359cdfb9dc04ddd5906978541050c23a3571a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_create_file_basename_create_file_basename.return.os_path_normpath_output_": {"doc_hash": "56d4f1cbce3940ce9eae87e585681b74c33d9d6180392e0acb437d7d46003469"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_warnings_BaseWorkflow.run.raise_NotImplementedError": {"doc_hash": "620edc423f7254a9e6b178c9d409e3496d0a3a4d8817e0716f15ef720af3dba4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._write_scalar_TensorBoardStatsHandler._write_scalar.writer_add_scalar_tag_va": {"doc_hash": "5f33638e9227a36a6db374d508ac9837014a462ec4a6564a80435a1bbc73fd4b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/contrastive.py_torch_ContrastiveLoss.__init__.self.temperature.temperature": {"doc_hash": "b1f43b599789b7885a8a60806f8f1c09da1d9090215c0c26fff9761a62c31f0d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/deform.py_BendingEnergyLoss_BendingEnergyLoss.__init__.self.normalize.normalize": {"doc_hash": "8d698174e6bd946b6c9c42b330b04d8111b8ee03bef233d0be3e562f5fe7d040"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.__init___DynUNet.__init__.if_not_self_deep_supervis.else_.self.skip_layers.create_skips_": {"doc_hash": "677dc54b17ba6b4d507c61cd7785d2490dc68a126a45d7ebe3f6ed4db0044af0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vitautoenc.py_math_ViTAutoEnc.__init__.self.conv3d_transpose_1.conv_trans_": {"doc_hash": "ec206a5cfc53f2ee1fbbf6f83d506d5cee2965a7f39f6831dbc681cf944ce30e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/lr_finder.py_pickle___all__._LearningRateFinder_": {"doc_hash": "0b528e4f13971efbe6dc98bcd859b0efa10449071c48108a1712c803a5ad645b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/__init__.py_AdjustContrastd_LoadImaged": {"doc_hash": "9738a71c3e0a5b7448f9f7a9b7f62cc33826ff44af032a2f28a51aad0d37b251"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/__init__.py_Mark_Affine": {"doc_hash": "d741ec9ae59b2cbfc119ea57d6a2b321b46a815e1818d7e99bfb90093ebd606d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/__init__.py_Affined_AddChannel": {"doc_hash": "9df4f6dcbefb3a204eb28744b4dad26c0bab0b0c4fed1753e4ecaa46c38813b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_ScaleIntensityRangePercentiles._normalize_ScaleIntensityRangePercentiles.__call__.return.img": {"doc_hash": "6a331e18bbc380866cd45f2031fde159c83cad88208734b11cf2f927becddb7a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_SavitzkyGolaySmoothd_SavitzkyGolaySmoothd.__call__.return.d": {"doc_hash": "e8fec9927095ca75bffee4e23647e5ad5591a5aa2c6d3321eac9b67cb593e08d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/transform.py_Transform_Transform.backend._": {"doc_hash": "32ff5ddbc91501c302e37e281bf85a739153210c249caad941f3332e57dba506"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_RandCuCIM_RandCuCIM.__call__.return.super___call___data_": {"doc_hash": "87321b2fa1d6df6d156b4985293585aebbfb0b94b6ec9fbf47560000d359e4c7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddCoordinateChannels_AddCoordinateChannels.__init__.self.spatial_dims.spatial_dims": {"doc_hash": "8fc18f504b2895119b310b30260c00bba7fc014e9afc8223db50ce44925a336a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddCoordinateChannels.__call___": {"doc_hash": "88ed7ce1d406dce91fe850f1727618009e8845a9608b1e42208a708368222102"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AddCoordinateChannelsd_AddCoordinateChannelsd.__call__.return.d": {"doc_hash": "b61d127e3b369758ab899c193694c4007afc574fd543de2c17319d6ee408d7c7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_correct_crop_centers_correct_crop_centers.return.valid_centers": {"doc_hash": "1bc591a1943cbcbdc2b15e183cb5f36cb03d372857dead6e2e6fd9a80e6b32ac"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_os_from_monai_transforms_pos": {"doc_hash": "178a57ec2590582f7beba3d635ee41e15da708823e1e6a6f15aa4c3fbb47bca9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_None_16_if_TYPE_CHECKING_.else_.plt_has_matplotlib_opt": {"doc_hash": "afbdf19a7b680522db40264e11baf5ecb03da607edd4ab339acb6c198f72a9b8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_if___name_____main____if___name_____main___.None_49": {"doc_hash": "11854f7268ab693d53917acefed8c127c771cdfdf1f4c02d9c9f33963a9f4ce6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_if___name_____main___.create_transform_im_Shift_if___name_____main___.None_100": {"doc_hash": "8fdf540adbbfcc27992c141899eb78a38b912a736bc4891f726562b11c34fd1f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_create_transform_ims.py_if___name_____main___.None_101_": {"doc_hash": "1152cf748c921f2586365d241883598972bf0f939b7509b2780c296f31a32ab6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_collections.abc_ensure_tuple_size.return.new_tup_dim_": {"doc_hash": "261318fb09833abe26d56ea1ed9cdd9926cf65f5f8735b79394951e7b35ffc74"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/utils.py_matshow3d_matshow3d._": {"doc_hash": "6a5169ee74dc82a07d8ebfbd94105764fa8c977d7209a0d6c81f6ff9ecadf7e6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/utils.py_matshow3d.vol_matshow3d.return.fig_im": {"doc_hash": "4a721df419132b9c972faac478be5171f8f581e952ba05cccf92553540e664ce"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_dataset.py_TestCSVDataset.test_values.with_tempfile_TemporaryDi.dataset_10_": {"doc_hash": "8f8699338efbcdb0c322bf5f22051fed8b3c80ce69773a3bf3419b873d0d6af0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_iterable_dataset.py_os_TestCSVIterableDataset": {"doc_hash": "c01a9e738ae2b36518235e35472cec965355aa5ab7641144ecfd2410f90b5c85"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_iterable_dataset.py_TestCSVIterableDataset.test_values_TestCSVIterableDataset.test_values.with_tempfile_TemporaryDi._test_group_columns": {"doc_hash": "ced430c25126d0f774fb0ef84314abe0172eda3a2f5bd937ae3b6cc16ff327da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_iterable_dataset.py_TestCSVIterableDataset.test_values.with_tempfile_TemporaryDi.dataset_14_": {"doc_hash": "f738f6ca0a03ad6fac4401a8bbbf7f9bd1dd3d157dbf56c8ce15c3e1834cd32c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataset_func.py_json_": {"doc_hash": "db4c98171bd3208e2dd62038b53fd6f4abc039f9dc7b0cfb480449fe61a3c276"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_TestDeprecated.test_arg_except3_unknown_TestDeprecated.test_arg_except3_unknown.None_1": {"doc_hash": "9657051487e33b9da236408f06ed3e3d9b9ef7369a2920849af021ea9a1eed82"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_TestDeprecated.test_replacement_arg_TestDeprecated.test_replacement_arg._prefers_the_new_arg": {"doc_hash": "ababcde3766af0577e6c7fdad72343ed2b3cb9d38a3ad1bbbc68f12759c8560e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_TestDeprecated.test_replacement_arg1_TestDeprecated.test_replacement_arg1._prefers_the_new_arg": {"doc_hash": "7ea345d9acad418fe380ed32a0987a11ff4b7495befe3d561cf2ee3f75c5dbd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_deprecated.py_TestDeprecated.test_replacement_arg2_": {"doc_hash": "be6c47ec9385433ce57eac242b0040cb0ab4246787a08faa27dcd8cbaed833d9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_dicom_series_reader_TestLoadImage.test_itk_dicom_series_reader.self_assertTupleEqual_res": {"doc_hash": "536d3532d21c63a13c5f7c9cbad814fc0d4dab56a57b90c292b4caf608d1c071"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_reader_multichannel_TestLoadImage.test_itk_reader_multichannel.with_tempfile_TemporaryDi.for_flag_in_False_True_.None_3": {"doc_hash": "5961df3bce97f4e7675794a88ae862eaf1b1e37e88969bd30c4c9bfcbba42f8a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_load_nifti_multichannel_TestLoadImage.test_load_nifti_multichannel.with_tempfile_TemporaryDi.np_testing_assert_allclos": {"doc_hash": "668a12a2f386c66b061dbe115a29b56ca35c5b28987d3817e21e684eeaabdad3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_matshow3d.py_os_pyplot_has_pyplot_opti": {"doc_hash": "06ff3d75a17e6475a8c0398e337001e123714beba8083e872a0346c67000fc24"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_matshow3d.py_TestMatshow3d_TestMatshow3d.test_3d.with_tempfile_TemporaryDi._None_indicates_test_pas": {"doc_hash": "01167a10d5dc30909fad9858a8f8885cab98aa90cbff436c4525f54b8e05d631"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_matshow3d.py_TestMatshow3d.test_samples_TestMatshow3d.test_samples.with_tempfile_TemporaryDi.if_comp_.else_._None_indicates_test_pas": {"doc_hash": "047808333bdb370a63e55001eae1de910cb54c4e09f989e15871b07fac179929"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_matshow3d.py_TestMatshow3d.test_3d_rgb_": {"doc_hash": "aa16a043c6c306d8c3f7296e0adc805624d2185b7992397f8c5e5e74dfda3329"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nvtx_decorator.py_unittest_TEST_CASE_WRAPPER._np_random_randn_3_10_1": {"doc_hash": "12f02394dfea5bb4df8e59ec3eb24d608a8611d64bc3d11f276ada5456aa201b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nvtx_decorator.py_TestNVTXRangeDecorator.test_wrapper_tranforms_TestNVTXRangeDecorator.test_wrapper_tranforms.np_testing_assert_equal_o": {"doc_hash": "107129babce39b55e433c8613ac5aa13ad45421692ea4e71c8904615fc17637f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_one_of.py_TestOneOf.test_inverse_TestOneOf.test_inverse.None_1.else_.self_assertDictEqual_fwd_": {"doc_hash": "f3b88f6d0ee981de8abdd3714dd3925298e4d2861f38e614afae5b93f4a0e8a6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_one_of.py_TestOneOf.test_inverse_compose_TestOneOf.test_inverse_compose.self_assertTupleEqual_res": {"doc_hash": "7a22bb4f8f0c7cdedec00ae95c5c73de4f86bd6a7976695f647dfa39664d993b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_smooth.py_TestSavitzkyGolaySmooth_": {"doc_hash": "b8b696c3572dc6b8e2bdb75b986d50ef28edbe83e515d2c1b73e8a76c2328fd7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_smoothd.py_unittest_TEST_CASE_SINE_SMOOTH._": {"doc_hash": "acb5925be092c3912c9eec911834d0c5159363461308a38c13f3372ed3cc45cb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_savitzky_golay_smoothd.py_TestSavitzkyGolaySmoothd_": {"doc_hash": "7c7d6d4912972c5f1c5aabccb705f9ebb033be36ed75ef690ad207cc94d8b267"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_TestScaleIntensityRangePercentiles.test_invalid_instantiation_TestScaleIntensityRangePercentiles.test_invalid_instantiation.None_3": {"doc_hash": "d170bf01b726110261f67803b5e2bb2fadfe2cc4f4fbbac0519dccf5d8fcb9f2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentiles.py_TestScaleIntensityRangePercentiles.test_channel_wise_": {"doc_hash": "a4cdd99fe108fd529825acc6f86afea8532db1f6f55cd19edc14ea1c7aae03e0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_TestScaleIntensityRangePercentilesd.test_invalid_instantiation_TestScaleIntensityRangePercentilesd.test_invalid_instantiation.with_self_assertRaises_Va.s_self_imt_": {"doc_hash": "b192cf7039e745907b1df36d6ba495e6c50e0f6f934aad70ee5d00c68238a632"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_range_percentilesd.py_TestScaleIntensityRangePercentilesd.test_channel_wise_": {"doc_hash": "b400798a886e19eebdcd1aa2291f9fe552c6b18b47f3ebfd6120496aca0e08ec"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_state_cacher.py_pickle_TEST_CASES._TEST_CASE_0_TEST_CASE_1": {"doc_hash": "fa5f3aa7e9e046513dff39567f1076e0bc847c2529bad1f7b1c99623d94f1262"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_cupyd.py_unittest_TestToCupyd.test_tensor_input.cp_testing_assert_allclos": {"doc_hash": "20b4e2b733d8cfd03bc7f517cd2bfd1ad0e22b9aa2dc2e733ec3dc6edbdcdebd"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_numpy.py_unittest_TestToNumpy.test_cupy_input.assert_allclose_result_t": {"doc_hash": "1ad50aac9ee39b9fea5ef241e3314855ce585c8133cff00d88a631f881d7bb30"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_numpy.py_TestToNumpy.test_numpy_input_TestToNumpy.test_tensor_cuda_input.assert_allclose_result_t": {"doc_hash": "0b817deb8ae6a4262fdb17d69dd68e09bf470e8fd23466501a62bcadd94f58b7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchscript_utils.py_os_TestTorchscript.test_save_net_with_metadata_with_extra.with_tempfile_TemporaryDi.self_assertTrue_os_path_i": {"doc_hash": "2c26e6dda97258edd6b20759298e14548da6630c906a60af17bb663725f843b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchscript_utils.py_TestTorchscript.test_load_net_with_metadata_TestTorchscript.test_load_net_with_metadata.self_assertEqual_extra_fi": {"doc_hash": "cf0e6a4e6d23fa08a126293610c296240e41092f48865498a5acf3eede42aaa0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchscript_utils.py_TestTorchscript.test_load_net_with_metadata_with_extra_TestTorchscript.test_load_net_with_metadata_with_extra.self_assertEqual_extra_fi": {"doc_hash": "da284da6be284beabf1bd28d7680869fa6ca62b134ce1d6ea4dc940e24b4b7ae"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_torchscript_utils.py_TestTorchscript.test_save_load_more_extra_files_": {"doc_hash": "d48b4dcc65c304b28d52eac95886fb281e4b5a2d970780c5d077ee8e689dc25a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_utils_pytorch_numpy_unification.py_unittest_TestPytorchNumpyUnification.test_percentile.for_size_in_1_100_.for_p_in_TEST_NDARRAYS_.assert_allclose_results_0": {"doc_hash": "2a5a2b41fcc8642913003ebd698a338e5cda3a3da5c4191fd4c20c04dd0a015d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_utils_pytorch_numpy_unification.py_TestPytorchNumpyUnification.test_fails_": {"doc_hash": "06d4dba5c6be0882cce62963a441700c8c41a6935902e81fb643c00386d56c25"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vitautoenc.py_unittest_for_in_channels_in_1_4_.for_img_size_in_64_96_.for_patch_size_in_16_.for_pos_embed_in_conv_.for_nd_in_2_3_.TEST_CASE_Vitautoenc_appe": {"doc_hash": "fc06d7577d04009d4f01794d5d9a59fd292fb7053d8171d115f976df7be39e75"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_wsireader.py_WSIReaderTests_WSIReaderTests.Tests.test_read_region.with_reader_read_file_pat.if_self_backend_tifff.else_.None_3": {"doc_hash": "6a26fd01da29810f25dfa8c4247740cb45255d8e09326ab420fede55e2043713"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_wsireader.py_WSIReaderTests.Tests.test_read_patches_WSIReaderTests.Tests.test_read_patches.with_reader_read_file_pat.if_self_backend_tifff.else_.self_assertIsNone_assert_": {"doc_hash": "7037c4b7444cba6f16b6ab4b6f9865c328aedab554bd4d340877eb08ff5a55fa"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_wsireader.py_WSIReaderTests.Tests.test_read_rgba_WSIReaderTests.Tests.test_read_rgba.None_1": {"doc_hash": "df073f1d289ae6d98a7d28292237925d37423959393de487eb5ecccb7c1d2f46"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/array.py_SmoothField_SmoothField.randomize.self_field_self_rand_slic": {"doc_hash": "b2b1e3871d911b3bb7c4e38f215d124ffa7658d73f81ef9fdfae5aff80888fd3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/array.py_SmoothField.set_spatial_size_SmoothField.set_mode.self.mode.mode": {"doc_hash": "c146bbb7cf240953ba1e3a2ba1a83ca125641c67d5562c88e4d39cbf1c76d6d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/array.py_SmoothField.__call___SmoothField.__call__.return.field": {"doc_hash": "1dbbbdb1ec5b89ecb1498b9dbf7e8a93038b0aaaf6da6b84ce83efb26a266eba"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/array.py_RandSmoothFieldAdjustContrast_RandSmoothFieldAdjustContrast.set_mode.self_sfield_set_mode_mode": {"doc_hash": "498906f9907fd8b0d54e1c43616f6b4008e6179f63a0187e9fdc56aaa838928c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/array.py_RandSmoothFieldAdjustIntensity_RandSmoothFieldAdjustIntensity.set_mode.self_sfield_set_mode_mode": {"doc_hash": "54d8186ca92a35f6cf66dbddda1009b394b52ea1e22a8274a9fa2a1ca4597e6d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/array.py_RandSmoothFieldAdjustIntensity.__call___RandSmoothFieldAdjustIntensity.__call__.return.out": {"doc_hash": "3e2509afcc2a56eae0561494e82ef52ed9787b465245cc9ed2745ebd1d5f207a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/array.py_RandSmoothDeform_RandSmoothDeform.__init__.self.grid.torch_stack_grid_unsquee": {"doc_hash": "4ff3edbbafaaa471429aaee9960ff4e93890458554ed25650bf2e630235c8a48"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/array.py_RandSmoothDeform.set_random_state_RandSmoothDeform.set_grid_mode.self.grid_mode.mode": {"doc_hash": "68a0384706a928a61661c7a4aa0a6f0cd570b6be9b5f4a407eef06277ac9501d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/array.py_RandSmoothDeform.__call___": {"doc_hash": "af9b2a97033d40ca0db13da818d2b963b0a95a3a5a49469db1df84e0e2a02ef1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/dictionary.py_from_typing_import_Any_H_GridSampleModeType.Union_GridSampleMode_str": {"doc_hash": "afa6a4645d254b30741fbe4af8d618ff3bb41dd47d8836f5753acb9dbfa1e6fc"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/dictionary.py_RandSmoothFieldAdjustContrastd_RandSmoothFieldAdjustContrastd.__call__.return.d": {"doc_hash": "f039bd76fdc792ecba7da67aa7aad94ce790be056708c44921bb1d48642d3776"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/dictionary.py_RandSmoothFieldAdjustIntensityd_RandSmoothFieldAdjustIntensityd.__call__.return.d": {"doc_hash": "41fcbaa32f29546e3210d0844630794adaa4a70736fae46b64e873ac5512c466"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/dictionary.py_RandSmoothDeformd_RandSmoothDeformd.randomize.self_trans_randomize_": {"doc_hash": "4740bb66085d008420639894acee8f9e52411f249011ad0bc03154f97b862841"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/smooth_field/dictionary.py_RandSmoothDeformd.__call___": {"doc_hash": "e883aba1dd3c8fed322a4dfecd6ed08a4387bb155c000dcb42e8732287287d01"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_call_dist.py_unittest_": {"doc_hash": "edcab83dd853338ea1f664a4d4fe7e73cb5ed2608aaeb289b396d49aa42b0120"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataset_summary.py_glob_test_collate.if_isinstance_elem_np_nd.elif_isinstance_elem_dic.return.elem_type_key_test_coll": {"doc_hash": "118a8be32aafa5100114c7e7c9a4a6e403078bfa8e2776df850a6e387b757943"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataset_summary.py_TestDatasetSummary_TestDatasetSummary.test_spacing_intensity.with_tempfile_TemporaryDi.None_6": {"doc_hash": "f6f413f8f6a3544670471d974aa9a4b7048823ba5f67295437c2b1cf2a52a9da"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lmdbdataset_dist.py_shutil_": {"doc_hash": "96080320c5cbf8e663cfdfdf6e1ab791c8145826e467a786980db95cdf43ad67"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sampler_dist.py_unittest_DistributedSamplerTest.test_even.if_dist_get_rank_1_.np_testing_assert_allclos": {"doc_hash": "2fe66b417c4405e2a85d5421edb149377707482a6425f4f8a8a0a3ba10984505"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sampler_dist.py_DistributedSamplerTest.test_uneven_": {"doc_hash": "29667d31e6f935fccc9630213966af0a39bfd757f8c9b8b5f3be49418176449a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_smooth_field.py_unittest_for_arr_type_shape_in_pr.TESTS_DEFORM_append_": {"doc_hash": "4d8fd03028ca68ff6ba1efe80b03ad8d1c06540ea8b24906531ce479d0ecb507"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_timedcall_dist.py_multiprocessing_case_1_seconds_bad.assert_0_1_wrong_cas": {"doc_hash": "1cc855134d1806ccb21595898d63e18eb4b973aa5c1b0dcf27f604d82203c99a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_timedcall_dist.py_TestTimedCall_": {"doc_hash": "e9602fbb39fe0fd1555d1c02a9f69a36fe984b05e18609dfe9d674edd74074f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_weighted_random_sampler_dist.py_unittest_DistributedWeightedRandomSamplerTest.test_sampling.if_dist_get_rank_1_.np_testing_assert_allclos": {"doc_hash": "9608ba9e9b79b78f08e5a09127b3127449b021f23a1e99a266994252bc5a44a2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_weighted_random_sampler_dist.py_DistributedWeightedRandomSamplerTest.test_num_samples_": {"doc_hash": "723a62be5fad538aa71dd24f7fed0fffc4579e7672bda62b88cc73d4064cb8f8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_test_pretrained_networks_test_is_quick.return.os_environ_get_quick_test": {"doc_hash": "2370593084ef860cc1dec65f44628c458c7388f68772b79736a87daf8e33f0e6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_is_tf32_env_is_tf32_env.return._tf32_enabled": {"doc_hash": "5a3be6e4ec61d704ced61d810412aa4260409bf74a91301e403258b9425d0da2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/transforms.py_json_DEFAULT_POST_FIX.PostFix_meta_": {"doc_hash": "a7ce5efd00e8b91df517ea4070d4488d2097b1bfc2281084a74b6251c4c9eb00"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/folder_layout.py_from_monai_config_import__FolderLayout.__init__.self.data_root_dir.data_root_dir": {"doc_hash": "305d17146186a8d3f1e1cef18e3e5f872eed2b4e0dcc5faa18b93869e5213f78"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/folder_layout.py_FolderLayout.filename_": {"doc_hash": "f628f4a57b9794cd12d587dfa02f3f03b07b9f7208cbc2665c677862f07835a3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_GridPatchDataset.__iter___GridPatchDataset.__iter__.for_image_in_super___it.if_not_self_with_coordina.else_.for_patch_slices___in_.yield_out_patch_slices": {"doc_hash": "1b9fe27c40ff1f6d320c25a888328a2c8532e5e9802414ddcb0149f0e6870145"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py__copy_compatible_dict__copy_compatible_dict.if_not_to_dict_.else_.if_shape_key_in_from_dict.raise_RuntimeError_": {"doc_hash": "988d7777c720e50315be7c2b091b2215932ae7fa66921bdcd08a6780fcd6f39d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py__stack_images__stack_images.return.np_stack_image_list_axis": {"doc_hash": "3b4452504df723616a838cc65b6e2907b544b9eaf63be4ed7bec6adb6dc0efd0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader._get_spatial_shape_ITKReader._get_array_data.return.np_img_if_self_reverse_in": {"doc_hash": "d03d90ff0f5075ec4463e1b21e25714aac964ab464e2bf8229315c7da349ad98"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler_StatsHandler._": {"doc_hash": "2a4b0630b02a7bbb678d18948dfcb10da708bbc00ab4c129cdc388017dd67c19"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.__init___StatsHandler.__init__.if_logger_handler_is_not_.self_logger_addHandler_lo": {"doc_hash": "a83354d50736d80fa301cf2b540b1db434ff496472d2ed537f044e27dd40006c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/rocauc.py_warnings_ROCAUCMetric._compute_tensor.return.y_pred_y": {"doc_hash": "1404458850e5ec41c8e7e56a0dfa8574b87fc5ad5d1b813a70855e4ea6f7dd27"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_contextlib_DEFAULT_POST_FIX.PostFix_meta_": {"doc_hash": "2db0cfe428a621ddbe61d19e69c48e578c6881787f5a1a635b0a17fc8be5c000"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_from_typing_import_Callab_from_monai_utils_enums_im": {"doc_hash": "af029d61f8d506addbc0467517486c75561b8a9fb77cae76ba6d1e08e573240f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py___all___DEFAULT_POST_FIX.PostFix_meta_": {"doc_hash": "488c2e1619d53c3a31bb0951f1fd7c9f1d091edce9721d8b1874c9a255b2a9b1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_from_pathlib_import_Path_DEFAULT_POST_FIX.PostFix_meta_": {"doc_hash": "f5d23a6ded3d78096b0420e93b8d20a74d2a937f7f10d27ed502da88d259e9d8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_warnings_DEFAULT_POST_FIX.PostFix_meta_": {"doc_hash": "dc654f7fd9ee09a3e79d17c7b3ad5638bf70e95e31987c9a536727004101f439"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_EnsureChannelFirst_EnsureChannelFirst.__init__.self.add_channel.AddChannel_": {"doc_hash": "1171e01c9347bab262b69132785bb28fce6e50eb67502ff7581cd578400f9aff"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_DEFAULT_POST_FIX_Identityd.__call__.return.d": {"doc_hash": "6bfc1658af63e1f7b23477c1277be1529443285a7c5868e158935fa7be6b8bd5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_convert_pad_mode_convert_pad_mode.raise_ValueError_f_unsupp": {"doc_hash": "282dc677647bd5b0d3ac2528f24d1d1a044d89a1eef1dd4256ebe753d60fa84f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_convert_to_contiguous_": {"doc_hash": "559e6f4960d8de667609a92205be73437b5998e51f578cd5d4bd2af82d4fec64"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_moveaxis_moveaxis.return.np_moveaxis_x_src_dst_": {"doc_hash": "d1fee9df27dc7b2d77dba034cd3d9903cf3840d4c6f742ae1875fe42ff28856f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py__moveaxis_with_permute__moveaxis_with_permute.return.x_permute_indices_": {"doc_hash": "37a7fcb643d93ee1600055fb8adc24cbe70e148cf39fdfae85c264eceb3b07a0"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_in1d_clip.return.result": {"doc_hash": "10c492d340d5413cfb3eee4b2c740a328eff53aa35f7dbfc34542f81a42548d7"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_concatenate_cumsum.return.torch_cumsum_a_dim_axis_": {"doc_hash": "21739c19eace71186a09d7b0dd54a2851f9983133a972e0deb93a91a675668e8"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_isfinite_searchsorted._type_ignore": {"doc_hash": "32da85deee48eea520b5dee89d96cc350de2b73b55bff8dc8a79647ff6b39b79"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_repeat_repeat.return.torch_repeat_interleave_a": {"doc_hash": "ed40087d880c2d5cc809c7d84cca317fbc536f554b0ee320312536b10fa46a0e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils_pytorch_numpy_unification.py_isnan_": {"doc_hash": "283c7dd4f67180ecc5fad1d53c42384224a9aba69d1208bdde772f3052757c88"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_CommonKeys_CommonKeys.LOSS._loss_": {"doc_hash": "cc457bc76036cd77293350d7ae0bc95372459cd438333e1325c52b398caacced"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/enums.py_PostFix_": {"doc_hash": "e7d3f265178a6e22cc68ecf9a5b76f8fbd0c2a7eebdd8f3b0f2c224e3527cf0c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_is_module_ver_at_least_is_module_ver_at_least.return.module___version___tes": {"doc_hash": "cae8bec33c0df85cd00604d4e98c90b08a260be0582b4efde31a6dd832c677fe"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_sample_slices_": {"doc_hash": "f8dcb0dcdefbc6161e69148fd35009b0482515e1f9af18e996524362cb9411de"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/hvd_evenly_divisible_all_gather.py_torch_HvdEvenlyDivisibleAllGather._run.for_r_in_result3_.torch_testing_assert_allc": {"doc_hash": "9eeaca875a535ba0f9d20019de80933faffd1c06b8741e96901bd5d103ebcafb"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_roc_auc.py_unittest_TEST_CASE_8._": {"doc_hash": "518909d2e403a068072af50a5d9d5db03500b99bd6c863608aae49c4648c8381"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_roc_auc.py_TEST_CASE_9_TEST_CASE_10._": {"doc_hash": "41c12a25c38a66ee57eb094432f7d780c0a285849b87c0cbab084a80841e23bf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd_TestCopyItemsd.test_default_names.for_name_in_img_0_se.self_assertTrue_name_in_r": {"doc_hash": "cb47535e7accf3c9d9ca8c3c3296d307e0e372596ca863d4c69868f731fcd84f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_folder_layout.py_os_TEST_CASES._": {"doc_hash": "a669a332b728f5c410797f82131e7f31c3f4d9025c5f8492145f907d3429e1b5"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_folder_layout.py_TestFolderLayout_": {"doc_hash": "c377220522fd4c025f6f30a34e0e40656578c29d3fac5a9a7521c4d64e82ab28"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_grid_dataset.py_sys_TestGridPatchDataset.test_shape.self_assertEqual_sorted_o": {"doc_hash": "c3e7b96fce60fa0739eb5d36f21d2390247e21304d5b1dc11d44df2eeb823c95"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_logging_TestHandlerStats.test_metrics_print.self_assertTrue_content_c": {"doc_hash": "2b10efd8052853cc1d06028f1c7a00fb092ccfb5033165c6e733d381acf21774"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_print_TestHandlerStats.test_loss_print.self_assertTrue_content_c": {"doc_hash": "f66d01bc2b5c7f9b3d24da1413b0e02e6c20115010e091c57a7715b1ddedbd5e"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_stats.py_TestHandlerStats.test_loss_dict_TestHandlerStats.test_loss_dict.self_assertTrue_content_c": {"doc_hash": "0c69a72899f2b1b3b0efa3f8ab5e0ff6b6e9e5d0c5ac42a5e5acd38a841ce266"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_component.py_for_p_in_TEST_NDARRAYS_.None_13_for_p_in_TEST_NDARRAYS_.None_15": {"doc_hash": "6e74144f7e3dbbe826a18af77fbd371914fac73ca8fb73545615a24546b5db95"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_for_p_in_TEST_NDARRAYS_.None_13_for_p_in_TEST_NDARRAYS_.None_15": {"doc_hash": "3a3ec0c51360a505ba8885f5a6aa17ec598c974f0851c4ef7afdd3a9d13a5d5d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_INVALID_CASES_None_1.None_1": {"doc_hash": "b32d0f505f0c1673aff4efa69af05e8a0485784829a0777d28f2cfee29db12df"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_keep_largest_connected_componentd.py_TestKeepLargestConnectedComponentd_": {"doc_hash": "3b5f8fedfa3375352e8a2b3c59f3f467ad9a36cff16aec33ca90b8f42da695d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_os_TEST_CASE_10._": {"doc_hash": "6032916647ced48c0fd660c2a4f0069deeca9d62977a0981acb73af10c4f320c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TEST_CASE_11_TEST_CASE_18._reader_ITKReader_": {"doc_hash": "e7b1ea94d54bc6944fa7e8aea397ad8fa2f4e9fa0a2e28e119b671896f7f0896"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage_TestLoadImage.test_nibabel_reader.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"doc_hash": "6109045df293cf530550d31193ace25d49e0cc860fda5cee6001b03a967554df"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_my_reader_TestLoadImage.test_my_reader.None_2": {"doc_hash": "ab89392afdb8c8ab8f491c69a3135e2986444f4eb8b47ae165bdb5621d7f83c9"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_meta_TestLoadImage.test_itk_meta.self_assertEqual_f_label": {"doc_hash": "f60657ce8dc7c9a6e526e3806d339385ace1824c47607bf87d4c3206721ff6d2"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_channel_dim_": {"doc_hash": "618f4fbf6d3259c2793e49c0363d9d0116ed4c76ed45947d69c693ef61f32a40"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_make_nifti.py_os_": {"doc_hash": "543a14eac94986c4efd367f002aea49ad113cbe042d73ad90bd5febe5a6b69c3"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_occlusion_sensitivity.py_unittest_TEST_MULTI_CHANNEL._": {"doc_hash": "4d4f8025eb2a4b7c9e7a03cb4fd2e257bd0cfcc22e4cae30f14af34415d446d1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sample_slices.py_unittest_": {"doc_hash": "3b77a20cba6a60b7cea26cfc20e7dbe8942030d41139a28566bcececd08ee4f6"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_contiguous.py_unittest_TestToContiguous.test_decollation_dict.self_assertTrue_output_n": {"doc_hash": "4f6d72bad1a9dd83b299aa314d8c76c8d5a05198b580a66d62c391821a6c1f44"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_contiguous.py_TestToContiguous.test_decollation_seq_": {"doc_hash": "e578da28505c4002953898c7b3b4506872bfb98988914fb78242699be9368a4d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_wsireader.py_os_TEST_CASE_4._": {"doc_hash": "84bccda04bbab59ad2ac4b5f261bb299e6a3278cf8d18db6b18585181ce53a2f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_wsireader.py_TEST_CASE_5_TEST_CASE_RGB_1._np_ones_3_100_100_d": {"doc_hash": "c8edf0964df9f72dbf7985fe811b8584d82477888730592f26b1f1f5b59d7c1c"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_wsireader.py_None_11_setUpModule.download_url_or_skip_test": {"doc_hash": "00a32aa5f9b7ac2edc3dfa4fe1ac6fccbac78b756f0dfaefdfab81aa08001a27"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_has_cupy_HAS_CUPY.has_cupy_": {"doc_hash": "30944b49a41e7af00248fd4afa073e9cf23e9720612305b057758834e1e4c415"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_make_nifti_image_make_nifti_image.return.fname": {"doc_hash": "30d148f1ec389fbb0e89976260fc77d69cda3383f00bd7225a3e39b2e51e0942"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_download_url_or_skip_test_download_url_or_skip_test.try_.except_RuntimeError_as_rt.raise_rt_e": {"doc_hash": "74a369ff487d63c74adc1e94f04ec3ef6211f6f7adcfb01132c50da25cf8cf77"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_dev_collate_dev_collate.return": {"doc_hash": "f23d31274fe2b37c16558472d3aac8b0bbc88f99bc7acfff9f7686646b8fc291"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow._register_handlers_Workflow.run.super_run_data_self_dat": {"doc_hash": "a6330aca01d6e16e278c4b5a41f11e2851a6e9469c7dc2da1ab81802d7fc766f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow._iteration_": {"doc_hash": "fbe2fba07d935eecd1f2740f9d5f7870f18517d0d74ee061142ec37c4bdb2f4d"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dev_collate.py_logging_": {"doc_hash": "adf41daecff596530fa2a812ed23ae1ae7f6c5cdac67885ce690c2425fd2f98f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss.test_input_warnings_TestGeneralizedDiceLoss.test_input_warnings.None_2.loss_forward_chn_input_c": {"doc_hash": "cd4f5d0558c80ac59a9217795be726dafece769bd206b7c491f7c12c98127266"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss.test_differentiability_": {"doc_hash": "1cb921d7f9606818c611eaf1c592ceb34b16d51b38cfa73cc05c873c5665b816"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientation.py_unittest_for_p_in_TEST_NDARRAYS_.None_12": {"doc_hash": "3bce4a21d49c96b302926f392d793b55ab2af617fba837c215e32a9df52d8fe4"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_3d_TestOrientationdCase.test_orntd_3d.for_p_in_TEST_NDARRAYS_.None_3": {"doc_hash": "496e74d2392cc1f5b014ebee1ed07355f4bff92eae10ad7a0b834797ffdf3e7b"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_prepare_batch_default_dist.py_unittest_TestNet.forward.return.x": {"doc_hash": "0038e882f5d70d42b85e276b25ee412eb3659687e4b13e4da47a21530b636357"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_prepare_batch_default_dist.py_DistributedPrepareBatchDefault_": {"doc_hash": "8c2f9c0f8cb0e2d0620598871b170cfd82526dec10c20f0da904a4b8ea881d82"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_os_LOW_POWER_TEST_CASES._run_with_BUILD_MONAI": {"doc_hash": "558ff365734270e9e25a0d2153039dfe854aaaf6d59974ca3a2f9a3bf19b0a15"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_TestWarp_TestWarp.test_resample.np_testing_assert_allclos": {"doc_hash": "e5d9849c4e29c5d1668912a6746ba2a37946606f603b9673fdc32b0f5fe7314f"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_TestWarp.test_ill_shape_TestWarp.test_ill_shape.None_2.warp_layer_image_torch_ar": {"doc_hash": "e51fb001d6e1881a1885361c5efe80b69ad236044af8ff2d1eecb95e09d1c264"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_TestWarp.test_grad_FILE_PATH.os_path_join_os_path_dirn": {"doc_hash": "7415528872c7419dcabc7e8abc7ac11dd218799a8f74f80c302a7cfeb1333b3a"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_load_img_and_sample_ddf_load_img_and_sample_ddf.return.img_ddf": {"doc_hash": "a51fcd41e60e14ba2370826e9b48de62eecccdcec659fb1a605b5852f16c41cf"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_itk_warp_itk_warp.return.warped_img": {"doc_hash": "711ee01c7fb6ff5db7c38fdcce59dd2849120080cffcca4bd08e9384f74ec569"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_warp.py_monai_warp_": {"doc_hash": "efac77f5cf90ff3a177af97b9ada117c1fc330c9b3f96e4f46f699071dfb487c"}}, "docstore/data": {"/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py__Configuration_file_for__exclude_patterns._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py__Configuration_file_for__exclude_patterns._", "embedding": null, "metadata": {"file_path": "docs/source/conf.py", "file_name": "conf.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1, "end_line": 50, "span_ids": ["docstring"], "tokens": 325}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "# Configuration file for the Sphinx documentation builder.\n#\n# This file only contains a selection of the most common options. For a full\n# list see the documentation:\n# https://www.sphinx-doc.org/en/master/usage/configuration.html\n\n# -- Path setup --------------------------------------------------------------\n\n# If extensions (or modules to document with autodoc) are in another directory,\n# add these directories to sys.path here. If the directory is relative to the\n# documentation root, use os.path.abspath to make it absolute, like shown here.\n#\nimport os\nimport subprocess\nimport sys\n\nsys.path.insert(0, os.path.abspath(\"..\"))\nsys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), \"..\", \"..\")))\nprint(sys.path)\n\nimport monai # noqa: E402\n\n# -- Project information -----------------------------------------------------\nproject = \"MONAI\"\ncopyright = \"MONAI Consortium\"\nauthor = \"MONAI Contributors\"\n\n# The full version, including alpha/beta/rc tags\nshort_version = monai.__version__.split(\"+\")[0]\nrelease = short_version\nversion = short_version\n\n# List of patterns, relative to source directory, that match files and\n# directories to ignore when looking for source files.\n# This pattern also affects html_static_path and html_extra_path.\nexclude_patterns = [\n \"transforms\",\n \"networks\",\n \"metrics\",\n \"engines\",\n \"data\",\n \"apps\",\n \"config\",\n \"handlers\",\n \"losses\",\n \"visualize\",\n \"utils\",\n \"inferers\",\n \"optimizers\",\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py_generate_apidocs_generate_apidocs.subprocess_check_call_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/docs/source/conf.py_generate_apidocs_generate_apidocs.subprocess_check_call_", "embedding": null, "metadata": {"file_path": "docs/source/conf.py", "file_name": "conf.py", "file_type": "text/x-python", "category": "implementation", "start_line": 52, "end_line": 67, "span_ids": ["generate_apidocs"], "tokens": 205}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def generate_apidocs(*args):\n \"\"\"Generate API docs automatically by trawling the available modules\"\"\"\n module_path = os.path.abspath(os.path.join(os.path.dirname(__file__), \"..\", \"..\", \"monai\"))\n output_path = os.path.abspath(os.path.join(os.path.dirname(__file__), \"apidocs\"))\n apidoc_command_path = \"sphinx-apidoc\"\n if hasattr(sys, \"real_prefix\"): # called from a virtualenv\n apidoc_command_path = os.path.join(sys.prefix, \"bin\", \"sphinx-apidoc\")\n apidoc_command_path = os.path.abspath(apidoc_command_path)\n print(f\"output_path {output_path}\")\n print(f\"module_path {module_path}\")\n subprocess.check_call(\n [apidoc_command_path, \"-e\"]\n + [\"-o\", output_path]\n + [module_path]\n + [os.path.join(module_path, p) for p in exclude_patterns]\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/__init__.py_os_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/__init__.py_os_", "embedding": null, "metadata": {"file_path": "monai/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 65, "span_ids": ["docstring"], "tokens": 353}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport sys\n\nfrom ._version import get_versions\n\nPY_REQUIRED_MAJOR = 3\nPY_REQUIRED_MINOR = 7\n\nversion_dict = get_versions()\n__version__: str = version_dict.get(\"version\", \"0+unknown\")\n__revision_id__: str = version_dict.get(\"full-revisionid\")\ndel get_versions, version_dict\n\n__copyright__ = \"(c) MONAI Consortium\"\n\n__basedir__ = os.path.dirname(__file__)\n\nif sys.version_info.major != PY_REQUIRED_MAJOR or sys.version_info.minor < PY_REQUIRED_MINOR:\n import warnings\n\n warnings.warn(\n f\"MONAI requires Python {PY_REQUIRED_MAJOR}.{PY_REQUIRED_MINOR} or higher. \"\n f\"But the current Python is: {sys.version}\",\n category=RuntimeWarning,\n )\n\nfrom .utils.module import load_submodules # noqa: E402\n\n# handlers_* have some external decorators the users may not have installed\n# *.so files and folder \"_C\" may not exist when the cpp extensions are not compiled\nexcludes = \"(^(monai.handlers))|((\\\\.so)$)|(^(monai._C))\"\n\n# load directory modules only, skip loading individual files\nload_submodules(sys.modules[__name__], False, exclude_pattern=excludes)\n\n# load all modules, this will trigger all export decorations\nload_submodules(sys.modules[__name__], True, exclude_pattern=excludes)\n\n__all__ = [\n \"apps\",\n \"config\",\n \"data\",\n \"engines\",\n \"handlers\",\n \"inferers\",\n \"losses\",\n \"metrics\",\n \"networks\",\n \"optimizers\",\n \"transforms\",\n \"utils\",\n \"visualize\",\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py__This_file_helps_to_comp_sys": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py__This_file_helps_to_comp_sys", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 2, "end_line": 17, "span_ids": ["docstring"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "# This file helps to compute a version number in source trees obtained from\n# git-archive tarball (such as those provided by githubs download-from-tag\n# feature). Distribution tarballs (built by setup.py sdist) and build\n# directories (produced by setup.py build) will contain a much shorter file\n# that just contains the computed version number.\n\n# This file is released into the public domain. Generated by\n# versioneer-0.19 (https://github.com/python-versioneer/python-versioneer)\n\n\"\"\"Git implementation of _version.py.\"\"\"\n\nimport errno\nimport os\nimport re\nimport subprocess\nimport sys", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_keywords_get_keywords.return.keywords": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_keywords_get_keywords.return.keywords", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 19, "end_line": 29, "span_ids": ["get_keywords"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_keywords():\n \"\"\"Get the keywords needed to look up the version information.\"\"\"\n # these strings will be replaced by git during git-archive.\n # setup.py/versioneer.py will grep for the variable names, so they must\n # each be defined on a line of their own. _version.py will just call\n # get_keywords().\n git_refnames = \"$Format:%d$\"\n git_full = \"$Format:%H$\"\n git_date = \"$Format:%ci$\"\n keywords = {\"refnames\": git_refnames, \"full\": git_full, \"date\": git_date}\n return keywords", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_VersioneerConfig_register_vcs_handler.return.decorate": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_VersioneerConfig_register_vcs_handler.return.decorate", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 33, "end_line": 67, "span_ids": ["VersioneerConfig", "impl", "NotThisMethod", "register_vcs_handler", "get_config"], "tokens": 234}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class VersioneerConfig:\n \"\"\"Container for Versioneer configuration parameters.\"\"\"\n\n\ndef get_config():\n \"\"\"Create, populate and return the VersioneerConfig() object.\"\"\"\n # these strings are filled in when 'setup.py versioneer' creates\n # _version.py\n cfg = VersioneerConfig()\n cfg.VCS = \"git\"\n cfg.style = \"pep440\"\n cfg.tag_prefix = \"\"\n cfg.parentdir_prefix = \"\"\n cfg.versionfile_source = \"monai/_version.py\"\n cfg.verbose = False\n return cfg\n\n\nclass NotThisMethod(Exception):\n \"\"\"Exception raised if a method is not valid for the current scenario.\"\"\"\n\n\nLONG_VERSION_PY = {}\nHANDLERS = {}\n\n\ndef register_vcs_handler(vcs, method): # decorator\n \"\"\"Create decorator to mark a method as the handler of a VCS.\"\"\"\n def decorate(f):\n \"\"\"Store f in HANDLERS[vcs][method].\"\"\"\n if vcs not in HANDLERS:\n HANDLERS[vcs] = {}\n HANDLERS[vcs][method] = f\n return f\n return decorate", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_run_command_run_command.return.stdout_p_returncode": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_run_command_run_command.return.stdout_p_returncode", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 70, "end_line": 102, "span_ids": ["run_command"], "tokens": 274}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False,\n env=None):\n \"\"\"Call the given command(s).\"\"\"\n assert isinstance(commands, list)\n p = None\n for c in commands:\n try:\n dispcmd = str([c] + args)\n # remember shell=False, so use git.cmd on windows, not just git\n p = subprocess.Popen([c] + args, cwd=cwd, env=env,\n stdout=subprocess.PIPE,\n stderr=(subprocess.PIPE if hide_stderr\n else None))\n break\n except EnvironmentError:\n e = sys.exc_info()[1]\n if e.errno == errno.ENOENT:\n continue\n if verbose:\n print(\"unable to run %s\" % dispcmd)\n print(e)\n return None, None\n else:\n if verbose:\n print(\"unable to find command, tried %s\" % (commands,))\n return None, None\n stdout = p.communicate()[0].strip().decode()\n if p.returncode != 0:\n if verbose:\n print(\"unable to run %s (error)\" % dispcmd)\n print(\"stdout was %s\" % stdout)\n return None, p.returncode\n return stdout, p.returncode", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 106, "end_line": 128, "span_ids": ["versions_from_parentdir"], "tokens": 205}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def versions_from_parentdir(parentdir_prefix, root, verbose):\n \"\"\"Try to determine the version from the parent directory name.\n\n Source tarballs conventionally unpack into a directory that includes both\n the project name and a version string. We will also support searching up\n two directory levels for an appropriately named parent directory\n \"\"\"\n rootdirs = []\n\n for i in range(3):\n dirname = os.path.basename(root)\n if dirname.startswith(parentdir_prefix):\n return {\"version\": dirname[len(parentdir_prefix):],\n \"full-revisionid\": None,\n \"dirty\": False, \"error\": None, \"date\": None}\n else:\n rootdirs.append(root)\n root = os.path.dirname(root) # up a level\n\n if verbose:\n print(\"Tried directories %s but none started with prefix %s\" %\n (str(rootdirs), parentdir_prefix))\n raise NotThisMethod(\"rootdir doesn't start with parentdir_prefix\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_get_keywords_git_get_keywords.return.keywords": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_get_keywords_git_get_keywords.return.keywords", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 131, "end_line": 157, "span_ids": ["git_get_keywords"], "tokens": 255}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"get_keywords\")\ndef git_get_keywords(versionfile_abs):\n \"\"\"Extract version information from the given file.\"\"\"\n # the code embedded in _version.py can just fetch the value of these\n # keywords. When used from setup.py, we don't want to import _version.py,\n # so we do it with a regexp instead. This function is not used from\n # _version.py.\n keywords = {}\n try:\n f = open(versionfile_abs, \"r\")\n for line in f.readlines():\n if line.strip().startswith(\"git_refnames =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"refnames\"] = mo.group(1)\n if line.strip().startswith(\"git_full =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"full\"] = mo.group(1)\n if line.strip().startswith(\"git_date =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"date\"] = mo.group(1)\n f.close()\n except EnvironmentError:\n pass\n return keywords", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_versions_from_keywords_git_versions_from_keywords.return._version_0_unknown_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_versions_from_keywords_git_versions_from_keywords.return._version_0_unknown_", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 159, "end_line": 215, "span_ids": ["git_versions_from_keywords"], "tokens": 745}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"keywords\")\ndef git_versions_from_keywords(keywords, tag_prefix, verbose):\n \"\"\"Get version information from git keywords.\"\"\"\n if not keywords:\n raise NotThisMethod(\"no keywords at all, weird\")\n date = keywords.get(\"date\")\n if date is not None:\n # Use only the last line. Previous lines may contain GPG signature\n # information.\n date = date.splitlines()[-1]\n\n # git-2.2.0 added \"%cI\", which expands to an ISO-8601 -compliant\n # datestamp. However we prefer \"%ci\" (which expands to an \"ISO-8601\n # -like\" string, which we must then edit to make compliant), because\n # it's been around since git-1.5.3, and it's too difficult to\n # discover which version we're using, or to work around using an\n # older one.\n date = date.strip().replace(\" \", \"T\", 1).replace(\" \", \"\", 1)\n refnames = keywords[\"refnames\"].strip()\n if refnames.startswith(\"$Format\"):\n if verbose:\n print(\"keywords are unexpanded, not using\")\n raise NotThisMethod(\"unexpanded keywords, not a git-archive tarball\")\n refs = set([r.strip() for r in refnames.strip(\"()\").split(\",\")])\n # starting in git-1.8.3, tags are listed as \"tag: foo-1.0\" instead of\n # just \"foo-1.0\". If we see a \"tag: \" prefix, prefer those.\n TAG = \"tag: \"\n tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)])\n if not tags:\n # Either we're using git < 1.8.3, or there really are no tags. We use\n # a heuristic: assume all version tags have a digit. The old git %d\n # expansion behaves like git log --decorate=short and strips out the\n # refs/heads/ and refs/tags/ prefixes that would let us distinguish\n # between branches and tags. By ignoring refnames without digits, we\n # filter out many common branch names like \"release\" and\n # \"stabilization\", as well as \"HEAD\" and \"master\".\n tags = set([r for r in refs if re.search(r'\\d', r)])\n if verbose:\n print(\"discarding '%s', no digits\" % \",\".join(refs - tags))\n if verbose:\n print(\"likely tags: %s\" % \",\".join(sorted(tags)))\n for ref in sorted(tags):\n # sorting will prefer e.g. \"2.0\" over \"2.0rc1\"\n if ref.startswith(tag_prefix):\n r = ref[len(tag_prefix):]\n if verbose:\n print(\"picking %s\" % r)\n return {\"version\": r,\n \"full-revisionid\": keywords[\"full\"].strip(),\n \"dirty\": False, \"error\": None,\n \"date\": date}\n # no suitable tags, so version is \"0+unknown\", but full hex is still there\n if verbose:\n print(\"no suitable tags, using unknown + full revision id\")\n return {\"version\": \"0+unknown\",\n \"full-revisionid\": keywords[\"full\"].strip(),\n \"dirty\": False, \"error\": \"no suitable tags\", \"date\": None}", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 218, "end_line": 310, "span_ids": ["git_pieces_from_vcs"], "tokens": 905}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"pieces_from_vcs\")\ndef git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command):\n \"\"\"Get version from 'git describe' in the root of the source tree.\n\n This only gets called if the git-archive 'subst' keywords were *not*\n expanded, and _version.py hasn't already been rewritten with a short\n version string, meaning we're inside a checked out source tree.\n \"\"\"\n GITS = [\"git\"]\n if sys.platform == \"win32\":\n GITS = [\"git.cmd\", \"git.exe\"]\n\n out, rc = run_command(GITS, [\"rev-parse\", \"--git-dir\"], cwd=root,\n hide_stderr=True)\n if rc != 0:\n if verbose:\n print(\"Directory %s not under git control\" % root)\n raise NotThisMethod(\"'git rev-parse --git-dir' returned error\")\n\n # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty]\n # if there isn't one, this yields HEX[-dirty] (no NUM)\n describe_out, rc = run_command(GITS, [\"describe\", \"--tags\", \"--dirty\",\n \"--always\", \"--long\",\n \"--match\", \"%s*\" % tag_prefix],\n cwd=root)\n # --long was added in git-1.5.5\n if describe_out is None:\n raise NotThisMethod(\"'git describe' failed\")\n describe_out = describe_out.strip()\n full_out, rc = run_command(GITS, [\"rev-parse\", \"HEAD\"], cwd=root)\n if full_out is None:\n raise NotThisMethod(\"'git rev-parse' failed\")\n full_out = full_out.strip()\n\n pieces = {}\n pieces[\"long\"] = full_out\n pieces[\"short\"] = full_out[:7] # maybe improved later\n pieces[\"error\"] = None\n\n # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty]\n # TAG might have hyphens.\n git_describe = describe_out\n\n # look for -dirty suffix\n dirty = git_describe.endswith(\"-dirty\")\n pieces[\"dirty\"] = dirty\n if dirty:\n git_describe = git_describe[:git_describe.rindex(\"-dirty\")]\n\n # now we have TAG-NUM-gHEX or HEX\n\n if \"-\" in git_describe:\n # TAG-NUM-gHEX\n mo = re.search(r'^(.+)-(\\d+)-g([0-9a-f]+)$', git_describe)\n if not mo:\n # unparseable. Maybe git-describe is misbehaving?\n pieces[\"error\"] = (\"unable to parse git-describe output: '%s'\"\n % describe_out)\n return pieces\n\n # tag\n full_tag = mo.group(1)\n if not full_tag.startswith(tag_prefix):\n if verbose:\n fmt = \"tag '%s' doesn't start with prefix '%s'\"\n print(fmt % (full_tag, tag_prefix))\n pieces[\"error\"] = (\"tag '%s' doesn't start with prefix '%s'\"\n % (full_tag, tag_prefix))\n return pieces\n pieces[\"closest-tag\"] = full_tag[len(tag_prefix):]\n\n # distance: number of commits since tag\n pieces[\"distance\"] = int(mo.group(2))\n\n # commit: short hex revision ID\n pieces[\"short\"] = mo.group(3)\n\n else:\n # HEX: no tags\n pieces[\"closest-tag\"] = None\n count_out, rc = run_command(GITS, [\"rev-list\", \"HEAD\", \"--count\"],\n cwd=root)\n pieces[\"distance\"] = int(count_out) # total number of commits\n\n # commit date: see ISO-8601 comment in git_versions_from_keywords()\n date = run_command(GITS, [\"show\", \"-s\", \"--format=%ci\", \"HEAD\"],\n cwd=root)[0].strip()\n # Use only the last line. Previous lines may contain GPG signature\n # information.\n date = date.splitlines()[-1]\n pieces[\"date\"] = date.strip().replace(\" \", \"T\", 1).replace(\" \", \"\", 1)\n\n return pieces", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_plus_or_dot_render_pep440.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_plus_or_dot_render_pep440.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 307, "end_line": 336, "span_ids": ["plus_or_dot", "render_pep440"], "tokens": 258}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def plus_or_dot(pieces):\n \"\"\"Return a + if we don't already have one, else return a .\"\"\"\n if \"+\" in pieces.get(\"closest-tag\", \"\"):\n return \".\"\n return \"+\"\n\n\ndef render_pep440(pieces):\n \"\"\"Build up version string, with post-release \"local version identifier\".\n\n Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you\n get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty\n\n Exceptions:\n 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty]\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"] or pieces[\"dirty\"]:\n rendered += plus_or_dot(pieces)\n rendered += \"%d.g%s\" % (pieces[\"distance\"], pieces[\"short\"])\n if pieces[\"dirty\"]:\n rendered += \".dirty\"\n else:\n # exception #1\n rendered = \"0+untagged.%d.g%s\" % (pieces[\"distance\"],\n pieces[\"short\"])\n if pieces[\"dirty\"]:\n rendered += \".dirty\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_old_render_pep440_old.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_old_render_pep440_old.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 382, "end_line": 401, "span_ids": ["render_pep440_old"], "tokens": 143}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_pep440_old(pieces):\n \"\"\"TAG[.postDISTANCE[.dev0]] .\n\n The \".dev0\" means dirty.\n\n Exceptions:\n 1: no tags. 0.postDISTANCE[.dev0]\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"] or pieces[\"dirty\"]:\n rendered += \".post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n else:\n # exception #1\n rendered = \"0.post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_render_git_describe.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_render_git_describe.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 404, "end_line": 421, "span_ids": ["render_git_describe"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_git_describe(pieces):\n \"\"\"TAG[-DISTANCE-gHEX][-dirty].\n\n Like 'git describe --tags --dirty --always'.\n\n Exceptions:\n 1: no tags. HEX[-dirty] (note: no 'g' prefix)\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"]:\n rendered += \"-%d-g%s\" % (pieces[\"distance\"], pieces[\"short\"])\n else:\n # exception #1\n rendered = pieces[\"short\"]\n if pieces[\"dirty\"]:\n rendered += \"-dirty\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_long_render_git_describe_long.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_git_describe_long_render_git_describe_long.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 424, "end_line": 441, "span_ids": ["render_git_describe_long"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_git_describe_long(pieces):\n \"\"\"TAG-DISTANCE-gHEX[-dirty].\n\n Like 'git describe --tags --dirty --always -long'.\n The distance/hash is unconditional.\n\n Exceptions:\n 1: no tags. HEX[-dirty] (note: no 'g' prefix)\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n rendered += \"-%d-g%s\" % (pieces[\"distance\"], pieces[\"short\"])\n else:\n # exception #1\n rendered = pieces[\"short\"]\n if pieces[\"dirty\"]:\n rendered += \"-dirty\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_render.return._version_rendered_fu": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_render.return._version_rendered_fu", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 444, "end_line": 473, "span_ids": ["render"], "tokens": 264}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render(pieces, style):\n \"\"\"Render the given version pieces into the requested style.\"\"\"\n if pieces[\"error\"]:\n return {\"version\": \"unknown\",\n \"full-revisionid\": pieces.get(\"long\"),\n \"dirty\": None,\n \"error\": pieces[\"error\"],\n \"date\": None}\n\n if not style or style == \"default\":\n style = \"pep440\" # the default\n\n if style == \"pep440\":\n rendered = render_pep440(pieces)\n elif style == \"pep440-pre\":\n rendered = render_pep440_pre(pieces)\n elif style == \"pep440-post\":\n rendered = render_pep440_post(pieces)\n elif style == \"pep440-old\":\n rendered = render_pep440_old(pieces)\n elif style == \"git-describe\":\n rendered = render_git_describe(pieces)\n elif style == \"git-describe-long\":\n rendered = render_git_describe_long(pieces)\n else:\n raise ValueError(\"unknown style '%s'\" % style)\n\n return {\"version\": rendered, \"full-revisionid\": pieces[\"long\"],\n \"dirty\": pieces[\"dirty\"], \"error\": None,\n \"date\": pieces.get(\"date\")}", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_versions_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_get_versions_", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 482, "end_line": 526, "span_ids": ["get_versions"], "tokens": 365}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_versions():\n \"\"\"Get version information or return default if unable to do so.\"\"\"\n # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have\n # __file__, we can work backwards from there to the root. Some\n # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which\n # case we can only use expanded keywords.\n\n cfg = get_config()\n verbose = cfg.verbose\n\n try:\n return git_versions_from_keywords(get_keywords(), cfg.tag_prefix,\n verbose)\n except NotThisMethod:\n pass\n\n try:\n root = os.path.realpath(__file__)\n # versionfile_source is the relative path from the top of the source\n # tree (where the .git directory might live) to this file. Invert\n # this to find the root from __file__.\n for i in cfg.versionfile_source.split('/'):\n root = os.path.dirname(root)\n except NameError:\n return {\"version\": \"0+unknown\", \"full-revisionid\": None,\n \"dirty\": None,\n \"error\": \"unable to find root of source tree\",\n \"date\": None}\n\n try:\n pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose)\n return render(pieces, cfg.style)\n except NotThisMethod:\n pass\n\n try:\n if cfg.parentdir_prefix:\n return versions_from_parentdir(cfg.parentdir_prefix, root, verbose)\n except NotThisMethod:\n pass\n\n return {\"version\": \"0+unknown\", \"full-revisionid\": None,\n \"dirty\": None,\n \"error\": \"unable to compute version\", \"date\": None}", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset_DecathlonDataset._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset_DecathlonDataset._", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 178, "end_line": 239, "span_ids": ["DecathlonDataset"], "tokens": 857}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DecathlonDataset(Randomizable, CacheDataset):\n \"\"\"\n The Dataset to automatically download the data of Medical Segmentation Decathlon challenge\n (http://medicaldecathlon.com/) and generate items for training, validation or test.\n It will also load these properties from the JSON config file of dataset. user can call `get_properties()`\n to get specified properties or all the properties loaded.\n It's based on :py:class:`monai.data.CacheDataset` to accelerate the training process.\n\n Args:\n root_dir: user's local directory for caching and loading the MSD datasets.\n task: which task to download and execute: one of list (\"Task01_BrainTumour\", \"Task02_Heart\",\n \"Task03_Liver\", \"Task04_Hippocampus\", \"Task05_Prostate\", \"Task06_Lung\", \"Task07_Pancreas\",\n \"Task08_HepaticVessel\", \"Task09_Spleen\", \"Task10_Colon\").\n section: expected data section, can be: `training`, `validation` or `test`.\n transform: transforms to execute operations on input data.\n for further usage, use `AddChanneld` or `AsChannelFirstd` to convert the shape to [C, H, W, D].\n download: whether to download and extract the Decathlon from resource link, default is False.\n if expected file already exists, skip downloading even set it to True.\n val_frac: percentage of of validation fraction in the whole dataset, default is 0.2.\n user can manually copy tar file or dataset folder to the root directory.\n seed: random seed to randomly shuffle the datalist before splitting into training and validation, default is 0.\n note to set same seed for `training` and `validation` sections.\n cache_num: number of items to be cached. Default is `sys.maxsize`.\n will take the minimum of (cache_num, data_length x cache_rate, data_length).\n cache_rate: percentage of cached data in total, default is 1.0 (cache all).\n will take the minimum of (cache_num, data_length x cache_rate, data_length).\n num_workers: the number of worker threads to use.\n if 0 a single thread will be used. Default is 0.\n progress: whether to display a progress bar when downloading dataset and computing the transform cache content.\n copy_cache: whether to `deepcopy` the cache content before applying the random transforms,\n default to `True`. if the random transforms don't modify the cached content\n (for example, randomly crop from the cached image and deepcopy the crop region)\n or if every cache item is only used once in a `multi-processing` environment,\n may set `copy=False` for better performance.\n as_contiguous: whether to convert the cached NumPy array or PyTorch tensor to be contiguous.\n it may help improve the performance of following logic.\n\n Raises:\n ValueError: When ``root_dir`` is not a directory.\n ValueError: When ``task`` is not one of [\"Task01_BrainTumour\", \"Task02_Heart\",\n \"Task03_Liver\", \"Task04_Hippocampus\", \"Task05_Prostate\", \"Task06_Lung\", \"Task07_Pancreas\",\n \"Task08_HepaticVessel\", \"Task09_Spleen\", \"Task10_Colon\"].\n RuntimeError: When ``dataset_dir`` doesn't exist and downloading is not selected (``download=False``).\n\n Example::\n\n transform = Compose(\n [\n LoadImaged(keys=[\"image\", \"label\"]),\n AddChanneld(keys=[\"image\", \"label\"]),\n ScaleIntensityd(keys=\"image\"),\n ToTensord(keys=[\"image\", \"label\"]),\n ]\n )\n\n val_data = DecathlonDataset(\n root_dir=\"./\", task=\"Task09_Spleen\", transform=transform, section=\"validation\", seed=12345, download=True\n )\n\n print(val_data[0][\"image\"], val_data[0][\"label\"])\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.resource_DecathlonDataset.md5._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.resource_DecathlonDataset.md5._", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 193, "end_line": 216, "span_ids": ["DecathlonDataset"], "tokens": 628}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DecathlonDataset(Randomizable, CacheDataset):\n\n resource = {\n \"Task01_BrainTumour\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task01_BrainTumour.tar\",\n \"Task02_Heart\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task02_Heart.tar\",\n \"Task03_Liver\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task03_Liver.tar\",\n \"Task04_Hippocampus\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task04_Hippocampus.tar\",\n \"Task05_Prostate\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task05_Prostate.tar\",\n \"Task06_Lung\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task06_Lung.tar\",\n \"Task07_Pancreas\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task07_Pancreas.tar\",\n \"Task08_HepaticVessel\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task08_HepaticVessel.tar\",\n \"Task09_Spleen\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task09_Spleen.tar\",\n \"Task10_Colon\": \"https://msd-for-monai.s3-us-west-2.amazonaws.com/Task10_Colon.tar\",\n }\n md5 = {\n \"Task01_BrainTumour\": \"240a19d752f0d9e9101544901065d872\",\n \"Task02_Heart\": \"06ee59366e1e5124267b774dbd654057\",\n \"Task03_Liver\": \"a90ec6c4aa7f6a3d087205e23d4e6397\",\n \"Task04_Hippocampus\": \"9d24dba78a72977dbd1d2e110310f31b\",\n \"Task05_Prostate\": \"35138f08b1efaef89d7424d2bcc928db\",\n \"Task06_Lung\": \"8afd997733c7fc0432f71255ba4e52dc\",\n \"Task07_Pancreas\": \"4f7080cfca169fa8066d17ce6eb061e4\",\n \"Task08_HepaticVessel\": \"641d79e80ec66453921d997fbf12a29c\",\n \"Task09_Spleen\": \"410d4a301da4e5b2f6f86ec3ddba524e\",\n \"Task10_Colon\": \"bad7a188931dc2f6acf72b08eb6202d0\",\n }", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/__init__.py_CSVSaver_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/__init__.py_CSVSaver_", "embedding": null, "metadata": {"file_path": "monai/data/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 76, "span_ids": ["imports:20", "docstring"], "tokens": 465}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from .csv_saver import CSVSaver\nfrom .dataloader import DataLoader\nfrom .dataset import (\n ArrayDataset,\n CacheDataset,\n CacheNTransDataset,\n CSVDataset,\n Dataset,\n DatasetFunc,\n LMDBDataset,\n NPZDictItemDataset,\n PersistentDataset,\n SmartCacheDataset,\n ZipDataset,\n)\nfrom .dataset_summary import DatasetSummary\nfrom .decathlon_datalist import (\n check_missing_files,\n create_cross_validation_datalist,\n load_decathlon_datalist,\n load_decathlon_properties,\n)\nfrom .folder_layout import FolderLayout\nfrom .grid_dataset import GridPatchDataset, PatchDataset, PatchIter\nfrom .image_dataset import ImageDataset\nfrom .image_reader import ImageReader, ITKReader, NibabelReader, NumpyReader, PILReader, WSIReader\nfrom .iterable_dataset import CSVIterableDataset, IterableDataset, ShuffleBuffer\nfrom .nifti_saver import NiftiSaver\nfrom .nifti_writer import write_nifti\nfrom .png_saver import PNGSaver\nfrom .png_writer import write_png\nfrom .samplers import DistributedSampler, DistributedWeightedRandomSampler\nfrom .synthetic import create_test_image_2d, create_test_image_3d\nfrom .test_time_augmentation import TestTimeAugmentation\nfrom .thread_buffer import ThreadBuffer, ThreadDataLoader\nfrom .torchscript_utils import load_net_with_metadata, save_net_with_metadata\nfrom .utils import (\n compute_importance_map,\n compute_shape_offset,\n convert_tables_to_dicts,\n correct_nifti_header_if_necessary,\n create_file_basename,\n decollate_batch,\n dense_patch_slices,\n get_random_patch,\n get_valid_patch_size,\n is_supported_format,\n iter_patch,\n iter_patch_slices,\n json_hashing,\n list_data_collate,\n pad_list_data_collate,\n partition_dataset,\n partition_dataset_classes,\n pickle_hashing,\n rectify_header_sform_qform,\n resample_datalist,\n select_cross_validation_folds,\n set_rnd,\n sorted_dict,\n to_affine_nd,\n worker_init_fn,\n zoom_affine,\n)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_CSVSaver.save.self__cache_dict_save_key": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_CSVSaver.save.self__cache_dict_save_key", "embedding": null, "metadata": {"file_path": "monai/data/csv_saver.py", "file_name": "csv_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 74, "end_line": 88, "span_ids": ["CSVSaver.save"], "tokens": 185}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CSVSaver:\n\n def save(self, data: Union[torch.Tensor, np.ndarray], meta_data: Optional[Dict] = None) -> None:\n \"\"\"Save data into the cache dictionary. The metadata should have the following key:\n - ``'filename_or_obj'`` -- save the data corresponding to file name or object.\n If meta_data is None, use the default index from 0 to save data instead.\n\n Args:\n data: target data content that save into cache.\n meta_data: the meta data information corresponding to the data.\n\n \"\"\"\n save_key = meta_data[Key.FILENAME_OR_OBJ] if meta_data else str(self._data_index)\n self._data_index += 1\n if isinstance(data, torch.Tensor):\n data = data.detach().cpu().numpy()\n self._cache_dict[save_key] = np.asarray(data, dtype=float)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_batch_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/csv_saver.py_CSVSaver.save_batch_", "embedding": null, "metadata": {"file_path": "monai/data/csv_saver.py", "file_name": "csv_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 96, "end_line": 118, "span_ids": ["CSVSaver.get_cache", "CSVSaver.save_batch", "CSVSaver.reset_cache"], "tokens": 196}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CSVSaver:\n\n def save_batch(self, batch_data: Union[torch.Tensor, np.ndarray], meta_data: Optional[Dict] = None) -> None:\n \"\"\"Save a batch of data into the cache dictionary.\n\n Args:\n batch_data: target batch data content that save into cache.\n meta_data: every key-value in the meta_data is corresponding to 1 batch of data.\n\n \"\"\"\n for i, data in enumerate(batch_data): # save a batch of files\n self.save(data, {k: meta_data[k][i] for k in meta_data} if meta_data else None)\n\n if self.flush:\n self.finalize()\n\n def get_cache(self) -> OrderedDict:\n \"\"\"Get the cache dictionary, key is filename and value is the corresponding data\"\"\"\n\n return self._cache_dict\n\n def reset_cache(self) -> None:\n \"\"\"Clear the cache dictionary content\"\"\"\n self._cache_dict.clear()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_NiftiSaver.save_batch_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_saver.py_NiftiSaver.save_batch_", "embedding": null, "metadata": {"file_path": "monai/data/nifti_saver.py", "file_name": "nifti_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 180, "end_line": 201, "span_ids": ["NiftiSaver.save_batch"], "tokens": 297}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NiftiSaver:\n\n def save_batch(self, batch_data: Union[torch.Tensor, np.ndarray], meta_data: Optional[Dict] = None) -> None:\n \"\"\"\n Save a batch of data into NIfTI format files.\n\n Spatially it supports up to three dimensions, that is, H, HW, HWD for\n 1D, 2D, 3D respectively (with resampling supports for 2D and 3D only).\n\n When saving multiple time steps or multiple channels `batch_data`,\n time and/or modality axes should be appended after the batch dimensions.\n For example, the shape of a batch of 2D eight-class\n segmentation probabilities to be saved could be `(batch, 8, 64, 64)`;\n in this case each item in the batch will be saved as (64, 64, 1, 8)\n NIfTI file (the third dimension is reserved as a spatial dimension).\n\n Args:\n batch_data: target batch data content that save into NIfTI format.\n meta_data: every key-value in the meta_data is corresponding to a batch of data.\n\n \"\"\"\n for i, data in enumerate(batch_data): # save a batch of files\n self.save(data=data, meta_data={k: meta_data[k][i] for k in meta_data} if meta_data is not None else None)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_from_typing_import_Option_write_nifti._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_from_typing_import_Option_write_nifti._", "embedding": null, "metadata": {"file_path": "monai/data/nifti_writer.py", "file_name": "nifti_writer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 100, "span_ids": ["write_nifti", "docstring"], "tokens": 1218}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Union\n\nimport numpy as np\nimport torch\n\nfrom monai.config import DtypeLike\nfrom monai.config.type_definitions import NdarrayOrTensor\nfrom monai.data.utils import compute_shape_offset, to_affine_nd\nfrom monai.networks.layers import AffineTransform\nfrom monai.utils import GridSampleMode, GridSamplePadMode, optional_import\nfrom monai.utils.type_conversion import convert_data_type\n\nnib, _ = optional_import(\"nibabel\")\n\n\ndef write_nifti(\n data: NdarrayOrTensor,\n file_name: str,\n affine: Optional[NdarrayOrTensor] = None,\n target_affine: Optional[np.ndarray] = None,\n resample: bool = True,\n output_spatial_shape: Union[Sequence[int], np.ndarray, None] = None,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,\n align_corners: bool = False,\n dtype: DtypeLike = np.float64,\n output_dtype: DtypeLike = np.float32,\n) -> None:\n \"\"\"\n Write numpy data into NIfTI files to disk. This function converts data\n into the coordinate system defined by `target_affine` when `target_affine`\n is specified.\n\n If the coordinate transform between `affine` and `target_affine` could be\n achieved by simply transposing and flipping `data`, no resampling will\n happen. otherwise this function will resample `data` using the coordinate\n transform computed from `affine` and `target_affine`. Note that the shape\n of the resampled `data` may subject to some rounding errors. For example,\n resampling a 20x20 pixel image from pixel size (1.5, 1.5)-mm to (3.0,\n 3.0)-mm space will return a 10x10-pixel image. However, resampling a\n 20x20-pixel image from pixel size (2.0, 2.0)-mm to (3.0, 3.0)-mma space\n will output a 14x14-pixel image, where the image shape is rounded from\n 13.333x13.333 pixels. In this case `output_spatial_shape` could be specified so\n that this function writes image data to a designated shape.\n\n The saved `affine` matrix follows:\n - If `affine` equals to `target_affine`, save the data with `target_affine`.\n - If `resample=False`, transform `affine` to `new_affine` based on the orientation\n of `target_affine` and save the data with `new_affine`.\n - If `resample=True`, save the data with `target_affine`, if explicitly specify\n the `output_spatial_shape`, the shape of saved data is not computed by `target_affine`.\n - If `target_affine` is None, set `target_affine=affine` and save.\n - If `affine` and `target_affine` are None, the data will be saved with an identity\n matrix as the image affine.\n\n This function assumes the NIfTI dimension notations.\n Spatially it supports up to three dimensions, that is, H, HW, HWD for\n 1D, 2D, 3D respectively.\n When saving multiple time steps or multiple channels `data`, time and/or\n modality axes should be appended after the first three dimensions. For\n example, shape of 2D eight-class segmentation probabilities to be saved\n could be `(64, 64, 1, 8)`. Also, data in shape (64, 64, 8), (64, 64, 8, 1)\n will be considered as a single-channel 3D image.\n\n Args:\n data: input data to write to file.\n file_name: expected file name that saved on disk.\n affine: the current affine of `data`. Defaults to `np.eye(4)`\n target_affine: before saving\n the (`data`, `affine`) as a Nifti1Image,\n transform the data into the coordinates defined by `target_affine`.\n resample: whether to run resampling when the target affine\n could not be achieved by swapping/flipping data axes.\n output_spatial_shape: spatial shape of the output image.\n This option is used when resample = True.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n This option is used when ``resample = True``.\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n This option is used when ``resample = True``.\n Padding mode for outside grid values. Defaults to ``\"border\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n align_corners: Geometrically, we consider the pixels of the input as squares rather than points.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n dtype: data type for resampling computation. Defaults to ``np.float64`` for best precision.\n If None, use the data type of input data.\n output_dtype: data type for saving data. Defaults to ``np.float32``.\n \"\"\"\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_write_nifti.if_data_ndim_3_mult_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/nifti_writer.py_write_nifti.if_data_ndim_3_mult_", "embedding": null, "metadata": {"file_path": "monai/data/nifti_writer.py", "file_name": "nifti_writer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 143, "end_line": 170, "span_ids": ["write_nifti"], "tokens": 547}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def write_nifti(\n data: NdarrayOrTensor,\n file_name: str,\n affine: Optional[NdarrayOrTensor] = None,\n target_affine: Optional[np.ndarray] = None,\n resample: bool = True,\n output_spatial_shape: Union[Sequence[int], np.ndarray, None] = None,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,\n align_corners: bool = False,\n dtype: DtypeLike = np.float64,\n output_dtype: DtypeLike = np.float32,\n) -> None:\n # ... other code\n if data.ndim > 3: # multi channel, resampling each channel\n while len(output_spatial_shape_) < 3:\n output_spatial_shape_ = output_spatial_shape_ + [1]\n spatial_shape, channel_shape = data.shape[:3], data.shape[3:]\n data_np: np.ndarray = data.reshape(list(spatial_shape) + [-1]) # type: ignore\n data_np = np.moveaxis(data_np, -1, 0) # channel first for pytorch\n data_torch = affine_xform(\n torch.as_tensor(np.ascontiguousarray(data_np, dtype=dtype)).unsqueeze(0),\n torch.as_tensor(np.ascontiguousarray(transform, dtype=dtype)),\n spatial_size=output_spatial_shape_[:3],\n )\n data_np = data_torch.squeeze(0).detach().cpu().numpy()\n data_np = np.moveaxis(data_np, 0, -1) # channel last for nifti\n data_np = data_np.reshape(list(data_np.shape[:3]) + list(channel_shape))\n else: # single channel image, need to expand to have batch and channel\n while len(output_spatial_shape_) < len(data.shape):\n output_spatial_shape_ = output_spatial_shape_ + [1]\n data_torch = affine_xform(\n torch.as_tensor(np.ascontiguousarray(data, dtype=dtype)[None, None]),\n torch.as_tensor(np.ascontiguousarray(transform, dtype=dtype)),\n spatial_size=output_spatial_shape_[: len(data.shape)],\n )\n data_np = data_torch.squeeze(0).squeeze(0).detach().cpu().numpy()\n\n results_img = nib.Nifti1Image(data_np.astype(output_dtype, copy=False), to_affine_nd(3, target_affine))\n nib.save(results_img, file_name)\n return", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_PNGSaver.save_batch_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_saver.py_PNGSaver.save_batch_", "embedding": null, "metadata": {"file_path": "monai/data/png_saver.py", "file_name": "png_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 125, "end_line": 135, "span_ids": ["PNGSaver.save_batch"], "tokens": 135}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class PNGSaver:\n\n def save_batch(self, batch_data: Union[torch.Tensor, np.ndarray], meta_data: Optional[Dict] = None) -> None:\n \"\"\"Save a batch of data into png format files.\n\n Args:\n batch_data: target batch data content that save into png format.\n meta_data: every key-value in the meta_data is corresponding to a batch of data.\n\n \"\"\"\n for i, data in enumerate(batch_data): # save a batch of files\n self.save(data=data, meta_data={k: meta_data[k][i] for k in meta_data} if meta_data is not None else None)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_writer.py_from_typing_import_Option_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/png_writer.py_from_typing_import_Option_", "embedding": null, "metadata": {"file_path": "monai/data/png_writer.py", "file_name": "png_writer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 87, "span_ids": ["write_png", "docstring"], "tokens": 899}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Union\n\nimport numpy as np\n\nfrom monai.transforms.spatial.array import Resize\nfrom monai.utils import InterpolateMode, ensure_tuple_rep, look_up_option, optional_import\n\nImage, _ = optional_import(\"PIL\", name=\"Image\")\n\n\ndef write_png(\n data: np.ndarray,\n file_name: str,\n output_spatial_shape: Optional[Sequence[int]] = None,\n mode: Union[InterpolateMode, str] = InterpolateMode.BICUBIC,\n scale: Optional[int] = None,\n) -> None:\n \"\"\"\n Write numpy data into png files to disk.\n Spatially it supports HW for 2D.(H,W) or (H,W,3) or (H,W,4).\n If `scale` is None, expect the input data in `np.uint8` or `np.uint16` type.\n It's based on the Image module in PIL library:\n https://pillow.readthedocs.io/en/stable/reference/Image.html\n\n Args:\n data: input data to write to file.\n file_name: expected file name that saved on disk.\n output_spatial_shape: spatial shape of the output image.\n mode: {``\"nearest\"``, ``\"linear\"``, ``\"bilinear\"``, ``\"bicubic\"``, ``\"trilinear\"``, ``\"area\"``}\n The interpolation mode. Defaults to ``\"bicubic\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n scale: {``255``, ``65535``} postprocess data by clipping to [0, 1] and scaling to\n [0, 255] (uint8) or [0, 65535] (uint16). Default is None to disable scaling.\n\n Raises:\n ValueError: When ``scale`` is not one of [255, 65535].\n\n \"\"\"\n if not isinstance(data, np.ndarray):\n raise ValueError(\"input data must be numpy array.\")\n if len(data.shape) == 3 and data.shape[2] == 1: # PIL Image can't save image with 1 channel\n data = data.squeeze(2)\n if output_spatial_shape is not None:\n output_spatial_shape_ = ensure_tuple_rep(output_spatial_shape, 2)\n mode = look_up_option(mode, InterpolateMode)\n align_corners = None if mode in (InterpolateMode.NEAREST, InterpolateMode.AREA) else False\n xform = Resize(spatial_size=output_spatial_shape_, mode=mode, align_corners=align_corners)\n _min, _max = np.min(data), np.max(data)\n if len(data.shape) == 3:\n data = np.moveaxis(data, -1, 0) # to channel first\n data = xform(data) # type: ignore\n data = np.moveaxis(data, 0, -1)\n else: # (H, W)\n data = np.expand_dims(data, 0) # make a channel\n data = xform(data)[0] # type: ignore\n if mode != InterpolateMode.NEAREST:\n data = np.clip(data, _min, _max) # type: ignore\n\n if scale is not None:\n data = np.clip(data, 0.0, 1.0) # type: ignore # png writer only can scale data in range [0, 1]\n if scale == np.iinfo(np.uint8).max:\n data = (scale * data).astype(np.uint8, copy=False)\n elif scale == np.iinfo(np.uint16).max:\n data = (scale * data).astype(np.uint16, copy=False)\n else:\n raise ValueError(f\"Unsupported scale: {scale}, available options are [255, 65535]\")\n\n # PNG data must be int number\n if data.dtype not in (np.uint8, np.uint16): # type: ignore\n data = data.astype(np.uint8, copy=False)\n\n data = np.moveaxis(data, 0, 1)\n img = Image.fromarray(data)\n img.save(file_name, \"PNG\")\n return", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_from_typing_import_Option_create_test_image_2d.return.noisyimage_labels": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_from_typing_import_Option_create_test_image_2d.return.noisyimage_labels", "embedding": null, "metadata": {"file_path": "monai/data/synthetic.py", "file_name": "synthetic.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 91, "span_ids": ["create_test_image_2d", "docstring"], "tokens": 885}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Tuple\n\nimport numpy as np\n\nfrom monai.transforms.utils import rescale_array\n\n__all__ = [\"create_test_image_2d\", \"create_test_image_3d\"]\n\n\ndef create_test_image_2d(\n width: int,\n height: int,\n num_objs: int = 12,\n rad_max: int = 30,\n rad_min: int = 5,\n noise_max: float = 0.0,\n num_seg_classes: int = 5,\n channel_dim: Optional[int] = None,\n random_state: Optional[np.random.RandomState] = None,\n) -> Tuple[np.ndarray, np.ndarray]:\n \"\"\"\n Return a noisy 2D image with `num_objs` circles and a 2D mask image. The maximum and minimum radii of the circles\n are given as `rad_max` and `rad_min`. The mask will have `num_seg_classes` number of classes for segmentations labeled\n sequentially from 1, plus a background class represented as 0. If `noise_max` is greater than 0 then noise will be\n added to the image taken from the uniform distribution on range `[0,noise_max)`. If `channel_dim` is None, will create\n an image without channel dimension, otherwise create an image with channel dimension as first dim or last dim.\n\n Args:\n width: width of the image. The value should be larger than `2 * rad_max`.\n height: height of the image. The value should be larger than `2 * rad_max`.\n num_objs: number of circles to generate. Defaults to `12`.\n rad_max: maximum circle radius. Defaults to `30`.\n rad_min: minimum circle radius. Defaults to `5`.\n noise_max: if greater than 0 then noise will be added to the image taken from\n the uniform distribution on range `[0,noise_max)`. Defaults to `0`.\n num_seg_classes: number of classes for segmentations. Defaults to `5`.\n channel_dim: if None, create an image without channel dimension, otherwise create\n an image with channel dimension as first dim or last dim. Defaults to `None`.\n random_state: the random generator to use. Defaults to `np.random`.\n \"\"\"\n\n if rad_max <= rad_min:\n raise ValueError(\"`rad_min` should be less than `rad_max`.\")\n if rad_min < 1:\n raise ValueError(\"`rad_min` should be no less than 1.\")\n min_size = min(width, height)\n if min_size <= 2 * rad_max:\n raise ValueError(\"the minimal size of the image should be larger than `2 * rad_max`.\")\n\n image = np.zeros((width, height))\n rs: np.random.RandomState = np.random.random.__self__ if random_state is None else random_state # type: ignore\n\n for _ in range(num_objs):\n x = rs.randint(rad_max, width - rad_max)\n y = rs.randint(rad_max, height - rad_max)\n rad = rs.randint(rad_min, rad_max)\n spy, spx = np.ogrid[-x : width - x, -y : height - y]\n circle = (spx * spx + spy * spy) <= rad * rad\n\n if num_seg_classes > 1:\n image[circle] = np.ceil(rs.random() * num_seg_classes)\n else:\n image[circle] = rs.random() * 0.5 + 0.5\n\n labels = np.ceil(image).astype(np.int32, copy=False)\n\n norm = rs.uniform(0, num_seg_classes * noise_max, size=image.shape)\n noisyimage: np.ndarray = rescale_array(np.maximum(image, norm)) # type: ignore\n\n if channel_dim is not None:\n if not (isinstance(channel_dim, int) and channel_dim in (-1, 0, 2)):\n raise AssertionError(\"invalid channel dim.\")\n if channel_dim == 0:\n noisyimage = noisyimage[None]\n labels = labels[None]\n else:\n noisyimage = noisyimage[..., None]\n labels = labels[..., None]\n\n return noisyimage, labels", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_create_test_image_3d_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/synthetic.py_create_test_image_3d_", "embedding": null, "metadata": {"file_path": "monai/data/synthetic.py", "file_name": "synthetic.py", "file_type": "text/x-python", "category": "implementation", "start_line": 94, "end_line": 164, "span_ids": ["create_test_image_3d"], "tokens": 781}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def create_test_image_3d(\n height: int,\n width: int,\n depth: int,\n num_objs: int = 12,\n rad_max: int = 30,\n rad_min: int = 5,\n noise_max: float = 0.0,\n num_seg_classes: int = 5,\n channel_dim: Optional[int] = None,\n random_state: Optional[np.random.RandomState] = None,\n) -> Tuple[np.ndarray, np.ndarray]:\n \"\"\"\n Return a noisy 3D image and segmentation.\n\n Args:\n height: height of the image. The value should be larger than `2 * rad_max`.\n width: width of the image. The value should be larger than `2 * rad_max`.\n depth: depth of the image. The value should be larger than `2 * rad_max`.\n num_objs: number of circles to generate. Defaults to `12`.\n rad_max: maximum circle radius. Defaults to `30`.\n rad_min: minimum circle radius. Defaults to `5`.\n noise_max: if greater than 0 then noise will be added to the image taken from\n the uniform distribution on range `[0,noise_max)`. Defaults to `0`.\n num_seg_classes: number of classes for segmentations. Defaults to `5`.\n channel_dim: if None, create an image without channel dimension, otherwise create\n an image with channel dimension as first dim or last dim. Defaults to `None`.\n random_state: the random generator to use. Defaults to `np.random`.\n\n See also:\n :py:meth:`~create_test_image_2d`\n \"\"\"\n\n if rad_max <= rad_min:\n raise ValueError(\"`rad_min` should be less than `rad_max`.\")\n if rad_min < 1:\n raise ValueError(\"`rad_min` should be no less than 1.\")\n min_size = min(width, height, depth)\n if min_size <= 2 * rad_max:\n raise ValueError(\"the minimal size of the image should be larger than `2 * rad_max`.\")\n\n image = np.zeros((width, height, depth))\n rs: np.random.RandomState = np.random.random.__self__ if random_state is None else random_state # type: ignore\n\n for _ in range(num_objs):\n x = rs.randint(rad_max, width - rad_max)\n y = rs.randint(rad_max, height - rad_max)\n z = rs.randint(rad_max, depth - rad_max)\n rad = rs.randint(rad_min, rad_max)\n spy, spx, spz = np.ogrid[-x : width - x, -y : height - y, -z : depth - z]\n circle = (spx * spx + spy * spy + spz * spz) <= rad * rad\n\n if num_seg_classes > 1:\n image[circle] = np.ceil(rs.random() * num_seg_classes)\n else:\n image[circle] = rs.random() * 0.5 + 0.5\n\n labels = np.ceil(image).astype(np.int32, copy=False)\n\n norm = rs.uniform(0, num_seg_classes * noise_max, size=image.shape)\n noisyimage: np.ndarray = rescale_array(np.maximum(image, norm)) # type: ignore\n\n if channel_dim is not None:\n if not (isinstance(channel_dim, int) and channel_dim in (-1, 0, 3)):\n raise AssertionError(\"invalid channel dim.\")\n noisyimage, labels = (\n (noisyimage[None], labels[None]) if channel_dim == 0 else (noisyimage[..., None], labels[..., None])\n )\n\n return noisyimage, labels", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_slices_iter_patch_slices.for_position_in_product_.yield_tuple_slice_s_s_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_slices_iter_patch_slices.for_position_in_product_.yield_tuple_slice_s_s_", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 53, "end_line": 80, "span_ids": ["iter_patch_slices"], "tokens": 313}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def iter_patch_slices(\n dims: Sequence[int], patch_size: Union[Sequence[int], int], start_pos: Sequence[int] = ()\n) -> Generator[Tuple[slice, ...], None, None]:\n \"\"\"\n Yield successive tuples of slices defining patches of size `patch_size` from an array of dimensions `dims`. The\n iteration starts from position `start_pos` in the array, or starting at the origin if this isn't provided. Each\n patch is chosen in a contiguous grid using a first dimension as least significant ordering.\n\n Args:\n dims: dimensions of array to iterate over\n patch_size: size of patches to generate slices for, 0 or None selects whole dimension\n start_pos: starting position in the array, default is 0 for each dimension\n\n Yields:\n Tuples of slice objects defining each patch\n \"\"\"\n\n # ensure patchSize and startPos are the right length\n ndim = len(dims)\n patch_size_ = get_valid_patch_size(dims, patch_size)\n start_pos = ensure_tuple_size(start_pos, ndim)\n\n # collect the ranges to step over each dimension\n ranges = tuple(starmap(range, zip(start_pos, dims, patch_size_)))\n\n # choose patches by applying product to the ranges\n for position in product(*ranges[::-1]): # reverse ranges order to iterate in index order\n yield tuple(slice(s, s + p) for s, p in zip(position[::-1], patch_size_))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_iter_patch.if_copy_back_.arr_arrpad_slices_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_iter_patch_iter_patch.if_copy_back_.arr_arrpad_slices_", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 177, "end_line": 236, "span_ids": ["iter_patch"], "tokens": 750}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def iter_patch(\n arr: np.ndarray,\n patch_size: Union[Sequence[int], int] = 0,\n start_pos: Sequence[int] = (),\n copy_back: bool = True,\n mode: Union[NumpyPadMode, str] = NumpyPadMode.WRAP,\n **pad_opts: Dict,\n):\n \"\"\"\n Yield successive patches from `arr` of size `patch_size`. The iteration can start from position `start_pos` in `arr`\n but drawing from a padded array extended by the `patch_size` in each dimension (so these coordinates can be negative\n to start in the padded region). If `copy_back` is True the values from each patch are written back to `arr`.\n\n Args:\n arr: array to iterate over\n patch_size: size of patches to generate slices for, 0 or None selects whole dimension\n start_pos: starting position in the array, default is 0 for each dimension\n copy_back: if True data from the yielded patches is copied back to `arr` once the generator completes\n mode: {``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``, ``\"mean\"``,\n ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n One of the listed string values or a user supplied function. Defaults to ``\"wrap\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n pad_opts: padding options, see `numpy.pad`\n\n Yields:\n Patches of array data from `arr` which are views into a padded array which can be modified, if `copy_back` is\n True these changes will be reflected in `arr` once the iteration completes.\n\n Note:\n coordinate format is:\n\n [1st_dim_start, 1st_dim_end,\n 2nd_dim_start, 2nd_dim_end,\n ...,\n Nth_dim_start, Nth_dim_end]]\n\n \"\"\"\n # ensure patchSize and startPos are the right length\n patch_size_ = get_valid_patch_size(arr.shape, patch_size)\n start_pos = ensure_tuple_size(start_pos, arr.ndim)\n\n # pad image by maximum values needed to ensure patches are taken from inside an image\n arrpad = np.pad(arr, tuple((p, p) for p in patch_size_), look_up_option(mode, NumpyPadMode).value, **pad_opts)\n\n # choose a start position in the padded image\n start_pos_padded = tuple(s + p for s, p in zip(start_pos, patch_size_))\n\n # choose a size to iterate over which is smaller than the actual padded image to prevent producing\n # patches which are only in the padded regions\n iter_size = tuple(s + p for s, p in zip(arr.shape, patch_size_))\n\n for slices in iter_patch_slices(iter_size, patch_size_, start_pos_padded):\n # compensate original image padding\n coords_no_pad = tuple((coord.start - p, coord.stop - p) for coord, p in zip(slices, patch_size_))\n yield arrpad[slices], np.asarray(coords_no_pad) # data and coords (in numpy; works with torch loader)\n\n # copy back data from the padded image if required\n if copy_back:\n slices = tuple(slice(p, p + s) for p, s in zip(patch_size_, arr.shape))\n arr[...] = arrpad[slices]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_valid_patch_size_get_valid_patch_size.return.tuple_min_ms_ps_or_ms_f": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_valid_patch_size_get_valid_patch_size.return.tuple_min_ms_ps_or_ms_f", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 198, "end_line": 209, "span_ids": ["get_valid_patch_size"], "tokens": 211}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_valid_patch_size(image_size: Sequence[int], patch_size: Union[Sequence[int], int]) -> Tuple[int, ...]:\n \"\"\"\n Given an image of dimensions `image_size`, return a patch size tuple taking the dimension from `patch_size` if this is\n not 0/None. Otherwise, or if `patch_size` is shorter than `image_size`, the dimension from `image_size` is taken. This ensures\n the returned patch size is within the bounds of `image_size`. If `patch_size` is a single number this is interpreted as a\n patch of the same dimensionality of `image_size` with that size in each dimension.\n \"\"\"\n ndim = len(image_size)\n patch_size_ = ensure_tuple_size(patch_size, ndim)\n\n # ensure patch size dimensions are not larger than image dimension, if a dimension is None or 0 use whole dimension\n return tuple(min(ms, ps or ms) for ms, ps in zip(image_size, patch_size_))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_correct_nifti_header_if_necessary_correct_nifti_header_if_necessary.return.img_nii": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_correct_nifti_header_if_necessary_correct_nifti_header_if_necessary.return.img_nii", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 486, "end_line": 506, "span_ids": ["correct_nifti_header_if_necessary"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def correct_nifti_header_if_necessary(img_nii):\n \"\"\"\n Check nifti object header's format, update the header if needed.\n In the updated image pixdim matches the affine.\n\n Args:\n img_nii: nifti image object\n \"\"\"\n if img_nii.header.get(\"dim\") is None:\n return img_nii # not nifti?\n dim = img_nii.header[\"dim\"][0]\n if dim >= 5:\n return img_nii # do nothing for high-dimensional array\n # check that affine matches zooms\n pixdim = np.asarray(img_nii.header.get_zooms())[:dim]\n norm_affine = np.sqrt(np.sum(np.square(img_nii.affine[:dim, :dim]), 0))\n if np.allclose(pixdim, norm_affine):\n return img_nii\n if hasattr(img_nii, \"get_sform\"):\n return rectify_header_sform_qform(img_nii)\n return img_nii", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_rectify_header_sform_qform_rectify_header_sform_qform.return.img_nii": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_rectify_header_sform_qform_rectify_header_sform_qform.return.img_nii", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 259, "end_line": 294, "span_ids": ["rectify_header_sform_qform"], "tokens": 388}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def rectify_header_sform_qform(img_nii):\n \"\"\"\n Look at the sform and qform of the nifti object and correct it if any\n incompatibilities with pixel dimensions\n\n Adapted from https://github.com/NifTK/NiftyNet/blob/v0.6.0/niftynet/io/misc_io.py\n\n Args:\n img_nii: nifti image object\n \"\"\"\n d = img_nii.header[\"dim\"][0]\n pixdim = np.asarray(img_nii.header.get_zooms())[:d]\n sform, qform = img_nii.get_sform(), img_nii.get_qform()\n norm_sform = np.sqrt(np.sum(np.square(sform[:d, :d]), 0))\n norm_qform = np.sqrt(np.sum(np.square(qform[:d, :d]), 0))\n sform_mismatch = not np.allclose(norm_sform, pixdim)\n qform_mismatch = not np.allclose(norm_qform, pixdim)\n\n if img_nii.header[\"sform_code\"] != 0:\n if not sform_mismatch:\n return img_nii\n if not qform_mismatch:\n img_nii.set_sform(img_nii.get_qform())\n return img_nii\n if img_nii.header[\"qform_code\"] != 0:\n if not qform_mismatch:\n return img_nii\n if not sform_mismatch:\n img_nii.set_qform(img_nii.get_sform())\n return img_nii\n\n norm = np.sqrt(np.sum(np.square(img_nii.affine[:d, :d]), 0))\n warnings.warn(f\"Modifying image pixdim from {pixdim} to {norm}\")\n\n img_nii.header.set_zooms(norm)\n return img_nii", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_zoom_affine_zoom_affine.return.new_affine": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_zoom_affine_zoom_affine.return.new_affine", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 542, "end_line": 591, "span_ids": ["zoom_affine"], "tokens": 566}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def zoom_affine(affine: np.ndarray, scale: Union[np.ndarray, Sequence[float]], diagonal: bool = True):\n \"\"\"\n To make column norm of `affine` the same as `scale`. If diagonal is False,\n returns an affine that combines orthogonal rotation and the new scale.\n This is done by first decomposing `affine`, then setting the zoom factors to\n `scale`, and composing a new affine; the shearing factors are removed. If\n diagonal is True, returns a diagonal matrix, the scaling factors are set\n to the diagonal elements. This function always return an affine with zero\n translations.\n\n Args:\n affine (nxn matrix): a square matrix.\n scale: new scaling factor along each dimension. if the components of the `scale` are non-positive values,\n will use the corresponding components of the original pixdim, which is computed from the `affine`.\n diagonal: whether to return a diagonal scaling matrix.\n Defaults to True.\n\n Raises:\n ValueError: When ``affine`` is not a square matrix.\n ValueError: When ``scale`` contains a nonpositive scalar.\n\n Returns:\n the updated `n x n` affine.\n\n \"\"\"\n\n affine = np.array(affine, dtype=float, copy=True)\n if len(affine) != len(affine[0]):\n raise ValueError(f\"affine must be n x n, got {len(affine)} x {len(affine[0])}.\")\n scale_np = np.array(scale, dtype=float, copy=True)\n\n d = len(affine) - 1\n # compute original pixdim\n norm = np.sqrt(np.sum(np.square(affine), 0))[:-1]\n if len(scale_np) < d: # defaults based on affine\n scale_np = np.append(scale_np, norm[len(scale_np) :])\n scale_np = scale_np[:d]\n scale_np = np.asarray(fall_back_tuple(scale_np, norm))\n\n scale_np[scale_np == 0] = 1.0\n if diagonal:\n return np.diag(np.append(scale_np, [1.0]))\n rzs = affine[:-1, :-1] # rotation zoom scale\n zs = np.linalg.cholesky(rzs.T @ rzs).T\n rotation = rzs @ np.linalg.inv(zs)\n s = np.sign(np.diag(zs)) * np.abs(scale_np)\n # construct new affine with rotation and zoom\n new_affine = np.eye(len(affine))\n new_affine[:-1, :-1] = rotation @ np.diag(s)\n return new_affine", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_to_affine_nd_to_affine_nd.return.new_affine": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_to_affine_nd_to_affine_nd.return.new_affine", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 580, "end_line": 620, "span_ids": ["to_affine_nd"], "tokens": 505}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def to_affine_nd(r: Union[np.ndarray, int], affine: np.ndarray) -> np.ndarray:\n \"\"\"\n Using elements from affine, to create a new affine matrix by\n assigning the rotation/zoom/scaling matrix and the translation vector.\n\n when ``r`` is an integer, output is an (r+1)x(r+1) matrix,\n where the top left kxk elements are copied from ``affine``,\n the last column of the output affine is copied from ``affine``'s last column.\n `k` is determined by `min(r, len(affine) - 1)`.\n\n when ``r`` is an affine matrix, the output has the same as ``r``,\n the top left kxk elements are copied from ``affine``,\n the last column of the output affine is copied from ``affine``'s last column.\n `k` is determined by `min(len(r) - 1, len(affine) - 1)`.\n\n Args:\n r (int or matrix): number of spatial dimensions or an output affine to be filled.\n affine (matrix): 2D affine matrix\n\n Raises:\n ValueError: When ``affine`` dimensions is not 2.\n ValueError: When ``r`` is nonpositive.\n\n Returns:\n an (r+1) x (r+1) matrix\n\n \"\"\"\n affine_np = np.array(affine, dtype=np.float64)\n if affine_np.ndim != 2:\n raise ValueError(f\"affine must have 2 dimensions, got {affine_np.ndim}.\")\n new_affine = np.array(r, dtype=np.float64, copy=True)\n if new_affine.ndim == 0:\n sr: int = int(new_affine.astype(np.uint))\n if not np.isfinite(sr) or sr < 0:\n raise ValueError(f\"r must be positive, got {sr}.\")\n new_affine = np.eye(sr + 1, dtype=np.float64)\n d = max(min(len(new_affine) - 1, len(affine_np) - 1), 1)\n new_affine[:d, :d] = affine_np[:d, :d]\n if d > 1:\n new_affine[:d, -1] = affine_np[:d, -1]\n return new_affine", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_EnsembleEvaluator._iteration_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/evaluator.py_EnsembleEvaluator._iteration_", "embedding": null, "metadata": {"file_path": "monai/engines/evaluator.py", "file_name": "evaluator.py", "file_type": "text/x-python", "category": "implementation", "start_line": 352, "end_line": 401, "span_ids": ["EnsembleEvaluator._iteration"], "tokens": 442}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class EnsembleEvaluator(Evaluator):\n\n def _iteration(self, engine: Engine, batchdata: Dict[str, torch.Tensor]):\n \"\"\"\n callback function for the Supervised Evaluation processing logic of 1 iteration in Ignite Engine.\n Return below items in a dictionary:\n - IMAGE: image Tensor data for model input, already moved to device.\n - LABEL: label Tensor data corresponding to the image, already moved to device.\n - pred_keys[0]: prediction result of network 0.\n - pred_keys[1]: prediction result of network 1.\n - ... ...\n - pred_keys[N]: prediction result of network N.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data.\n\n Raises:\n ValueError: When ``batchdata`` is None.\n\n \"\"\"\n if batchdata is None:\n raise ValueError(\"Must provide batch data for current iteration.\")\n batch = self.prepare_batch(batchdata, engine.state.device, engine.non_blocking) # type: ignore\n if len(batch) == 2:\n inputs, targets = batch\n args: Tuple = ()\n kwargs: Dict = {}\n else:\n inputs, targets, args, kwargs = batch\n\n # put iteration outputs into engine.state\n engine.state.output = {Keys.IMAGE: inputs, Keys.LABEL: targets} # type: ignore\n\n for idx, network in enumerate(self.networks):\n with self.mode(network):\n if self.amp:\n with torch.cuda.amp.autocast():\n if isinstance(engine.state.output, dict):\n engine.state.output.update(\n {self.pred_keys[idx]: self.inferer(inputs, network, *args, **kwargs)}\n )\n else:\n if isinstance(engine.state.output, dict):\n engine.state.output.update(\n {self.pred_keys[idx]: self.inferer(inputs, network, *args, **kwargs)}\n )\n engine.fire_event(IterationEvents.FORWARD_COMPLETED)\n engine.fire_event(IterationEvents.MODEL_COMPLETED)\n\n return engine.state.output", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_trainer_create_multigpu_supervised_trainer.return.create_supervised_trainer": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_trainer_create_multigpu_supervised_trainer.return.create_supervised_trainer", "embedding": null, "metadata": {"file_path": "monai/engines/multi_gpu_supervised_trainer.py", "file_name": "multi_gpu_supervised_trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 50, "end_line": 96, "span_ids": ["create_multigpu_supervised_trainer"], "tokens": 434}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def create_multigpu_supervised_trainer(\n net: torch.nn.Module,\n optimizer: Optimizer,\n loss_fn: Callable,\n devices: Optional[Sequence[torch.device]] = None,\n non_blocking: bool = False,\n prepare_batch: Callable = _prepare_batch,\n output_transform: Callable = _default_transform,\n distributed: bool = False,\n):\n \"\"\"\n Derived from `create_supervised_trainer` in Ignite.\n\n Factory function for creating a trainer for supervised models.\n\n Args:\n net: the network to train.\n optimizer: the optimizer to use.\n loss_fn: the loss function to use.\n devices: device(s) type specification (default: None).\n Applies to both model and batches. None is all devices used, empty list is CPU only.\n non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously\n with respect to the host. For other cases, this argument has no effect.\n prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs\n tuple of tensors `(batch_x, batch_y)`.\n output_transform: function that receives 'x', 'y', 'y_pred', 'loss' and returns value\n to be assigned to engine's state.output after each iteration. Default is returning `loss.item()`.\n distributed: whether convert model to `DistributedDataParallel`, if have multiple devices, use\n the first device as output device.\n\n Returns:\n Engine: a trainer engine with supervised update function.\n\n Note:\n `engine.state.output` for this engine is defined by `output_transform` parameter and is the loss\n of the processed batch by default.\n \"\"\"\n\n devices_ = get_devices_spec(devices)\n if distributed:\n net = DistributedDataParallel(net, device_ids=devices_)\n elif len(devices_) > 1:\n net = DataParallel(net)\n\n return create_supervised_trainer(\n net, optimizer, loss_fn, devices_[0], non_blocking, prepare_batch, output_transform\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_evaluator_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_create_multigpu_supervised_evaluator_", "embedding": null, "metadata": {"file_path": "monai/engines/multi_gpu_supervised_trainer.py", "file_name": "multi_gpu_supervised_trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 99, "end_line": 144, "span_ids": ["create_multigpu_supervised_evaluator"], "tokens": 447}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def create_multigpu_supervised_evaluator(\n net: torch.nn.Module,\n metrics: Optional[Dict[str, Metric]] = None,\n devices: Optional[Sequence[torch.device]] = None,\n non_blocking: bool = False,\n prepare_batch: Callable = _prepare_batch,\n output_transform: Callable = _default_eval_transform,\n distributed: bool = False,\n):\n \"\"\"\n Derived from `create_supervised_evaluator` in Ignite.\n\n Factory function for creating an evaluator for supervised models.\n\n Args:\n net: the model to train.\n metrics: a map of metric names to Metrics.\n devices: device(s) type specification (default: None).\n Applies to both model and batches. None is all devices used, empty list is CPU only.\n non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously\n with respect to the host. For other cases, this argument has no effect.\n prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs\n tuple of tensors `(batch_x, batch_y)`.\n output_transform: function that receives 'x', 'y', 'y_pred' and returns value\n to be assigned to engine's state.output after each iteration. Default is returning `(y_pred, y,)`\n which fits output expected by metrics. If you change it you should use `output_transform` in metrics.\n distributed: whether convert model to `DistributedDataParallel`, if have multiple devices, use\n the first device as output device.\n\n Note:\n `engine.state.output` for this engine is defined by `output_transform` parameter and is\n a tuple of `(batch_pred, batch_y)` by default.\n\n Returns:\n Engine: an evaluator engine with supervised inference function.\n \"\"\"\n\n devices_ = get_devices_spec(devices)\n\n if distributed:\n net = DistributedDataParallel(net, device_ids=devices_)\n elif len(devices_) > 1:\n net = DataParallel(net)\n\n return create_supervised_evaluator(net, metrics, devices_[0], non_blocking, prepare_batch, output_transform)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_Trainer_Trainer.get_train_stats.return._total_epochs_self_sta": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_Trainer_Trainer.get_train_stats.return._total_epochs_self_sta", "embedding": null, "metadata": {"file_path": "monai/engines/trainer.py", "file_name": "trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 33, "end_line": 49, "span_ids": ["Trainer.run", "Trainer.get_train_stats", "Trainer"], "tokens": 118}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Trainer(Workflow):\n \"\"\"\n Base class for all kinds of trainers, inherits from Workflow.\n\n \"\"\"\n\n def run(self) -> None:\n \"\"\"\n Execute training based on Ignite Engine.\n If call this function multiple times, it will continuously run from the previous state.\n\n \"\"\"\n self.scaler = torch.cuda.amp.GradScaler() if self.amp else None\n super().run()\n\n def get_train_stats(self) -> Dict[str, float]:\n return {\"total_epochs\": self.state.max_epochs, \"total_iterations\": self.state.epoch_length}", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow_Workflow._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/workflow.py_Workflow_Workflow._", "embedding": null, "metadata": {"file_path": "monai/engines/workflow.py", "file_name": "workflow.py", "file_type": "text/x-python", "category": "implementation", "start_line": 53, "end_line": 104, "span_ids": ["Workflow"], "tokens": 793}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Workflow(IgniteEngine): # type: ignore[valid-type, misc] # due to optional_import\n \"\"\"\n Workflow defines the core work process inheriting from Ignite engine.\n All trainer, validator and evaluator share this same workflow as base class,\n because they all can be treated as same Ignite engine loops.\n It initializes all the sharable data in Ignite engine.state.\n And attach additional processing logics to Ignite engine based on Event-Handler mechanism.\n\n Users should consider inheriting from `trainer` or `evaluator` to develop more trainers or evaluators.\n\n Args:\n device: an object representing the device on which to run.\n max_epochs: the total epoch number for engine to run, validator and evaluator have only 1 epoch.\n data_loader: Ignite engine use data_loader to run, must be Iterable or torch.DataLoader.\n epoch_length: number of iterations for one epoch, default to `len(data_loader)`.\n non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously\n with respect to the host. For other cases, this argument has no effect.\n prepare_batch: function to parse expected data (usually `image`, `label` and other network args)\n from `engine.state.batch` for every iteration, for more details please refer to:\n https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html.\n iteration_update: the callable function for every iteration, expect to accept `engine`\n and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`.\n if not provided, use `self._iteration()` instead. for more details please refer to:\n https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html.\n postprocessing: execute additional transformation for the model output data.\n Typically, several Tensor based transforms composed by `Compose`.\n key_metric: compute metric when every iteration completed, and save average value to\n engine.state.metrics when epoch completed. key_metric is the main metric to compare and save the\n checkpoint into files.\n additional_metrics: more Ignite metrics that also attach to Ignite Engine.\n metric_cmp_fn: function to compare current key metric with previous best key metric value,\n it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update\n `best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`.\n handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like:\n CheckpointHandler, StatsHandler, SegmentationSaver, etc.\n amp: whether to enable auto-mixed-precision training or inference, default is False.\n event_names: additional custom ignite events that will register to the engine.\n new events can be a list of str or `ignite.engine.events.EventEnum`.\n event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`.\n for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html\n #ignite.engine.engine.Engine.register_events.\n decollate: whether to decollate the batch-first data to a list of data after model computation,\n recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.\n default to `True`.\n\n Raises:\n TypeError: When ``device`` is not a ``torch.Device``.\n TypeError: When ``data_loader`` is not a ``torch.utils.data.DataLoader``.\n TypeError: When ``key_metric`` is not a ``Optional[dict]``.\n TypeError: When ``additional_metrics`` is not a ``Optional[dict]``.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/__init__.py_CheckpointLoader_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/__init__.py_CheckpointLoader_", "embedding": null, "metadata": {"file_path": "monai/handlers/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 38, "span_ids": ["docstring"], "tokens": 304}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from .checkpoint_loader import CheckpointLoader\nfrom .checkpoint_saver import CheckpointSaver\nfrom .classification_saver import ClassificationSaver\nfrom .confusion_matrix import ConfusionMatrix\nfrom .decollate_batch import DecollateBatch\nfrom .earlystop_handler import EarlyStopHandler\nfrom .garbage_collector import GarbageCollector\nfrom .hausdorff_distance import HausdorffDistance\nfrom .ignite_metric import IgniteMetric\nfrom .lr_schedule_handler import LrScheduleHandler\nfrom .mean_dice import MeanDice\nfrom .metric_logger import MetricLogger, MetricLoggerKeys\nfrom .metrics_saver import MetricsSaver\nfrom .mlflow_handler import MLFlowHandler\nfrom .nvtx_handlers import MarkHandler, RangeHandler, RangePopHandler, RangePushHandler\nfrom .parameter_scheduler import ParamSchedulerHandler\nfrom .postprocessing import PostProcessing\nfrom .regression_metrics import MeanAbsoluteError, MeanSquaredError, PeakSignalToNoiseRatio, RootMeanSquaredError\nfrom .roc_auc import ROCAUC\nfrom .segmentation_saver import SegmentationSaver\nfrom .smartcache_handler import SmartCacheHandler\nfrom .stats_handler import StatsHandler\nfrom .surface_distance import SurfaceDistance\nfrom .tensorboard_handlers import TensorBoardHandler, TensorBoardImageHandler, TensorBoardStatsHandler\nfrom .utils import from_engine, stopping_fn_from_loss, stopping_fn_from_metric, write_metrics_reports\nfrom .validation_handler import ValidationHandler", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver_CheckpointSaver._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver_CheckpointSaver._", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_saver.py", "file_name": "checkpoint_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 30, "end_line": 84, "span_ids": ["CheckpointSaver"], "tokens": 701}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointSaver:\n \"\"\"\n CheckpointSaver acts as an Ignite handler to save checkpoint data into files.\n It supports to save according to metrics result, epoch number, iteration number\n and last model or exception.\n\n Args:\n save_dir: the target directory to save the checkpoints.\n save_dict: source objects that save to the checkpoint. examples::\n\n {'network': net, 'optimizer': optimizer, 'lr_scheduler': lr_scheduler}\n\n name: identifier of logging.logger to use, if None, defaulting to ``engine.logger``.\n file_prefix: prefix for the filenames to which objects will be saved.\n save_final: whether to save checkpoint or session at final iteration or exception.\n If checkpoints are to be saved when an exception is raised, put this handler before\n `StatsHandler` in the handler list, because the logic with Ignite can only trigger\n the first attached handler for `EXCEPTION_RAISED` event.\n final_filename: set a fixed filename to save the final model if `save_final=True`.\n If None, default to `checkpoint_final_iteration=N.pt`.\n save_key_metric: whether to save checkpoint or session when the value of key_metric is\n higher than all the previous values during training.keep 4 decimal places of metric,\n checkpoint name is: {file_prefix}_key_metric=0.XXXX.pth.\n key_metric_name: the name of key_metric in ignite metrics dictionary.\n If None, use `engine.state.key_metric` instead.\n key_metric_n_saved: save top N checkpoints or sessions, sorted by the value of key\n metric in descending order.\n key_metric_filename: set a fixed filename to set the best metric model, if not None,\n `key_metric_n_saved` should be 1 and only keep the best metric model.\n key_metric_save_state: whether to save the tracking list of key metric in the checkpoint file.\n if `True`, then will save an object in the checkpoint file with key `checkpointer` to be\n consistent with the `include_self` arg of `Checkpoint` in ignite:\n https://pytorch.org/ignite/v0.4.5/generated/ignite.handlers.checkpoint.Checkpoint.html.\n typically, it's used to resume training and compare current metric with previous N values.\n key_metric_greater_or_equal: if `True`, the latest equally scored model is stored. Otherwise,\n save the the first equally scored model. default to `False`.\n key_metric_negative_sign: whether adding a negative sign to the metric score to compare metrics,\n because for error-like metrics, smaller is better(objects with larger score are retained).\n default to `False`.\n epoch_level: save checkpoint during training for every N epochs or every N iterations.\n `True` is epoch level, `False` is iteration level.\n save_interval: save checkpoint every N epochs, default is 0 to save no checkpoint.\n n_saved: save latest N checkpoints of epoch level or iteration level, 'None' is to save all.\n\n Note:\n CheckpointHandler can be used during training, validation or evaluation.\n example of saved files:\n\n - checkpoint_iteration=400.pt\n - checkpoint_iteration=800.pt\n - checkpoint_epoch=1.pt\n - checkpoint_final_iteration=1000.pt\n - checkpoint_key_metric=0.9387.pt\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.attach_CheckpointSaver.attach.if_self__interval_checkpo.if_self_epoch_level_.else_.engine_add_event_handler_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.attach_CheckpointSaver.attach.if_self__interval_checkpo.if_self_epoch_level_.else_.engine_add_event_handler_", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_saver.py", "file_name": "checkpoint_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 141, "end_line": 157, "span_ids": ["CheckpointSaver.attach"], "tokens": 183}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointSaver:\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n if self._final_checkpoint is not None:\n engine.add_event_handler(Events.COMPLETED, self.completed)\n engine.add_event_handler(Events.EXCEPTION_RAISED, self.exception_raised)\n if self._key_metric_checkpoint is not None:\n engine.add_event_handler(Events.EPOCH_COMPLETED, self.metrics_completed)\n if self._interval_checkpoint is not None:\n if self.epoch_level:\n engine.add_event_handler(Events.EPOCH_COMPLETED(every=self.save_interval), self.interval_completed)\n else:\n engine.add_event_handler(Events.ITERATION_COMPLETED(every=self.save_interval), self.interval_completed)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_LrScheduleHandler_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_LrScheduleHandler_", "embedding": null, "metadata": {"file_path": "monai/handlers/lr_schedule_handler.py", "file_name": "lr_schedule_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 27, "end_line": 92, "span_ids": ["LrScheduleHandler.__init__", "LrScheduleHandler", "LrScheduleHandler.__call__", "LrScheduleHandler.attach"], "tokens": 598}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LrScheduleHandler:\n \"\"\"\n Ignite handler to update the Learning Rate based on PyTorch LR scheduler.\n \"\"\"\n\n def __init__(\n self,\n lr_scheduler: Union[_LRScheduler, ReduceLROnPlateau],\n print_lr: bool = True,\n name: Optional[str] = None,\n epoch_level: bool = True,\n step_transform: Callable[[Engine], Any] = lambda engine: (),\n logger_handler: Optional[logging.Handler] = None,\n ) -> None:\n \"\"\"\n Args:\n lr_scheduler: typically, lr_scheduler should be PyTorch\n lr_scheduler object. If customized version, must have `step` and `get_last_lr` methods.\n print_lr: whether to print out the latest learning rate with logging.\n name: identifier of logging.logger to use, if None, defaulting to ``engine.logger``.\n epoch_level: execute lr_scheduler.step() after every epoch or every iteration.\n `True` is epoch level, `False` is iteration level.\n step_transform: a callable that is used to transform the information from `engine`\n to expected input data of lr_scheduler.step() function if necessary.\n logger_handler: if `print_lr` is True, add additional handler to log the learning rate: save to file, etc.\n all the existing python logging handlers: https://docs.python.org/3/library/logging.handlers.html.\n the handler should have a logging level of at least `INFO`.\n\n Raises:\n TypeError: When ``step_transform`` is not ``callable``.\n\n \"\"\"\n self.lr_scheduler = lr_scheduler\n self.print_lr = print_lr\n self.logger = logging.getLogger(name)\n self.epoch_level = epoch_level\n if not callable(step_transform):\n raise TypeError(f\"step_transform must be callable but is {type(step_transform).__name__}.\")\n self.step_transform = step_transform\n if logger_handler is not None:\n self.logger.addHandler(logger_handler)\n\n self._name = name\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n if self.epoch_level:\n engine.add_event_handler(Events.EPOCH_COMPLETED, self)\n else:\n engine.add_event_handler(Events.ITERATION_COMPLETED, self)\n\n def __call__(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n args = ensure_tuple(self.step_transform(engine))\n self.lr_scheduler.step(*args)\n if self.print_lr:\n self.logger.info(f\"Current learning rate: {self.lr_scheduler._last_lr[0]}\") # type: ignore[union-attr]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_SegmentationSaver.attach_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_SegmentationSaver.attach_", "embedding": null, "metadata": {"file_path": "monai/handlers/segmentation_saver.py", "file_name": "segmentation_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 148, "end_line": 174, "span_ids": ["SegmentationSaver.__call__", "SegmentationSaver.attach"], "tokens": 278}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@deprecated(since=\"0.6.0\", removed=\"0.9.0\", msg_suffix=\"Please consider using `SaveImage[d]` transform instead.\")\nclass SegmentationSaver:\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n if not engine.has_event_handler(self, Events.ITERATION_COMPLETED):\n engine.add_event_handler(Events.ITERATION_COMPLETED, self)\n\n def __call__(self, engine: Engine) -> None:\n \"\"\"\n This method assumes self.batch_transform will extract metadata from the input batch.\n Output file datatype is determined from ``engine.state.output.dtype``.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n meta_data = self.batch_transform(engine.state.batch)\n if isinstance(meta_data, dict):\n # decollate the `dictionary of list` to `list of dictionaries`\n meta_data = decollate_batch(meta_data)\n engine_output = self.output_transform(engine.state.output)\n for m, o in zip(meta_data, engine_output):\n self._saver(o, m)\n self.logger.info(\"model outputs saved into files.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.attach_StatsHandler.attach.None_3.engine_add_event_handler_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.attach_StatsHandler.attach.None_3.engine_add_event_handler_", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 88, "end_line": 103, "span_ids": ["StatsHandler.attach"], "tokens": 173}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class StatsHandler:\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Register a set of Ignite Event-Handlers to a specified Ignite engine.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n if not engine.has_event_handler(self.iteration_completed, Events.ITERATION_COMPLETED):\n engine.add_event_handler(Events.ITERATION_COMPLETED, self.iteration_completed)\n if not engine.has_event_handler(self.epoch_completed, Events.EPOCH_COMPLETED):\n engine.add_event_handler(Events.EPOCH_COMPLETED, self.epoch_completed)\n if not engine.has_event_handler(self.exception_raised, Events.EXCEPTION_RAISED):\n engine.add_event_handler(Events.EXCEPTION_RAISED, self.exception_raised)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler._default_iteration_print_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler._default_iteration_print_", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 196, "end_line": 249, "span_ids": ["StatsHandler._default_iteration_print"], "tokens": 494}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class StatsHandler:\n\n def _default_iteration_print(self, engine: Engine) -> None:\n \"\"\"\n Execute iteration log operation based on Ignite `engine.state.output` data.\n Print the values from `self.output_transform(engine.state.output)`.\n Since `engine.state.output` is a decollated list and we replicated the loss value for every item\n of the decollated list, the default behavior is to print the loss from `output[0]`.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n loss = self.output_transform(engine.state.output)\n if loss is None:\n return # no printing if the output is empty\n\n out_str = \"\"\n if isinstance(loss, dict): # print dictionary items\n for name in sorted(loss):\n value = loss[name]\n if not is_scalar(value):\n warnings.warn(\n \"ignoring non-scalar output in StatsHandler,\"\n \" make sure `output_transform(engine.state.output)` returns\"\n \" a scalar or dictionary of key and scalar pairs to avoid this warning.\"\n \" {}:{}\".format(name, type(value))\n )\n continue # not printing multi dimensional output\n out_str += self.key_var_format.format(name, value.item() if isinstance(value, torch.Tensor) else value)\n elif is_scalar(loss): # not printing multi dimensional output\n out_str += self.key_var_format.format(\n self.tag_name, loss.item() if isinstance(loss, torch.Tensor) else loss\n )\n else:\n warnings.warn(\n \"ignoring non-scalar output in StatsHandler,\"\n \" make sure `output_transform(engine.state.output)` returns\"\n \" a scalar or a dictionary of key and scalar pairs to avoid this warning.\"\n \" {}\".format(type(loss))\n )\n\n if not out_str:\n return # no value to print\n\n num_iterations = engine.state.epoch_length\n current_iteration = engine.state.iteration\n if num_iterations is not None:\n current_iteration = (current_iteration - 1) % num_iterations + 1\n current_epoch = engine.state.epoch\n num_epochs = engine.state.max_epochs\n\n base_str = f\"Epoch: {current_epoch}/{num_epochs}, Iter: {current_iteration}/{num_iterations} --\"\n\n self.logger.info(\" \".join([base_str, out_str]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.attach_TensorBoardStatsHandler.attach.None_1.engine_add_event_handler_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.attach_TensorBoardStatsHandler.attach.None_1.engine_add_event_handler_", "embedding": null, "metadata": {"file_path": "monai/handlers/tensorboard_handlers.py", "file_name": "tensorboard_handlers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 118, "end_line": 131, "span_ids": ["TensorBoardStatsHandler.attach"], "tokens": 143}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TensorBoardStatsHandler(TensorBoardHandler):\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Register a set of Ignite Event-Handlers to a specified Ignite engine.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if not engine.has_event_handler(self.iteration_completed, Events.ITERATION_COMPLETED):\n engine.add_event_handler(\n Events.ITERATION_COMPLETED(every=self.iteration_interval), self.iteration_completed\n )\n if not engine.has_event_handler(self.epoch_completed, Events.EPOCH_COMPLETED):\n engine.add_event_handler(Events.EPOCH_COMPLETED(every=self.epoch_interval), self.epoch_completed)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.epoch_completed_TensorBoardStatsHandler.iteration_completed.if_self_iteration_event_w.else_.self__default_iteration_w": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler.epoch_completed_TensorBoardStatsHandler.iteration_completed.if_self_iteration_event_w.else_.self__default_iteration_w", "embedding": null, "metadata": {"file_path": "monai/handlers/tensorboard_handlers.py", "file_name": "tensorboard_handlers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 147, "end_line": 173, "span_ids": ["TensorBoardStatsHandler.iteration_completed", "TensorBoardStatsHandler.epoch_completed"], "tokens": 218}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TensorBoardStatsHandler(TensorBoardHandler):\n\n def epoch_completed(self, engine: Engine) -> None:\n \"\"\"\n Handler for train or validation/evaluation epoch completed Event.\n Write epoch level events, default values are from Ignite `engine.state.metrics` dict.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if self.epoch_event_writer is not None:\n self.epoch_event_writer(engine, self._writer)\n else:\n self._default_epoch_writer(engine, self._writer)\n\n def iteration_completed(self, engine: Engine) -> None:\n \"\"\"\n Handler for train or validation/evaluation iteration completed Event.\n Write iteration level events, default values are from Ignite `engine.state.output`.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if self.iteration_event_writer is not None:\n self.iteration_event_writer(engine, self._writer)\n else:\n self._default_iteration_writer(engine, self._writer)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_epoch_writer_TensorBoardStatsHandler._default_epoch_writer.writer_flush_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_epoch_writer_TensorBoardStatsHandler._default_epoch_writer.writer_flush_", "embedding": null, "metadata": {"file_path": "monai/handlers/tensorboard_handlers.py", "file_name": "tensorboard_handlers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 191, "end_line": 211, "span_ids": ["TensorBoardStatsHandler._default_epoch_writer"], "tokens": 205}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TensorBoardStatsHandler(TensorBoardHandler):\n\n def _default_epoch_writer(self, engine: Engine, writer: SummaryWriter) -> None:\n \"\"\"\n Execute epoch level event write operation.\n Default to write the values from Ignite `engine.state.metrics` dict and\n write the values of specified attributes of `engine.state`.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n writer: TensorBoard or TensorBoardX writer, passed or created in TensorBoardHandler.\n\n \"\"\"\n current_epoch = self.global_epoch_transform(engine.state.epoch)\n summary_dict = engine.state.metrics\n for name, value in summary_dict.items():\n if is_scalar(value):\n self._write_scalar(engine, writer, name, value, current_epoch)\n\n if self.state_attributes is not None:\n for attr in self.state_attributes:\n self._write_scalar(engine, writer, attr, getattr(engine.state, attr, None), current_epoch)\n writer.flush()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_iteration_writer_TensorBoardStatsHandler._default_iteration_writer.writer_flush_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_TensorBoardStatsHandler._default_iteration_writer_TensorBoardStatsHandler._default_iteration_writer.writer_flush_", "embedding": null, "metadata": {"file_path": "monai/handlers/tensorboard_handlers.py", "file_name": "tensorboard_handlers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 213, "end_line": 261, "span_ids": ["TensorBoardStatsHandler._default_iteration_writer"], "tokens": 448}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TensorBoardStatsHandler(TensorBoardHandler):\n\n def _default_iteration_writer(self, engine: Engine, writer: SummaryWriter) -> None:\n \"\"\"\n Execute iteration level event write operation based on Ignite `engine.state.output` data.\n Extract the values from `self.output_transform(engine.state.output)`.\n Since `engine.state.output` is a decollated list and we replicated the loss value for every item\n of the decollated list, the default behavior is to track the loss from `output[0]`.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n writer: TensorBoard or TensorBoardX writer, passed or created in TensorBoardHandler.\n\n \"\"\"\n loss = self.output_transform(engine.state.output)\n if loss is None:\n return # do nothing if output is empty\n if isinstance(loss, dict):\n for name in sorted(loss):\n value = loss[name]\n if not is_scalar(value):\n warnings.warn(\n \"ignoring non-scalar output in TensorBoardStatsHandler,\"\n \" make sure `output_transform(engine.state.output)` returns\"\n \" a scalar or dictionary of key and scalar pairs to avoid this warning.\"\n \" {}:{}\".format(name, type(value))\n )\n continue # not plot multi dimensional output\n self._write_scalar(\n _engine=engine,\n writer=writer,\n tag=name,\n value=value.item() if isinstance(value, torch.Tensor) else value,\n step=engine.state.iteration,\n )\n elif is_scalar(loss): # not printing multi dimensional output\n self._write_scalar(\n _engine=engine,\n writer=writer,\n tag=self.tag_name,\n value=loss.item() if isinstance(loss, torch.Tensor) else loss,\n step=engine.state.iteration,\n )\n else:\n warnings.warn(\n \"ignoring non-scalar output in TensorBoardStatsHandler,\"\n \" make sure `output_transform(engine.state.output)` returns\"\n \" a scalar or a dictionary of key and scalar pairs to avoid this warning.\"\n \" {}\".format(type(loss))\n )\n writer.flush()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/validation_handler.py_from_typing_import_TYPE_C_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/validation_handler.py_from_typing_import_TYPE_C_", "embedding": null, "metadata": {"file_path": "monai/handlers/validation_handler.py", "file_name": "validation_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 77, "span_ids": ["ValidationHandler.__init__", "ValidationHandler.set_validator", "ValidationHandler.__call__", "docstring", "ValidationHandler.attach", "ValidationHandler"], "tokens": 557}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import TYPE_CHECKING, Optional\n\nfrom monai.config import IgniteInfo\nfrom monai.engines.evaluator import Evaluator\nfrom monai.utils import min_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Events\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Engine\")\n\n\nclass ValidationHandler:\n \"\"\"\n Attach validator to the trainer engine in Ignite.\n It can support to execute validation every N epochs or every N iterations.\n\n \"\"\"\n\n def __init__(self, interval: int, validator: Optional[Evaluator] = None, epoch_level: bool = True) -> None:\n \"\"\"\n Args:\n interval: do validation every N epochs or every N iterations during training.\n validator: run the validator when trigger validation, suppose to be Evaluator.\n if None, should call `set_validator()` before training.\n epoch_level: execute validation every N epochs or N iterations.\n `True` is epoch level, `False` is iteration level.\n\n Raises:\n TypeError: When ``validator`` is not a ``monai.engines.evaluator.Evaluator``.\n\n \"\"\"\n if validator is not None and not isinstance(validator, Evaluator):\n raise TypeError(f\"validator must be a monai.engines.evaluator.Evaluator but is {type(validator).__name__}.\")\n self.validator = validator\n self.interval = interval\n self.epoch_level = epoch_level\n\n def set_validator(self, validator: Evaluator):\n \"\"\"\n Set validator if not setting in the __init__().\n \"\"\"\n if not isinstance(validator, Evaluator):\n raise TypeError(f\"validator must be a monai.engines.evaluator.Evaluator but is {type(validator).__name__}.\")\n self.validator = validator\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self.epoch_level:\n engine.add_event_handler(Events.EPOCH_COMPLETED(every=self.interval), self)\n else:\n engine.add_event_handler(Events.ITERATION_COMPLETED(every=self.interval), self)\n\n def __call__(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self.validator is None:\n raise RuntimeError(\"please set validator in __init__() or call `set_validator()` before training.\")\n self.validator.run(engine.state.epoch)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py__get_scan_interval_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/inferers/utils.py__get_scan_interval_", "embedding": null, "metadata": {"file_path": "monai/inferers/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 144, "end_line": 166, "span_ids": ["_get_scan_interval"], "tokens": 212}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def _get_scan_interval(\n image_size: Sequence[int], roi_size: Sequence[int], num_spatial_dims: int, overlap: float\n) -> Tuple[int, ...]:\n \"\"\"\n Compute scan interval according to the image size, roi size and overlap.\n Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0,\n use 1 instead to make sure sliding window works.\n\n \"\"\"\n if len(image_size) != num_spatial_dims:\n raise ValueError(\"image coord different from spatial dims.\")\n if len(roi_size) != num_spatial_dims:\n raise ValueError(\"roi coord different from spatial dims.\")\n\n scan_interval = []\n for i in range(num_spatial_dims):\n if roi_size[i] == image_size[i]:\n scan_interval.append(int(roi_size[i]))\n else:\n interval = int(roi_size[i] * (1 - overlap))\n scan_interval.append(interval if interval > 0 else 1)\n return tuple(scan_interval)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/tversky.py_TverskyLoss.forward_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/tversky.py_TverskyLoss.forward_", "embedding": null, "metadata": {"file_path": "monai/losses/tversky.py", "file_name": "tversky.py", "file_type": "text/x-python", "category": "implementation", "start_line": 96, "end_line": 162, "span_ids": ["TverskyLoss.forward"], "tokens": 578}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TverskyLoss(_Loss):\n\n def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n input: the shape should be BNH[WD].\n target: the shape should be BNH[WD].\n\n Raises:\n ValueError: When ``self.reduction`` is not one of [\"mean\", \"sum\", \"none\"].\n\n \"\"\"\n if self.sigmoid:\n input = torch.sigmoid(input)\n\n n_pred_ch = input.shape[1]\n if self.softmax:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `softmax=True` ignored.\")\n else:\n input = torch.softmax(input, 1)\n\n if self.other_act is not None:\n input = self.other_act(input)\n\n if self.to_onehot_y:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `to_onehot_y=True` ignored.\")\n else:\n target = one_hot(target, num_classes=n_pred_ch)\n\n if not self.include_background:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `include_background=False` ignored.\")\n else:\n # if skipping background, removing first channel\n target = target[:, 1:]\n input = input[:, 1:]\n\n if target.shape != input.shape:\n raise AssertionError(f\"ground truth has differing shape ({target.shape}) from input ({input.shape})\")\n\n p0 = input\n p1 = 1 - p0\n g0 = target\n g1 = 1 - g0\n\n # reducing only spatial dimensions (not batch nor channels)\n reduce_axis: List[int] = torch.arange(2, len(input.shape)).tolist()\n if self.batch:\n # reducing spatial dimensions and batch\n reduce_axis = [0] + reduce_axis\n\n tp = torch.sum(p0 * g0, reduce_axis)\n fp = self.alpha * torch.sum(p0 * g1, reduce_axis)\n fn = self.beta * torch.sum(p1 * g0, reduce_axis)\n numerator = tp + self.smooth_nr\n denominator = tp + fp + fn + self.smooth_dr\n\n score: torch.Tensor = 1.0 - numerator / denominator\n\n if self.reduction == LossReduction.SUM.value:\n return torch.sum(score) # sum over the batch and channel dims\n if self.reduction == LossReduction.NONE.value:\n return score # returns [N, num_classes] losses\n if self.reduction == LossReduction.MEAN.value:\n return torch.mean(score)\n raise ValueError(f'Unsupported reduction: {self.reduction}, available options are [\"mean\", \"sum\", \"none\"].')", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/downsample.py_from_typing_import_Option_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/downsample.py_from_typing_import_Option_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/downsample.py", "file_name": "downsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 62, "span_ids": ["MaxAvgPool", "MaxAvgPool.__init__", "MaxAvgPool.forward", "docstring"], "tokens": 412}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Union\n\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.layers.factories import Pool\nfrom monai.utils import ensure_tuple_rep\n\n\nclass MaxAvgPool(nn.Module):\n \"\"\"\n Downsample with both maxpooling and avgpooling,\n double the channel size by concatenating the downsampled feature maps.\n \"\"\"\n\n def __init__(\n self,\n spatial_dims: int,\n kernel_size: Union[Sequence[int], int],\n stride: Optional[Union[Sequence[int], int]] = None,\n padding: Union[Sequence[int], int] = 0,\n ceil_mode: bool = False,\n ) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n kernel_size: the kernel size of both pooling operations.\n stride: the stride of the window. Default value is `kernel_size`.\n padding: implicit zero padding to be added to both pooling operations.\n ceil_mode: when True, will use ceil instead of floor to compute the output shape.\n \"\"\"\n super().__init__()\n _params = {\n \"kernel_size\": ensure_tuple_rep(kernel_size, spatial_dims),\n \"stride\": None if stride is None else ensure_tuple_rep(stride, spatial_dims),\n \"padding\": ensure_tuple_rep(padding, spatial_dims),\n \"ceil_mode\": ceil_mode,\n }\n self.max_pool = Pool[Pool.MAX, spatial_dims](**_params)\n self.avg_pool = Pool[Pool.AVG, spatial_dims](**_params)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n x: Tensor in shape (batch, channel, spatial_1[, spatial_2, ...]).\n\n Returns:\n Tensor in shape (batch, 2*channel, spatial_1[, spatial_2, ...]).\n \"\"\"\n return torch.cat([self.max_pool(x), self.avg_pool(x)], dim=1)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_from_typing_import_Any_C_LayerFactory.add_factory_callable.self.__doc__._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_from_typing_import_Any_C_LayerFactory.add_factory_callable.self.__doc__._", "embedding": null, "metadata": {"file_path": "monai/networks/layers/factories.py", "file_name": "factories.py", "file_type": "text/x-python", "category": "implementation", "start_line": 63, "end_line": 100, "span_ids": ["LayerFactory", "LayerFactory.add_factory_callable", "docstring:11", "LayerFactory.__init__", "LayerFactory.names"], "tokens": 287}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Any, Callable, Dict, Tuple, Type, Union\n\nimport torch.nn as nn\n\nfrom monai.utils import look_up_option\n\n__all__ = [\"LayerFactory\", \"Dropout\", \"Norm\", \"Act\", \"Conv\", \"Pool\", \"Pad\", \"split_args\"]\n\n\nclass LayerFactory:\n \"\"\"\n Factory object for creating layers, this uses given factory functions to actually produce the types or constructing\n callables. These functions are referred to by name and can be added at any time.\n \"\"\"\n\n def __init__(self) -> None:\n self.factories: Dict[str, Callable] = {}\n\n @property\n def names(self) -> Tuple[str, ...]:\n \"\"\"\n Produces all factory names.\n \"\"\"\n\n return tuple(self.factories)\n\n def add_factory_callable(self, name: str, func: Callable) -> None:\n \"\"\"\n Add the factory function to this object under the given name.\n \"\"\"\n\n self.factories[name.upper()] = func\n self.__doc__ = (\n \"The supported member\"\n + (\"s are: \" if len(self.names) > 1 else \" is: \")\n + \", \".join(f\"``{name}``\" for name in self.names)\n + \".\\nPlease see :py:class:`monai.networks.layers.split_args` for additional args parsing.\"\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_LayerFactory.__getitem___LayerFactory.__getattr__.return.super___getattribute___": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/factories.py_LayerFactory.__getitem___LayerFactory.__getattr__.return.super___getattribute___", "embedding": null, "metadata": {"file_path": "monai/networks/layers/factories.py", "file_name": "factories.py", "file_type": "text/x-python", "category": "implementation", "start_line": 126, "end_line": 153, "span_ids": ["LayerFactory.__getitem__", "LayerFactory.__getattr__"], "tokens": 228}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LayerFactory:\n\n def __getitem__(self, args) -> Any:\n \"\"\"\n Get the given name or name/arguments pair. If `args` is a callable it is assumed to be the constructor\n itself and is returned, otherwise it should be the factory name or a pair containing the name and arguments.\n \"\"\"\n\n # `args[0]` is actually a type or constructor\n if callable(args):\n return args\n\n # `args` is a factory name or a name with arguments\n if isinstance(args, str):\n name_obj, args = args, ()\n else:\n name_obj, *args = args\n\n return self.get_constructor(name_obj, *args)\n\n def __getattr__(self, key):\n \"\"\"\n If `key` is a factory name, return it, otherwise behave as inherited. This allows referring to factory names\n as if they were constants, eg. `Fact.FOO` for a factory Fact with factory function foo.\n \"\"\"\n\n if key in self.factories:\n return key\n\n return super().__getattribute__(key)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_from_typing_import_Option_Classifier.__init__.if_last_act_is_not_None_.self_final_add_module_la": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_from_typing_import_Option_Classifier.__init__.if_last_act_is_not_None_.self_final_add_module_la", "embedding": null, "metadata": {"file_path": "monai/networks/nets/classifier.py", "file_name": "classifier.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 63, "span_ids": ["Classifier.__init__", "Classifier", "docstring"], "tokens": 481}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Union\n\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.layers.factories import Act, Norm, split_args\nfrom monai.networks.nets.regressor import Regressor\n\n__all__ = [\"Classifier\", \"Discriminator\", \"Critic\"]\n\n\nclass Classifier(Regressor):\n \"\"\"\n Defines a classification network from Regressor by specifying the output shape as a single dimensional tensor\n with size equal to the number of classes to predict. The final activation function can also be specified, eg.\n softmax or sigmoid.\n\n Args:\n in_shape: tuple of integers stating the dimension of the input tensor (minus batch dimension)\n classes: integer stating the dimension of the final output tensor\n channels: tuple of integers stating the output channels of each convolutional layer\n strides: tuple of integers stating the stride (downscale factor) of each convolutional layer\n kernel_size: integer or tuple of integers stating size of convolutional kernels\n num_res_units: integer stating number of convolutions in residual units, 0 means no residual units\n act: name or type defining activation layers\n norm: name or type defining normalization layers\n dropout: optional float value in range [0, 1] stating dropout probability for layers, None for no dropout\n bias: boolean stating if convolution layers should have a bias component\n last_act: name defining the last activation layer\n \"\"\"\n\n def __init__(\n self,\n in_shape: Sequence[int],\n classes: int,\n channels: Sequence[int],\n strides: Sequence[int],\n kernel_size: Union[Sequence[int], int] = 3,\n num_res_units: int = 2,\n act=Act.PRELU,\n norm=Norm.INSTANCE,\n dropout: Optional[float] = None,\n bias: bool = True,\n last_act: Optional[str] = None,\n ) -> None:\n super().__init__(in_shape, (classes,), channels, strides, kernel_size, num_res_units, act, norm, dropout, bias)\n\n if last_act is not None:\n last_act_name, last_act_args = split_args(last_act)\n last_act_type = Act[last_act_name]\n\n self.final.add_module(\"lastact\", last_act_type(**last_act_args))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Discriminator_Discriminator.__init__.super___init___in_shape": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Discriminator_Discriminator.__init__.super___init___in_shape", "embedding": null, "metadata": {"file_path": "monai/networks/nets/classifier.py", "file_name": "classifier.py", "file_type": "text/x-python", "category": "implementation", "start_line": 66, "end_line": 97, "span_ids": ["Discriminator.__init__", "Discriminator"], "tokens": 346}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Discriminator(Classifier):\n \"\"\"\n Defines a discriminator network from Classifier with a single output value and sigmoid activation by default. This\n is meant for use with GANs or other applications requiring a generic discriminator network.\n\n Args:\n in_shape: tuple of integers stating the dimension of the input tensor (minus batch dimension)\n channels: tuple of integers stating the output channels of each convolutional layer\n strides: tuple of integers stating the stride (downscale factor) of each convolutional layer\n kernel_size: integer or tuple of integers stating size of convolutional kernels\n num_res_units: integer stating number of convolutions in residual units, 0 means no residual units\n act: name or type defining activation layers\n norm: name or type defining normalization layers\n dropout: optional float value in range [0, 1] stating dropout probability for layers, None for no dropout\n bias: boolean stating if convolution layers should have a bias component\n last_act: name defining the last activation layer\n \"\"\"\n\n def __init__(\n self,\n in_shape: Sequence[int],\n channels: Sequence[int],\n strides: Sequence[int],\n kernel_size: Union[Sequence[int], int] = 3,\n num_res_units: int = 2,\n act=Act.PRELU,\n norm=Norm.INSTANCE,\n dropout: Optional[float] = 0.25,\n bias: bool = True,\n last_act=Act.SIGMOID,\n ) -> None:\n super().__init__(in_shape, 1, channels, strides, kernel_size, num_res_units, act, norm, dropout, bias, last_act)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Critic_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/classifier.py_Critic_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/classifier.py", "file_name": "classifier.py", "file_type": "text/x-python", "category": "implementation", "start_line": 100, "end_line": 140, "span_ids": ["Critic", "Critic.forward", "Critic.__init__", "Critic._get_final_layer"], "tokens": 418}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Critic(Classifier):\n \"\"\"\n Defines a critic network from Classifier with a single output value and no final activation. The final layer is\n `nn.Flatten` instead of `nn.Linear`, the final result is computed as the mean over the first dimension. This is\n meant to be used with Wasserstein GANs.\n\n Args:\n in_shape: tuple of integers stating the dimension of the input tensor (minus batch dimension)\n channels: tuple of integers stating the output channels of each convolutional layer\n strides: tuple of integers stating the stride (downscale factor) of each convolutional layer\n kernel_size: integer or tuple of integers stating size of convolutional kernels\n num_res_units: integer stating number of convolutions in residual units, 0 means no residual units\n act: name or type defining activation layers\n norm: name or type defining normalization layers\n dropout: optional float value in range [0, 1] stating dropout probability for layers, None for no dropout\n bias: boolean stating if convolution layers should have a bias component\n \"\"\"\n\n def __init__(\n self,\n in_shape: Sequence[int],\n channels: Sequence[int],\n strides: Sequence[int],\n kernel_size: Union[Sequence[int], int] = 3,\n num_res_units: int = 2,\n act=Act.PRELU,\n norm=Norm.INSTANCE,\n dropout: Optional[float] = 0.25,\n bias: bool = True,\n ) -> None:\n super().__init__(in_shape, 1, channels, strides, kernel_size, num_res_units, act, norm, dropout, bias, None)\n\n def _get_final_layer(self, in_shape: Sequence[int]):\n return nn.Flatten()\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n x = self.net(x)\n x = self.final(x)\n x = x.mean(1)\n return x.view((x.shape[0], -1))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__DenseBlock__DenseBlock.__init__.for_i_in_range_layers_.self_add_module_denselay": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__DenseBlock__DenseBlock.__init__.for_i_in_range_layers_.self_add_module_denselay", "embedding": null, "metadata": {"file_path": "monai/networks/nets/densenet.py", "file_name": "densenet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 88, "end_line": 116, "span_ids": ["_DenseBlock.__init__", "_DenseBlock"], "tokens": 277}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class _DenseBlock(nn.Sequential):\n def __init__(\n self,\n spatial_dims: int,\n layers: int,\n in_channels: int,\n bn_size: int,\n growth_rate: int,\n dropout_prob: float,\n act: Union[str, tuple] = (\"relu\", {\"inplace\": True}),\n norm: Union[str, tuple] = \"batch\",\n ) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n layers: number of layers in the block.\n in_channels: number of the input channel.\n bn_size: multiplicative factor for number of bottle neck layers.\n (i.e. bn_size * k features in the bottleneck layer)\n growth_rate: how many filters to add each layer (k in paper).\n dropout_prob: dropout rate after each dense layer.\n act: activation type and arguments. Defaults to relu.\n norm: feature normalization type and arguments. Defaults to batch norm.\n \"\"\"\n super().__init__()\n for i in range(layers):\n layer = _DenseLayer(spatial_dims, in_channels, growth_rate, bn_size, dropout_prob, act=act, norm=norm)\n in_channels += growth_rate\n self.add_module(\"denselayer%d\" % (i + 1), layer)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__Transition__Transition.__init__.self_add_module_pool_p": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py__Transition__Transition.__init__.self_add_module_pool_p", "embedding": null, "metadata": {"file_path": "monai/networks/nets/densenet.py", "file_name": "densenet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 119, "end_line": 144, "span_ids": ["_Transition", "_Transition.__init__"], "tokens": 248}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class _Transition(nn.Sequential):\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n act: Union[str, tuple] = (\"relu\", {\"inplace\": True}),\n norm: Union[str, tuple] = \"batch\",\n ) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n in_channels: number of the input channel.\n out_channels: number of the output classes.\n act: activation type and arguments. Defaults to relu.\n norm: feature normalization type and arguments. Defaults to batch norm.\n \"\"\"\n super().__init__()\n\n conv_type: Callable = Conv[Conv.CONV, spatial_dims]\n pool_type: Callable = Pool[Pool.AVG, spatial_dims]\n\n self.add_module(\"norm\", get_norm_layer(name=norm, spatial_dims=spatial_dims, channels=in_channels))\n self.add_module(\"relu\", get_act_layer(name=act))\n self.add_module(\"conv\", conv_type(in_channels, out_channels, kernel_size=1, bias=False))\n self.add_module(\"pool\", pool_type(kernel_size=2, stride=2))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet_DenseNet._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet_DenseNet._", "embedding": null, "metadata": {"file_path": "monai/networks/nets/densenet.py", "file_name": "densenet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 147, "end_line": 164, "span_ids": ["DenseNet"], "tokens": 213}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DenseNet(nn.Module):\n \"\"\"\n Densenet based on: `Densely Connected Convolutional Networks `_.\n Adapted from PyTorch Hub 2D version: https://pytorch.org/vision/stable/models.html#id16.\n\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n in_channels: number of the input channel.\n out_channels: number of the output classes.\n init_features: number of filters in the first convolution layer.\n growth_rate: how many filters to add each layer (k in paper).\n block_config: how many layers in each pooling block.\n bn_size: multiplicative factor for number of bottle neck layers.\n (i.e. bn_size * k features in the bottleneck layer)\n act: activation type and arguments. Defaults to relu.\n norm: feature normalization type and arguments. Defaults to batch norm.\n dropout_prob: dropout rate after each dense layer.\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet.__init___DenseNet.forward.return.x": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/densenet.py_DenseNet.__init___DenseNet.forward.return.x", "embedding": null, "metadata": {"file_path": "monai/networks/nets/densenet.py", "file_name": "densenet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 166, "end_line": 249, "span_ids": ["DenseNet.__init__", "DenseNet.forward"], "tokens": 765}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DenseNet(nn.Module):\n\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n init_features: int = 64,\n growth_rate: int = 32,\n block_config: Sequence[int] = (6, 12, 24, 16),\n bn_size: int = 4,\n act: Union[str, tuple] = (\"relu\", {\"inplace\": True}),\n norm: Union[str, tuple] = \"batch\",\n dropout_prob: float = 0.0,\n ) -> None:\n\n super().__init__()\n\n conv_type: Type[Union[nn.Conv1d, nn.Conv2d, nn.Conv3d]] = Conv[Conv.CONV, spatial_dims]\n pool_type: Type[Union[nn.MaxPool1d, nn.MaxPool2d, nn.MaxPool3d]] = Pool[Pool.MAX, spatial_dims]\n avg_pool_type: Type[Union[nn.AdaptiveAvgPool1d, nn.AdaptiveAvgPool2d, nn.AdaptiveAvgPool3d]] = Pool[\n Pool.ADAPTIVEAVG, spatial_dims\n ]\n\n self.features = nn.Sequential(\n OrderedDict(\n [\n (\"conv0\", conv_type(in_channels, init_features, kernel_size=7, stride=2, padding=3, bias=False)),\n (\"norm0\", get_norm_layer(name=norm, spatial_dims=spatial_dims, channels=init_features)),\n (\"relu0\", get_act_layer(name=act)),\n (\"pool0\", pool_type(kernel_size=3, stride=2, padding=1)),\n ]\n )\n )\n\n in_channels = init_features\n for i, num_layers in enumerate(block_config):\n block = _DenseBlock(\n spatial_dims=spatial_dims,\n layers=num_layers,\n in_channels=in_channels,\n bn_size=bn_size,\n growth_rate=growth_rate,\n dropout_prob=dropout_prob,\n act=act,\n norm=norm,\n )\n self.features.add_module(f\"denseblock{i + 1}\", block)\n in_channels += num_layers * growth_rate\n if i == len(block_config) - 1:\n self.features.add_module(\n \"norm5\", get_norm_layer(name=norm, spatial_dims=spatial_dims, channels=in_channels)\n )\n else:\n _out_channels = in_channels // 2\n trans = _Transition(\n spatial_dims, in_channels=in_channels, out_channels=_out_channels, act=act, norm=norm\n )\n self.features.add_module(f\"transition{i + 1}\", trans)\n in_channels = _out_channels\n\n # pooling and classification\n self.class_layers = nn.Sequential(\n OrderedDict(\n [\n (\"relu\", get_act_layer(name=act)),\n (\"pool\", avg_pool_type(1)),\n (\"flatten\", nn.Flatten(1)),\n (\"out\", nn.Linear(in_channels, out_channels)),\n ]\n )\n )\n\n for m in self.modules():\n if isinstance(m, conv_type):\n nn.init.kaiming_normal_(torch.as_tensor(m.weight))\n elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)):\n nn.init.constant_(torch.as_tensor(m.weight), 1)\n nn.init.constant_(torch.as_tensor(m.bias), 0)\n elif isinstance(m, nn.Linear):\n nn.init.constant_(torch.as_tensor(m.bias), 0)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n x = self.features(x)\n x = self.class_layers(x)\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_from_typing_import_Option_Generator._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_from_typing_import_Option_Generator._", "embedding": null, "metadata": {"file_path": "monai/networks/nets/generator.py", "file_name": "generator.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 57, "span_ids": ["Generator", "docstring"], "tokens": 621}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Union\n\nimport numpy as np\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.blocks import Convolution, ResidualUnit\nfrom monai.networks.layers.factories import Act, Norm\nfrom monai.networks.layers.simplelayers import Reshape\nfrom monai.utils import ensure_tuple, ensure_tuple_rep\n\n\nclass Generator(nn.Module):\n \"\"\"\n Defines a simple generator network accepting a latent vector and through a sequence of convolution layers\n constructs an output tensor of greater size and high dimensionality. The method `_get_layer` is used to\n create each of these layers, override this method to define layers beyond the default\n :py:class:`monai.networks.blocks.Convolution` or :py:class:`monai.networks.blocks.ResidualUnit` layers.\n\n The layers are constructed using the values in the `channels` and `strides` arguments, the number being defined by\n the length of these (which must match). Input is first passed through a :py:class:`torch.nn.Linear` layer to\n convert the input vector to an image tensor with dimensions `start_shape`. This passes through the convolution\n layers and is progressively upsampled if the `strides` values are greater than 1 using transpose convolutions. The\n size of the final output is defined by the `start_shape` dimension and the amount of upsampling done through\n strides. In the default definition the size of the output's spatial dimensions will be that of `start_shape`\n multiplied by the product of `strides`, thus the example network below upsamples an starting size of (64, 8, 8)\n to (1, 64, 64) since its `strides` are (2, 2, 2).\n\n Args:\n latent_shape: tuple of integers stating the dimension of the input latent vector (minus batch dimension)\n start_shape: tuple of integers stating the dimension of the tensor to pass to convolution subnetwork\n channels: tuple of integers stating the output channels of each convolutional layer\n strides: tuple of integers stating the stride (upscale factor) of each convolutional layer\n kernel_size: integer or tuple of integers stating size of convolutional kernels\n num_res_units: integer stating number of convolutions in residual units, 0 means no residual units\n act: name or type defining activation layers\n norm: name or type defining normalization layers\n dropout: optional float value in range [0, 1] stating dropout probability for layers, None for no dropout\n bias: boolean stating if convolution layers should have a bias component\n\n Examples::\n\n # 3 layers, latent input vector of shape (42, 24), output volume of shape (1, 64, 64)\n net = Generator((42, 24), (64, 8, 8), (32, 16, 1), (2, 2, 2))\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator.__init___Generator.__init__.for_i_c_s_in_enumerat.echannel.c": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator.__init___Generator.__init__.for_i_c_s_in_enumerat.echannel.c", "embedding": null, "metadata": {"file_path": "monai/networks/nets/generator.py", "file_name": "generator.py", "file_type": "text/x-python", "category": "implementation", "start_line": 59, "end_line": 99, "span_ids": ["Generator.__init__"], "tokens": 350}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Generator(nn.Module):\n\n def __init__(\n self,\n latent_shape: Sequence[int],\n start_shape: Sequence[int],\n channels: Sequence[int],\n strides: Sequence[int],\n kernel_size: Union[Sequence[int], int] = 3,\n num_res_units: int = 2,\n act=Act.PRELU,\n norm=Norm.INSTANCE,\n dropout: Optional[float] = None,\n bias: bool = True,\n ) -> None:\n super().__init__()\n\n self.in_channels, *self.start_shape = ensure_tuple(start_shape)\n self.dimensions = len(self.start_shape)\n\n self.latent_shape = ensure_tuple(latent_shape)\n self.channels = ensure_tuple(channels)\n self.strides = ensure_tuple(strides)\n self.kernel_size = ensure_tuple_rep(kernel_size, self.dimensions)\n self.num_res_units = num_res_units\n self.act = act\n self.norm = norm\n self.dropout = dropout\n self.bias = bias\n\n self.flatten = nn.Flatten()\n self.linear = nn.Linear(int(np.prod(self.latent_shape)), int(np.prod(start_shape)))\n self.reshape = Reshape(*start_shape)\n self.conv = nn.Sequential()\n\n echannel = self.in_channels\n\n # transform tensor of shape `start_shape' into output shape through transposed convolutions and residual units\n for i, (c, s) in enumerate(zip(channels, strides)):\n is_last = i == len(channels) - 1\n layer = self._get_layer(echannel, c, s, is_last)\n self.conv.add_module(\"layer_%i\" % i, layer)\n echannel = c", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator._get_layer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/generator.py_Generator._get_layer_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/generator.py", "file_name": "generator.py", "file_type": "text/x-python", "category": "implementation", "start_line": 101, "end_line": 150, "span_ids": ["Generator.forward", "Generator._get_layer"], "tokens": 342}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Generator(nn.Module):\n\n def _get_layer(\n self, in_channels: int, out_channels: int, strides: int, is_last: bool\n ) -> Union[Convolution, nn.Sequential]:\n \"\"\"\n Returns a layer accepting inputs with `in_channels` number of channels and producing outputs of `out_channels`\n number of channels. The `strides` indicates upsampling factor, ie. transpose convolutional stride. If `is_last`\n is True this is the final layer and is not expected to include activation and normalization layers.\n \"\"\"\n\n layer: Union[Convolution, nn.Sequential]\n\n layer = Convolution(\n in_channels=in_channels,\n strides=strides,\n is_transposed=True,\n conv_only=is_last or self.num_res_units > 0,\n spatial_dims=self.dimensions,\n out_channels=out_channels,\n kernel_size=self.kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n )\n\n if self.num_res_units > 0:\n ru = ResidualUnit(\n in_channels=out_channels,\n subunits=self.num_res_units,\n last_conv_only=is_last,\n spatial_dims=self.dimensions,\n out_channels=out_channels,\n kernel_size=self.kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n )\n\n layer = nn.Sequential(layer, ru)\n\n return layer\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n x = self.flatten(x)\n x = self.linear(x)\n x = self.reshape(x)\n x = self.conv(x)\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet_HighResNet._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet_HighResNet._", "embedding": null, "metadata": {"file_path": "monai/networks/nets/highresnet.py", "file_name": "highresnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 105, "end_line": 134, "span_ids": ["HighResNet"], "tokens": 357}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class HighResNet(nn.Module):\n \"\"\"\n Reimplementation of highres3dnet based on\n Li et al., \"On the compactness, efficiency, and representation of 3D\n convolutional networks: Brain parcellation as a pretext task\", IPMI '17\n\n Adapted from:\n https://github.com/NifTK/NiftyNet/blob/v0.6.0/niftynet/network/highres3dnet.py\n https://github.com/fepegar/highresnet\n\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n in_channels: number of input channels.\n out_channels: number of output channels.\n norm_type: feature normalization type and arguments.\n Defaults to ``(\"batch\", {\"affine\": True})``.\n acti_type: activation type and arguments.\n Defaults to ``(\"relu\", {\"inplace\": True})``.\n dropout_prob: probability of the feature map to be zeroed\n (only applies to the penultimate conv layer).\n bias: whether to have a bias term in convolution blocks. Defaults to False.\n According to `Performance Tuning Guide `_,\n if a conv layer is directly followed by a batch norm layer, bias should be False.\n layer_params: specifying key parameters of each layer/block.\n channel_matching: {``\"pad\"``, ``\"project\"``}\n Specifies handling residual branch and conv branch channel mismatches. Defaults to ``\"pad\"``.\n\n - ``\"pad\"``: with zero padding.\n - ``\"project\"``: with a trainable conv with kernel size one.\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet.__init___": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_HighResNet.__init___", "embedding": null, "metadata": {"file_path": "monai/networks/nets/highresnet.py", "file_name": "highresnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 136, "end_line": 225, "span_ids": ["HighResNet.forward", "HighResNet.__init__"], "tokens": 684}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class HighResNet(nn.Module):\n\n def __init__(\n self,\n spatial_dims: int = 3,\n in_channels: int = 1,\n out_channels: int = 1,\n norm_type: Union[str, tuple] = (\"batch\", {\"affine\": True}),\n acti_type: Union[str, tuple] = (\"relu\", {\"inplace\": True}),\n dropout_prob: Optional[Union[Tuple, str, float]] = 0.0,\n bias: bool = False,\n layer_params: Sequence[Dict] = DEFAULT_LAYER_PARAMS_3D,\n channel_matching: Union[ChannelMatching, str] = ChannelMatching.PAD,\n ) -> None:\n\n super().__init__()\n blocks = nn.ModuleList()\n\n # initial conv layer\n params = layer_params[0]\n _in_chns, _out_chns = in_channels, params[\"n_features\"]\n blocks.append(\n Convolution(\n spatial_dims=spatial_dims,\n in_channels=_in_chns,\n out_channels=_out_chns,\n kernel_size=params[\"kernel_size\"],\n adn_ordering=\"NA\",\n act=acti_type,\n norm=norm_type,\n bias=bias,\n )\n )\n\n # residual blocks\n for (idx, params) in enumerate(layer_params[1:-2]): # res blocks except the 1st and last two conv layers.\n _in_chns, _out_chns = _out_chns, params[\"n_features\"]\n _dilation = 2 ** idx\n for _ in range(params[\"repeat\"]):\n blocks.append(\n HighResBlock(\n spatial_dims=spatial_dims,\n in_channels=_in_chns,\n out_channels=_out_chns,\n kernels=params[\"kernels\"],\n dilation=_dilation,\n norm_type=norm_type,\n acti_type=acti_type,\n bias=bias,\n channel_matching=channel_matching,\n )\n )\n _in_chns = _out_chns\n\n # final conv layers\n params = layer_params[-2]\n _in_chns, _out_chns = _out_chns, params[\"n_features\"]\n blocks.append(\n Convolution(\n spatial_dims=spatial_dims,\n in_channels=_in_chns,\n out_channels=_out_chns,\n kernel_size=params[\"kernel_size\"],\n adn_ordering=\"NAD\",\n act=acti_type,\n norm=norm_type,\n bias=bias,\n dropout=dropout_prob,\n )\n )\n\n params = layer_params[-1]\n _in_chns = _out_chns\n blocks.append(\n Convolution(\n spatial_dims=spatial_dims,\n in_channels=_in_chns,\n out_channels=out_channels,\n kernel_size=params[\"kernel_size\"],\n adn_ordering=\"NAD\",\n act=acti_type,\n norm=norm_type,\n bias=bias,\n dropout=dropout_prob,\n )\n )\n\n self.blocks = nn.Sequential(*blocks)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n return torch.as_tensor(self.blocks(x))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regressor.py_Regressor._get_layer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/regressor.py_Regressor._get_layer_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/regressor.py", "file_name": "regressor.py", "file_type": "text/x-python", "category": "implementation", "start_line": 102, "end_line": 152, "span_ids": ["Regressor.forward", "Regressor._get_final_layer", "Regressor._get_layer"], "tokens": 365}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Regressor(nn.Module):\n\n def _get_layer(\n self, in_channels: int, out_channels: int, strides: int, is_last: bool\n ) -> Union[ResidualUnit, Convolution]:\n \"\"\"\n Returns a layer accepting inputs with `in_channels` number of channels and producing outputs of `out_channels`\n number of channels. The `strides` indicates downsampling factor, ie. convolutional stride. If `is_last`\n is True this is the final layer and is not expected to include activation and normalization layers.\n \"\"\"\n\n layer: Union[ResidualUnit, Convolution]\n\n if self.num_res_units > 0:\n layer = ResidualUnit(\n subunits=self.num_res_units,\n last_conv_only=is_last,\n spatial_dims=self.dimensions,\n in_channels=in_channels,\n out_channels=out_channels,\n strides=strides,\n kernel_size=self.kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n )\n else:\n layer = Convolution(\n conv_only=is_last,\n spatial_dims=self.dimensions,\n in_channels=in_channels,\n out_channels=out_channels,\n strides=strides,\n kernel_size=self.kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n )\n\n return layer\n\n def _get_final_layer(self, in_shape: Sequence[int]):\n linear = nn.Linear(int(np.product(in_shape)), int(np.product(self.out_shape)))\n return nn.Sequential(nn.Flatten(), linear)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n x = self.net(x)\n x = self.final(x)\n x = self.reshape(x)\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_down_layer_UNet._get_bottom_layer.return.self__get_down_layer_in_c": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_down_layer_UNet._get_bottom_layer.return.self__get_down_layer_in_c", "embedding": null, "metadata": {"file_path": "monai/networks/nets/unet.py", "file_name": "unet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 193, "end_line": 236, "span_ids": ["UNet._get_down_layer", "UNet._get_bottom_layer"], "tokens": 298}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@export(\"monai.networks.nets\")\n@alias(\"Unet\")\nclass UNet(nn.Module):\n\n def _get_down_layer(self, in_channels: int, out_channels: int, strides: int, is_top: bool) -> nn.Module:\n \"\"\"\n Args:\n in_channels: number of input channels.\n out_channels: number of output channels.\n strides: convolution stride.\n is_top: True if this is the top block.\n \"\"\"\n mod: nn.Module\n if self.num_res_units > 0:\n\n mod = ResidualUnit(\n self.dimensions,\n in_channels,\n out_channels,\n strides=strides,\n kernel_size=self.kernel_size,\n subunits=self.num_res_units,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n )\n return mod\n mod = Convolution(\n self.dimensions,\n in_channels,\n out_channels,\n strides=strides,\n kernel_size=self.kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n )\n return mod\n\n def _get_bottom_layer(self, in_channels: int, out_channels: int) -> nn.Module:\n \"\"\"\n Args:\n in_channels: number of input channels.\n out_channels: number of output channels.\n \"\"\"\n return self._get_down_layer(in_channels, out_channels, 1, False)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_up_layer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/unet.py_UNet._get_up_layer_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/unet.py", "file_name": "unet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 238, "end_line": 286, "span_ids": ["impl:3", "UNet.forward", "UNet._get_up_layer"], "tokens": 299}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@export(\"monai.networks.nets\")\n@alias(\"Unet\")\nclass UNet(nn.Module):\n\n def _get_up_layer(self, in_channels: int, out_channels: int, strides: int, is_top: bool) -> nn.Module:\n \"\"\"\n Args:\n in_channels: number of input channels.\n out_channels: number of output channels.\n strides: convolution stride.\n is_top: True if this is the top block.\n \"\"\"\n conv: Union[Convolution, nn.Sequential]\n\n conv = Convolution(\n self.dimensions,\n in_channels,\n out_channels,\n strides=strides,\n kernel_size=self.up_kernel_size,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n conv_only=is_top and self.num_res_units == 0,\n is_transposed=True,\n )\n\n if self.num_res_units > 0:\n ru = ResidualUnit(\n self.dimensions,\n out_channels,\n out_channels,\n strides=1,\n kernel_size=self.kernel_size,\n subunits=1,\n act=self.act,\n norm=self.norm,\n dropout=self.dropout,\n bias=self.bias,\n last_conv_only=is_top,\n )\n conv = nn.Sequential(conv, ru)\n\n return conv\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n x = self.model(x)\n return x\n\n\nUnet = UNet", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normalize_transform_normalize_transform.return.norm": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normalize_transform_normalize_transform.return.norm", "embedding": null, "metadata": {"file_path": "monai/networks/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 82, "end_line": 114, "span_ids": ["normalize_transform"], "tokens": 372}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def normalize_transform(\n shape: Sequence[int],\n device: Optional[torch.device] = None,\n dtype: Optional[torch.dtype] = None,\n align_corners: bool = False,\n) -> torch.Tensor:\n \"\"\"\n Compute an affine matrix according to the input shape.\n The transform normalizes the homogeneous image coordinates to the\n range of `[-1, 1]`.\n\n Args:\n shape: input spatial shape\n device: device on which the returned affine will be allocated.\n dtype: data type of the returned affine\n align_corners: if True, consider -1 and 1 to refer to the centers of the\n corner pixels rather than the image corners.\n See also: https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.grid_sample\n \"\"\"\n norm = torch.tensor(shape, dtype=torch.float64, device=device) # no in-place change\n if align_corners:\n norm[norm <= 1.0] = 2.0\n norm = 2.0 / (norm - 1.0)\n norm = torch.diag(torch.cat((norm, torch.ones((1,), dtype=torch.float64, device=device))))\n norm[:-1, -1] = -1.0\n else:\n norm[norm <= 0.0] = 2.0\n norm = 2.0 / norm\n norm = torch.diag(torch.cat((norm, torch.ones((1,), dtype=torch.float64, device=device))))\n norm[:-1, -1] = 1.0 / torch.tensor(shape, dtype=torch.float64, device=device) - 1.0\n norm = norm.unsqueeze(0).to(dtype=dtype)\n norm.requires_grad = False\n return norm", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_adaptor._inner_adaptor.return._inner": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_adaptor._inner_adaptor.return._inner", "embedding": null, "metadata": {"file_path": "monai/transforms/adaptors.py", "file_name": "adaptors.py", "file_type": "text/x-python", "category": "implementation", "start_line": 149, "end_line": 214, "span_ids": ["adaptor"], "tokens": 569}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@_monai_export(\"monai.transforms\")\ndef adaptor(function, outputs, inputs=None):\n # ... other code\n\n def _inner(ditems):\n\n sig = FunctionSignature(function)\n\n if sig.found_kwargs:\n must_be_types_or_none(\"inputs\", inputs, (dict,))\n # we just forward all arguments unless we have been provided an input map\n if inputs is None:\n dinputs = dict(ditems)\n else:\n # dict\n dinputs = map_names(ditems, inputs)\n\n else:\n # no **kwargs\n # select only items from the method signature\n dinputs = {k: v for k, v in ditems.items() if k in sig.non_var_parameters}\n must_be_types_or_none(\"inputs\", inputs, (str, list, tuple, dict))\n if inputs is None:\n pass\n elif isinstance(inputs, str):\n if len(sig.non_var_parameters) != 1:\n raise ValueError(\"if 'inputs' is a string, function may only have a single non-variadic parameter\")\n dinputs = {inputs: ditems[inputs]}\n elif isinstance(inputs, (list, tuple)):\n dinputs = {k: dinputs[k] for k in inputs}\n else:\n # dict\n dinputs = map_only_names(ditems, inputs)\n\n ret = function(**dinputs)\n\n # now the mapping back to the output dictionary depends on outputs and what was returned from the function\n op = outputs\n if isinstance(ret, dict):\n must_be_types_or_none(\"outputs\", op, (dict,))\n if op is not None:\n ret = {v: ret[k] for k, v in op.items()}\n elif isinstance(ret, (list, tuple)):\n if len(ret) == 1:\n must_be_types(\"outputs\", op, (str, list, tuple))\n else:\n must_be_types(\"outputs\", op, (list, tuple))\n\n if isinstance(op, str):\n op = [op]\n\n if len(ret) != len(outputs):\n raise ValueError(\"'outputs' must have the same length as the number of elements that were returned\")\n\n ret = dict(zip(op, ret))\n else:\n must_be_types(\"outputs\", op, (str, list, tuple))\n if isinstance(op, (list, tuple)):\n if len(op) != 1:\n raise ValueError(\"'outputs' must be of length one if it is a list or tuple\")\n op = op[0]\n ret = {op: ret}\n\n ditems = dict(ditems)\n for k, v in ret.items():\n ditems[k] = v\n\n return ditems\n\n return _inner", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_apply_alias_to_kwargs.return._inner": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_apply_alias_to_kwargs.return._inner", "embedding": null, "metadata": {"file_path": "monai/transforms/adaptors.py", "file_name": "adaptors.py", "file_type": "text/x-python", "category": "implementation", "start_line": 213, "end_line": 239, "span_ids": ["apply_alias", "to_kwargs"], "tokens": 145}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@_monai_export(\"monai.transforms\")\ndef apply_alias(fn, name_map):\n def _inner(data):\n\n # map names\n pre_call = dict(data)\n for _from, _to in name_map.items():\n pre_call[_to] = pre_call.pop(_from)\n\n # execute\n post_call = fn(pre_call)\n\n # map names back\n for _from, _to in name_map.items():\n post_call[_from] = post_call.pop(_to)\n\n return post_call\n\n return _inner\n\n\n@_monai_export(\"monai.transforms\")\ndef to_kwargs(fn):\n def _inner(data):\n return fn(**data)\n\n return _inner", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_FunctionSignature_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_FunctionSignature_", "embedding": null, "metadata": {"file_path": "monai/transforms/adaptors.py", "file_name": "adaptors.py", "file_type": "text/x-python", "category": "implementation", "start_line": 244, "end_line": 268, "span_ids": ["FunctionSignature.__repr__", "FunctionSignature", "FunctionSignature.__str__", "FunctionSignature.__init__"], "tokens": 194}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class FunctionSignature:\n def __init__(self, function: Callable) -> None:\n import inspect\n\n sfn = inspect.signature(function)\n self.found_args = False\n self.found_kwargs = False\n self.defaults = {}\n self.non_var_parameters = set()\n for p in sfn.parameters.values():\n if p.kind is inspect.Parameter.VAR_POSITIONAL:\n self.found_args = True\n if p.kind is inspect.Parameter.VAR_KEYWORD:\n self.found_kwargs = True\n else:\n self.non_var_parameters.add(p.name)\n self.defaults[p.name] = p.default is not p.empty\n\n def __repr__(self) -> str:\n s = \" str:\n return self.__repr__()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_DivisiblePad.__call___DivisiblePad.__call__.return.spatial_pad_img_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_DivisiblePad.__call___DivisiblePad.__call__.return.spatial_pad_img_", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 329, "end_line": 347, "span_ids": ["DivisiblePad.__call__"], "tokens": 296}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DivisiblePad(Transform):\n\n def __call__(\n self, img: NdarrayOrTensor, mode: Optional[Union[NumpyPadMode, PytorchPadMode, str]] = None\n ) -> NdarrayOrTensor:\n \"\"\"\n Args:\n img: data to be transformed, assuming `img` is channel-first\n and padding doesn't apply to the channel dim.\n mode: available modes for numpy array:{``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``,\n ``\"mean\"``, ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n available modes for PyTorch Tensor: {``\"constant\"``, ``\"reflect\"``, ``\"replicate\"``, ``\"circular\"``}.\n One of the listed string values or a user supplied function. Defaults to `self.mode`.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html\n\n \"\"\"\n new_size = compute_divisible_spatial_size(spatial_shape=img.shape[1:], k=self.k)\n spatial_pad = SpatialPad(spatial_size=new_size, method=self.method, mode=mode or self.mode, **self.kwargs)\n\n return spatial_pad(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCrop_RandSpatialCrop.__init__.self._slices.None": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCrop_RandSpatialCrop.__init__.self._slices.None", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 483, "end_line": 521, "span_ids": ["RandSpatialCrop.__init__", "RandSpatialCrop"], "tokens": 513}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandSpatialCrop(Randomizable, Transform):\n \"\"\"\n Crop image with random size or specific size ROI. It can crop at a random position as center\n or at the image center. And allows to set the minimum and maximum size to limit the randomly generated ROI.\n\n Note: even `random_size=False`, if a dimension of the expected ROI size is bigger than the input image size,\n will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped results\n of several images may not have exactly the same shape.\n\n Args:\n roi_size: if `random_size` is True, it specifies the minimum crop region.\n if `random_size` is False, it specifies the expected ROI size to crop. e.g. [224, 224, 128]\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n If its components have non-positive values, the corresponding size of input image will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `roi_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n max_roi_size: if `random_size` is True and `roi_size` specifies the min crop region size, `max_roi_size`\n can specify the max crop region size. if None, defaults to the input image size.\n if its components have non-positive values, the corresponding size of input image will be used.\n random_center: crop at random position as center or the image center.\n random_size: crop with random size or specific size ROI.\n if True, the actual size is sampled from `randint(roi_size, max_roi_size + 1)`.\n \"\"\"\n\n backend = CenterSpatialCrop.backend\n\n def __init__(\n self,\n roi_size: Union[Sequence[int], int],\n max_roi_size: Optional[Union[Sequence[int], int]] = None,\n random_center: bool = True,\n random_size: bool = True,\n ) -> None:\n self.roi_size = roi_size\n self.max_roi_size = max_roi_size\n self.random_center = random_center\n self.random_size = random_size\n self._size: Optional[Sequence[int]] = None\n self._slices: Optional[Tuple[slice, ...]] = None", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCropSamples_RandSpatialCropSamples.__call__.return._self_cropper_img_for___": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandSpatialCropSamples_RandSpatialCropSamples.__call__.return._self_cropper_img_for___", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 595, "end_line": 656, "span_ids": ["RandSpatialCropSamples", "RandSpatialCropSamples.__call__", "RandSpatialCropSamples.__init__", "RandSpatialCropSamples.set_random_state", "RandSpatialCropSamples.randomize"], "tokens": 706}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandSpatialCropSamples(Randomizable, Transform):\n \"\"\"\n Crop image with random size or specific size ROI to generate a list of N samples.\n It can crop at a random position as center or at the image center. And allows to set\n the minimum size to limit the randomly generated ROI.\n It will return a list of cropped images.\n\n Note: even `random_size=False`, if a dimension of the expected ROI size is bigger than the input image size,\n will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped\n results of several images may not have exactly the same shape.\n\n Args:\n roi_size: if `random_size` is True, it specifies the minimum crop region.\n if `random_size` is False, it specifies the expected ROI size to crop. e.g. [224, 224, 128]\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n If its components have non-positive values, the corresponding size of input image will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `roi_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n num_samples: number of samples (crop regions) to take in the returned list.\n max_roi_size: if `random_size` is True and `roi_size` specifies the min crop region size, `max_roi_size`\n can specify the max crop region size. if None, defaults to the input image size.\n if its components have non-positive values, the corresponding size of input image will be used.\n random_center: crop at random position as center or the image center.\n random_size: crop with random size or specific size ROI.\n The actual size is sampled from `randint(roi_size, img_size)`.\n\n Raises:\n ValueError: When ``num_samples`` is nonpositive.\n\n \"\"\"\n\n backend = RandSpatialCrop.backend\n\n def __init__(\n self,\n roi_size: Union[Sequence[int], int],\n num_samples: int,\n max_roi_size: Optional[Union[Sequence[int], int]] = None,\n random_center: bool = True,\n random_size: bool = True,\n ) -> None:\n if num_samples < 1:\n raise ValueError(f\"num_samples must be positive, got {num_samples}.\")\n self.num_samples = num_samples\n self.cropper = RandSpatialCrop(roi_size, max_roi_size, random_center, random_size)\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"RandSpatialCropSamples\":\n super().set_random_state(seed, state)\n self.cropper.set_random_state(seed, state)\n return self\n\n def randomize(self, data: Optional[Any] = None) -> None:\n pass\n\n def __call__(self, img: NdarrayOrTensor) -> List[NdarrayOrTensor]:\n \"\"\"\n Apply the transform to `img`, assuming `img` is channel-first and\n cropping doesn't change the channel dim.\n \"\"\"\n return [self.cropper(img) for _ in range(self.num_samples)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadd_SpatialPadd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadd_SpatialPadd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 107, "end_line": 156, "span_ids": ["SpatialPadd", "SpatialPadd.__init__", "SpatialPadd.__call__"], "tokens": 677}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SpatialPadd(MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.SpatialPad`.\n Performs padding to the data, symmetric for all sides or all on one side for each dimension.\n \"\"\"\n\n backend = SpatialPad.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n spatial_size: Union[Sequence[int], int],\n method: Union[Method, str] = Method.SYMMETRIC,\n mode: PadModeSequence = NumpyPadMode.CONSTANT,\n allow_missing_keys: bool = False,\n **kwargs,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n spatial_size: the spatial size of output data after padding, if a dimension of the input\n data size is bigger than the pad size, will not pad that dimension.\n If its components have non-positive values, the corresponding size of input image will be used.\n for example: if the spatial size of input data is [30, 30, 30] and `spatial_size=[32, 25, -1]`,\n the spatial size of output data will be [32, 30, 30].\n method: {``\"symmetric\"``, ``\"end\"``}\n Pad image symmetrically on every side or only pad at the end sides. Defaults to ``\"symmetric\"``.\n mode: available modes for numpy array:{``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``,\n ``\"mean\"``, ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n available modes for PyTorch Tensor: {``\"constant\"``, ``\"reflect\"``, ``\"replicate\"``, ``\"circular\"``}.\n One of the listed string values or a user supplied function. Defaults to ``\"constant\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n kwargs: other arguments for the `np.pad` or `torch.pad` function.\n note that `np.pad` treats channel dimension as the first dimension.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padder = SpatialPad(spatial_size, method, **kwargs)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key, m in self.key_iterator(d, self.mode):\n self.push_transform(d, key, extra_info={\"mode\": m.value if isinstance(m, Enum) else m})\n d[key] = self.padder(d[key], mode=m)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BorderPadd_BorderPadd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_BorderPadd_BorderPadd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 179, "end_line": 231, "span_ids": ["BorderPadd.__init__", "BorderPadd.__call__", "BorderPadd"], "tokens": 720}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class BorderPadd(MapTransform, InvertibleTransform):\n \"\"\"\n Pad the input data by adding specified borders to every dimension.\n Dictionary-based wrapper of :py:class:`monai.transforms.BorderPad`.\n \"\"\"\n\n backend = BorderPad.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n spatial_border: Union[Sequence[int], int],\n mode: PadModeSequence = NumpyPadMode.CONSTANT,\n allow_missing_keys: bool = False,\n **kwargs,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n spatial_border: specified size for every spatial border. it can be 3 shapes:\n\n - single int number, pad all the borders with the same size.\n - length equals the length of image shape, pad every spatial dimension separately.\n for example, image shape(CHW) is [1, 4, 4], spatial_border is [2, 1],\n pad every border of H dim with 2, pad every border of W dim with 1, result shape is [1, 8, 6].\n - length equals 2 x (length of image shape), pad every border of every dimension separately.\n for example, image shape(CHW) is [1, 4, 4], spatial_border is [1, 2, 3, 4], pad top of H dim with 1,\n pad bottom of H dim with 2, pad left of W dim with 3, pad right of W dim with 4.\n the result shape is [1, 7, 11].\n\n mode: available modes for numpy array:{``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``,\n ``\"mean\"``, ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n available modes for PyTorch Tensor: {``\"constant\"``, ``\"reflect\"``, ``\"replicate\"``, ``\"circular\"``}.\n One of the listed string values or a user supplied function. Defaults to ``\"constant\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n kwargs: other arguments for the `np.pad` or `torch.pad` function.\n note that `np.pad` treats channel dimension as the first dimension.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padder = BorderPad(spatial_border=spatial_border, **kwargs)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key, m in self.key_iterator(d, self.mode):\n self.push_transform(d, key, extra_info={\"mode\": m.value if isinstance(m, Enum) else m})\n d[key] = self.padder(d[key], mode=m)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_DivisiblePadd_DivisiblePadd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_DivisiblePadd_DivisiblePadd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 258, "end_line": 307, "span_ids": ["DivisiblePadd.__init__", "DivisiblePadd", "DivisiblePadd.__call__"], "tokens": 633}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DivisiblePadd(MapTransform, InvertibleTransform):\n \"\"\"\n Pad the input data, so that the spatial sizes are divisible by `k`.\n Dictionary-based wrapper of :py:class:`monai.transforms.DivisiblePad`.\n \"\"\"\n\n backend = DivisiblePad.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n k: Union[Sequence[int], int],\n mode: PadModeSequence = NumpyPadMode.CONSTANT,\n method: Union[Method, str] = Method.SYMMETRIC,\n allow_missing_keys: bool = False,\n **kwargs,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n k: the target k for each spatial dimension.\n if `k` is negative or 0, the original size is preserved.\n if `k` is an int, the same `k` be applied to all the input spatial dimensions.\n mode: available modes for numpy array:{``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``,\n ``\"mean\"``, ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n available modes for PyTorch Tensor: {``\"constant\"``, ``\"reflect\"``, ``\"replicate\"``, ``\"circular\"``}.\n One of the listed string values or a user supplied function. Defaults to ``\"constant\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n method: {``\"symmetric\"``, ``\"end\"``}\n Pad image symmetrically on every side or only pad at the end sides. Defaults to ``\"symmetric\"``.\n allow_missing_keys: don't raise exception if key is missing.\n kwargs: other arguments for the `np.pad` or `torch.pad` function.\n note that `np.pad` treats channel dimension as the first dimension.\n\n See also :py:class:`monai.transforms.SpatialPad`\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padder = DivisiblePad(k=k, method=method, **kwargs)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key, m in self.key_iterator(d, self.mode):\n self.push_transform(d, key, extra_info={\"mode\": m.value if isinstance(m, Enum) else m})\n d[key] = self.padder(d[key], mode=m)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialCropd_SpatialCropd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialCropd_SpatialCropd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 328, "end_line": 376, "span_ids": ["SpatialCropd", "SpatialCropd.__call__", "SpatialCropd.__init__"], "tokens": 515}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SpatialCropd(MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.SpatialCrop`.\n General purpose cropper to produce sub-volume region of interest (ROI).\n If a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension.\n So the cropped result may be smaller than the expected ROI, and the cropped results of several images may\n not have exactly the same shape.\n It can support to crop ND spatial (channel-first) data.\n\n The cropped region can be parameterised in various ways:\n - a list of slices for each spatial dimension (allows for use of -ve indexing and `None`)\n - a spatial center and size\n - the start and end coordinates of the ROI\n \"\"\"\n\n backend = SpatialCrop.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n roi_center: Optional[Sequence[int]] = None,\n roi_size: Optional[Sequence[int]] = None,\n roi_start: Optional[Sequence[int]] = None,\n roi_end: Optional[Sequence[int]] = None,\n roi_slices: Optional[Sequence[slice]] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n roi_center: voxel coordinates for center of the crop ROI.\n roi_size: size of the crop ROI, if a dimension of ROI size is bigger than image size,\n will not crop that dimension of the image.\n roi_start: voxel coordinates for start of the crop ROI.\n roi_end: voxel coordinates for end of the crop ROI, if a coordinate is out of image,\n use the end coordinate of image.\n roi_slices: list of slices for each of the spatial dimensions.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.cropper = SpatialCrop(roi_center, roi_size, roi_start, roi_end, roi_slices)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n self.push_transform(d, key)\n d[key] = self.cropper(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterSpatialCropd_CenterSpatialCropd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_CenterSpatialCropd_CenterSpatialCropd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 400, "end_line": 432, "span_ids": ["CenterSpatialCropd.__call__", "CenterSpatialCropd", "CenterSpatialCropd.__init__"], "tokens": 392}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CenterSpatialCropd(MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.CenterSpatialCrop`.\n If a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension.\n So the cropped result may be smaller than the expected ROI, and the cropped results of several images may\n not have exactly the same shape.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n roi_size: the size of the crop region e.g. [224,224,128]\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n If its components have non-positive values, the corresponding size of input image will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `roi_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n backend = CenterSpatialCrop.backend\n\n def __init__(\n self, keys: KeysCollection, roi_size: Union[Sequence[int], int], allow_missing_keys: bool = False\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.cropper = CenterSpatialCrop(roi_size)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n orig_size = d[key].shape[1:]\n d[key] = self.cropper(d[key])\n self.push_transform(d, key, orig_size=orig_size)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd_RandSpatialCropd.__init__.self._size.None": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd_RandSpatialCropd.__init__.self._size.None", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 513, "end_line": 560, "span_ids": ["RandSpatialCropd", "RandSpatialCropd.__init__"], "tokens": 627}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandSpatialCropd(Randomizable, MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandSpatialCrop`.\n Crop image with random size or specific size ROI. It can crop at a random position as\n center or at the image center. And allows to set the minimum and maximum size to limit the randomly\n generated ROI. Suppose all the expected fields specified by `keys` have same shape.\n\n Note: even `random_size=False`, if a dimension of the expected ROI size is bigger than the input image size,\n will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped\n results of several images may not have exactly the same shape.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n roi_size: if `random_size` is True, it specifies the minimum crop region.\n if `random_size` is False, it specifies the expected ROI size to crop. e.g. [224, 224, 128]\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n If its components have non-positive values, the corresponding size of input image will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `roi_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n max_roi_size: if `random_size` is True and `roi_size` specifies the min crop region size, `max_roi_size`\n can specify the max crop region size. if None, defaults to the input image size.\n if its components have non-positive values, the corresponding size of input image will be used.\n random_center: crop at random position as center or the image center.\n random_size: crop with random size or specific size ROI.\n if True, the actual size is sampled from:\n `randint(roi_scale * image spatial size, max_roi_scale * image spatial size + 1)`.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n backend = CenterSpatialCrop.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n roi_size: Union[Sequence[int], int],\n max_roi_size: Optional[Union[Sequence[int], int]] = None,\n random_center: bool = True,\n random_size: bool = True,\n allow_missing_keys: bool = False,\n ) -> None:\n MapTransform.__init__(self, keys, allow_missing_keys)\n self.roi_size = roi_size\n self.max_roi_size = max_roi_size\n self.random_center = random_center\n self.random_size = random_size\n self._slices: Optional[Tuple[slice, ...]] = None\n self._size: Optional[Sequence[int]] = None", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.__call___RandCropByPosNegLabeld.__call__.return.results": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.__call___RandCropByPosNegLabeld.__call__.return.results", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1139, "end_line": 1172, "span_ids": ["RandCropByPosNegLabeld.__call__"], "tokens": 452}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabeld(Randomizable, MapTransform, InvertibleTransform):\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> List[Dict[Hashable, NdarrayOrTensor]]:\n d = dict(data)\n label = d[self.label_key]\n image = d[self.image_key] if self.image_key else None\n fg_indices = d.pop(self.fg_indices_key, None) if self.fg_indices_key is not None else None\n bg_indices = d.pop(self.bg_indices_key, None) if self.bg_indices_key is not None else None\n\n self.randomize(label, fg_indices, bg_indices, image)\n if not isinstance(self.spatial_size, tuple):\n raise ValueError(\"spatial_size must be a valid tuple.\")\n if self.centers is None:\n raise ValueError(\"no available ROI centers to crop.\")\n\n # initialize returned list with shallow copy to preserve key ordering\n results: List[Dict[Hashable, NdarrayOrTensor]] = [dict(d) for _ in range(self.num_samples)]\n\n for i, center in enumerate(self.centers):\n # fill in the extra keys with unmodified data\n for key in set(d.keys()).difference(set(self.keys)):\n results[i][key] = deepcopy(d[key])\n for key in self.key_iterator(d):\n img = d[key]\n cropper = SpatialCrop(roi_center=tuple(center), roi_size=self.spatial_size)\n orig_size = img.shape[1:]\n results[i][key] = cropper(img)\n self.push_transform(results[i], key, extra_info={\"center\": center}, orig_size=orig_size)\n # add `patch_index` to the meta data\n for key, meta_key, meta_key_postfix in self.key_iterator(d, self.meta_keys, self.meta_key_postfix):\n meta_key = meta_key or f\"{key}_{meta_key_postfix}\"\n if meta_key not in results[i]:\n results[i][meta_key] = {} # type: ignore\n results[i][meta_key][Key.PATCH_INDEX] = i # type: ignore\n\n return results", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadD_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_SpatialPadD_", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1519, "end_line": 1534, "span_ids": ["impl:9"], "tokens": 238}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "SpatialPadD = SpatialPadDict = SpatialPadd\nBorderPadD = BorderPadDict = BorderPadd\nDivisiblePadD = DivisiblePadDict = DivisiblePadd\nSpatialCropD = SpatialCropDict = SpatialCropd\nCenterSpatialCropD = CenterSpatialCropDict = CenterSpatialCropd\nCenterScaleCropD = CenterScaleCropDict = CenterScaleCropd\nRandSpatialCropD = RandSpatialCropDict = RandSpatialCropd\nRandScaleCropD = RandScaleCropDict = RandScaleCropd\nRandSpatialCropSamplesD = RandSpatialCropSamplesDict = RandSpatialCropSamplesd\nCropForegroundD = CropForegroundDict = CropForegroundd\nRandWeightedCropD = RandWeightedCropDict = RandWeightedCropd\nRandCropByPosNegLabelD = RandCropByPosNegLabelDict = RandCropByPosNegLabeld\nRandCropByLabelClassesD = RandCropByLabelClassesDict = RandCropByLabelClassesd\nResizeWithPadOrCropD = ResizeWithPadOrCropDict = ResizeWithPadOrCropd\nBoundingRectD = BoundingRectDict = BoundingRectd", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityd_ScaleIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityd_ScaleIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 483, "end_line": 523, "span_ids": ["ScaleIntensityd", "ScaleIntensityd.__call__", "ScaleIntensityd.__init__"], "tokens": 420}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensityd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.ScaleIntensity`.\n Scale the intensity of input image to the given value range (minv, maxv).\n If `minv` and `maxv` not provided, use `factor` to scale image by ``v = v * (1 + factor)``.\n \"\"\"\n\n backend = ScaleIntensity.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n minv: Optional[float] = 0.0,\n maxv: Optional[float] = 1.0,\n factor: Optional[float] = None,\n channel_wise: bool = False,\n dtype: DtypeLike = np.float32,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n minv: minimum value of output data.\n maxv: maximum value of output data.\n factor: factor scale by ``v = v * (1 + factor)``. In order to use\n this parameter, please set both `minv` and `maxv` into None.\n channel_wise: if True, scale on each channel separately. Please ensure\n that the first dimension represents the channel of the image if True.\n dtype: output data type, if None, same as input image. defaults to float32.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.scaler = ScaleIntensity(minv, maxv, factor, channel_wise, dtype)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.scaler(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandScaleIntensityd_RandScaleIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandScaleIntensityd_RandScaleIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 526, "end_line": 574, "span_ids": ["RandScaleIntensityd.__call__", "RandScaleIntensityd.__init__", "RandScaleIntensityd", "RandScaleIntensityd.set_random_state"], "tokens": 442}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandScaleIntensityd(RandomizableTransform, MapTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandScaleIntensity`.\n \"\"\"\n\n backend = RandScaleIntensity.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n factors: Union[Tuple[float, float], float],\n prob: float = 0.1,\n dtype: DtypeLike = np.float32,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n factors: factor range to randomly scale by ``v = v * (1 + factor)``.\n if single number, factor value is picked from (-factors, factors).\n prob: probability of rotating.\n (Default 0.1, with 10% probability it returns a rotated array.)\n dtype: output data type, if None, same as input image. defaults to float32.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.scaler = RandScaleIntensity(factors=factors, dtype=dtype, prob=1.0)\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"RandScaleIntensityd\":\n super().set_random_state(seed, state)\n self.scaler.set_random_state(seed, state)\n return self\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n self.randomize(None)\n if not self._do_transform:\n return d\n\n # all the keys share the same random scale factor\n self.scaler.randomize(None)\n for key in self.key_iterator(d):\n d[key] = self.scaler(d[key], randomize=False)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_NormalizeIntensityd_NormalizeIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_NormalizeIntensityd_NormalizeIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 650, "end_line": 687, "span_ids": ["NormalizeIntensityd.__call__", "NormalizeIntensityd.__init__", "NormalizeIntensityd"], "tokens": 363}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NormalizeIntensityd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.NormalizeIntensity`.\n This transform can normalize only non-zero values or entire image, and can also calculate\n mean and std on each channel separately.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n subtrahend: the amount to subtract by (usually the mean)\n divisor: the amount to divide by (usually the standard deviation)\n nonzero: whether only normalize non-zero values.\n channel_wise: if True, calculate on each channel separately, otherwise, calculate on\n the entire image directly. default to False.\n dtype: output data type, if None, same as input image. defaults to float32.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n backend = NormalizeIntensity.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n subtrahend: Optional[NdarrayOrTensor] = None,\n divisor: Optional[NdarrayOrTensor] = None,\n nonzero: bool = False,\n channel_wise: bool = False,\n dtype: DtypeLike = np.float32,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.normalizer = NormalizeIntensity(subtrahend, divisor, nonzero, channel_wise, dtype)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.normalizer(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ThresholdIntensityd_ThresholdIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ThresholdIntensityd_ThresholdIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 668, "end_line": 698, "span_ids": ["ThresholdIntensityd.__init__", "ThresholdIntensityd", "ThresholdIntensityd.__call__"], "tokens": 253}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ThresholdIntensityd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.ThresholdIntensity`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n threshold: the threshold to filter intensity values.\n above: filter values above the threshold or below the threshold, default is True.\n cval: value to fill the remaining parts of the image, default is 0.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n backend = ThresholdIntensity.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n threshold: float,\n above: bool = True,\n cval: float = 0.0,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.filter = ThresholdIntensity(threshold, above, cval)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.filter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRanged_ScaleIntensityRanged.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRanged_ScaleIntensityRanged.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 703, "end_line": 739, "span_ids": ["ScaleIntensityRanged.__call__", "ScaleIntensityRanged.__init__", "ScaleIntensityRanged"], "tokens": 312}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensityRanged(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.ScaleIntensityRange`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n a_min: intensity original range min.\n a_max: intensity original range max.\n b_min: intensity target range min.\n b_max: intensity target range max.\n clip: whether to perform clip after scaling.\n dtype: output data type, if None, same as input image. defaults to float32.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n backend = ScaleIntensityRange.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n a_min: float,\n a_max: float,\n b_min: Optional[float] = None,\n b_max: Optional[float] = None,\n clip: bool = False,\n dtype: DtypeLike = np.float32,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.scaler = ScaleIntensityRange(a_min, a_max, b_min, b_max, clip, dtype)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.scaler(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_AdjustContrastd_AdjustContrastd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_AdjustContrastd_AdjustContrastd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 738, "end_line": 762, "span_ids": ["AdjustContrastd", "AdjustContrastd.__call__", "AdjustContrastd.__init__"], "tokens": 234}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AdjustContrastd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.AdjustContrast`.\n Changes image intensity by gamma. Each pixel/voxel intensity is updated as:\n\n `x = ((x - min) / intensity_range) ^ gamma * intensity_range + min`\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n gamma: gamma value to adjust the contrast as function.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n backend = AdjustContrast.backend\n\n def __init__(self, keys: KeysCollection, gamma: float, allow_missing_keys: bool = False) -> None:\n super().__init__(keys, allow_missing_keys)\n self.adjuster = AdjustContrast(gamma)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.adjuster(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandAdjustContrastd_RandAdjustContrastd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandAdjustContrastd_RandAdjustContrastd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 765, "end_line": 811, "span_ids": ["RandAdjustContrastd", "RandAdjustContrastd.set_random_state", "RandAdjustContrastd.__call__", "RandAdjustContrastd.__init__"], "tokens": 435}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandAdjustContrastd(RandomizableTransform, MapTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandAdjustContrast`.\n Randomly changes image intensity by gamma. Each pixel/voxel intensity is updated as:\n\n `x = ((x - min) / intensity_range) ^ gamma * intensity_range + min`\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n prob: Probability of adjustment.\n gamma: Range of gamma values.\n If single number, value is picked from (0.5, gamma), default is (0.5, 4.5).\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n backend = RandAdjustContrast.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n prob: float = 0.1,\n gamma: Union[Tuple[float, float], float] = (0.5, 4.5),\n allow_missing_keys: bool = False,\n ) -> None:\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.adjuster = RandAdjustContrast(gamma=gamma, prob=1.0)\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"RandAdjustContrastd\":\n super().set_random_state(seed, state)\n self.adjuster.set_random_state(seed, state)\n return self\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n self.randomize(None)\n if not self._do_transform:\n return d\n\n # all the keys share the same random gamma value\n self.adjuster.randomize(None)\n for key in self.key_iterator(d):\n d[key] = self.adjuster(d[key], randomize=False)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRangePercentilesd_ScaleIntensityRangePercentilesd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_ScaleIntensityRangePercentilesd_ScaleIntensityRangePercentilesd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 838, "end_line": 879, "span_ids": ["ScaleIntensityRangePercentilesd", "ScaleIntensityRangePercentilesd.__init__", "ScaleIntensityRangePercentilesd.__call__"], "tokens": 367}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ScaleIntensityRangePercentilesd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.ScaleIntensityRangePercentiles`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: monai.transforms.MapTransform\n lower: lower percentile.\n upper: upper percentile.\n b_min: intensity target range min.\n b_max: intensity target range max.\n clip: whether to perform clip after scaling.\n relative: whether to scale to the corresponding percentiles of [b_min, b_max]\n channel_wise: if True, compute intensity percentile and normalize every channel separately.\n default to False.\n dtype: output data type, if None, same as input image. defaults to float32.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n backend = ScaleIntensityRangePercentiles.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n lower: float,\n upper: float,\n b_min: Optional[float],\n b_max: Optional[float],\n clip: bool = False,\n relative: bool = False,\n channel_wise: bool = False,\n dtype: DtypeLike = np.float32,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.scaler = ScaleIntensityRangePercentiles(lower, upper, b_min, b_max, clip, relative, channel_wise, dtype)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.scaler(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_MaskIntensityd_MaskIntensityd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_MaskIntensityd_MaskIntensityd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 853, "end_line": 892, "span_ids": ["MaskIntensityd", "MaskIntensityd.__call__", "MaskIntensityd.__init__"], "tokens": 397}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MaskIntensityd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.MaskIntensity`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n mask_data: if mask data is single channel, apply to every channel\n of input image. if multiple channels, the channel number must\n match input data. the intensity values of input image corresponding\n to the selected values in the mask data will keep the original value,\n others will be set to `0`. if None, will extract the mask data from\n input data based on `mask_key`.\n mask_key: the key to extract mask data from input dictionary, only works\n when `mask_data` is None.\n select_fn: function to select valid values of the `mask_data`, default is\n to select `values > 0`.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n backend = MaskIntensity.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n mask_data: Optional[NdarrayOrTensor] = None,\n mask_key: Optional[str] = None,\n select_fn: Callable = is_positive,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.converter = MaskIntensity(mask_data=mask_data, select_fn=select_fn)\n self.mask_key = mask_key if mask_data is None else None\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key], d[self.mask_key]) if self.mask_key is not None else self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianNoiseD_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianNoiseD_", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1657, "end_line": 1686, "span_ids": ["impl:5"], "tokens": 485}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "RandGaussianNoiseD = RandGaussianNoiseDict = RandGaussianNoised\nRandRicianNoiseD = RandRicianNoiseDict = RandRicianNoised\nShiftIntensityD = ShiftIntensityDict = ShiftIntensityd\nRandShiftIntensityD = RandShiftIntensityDict = RandShiftIntensityd\nStdShiftIntensityD = StdShiftIntensityDict = StdShiftIntensityd\nRandStdShiftIntensityD = RandStdShiftIntensityDict = RandStdShiftIntensityd\nRandBiasFieldD = RandBiasFieldDict = RandBiasFieldd\nScaleIntensityD = ScaleIntensityDict = ScaleIntensityd\nRandScaleIntensityD = RandScaleIntensityDict = RandScaleIntensityd\nNormalizeIntensityD = NormalizeIntensityDict = NormalizeIntensityd\nThresholdIntensityD = ThresholdIntensityDict = ThresholdIntensityd\nScaleIntensityRangeD = ScaleIntensityRangeDict = ScaleIntensityRanged\nAdjustContrastD = AdjustContrastDict = AdjustContrastd\nRandAdjustContrastD = RandAdjustContrastDict = RandAdjustContrastd\nScaleIntensityRangePercentilesD = ScaleIntensityRangePercentilesDict = ScaleIntensityRangePercentilesd\nMaskIntensityD = MaskIntensityDict = MaskIntensityd\nSavitzkyGolaySmoothD = SavitzkyGolaySmoothDict = SavitzkyGolaySmoothd\nGaussianSmoothD = GaussianSmoothDict = GaussianSmoothd\nRandGaussianSmoothD = RandGaussianSmoothDict = RandGaussianSmoothd\nGaussianSharpenD = GaussianSharpenDict = GaussianSharpend\nRandGaussianSharpenD = RandGaussianSharpenDict = RandGaussianSharpend\nRandHistogramShiftD = RandHistogramShiftDict = RandHistogramShiftd\nRandGibbsNoiseD = RandGibbsNoiseDict = RandGibbsNoised\nGibbsNoiseD = GibbsNoiseDict = GibbsNoised\nKSpaceSpikeNoiseD = KSpaceSpikeNoiseDict = KSpaceSpikeNoised\nRandKSpaceSpikeNoiseD = RandKSpaceSpikeNoiseDict = RandKSpaceSpikeNoised\nRandCoarseDropoutD = RandCoarseDropoutDict = RandCoarseDropoutd\nHistogramNormalizeD = HistogramNormalizeDict = HistogramNormalized\nRandCoarseShuffleD = RandCoarseShuffleDict = RandCoarseShuffled", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/io/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/post/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_Activations_Activations.__init__.self.other.other": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_Activations_Activations.__init__.self.other.other", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 45, "end_line": 69, "span_ids": ["Activations.__init__", "Activations"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Activations(Transform):\n \"\"\"\n Add activation operations to the model output, typically `Sigmoid` or `Softmax`.\n\n Args:\n sigmoid: whether to execute sigmoid function on model output before transform.\n Defaults to ``False``.\n softmax: whether to execute softmax function on model output before transform.\n Defaults to ``False``.\n other: callable function to execute other activation layers, for example:\n `other = lambda x: torch.tanh(x)`. Defaults to ``None``.\n\n Raises:\n TypeError: When ``other`` is not an ``Optional[Callable]``.\n\n \"\"\"\n\n backend = [TransformBackends.TORCH]\n\n def __init__(self, sigmoid: bool = False, softmax: bool = False, other: Optional[Callable] = None) -> None:\n self.sigmoid = sigmoid\n self.softmax = softmax\n if other is not None and not callable(other):\n raise TypeError(f\"other must be None or callable but is {type(other).__name__}.\")\n self.other = other", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent_KeepLargestConnectedComponent._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_KeepLargestConnectedComponent_KeepLargestConnectedComponent._", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 259, "end_line": 301, "span_ids": ["KeepLargestConnectedComponent"], "tokens": 745}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class KeepLargestConnectedComponent(Transform):\n \"\"\"\n Keeps only the largest connected component in the image.\n This transform can be used as a post-processing step to clean up over-segment areas in model output.\n\n The input is assumed to be a channel-first PyTorch Tensor:\n 1) For not OneHot format data, the values correspond to expected labels,\n 0 will be treated as background and the over-segment pixels will be set to 0.\n 2) For OneHot format data, the values should be 0, 1 on each labels,\n the over-segment pixels will be set to 0 in its channel.\n\n For example:\n Use with applied_labels=[1], is_onehot=False, connectivity=1::\n\n [1, 0, 0] [0, 0, 0]\n [0, 1, 1] => [0, 1 ,1]\n [0, 1, 1] [0, 1, 1]\n\n Use with applied_labels=[1, 2], is_onehot=False, independent=False, connectivity=1::\n\n [0, 0, 1, 0 ,0] [0, 0, 1, 0 ,0]\n [0, 2, 1, 1 ,1] [0, 2, 1, 1 ,1]\n [1, 2, 1, 0 ,0] => [1, 2, 1, 0 ,0]\n [1, 2, 0, 1 ,0] [1, 2, 0, 0 ,0]\n [2, 2, 0, 0 ,2] [2, 2, 0, 0 ,0]\n\n Use with applied_labels=[1, 2], is_onehot=False, independent=True, connectivity=1::\n\n [0, 0, 1, 0 ,0] [0, 0, 1, 0 ,0]\n [0, 2, 1, 1 ,1] [0, 2, 1, 1 ,1]\n [1, 2, 1, 0 ,0] => [0, 2, 1, 0 ,0]\n [1, 2, 0, 1 ,0] [0, 2, 0, 0 ,0]\n [2, 2, 0, 0 ,2] [2, 2, 0, 0 ,0]\n\n Use with applied_labels=[1, 2], is_onehot=False, independent=False, connectivity=2::\n\n [0, 0, 1, 0 ,0] [0, 0, 1, 0 ,0]\n [0, 2, 1, 1 ,1] [0, 2, 1, 1 ,1]\n [1, 2, 1, 0 ,0] => [1, 2, 1, 0 ,0]\n [1, 2, 0, 1 ,0] [1, 2, 0, 1 ,0]\n [2, 2, 0, 0 ,2] [2, 2, 0, 0 ,2]\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelToContour_LabelToContour.__init__.self.kernel_type.kernel_type": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_LabelToContour_LabelToContour.__init__.self.kernel_type.kernel_type", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 464, "end_line": 482, "span_ids": ["LabelToContour", "LabelToContour.__init__"], "tokens": 160}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LabelToContour(Transform):\n \"\"\"\n Return the contour of binary input images that only compose of 0 and 1, with Laplacian kernel\n set as default for edge detection. Typical usage is to plot the edge of label or segmentation output.\n\n Args:\n kernel_type: the method applied to do edge detection, default is \"Laplace\".\n\n Raises:\n NotImplementedError: When ``kernel_type`` is not \"Laplace\".\n\n \"\"\"\n\n backend = [TransformBackends.TORCH]\n\n def __init__(self, kernel_type: str = \"Laplace\") -> None:\n if kernel_type != \"Laplace\":\n raise NotImplementedError('Currently only kernel_type=\"Laplace\" is supported.')\n self.kernel_type = kernel_type", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_MeanEnsemble_MeanEnsemble.__init__.self.weights.torch_as_tensor_weights_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_MeanEnsemble_MeanEnsemble.__init__.self.weights.torch_as_tensor_weights_", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 534, "end_line": 560, "span_ids": ["MeanEnsemble", "MeanEnsemble.__init__"], "tokens": 419}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MeanEnsemble(Ensemble, Transform):\n \"\"\"\n Execute mean ensemble on the input data.\n The input data can be a list or tuple of PyTorch Tensor with shape: [C[, H, W, D]],\n Or a single PyTorch Tensor with shape: [E, C[, H, W, D]], the `E` dimension represents\n the output data from different models.\n Typically, the input data is model output of segmentation task or classification task.\n And it also can support to add `weights` for the input data.\n\n Args:\n weights: can be a list or tuple of numbers for input data with shape: [E, C, H, W[, D]].\n or a Numpy ndarray or a PyTorch Tensor data.\n the `weights` will be added to input data from highest dimension, for example:\n 1. if the `weights` only has 1 dimension, it will be added to the `E` dimension of input data.\n 2. if the `weights` has 2 dimensions, it will be added to `E` and `C` dimensions.\n it's a typical practice to add weights for different classes:\n to ensemble 3 segmentation model outputs, every output has 4 channels(classes),\n so the input data shape can be: [3, 4, H, W, D].\n and add different `weights` for different classes, so the `weights` shape can be: [3, 4].\n for example: `weights = [[1, 2, 3, 4], [4, 3, 2, 1], [1, 1, 1, 1]]`.\n\n \"\"\"\n\n backend = [TransformBackends.TORCH]\n\n def __init__(self, weights: Optional[Union[Sequence[float], NdarrayOrTensor]] = None) -> None:\n self.weights = torch.as_tensor(weights, dtype=torch.float) if weights is not None else None", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Activationsd_Activationsd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_Activationsd_Activationsd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/post/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 82, "end_line": 122, "span_ids": ["Activationsd.__call__", "Activationsd", "Activationsd.__init__"], "tokens": 421}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Activationsd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.AddActivations`.\n Add activation layers to the input data specified by `keys`.\n \"\"\"\n\n backend = Activations.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n sigmoid: Union[Sequence[bool], bool] = False,\n softmax: Union[Sequence[bool], bool] = False,\n other: Optional[Union[Sequence[Callable], Callable]] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to model output and label.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n sigmoid: whether to execute sigmoid function on model output before transform.\n it also can be a sequence of bool, each element corresponds to a key in ``keys``.\n softmax: whether to execute softmax function on model output before transform.\n it also can be a sequence of bool, each element corresponds to a key in ``keys``.\n other: callable function to execute other activation layers,\n for example: `other = torch.tanh`. it also can be a sequence of Callable, each\n element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.sigmoid = ensure_tuple_rep(sigmoid, len(self.keys))\n self.softmax = ensure_tuple_rep(softmax, len(self.keys))\n self.other = ensure_tuple_rep(other, len(self.keys))\n self.converter = Activations()\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key, sigmoid, softmax, other in self.key_iterator(d, self.sigmoid, self.softmax, self.other):\n d[key] = self.converter(d[key], sigmoid, softmax, other)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_KeepLargestConnectedComponentd_KeepLargestConnectedComponentd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_KeepLargestConnectedComponentd_KeepLargestConnectedComponentd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/post/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 211, "end_line": 257, "span_ids": ["KeepLargestConnectedComponentd.__init__", "KeepLargestConnectedComponentd", "KeepLargestConnectedComponentd.__call__"], "tokens": 506}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class KeepLargestConnectedComponentd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.KeepLargestConnectedComponent`.\n \"\"\"\n\n backend = KeepLargestConnectedComponent.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n applied_labels: Union[Sequence[int], int],\n is_onehot: Optional[bool] = None,\n independent: bool = True,\n connectivity: Optional[int] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n applied_labels: Labels for applying the connected component analysis on.\n If not OneHot. The pixel whose value is in this list will be analyzed.\n If the data is in OneHot format, this is used to determine which channels to apply.\n is_onehot: if `True`, treat the input data as OneHot format data, otherwise, not OneHot format data.\n default to None, which treats multi-channel data as OneHot and single channel data as not OneHot.\n independent: whether to treat ``applied_labels`` as a union of foreground labels.\n If ``True``, the connected component analysis will be performed on each foreground label independently\n and return the intersection of the largest components.\n If ``False``, the analysis will be performed on the union of foreground labels.\n default is `True`.\n connectivity: Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor.\n Accepted values are ranging from 1 to input.ndim. If ``None``, a full\n connectivity of ``input.ndim`` is used. for more details:\n https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.label.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = KeepLargestConnectedComponent(\n applied_labels=applied_labels, is_onehot=is_onehot, independent=independent, connectivity=connectivity\n )\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_LabelToContourd_LabelToContourd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_LabelToContourd_LabelToContourd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/post/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 297, "end_line": 320, "span_ids": ["LabelToContourd.__init__", "LabelToContourd", "LabelToContourd.__call__"], "tokens": 221}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LabelToContourd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.LabelToContour`.\n \"\"\"\n\n backend = LabelToContour.backend\n\n def __init__(self, keys: KeysCollection, kernel_type: str = \"Laplace\", allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n kernel_type: the method applied to do edge detection, default is \"Laplace\".\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = LabelToContour(kernel_type=kernel_type)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resize_Resize.__init__.self.align_corners.align_corners": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resize_Resize.__init__.self.align_corners.align_corners", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 366, "end_line": 401, "span_ids": ["Resize.__init__", "Resize"], "tokens": 485}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Resize(Transform):\n \"\"\"\n Resize the input image to given spatial size (with scaling, not cropping/padding).\n Implemented using :py:class:`torch.nn.functional.interpolate`.\n\n Args:\n spatial_size: expected shape of spatial dimensions after resize operation.\n if some components of the `spatial_size` are non-positive values, the transform will use the\n corresponding components of img size. For example, `spatial_size=(32, -1)` will be adapted\n to `(32, 64)` if the second spatial dimension size of img is `64`.\n size_mode: should be \"all\" or \"longest\", if \"all\", will use `spatial_size` for all the spatial dims,\n if \"longest\", rescale the image so that only the longest side is equal to specified `spatial_size`,\n which must be an int number in this case, keeping the aspect ratio of the initial image, refer to:\n https://albumentations.ai/docs/api_reference/augmentations/geometric/resize/\n #albumentations.augmentations.geometric.resize.LongestMaxSize.\n mode: {``\"nearest\"``, ``\"linear\"``, ``\"bilinear\"``, ``\"bicubic\"``, ``\"trilinear\"``, ``\"area\"``}\n The interpolation mode. Defaults to ``\"area\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n align_corners: This only has an effect when mode is\n 'linear', 'bilinear', 'bicubic' or 'trilinear'. Default: None.\n See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate\n \"\"\"\n\n backend = [TransformBackends.TORCH]\n\n def __init__(\n self,\n spatial_size: Union[Sequence[int], int],\n size_mode: str = \"all\",\n mode: Union[InterpolateMode, str] = InterpolateMode.AREA,\n align_corners: Optional[bool] = None,\n ) -> None:\n self.size_mode = look_up_option(size_mode, [\"all\", \"longest\"])\n self.spatial_size = spatial_size\n self.mode: InterpolateMode = look_up_option(mode, InterpolateMode)\n self.align_corners = align_corners", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandFlip_RandFlip.__call__.return.self_flipper_img_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandFlip_RandFlip.__call__.return.self_flipper_img_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 871, "end_line": 900, "span_ids": ["RandFlip", "RandFlip.__init__", "RandFlip.__call__"], "tokens": 243}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandFlip(RandomizableTransform):\n \"\"\"\n Randomly flips the image along axes. Preserves shape.\n See numpy.flip for additional details.\n https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html\n\n Args:\n prob: Probability of flipping.\n spatial_axis: Spatial axes along which to flip over. Default is None.\n \"\"\"\n\n backend = Flip.backend\n\n def __init__(self, prob: float = 0.1, spatial_axis: Optional[Union[Sequence[int], int]] = None) -> None:\n RandomizableTransform.__init__(self, prob)\n self.flipper = Flip(spatial_axis=spatial_axis)\n\n def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor:\n \"\"\"\n Args:\n img: channel first array, must have shape: (num_channels, H[, W, ..., ]),\n randomize: whether to execute `randomize()` function first, default to True.\n \"\"\"\n if randomize:\n self.randomize(None)\n\n if not self._do_transform:\n return img\n\n return self.flipper(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid_RandDeformGrid.randomize.self.rand_mag.self_R_uniform_self_magni": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid_RandDeformGrid.randomize.self.rand_mag.self_R_uniform_self_magni", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1270, "end_line": 1306, "span_ids": ["RandDeformGrid", "RandDeformGrid.__init__", "RandDeformGrid.randomize"], "tokens": 330}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandDeformGrid(Randomizable, Transform):\n \"\"\"\n Generate random deformation grid.\n \"\"\"\n\n backend = [TransformBackends.TORCH]\n\n def __init__(\n self,\n spacing: Union[Sequence[float], float],\n magnitude_range: Tuple[float, float],\n as_tensor_output: bool = True,\n device: Optional[torch.device] = None,\n ) -> None:\n \"\"\"\n Args:\n spacing: spacing of the grid in 2D or 3D.\n e.g., spacing=(1, 1) indicates pixel-wise deformation in 2D,\n spacing=(1, 1, 1) indicates voxel-wise deformation in 3D,\n spacing=(2, 2) indicates deformation field defined on every other pixel in 2D.\n magnitude_range: the random offsets will be generated from\n `uniform[magnitude[0], magnitude[1])`.\n as_tensor_output: whether to output tensor instead of numpy array.\n defaults to True.\n device: device to store the output grid data.\n \"\"\"\n self.spacing = spacing\n self.magnitude = magnitude_range\n\n self.rand_mag = 1.0\n self.as_tensor_output = as_tensor_output\n self.random_offset: np.ndarray\n self.device = device\n\n def randomize(self, grid_size: Sequence[int]) -> None:\n self.random_offset = self.R.normal(size=([len(grid_size)] + list(grid_size))).astype(np.float32, copy=False)\n self.rand_mag = self.R.uniform(self.magnitude[0], self.magnitude[1])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid.__call___RandDeformGrid.__call__.return.control_grid": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandDeformGrid.__call___RandDeformGrid.__call__.return.control_grid", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1308, "end_line": 1320, "span_ids": ["RandDeformGrid.__call__"], "tokens": 161}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandDeformGrid(Randomizable, Transform):\n\n def __call__(self, spatial_size: Sequence[int]):\n \"\"\"\n Args:\n spatial_size: spatial size of the grid.\n \"\"\"\n self.spacing = fall_back_tuple(self.spacing, (1.0,) * len(spatial_size))\n control_grid = create_control_grid(spatial_size, self.spacing, device=self.device, backend=\"torch\")\n self.randomize(control_grid.shape[1:])\n _offset, *_ = convert_to_dst_type(self.rand_mag * self.random_offset, control_grid)\n control_grid[: len(spatial_size)] += _offset\n if not self.as_tensor_output:\n control_grid, *_ = convert_data_type(control_grid, output_type=np.ndarray, dtype=np.float32)\n return control_grid", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resample_Resample.__init__.self.device.device": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Resample_Resample.__init__.self.device.device", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1323, "end_line": 1354, "span_ids": ["Resample.__init__", "Resample"], "tokens": 339}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Resample(Transform):\n\n backend = [TransformBackends.TORCH]\n\n @deprecated_arg(name=\"as_tensor_output\", since=\"0.6\")\n def __init__(\n self,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,\n as_tensor_output: bool = True,\n device: Optional[torch.device] = None,\n ) -> None:\n \"\"\"\n computes output image using values from `img`, locations from `grid` using pytorch.\n supports spatially 2D or 3D (num_channels, H, W[, D]).\n\n Args:\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"border\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n device: device on which the tensor will be allocated.\n\n .. deprecated:: 0.6.0\n ``as_tensor_output`` is deprecated.\n\n \"\"\"\n self.mode: GridSampleMode = look_up_option(mode, GridSampleMode)\n self.padding_mode: GridSamplePadMode = look_up_option(padding_mode, GridSamplePadMode)\n self.device = device", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic.set_random_state_Rand2DElastic.randomize.self_rand_affine_grid_ran": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand2DElastic.set_random_state_Rand2DElastic.randomize.self_rand_affine_grid_ran", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1806, "end_line": 1819, "span_ids": ["Rand2DElastic.randomize", "Rand2DElastic.set_random_state"], "tokens": 139}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand2DElastic(RandomizableTransform):\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"Rand2DElastic\":\n self.deform_grid.set_random_state(seed, state)\n self.rand_affine_grid.set_random_state(seed, state)\n super().set_random_state(seed, state)\n return self\n\n def randomize(self, spatial_size: Sequence[int]) -> None:\n super().randomize(None)\n if not self._do_transform:\n return None\n self.deform_grid.randomize(spatial_size)\n self.rand_affine_grid.randomize()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic_Rand3DElastic.__init__.self.sigma.1_0": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic_Rand3DElastic.__init__.self.sigma.1_0", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1867, "end_line": 1963, "span_ids": ["Rand3DElastic.__init__", "Rand3DElastic"], "tokens": 1221}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand3DElastic(RandomizableTransform):\n \"\"\"\n Random elastic deformation and affine in 3D.\n A tutorial is available: https://github.com/Project-MONAI/tutorials/blob/0.6.0/modules/transforms_demo_2d.ipynb.\n\n \"\"\"\n\n backend = Resample.backend\n\n @deprecated_arg(name=\"as_tensor_output\", since=\"0.6\")\n def __init__(\n self,\n sigma_range: Tuple[float, float],\n magnitude_range: Tuple[float, float],\n prob: float = 0.1,\n rotate_range: RandRange = None,\n shear_range: RandRange = None,\n translate_range: RandRange = None,\n scale_range: RandRange = None,\n spatial_size: Optional[Union[Tuple[int, int, int], int]] = None,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.REFLECTION,\n as_tensor_output: bool = False,\n device: Optional[torch.device] = None,\n ) -> None:\n \"\"\"\n Args:\n sigma_range: a Gaussian kernel with standard deviation sampled from\n ``uniform[sigma_range[0], sigma_range[1])`` will be used to smooth the random offset grid.\n magnitude_range: the random offsets on the grid will be generated from\n ``uniform[magnitude[0], magnitude[1])``.\n prob: probability of returning a randomized elastic transform.\n defaults to 0.1, with 10% chance returns a randomized elastic transform,\n otherwise returns a ``spatial_size`` centered area extracted from the input image.\n rotate_range: angle range in radians. If element `i` is a pair of (min, max) values, then\n `uniform[-rotate_range[i][0], rotate_range[i][1])` will be used to generate the rotation parameter\n for the `i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i])` will be used.\n This can be altered on a per-dimension basis. E.g., `((0,3), 1, ...)`: for dim0, rotation will be\n in range `[0, 3]`, and for dim1 `[-1, 1]` will be used. Setting a single value will use `[-x, x]`\n for dim0 and nothing for the remaining dimensions.\n shear_range: shear range with format matching `rotate_range`, it defines the range to randomly select\n shearing factors(a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example::\n\n [\n [1.0, params[0], params[1], 0.0],\n [params[2], 1.0, params[3], 0.0],\n [params[4], params[5], 1.0, 0.0],\n [0.0, 0.0, 0.0, 1.0],\n ]\n\n translate_range: translate range with format matching `rotate_range`, it defines the range to randomly\n select voxel to translate for every spatial dims.\n scale_range: scaling range with format matching `rotate_range`. it defines the range to randomly select\n the scale factor to translate for every spatial dims. A value of 1.0 is added to the result.\n This allows 0 to correspond to no change (i.e., a scaling of 1.0).\n spatial_size: specifying output image spatial size [h, w, d].\n if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,\n the transform will use the spatial size of `img`.\n if some components of the `spatial_size` are non-positive values, the transform will use the\n corresponding components of img size. For example, `spatial_size=(32, 32, -1)` will be adapted\n to `(32, 32, 64)` if the third spatial dimension size of img is `64`.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"reflection\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n device: device on which the tensor will be allocated.\n\n See also:\n - :py:class:`RandAffineGrid` for the random affine parameters configurations.\n - :py:class:`Affine` for the affine transformation parameters configurations.\n\n .. deprecated:: 0.6.0\n ``as_tensor_output`` is deprecated.\n\n \"\"\"\n RandomizableTransform.__init__(self, prob)\n self.rand_affine_grid = RandAffineGrid(\n rotate_range=rotate_range,\n shear_range=shear_range,\n translate_range=translate_range,\n scale_range=scale_range,\n device=device,\n )\n self.resampler = Resample(device=device)\n\n self.sigma_range = sigma_range\n self.magnitude_range = magnitude_range\n self.spatial_size = spatial_size\n self.mode: GridSampleMode = look_up_option(mode, GridSampleMode)\n self.padding_mode: GridSamplePadMode = look_up_option(padding_mode, GridSamplePadMode)\n self.device = device\n\n self.rand_offset: np.ndarray\n self.magnitude = 1.0\n self.sigma = 1.0", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic.set_random_state_Rand3DElastic.randomize.self_rand_affine_grid_ran": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_Rand3DElastic.set_random_state_Rand3DElastic.randomize.self_rand_affine_grid_ran", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1970, "end_line": 1984, "span_ids": ["Rand3DElastic.randomize", "Rand3DElastic.set_random_state"], "tokens": 188}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand3DElastic(RandomizableTransform):\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"Rand3DElastic\":\n self.rand_affine_grid.set_random_state(seed, state)\n super().set_random_state(seed, state)\n return self\n\n def randomize(self, grid_size: Sequence[int]) -> None:\n super().randomize(None)\n if not self._do_transform:\n return None\n self.rand_offset = self.R.uniform(-1.0, 1.0, [3] + list(grid_size)).astype(np.float32, copy=False)\n self.magnitude = self.R.uniform(self.magnitude_range[0], self.magnitude_range[1])\n self.sigma = self.R.uniform(self.sigma_range[0], self.sigma_range[1])\n self.rand_affine_grid.randomize()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd.__call___Spacingd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Spacingd.__call___Spacingd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 229, "end_line": 266, "span_ids": ["Spacingd.__call__"], "tokens": 383}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Spacingd(MapTransform, InvertibleTransform):\n\n def __call__(\n self, data: Mapping[Union[Hashable, str], Dict[str, NdarrayOrTensor]]\n ) -> Dict[Hashable, NdarrayOrTensor]:\n d: Dict = dict(data)\n for key, mode, padding_mode, align_corners, dtype, meta_key, meta_key_postfix in self.key_iterator(\n d, self.mode, self.padding_mode, self.align_corners, self.dtype, self.meta_keys, self.meta_key_postfix\n ):\n meta_key = meta_key or f\"{key}_{meta_key_postfix}\"\n # create metadata if necessary\n if meta_key not in d:\n d[meta_key] = {\"affine\": None}\n meta_data = d[meta_key]\n # resample array of each corresponding key\n # using affine fetched from d[affine_key]\n original_spatial_shape = d[key].shape[1:]\n d[key], old_affine, new_affine = self.spacing_transform(\n data_array=d[key],\n affine=meta_data[\"affine\"],\n mode=mode,\n padding_mode=padding_mode,\n align_corners=align_corners,\n dtype=dtype,\n )\n self.push_transform(\n d,\n key,\n extra_info={\n \"meta_key\": meta_key,\n \"old_affine\": old_affine,\n \"mode\": mode.value if isinstance(mode, Enum) else mode,\n \"padding_mode\": padding_mode.value if isinstance(padding_mode, Enum) else padding_mode,\n \"align_corners\": align_corners if align_corners is not None else TraceKeys.NONE,\n },\n orig_size=original_spatial_shape,\n )\n # set the 'affine' key\n meta_data[\"affine\"] = new_affine\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotate90d_Rotate90d.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rotate90d_Rotate90d.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 397, "end_line": 422, "span_ids": ["Rotate90d.__call__", "Rotate90d.__init__", "Rotate90d"], "tokens": 249}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rotate90d(MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.Rotate90`.\n \"\"\"\n\n backend = Rotate90.backend\n\n def __init__(\n self, keys: KeysCollection, k: int = 1, spatial_axes: Tuple[int, int] = (0, 1), allow_missing_keys: bool = False\n ) -> None:\n \"\"\"\n Args:\n k: number of times to rotate by 90 degrees.\n spatial_axes: 2 int numbers, defines the plane to rotate with 2 spatial axes.\n Default: (0, 1), this is the first two axis in spatial dimensions.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.rotator = Rotate90(k, spatial_axes)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n self.push_transform(d, key)\n d[key] = self.rotator(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined_RandAffined.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined_RandAffined.__init__.self.padding_mode.ensure_tuple_rep_padding_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 708, "end_line": 800, "span_ids": ["RandAffined.__init__", "RandAffined"], "tokens": 1238}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandAffined(RandomizableTransform, MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.RandAffine`.\n \"\"\"\n\n backend = RandAffine.backend\n\n @deprecated_arg(name=\"as_tensor_output\", since=\"0.6\")\n def __init__(\n self,\n keys: KeysCollection,\n spatial_size: Optional[Union[Sequence[int], int]] = None,\n prob: float = 0.1,\n rotate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n shear_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n translate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n scale_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n mode: GridSampleModeSequence = GridSampleMode.BILINEAR,\n padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,\n cache_grid: bool = False,\n as_tensor_output: bool = True,\n device: Optional[torch.device] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n spatial_size: output image spatial size.\n if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,\n the transform will use the spatial size of `img`.\n if some components of the `spatial_size` are non-positive values, the transform will use the\n corresponding components of img size. For example, `spatial_size=(32, -1)` will be adapted\n to `(32, 64)` if the second spatial dimension size of img is `64`.\n prob: probability of returning a randomized affine grid.\n defaults to 0.1, with 10% chance returns a randomized grid.\n rotate_range: angle range in radians. If element `i` is a pair of (min, max) values, then\n `uniform[-rotate_range[i][0], rotate_range[i][1])` will be used to generate the rotation parameter\n for the `i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i])` will be used.\n This can be altered on a per-dimension basis. E.g., `((0,3), 1, ...)`: for dim0, rotation will be\n in range `[0, 3]`, and for dim1 `[-1, 1]` will be used. Setting a single value will use `[-x, x]`\n for dim0 and nothing for the remaining dimensions.\n shear_range: shear range with format matching `rotate_range`, it defines the range to randomly select\n shearing factors(a tuple of 2 floats for 2D, a tuple of 6 floats for 3D) for affine matrix,\n take a 3D affine as example::\n\n [\n [1.0, params[0], params[1], 0.0],\n [params[2], 1.0, params[3], 0.0],\n [params[4], params[5], 1.0, 0.0],\n [0.0, 0.0, 0.0, 1.0],\n ]\n\n translate_range: translate range with format matching `rotate_range`, it defines the range to randomly\n select pixel/voxel to translate for every spatial dims.\n scale_range: scaling range with format matching `rotate_range`. it defines the range to randomly select\n the scale factor to translate for every spatial dims. A value of 1.0 is added to the result.\n This allows 0 to correspond to no change (i.e., a scaling of 1.0).\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"reflection\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n cache_grid: whether to cache the identity sampling grid.\n If the spatial size is not dynamically defined by input image, enabling this option could\n accelerate the transform.\n device: device on which the tensor will be allocated.\n allow_missing_keys: don't raise exception if key is missing.\n\n See also:\n - :py:class:`monai.transforms.compose.MapTransform`\n - :py:class:`RandAffineGrid` for the random affine parameters configurations.\n\n .. deprecated:: 0.6.0\n ``as_tensor_output`` is deprecated.\n\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.rand_affine = RandAffine(\n prob=1.0, # because probability handled in this class\n rotate_range=rotate_range,\n shear_range=shear_range,\n translate_range=translate_range,\n scale_range=scale_range,\n spatial_size=spatial_size,\n cache_grid=cache_grid,\n device=device,\n )\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined.set_random_state_RandAffined.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandAffined.set_random_state_RandAffined.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 810, "end_line": 855, "span_ids": ["RandAffined.set_random_state", "RandAffined.__call__"], "tokens": 490}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandAffined(RandomizableTransform, MapTransform, InvertibleTransform):\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"RandAffined\":\n self.rand_affine.set_random_state(seed, state)\n super().set_random_state(seed, state)\n return self\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n first_key: Union[Hashable, List] = self.first_key(d)\n if first_key == []:\n return d\n\n self.randomize(None)\n # all the keys share the same random Affine factor\n self.rand_affine.randomize()\n\n device = self.rand_affine.resampler.device\n spatial_size = d[first_key].shape[1:] # type: ignore\n sp_size = fall_back_tuple(self.rand_affine.spatial_size, spatial_size)\n # change image size or do random transform\n do_resampling = self._do_transform or (sp_size != ensure_tuple(spatial_size))\n affine: torch.Tensor = torch.eye(len(sp_size) + 1, dtype=torch.float64, device=device)\n # converting affine to tensor because the resampler currently only support torch backend\n grid = None\n if do_resampling: # need to prepare grid\n grid = self.rand_affine.get_identity_grid(sp_size)\n if self._do_transform: # add some random factors\n grid = self.rand_affine.rand_affine_grid(grid=grid)\n affine = self.rand_affine.rand_affine_grid.get_transformation_matrix() # type: ignore[assignment]\n\n for key, mode, padding_mode in self.key_iterator(d, self.mode, self.padding_mode):\n self.push_transform(\n d,\n key,\n extra_info={\n \"affine\": affine,\n \"mode\": mode.value if isinstance(mode, Enum) else mode,\n \"padding_mode\": padding_mode.value if isinstance(padding_mode, Enum) else padding_mode,\n },\n )\n # do the transform\n if do_resampling:\n d[key] = self.rand_affine.resampler(d[key], grid, mode=mode, padding_mode=padding_mode)\n\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd_Rand2DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd_Rand2DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 871, "end_line": 964, "span_ids": ["Rand2DElasticd", "Rand2DElasticd.__init__"], "tokens": 1244}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand2DElasticd(RandomizableTransform, MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.Rand2DElastic`.\n \"\"\"\n\n backend = Rand2DElastic.backend\n\n @deprecated_arg(name=\"as_tensor_output\", since=\"0.6\")\n def __init__(\n self,\n keys: KeysCollection,\n spacing: Union[Tuple[float, float], float],\n magnitude_range: Tuple[float, float],\n spatial_size: Optional[Union[Tuple[int, int], int]] = None,\n prob: float = 0.1,\n rotate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n shear_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n translate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n scale_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n mode: GridSampleModeSequence = GridSampleMode.BILINEAR,\n padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,\n as_tensor_output: bool = False,\n device: Optional[torch.device] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n spacing: distance in between the control points.\n magnitude_range: 2 int numbers, the random offsets will be generated from\n ``uniform[magnitude[0], magnitude[1])``.\n spatial_size: specifying output image spatial size [h, w].\n if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,\n the transform will use the spatial size of `img`.\n if some components of the `spatial_size` are non-positive values, the transform will use the\n corresponding components of img size. For example, `spatial_size=(32, -1)` will be adapted\n to `(32, 64)` if the second spatial dimension size of img is `64`.\n prob: probability of returning a randomized affine grid.\n defaults to 0.1, with 10% chance returns a randomized grid,\n otherwise returns a ``spatial_size`` centered area extracted from the input image.\n rotate_range: angle range in radians. If element `i` is a pair of (min, max) values, then\n `uniform[-rotate_range[i][0], rotate_range[i][1])` will be used to generate the rotation parameter\n for the `i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i])` will be used.\n This can be altered on a per-dimension basis. E.g., `((0,3), 1, ...)`: for dim0, rotation will be\n in range `[0, 3]`, and for dim1 `[-1, 1]` will be used. Setting a single value will use `[-x, x]`\n for dim0 and nothing for the remaining dimensions.\n shear_range: shear range with format matching `rotate_range`, it defines the range to randomly select\n shearing factors(a tuple of 2 floats for 2D) for affine matrix, take a 2D affine as example::\n\n [\n [1.0, params[0], 0.0],\n [params[1], 1.0, 0.0],\n [0.0, 0.0, 1.0],\n ]\n\n translate_range: translate range with format matching `rotate_range`, it defines the range to randomly\n select pixel to translate for every spatial dims.\n scale_range: scaling range with format matching `rotate_range`. it defines the range to randomly select\n the scale factor to translate for every spatial dims. A value of 1.0 is added to the result.\n This allows 0 to correspond to no change (i.e., a scaling of 1.0).\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"reflection\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n device: device on which the tensor will be allocated.\n allow_missing_keys: don't raise exception if key is missing.\n\n See also:\n - :py:class:`RandAffineGrid` for the random affine parameters configurations.\n - :py:class:`Affine` for the affine transformation parameters configurations.\n\n .. deprecated:: 0.6.0\n ``as_tensor_output`` is deprecated.\n\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.rand_2d_elastic = Rand2DElastic(\n spacing=spacing,\n magnitude_range=magnitude_range,\n prob=1.0, # because probability controlled by this class\n rotate_range=rotate_range,\n shear_range=shear_range,\n translate_range=translate_range,\n scale_range=scale_range,\n spatial_size=spatial_size,\n device=device,\n )\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd.set_random_state_Rand2DElasticd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand2DElasticd.set_random_state_Rand2DElasticd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 978, "end_line": 1014, "span_ids": ["Rand2DElasticd.__call__", "Rand2DElasticd.set_random_state"], "tokens": 429}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand2DElasticd(RandomizableTransform, MapTransform):\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"Rand2DElasticd\":\n self.rand_2d_elastic.set_random_state(seed, state)\n super().set_random_state(seed, state)\n return self\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n first_key: Union[Hashable, List] = self.first_key(d)\n if first_key == []:\n return d\n\n self.randomize(None)\n\n sp_size = fall_back_tuple(self.rand_2d_elastic.spatial_size, d[first_key].shape[1:]) # type: ignore\n # all the keys share the same random elastic factor\n self.rand_2d_elastic.randomize(sp_size)\n\n if self._do_transform:\n grid = self.rand_2d_elastic.deform_grid(spatial_size=sp_size)\n grid = self.rand_2d_elastic.rand_affine_grid(grid=grid)\n grid = torch.nn.functional.interpolate( # type: ignore\n recompute_scale_factor=True,\n input=grid.unsqueeze(0),\n scale_factor=ensure_tuple_rep(self.rand_2d_elastic.deform_grid.spacing, 2),\n mode=InterpolateMode.BICUBIC.value,\n align_corners=False,\n )\n grid = CenterSpatialCrop(roi_size=sp_size)(grid[0])\n else:\n _device = self.rand_2d_elastic.deform_grid.device\n grid = create_grid(spatial_size=sp_size, device=_device, backend=\"torch\")\n\n for key, mode, padding_mode in self.key_iterator(d, self.mode, self.padding_mode):\n d[key] = self.rand_2d_elastic.resampler(d[key], grid, mode=mode, padding_mode=padding_mode)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd_Rand3DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd_Rand3DElasticd.__init__.self.padding_mode.ensure_tuple_rep_padding_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1001, "end_line": 1096, "span_ids": ["Rand3DElasticd", "Rand3DElasticd.__init__"], "tokens": 1312}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand3DElasticd(RandomizableTransform, MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.Rand3DElastic`.\n \"\"\"\n\n backend = Rand3DElastic.backend\n\n @deprecated_arg(name=\"as_tensor_output\", since=\"0.6\")\n def __init__(\n self,\n keys: KeysCollection,\n sigma_range: Tuple[float, float],\n magnitude_range: Tuple[float, float],\n spatial_size: Optional[Union[Tuple[int, int, int], int]] = None,\n prob: float = 0.1,\n rotate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n shear_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n translate_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n scale_range: Optional[Union[Sequence[Union[Tuple[float, float], float]], float]] = None,\n mode: GridSampleModeSequence = GridSampleMode.BILINEAR,\n padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,\n as_tensor_output: bool = False,\n device: Optional[torch.device] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n sigma_range: a Gaussian kernel with standard deviation sampled from\n ``uniform[sigma_range[0], sigma_range[1])`` will be used to smooth the random offset grid.\n magnitude_range: the random offsets on the grid will be generated from\n ``uniform[magnitude[0], magnitude[1])``.\n spatial_size: specifying output image spatial size [h, w, d].\n if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,\n the transform will use the spatial size of `img`.\n if some components of the `spatial_size` are non-positive values, the transform will use the\n corresponding components of img size. For example, `spatial_size=(32, 32, -1)` will be adapted\n to `(32, 32, 64)` if the third spatial dimension size of img is `64`.\n prob: probability of returning a randomized affine grid.\n defaults to 0.1, with 10% chance returns a randomized grid,\n otherwise returns a ``spatial_size`` centered area extracted from the input image.\n rotate_range: angle range in radians. If element `i` is a pair of (min, max) values, then\n `uniform[-rotate_range[i][0], rotate_range[i][1])` will be used to generate the rotation parameter\n for the `i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i])` will be used.\n This can be altered on a per-dimension basis. E.g., `((0,3), 1, ...)`: for dim0, rotation will be\n in range `[0, 3]`, and for dim1 `[-1, 1]` will be used. Setting a single value will use `[-x, x]`\n for dim0 and nothing for the remaining dimensions.\n shear_range: shear range with format matching `rotate_range`, it defines the range to randomly select\n shearing factors(a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example::\n\n [\n [1.0, params[0], params[1], 0.0],\n [params[2], 1.0, params[3], 0.0],\n [params[4], params[5], 1.0, 0.0],\n [0.0, 0.0, 0.0, 1.0],\n ]\n\n translate_range: translate range with format matching `rotate_range`, it defines the range to randomly\n select voxel to translate for every spatial dims.\n scale_range: scaling range with format matching `rotate_range`. it defines the range to randomly select\n the scale factor to translate for every spatial dims. A value of 1.0 is added to the result.\n This allows 0 to correspond to no change (i.e., a scaling of 1.0).\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"reflection\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n device: device on which the tensor will be allocated.\n allow_missing_keys: don't raise exception if key is missing.\n\n See also:\n - :py:class:`RandAffineGrid` for the random affine parameters configurations.\n - :py:class:`Affine` for the affine transformation parameters configurations.\n\n .. deprecated:: 0.6.0\n ``as_tensor_output`` is deprecated.\n\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.rand_3d_elastic = Rand3DElastic(\n sigma_range=sigma_range,\n magnitude_range=magnitude_range,\n prob=1.0, # because probability controlled by this class\n rotate_range=rotate_range,\n shear_range=shear_range,\n translate_range=translate_range,\n scale_range=scale_range,\n spatial_size=spatial_size,\n device=device,\n )\n self.mode = ensure_tuple_rep(mode, len(self.keys))\n self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd.set_random_state_Rand3DElasticd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Rand3DElasticd.set_random_state_Rand3DElasticd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1114, "end_line": 1144, "span_ids": ["Rand3DElasticd.set_random_state", "Rand3DElasticd.__call__"], "tokens": 402}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Rand3DElasticd(RandomizableTransform, MapTransform):\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"Rand3DElasticd\":\n self.rand_3d_elastic.set_random_state(seed, state)\n super().set_random_state(seed, state)\n return self\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n first_key: Union[Hashable, List] = self.first_key(d)\n if first_key == []:\n return d\n\n self.randomize(None)\n\n sp_size = fall_back_tuple(self.rand_3d_elastic.spatial_size, d[first_key].shape[1:]) # type: ignore\n # all the keys share the same random elastic factor\n self.rand_3d_elastic.randomize(sp_size)\n\n _device = self.rand_3d_elastic.device\n grid = create_grid(spatial_size=sp_size, device=_device, backend=\"torch\")\n if self._do_transform:\n device = self.rand_3d_elastic.device\n gaussian = GaussianFilter(spatial_dims=3, sigma=self.rand_3d_elastic.sigma, truncated=3.0).to(device)\n offset = torch.as_tensor(self.rand_3d_elastic.rand_offset, device=device).unsqueeze(0)\n grid[:3] += gaussian(offset)[0] * self.rand_3d_elastic.magnitude\n grid = self.rand_3d_elastic.rand_affine_grid(grid=grid)\n\n for key, mode, padding_mode in self.key_iterator(d, self.mode, self.padding_mode):\n d[key] = self.rand_3d_elastic.resampler(d[key], grid, mode=mode, padding_mode=padding_mode)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandFlipd_RandFlipd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandFlipd_RandFlipd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1170, "end_line": 1212, "span_ids": ["RandFlipd", "RandFlipd.__init__", "RandFlipd.__call__", "RandFlipd.set_random_state"], "tokens": 363}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandFlipd(RandomizableTransform, MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandFlip`.\n\n See `numpy.flip` for additional details.\n https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html\n\n Args:\n keys: Keys to pick data for transformation.\n prob: Probability of flipping.\n spatial_axis: Spatial axes along which to flip over. Default is None.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n\n backend = RandFlip.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n prob: float = 0.1,\n spatial_axis: Optional[Union[Sequence[int], int]] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.flipper = RandFlip(prob=1.0, spatial_axis=spatial_axis)\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"RandFlipd\":\n super().set_random_state(seed, state)\n self.flipper.set_random_state(seed, state)\n return self\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n self.randomize(None)\n\n for key in self.key_iterator(d):\n if self._do_transform:\n d[key] = self.flipper(d[key], randomize=False)\n self.push_transform(d, key)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.__call___RandRotated.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_RandRotated.__call___RandRotated.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1456, "end_line": 1488, "span_ids": ["RandRotated.__call__"], "tokens": 280}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandRotated(RandomizableTransform, MapTransform, InvertibleTransform):\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n self.randomize(None)\n\n # all the keys share the same random rotate angle\n self.rand_rotate.randomize()\n for key, mode, padding_mode, align_corners, dtype in self.key_iterator(\n d, self.mode, self.padding_mode, self.align_corners, self.dtype\n ):\n if self._do_transform:\n d[key], rot_mat = self.rand_rotate(\n d[key],\n mode=mode,\n padding_mode=padding_mode,\n align_corners=align_corners,\n dtype=dtype,\n randomize=False,\n get_matrix=True,\n )\n else:\n rot_mat = np.eye(d[key].ndim)\n self.push_transform(\n d,\n key,\n orig_size=d[key].shape[1:],\n extra_info={\n \"rot_mat\": rot_mat,\n \"mode\": mode.value if isinstance(mode, Enum) else mode,\n \"padding_mode\": padding_mode.value if isinstance(padding_mode, Enum) else padding_mode,\n \"align_corners\": align_corners if align_corners is not None else TraceKeys.NONE,\n },\n )\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_SpacingD_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_SpacingD_", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1873, "end_line": 1891, "span_ids": ["impl:14"], "tokens": 227}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "SpacingD = SpacingDict = Spacingd\nOrientationD = OrientationDict = Orientationd\nRotate90D = Rotate90Dict = Rotate90d\nRandRotate90D = RandRotate90Dict = RandRotate90d\nResizeD = ResizeDict = Resized\nAffineD = AffineDict = Affined\nRandAffineD = RandAffineDict = RandAffined\nRand2DElasticD = Rand2DElasticDict = Rand2DElasticd\nRand3DElasticD = Rand3DElasticDict = Rand3DElasticd\nFlipD = FlipDict = Flipd\nRandFlipD = RandFlipDict = RandFlipd\nGridDistortionD = GridDistortionDict = GridDistortiond\nRandGridDistortionD = RandGridDistortionDict = RandGridDistortiond\nRandAxisFlipD = RandAxisFlipDict = RandAxisFlipd\nRotateD = RotateDict = Rotated\nRandRotateD = RandRotateDict = RandRotated\nZoomD = ZoomDict = Zoomd\nRandZoomD = RandZoomDict = RandZoomd", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddChannel_AddChannel.__call__.return.img_None_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_AddChannel_AddChannel.__call__.return.img_None_", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 161, "end_line": 181, "span_ids": ["AddChannel.__call__", "AddChannel"], "tokens": 180}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AddChannel(Transform):\n \"\"\"\n Adds a 1-length channel dimension to the input image.\n\n Most of the image transformations in ``monai.transforms``\n assumes the input image is in the channel-first format, which has the shape\n (num_channels, spatial_dim_1[, spatial_dim_2, ...]).\n\n This transform could be used, for example, to convert a (spatial_dim_1[, spatial_dim_2, ...])\n spatial image into the channel-first format so that the\n multidimensional image array can be correctly interpreted by the other\n transforms.\n \"\"\"\n\n backend = [TransformBackends.TORCH, TransformBackends.NUMPY]\n\n def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor:\n \"\"\"\n Apply the transform to `img`.\n \"\"\"\n return img[None]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_DataStats.__call___DataStats.__call__.return.img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_DataStats.__call___DataStats.__call__.return.img", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 562, "end_line": 596, "span_ids": ["DataStats.__call__"], "tokens": 379}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DataStats(Transform):\n\n def __call__(\n self,\n img: NdarrayOrTensor,\n prefix: Optional[str] = None,\n data_type: Optional[bool] = None,\n data_shape: Optional[bool] = None,\n value_range: Optional[bool] = None,\n data_value: Optional[bool] = None,\n additional_info: Optional[Callable] = None,\n ) -> NdarrayOrTensor:\n \"\"\"\n Apply the transform to `img`, optionally take arguments similar to the class constructor.\n \"\"\"\n lines = [f\"{prefix or self.prefix} statistics:\"]\n\n if self.data_type if data_type is None else data_type:\n lines.append(f\"Type: {type(img)} {img.dtype if hasattr(img, 'dtype') else None}\")\n if self.data_shape if data_shape is None else data_shape:\n lines.append(f\"Shape: {img.shape}\")\n if self.value_range if value_range is None else value_range:\n if isinstance(img, np.ndarray):\n lines.append(f\"Value range: ({np.min(img)}, {np.max(img)})\")\n elif isinstance(img, torch.Tensor):\n lines.append(f\"Value range: ({torch.min(img)}, {torch.max(img)})\")\n else:\n lines.append(f\"Value range: (not a PyTorch or Numpy array, type: {type(img)})\")\n if self.data_value if data_value is None else data_value:\n lines.append(f\"Value: {img}\")\n additional_info = self.additional_info if additional_info is None else additional_info\n if additional_info is not None:\n lines.append(f\"Additional info: {additional_info(img)}\")\n separator = \"\\n\"\n output = f\"{separator.join(lines)}\"\n logging.getLogger(self._logger_name).info(output)\n return img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_SimulateDelay_SimulateDelay.__call__.return.img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_SimulateDelay_SimulateDelay.__call__.return.img", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 599, "end_line": 630, "span_ids": ["SimulateDelay.__call__", "SimulateDelay.__init__", "SimulateDelay"], "tokens": 276}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SimulateDelay(Transform):\n \"\"\"\n This is a pass through transform to be used for testing purposes. It allows\n adding fake behaviors that are useful for testing purposes to simulate\n how large datasets behave without needing to test on large data sets.\n\n For example, simulating slow NFS data transfers, or slow network transfers\n in testing by adding explicit timing delays. Testing of small test data\n can lead to incomplete understanding of real world issues, and may lead\n to sub-optimal design choices.\n \"\"\"\n\n backend = [TransformBackends.TORCH, TransformBackends.NUMPY]\n\n def __init__(self, delay_time: float = 0.0) -> None:\n \"\"\"\n Args:\n delay_time: The minimum amount of time, in fractions of seconds,\n to accomplish this delay task.\n \"\"\"\n super().__init__()\n self.delay_time: float = delay_time\n\n def __call__(self, img: NdarrayOrTensor, delay_time: Optional[float] = None) -> NdarrayOrTensor:\n \"\"\"\n Args:\n img: data remain unchanged throughout this transform.\n delay_time: The minimum amount of time, in fractions of seconds,\n to accomplish this delay task.\n \"\"\"\n time.sleep(self.delay_time if delay_time is None else delay_time)\n return img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_LabelToMask_LabelToMask.__init__.self.merge_channels.merge_channels": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_LabelToMask_LabelToMask.__init__.self.merge_channels.merge_channels", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 706, "end_line": 731, "span_ids": ["LabelToMask.__init__", "LabelToMask"], "tokens": 313}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LabelToMask(Transform):\n \"\"\"\n Convert labels to mask for other tasks. A typical usage is to convert segmentation labels\n to mask data to pre-process images and then feed the images into classification network.\n It can support single channel labels or One-Hot labels with specified `select_labels`.\n For example, users can select `label value = [2, 3]` to construct mask data, or select the\n second and the third channels of labels to construct mask data.\n The output mask data can be a multiple channels binary data or a single channel binary\n data that merges all the channels.\n\n Args:\n select_labels: labels to generate mask from. for 1 channel label, the `select_labels`\n is the expected label values, like: [1, 2, 3]. for One-Hot format label, the\n `select_labels` is the expected channel indices.\n merge_channels: whether to use `np.any()` to merge the result on channel dim. if yes,\n will return a single channel mask with binary data.\n\n \"\"\"\n\n backend = [TransformBackends.TORCH, TransformBackends.NUMPY]\n\n def __init__( # pytype: disable=annotation-type-mismatch\n self, select_labels: Union[Sequence[int], int], merge_channels: bool = False\n ) -> None: # pytype: disable=annotation-type-mismatch\n self.select_labels = ensure_tuple(select_labels)\n self.merge_channels = merge_channels", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelFirstd_AsChannelFirstd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelFirstd_AsChannelFirstd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 202, "end_line": 224, "span_ids": ["AsChannelFirstd.__init__", "AsChannelFirstd.__call__", "AsChannelFirstd"], "tokens": 216}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AsChannelFirstd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.AsChannelFirst`.\n \"\"\"\n\n backend = AsChannelFirst.backend\n\n def __init__(self, keys: KeysCollection, channel_dim: int = -1, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n channel_dim: which dimension of input image is the channel, default is the last dimension.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = AsChannelFirst(channel_dim=channel_dim)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelLastd_AsChannelLastd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AsChannelLastd_AsChannelLastd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 227, "end_line": 249, "span_ids": ["AsChannelLastd.__call__", "AsChannelLastd.__init__", "AsChannelLastd"], "tokens": 216}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AsChannelLastd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.AsChannelLast`.\n \"\"\"\n\n backend = AsChannelLast.backend\n\n def __init__(self, keys: KeysCollection, channel_dim: int = 0, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n channel_dim: which dimension of input image is the channel, default is the first dimension.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = AsChannelLast(channel_dim=channel_dim)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AddChanneld_AddChanneld.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_AddChanneld_AddChanneld.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 252, "end_line": 273, "span_ids": ["AddChanneld.__call__", "AddChanneld.__init__", "AddChanneld"], "tokens": 183}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AddChanneld(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.AddChannel`.\n \"\"\"\n\n backend = AddChannel.backend\n\n def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.adder = AddChannel()\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.adder(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RepeatChanneld_RepeatChanneld.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_RepeatChanneld_RepeatChanneld.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 317, "end_line": 339, "span_ids": ["RepeatChanneld.__init__", "RepeatChanneld", "RepeatChanneld.__call__"], "tokens": 201}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RepeatChanneld(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.RepeatChannel`.\n \"\"\"\n\n backend = RepeatChannel.backend\n\n def __init__(self, keys: KeysCollection, repeats: int, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n repeats: the number of repetitions for each element.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.repeater = RepeatChannel(repeats)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.repeater(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_CastToTyped_CastToTyped.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_CastToTyped_CastToTyped.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 413, "end_line": 445, "span_ids": ["CastToTyped", "CastToTyped.__init__", "CastToTyped.__call__"], "tokens": 282}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CastToTyped(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.CastToType`.\n \"\"\"\n\n backend = CastToType.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n dtype: Union[Sequence[Union[DtypeLike, torch.dtype]], DtypeLike, torch.dtype] = np.float32,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n dtype: convert image to this data type, default is `np.float32`.\n it also can be a sequence of dtypes or torch.dtype,\n each element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n MapTransform.__init__(self, keys, allow_missing_keys)\n self.dtype = ensure_tuple_rep(dtype, len(self.keys))\n self.converter = CastToType()\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key, dtype in self.key_iterator(d, self.dtype):\n d[key] = self.converter(d[key], dtype=dtype)\n\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToNumpyd_ToNumpyd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ToNumpyd_ToNumpyd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 554, "end_line": 584, "span_ids": ["ToNumpyd.__init__", "ToNumpyd", "ToNumpyd.__call__"], "tokens": 289}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ToNumpyd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.ToNumpy`.\n \"\"\"\n\n backend = ToNumpy.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n dtype: DtypeLike = None,\n wrap_sequence: bool = True,\n allow_missing_keys: bool = False,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n dtype: target data type when converting to numpy array.\n wrap_sequence: if `False`, then lists will recursively call this function, default to `True`.\n E.g., if `False`, `[1, 2]` -> `[array(1), array(2)]`, if `True`, then `[1, 2]` -> `array([1, 2])`.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = ToNumpy(dtype=dtype, wrap_sequence=wrap_sequence)\n\n def __call__(self, data: Mapping[Hashable, Any]) -> Dict[Hashable, Any]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SqueezeDimd_SqueezeDimd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SqueezeDimd_SqueezeDimd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 706, "end_line": 728, "span_ids": ["SqueezeDimd.__init__", "SqueezeDimd", "SqueezeDimd.__call__"], "tokens": 211}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SqueezeDimd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.SqueezeDim`.\n \"\"\"\n\n backend = SqueezeDim.backend\n\n def __init__(self, keys: KeysCollection, dim: int = 0, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n dim: dimension to be squeezed. Default: 0 (the first dimension)\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.converter = SqueezeDim(dim=dim)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SimulateDelayd_SimulateDelayd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_SimulateDelayd_SimulateDelayd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 793, "end_line": 820, "span_ids": ["SimulateDelayd.__init__", "SimulateDelayd.__call__", "SimulateDelayd"], "tokens": 276}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SimulateDelayd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.SimulateDelay`.\n \"\"\"\n\n backend = SimulateDelay.backend\n\n def __init__(\n self, keys: KeysCollection, delay_time: Union[Sequence[float], float] = 0.0, allow_missing_keys: bool = False\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n delay_time: The minimum amount of time, in fractions of seconds, to accomplish this identity task.\n It also can be a sequence of string, each element corresponds to a key in ``keys``.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.delay_time = ensure_tuple_rep(delay_time, len(self.keys))\n self.delayer = SimulateDelay()\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key, delay_time in self.key_iterator(d, self.delay_time):\n d[key] = self.delayer(d[key], delay_time=delay_time)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd_ConcatItemsd.__init__.self.dim.dim": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd_ConcatItemsd.__init__.self.dim.dim", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 882, "end_line": 901, "span_ids": ["ConcatItemsd", "ConcatItemsd.__init__"], "tokens": 198}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ConcatItemsd(MapTransform):\n \"\"\"\n Concatenate specified items from data dictionary together on the first dim to construct a big array.\n Expect all the items are numpy array or PyTorch Tensor.\n \"\"\"\n\n backend = [TransformBackends.TORCH, TransformBackends.NUMPY]\n\n def __init__(self, keys: KeysCollection, name: str, dim: int = 0, allow_missing_keys: bool = False) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be concatenated together.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n name: the name corresponding to the key to store the concatenated data.\n dim: on which dimension to concatenate the items, default is 0.\n allow_missing_keys: don't raise exception if key is missing.\n \"\"\"\n super().__init__(keys, allow_missing_keys)\n self.name = name\n self.dim = dim", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd.__call___ConcatItemsd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_ConcatItemsd.__call___ConcatItemsd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 922, "end_line": 948, "span_ids": ["ConcatItemsd.__call__"], "tokens": 241}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ConcatItemsd(MapTransform):\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n \"\"\"\n Raises:\n TypeError: When items in ``data`` differ in type.\n TypeError: When the item type is not in ``Union[numpy.ndarray, torch.Tensor]``.\n\n \"\"\"\n d = dict(data)\n output = []\n data_type = None\n for key in self.key_iterator(d):\n if data_type is None:\n data_type = type(d[key])\n elif not isinstance(d[key], data_type):\n raise TypeError(\"All items in data must have the same type.\")\n output.append(d[key])\n\n if len(output) == 0:\n return d\n\n if data_type is np.ndarray:\n d[self.name] = np.concatenate(output, axis=self.dim)\n elif data_type is torch.Tensor:\n d[self.name] = torch.cat(output, dim=self.dim) # type: ignore\n else:\n raise TypeError(f\"Unsupported data type: {data_type}, available options are (numpy.ndarray, torch.Tensor).\")\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_LabelToMaskd_LabelToMaskd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_LabelToMaskd_LabelToMaskd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1056, "end_line": 1089, "span_ids": ["LabelToMaskd", "LabelToMaskd.__init__", "LabelToMaskd.__call__"], "tokens": 331}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LabelToMaskd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.LabelToMask`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n select_labels: labels to generate mask from. for 1 channel label, the `select_labels`\n is the expected label values, like: [1, 2, 3]. for One-Hot format label, the\n `select_labels` is the expected channel indices.\n merge_channels: whether to use `np.any()` to merge the result on channel dim.\n if yes, will return a single channel mask with binary data.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n backend = LabelToMask.backend\n\n def __init__( # pytype: disable=annotation-type-mismatch\n self,\n keys: KeysCollection,\n select_labels: Union[Sequence[int], int],\n merge_channels: bool = False,\n allow_missing_keys: bool = False,\n ) -> None: # pytype: disable=annotation-type-mismatch\n super().__init__(keys, allow_missing_keys)\n self.converter = LabelToMask(select_labels=select_labels, merge_channels=merge_channels)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_IdentityD_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_IdentityD_", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1636, "end_line": 1675, "span_ids": ["impl:5"], "tokens": 538}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "IdentityD = IdentityDict = Identityd\nAsChannelFirstD = AsChannelFirstDict = AsChannelFirstd\nAsChannelLastD = AsChannelLastDict = AsChannelLastd\nAddChannelD = AddChannelDict = AddChanneld\nEnsureChannelFirstD = EnsureChannelFirstDict = EnsureChannelFirstd\nRemoveRepeatedChannelD = RemoveRepeatedChannelDict = RemoveRepeatedChanneld\nRepeatChannelD = RepeatChannelDict = RepeatChanneld\nSplitChannelD = SplitChannelDict = SplitChanneld\nCastToTypeD = CastToTypeDict = CastToTyped\nToTensorD = ToTensorDict = ToTensord\nEnsureTypeD = EnsureTypeDict = EnsureTyped\nToNumpyD = ToNumpyDict = ToNumpyd\nToCupyD = ToCupyDict = ToCupyd\nToPILD = ToPILDict = ToPILd\nTransposeD = TransposeDict = Transposed\nDeleteItemsD = DeleteItemsDict = DeleteItemsd\nSelectItemsD = SelectItemsDict = SelectItemsd\nSqueezeDimD = SqueezeDimDict = SqueezeDimd\nDataStatsD = DataStatsDict = DataStatsd\nSimulateDelayD = SimulateDelayDict = SimulateDelayd\nCopyItemsD = CopyItemsDict = CopyItemsd\nConcatItemsD = ConcatItemsDict = ConcatItemsd\nLambdaD = LambdaDict = Lambdad\nLabelToMaskD = LabelToMaskDict = LabelToMaskd\nFgBgToIndicesD = FgBgToIndicesDict = FgBgToIndicesd\nClassesToIndicesD = ClassesToIndicesDict = ClassesToIndicesd\nConvertToMultiChannelBasedOnBratsClassesD = (\n ConvertToMultiChannelBasedOnBratsClassesDict\n) = ConvertToMultiChannelBasedOnBratsClassesd\nAddExtremePointsChannelD = AddExtremePointsChannelDict = AddExtremePointsChanneld\nTorchVisionD = TorchVisionDict = TorchVisiond\nRandTorchVisionD = RandTorchVisionDict = RandTorchVisiond\nRandLambdaD = RandLambdaDict = RandLambdad\nMapLabelValueD = MapLabelValueDict = MapLabelValued\nIntensityStatsD = IntensityStatsDict = IntensityStatsd\nToDeviceD = ToDeviceDict = ToDeviced\nCuCIMD = CuCIMDict = CuCIMd\nRandCuCIMD = RandCuCIMDict = RandCuCIMd\nAddCoordinateChannelsD = AddCoordinateChannelsDict = AddCoordinateChannelsd", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_rescale_array_rescale_array._rescale_by_minv_and_max": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_rescale_array_rescale_array._rescale_by_minv_and_max", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 151, "end_line": 179, "span_ids": ["rescale_array"], "tokens": 310}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def rescale_array(\n arr: NdarrayOrTensor,\n minv: Optional[float] = 0.0,\n maxv: Optional[float] = 1.0,\n dtype: Optional[Union[DtypeLike, torch.dtype]] = np.float32,\n) -> NdarrayOrTensor:\n \"\"\"\n Rescale the values of numpy array `arr` to be from `minv` to `maxv`.\n If either `minv` or `maxv` is None, it returns `(a - min_a) / (max_a - min_a)`.\n\n Args:\n arr: input array to rescale.\n minv: minimum value of target rescaled array.\n maxv: maxmum value of target rescaled array.\n dtype: if not None, convert input array to dtype before computation.\n\n \"\"\"\n if dtype is not None:\n arr, *_ = convert_data_type(arr, dtype=dtype)\n mina = arr.min()\n maxa = arr.max()\n\n if mina == maxa:\n return arr * minv if minv is not None else arr\n\n norm = (arr - mina) / (maxa - mina) # normalize the array first\n if (minv is None) or (maxv is None):\n return norm\n return (norm * (maxv - minv)) + minv # rescale by minv and maxv, which is the normalized array by default", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_copypaste_arrays_copypaste_arrays.return.tuple_srcslices_tuple_d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_copypaste_arrays_copypaste_arrays.return.tuple_srcslices_tuple_d", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 191, "end_line": 244, "span_ids": ["copypaste_arrays"], "tokens": 658}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def copypaste_arrays(\n src_shape, dest_shape, srccenter: Sequence[int], destcenter: Sequence[int], dims: Sequence[Optional[int]]\n) -> Tuple[Tuple[slice, ...], Tuple[slice, ...]]:\n \"\"\"\n Calculate the slices to copy a sliced area of array in `src_shape` into array in `dest_shape`.\n\n The area has dimensions `dims` (use 0 or None to copy everything in that dimension),\n the source area is centered at `srccenter` index in `src` and copied into area centered at `destcenter` in `dest`.\n The dimensions of the copied area will be clipped to fit within the\n source and destination arrays so a smaller area may be copied than expected. Return value is the tuples of slice\n objects indexing the copied area in `src`, and those indexing the copy area in `dest`.\n\n Example\n\n .. code-block:: python\n\n src_shape = (6,6)\n src = np.random.randint(0,10,src_shape)\n dest = np.zeros_like(src)\n srcslices, destslices = copypaste_arrays(src_shape, dest.shape, (3, 2),(2, 1),(3, 4))\n dest[destslices] = src[srcslices]\n print(src)\n print(dest)\n\n >>> [[9 5 6 6 9 6]\n [4 3 5 6 1 2]\n [0 7 3 2 4 1]\n [3 0 0 1 5 1]\n [9 4 7 1 8 2]\n [6 6 5 8 6 7]]\n [[0 0 0 0 0 0]\n [7 3 2 4 0 0]\n [0 0 1 5 0 0]\n [4 7 1 8 0 0]\n [0 0 0 0 0 0]\n [0 0 0 0 0 0]]\n\n \"\"\"\n s_ndim = len(src_shape)\n d_ndim = len(dest_shape)\n srcslices = [slice(None)] * s_ndim\n destslices = [slice(None)] * d_ndim\n\n for i, ss, ds, sc, dc, dim in zip(range(s_ndim), src_shape, dest_shape, srccenter, destcenter, dims):\n if dim:\n # dimension before midpoint, clip to size fitting in both arrays\n d1 = np.clip(dim // 2, 0, min(sc, dc))\n # dimension after midpoint, clip to size fitting in both arrays\n d2 = np.clip(dim // 2 + 1, 0, min(ss - sc, ds - dc))\n\n srcslices[i] = slice(sc - d1, sc + d2)\n destslices[i] = slice(dc - d1, dc + d2)\n\n return tuple(srcslices), tuple(destslices)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_spatial_bounding_box_generate_spatial_bounding_box.return.box_start_box_end": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_spatial_bounding_box_generate_spatial_bounding_box.return.box_start_box_end", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 869, "end_line": 921, "span_ids": ["generate_spatial_bounding_box"], "tokens": 601}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def generate_spatial_bounding_box(\n img: NdarrayOrTensor,\n select_fn: Callable = is_positive,\n channel_indices: Optional[IndexSelection] = None,\n margin: Union[Sequence[int], int] = 0,\n) -> Tuple[List[int], List[int]]:\n \"\"\"\n generate the spatial bounding box of foreground in the image with start-end positions (inclusive).\n Users can define arbitrary function to select expected foreground from the whole image or specified channels.\n And it can also add margin to every dim of the bounding box.\n The output format of the coordinates is:\n\n [1st_spatial_dim_start, 2nd_spatial_dim_start, ..., Nth_spatial_dim_start],\n [1st_spatial_dim_end, 2nd_spatial_dim_end, ..., Nth_spatial_dim_end]\n\n The bounding boxes edges are aligned with the input image edges.\n This function returns [-1, -1, ...], [-1, -1, ...] if there's no positive intensity.\n\n Args:\n img: source image to generate bounding box from.\n select_fn: function to select expected foreground, default is to select values > 0.\n channel_indices: if defined, select foreground only on the specified channels\n of image. if None, select foreground on the whole image.\n margin: add margin value to spatial dims of the bounding box, if only 1 value provided, use it for all dims.\n \"\"\"\n data = img[list(ensure_tuple(channel_indices))] if channel_indices is not None else img\n data = select_fn(data).any(0)\n ndim = len(data.shape)\n margin = ensure_tuple_rep(margin, ndim)\n for m in margin:\n if m < 0:\n raise ValueError(\"margin value should not be negative number.\")\n\n box_start = [0] * ndim\n box_end = [0] * ndim\n\n for di, ax in enumerate(itertools.combinations(reversed(range(ndim)), ndim - 1)):\n dt = data\n if len(ax) != 0:\n dt = any_np_pt(dt, ax)\n\n if not dt.any():\n # if no foreground, return all zero bounding box coords\n return [0] * ndim, [0] * ndim\n\n arg_max = where(dt == dt.max())[0]\n min_d = max(arg_max[0] - margin[di], 0)\n max_d = arg_max[-1] + margin[di] + 1\n\n box_start[di] = min_d.detach().cpu().item() if isinstance(min_d, torch.Tensor) else min_d # type: ignore\n box_end[di] = max_d.detach().cpu().item() if isinstance(max_d, torch.Tensor) else max_d # type: ignore\n\n return box_start, box_end", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_resolve_name_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_resolve_name_", "embedding": null, "metadata": {"file_path": "monai/utils/aliases.py", "file_name": "aliases.py", "file_type": "text/x-python", "category": "implementation", "start_line": 46, "end_line": 103, "span_ids": ["resolve_name"], "tokens": 618}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def resolve_name(name):\n \"\"\"\n Search for the declaration (function or class) with the given name. This will first search the list of aliases to\n see if it was declared with this aliased name, then search treating `name` as a fully qualified name, then search\n the loaded modules for one having a declaration with the given name. If no declaration is found, raise ValueError.\n\n Raises:\n ValueError: When the module is not found.\n ValueError: When the module does not have the specified member.\n ValueError: When multiple modules with the declaration name are found.\n ValueError: When no module with the specified member is found.\n\n \"\"\"\n # attempt to resolve an alias\n with alias_lock:\n obj = GlobalAliases.get(name)\n\n if name in GlobalAliases and obj is None:\n raise AssertionError\n\n # attempt to resolve a qualified name\n if obj is None and \".\" in name:\n modname, declname = name.rsplit(\".\", 1)\n\n try:\n mod = importlib.import_module(modname)\n obj = getattr(mod, declname, None)\n except ModuleNotFoundError as not_found_err:\n raise ValueError(f\"Module {modname!r} not found.\") from not_found_err\n\n if obj is None:\n raise ValueError(f\"Module {modname!r} does not have member {declname!r}.\")\n\n # attempt to resolve a simple name\n if obj is None:\n # Get all modules having the declaration/import, need to check here that getattr returns something which doesn't\n # equate to False since in places __getattr__ returns 0 incorrectly:\n # https://github.com/tensorflow/tensorboard/blob/a22566561d2b4fea408755a951ac9eaf3a156f8e/tensorboard/compat/tensorflow_stub/pywrap_tensorflow.py#L35 # noqa: B950\n mods = [m for m in list(sys.modules.values()) if getattr(m, name, None)]\n\n if len(mods) > 0: # found modules with this declaration or import\n if len(mods) > 1: # found multiple modules, need to determine if ambiguous or just multiple imports\n foundmods = {inspect.getmodule(getattr(m, name)) for m in mods} # resolve imports\n foundmods = {m for m in foundmods if m is not None}\n\n if len(foundmods) > 1: # found multiple declarations with the same name\n modnames = [m.__name__ for m in foundmods]\n msg = f\"Multiple modules ({modnames!r}) with declaration name {name!r} found, resolution is ambiguous.\"\n raise ValueError(msg)\n mods = list(foundmods)\n\n obj = getattr(mods[0], name)\n\n if obj is None:\n raise ValueError(f\"No module with member {name!r} found.\")\n\n return obj", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_fall_back_tuple_fall_back_tuple.return.tuple_use_the_default": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_fall_back_tuple_fall_back_tuple.return.tuple_use_the_default", "embedding": null, "metadata": {"file_path": "monai/utils/misc.py", "file_name": "misc.py", "file_type": "text/x-python", "category": "implementation", "start_line": 134, "end_line": 177, "span_ids": ["fall_back_tuple"], "tokens": 466}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def fall_back_tuple(\n user_provided: Any, default: Union[Sequence, np.ndarray], func: Callable = lambda x: x and x > 0\n) -> Tuple[Any, ...]:\n \"\"\"\n Refine `user_provided` according to the `default`, and returns as a validated tuple.\n\n The validation is done for each element in `user_provided` using `func`.\n If `func(user_provided[idx])` returns False, the corresponding `default[idx]` will be used\n as the fallback.\n\n Typically used when `user_provided` is a tuple of window size provided by the user,\n `default` is defined by data, this function returns an updated `user_provided` with its non-positive\n components replaced by the corresponding components from `default`.\n\n Args:\n user_provided: item to be validated.\n default: a sequence used to provided the fallbacks.\n func: a Callable to validate every components of `user_provided`.\n\n Examples::\n\n >>> fall_back_tuple((1, 2), (32, 32))\n (1, 2)\n >>> fall_back_tuple(None, (32, 32))\n (32, 32)\n >>> fall_back_tuple((-1, 10), (32, 32))\n (32, 10)\n >>> fall_back_tuple((-1, None), (32, 32))\n (32, 32)\n >>> fall_back_tuple((1, None), (32, 32))\n (1, 32)\n >>> fall_back_tuple(0, (32, 32))\n (32, 32)\n >>> fall_back_tuple(range(3), (32, 64, 48))\n (32, 1, 2)\n >>> fall_back_tuple([0], (32, 32))\n ValueError: Sequence must have length 2, got length 1.\n\n \"\"\"\n ndim = len(default)\n user = ensure_tuple_rep(user_provided, ndim)\n return tuple( # use the default values if user provided is not valid\n user_c if func(user_c) else default_c for default_c, user_c in zip(default, user)\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_is_scalar_tensor_get_seed.return._seed": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_is_scalar_tensor_get_seed.return._seed", "embedding": null, "metadata": {"file_path": "monai/utils/misc.py", "file_name": "misc.py", "file_type": "text/x-python", "category": "implementation", "start_line": 185, "end_line": 215, "span_ids": ["is_scalar", "is_scalar_tensor", "progress_bar", "get_seed"], "tokens": 287}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def is_scalar_tensor(val: Any) -> bool:\n return isinstance(val, torch.Tensor) and val.ndim == 0\n\n\ndef is_scalar(val: Any) -> bool:\n if isinstance(val, torch.Tensor) and val.ndim == 0:\n return True\n return bool(np.isscalar(val))\n\n\ndef progress_bar(index: int, count: int, desc: Optional[str] = None, bar_len: int = 30, newline: bool = False) -> None:\n \"\"\"print a progress bar to track some time consuming task.\n\n Args:\n index: current status in progress.\n count: total steps of the progress.\n desc: description of the progress bar, if not None, show before the progress bar.\n bar_len: the total length of the bar on screen, default is 30 char.\n newline: whether to print in a new line for every index.\n \"\"\"\n end = \"\\r\" if not newline else \"\\r\\n\"\n filled_len = int(bar_len * index // count)\n bar = f\"{desc} \" if desc is not None else \"\"\n bar += \"[\" + \"=\" * filled_len + \" \" * (bar_len - filled_len) + \"]\"\n print(f\"{index}/{count} {bar}\", end=end)\n if index == count:\n print(\"\")\n\n\ndef get_seed() -> Optional[int]:\n return _seed", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_optional_import_optional_import.msg.descriptor_format_actual_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_optional_import_optional_import.msg.descriptor_format_actual_", "embedding": null, "metadata": {"file_path": "monai/utils/module.py", "file_name": "module.py", "file_type": "text/x-python", "category": "implementation", "start_line": 134, "end_line": 210, "span_ids": ["optional_import"], "tokens": 759}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def optional_import(\n module: str,\n version: str = \"\",\n version_checker: Callable[..., bool] = min_version,\n name: str = \"\",\n descriptor: str = OPTIONAL_IMPORT_MSG_FMT,\n version_args=None,\n allow_namespace_pkg: bool = False,\n) -> Tuple[Any, bool]:\n \"\"\"\n Imports an optional module specified by `module` string.\n Any importing related exceptions will be stored, and exceptions raise lazily\n when attempting to use the failed-to-import module.\n\n Args:\n module: name of the module to be imported.\n version: version string used by the version_checker.\n version_checker: a callable to check the module version, Defaults to monai.utils.min_version.\n name: a non-module attribute (such as method/class) to import from the imported module.\n descriptor: a format string for the final error message when using a not imported module.\n version_args: additional parameters to the version checker.\n allow_namespace_pkg: whether importing a namespace package is allowed. Defaults to False.\n\n Returns:\n The imported module and a boolean flag indicating whether the import is successful.\n\n Examples::\n\n >>> torch, flag = optional_import('torch', '1.1')\n >>> print(torch, flag)\n True\n\n >>> the_module, flag = optional_import('unknown_module')\n >>> print(flag)\n False\n >>> the_module.method # trying to access a module which is not imported\n OptionalImportError: import unknown_module (No module named 'unknown_module').\n\n >>> torch, flag = optional_import('torch', '42', exact_version)\n >>> torch.nn # trying to access a module for which there isn't a proper version imported\n OptionalImportError: import torch (requires version '42' by 'exact_version').\n\n >>> conv, flag = optional_import('torch.nn.functional', '1.0', name='conv1d')\n >>> print(conv)\n \n\n >>> conv, flag = optional_import('torch.nn.functional', '42', name='conv1d')\n >>> conv() # trying to use a function from the not successfully imported module (due to unmatched version)\n OptionalImportError: from torch.nn.functional import conv1d (requires version '42' by 'min_version').\n \"\"\"\n\n tb = None\n exception_str = \"\"\n if name:\n actual_cmd = f\"from {module} import {name}\"\n else:\n actual_cmd = f\"import {module}\"\n try:\n pkg = __import__(module) # top level module\n the_module = import_module(module)\n if not allow_namespace_pkg:\n is_namespace = getattr(the_module, \"__file__\", None) is None and hasattr(the_module, \"__path__\")\n if is_namespace:\n raise AssertionError\n if name: # user specified to load class/function/... from the module\n the_module = getattr(the_module, name)\n except Exception as import_exception: # any exceptions during import\n tb = import_exception.__traceback__\n exception_str = f\"{import_exception}\"\n else: # found the module\n if version_args and version_checker(pkg, f\"{version}\", version_args):\n return the_module, True\n if not version_args and version_checker(pkg, f\"{version}\"):\n return the_module, True\n\n # preparing lazy error message\n msg = descriptor.format(actual_cmd)\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_make_animated_gif_summary_make_animated_gif_summary.return.summary_op": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/visualize/img2tensorboard.py_make_animated_gif_summary_make_animated_gif_summary.return.summary_op", "embedding": null, "metadata": {"file_path": "monai/visualize/img2tensorboard.py", "file_name": "img2tensorboard.py", "file_type": "text/x-python", "category": "implementation", "start_line": 71, "end_line": 104, "span_ids": ["make_animated_gif_summary"], "tokens": 362}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def make_animated_gif_summary(\n tag: str,\n image: Union[np.ndarray, torch.Tensor],\n writer=None,\n max_out: int = 3,\n frame_dim: int = -3,\n scale_factor: float = 1.0,\n) -> Summary:\n \"\"\"Creates an animated gif out of an image tensor in 'CHWD' format and returns Summary.\n\n Args:\n tag: Data identifier\n image: The image, expected to be in `CHWD` format\n writer: the tensorboard writer to plot image\n max_out: maximum number of image channels to animate through\n frame_dim: the dimension used as frames for GIF image, expect input data shape as `CHWD`,\n default to `-3` (the first spatial dim)\n scale_factor: amount to multiply values by.\n if the image data is between 0 and 1, using 255 for this value will scale it to displayable range\n \"\"\"\n\n suffix = \"/image\" if max_out == 1 else \"/image/{}\"\n # GIF image has no channel dim, reduce the spatial dim index if positive\n frame_dim = frame_dim - 1 if frame_dim > 0 else frame_dim\n\n summary_op = []\n for it_i in range(min(max_out, list(image.shape)[0])):\n one_channel_img: Union[torch.Tensor, np.ndarray] = (\n image[it_i, :, :, :].squeeze(dim=0) if isinstance(image, torch.Tensor) else image[it_i, :, :, :]\n )\n summary_op.append(\n _image3_animated_gif(tag + suffix.format(it_i), one_channel_img, writer, frame_dim, scale_factor)\n )\n return summary_op", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/__init__.py_sys_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/__init__.py_sys_", "embedding": null, "metadata": {"file_path": "tests/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 38, "span_ids": ["_enter_pr_4800", "impl", "docstring"], "tokens": 200}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import sys\nimport unittest\nimport warnings\n\n\ndef _enter_pr_4800(self):\n \"\"\"\n code from https://github.com/python/cpython/pull/4800\n \"\"\"\n # The __warningregistry__'s need to be in a pristine state for tests\n # to work properly.\n for v in list(sys.modules.values()):\n if getattr(v, \"__warningregistry__\", None):\n v.__warningregistry__ = {}\n self.warnings_manager = warnings.catch_warnings(record=True)\n self.warnings = self.warnings_manager.__enter__()\n warnings.simplefilter(\"always\", self.expected)\n return self\n\n\n# workaround for https://bugs.python.org/issue29620\ntry:\n # Suppression for issue #494: tests/__init__.py:34: error: Cannot assign to a method\n unittest.case._AssertWarnsContext.__enter__ = _enter_pr_4800 # type: ignore\nexcept AttributeError:\n pass", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activationsd.py_TestActivationsd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_activationsd.py_TestActivationsd_", "embedding": null, "metadata": {"file_path": "tests/test_activationsd.py", "file_name": "test_activationsd.py", "file_type": "text/x-python", "category": "test", "start_line": 50, "end_line": 63, "span_ids": ["TestActivationsd.test_value_shape", "TestActivationsd", "impl:7"], "tokens": 136}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestActivationsd(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_value_shape(self, input_param, test_input, output, expected_shape):\n result = Activationsd(**input_param)(test_input)\n assert_allclose(result[\"pred\"], output[\"pred\"], rtol=1e-3)\n self.assertTupleEqual(result[\"pred\"].shape, expected_shape)\n if \"label\" in result:\n assert_allclose(result[\"label\"], output[\"label\"], rtol=1e-3)\n self.assertTupleEqual(result[\"label\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_multi_in_single_out_TestAdaptors.test_multi_in_single_out.None_2.self_assertEqual_dres_lb": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_multi_in_single_out_TestAdaptors.test_multi_in_single_out.None_2.self_assertEqual_dres_lb", "embedding": null, "metadata": {"file_path": "tests/test_adaptors.py", "file_name": "test_adaptors.py", "file_type": "text/x-python", "category": "test", "start_line": 56, "end_line": 85, "span_ids": ["TestAdaptors.test_multi_in_single_out"], "tokens": 320}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAdaptors(unittest.TestCase):\n\n def test_multi_in_single_out(self):\n def foo(image, label):\n return image * label\n\n it = itertools.product([\"image\", [\"image\"]], [None, [\"image\", \"label\"], {\"image\": \"image\", \"label\": \"label\"}])\n\n for i in it:\n d = {\"image\": 2, \"label\": 3}\n dres = adaptor(foo, i[0], i[1])(d)\n self.assertEqual(dres[\"image\"], 6)\n self.assertEqual(dres[\"label\"], 3)\n\n it = itertools.product(\n [\"newimage\", [\"newimage\"]], [None, [\"image\", \"label\"], {\"image\": \"image\", \"label\": \"label\"}]\n )\n\n for i in it:\n d = {\"image\": 2, \"label\": 3}\n dres = adaptor(foo, i[0], i[1])(d)\n self.assertEqual(dres[\"image\"], 2)\n self.assertEqual(dres[\"label\"], 3)\n self.assertEqual(dres[\"newimage\"], 6)\n\n it = itertools.product([\"img\", [\"img\"]], [{\"img\": \"image\", \"lbl\": \"label\"}])\n\n for i in it:\n d = {\"img\": 2, \"lbl\": 3}\n dres = adaptor(foo, i[0], i[1])(d)\n self.assertEqual(dres[\"img\"], 6)\n self.assertEqual(dres[\"lbl\"], 3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_default_arg_single_out_TestAdaptors.test_dict_out.self_assertEqual_dres_b_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestAdaptors.test_default_arg_single_out_TestAdaptors.test_dict_out.self_assertEqual_dres_b_", "embedding": null, "metadata": {"file_path": "tests/test_adaptors.py", "file_name": "test_adaptors.py", "file_type": "text/x-python", "category": "test", "start_line": 87, "end_line": 118, "span_ids": ["TestAdaptors.test_multi_out", "TestAdaptors.test_dict_out", "TestAdaptors.test_default_arg_single_out"], "tokens": 270}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAdaptors(unittest.TestCase):\n\n def test_default_arg_single_out(self):\n def foo(a, b=2):\n return a * b\n\n d = {\"a\": 5}\n dres = adaptor(foo, \"c\")(d)\n self.assertEqual(dres[\"c\"], 10)\n\n d = {\"b\": 5}\n with self.assertRaises(TypeError):\n dres = adaptor(foo, \"c\")(d)\n\n def test_multi_out(self):\n def foo(a, b):\n return a * b, a / b\n\n d = {\"a\": 3, \"b\": 4}\n dres = adaptor(foo, [\"c\", \"d\"])(d)\n self.assertEqual(dres[\"c\"], 12)\n self.assertEqual(dres[\"d\"], 3 / 4)\n\n def test_dict_out(self):\n def foo(a):\n return {\"a\": a * 2}\n\n d = {\"a\": 2}\n dres = adaptor(foo, {\"a\": \"a\"})(d)\n self.assertEqual(dres[\"a\"], 4)\n\n d = {\"b\": 2}\n dres = adaptor(foo, {\"a\": \"b\"}, {\"b\": \"a\"})(d)\n self.assertEqual(dres[\"b\"], 4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestApplyAlias_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_TestApplyAlias_", "embedding": null, "metadata": {"file_path": "tests/test_adaptors.py", "file_name": "test_adaptors.py", "file_type": "text/x-python", "category": "test", "start_line": 121, "end_line": 149, "span_ids": ["TestToKwargs", "TestToKwargs.test_to_kwargs", "TestApplyAlias", "TestApplyAlias.test_apply_alias"], "tokens": 203}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestApplyAlias(unittest.TestCase):\n def test_apply_alias(self):\n def foo(d):\n d[\"x\"] *= 2\n return d\n\n d = {\"a\": 1, \"b\": 3}\n result = apply_alias(foo, {\"b\": \"x\"})(d)\n self.assertDictEqual({\"a\": 1, \"b\": 6}, result)\n\n\nclass TestToKwargs(unittest.TestCase):\n def test_to_kwargs(self):\n def foo(**kwargs):\n results = {k: v * 2 for k, v in kwargs.items()}\n return results\n\n def compose_like(fn, data):\n data = fn(data)\n return data\n\n d = {\"a\": 1, \"b\": 2}\n\n actual = compose_like(to_kwargs(foo), d)\n self.assertDictEqual(actual, {\"a\": 2, \"b\": 4})\n\n with self.assertRaises(TypeError):\n actual = compose_like(foo, d)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_channeld.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_add_channeld.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_add_channeld.py", "file_name": "test_add_channeld.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["TestAddChanneld.test_shape", "TestAddChanneld", "impl:5", "docstring"], "tokens": 202}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import AddChanneld\nfrom tests.utils import TEST_NDARRAYS\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\"keys\": [\"img\", \"seg\"]},\n {\"img\": p(np.array([[0, 1], [1, 2]])), \"seg\": p(np.array([[0, 1], [1, 2]]))},\n (1, 2, 2),\n ]\n )\n\n\nclass TestAddChanneld(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_shape(self, input_param, input_data, expected_shape):\n result = AddChanneld(**input_param)(input_data)\n self.assertEqual(result[\"img\"].shape, expected_shape)\n self.assertEqual(result[\"seg\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrast.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrast.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_adjust_contrast.py", "file_name": "test_adjust_contrast.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 45, "span_ids": ["TestAdjustContrast.test_correct_results", "impl:7", "TestAdjustContrast", "docstring"], "tokens": 260}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import AdjustContrast\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\nTEST_CASE_1 = [1.0]\n\nTEST_CASE_2 = [0.5]\n\nTEST_CASE_3 = [4.5]\n\n\nclass TestAdjustContrast(NumpyImageTestCase2D):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_correct_results(self, gamma):\n adjuster = AdjustContrast(gamma=gamma)\n for p in TEST_NDARRAYS:\n result = adjuster(p(self.imt))\n if gamma == 1.0:\n expected = self.imt\n else:\n epsilon = 1e-7\n img_min = self.imt.min()\n img_range = self.imt.max() - img_min\n expected = np.power(((self.imt - img_min) / float(img_range + epsilon)), gamma) * img_range + img_min\n assert_allclose(expected, result, rtol=1e-05, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrastd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adjust_contrastd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_adjust_contrastd.py", "file_name": "test_adjust_contrastd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 45, "span_ids": ["TestAdjustContrastd.test_correct_results", "TestAdjustContrastd", "impl:7", "docstring"], "tokens": 270}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import AdjustContrastd\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\nTEST_CASE_1 = [1.0]\n\nTEST_CASE_2 = [0.5]\n\nTEST_CASE_3 = [4.5]\n\n\nclass TestAdjustContrastd(NumpyImageTestCase2D):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_correct_results(self, gamma):\n adjuster = AdjustContrastd(\"img\", gamma=gamma)\n for p in TEST_NDARRAYS:\n result = adjuster({\"img\": p(self.imt)})\n if gamma == 1.0:\n expected = self.imt\n else:\n epsilon = 1e-7\n img_min = self.imt.min()\n img_range = self.imt.max() - img_min\n expected = np.power(((self.imt - img_min) / float(img_range + epsilon)), gamma) * img_range + img_min\n assert_allclose(expected, result[\"img\"], rtol=1e-05, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_unittest_TEST_NORM_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_unittest_TEST_NORM_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 33, "span_ids": ["docstring"], "tokens": 372}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import normalize_transform, to_norm_affine\nfrom monai.networks.layers import AffineTransform\nfrom tests.utils import is_tf32_env\n\n_rtol = 1e-4 if not is_tf32_env() else 5e-3\n\nTEST_NORM_CASES = [\n [(4, 5), True, [[[0.666667, 0, -1], [0, 0.5, -1], [0, 0, 1]]]],\n [\n (2, 4, 5),\n True,\n [[[2.0, 0.0, 0.0, -1.0], [0.0, 0.6666667, 0.0, -1.0], [0.0, 0.0, 0.5, -1.0], [0.0, 0.0, 0.0, 1.0]]],\n ],\n [(4, 5), False, [[[0.5, 0.0, -0.75], [0.0, 0.4, -0.8], [0.0, 0.0, 1.0]]]],\n [(2, 4, 5), False, [[[1.0, 0.0, 0.0, -0.5], [0.0, 0.5, 0.0, -0.75], [0.0, 0.0, 0.4, -0.8], [0.0, 0.0, 0.0, 1.0]]]],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TEST_TO_NORM_AFFINE_CASES_TEST_ILL_TO_NORM_AFFINE_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TEST_TO_NORM_AFFINE_CASES_TEST_ILL_TO_NORM_AFFINE_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 35, "end_line": 70, "span_ids": ["impl:7", "docstring"], "tokens": 720}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_TO_NORM_AFFINE_CASES = [\n [\n [[[1, 0, 0], [0, 1, 0], [0, 0, 1]]],\n (4, 6),\n (5, 3),\n True,\n [[[1.3333334, 0.0, 0.33333337], [0.0, 0.4, -0.6], [0.0, 0.0, 1.0]]],\n ],\n [\n [[[1, 0, 0], [0, 1, 0], [0, 0, 1]]],\n (4, 6),\n (5, 3),\n False,\n [[[1.25, 0.0, 0.25], [0.0, 0.5, -0.5], [0.0, 0.0, 1.0]]],\n ],\n [\n [[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]],\n (2, 4, 6),\n (3, 5, 3),\n True,\n [[[2.0, 0.0, 0.0, 1.0], [0.0, 1.3333334, 0.0, 0.33333337], [0.0, 0.0, 0.4, -0.6], [0.0, 0.0, 0.0, 1.0]]],\n ],\n [\n [[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]],\n (2, 4, 6),\n (3, 5, 3),\n False,\n [[[1.5, 0.0, 0.0, 0.5], [0.0, 1.25, 0.0, 0.25], [0.0, 0.0, 0.5, -0.5], [0.0, 0.0, 0.0, 1.0]]],\n ],\n]\n\nTEST_ILL_TO_NORM_AFFINE_CASES = [\n [[[[1, 0, 0], [0, 1, 0], [0, 0, 1]]], (3, 4, 6), (3, 5, 3), False],\n [[[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]], (4, 6), (3, 5, 3), True],\n [[[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]], (4, 6), (3, 5, 3), True],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestNormTransform_TestNormTransform.test_norm_xform.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestNormTransform_TestNormTransform.test_norm_xform.if_torch_cuda_is_availabl.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 70, "end_line": 83, "span_ids": ["TestNormTransform.test_norm_xform", "TestNormTransform"], "tokens": 157}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNormTransform(unittest.TestCase):\n @parameterized.expand(TEST_NORM_CASES)\n def test_norm_xform(self, input_shape, align_corners, expected):\n norm = normalize_transform(\n input_shape, device=torch.device(\"cpu:0\"), dtype=torch.float32, align_corners=align_corners\n )\n norm = norm.detach().cpu().numpy()\n np.testing.assert_allclose(norm, expected, atol=1e-6)\n if torch.cuda.is_available():\n norm = normalize_transform(\n input_shape, device=torch.device(\"cuda:0\"), dtype=torch.float32, align_corners=align_corners\n )\n norm = norm.detach().cpu().numpy()\n np.testing.assert_allclose(norm, expected, atol=1e-4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine_TestToNormAffine.test_to_norm_affine.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine_TestToNormAffine.test_to_norm_affine.if_torch_cuda_is_availabl.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 89, "end_line": 101, "span_ids": ["TestToNormAffine.test_to_norm_affine", "TestToNormAffine"], "tokens": 215}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestToNormAffine(unittest.TestCase):\n @parameterized.expand(TEST_TO_NORM_AFFINE_CASES)\n def test_to_norm_affine(self, affine, src_size, dst_size, align_corners, expected):\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n new_affine = to_norm_affine(affine, src_size, dst_size, align_corners)\n new_affine = new_affine.detach().cpu().numpy()\n np.testing.assert_allclose(new_affine, expected, atol=1e-6)\n\n if torch.cuda.is_available():\n affine = torch.as_tensor(affine, device=torch.device(\"cuda:0\"), dtype=torch.float32)\n new_affine = to_norm_affine(affine, src_size, dst_size, align_corners)\n new_affine = new_affine.detach().cpu().numpy()\n np.testing.assert_allclose(new_affine, expected, atol=1e-5, rtol=_rtol)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform_TestAffineTransform.test_affine_shift.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform_TestAffineTransform.test_affine_shift.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 112, "end_line": 119, "span_ids": ["TestAffineTransform", "TestAffineTransform.test_affine_shift"], "tokens": 203}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n def test_affine_shift(self):\n affine = torch.as_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, -1.0]])\n image = torch.as_tensor([[[[4.0, 1.0, 3.0, 2.0], [7.0, 6.0, 8.0, 5.0], [3.0, 5.0, 3.0, 6.0]]]])\n out = AffineTransform()(image, affine)\n out = out.detach().cpu().numpy()\n expected = [[[[0, 4, 1, 3], [0, 7, 6, 8], [0, 3, 5, 3]]]]\n np.testing.assert_allclose(out, expected, atol=1e-5, rtol=_rtol)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_1_TestAffineTransform.test_affine_shift_1.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_1_TestAffineTransform.test_affine_shift_1.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 121, "end_line": 127, "span_ids": ["TestAffineTransform.test_affine_shift_1"], "tokens": 205}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_shift_1(self):\n affine = torch.as_tensor([[1.0, 0.0, -1.0], [0.0, 1.0, -1.0]])\n image = torch.as_tensor([[[[4.0, 1.0, 3.0, 2.0], [7.0, 6.0, 8.0, 5.0], [3.0, 5.0, 3.0, 6.0]]]])\n out = AffineTransform()(image, affine)\n out = out.detach().cpu().numpy()\n expected = [[[[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]]]\n np.testing.assert_allclose(out, expected, atol=1e-5, rtol=_rtol)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_2_TestAffineTransform.test_affine_shift_2.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_shift_2_TestAffineTransform.test_affine_shift_2.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 129, "end_line": 135, "span_ids": ["TestAffineTransform.test_affine_shift_2"], "tokens": 205}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_shift_2(self):\n affine = torch.as_tensor([[1.0, 0.0, -1.0], [0.0, 1.0, 0.0]])\n image = torch.as_tensor([[[[4.0, 1.0, 3.0, 2.0], [7.0, 6.0, 8.0, 5.0], [3.0, 5.0, 3.0, 6.0]]]])\n out = AffineTransform()(image, affine)\n out = out.detach().cpu().numpy()\n expected = [[[[0, 0, 0, 0], [4, 1, 3, 2], [7, 6, 8, 5]]]]\n np.testing.assert_allclose(out, expected, atol=1e-5, rtol=_rtol)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_TestAffineTransform.test_zoom.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_TestAffineTransform.test_zoom.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 137, "end_line": 142, "span_ids": ["TestAffineTransform.test_zoom"], "tokens": 146}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_zoom(self):\n affine = torch.as_tensor([[1.0, 0.0, 0.0], [0.0, 2.0, 0.0]])\n image = torch.arange(1.0, 13.0).view(1, 1, 3, 4).to(device=torch.device(\"cpu:0\"))\n out = AffineTransform((3, 2))(image, affine)\n expected = [[[[1, 3], [5, 7], [9, 11]]]]\n np.testing.assert_allclose(out, expected, atol=1e-5, rtol=_rtol)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_1_TestAffineTransform.test_zoom_1.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_1_TestAffineTransform.test_zoom_1.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 144, "end_line": 149, "span_ids": ["TestAffineTransform.test_zoom_1"], "tokens": 135}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_zoom_1(self):\n affine = torch.as_tensor([[2.0, 0.0, 0.0], [0.0, 1.0, 0.0]])\n image = torch.arange(1.0, 13.0).view(1, 1, 3, 4).to(device=torch.device(\"cpu:0\"))\n out = AffineTransform()(image, affine, (1, 4))\n expected = [[[[1, 2, 3, 4]]]]\n np.testing.assert_allclose(out, expected, atol=_rtol)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_2_TestAffineTransform.test_zoom_2.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_zoom_2_TestAffineTransform.test_zoom_2.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 151, "end_line": 156, "span_ids": ["TestAffineTransform.test_zoom_2"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_zoom_2(self):\n affine = torch.as_tensor([[2.0, 0.0, 0.0], [0.0, 2.0, 0.0]], dtype=torch.float32)\n image = torch.arange(1.0, 13.0).view(1, 1, 3, 4).to(device=torch.device(\"cpu:0\"))\n out = AffineTransform((1, 2))(image, affine)\n expected = [[[[1, 3]]]]\n np.testing.assert_allclose(out, expected, atol=1e-5, rtol=_rtol)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_minimum_TestAffineTransform.test_affine_transform_minimum.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_minimum_TestAffineTransform.test_affine_transform_minimum.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 158, "end_line": 175, "span_ids": ["TestAffineTransform.test_affine_transform_minimum"], "tokens": 311}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_transform_minimum(self):\n t = np.pi / 3\n affine = [[np.cos(t), -np.sin(t), 0], [np.sin(t), np.cos(t), 0], [0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n image = torch.arange(24.0).view(1, 1, 4, 6).to(device=torch.device(\"cpu:0\"))\n out = AffineTransform()(image, affine)\n out = out.detach().cpu().numpy()\n expected = [\n [\n [\n [0.0, 0.06698727, 0.0, 0.0, 0.0, 0.0],\n [3.8660254, 0.86602557, 0.0, 0.0, 0.0, 0.0],\n [7.732051, 3.035899, 0.73205125, 0.0, 0.0, 0.0],\n [11.598076, 6.901923, 2.7631402, 0.0, 0.0, 0.0],\n ]\n ]\n ]\n np.testing.assert_allclose(out, expected, atol=1e-3, rtol=_rtol)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_2d_TestAffineTransform.test_affine_transform_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_2d_TestAffineTransform.test_affine_transform_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 177, "end_line": 211, "span_ids": ["TestAffineTransform.test_affine_transform_2d"], "tokens": 564}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_transform_2d(self):\n t = np.pi / 3\n affine = [[np.cos(t), -np.sin(t), 0], [np.sin(t), np.cos(t), 0], [0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n image = torch.arange(24.0).view(1, 1, 4, 6).to(device=torch.device(\"cpu:0\"))\n xform = AffineTransform((3, 4), padding_mode=\"border\", align_corners=True, mode=\"bilinear\")\n out = xform(image, affine)\n out = out.detach().cpu().numpy()\n expected = [\n [\n [\n [7.1525574e-07, 4.9999994e-01, 1.0000000e00, 1.4999999e00],\n [3.8660259e00, 1.3660253e00, 1.8660252e00, 2.3660252e00],\n [7.7320518e00, 3.0358994e00, 2.7320509e00, 3.2320507e00],\n ]\n ]\n ]\n np.testing.assert_allclose(out, expected, atol=1e-3, rtol=_rtol)\n\n if torch.cuda.is_available():\n affine = torch.as_tensor(affine, device=torch.device(\"cuda:0\"), dtype=torch.float32)\n image = torch.arange(24.0).view(1, 1, 4, 6).to(device=torch.device(\"cuda:0\"))\n xform = AffineTransform(padding_mode=\"border\", align_corners=True, mode=\"bilinear\")\n out = xform(image, affine, (3, 4))\n out = out.detach().cpu().numpy()\n expected = [\n [\n [\n [7.1525574e-07, 4.9999994e-01, 1.0000000e00, 1.4999999e00],\n [3.8660259e00, 1.3660253e00, 1.8660252e00, 2.3660252e00],\n [7.7320518e00, 3.0358994e00, 2.7320509e00, 3.2320507e00],\n ]\n ]\n ]\n np.testing.assert_allclose(out, expected, atol=5e-3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d_TestAffineTransform.test_affine_transform_3d.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d_TestAffineTransform.test_affine_transform_3d.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 213, "end_line": 237, "span_ids": ["TestAffineTransform.test_affine_transform_3d"], "tokens": 525}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_transform_3d(self):\n t = np.pi / 3\n affine = [[1, 0, 0, 0], [0.0, np.cos(t), -np.sin(t), 0], [0, np.sin(t), np.cos(t), 0], [0, 0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n image = torch.arange(48.0).view(2, 1, 4, 2, 3).to(device=torch.device(\"cpu:0\"))\n xform = AffineTransform((3, 4, 2), padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n out = xform(image, affine)\n out = out.detach().cpu().numpy()\n expected = [\n [\n [\n [[0.00000006, 0.5000001], [2.3660254, 1.3660254], [4.732051, 2.4019241], [5.0, 3.9019237]],\n [[6.0, 6.5], [8.366026, 7.3660254], [10.732051, 8.401924], [11.0, 9.901924]],\n [[12.0, 12.5], [14.366026, 13.366025], [16.732052, 14.401924], [17.0, 15.901923]],\n ]\n ],\n [\n [\n [[24.0, 24.5], [26.366024, 25.366024], [28.732052, 26.401924], [29.0, 27.901924]],\n [[30.0, 30.5], [32.366028, 31.366026], [34.732048, 32.401924], [35.0, 33.901924]],\n [[36.0, 36.5], [38.366024, 37.366024], [40.73205, 38.401924], [41.0, 39.901924]],\n ]\n ],\n ]\n np.testing.assert_allclose(out, expected, atol=1e-4, rtol=_rtol)\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl_TestAffineTransform.test_affine_transform_3d.if_torch_cuda_is_availabl.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 239, "end_line": 261, "span_ids": ["TestAffineTransform.test_affine_transform_3d"], "tokens": 460}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_affine_transform_3d(self):\n # ... other code\n\n if torch.cuda.is_available():\n affine = torch.as_tensor(affine, device=torch.device(\"cuda:0\"), dtype=torch.float32)\n image = torch.arange(48.0).view(2, 1, 4, 2, 3).to(device=torch.device(\"cuda:0\"))\n xform = AffineTransform(padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n out = xform(image, affine, (3, 4, 2))\n out = out.detach().cpu().numpy()\n expected = [\n [\n [\n [[0.00000006, 0.5000001], [2.3660254, 1.3660254], [4.732051, 2.4019241], [5.0, 3.9019237]],\n [[6.0, 6.5], [8.366026, 7.3660254], [10.732051, 8.401924], [11.0, 9.901924]],\n [[12.0, 12.5], [14.366026, 13.366025], [16.732052, 14.401924], [17.0, 15.901923]],\n ]\n ],\n [\n [\n [[24.0, 24.5], [26.366024, 25.366024], [28.732052, 26.401924], [29.0, 27.901924]],\n [[30.0, 30.5], [32.366028, 31.366026], [34.732048, 32.401924], [35.0, 33.901924]],\n [[36.0, 36.5], [38.366024, 37.366024], [40.73205, 38.401924], [41.0, 39.901924]],\n ]\n ],\n ]\n np.testing.assert_allclose(out, expected, atol=5e-3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_ill_affine_transform_TestAffineTransform.test_ill_affine_transform.None_3.xform_image_affine_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_ill_affine_transform_TestAffineTransform.test_ill_affine_transform.None_3.xform_image_affine_", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 260, "end_line": 293, "span_ids": ["TestAffineTransform.test_ill_affine_transform"], "tokens": 720}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_ill_affine_transform(self):\n with self.assertRaises(ValueError): # image too small\n t = np.pi / 3\n affine = [[1, 0, 0, 0], [0.0, np.cos(t), -np.sin(t), 0], [0, np.sin(t), np.cos(t), 0], [0, 0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n xform = AffineTransform((3, 4, 2), padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n xform(torch.as_tensor([1.0, 2.0, 3.0]), affine)\n\n with self.assertRaises(ValueError): # output shape too small\n t = np.pi / 3\n affine = [[1, 0, 0, 0], [0.0, np.cos(t), -np.sin(t), 0], [0, np.sin(t), np.cos(t), 0], [0, 0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n image = torch.arange(48).view(2, 1, 4, 2, 3).to(device=torch.device(\"cpu:0\"))\n xform = AffineTransform((3, 4), padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n xform(image, affine)\n\n with self.assertRaises(ValueError): # incorrect affine\n t = np.pi / 3\n affine = [[1, 0, 0, 0], [0.0, np.cos(t), -np.sin(t), 0], [0, np.sin(t), np.cos(t), 0], [0, 0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n affine = affine.unsqueeze(0).unsqueeze(0)\n image = torch.arange(48).view(2, 1, 4, 2, 3).to(device=torch.device(\"cpu:0\"))\n xform = AffineTransform((2, 3, 4), padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n xform(image, affine)\n\n with self.assertRaises(ValueError): # batch doesn't match\n t = np.pi / 3\n affine = [[1, 0, 0, 0], [0.0, np.cos(t), -np.sin(t), 0], [0, np.sin(t), np.cos(t), 0], [0, 0, 0, 1]]\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n affine = affine.unsqueeze(0)\n affine = affine.repeat(3, 1, 1)\n image = torch.arange(48).view(2, 1, 4, 2, 3).to(device=torch.device(\"cpu:0\"))\n xform = AffineTransform((2, 3, 4), padding_mode=\"border\", align_corners=False, mode=\"bilinear\")\n xform(image, affine)\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_2d_TestAffineTransform.test_forward_2d.None_5": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_2d_TestAffineTransform.test_forward_2d.None_5", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 316, "end_line": 338, "span_ids": ["TestAffineTransform.test_forward_2d"], "tokens": 328}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_forward_2d(self):\n x = torch.rand(2, 1, 4, 4)\n theta = torch.Tensor([[[0, -1, 0], [1, 0, 0]]]).repeat(2, 1, 1)\n grid = torch.nn.functional.affine_grid(theta, x.size(), align_corners=False)\n expected = torch.nn.functional.grid_sample(x, grid, align_corners=False)\n expected = expected.detach().cpu().numpy()\n\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [2, 2, 3])\n\n theta = torch.Tensor([[0, -1, 0], [1, 0, 0]])\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [2, 3])\n\n theta = torch.Tensor([[[0, -1, 0], [1, 0, 0]]])\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [1, 2, 3])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_3d_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestAffineTransform.test_forward_3d_", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 343, "end_line": 370, "span_ids": ["impl:9", "TestAffineTransform.test_forward_3d"], "tokens": 397}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAffineTransform(unittest.TestCase):\n\n def test_forward_3d(self):\n x = torch.rand(2, 1, 4, 4, 4)\n theta = torch.Tensor([[[0, 0, -1, 0], [1, 0, 0, 0], [0, 0, 1, 0]]]).repeat(2, 1, 1)\n grid = torch.nn.functional.affine_grid(theta, x.size(), align_corners=False)\n expected = torch.nn.functional.grid_sample(x, grid, align_corners=False)\n expected = expected.detach().cpu().numpy()\n\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [2, 3, 4])\n\n theta = torch.Tensor([[0, 0, -1, 0], [1, 0, 0, 0], [0, 0, 1, 0]])\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [3, 4])\n\n theta = torch.Tensor([[[0, 0, -1, 0], [1, 0, 0, 0], [0, 0, 1, 0]]])\n actual = AffineTransform(normalized=True, reverse_indexing=False)(x, theta)\n actual = actual.detach().cpu().numpy()\n np.testing.assert_allclose(actual, expected)\n np.testing.assert_allclose(list(theta.shape), [1, 3, 4])\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_firstd.py_TestAsChannelFirstd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_firstd.py_TestAsChannelFirstd_", "embedding": null, "metadata": {"file_path": "tests/test_as_channel_firstd.py", "file_name": "test_as_channel_firstd.py", "file_type": "text/x-python", "category": "test", "start_line": 27, "end_line": 43, "span_ids": ["TestAsChannelFirstd", "TestAsChannelFirstd.test_shape", "impl:7"], "tokens": 191}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAsChannelFirstd(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_shape(self, in_type, input_param, expected_shape):\n test_data = {\n \"image\": in_type(np.random.randint(0, 2, size=[1, 2, 3, 4])),\n \"label\": in_type(np.random.randint(0, 2, size=[1, 2, 3, 4])),\n \"extra\": in_type(np.random.randint(0, 2, size=[1, 2, 3, 4])),\n }\n result = AsChannelFirstd(**input_param)(test_data)\n self.assertTupleEqual(result[\"image\"].shape, expected_shape)\n self.assertTupleEqual(result[\"label\"].shape, expected_shape)\n self.assertTupleEqual(result[\"extra\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_last.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_last.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_as_channel_last.py", "file_name": "test_as_channel_last.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 37, "span_ids": ["TestAsChannelLast", "TestAsChannelLast.test_shape", "impl:7", "docstring"], "tokens": 221}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import AsChannelLast\nfrom tests.utils import TEST_NDARRAYS\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append([p, {\"channel_dim\": 0}, (2, 3, 4, 1)])\n TESTS.append([p, {\"channel_dim\": 1}, (1, 3, 4, 2)])\n TESTS.append([p, {\"channel_dim\": 3}, (1, 2, 3, 4)])\n\n\nclass TestAsChannelLast(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_shape(self, in_type, input_param, expected_shape):\n test_data = in_type(np.random.randint(0, 2, size=[1, 2, 3, 4]))\n result = AsChannelLast(**input_param)(test_data)\n self.assertTupleEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_lastd.py_TestAsChannelLastd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_channel_lastd.py_TestAsChannelLastd_", "embedding": null, "metadata": {"file_path": "tests/test_as_channel_lastd.py", "file_name": "test_as_channel_lastd.py", "file_type": "text/x-python", "category": "test", "start_line": 27, "end_line": 43, "span_ids": ["TestAsChannelLastd.test_shape", "TestAsChannelLastd", "impl:7"], "tokens": 191}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAsChannelLastd(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_shape(self, in_type, input_param, expected_shape):\n test_data = {\n \"image\": in_type(np.random.randint(0, 2, size=[1, 2, 3, 4])),\n \"label\": in_type(np.random.randint(0, 2, size=[1, 2, 3, 4])),\n \"extra\": in_type(np.random.randint(0, 2, size=[1, 2, 3, 4])),\n }\n result = AsChannelLastd(**input_param)(test_data)\n self.assertTupleEqual(result[\"image\"].shape, expected_shape)\n self.assertTupleEqual(result[\"label\"].shape, expected_shape)\n self.assertTupleEqual(result[\"extra\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discrete.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discrete.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_as_discrete.py", "file_name": "test_as_discrete.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 75, "span_ids": ["TestAsDiscrete", "TestAsDiscrete.test_value_shape", "impl:10", "docstring"], "tokens": 618}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom parameterized import parameterized\n\nfrom monai.transforms import AsDiscrete\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nTEST_CASES = []\nfor p in TEST_NDARRAYS:\n TEST_CASES.append(\n [\n {\"argmax\": True, \"to_onehot\": None, \"threshold\": 0.5},\n p([[[0.0, 1.0]], [[2.0, 3.0]]]),\n p([[[1.0, 1.0]]]),\n (1, 1, 2),\n ]\n )\n\n TEST_CASES.append(\n [\n {\"argmax\": True, \"to_onehot\": 2, \"threshold\": 0.5},\n p([[[0.0, 1.0]], [[2.0, 3.0]]]),\n p([[[0.0, 0.0]], [[1.0, 1.0]]]),\n (2, 1, 2),\n ]\n )\n\n TEST_CASES.append(\n [\n {\"argmax\": False, \"to_onehot\": None, \"threshold\": 0.6},\n p([[[0.0, 1.0], [2.0, 3.0]]]),\n p([[[0.0, 1.0], [1.0, 1.0]]]),\n (1, 2, 2),\n ]\n )\n\n # test threshold = 0.0\n TEST_CASES.append(\n [\n {\"argmax\": False, \"to_onehot\": None, \"threshold\": 0.0},\n p([[[0.0, -1.0], [-2.0, 3.0]]]),\n p([[[1.0, 0.0], [0.0, 1.0]]]),\n (1, 2, 2),\n ]\n )\n\n TEST_CASES.append([{\"argmax\": False, \"to_onehot\": 3}, p(1), p([0.0, 1.0, 0.0]), (3,)])\n\n TEST_CASES.append(\n [{\"rounding\": \"torchrounding\"}, p([[[0.123, 1.345], [2.567, 3.789]]]), p([[[0.0, 1.0], [3.0, 4.0]]]), (1, 2, 2)]\n )\n\n\nclass TestAsDiscrete(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_value_shape(self, input_param, img, out, expected_shape):\n result = AsDiscrete(**input_param)(img)\n assert_allclose(result, out, rtol=1e-3)\n self.assertTupleEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discreted.py_TestAsDiscreted_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_as_discreted.py_TestAsDiscreted_", "embedding": null, "metadata": {"file_path": "tests/test_as_discreted.py", "file_name": "test_as_discreted.py", "file_type": "text/x-python", "category": "test", "start_line": 84, "end_line": 97, "span_ids": ["TestAsDiscreted.test_value_shape", "TestAsDiscreted", "impl:10"], "tokens": 138}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestAsDiscreted(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_value_shape(self, input_param, test_input, output, expected_shape):\n result = AsDiscreted(**input_param)(test_input)\n assert_allclose(result[\"pred\"], output[\"pred\"], rtol=1e-3)\n self.assertTupleEqual(result[\"pred\"].shape, expected_shape)\n if \"label\" in result:\n assert_allclose(result[\"label\"], output[\"label\"], rtol=1e-3)\n self.assertTupleEqual(result[\"label\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_padd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_border_padd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_border_padd.py", "file_name": "test_border_padd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 61, "span_ids": ["TestBorderPadd.test_pad_shape", "impl:11", "TestBorderPadd", "docstring"], "tokens": 548}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import BorderPadd\nfrom monai.utils import NumpyPadMode\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\", \"seg\"], \"spatial_border\": 2, \"mode\": [\"constant\", \"edge\"]},\n {\"img\": np.zeros((3, 8, 8, 4)), \"seg\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 12, 12, 8)),\n]\n\nTEST_CASE_2 = [\n {\"keys\": \"img\", \"spatial_border\": [1, 2, 3], \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 10, 12, 10)),\n]\n\nTEST_CASE_3 = [\n {\"keys\": \"img\", \"spatial_border\": [1, 2, 3, 4, 5, 6], \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 11, 15, 15)),\n]\n\nTEST_CASE_4 = [\n {\"keys\": [\"img\", \"seg\"], \"spatial_border\": 2, \"mode\": [\"constant\", NumpyPadMode.EDGE]},\n {\"img\": np.zeros((3, 8, 8, 4)), \"seg\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 12, 12, 8)),\n]\n\nTEST_CASE_5 = [\n {\"keys\": [\"img\", \"seg\"], \"spatial_border\": 2, \"mode\": [NumpyPadMode.CONSTANT, NumpyPadMode.EDGE]},\n {\"img\": np.zeros((3, 8, 8, 4)), \"seg\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 12, 12, 8)),\n]\n\n\nclass TestBorderPadd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_pad_shape(self, input_param, input_data, expected_val):\n padder = BorderPadd(**input_param)\n result = padder(input_data)\n self.assertAlmostEqual(result[\"img\"].shape, expected_val.shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset_parallel.py_TestCacheDatasetParallel_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_cachedataset_parallel.py_TestCacheDatasetParallel_", "embedding": null, "metadata": {"file_path": "tests/test_cachedataset_parallel.py", "file_name": "test_cachedataset_parallel.py", "file_type": "text/x-python", "category": "test", "start_line": 30, "end_line": 54, "span_ids": ["TestCacheDatasetParallel", "impl:7", "TestCacheDatasetParallel.test_shape"], "tokens": 276}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCacheDatasetParallel(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_shape(self, num_workers, dataset_size, transform):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=[8, 8, 8]), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n nib.save(test_image, os.path.join(tempdir, \"test_image1.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_label1.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_extra1.nii.gz\"))\n test_data = [\n {\n \"image\": os.path.join(tempdir, \"test_image1.nii.gz\"),\n \"label\": os.path.join(tempdir, \"test_label1.nii.gz\"),\n \"extra\": os.path.join(tempdir, \"test_extra1.nii.gz\"),\n }\n ] * dataset_size\n dataset = CacheDataset(data=test_data, transform=transform, cache_rate=1, num_workers=num_workers)\n\n self.assertEqual(len(dataset._cache), dataset.cache_num)\n for i in range(dataset.cache_num):\n self.assertIsNotNone(dataset._cache[i])\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_crop.py_TestCenterSpatialCrop_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_crop.py_TestCenterSpatialCrop_", "embedding": null, "metadata": {"file_path": "tests/test_center_spatial_crop.py", "file_name": "test_center_spatial_crop.py", "file_type": "text/x-python", "category": "test", "start_line": 37, "end_line": 53, "span_ids": ["impl:9", "TestCenterSpatialCrop.test_shape", "TestCenterSpatialCrop", "TestCenterSpatialCrop.test_value"], "tokens": 163}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCenterSpatialCrop(unittest.TestCase):\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1, TEST_CASE_3])\n def test_shape(self, input_param, input_data, expected_shape):\n result = CenterSpatialCrop(**input_param)(input_data)\n self.assertEqual(isinstance(result, torch.Tensor), isinstance(input_data, torch.Tensor))\n np.testing.assert_allclose(result.shape, expected_shape)\n\n @parameterized.expand([TEST_CASE_2])\n def test_value(self, input_param, input_data, expected_value):\n result = CenterSpatialCrop(**input_param)(input_data)\n self.assertEqual(isinstance(result, torch.Tensor), isinstance(input_data, torch.Tensor))\n np.testing.assert_allclose(result, expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_cropd.py_TestCenterSpatialCropd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_center_spatial_cropd.py_TestCenterSpatialCropd_", "embedding": null, "metadata": {"file_path": "tests/test_center_spatial_cropd.py", "file_name": "test_center_spatial_cropd.py", "file_type": "text/x-python", "category": "test", "start_line": 45, "end_line": 59, "span_ids": ["TestCenterSpatialCropd", "TestCenterSpatialCropd.test_value", "impl:10", "TestCenterSpatialCropd.test_shape"], "tokens": 127}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCenterSpatialCropd(unittest.TestCase):\n @parameterized.expand(TEST_SHAPES)\n def test_shape(self, input_param, input_data, expected_shape):\n result = CenterSpatialCropd(**input_param)(input_data)\n self.assertTupleEqual(result[\"img\"].shape, expected_shape)\n\n @parameterized.expand(TEST_CASES)\n def test_value(self, input_param, input_data, expected_value):\n result = CenterSpatialCropd(**input_param)(input_data)\n assert_allclose(result[\"img\"], expected_value, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_list_dict_compose_TestCompose.test_list_dict_compose.for_item_in_value_.self_assertDictEqual_item": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_list_dict_compose_TestCompose.test_list_dict_compose.for_item_in_value_.self_assertDictEqual_item", "embedding": null, "metadata": {"file_path": "tests/test_compose.py", "file_name": "test_compose.py", "file_type": "text/x-python", "category": "test", "start_line": 47, "end_line": 67, "span_ids": ["TestCompose.test_list_dict_compose"], "tokens": 193}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCompose(unittest.TestCase):\n\n def test_list_dict_compose(self):\n def a(d): # transform to handle dict data\n d = dict(d)\n d[\"a\"] += 1\n return d\n\n def b(d): # transform to generate a batch list of data\n d = dict(d)\n d[\"b\"] += 1\n d = [d] * 5\n return d\n\n def c(d): # transform to handle dict data\n d = dict(d)\n d[\"c\"] += 1\n return d\n\n transforms = Compose([a, a, b, c, c])\n value = transforms({\"a\": 0, \"b\": 0, \"c\": 0})\n for item in value:\n self.assertDictEqual(item, {\"a\": 2, \"b\": 1, \"c\": 2})", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TestComputeMeanDice.test_value_class_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compute_meandice.py_TestComputeMeanDice.test_value_class_", "embedding": null, "metadata": {"file_path": "tests/test_compute_meandice.py", "file_name": "test_compute_meandice.py", "file_type": "text/x-python", "category": "test", "start_line": 191, "end_line": 214, "span_ids": ["impl:21", "TestComputeMeanDice.test_value_class", "TestComputeMeanDice.test_nans_class"], "tokens": 236}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestComputeMeanDice(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_10])\n def test_value_class(self, input_data, expected_value):\n\n # same test as for compute_meandice\n vals = {}\n vals[\"y_pred\"] = input_data.pop(\"y_pred\")\n vals[\"y\"] = input_data.pop(\"y\")\n dice_metric = DiceMetric(**input_data, reduction=\"none\")\n dice_metric(**vals)\n result = dice_metric.aggregate()\n np.testing.assert_allclose(result.cpu().numpy(), expected_value, atol=1e-4)\n\n @parameterized.expand([TEST_CASE_4, TEST_CASE_5, TEST_CASE_6, TEST_CASE_7, TEST_CASE_8])\n def test_nans_class(self, params, input_data, expected_value):\n\n dice_metric = DiceMetric(**params)\n dice_metric(**input_data)\n result, _ = dice_metric.aggregate()\n np.testing.assert_allclose(result.cpu().numpy(), expected_value, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_unittest_TestConcatItemsd.test_tensor_values.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_concat_itemsd.py_unittest_TestConcatItemsd.test_tensor_values.None_2", "embedding": null, "metadata": {"file_path": "tests/test_concat_itemsd.py", "file_name": "test_concat_itemsd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 31, "span_ids": ["TestConcatItemsd.test_tensor_values", "TestConcatItemsd", "docstring"], "tokens": 221}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.transforms import ConcatItemsd\n\n\nclass TestConcatItemsd(unittest.TestCase):\n def test_tensor_values(self):\n device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu:0\")\n input_data = {\n \"img1\": torch.tensor([[0, 1], [1, 2]], device=device),\n \"img2\": torch.tensor([[0, 1], [1, 2]], device=device),\n }\n result = ConcatItemsd(keys=[\"img1\", \"img2\"], name=\"cat_img\")(input_data)\n self.assertTrue(\"cat_img\" in result)\n result[\"cat_img\"] += 1\n torch.testing.assert_allclose(result[\"img1\"], torch.tensor([[0, 1], [1, 2]], device=device))\n torch.testing.assert_allclose(result[\"cat_img\"], torch.tensor([[1, 2], [2, 3], [1, 2], [2, 3]], device=device))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestResidualUnit2D_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestResidualUnit2D_", "embedding": null, "metadata": {"file_path": "tests/test_convolutions.py", "file_name": "test_convolutions.py", "file_type": "text/x-python", "category": "test", "start_line": 126, "end_line": 155, "span_ids": ["TestResidualUnit2D.test_conv_only1", "impl", "TestResidualUnit2D", "TestResidualUnit2D.test_stride1", "TestResidualUnit2D.test_dropout1", "TestResidualUnit2D.test_dilation1"], "tokens": 322}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestResidualUnit2D(TorchImageTestCase2D):\n def test_conv_only1(self):\n conv = ResidualUnit(2, 1, self.output_channels)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_stride1(self):\n for strides in [2, [2, 2], (2, 2)]:\n conv = ResidualUnit(2, 1, self.output_channels, strides=strides)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0] // 2, self.im_shape[1] // 2)\n self.assertEqual(out.shape, expected_shape)\n\n def test_dilation1(self):\n conv = ResidualUnit(2, 1, self.output_channels, dilation=3)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_dropout1(self):\n conv = ResidualUnit(2, 1, self.output_channels, dropout=0.15)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_unittest_TEST_CASE_4._img_seg_2_img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_unittest_TEST_CASE_4._img_seg_2_img", "embedding": null, "metadata": {"file_path": "tests/test_copy_itemsd.py", "file_name": "test_copy_itemsd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 28, "span_ids": ["docstring"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.transforms import CopyItemsd\nfrom monai.utils import ensure_tuple\n\nTEST_CASE_1 = [\"img\", 1, \"img_1\"]\n\nTEST_CASE_2 = [[\"img\", \"seg\"], 1, [\"img_1\", \"seg_1\"]]\n\nTEST_CASE_3 = [\"img\", 2, [\"img_1\", \"img_2\"]]\n\nTEST_CASE_4 = [[\"img\", \"seg\"], 2, [\"img_1\", \"seg_1\", \"img_2\", \"seg_2\"]]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd.test_tensor_values_TestCopyItemsd.test_tensor_values.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_copy_itemsd.py_TestCopyItemsd.test_tensor_values_TestCopyItemsd.test_tensor_values.None_2", "embedding": null, "metadata": {"file_path": "tests/test_copy_itemsd.py", "file_name": "test_copy_itemsd.py", "file_type": "text/x-python", "category": "test", "start_line": 48, "end_line": 59, "span_ids": ["TestCopyItemsd.test_tensor_values"], "tokens": 194}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCopyItemsd(unittest.TestCase):\n\n def test_tensor_values(self):\n device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu:0\")\n input_data = {\n \"img\": torch.tensor([[0, 1], [1, 2]], device=device),\n \"seg\": torch.tensor([[0, 1], [1, 2]], device=device),\n }\n # test default `times=1`\n result = CopyItemsd(keys=\"img\", names=\"img_1\")(input_data)\n self.assertTrue(\"img_1\" in result)\n result[\"img_1\"] += 1\n torch.testing.assert_allclose(result[\"img\"], torch.tensor([[0, 1], [1, 2]], device=device))\n torch.testing.assert_allclose(result[\"img_1\"], torch.tensor([[1, 2], [2, 3]], device=device))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine_TestCreateAffine.test_create_rotate.None_4": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine_TestCreateAffine.test_create_rotate.None_4", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 154, "end_line": 207, "span_ids": ["TestCreateAffine", "TestCreateAffine.test_create_rotate"], "tokens": 626}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateAffine(unittest.TestCase):\n def test_create_rotate(self):\n with self.assertRaisesRegex(TypeError, \"\"):\n create_rotate(2, None)\n\n with self.assertRaisesRegex(ValueError, \"\"):\n create_rotate(5, 1)\n\n test_assert(\n create_rotate,\n (2, 1.1),\n np.array([[0.45359612, -0.89120736, 0.0], [0.89120736, 0.45359612, 0.0], [0.0, 0.0, 1.0]]),\n )\n test_assert(\n create_rotate,\n (3, 1.1),\n np.array(\n [\n [1.0, 0.0, 0.0, 0.0],\n [0.0, 0.45359612, -0.89120736, 0.0],\n [0.0, 0.89120736, 0.45359612, 0.0],\n [0.0, 0.0, 0.0, 1.0],\n ]\n ),\n )\n test_assert(\n create_rotate,\n (3, (1.1, 1)),\n np.array(\n [\n [0.54030231, 0.0, 0.84147098, 0.0],\n [0.74992513, 0.45359612, -0.48152139, 0.0],\n [-0.38168798, 0.89120736, 0.24507903, 0.0],\n [0.0, 0.0, 0.0, 1.0],\n ]\n ),\n )\n test_assert(\n create_rotate,\n (3, (1, 1, 1.1)),\n np.array(\n [\n [0.24507903, -0.48152139, 0.84147098, 0.0],\n [0.80270075, -0.38596121, -0.45464871, 0.0],\n [0.54369824, 0.78687425, 0.29192658, 0.0],\n [0.0, 0.0, 0.0, 1.0],\n ]\n ),\n )\n test_assert(\n create_rotate,\n (3, (0, 0, np.pi / 2)),\n np.array([[0.0, -1.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_shear_TestCreateAffine.test_create_shear.test_assert_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_shear_TestCreateAffine.test_create_shear.test_assert_", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 209, "end_line": 216, "span_ids": ["TestCreateAffine.test_create_shear"], "tokens": 251}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateAffine(unittest.TestCase):\n\n def test_create_shear(self):\n test_assert(create_shear, (2, 1.0), np.array([[1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]))\n test_assert(create_shear, (2, (2.0, 3.0)), np.array([[1.0, 2.0, 0.0], [3.0, 1.0, 0.0], [0.0, 0.0, 1.0]]))\n test_assert(\n create_shear,\n (3, 1.0),\n np.array([[1.0, 1.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_scale_TestCreateAffine.test_create_scale.None_4": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_scale_TestCreateAffine.test_create_scale.None_4", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 218, "end_line": 235, "span_ids": ["TestCreateAffine.test_create_scale"], "tokens": 465}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateAffine(unittest.TestCase):\n\n def test_create_scale(self):\n test_assert(create_scale, (2, 2), np.array([[2.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]))\n test_assert(create_scale, (2, [2, 2, 2]), np.array([[2.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 1.0]]))\n test_assert(\n create_scale,\n (3, [1.5, 2.4]),\n np.array([[1.5, 0.0, 0.0, 0.0], [0.0, 2.4, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )\n test_assert(\n create_scale,\n (3, 1.5),\n np.array([[1.5, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )\n test_assert(\n create_scale,\n (3, [1, 2, 3, 4, 5]),\n np.array([[1.0, 0.0, 0.0, 0.0], [0.0, 2.0, 0.0, 0.0], [0.0, 0.0, 3.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_translate_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_create_grid_and_affine.py_TestCreateAffine.test_create_translate_", "embedding": null, "metadata": {"file_path": "tests/test_create_grid_and_affine.py", "file_name": "test_create_grid_and_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 237, "end_line": 259, "span_ids": ["TestCreateAffine.test_create_translate", "impl"], "tokens": 477}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCreateAffine(unittest.TestCase):\n\n def test_create_translate(self):\n test_assert(create_translate, (2, 2), np.array([[1.0, 0.0, 2.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]))\n test_assert(create_translate, (2, [2, 2, 2]), np.array([[1.0, 0.0, 2.0], [0.0, 1.0, 2.0], [0.0, 0.0, 1.0]]))\n test_assert(\n create_translate,\n (3, [1.5, 2.4]),\n np.array([[1.0, 0.0, 0.0, 1.5], [0.0, 1.0, 0.0, 2.4], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )\n test_assert(\n create_translate,\n (3, 1.5),\n np.array([[1.0, 0.0, 0.0, 1.5], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )\n test_assert(\n create_translate,\n (3, [1, 2, 3, 4, 5]),\n np.array([[1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 2.0], [0.0, 0.0, 1.0, 3.0], [0.0, 0.0, 0.0, 1.0]]),\n )\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_stats.py_TestDataStats_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_data_stats.py_TestDataStats_", "embedding": null, "metadata": {"file_path": "tests/test_data_stats.py", "file_name": "test_data_stats.py", "file_type": "text/x-python", "category": "test", "start_line": 135, "end_line": 171, "span_ids": ["impl:17", "TestDataStats.test_file", "TestDataStats.test_value", "TestDataStats"], "tokens": 303}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDataStats(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6, TEST_CASE_7])\n def test_value(self, input_param, input_data, expected_print):\n transform = DataStats(**input_param)\n _ = transform(input_data)\n # self.assertEqual(transform.output, expected_print)\n\n @parameterized.expand([TEST_CASE_8])\n def test_file(self, input_data, expected_print):\n with tempfile.TemporaryDirectory() as tempdir:\n filename = os.path.join(tempdir, \"test_data_stats.log\")\n handler = logging.FileHandler(filename, mode=\"w\")\n handler.setLevel(logging.INFO)\n input_param = {\n \"prefix\": \"test data\",\n \"data_type\": True,\n \"data_shape\": True,\n \"value_range\": True,\n \"data_value\": True,\n \"additional_info\": np.mean,\n \"logger_handler\": handler,\n }\n transform = DataStats(**input_param)\n _ = transform(input_data)\n _logger = logging.getLogger(transform._logger_name)\n for h in _logger.handlers[:]:\n h.close()\n _logger.removeHandler(h)\n with open(filename) as f:\n content = f.read()\n if sys.platform != \"win32\":\n self.assertEqual(content, expected_print)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_densenet.py_TestDENSENET_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_densenet.py_TestDENSENET_", "embedding": null, "metadata": {"file_path": "tests/test_densenet.py", "file_name": "test_densenet.py", "file_type": "text/x-python", "category": "test", "start_line": 104, "end_line": 121, "span_ids": ["TestDENSENET.test_densenet_shape", "TestDENSENET.test_script", "TestDENSENET", "impl:27"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDENSENET(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_densenet_shape(self, model, input_param, input_shape, expected_shape):\n net = model(**input_param).to(device)\n with eval_mode(net):\n result = net.forward(torch.randn(input_shape).to(device))\n self.assertEqual(result.shape, expected_shape)\n\n @parameterized.expand(TEST_SCRIPT_CASES)\n def test_script(self, model, input_param, input_shape, expected_shape):\n net = model(**input_param)\n test_data = torch.randn(input_shape)\n test_script_save(net, test_data)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_unittest_TEST_CASES": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_unittest_TEST_CASES", "embedding": null, "metadata": {"file_path": "tests/test_dice_loss.py", "file_name": "test_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 162, "span_ids": ["docstring"], "tokens": 51}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.losses import DiceLoss\nfrom tests.utils import SkipIfBeforePyTorchVersion, test_script_save\n\nTEST_CASES =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_opts.None_2.DiceLoss_reduction_None_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_opts.None_2.DiceLoss_reduction_None_", "embedding": null, "metadata": {"file_path": "tests/test_dice_loss.py", "file_name": "test_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 114, "end_line": 133, "span_ids": ["TestDiceLoss.test_shape", "TestDiceLoss.test_ill_shape", "TestDiceLoss", "TestDiceLoss.test_ill_opts"], "tokens": 227}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDiceLoss(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_data, expected_val):\n result = DiceLoss(**input_param).forward(**input_data)\n np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, rtol=1e-5)\n\n def test_ill_shape(self):\n loss = DiceLoss()\n with self.assertRaisesRegex(AssertionError, \"\"):\n loss.forward(torch.ones((1, 2, 3)), torch.ones((4, 5, 6)))\n\n def test_ill_opts(self):\n with self.assertRaisesRegex(ValueError, \"\"):\n DiceLoss(sigmoid=True, softmax=True)\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertRaisesRegex(ValueError, \"\"):\n DiceLoss(reduction=\"unknown\")(chn_input, chn_target)\n with self.assertRaisesRegex(ValueError, \"\"):\n DiceLoss(reduction=None)(chn_input, chn_target)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss.test_input_warnings_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dice_loss.py_TestDiceLoss.test_input_warnings_", "embedding": null, "metadata": {"file_path": "tests/test_dice_loss.py", "file_name": "test_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 186, "end_line": 208, "span_ids": ["TestDiceLoss.test_script", "impl:3", "TestDiceLoss.test_input_warnings"], "tokens": 207}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDiceLoss(unittest.TestCase):\n\n def test_input_warnings(self):\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertWarns(Warning):\n loss = DiceLoss(include_background=False)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = DiceLoss(softmax=True)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = DiceLoss(to_onehot_y=True)\n loss.forward(chn_input, chn_target)\n\n @SkipIfBeforePyTorchVersion((1, 7, 0))\n def test_script(self):\n loss = DiceLoss()\n test_input = torch.ones(2, 1, 8, 8)\n test_script_save(loss, test_input, test_input)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_divisible_padd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_divisible_padd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_divisible_padd.py", "file_name": "test_divisible_padd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestDivisiblePadd.test_pad_shape", "TestDivisiblePadd", "impl:7", "docstring"], "tokens": 287}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import DivisiblePadd\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\"], \"k\": [4, 3, 2], \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 8, 9, 4)),\n]\n\nTEST_CASE_2 = [\n {\"keys\": [\"img\"], \"k\": 7, \"mode\": \"constant\", \"method\": \"end\"},\n {\"img\": np.zeros((3, 8, 7))},\n np.zeros((3, 14, 7)),\n]\n\nTEST_CASE_3 = [{\"keys\": [\"img\"], \"k\": 0, \"mode\": {\"constant\"}}, {\"img\": np.zeros((3, 8))}, np.zeros((3, 8))]\n\n\nclass TestDivisiblePadd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_pad_shape(self, input_param, input_data, expected_val):\n padder = DivisiblePadd(**input_param)\n result = padder(input_data)\n np.testing.assert_allclose(result[\"img\"], expected_val)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_downsample_block.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_downsample_block.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_downsample_block.py", "file_name": "test_downsample_block.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 48, "span_ids": ["TestMaxAvgPool", "impl:3", "TestMaxAvgPool.test_shape", "docstring"], "tokens": 412}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.blocks import MaxAvgPool\n\nTEST_CASES = [\n [{\"spatial_dims\": 2, \"kernel_size\": 2}, (7, 4, 64, 48), (7, 8, 32, 24)], # 4-channel 2D, batch 7\n [{\"spatial_dims\": 1, \"kernel_size\": 4}, (16, 4, 63), (16, 8, 15)], # 4-channel 1D, batch 16\n [{\"spatial_dims\": 1, \"kernel_size\": 4, \"padding\": 1}, (16, 4, 63), (16, 8, 16)], # 4-channel 1D, batch 16\n [ # 4-channel 3D, batch 16\n {\"spatial_dims\": 3, \"kernel_size\": 3, \"ceil_mode\": True},\n (16, 4, 32, 24, 48),\n (16, 8, 11, 8, 16),\n ],\n [ # 1-channel 3D, batch 16\n {\"spatial_dims\": 3, \"kernel_size\": 3, \"ceil_mode\": False},\n (16, 1, 32, 24, 48),\n (16, 2, 10, 8, 16),\n ],\n]\n\n\nclass TestMaxAvgPool(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_shape, expected_shape):\n net = MaxAvgPool(**input_param)\n with eval_mode(net):\n result = net(torch.randn(input_shape))\n self.assertEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_flipd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_flipd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_flipd.py", "file_name": "test_flipd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestFlipd.test_invalid_cases", "TestFlipd.test_correct_results", "impl:5", "docstring", "TestFlipd"], "tokens": 279}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import Flipd\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\nINVALID_CASES = [(\"wrong_axis\", [\"s\", 1], TypeError), (\"not_numbers\", \"s\", TypeError)]\n\nVALID_CASES = [(\"no_axis\", None), (\"one_axis\", 1), (\"many_axis\", [0, 1])]\n\n\nclass TestFlipd(NumpyImageTestCase2D):\n @parameterized.expand(INVALID_CASES)\n def test_invalid_cases(self, _, spatial_axis, raises):\n with self.assertRaises(raises):\n flip = Flipd(keys=\"img\", spatial_axis=spatial_axis)\n flip({\"img\": self.imt[0]})\n\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, _, spatial_axis):\n for p in TEST_NDARRAYS:\n flip = Flipd(keys=\"img\", spatial_axis=spatial_axis)\n expected = [np.flip(channel, spatial_axis) for channel in self.imt[0]]\n expected = np.stack(expected)\n result = flip({\"img\": p(self.imt[0])})[\"img\"]\n assert_allclose(result, p(expected))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_unittest_TestFocalLoss.test_consistency_with_cross_entropy_2d.self_assertAlmostEqual_ma": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_unittest_TestFocalLoss.test_consistency_with_cross_entropy_2d.self_assertAlmostEqual_ma", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 45, "span_ids": ["TestFocalLoss", "TestFocalLoss.test_consistency_with_cross_entropy_2d", "docstring"], "tokens": 337}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\n\nfrom monai.losses import FocalLoss\nfrom monai.networks import one_hot\nfrom tests.utils import SkipIfBeforePyTorchVersion, test_script_save\n\n\nclass TestFocalLoss(unittest.TestCase):\n def test_consistency_with_cross_entropy_2d(self):\n \"\"\"For gamma=0 the focal loss reduces to the cross entropy loss\"\"\"\n focal_loss = FocalLoss(to_onehot_y=False, gamma=0.0, reduction=\"mean\", weight=1.0)\n ce = nn.BCEWithLogitsLoss(reduction=\"mean\")\n max_error = 0\n class_num = 10\n batch_size = 128\n for _ in range(100):\n # Create a random tensor of shape (batch_size, class_num, 8, 4)\n x = torch.rand(batch_size, class_num, 8, 4, requires_grad=True)\n # Create a random batch of classes\n l = torch.randint(low=0, high=2, size=(batch_size, class_num, 8, 4)).float()\n if torch.cuda.is_available():\n x = x.cuda()\n l = l.cuda()\n output0 = focal_loss(x, l)\n output1 = ce(x, l)\n a = float(output0.cpu().detach())\n b = float(output1.cpu().detach())\n if abs(a - b) > max_error:\n max_error = abs(a - b)\n self.assertAlmostEqual(max_error, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_consistency_with_cross_entropy_classification_TestFocalLoss.test_consistency_with_cross_entropy_classification.self_assertAlmostEqual_ma": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_consistency_with_cross_entropy_classification_TestFocalLoss.test_consistency_with_cross_entropy_classification.self_assertAlmostEqual_ma", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 70, "end_line": 92, "span_ids": ["TestFocalLoss.test_consistency_with_cross_entropy_classification"], "tokens": 271}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFocalLoss(unittest.TestCase):\n\n def test_consistency_with_cross_entropy_classification(self):\n \"\"\"for gamma=0 the focal loss reduces to the cross entropy loss\"\"\"\n focal_loss = FocalLoss(to_onehot_y=True, gamma=0.0, reduction=\"mean\")\n ce = nn.BCEWithLogitsLoss(reduction=\"mean\")\n max_error = 0\n class_num = 10\n batch_size = 128\n for _ in range(100):\n # Create a random scores tensor of shape (batch_size, class_num)\n x = torch.rand(batch_size, class_num, requires_grad=True)\n # Create a random batch of classes\n l = torch.randint(low=0, high=class_num, size=(batch_size, 1))\n l = l.long()\n if torch.cuda.is_available():\n x = x.cuda()\n l = l.cuda()\n output0 = focal_loss(x, l)\n output1 = ce(x, one_hot(l, num_classes=class_num))\n a = float(output0.cpu().detach())\n b = float(output1.cpu().detach())\n if abs(a - b) > max_error:\n max_error = abs(a - b)\n self.assertAlmostEqual(max_error, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_2d_TestFocalLoss.test_bin_seg_2d.self_assertAlmostEqual_fo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_2d_TestFocalLoss.test_bin_seg_2d.self_assertAlmostEqual_fo", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 118, "end_line": 131, "span_ids": ["TestFocalLoss.test_bin_seg_2d"], "tokens": 245}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFocalLoss(unittest.TestCase):\n\n def test_bin_seg_2d(self):\n # define 2d examples\n target = torch.tensor([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]])\n # add another dimension corresponding to the batch (batch size = 1 here)\n target = target.unsqueeze(0) # shape (1, H, W)\n pred_very_good = 100 * F.one_hot(target, num_classes=2).permute(0, 3, 1, 2).float() - 50.0\n\n # initialize the mean dice loss\n loss = FocalLoss(to_onehot_y=True)\n\n # focal loss for pred_very_good should be close to 0\n target = target.unsqueeze(1) # shape (1, 1, H, W)\n focal_loss_good = float(loss(pred_very_good, target).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_empty_class_2d_TestFocalLoss.test_empty_class_2d.self_assertAlmostEqual_fo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_empty_class_2d_TestFocalLoss.test_empty_class_2d.self_assertAlmostEqual_fo", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 133, "end_line": 147, "span_ids": ["TestFocalLoss.test_empty_class_2d"], "tokens": 253}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFocalLoss(unittest.TestCase):\n\n def test_empty_class_2d(self):\n num_classes = 2\n # define 2d examples\n target = torch.tensor([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])\n # add another dimension corresponding to the batch (batch size = 1 here)\n target = target.unsqueeze(0) # shape (1, H, W)\n pred_very_good = 1000 * F.one_hot(target, num_classes=num_classes).permute(0, 3, 1, 2).float() - 500.0\n\n # initialize the mean dice loss\n loss = FocalLoss(to_onehot_y=True)\n\n # focal loss for pred_very_good should be close to 0\n target = target.unsqueeze(1) # shape (1, 1, H, W)\n focal_loss_good = float(loss(pred_very_good, target).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_multi_class_seg_2d_TestFocalLoss.test_multi_class_seg_2d.None_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_multi_class_seg_2d_TestFocalLoss.test_multi_class_seg_2d.None_1", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 149, "end_line": 168, "span_ids": ["TestFocalLoss.test_multi_class_seg_2d"], "tokens": 348}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFocalLoss(unittest.TestCase):\n\n def test_multi_class_seg_2d(self):\n num_classes = 6 # labels 0 to 5\n # define 2d examples\n target = torch.tensor([[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]])\n # add another dimension corresponding to the batch (batch size = 1 here)\n target = target.unsqueeze(0) # shape (1, H, W)\n pred_very_good = 1000 * F.one_hot(target, num_classes=num_classes).permute(0, 3, 1, 2).float() - 500.0\n # initialize the mean dice loss\n loss = FocalLoss(to_onehot_y=True)\n loss_onehot = FocalLoss(to_onehot_y=False)\n\n # focal loss for pred_very_good should be close to 0\n target_one_hot = F.one_hot(target, num_classes=num_classes).permute(0, 3, 1, 2) # test one hot\n target = target.unsqueeze(1) # shape (1, 1, H, W)\n\n focal_loss_good = float(loss(pred_very_good, target).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)\n\n focal_loss_good = float(loss_onehot(pred_very_good, target_one_hot).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_3d_TestFocalLoss.test_bin_seg_3d.None_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_focal_loss.py_TestFocalLoss.test_bin_seg_3d_TestFocalLoss.test_bin_seg_3d.None_1", "embedding": null, "metadata": {"file_path": "tests/test_focal_loss.py", "file_name": "test_focal_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 170, "end_line": 198, "span_ids": ["TestFocalLoss.test_bin_seg_3d"], "tokens": 479}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestFocalLoss(unittest.TestCase):\n\n def test_bin_seg_3d(self):\n num_classes = 2 # labels 0, 1\n # define 3d examples\n target = torch.tensor(\n [\n # raw 0\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n # raw 1\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n # raw 2\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n ]\n )\n # add another dimension corresponding to the batch (batch size = 1 here)\n target = target.unsqueeze(0) # shape (1, H, W, D)\n target_one_hot = F.one_hot(target, num_classes=num_classes).permute(0, 4, 1, 2, 3) # test one hot\n pred_very_good = 1000 * F.one_hot(target, num_classes=num_classes).permute(0, 4, 1, 2, 3).float() - 500.0\n\n # initialize the mean dice loss\n loss = FocalLoss(to_onehot_y=True)\n loss_onehot = FocalLoss(to_onehot_y=False)\n\n # focal loss for pred_very_good should be close to 0\n target = target.unsqueeze(1) # shape (1, 1, H, W)\n focal_loss_good = float(loss(pred_very_good, target).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)\n\n focal_loss_good = float(loss_onehot(pred_very_good, target_one_hot).cpu())\n self.assertAlmostEqual(focal_loss_good, 0.0, places=3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_2d_GaussianFilterTestCase.test_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_2d_GaussianFilterTestCase.test_2d.if_torch_cuda_is_availabl.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_filter.py", "file_name": "test_gaussian_filter.py", "file_type": "text/x-python", "category": "test", "start_line": 122, "end_line": 141, "span_ids": ["GaussianFilterTestCase.test_2d"], "tokens": 222}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianFilterTestCase(unittest.TestCase):\n\n @skip_if_quick\n def test_2d(self):\n a = torch.ones(1, 1, 3, 3)\n g = GaussianFilter(2, 3, 3).to(torch.device(\"cpu:0\"))\n expected = np.array(\n [\n [\n [\n [0.13239081, 0.13932934, 0.13239081],\n [0.13932936, 0.14663152, 0.13932936],\n [0.13239081, 0.13932934, 0.13239081],\n ]\n ]\n ]\n )\n\n np.testing.assert_allclose(g(a).cpu().numpy(), expected, rtol=1e-5)\n if torch.cuda.is_available():\n g = GaussianFilter(2, 3, 3).to(torch.device(\"cuda:0\"))\n np.testing.assert_allclose(g(a.cuda()).cpu().numpy(), expected, rtol=1e-2)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_GaussianFilterTestCase.test_3d.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_GaussianFilterTestCase.test_3d.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_filter.py", "file_name": "test_gaussian_filter.py", "file_type": "text/x-python", "category": "test", "start_line": 131, "end_line": 163, "span_ids": ["GaussianFilterTestCase.test_3d"], "tokens": 464}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianFilterTestCase(unittest.TestCase):\n\n def test_3d(self):\n a = torch.ones(1, 1, 4, 3, 4)\n g = GaussianFilter(3, 3, 3).to(torch.device(\"cpu:0\"))\n\n expected = np.array(\n [\n [\n [\n [\n [0.07189433, 0.07911152, 0.07911152, 0.07189433],\n [0.07566228, 0.08325771, 0.08325771, 0.07566228],\n [0.07189433, 0.07911152, 0.07911152, 0.07189433],\n ],\n [\n [0.07911152, 0.08705322, 0.08705322, 0.07911152],\n [0.08325771, 0.09161563, 0.09161563, 0.08325771],\n [0.07911152, 0.08705322, 0.08705322, 0.07911152],\n ],\n [\n [0.07911152, 0.08705322, 0.08705322, 0.07911152],\n [0.08325771, 0.09161563, 0.09161563, 0.08325771],\n [0.07911152, 0.08705322, 0.08705322, 0.07911152],\n ],\n [\n [0.07189433, 0.07911152, 0.07911152, 0.07189433],\n [0.07566228, 0.08325771, 0.08325771, 0.07566228],\n [0.07189433, 0.07911152, 0.07911152, 0.07189433],\n ],\n ]\n ]\n ]\n )\n np.testing.assert_allclose(g(a).cpu().numpy(), expected, rtol=1e-5)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_sigmas_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase.test_3d_sigmas_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_filter.py", "file_name": "test_gaussian_filter.py", "file_type": "text/x-python", "category": "test", "start_line": 177, "end_line": 206, "span_ids": ["GaussianFilterTestCase.test_wrong_args", "impl:9", "GaussianFilterTestCase.test_3d_sigmas"], "tokens": 421}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianFilterTestCase(unittest.TestCase):\n\n def test_3d_sigmas(self):\n a = torch.ones(1, 1, 4, 3, 2)\n g = GaussianFilter(3, [3, 2, 1], 3).to(torch.device(\"cpu:0\"))\n\n expected = np.array(\n [\n [\n [\n [[0.13690521, 0.13690521], [0.15181276, 0.15181276], [0.13690521, 0.13690521]],\n [[0.1506486, 0.15064861], [0.16705267, 0.16705267], [0.1506486, 0.15064861]],\n [[0.1506486, 0.15064861], [0.16705267, 0.16705267], [0.1506486, 0.15064861]],\n [[0.13690521, 0.13690521], [0.15181276, 0.15181276], [0.13690521, 0.13690521]],\n ]\n ]\n ]\n )\n np.testing.assert_allclose(g(a).cpu().numpy(), expected, rtol=1e-5)\n if torch.cuda.is_available():\n g = GaussianFilter(3, [3, 2, 1], 3).to(torch.device(\"cuda:0\"))\n np.testing.assert_allclose(g(a.cuda()).cpu().numpy(), expected, rtol=1e-2)\n\n def test_wrong_args(self):\n with self.assertRaisesRegex(ValueError, \"\"):\n GaussianFilter(3, [3, 2], 3).to(torch.device(\"cpu:0\"))\n GaussianFilter(3, [3, 2, 1], 3).to(torch.device(\"cpu:0\")) # test init\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_unittest_TEST_CASES": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_unittest_TEST_CASES", "embedding": null, "metadata": {"file_path": "tests/test_generalized_dice_loss.py", "file_name": "test_generalized_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 145, "span_ids": ["docstring"], "tokens": 53}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.losses import GeneralizedDiceLoss\nfrom tests.utils import SkipIfBeforePyTorchVersion, test_script_save\n\nTEST_CASES =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss_TestGeneralizedDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss_TestGeneralizedDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_", "embedding": null, "metadata": {"file_path": "tests/test_generalized_dice_loss.py", "file_name": "test_generalized_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 114, "end_line": 123, "span_ids": ["TestGeneralizedDiceLoss.test_shape", "TestGeneralizedDiceLoss", "TestGeneralizedDiceLoss.test_ill_shape"], "tokens": 127}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestGeneralizedDiceLoss(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_data, expected_val):\n result = GeneralizedDiceLoss(**input_param).forward(**input_data)\n np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, rtol=1e-5)\n\n def test_ill_shape(self):\n loss = GeneralizedDiceLoss()\n with self.assertRaisesRegex(AssertionError, \"\"):\n loss.forward(torch.ones((1, 2, 3)), torch.ones((4, 5, 6)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss.test_ill_opts_TestGeneralizedDiceLoss.test_ill_opts.None_2.GeneralizedDiceLoss_reduc": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generalized_dice_loss.py_TestGeneralizedDiceLoss.test_ill_opts_TestGeneralizedDiceLoss.test_ill_opts.None_2.GeneralizedDiceLoss_reduc", "embedding": null, "metadata": {"file_path": "tests/test_generalized_dice_loss.py", "file_name": "test_generalized_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 125, "end_line": 133, "span_ids": ["TestGeneralizedDiceLoss.test_ill_opts"], "tokens": 121}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestGeneralizedDiceLoss(unittest.TestCase):\n\n def test_ill_opts(self):\n with self.assertRaisesRegex(ValueError, \"\"):\n GeneralizedDiceLoss(sigmoid=True, softmax=True)\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertRaisesRegex(ValueError, \"\"):\n GeneralizedDiceLoss(reduction=\"unknown\")(chn_input, chn_target)\n with self.assertRaisesRegex(ValueError, \"\"):\n GeneralizedDiceLoss(reduction=None)(chn_input, chn_target)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_spatial_bounding_box.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_generate_spatial_bounding_box.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_generate_spatial_bounding_box.py", "file_name": "test_generate_spatial_bounding_box.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 98, "span_ids": ["impl:9", "TestGenerateSpatialBoundingBox", "TestGenerateSpatialBoundingBox.test_value", "docstring"], "tokens": 832}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import generate_spatial_bounding_box\nfrom tests.utils import TEST_NDARRAYS\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\n \"img\": p(\n np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 1, 2, 1, 0], [0, 0, 0, 0, 0]]])\n ),\n \"select_fn\": lambda x: x > 0,\n \"channel_indices\": None,\n \"margin\": 0,\n },\n ([1, 1], [4, 4]),\n ]\n )\n TESTS.append(\n [\n {\n \"img\": p(\n np.array([[[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 3, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]]])\n ),\n \"select_fn\": lambda x: x > 1,\n \"channel_indices\": None,\n \"margin\": 0,\n },\n ([2, 2], [3, 3]),\n ]\n )\n TESTS.append(\n [\n {\n \"img\": p(\n np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 1, 2, 1, 0], [0, 0, 0, 0, 0]]])\n ),\n \"select_fn\": lambda x: x > 0,\n \"channel_indices\": 0,\n \"margin\": 0,\n },\n ([1, 1], [4, 4]),\n ]\n )\n TESTS.append(\n [\n {\n \"img\": p(\n np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]])\n ),\n \"select_fn\": lambda x: x > 0,\n \"channel_indices\": None,\n \"margin\": 1,\n },\n ([0, 0], [4, 5]),\n ]\n )\n TESTS.append(\n [\n {\n \"img\": p(\n np.array([[[0, 0, 0, 0, 0], [0, 1, 2, 1, 0], [0, 2, 3, 2, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]])\n ),\n \"select_fn\": lambda x: x > 0,\n \"channel_indices\": None,\n \"margin\": [2, 1],\n },\n ([0, 0], [5, 5]),\n ]\n )\n\n\nclass TestGenerateSpatialBoundingBox(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, input_data, expected_box):\n result = generate_spatial_bounding_box(**input_data)\n self.assertTupleEqual(result, expected_box)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_rocauc.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_rocauc.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_handler_rocauc.py", "file_name": "test_handler_rocauc.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 46, "span_ids": ["TestHandlerROCAUC", "TestHandlerROCAUC.test_compute", "impl", "docstring"], "tokens": 274}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.handlers import ROCAUC\nfrom monai.transforms import Activations, AsDiscrete\n\n\nclass TestHandlerROCAUC(unittest.TestCase):\n def test_compute(self):\n auc_metric = ROCAUC()\n act = Activations(softmax=True)\n to_onehot = AsDiscrete(to_onehot=2)\n\n y_pred = [torch.Tensor([0.1, 0.9]), torch.Tensor([0.3, 1.4])]\n y = [torch.Tensor([0]), torch.Tensor([1])]\n y_pred = [act(p) for p in y_pred]\n y = [to_onehot(y_) for y_ in y]\n auc_metric.update([y_pred, y])\n\n y_pred = [torch.Tensor([0.2, 0.1]), torch.Tensor([0.1, 0.5])]\n y = [torch.Tensor([0]), torch.Tensor([1])]\n y_pred = [act(p) for p in y_pred]\n y = [to_onehot(y_) for y_ in y]\n\n auc_metric.update([y_pred, y])\n\n auc = auc_metric.compute()\n np.testing.assert_allclose(0.75, auc)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_TestHandlerSegmentationSaver.test_save_resized_content_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_TestHandlerSegmentationSaver.test_save_resized_content_", "embedding": null, "metadata": {"file_path": "tests/test_handler_segmentation_saver.py", "file_name": "test_handler_segmentation_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 56, "end_line": 87, "span_ids": ["impl:5", "TestHandlerSegmentationSaver.test_save_resized_content"], "tokens": 339}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerSegmentationSaver(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1])\n def test_save_resized_content(self, output_ext):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n engine.state.batch = decollate_batch(batch)\n return [torch.randint(0, 255, (1, 2, 2)).float() for _ in range(8)]\n\n engine = Engine(_train_func)\n\n # set up testing handler\n saver = SegmentationSaver(output_dir=tempdir, output_postfix=\"seg\", output_ext=output_ext, scale=255)\n saver.attach(engine)\n\n data = [\n {\n \"filename_or_obj\": [\"testfile\" + str(i) + \".nii.gz\" for i in range(8)],\n \"spatial_shape\": torch.tensor([[28, 28] for _ in range(8)]),\n \"affine\": torch.tensor([np.diag(np.ones(4)) * 5 for _ in range(8)]),\n \"original_affine\": torch.tensor([np.diag(np.ones(4)) * 1.0 for _ in range(8)]),\n }\n ]\n engine.run(data, max_epochs=1)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg\" + output_ext)\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_glob_TEST_CASES._20_20_2_20_20_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_glob_TEST_CASES._20_20_2_20_20_", "embedding": null, "metadata": {"file_path": "tests/test_handler_tb_image.py", "file_name": "test_handler_tb_image.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 24, "span_ids": ["docstring"], "tokens": 117}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import glob\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport torch\nfrom ignite.engine import Engine, Events\nfrom parameterized import parameterized\n\nfrom monai.data import decollate_batch\nfrom monai.handlers import TensorBoardImageHandler\n\nTEST_CASES = [[[20, 20]], [[2, 20, 20]], [[3, 20, 20]], [[20, 20, 20]], [[2, 20, 20, 20]], [[2, 2, 20, 20, 20]]]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_TestHandlerTBImage_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_image.py_TestHandlerTBImage_", "embedding": null, "metadata": {"file_path": "tests/test_handler_tb_image.py", "file_name": "test_handler_tb_image.py", "file_type": "text/x-python", "category": "test", "start_line": 27, "end_line": 55, "span_ids": ["TestHandlerTBImage.test_tb_image_shape", "impl:3", "TestHandlerTBImage"], "tokens": 210}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerTBImage(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_tb_image_shape(self, shape):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n engine.state.batch = decollate_batch(list(batch))\n return [torch.zeros((1, 10, 10))]\n\n engine = Engine(_train_func)\n\n # set up testing handler\n stats_handler = TensorBoardImageHandler(log_dir=tempdir)\n engine.add_event_handler(Events.ITERATION_COMPLETED, stats_handler)\n\n data = zip(\n torch.as_tensor(np.random.normal(size=(10, 4, *shape))),\n torch.as_tensor(np.random.normal(size=(10, 4, *shape))),\n )\n engine.run(data, epoch_length=10, max_epochs=1)\n stats_handler.close()\n\n self.assertTrue(len(glob.glob(tempdir)) > 0)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_TestHandlerTBStats.test_metrics_writer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_TestHandlerTBStats.test_metrics_writer_", "embedding": null, "metadata": {"file_path": "tests/test_handler_tb_stats.py", "file_name": "test_handler_tb_stats.py", "file_type": "text/x-python", "category": "test", "start_line": 46, "end_line": 79, "span_ids": ["TestHandlerTBStats.test_metrics_writer", "impl"], "tokens": 250}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerTBStats(unittest.TestCase):\n\n def test_metrics_writer(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n return [batch + 1.0]\n\n engine = Engine(_train_func)\n\n # set up dummy metric\n @engine.on(Events.EPOCH_COMPLETED)\n def _update_metric(engine):\n current_metric = engine.state.metrics.get(\"acc\", 0.1)\n engine.state.metrics[\"acc\"] = current_metric + 0.1\n engine.state.test = current_metric\n\n # set up testing handler\n writer = SummaryWriter(log_dir=tempdir)\n stats_handler = TensorBoardStatsHandler(\n summary_writer=writer,\n output_transform=lambda x: {\"loss\": x[0] * 2.0},\n global_epoch_transform=lambda x: x * 3.0,\n state_attributes=[\"test\"],\n )\n stats_handler.attach(engine)\n engine.run(range(3), max_epochs=2)\n writer.close()\n # check logging output\n self.assertTrue(len(glob.glob(tempdir)) > 0)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_validation.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_validation.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_handler_validation.py", "file_name": "test_handler_validation.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 50, "span_ids": ["TestEvaluator", "TestHandlerValidation.test_content", "TestEvaluator._iteration", "impl", "docstring", "TestHandlerValidation"], "tokens": 207}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom ignite.engine import Engine\n\nfrom monai.data import Dataset\nfrom monai.engines import Evaluator\nfrom monai.handlers import ValidationHandler\n\n\nclass TestEvaluator(Evaluator):\n def _iteration(self, engine, batchdata):\n pass\n\n\nclass TestHandlerValidation(unittest.TestCase):\n def test_content(self):\n data = [0] * 8\n\n # set up engine\n def _train_func(engine, batch):\n pass\n\n engine = Engine(_train_func)\n\n # set up testing handler\n val_data_loader = torch.utils.data.DataLoader(Dataset(data))\n evaluator = TestEvaluator(torch.device(\"cpu:0\"), val_data_loader)\n saver = ValidationHandler(interval=2, validator=evaluator)\n saver.attach(engine)\n\n engine.run(data, max_epochs=5)\n self.assertEqual(evaluator.state.max_epochs, 4)\n self.assertEqual(evaluator.state.epoch_length, 8)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_unittest_TestCorrection.test_correct.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_unittest_TestCorrection.test_correct.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_header_correct.py", "file_name": "test_header_correct.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 28, "span_ids": ["TestCorrection", "TestCorrection.test_correct", "docstring"], "tokens": 197}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport nibabel as nib\nimport numpy as np\n\nfrom monai.data import correct_nifti_header_if_necessary\n\n\nclass TestCorrection(unittest.TestCase):\n def test_correct(self):\n test_img = nib.Nifti1Image(np.zeros((1, 2, 3)), np.eye(4))\n test_img.header.set_zooms((100, 100, 100))\n test_img = correct_nifti_header_if_necessary(test_img)\n np.testing.assert_allclose(\n test_img.affine,\n np.array([[100.0, 0.0, 0.0, 0.0], [0.0, 100.0, 0.0, 0.0], [0.0, 0.0, 100.0, 0.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_TestCorrection.test_affine_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_header_correct.py_TestCorrection.test_affine_", "embedding": null, "metadata": {"file_path": "tests/test_header_correct.py", "file_name": "test_header_correct.py", "file_type": "text/x-python", "category": "test", "start_line": 30, "end_line": 41, "span_ids": ["TestCorrection.test_affine", "impl"], "tokens": 172}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCorrection(unittest.TestCase):\n\n def test_affine(self):\n test_img = nib.Nifti1Image(np.zeros((1, 2, 3)), np.eye(4) * 20.0)\n test_img = correct_nifti_header_if_necessary(test_img)\n np.testing.assert_allclose(\n test_img.affine,\n np.array([[20.0, 0.0, 0.0, 0.0], [0.0, 20.0, 0.0, 0.0], [0.0, 0.0, 20.0, 0.0], [0.0, 0.0, 0.0, 20.0]]),\n )\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_identity.py", "file_name": "test_identity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 28, "span_ids": ["TestIdentity", "TestIdentity.test_identity", "impl", "docstring"], "tokens": 93}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom monai.transforms.utility.array import Identity\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\n\nclass TestIdentity(NumpyImageTestCase2D):\n def test_identity(self):\n for p in TEST_NDARRAYS:\n img = p(self.imt)\n identity = Identity()\n assert_allclose(img, identity(img))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identityd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_identityd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_identityd.py", "file_name": "test_identityd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 30, "span_ids": ["TestIdentityd.test_identityd", "TestIdentityd", "impl", "docstring"], "tokens": 115}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom monai.transforms.utility.dictionary import Identityd\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\n\nclass TestIdentityd(NumpyImageTestCase2D):\n def test_identityd(self):\n for p in TEST_NDARRAYS:\n img = p(self.imt)\n data = {}\n data[\"img\"] = img\n identity = Identityd(keys=data.keys())\n assert_allclose(img, identity(data)[\"img\"])\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_os_MedNISTDataset.__getitem__.return.self_transforms_self_imag": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_os_MedNISTDataset.__getitem__.return.self_transforms_self_imag", "embedding": null, "metadata": {"file_path": "tests/test_integration_classification_2d.py", "file_name": "test_integration_classification_2d.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 59, "span_ids": ["MedNISTDataset", "MedNISTDataset.__len__", "MedNISTDataset.__init__", "docstring", "MedNISTDataset.__getitem__"], "tokens": 330}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport unittest\nimport warnings\nfrom urllib.error import ContentTooShortError, HTTPError\n\nimport numpy as np\nimport torch\nfrom torch.utils.data import DataLoader\n\nimport monai\nfrom monai.apps import download_and_extract\nfrom monai.data import decollate_batch\nfrom monai.metrics import ROCAUCMetric\nfrom monai.networks import eval_mode\nfrom monai.networks.nets import DenseNet121\nfrom monai.transforms import (\n Activations,\n AddChannel,\n AsDiscrete,\n Compose,\n LoadImage,\n RandFlip,\n RandRotate,\n RandZoom,\n ScaleIntensity,\n ToTensor,\n Transpose,\n)\nfrom monai.utils import set_determinism\nfrom tests.testing_data.integration_answers import test_integration_value\nfrom tests.utils import DistTestCase, TimedCall, skip_if_quick\n\nTEST_DATA_URL = \"https://drive.google.com/uc?id=1QsnnkvZyJPcbRoV_ArW8SnE1OTuoVbKE\"\nMD5_VALUE = \"0bc7306e7427e00ad1c5526a6677552d\"\nTASK = \"integration_classification_2d\"\n\n\nclass MedNISTDataset(torch.utils.data.Dataset):\n def __init__(self, image_files, labels, transforms):\n self.image_files = image_files\n self.labels = labels\n self.transforms = transforms\n\n def __len__(self):\n return len(self.image_files)\n\n def __getitem__(self, index):\n return self.transforms(self.image_files[index]), self.labels[index]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_run_inference_test_run_inference_test.return.tps": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_run_inference_test_run_inference_test.return.tps", "embedding": null, "metadata": {"file_path": "tests/test_integration_classification_2d.py", "file_name": "test_integration_classification_2d.py", "file_type": "text/x-python", "category": "test", "start_line": 148, "end_line": 168, "span_ids": ["run_inference_test"], "tokens": 272}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_inference_test(root_dir, test_x, test_y, device=\"cuda:0\", num_workers=10):\n # define transforms for image and classification\n val_transforms = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity(), ToTensor()])\n val_ds = MedNISTDataset(test_x, test_y, val_transforms)\n val_loader = DataLoader(val_ds, batch_size=300, num_workers=num_workers)\n\n model = DenseNet121(spatial_dims=2, in_channels=1, out_channels=len(np.unique(test_y))).to(device)\n\n model_filename = os.path.join(root_dir, \"best_metric_model.pth\")\n model.load_state_dict(torch.load(model_filename))\n y_true = []\n y_pred = []\n with eval_mode(model):\n for test_data in val_loader:\n test_images, test_labels = test_data[0].to(device), test_data[1].to(device)\n pred = model(test_images).argmax(dim=1)\n for i in range(len(pred)):\n y_true.append(test_labels[i].item())\n y_pred.append(pred[i].item())\n tps = [np.sum((np.asarray(y_true) == idx) & (np.asarray(y_pred) == idx)) for idx in np.unique(test_y)]\n return tps", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_IntegrationClassification2D.tearDown_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_classification_2d.py_IntegrationClassification2D.tearDown_", "embedding": null, "metadata": {"file_path": "tests/test_integration_classification_2d.py", "file_name": "test_integration_classification_2d.py", "file_type": "text/x-python", "category": "test", "start_line": 220, "end_line": 270, "span_ids": ["IntegrationClassification2D.tearDown", "IntegrationClassification2D.test_training", "impl:7", "IntegrationClassification2D.test_timing", "IntegrationClassification2D.train_and_infer"], "tokens": 471}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@skip_if_quick\nclass IntegrationClassification2D(DistTestCase):\n\n def tearDown(self):\n set_determinism(seed=None)\n try:\n os.remove(os.path.join(self.data_dir, \"best_metric_model.pth\"))\n except FileNotFoundError:\n warnings.warn(\"not found best_metric_model.pth, training skipped?\")\n pass\n\n def train_and_infer(self, idx=0):\n results = []\n if not os.path.exists(os.path.join(self.data_dir, \"MedNIST\")):\n # skip test if no MedNIST dataset\n return results\n\n set_determinism(seed=0)\n losses, best_metric, best_metric_epoch = run_training_test(\n self.data_dir, self.train_x, self.train_y, self.val_x, self.val_y, device=self.device\n )\n infer_metric = run_inference_test(self.data_dir, self.test_x, self.test_y, device=self.device)\n\n print(f\"integration_classification_2d {losses}\")\n print(\"best metric\", best_metric)\n print(\"infer metric\", infer_metric)\n # check training properties\n self.assertTrue(test_integration_value(TASK, key=\"losses\", data=losses, rtol=1e-2))\n self.assertTrue(test_integration_value(TASK, key=\"best_metric\", data=best_metric, rtol=1e-4))\n np.testing.assert_allclose(best_metric_epoch, 4)\n model_file = os.path.join(self.data_dir, \"best_metric_model.pth\")\n self.assertTrue(os.path.exists(model_file))\n # check inference properties\n self.assertTrue(test_integration_value(TASK, key=\"infer_prop\", data=np.asarray(infer_metric), rtol=1))\n results.extend(losses)\n results.append(best_metric)\n results.extend(infer_metric)\n return results\n\n def test_training(self):\n repeated = []\n for i in range(2):\n results = self.train_and_infer(i)\n repeated.append(results)\n np.testing.assert_allclose(repeated[0], repeated[1])\n\n @TimedCall(seconds=1000, skip_timing=not torch.cuda.is_available(), daemon=False)\n def test_timing(self):\n self.train_and_infer()\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_unittest_run_test._TestBatch.__len__.return.train_steps": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_unittest_run_test._TestBatch.__len__.return.train_steps", "embedding": null, "metadata": {"file_path": "tests/test_integration_determinism.py", "file_name": "test_integration_determinism.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["run_test", "docstring"], "tokens": 253}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom torch.utils.data import DataLoader, Dataset\n\nfrom monai.data import create_test_image_2d\nfrom monai.losses import DiceLoss\nfrom monai.networks.nets import UNet\nfrom monai.transforms import AddChannel, Compose, RandRotate90, RandSpatialCrop, ScaleIntensity, ToTensor\nfrom monai.utils import set_determinism\nfrom tests.utils import DistTestCase, TimedCall\n\n\ndef run_test(batch_size=64, train_steps=200, device=\"cuda:0\"):\n class _TestBatch(Dataset):\n def __init__(self, transforms):\n self.transforms = transforms\n\n def __getitem__(self, _unused_id):\n im, seg = create_test_image_2d(128, 128, noise_max=1, num_objs=4, num_seg_classes=1)\n seed = np.random.randint(2147483647)\n self.transforms.set_random_state(seed=seed)\n im = self.transforms(im)\n self.transforms.set_random_state(seed=seed)\n seg = self.transforms(seg)\n return im, seg\n\n def __len__(self):\n return train_steps\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_run_test.net_run_test.return.epoch_loss_step": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_run_test.net_run_test.return.epoch_loss_step", "embedding": null, "metadata": {"file_path": "tests/test_integration_determinism.py", "file_name": "test_integration_determinism.py", "file_type": "text/x-python", "category": "test", "start_line": 43, "end_line": 68, "span_ids": ["run_test"], "tokens": 246}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_test(batch_size=64, train_steps=200, device=\"cuda:0\"):\n # ... other code\n\n net = UNet(\n spatial_dims=2, in_channels=1, out_channels=1, channels=(4, 8, 16, 32), strides=(2, 2, 2), num_res_units=2\n ).to(device)\n\n loss = DiceLoss(sigmoid=True)\n opt = torch.optim.Adam(net.parameters(), 1e-2)\n train_transforms = Compose(\n [AddChannel(), ScaleIntensity(), RandSpatialCrop((96, 96), random_size=False), RandRotate90(), ToTensor()]\n )\n\n src = DataLoader(_TestBatch(train_transforms), batch_size=batch_size, shuffle=True)\n\n net.train()\n epoch_loss = 0\n step = 0\n for img, seg in src:\n step += 1\n opt.zero_grad()\n output = net(img.to(device))\n step_loss = loss(output, seg.to(device))\n step_loss.backward()\n opt.step()\n epoch_loss += step_loss.item()\n epoch_loss /= step\n\n return epoch_loss, step", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_TestDeterminism_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_determinism.py_TestDeterminism_", "embedding": null, "metadata": {"file_path": "tests/test_integration_determinism.py", "file_name": "test_integration_determinism.py", "file_type": "text/x-python", "category": "test", "start_line": 71, "end_line": 89, "span_ids": ["TestDeterminism.tearDown", "impl", "TestDeterminism.setUp", "TestDeterminism", "TestDeterminism.test_training"], "tokens": 154}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDeterminism(DistTestCase):\n def setUp(self):\n self.device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu:0\")\n\n def tearDown(self):\n set_determinism(seed=None)\n\n @TimedCall(seconds=150, skip_timing=not torch.cuda.is_available())\n def test_training(self):\n set_determinism(seed=0)\n loss, step = run_test(device=self.device)\n print(f\"Deterministic loss {loss} at training step {step}\")\n np.testing.assert_allclose(step, 4)\n np.testing.assert_allclose(loss, 0.536134, rtol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_IntegrationSegmentation3D_IntegrationSegmentation3D.tearDown.shutil_rmtree_self_data_d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_segmentation_3d.py_IntegrationSegmentation3D_IntegrationSegmentation3D.tearDown.shutil_rmtree_self_data_d", "embedding": null, "metadata": {"file_path": "tests/test_integration_segmentation_3d.py", "file_name": "test_integration_segmentation_3d.py", "file_type": "text/x-python", "category": "test", "start_line": 229, "end_line": 246, "span_ids": ["IntegrationSegmentation3D", "IntegrationSegmentation3D.tearDown", "IntegrationSegmentation3D.setUp"], "tokens": 195}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@skip_if_quick\nclass IntegrationSegmentation3D(DistTestCase):\n def setUp(self):\n set_determinism(seed=0)\n\n self.data_dir = tempfile.mkdtemp()\n for i in range(40):\n im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)\n n = nib.Nifti1Image(im, np.eye(4))\n nib.save(n, os.path.join(self.data_dir, f\"img{i:d}.nii.gz\"))\n n = nib.Nifti1Image(seg, np.eye(4))\n nib.save(n, os.path.join(self.data_dir, f\"seg{i:d}.nii.gz\"))\n\n self.device = \"cuda:0\" if torch.cuda.is_available() else \"cpu:0\"\n\n def tearDown(self):\n set_determinism(seed=None)\n shutil.rmtree(self.data_dir)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_run_test_run_test.return.saved_name": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_sliding_window.py_run_test_run_test.return.saved_name", "embedding": null, "metadata": {"file_path": "tests/test_integration_sliding_window.py", "file_name": "test_integration_sliding_window.py", "file_type": "text/x-python", "category": "test", "start_line": 32, "end_line": 58, "span_ids": ["run_test"], "tokens": 323}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_test(batch_size, img_name, seg_name, output_dir, device=\"cuda:0\"):\n ds = ImageDataset([img_name], [seg_name], transform=AddChannel(), seg_transform=AddChannel(), image_only=False)\n loader = DataLoader(ds, batch_size=1, pin_memory=torch.cuda.is_available())\n\n net = UNet(\n spatial_dims=3, in_channels=1, out_channels=1, channels=(4, 8, 16, 32), strides=(2, 2, 2), num_res_units=2\n ).to(device)\n roi_size = (16, 32, 48)\n sw_batch_size = batch_size\n\n def _sliding_window_processor(_engine, batch):\n img = batch[0] # first item from ImageDataset is the input image\n with eval_mode(net):\n seg_probs = sliding_window_inference(img.to(device), roi_size, sw_batch_size, net, device=device)\n return predict_segmentation(seg_probs)\n\n infer_engine = Engine(_sliding_window_processor)\n\n SegmentationSaver( # 3rd item for image batch meta data\n output_dir=output_dir, output_ext=\".nii.gz\", output_postfix=\"seg\", batch_transform=lambda x: x[2]\n ).attach(infer_engine)\n\n infer_engine.run(loader)\n\n basename = os.path.basename(img_name)[: -len(\".nii.gz\")]\n saved_name = os.path.join(output_dir, basename, f\"{basename}_seg.nii.gz\")\n return saved_name", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_compare_2d_compare_2d.return.model_img_a_detach_cpu": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_compare_2d_compare_2d.return.model_img_a_detach_cpu", "embedding": null, "metadata": {"file_path": "tests/test_integration_stn.py", "file_name": "test_integration_stn.py", "file_type": "text/x-python", "category": "test", "start_line": 76, "end_line": 96, "span_ids": ["compare_2d"], "tokens": 281}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def compare_2d(is_ref=True, device=None, reverse_indexing=False):\n batch_size = 32\n img_a = [create_test_image_2d(28, 28, 5, rad_max=6, noise_max=1)[0][None] for _ in range(batch_size)]\n img_b = [create_test_image_2d(28, 28, 5, rad_max=6, noise_max=1)[0][None] for _ in range(batch_size)]\n img_a = np.stack(img_a, axis=0)\n img_b = np.stack(img_b, axis=0)\n img_a = torch.as_tensor(img_a, device=device)\n img_b = torch.as_tensor(img_b, device=device)\n model = STNBenchmark(is_ref=is_ref, reverse_indexing=reverse_indexing).to(device)\n optimizer = optim.SGD(model.parameters(), lr=0.001)\n model.train()\n init_loss = None\n for _ in range(20):\n optimizer.zero_grad()\n output_a = model(img_a)\n loss = torch.mean((output_a - img_b) ** 2)\n if init_loss is None:\n init_loss = loss.item()\n loss.backward()\n optimizer.step()\n return model(img_a).detach().cpu().numpy(), loss.item(), init_loss", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_TestSpatialTransformerCore_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_stn.py_TestSpatialTransformerCore_", "embedding": null, "metadata": {"file_path": "tests/test_integration_stn.py", "file_name": "test_integration_stn.py", "file_type": "text/x-python", "category": "test", "start_line": 99, "end_line": 133, "span_ids": ["TestSpatialTransformerCore", "TestSpatialTransformerCore.tearDown", "impl", "TestSpatialTransformerCore.test_training", "TestSpatialTransformerCore.setUp"], "tokens": 326}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSpatialTransformerCore(DistTestCase):\n def setUp(self):\n self.device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu:0\")\n\n def tearDown(self):\n set_determinism(seed=None)\n\n @TimedCall(seconds=100, skip_timing=not torch.cuda.is_available())\n def test_training(self):\n \"\"\"\n check that the quality AffineTransform backpropagation\n \"\"\"\n atol = 1e-5\n set_determinism(seed=0)\n out_ref, loss_ref, init_loss_ref = compare_2d(True, self.device)\n print(out_ref.shape, loss_ref, init_loss_ref)\n\n set_determinism(seed=0)\n out, loss, init_loss = compare_2d(False, self.device)\n print(out.shape, loss, init_loss)\n np.testing.assert_allclose(out_ref, out, atol=atol)\n np.testing.assert_allclose(init_loss_ref, init_loss, atol=atol)\n np.testing.assert_allclose(loss_ref, loss, atol=atol)\n\n set_determinism(seed=0)\n out, loss, init_loss = compare_2d(False, self.device, True)\n print(out.shape, loss, init_loss)\n np.testing.assert_allclose(out_ref, out, atol=atol)\n np.testing.assert_allclose(init_loss_ref, init_loss, atol=atol)\n np.testing.assert_allclose(loss_ref, loss, atol=atol)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_inference_test_run_inference_test.return.evaluator_state_best_metr": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_run_inference_test_run_inference_test.return.evaluator_state_best_metr", "embedding": null, "metadata": {"file_path": "tests/test_integration_workflows.py", "file_name": "test_integration_workflows.py", "file_type": "text/x-python", "category": "test", "start_line": 213, "end_line": 280, "span_ids": ["run_inference_test"], "tokens": 641}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_inference_test(root_dir, model_file, device=\"cuda:0\", amp=False, num_workers=4):\n images = sorted(glob(os.path.join(root_dir, \"im*.nii.gz\")))\n segs = sorted(glob(os.path.join(root_dir, \"seg*.nii.gz\")))\n val_files = [{\"image\": img, \"label\": seg} for img, seg in zip(images, segs)]\n\n # define transforms for image and segmentation\n val_transforms = Compose(\n [\n LoadImaged(keys=[\"image\", \"label\"]),\n AsChannelFirstd(keys=[\"image\", \"label\"], channel_dim=-1),\n ScaleIntensityd(keys=[\"image\", \"label\"]),\n ToTensord(keys=[\"image\", \"label\"]),\n ]\n )\n\n # create a validation data loader\n val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)\n val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=num_workers)\n\n # create UNet, DiceLoss and Adam optimizer\n net = monai.networks.nets.UNet(\n spatial_dims=3,\n in_channels=1,\n out_channels=1,\n channels=(16, 32, 64, 128, 256),\n strides=(2, 2, 2, 2),\n num_res_units=2,\n ).to(device)\n\n val_postprocessing = Compose(\n [\n ToTensord(keys=[\"pred\", \"label\"]),\n Activationsd(keys=\"pred\", sigmoid=True),\n AsDiscreted(keys=\"pred\", threshold=0.5),\n KeepLargestConnectedComponentd(keys=\"pred\", applied_labels=[1]),\n # test the case that `pred` in `engine.state.output`, while `image_meta_dict` in `engine.state.batch`\n SaveImaged(\n keys=\"pred\", meta_keys=PostFix.meta(\"image\"), output_dir=root_dir, output_postfix=\"seg_transform\"\n ),\n ]\n )\n val_handlers = [\n StatsHandler(output_transform=lambda x: None),\n CheckpointLoader(load_path=f\"{model_file}\", load_dict={\"net\": net}),\n SegmentationSaver(\n output_dir=root_dir,\n output_postfix=\"seg_handler\",\n batch_transform=from_engine(PostFix.meta(\"image\")),\n output_transform=from_engine(\"pred\"),\n ),\n ]\n\n evaluator = SupervisedEvaluator(\n device=device,\n val_data_loader=val_loader,\n network=net,\n inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5),\n postprocessing=val_postprocessing,\n key_val_metric={\n \"val_mean_dice\": MeanDice(include_background=True, output_transform=from_engine([\"pred\", \"label\"]))\n },\n additional_metrics={\"val_acc\": Accuracy(output_transform=from_engine([\"pred\", \"label\"]))},\n val_handlers=val_handlers,\n amp=True if amp else False,\n )\n evaluator.run()\n\n return evaluator.state.best_metric", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows_IntegrationWorkflows.tearDown.shutil_rmtree_self_data_d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows.py_IntegrationWorkflows_IntegrationWorkflows.tearDown.shutil_rmtree_self_data_d", "embedding": null, "metadata": {"file_path": "tests/test_integration_workflows.py", "file_name": "test_integration_workflows.py", "file_type": "text/x-python", "category": "test", "start_line": 270, "end_line": 289, "span_ids": ["IntegrationWorkflows.tearDown", "IntegrationWorkflows.setUp", "IntegrationWorkflows"], "tokens": 213}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@skip_if_quick\nclass IntegrationWorkflows(DistTestCase):\n def setUp(self):\n set_determinism(seed=0)\n\n self.data_dir = tempfile.mkdtemp()\n for i in range(40):\n im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)\n n = nib.Nifti1Image(im, np.eye(4))\n nib.save(n, os.path.join(self.data_dir, f\"img{i:d}.nii.gz\"))\n n = nib.Nifti1Image(seg, np.eye(4))\n nib.save(n, os.path.join(self.data_dir, f\"seg{i:d}.nii.gz\"))\n\n self.device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu:0\")\n monai.config.print_config()\n logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n\n def tearDown(self):\n set_determinism(seed=None)\n shutil.rmtree(self.data_dir)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_unittest_expected_output_for_cube": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_unittest_expected_output_for_cube", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contour.py", "file_name": "test_label_to_contour.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 101, "span_ids": ["docstring"], "tokens": 44}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.transforms import LabelToContour\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nexpected_output_for_cube =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contour.py", "file_name": "test_label_to_contour.py", "file_type": "text/x-python", "category": "test", "start_line": 117, "end_line": 139, "span_ids": ["gen_fixed_img"], "tokens": 301}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def gen_fixed_img(array_type):\n img = np.array(\n [\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 1, 1, 1, 1, 1],\n [0, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1],\n ],\n dtype=np.float32,\n )\n batch_size, channels = 10, 6\n img = array_type(np.tile(img, (batch_size, channels, 1, 1)))\n expected_output_for_img = array_type(\n [\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 0, 1, 0, 0, 1],\n [0, 0, 1, 1, 0, 0, 1],\n [0, 1, 1, 0, 0, 0, 1],\n [1, 1, 1, 1, 1, 1, 1],\n ]\n )\n return img, expected_output_for_img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_TestContour_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contour.py_TestContour_", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contour.py", "file_name": "test_label_to_contour.py", "file_type": "text/x-python", "category": "test", "start_line": 142, "end_line": 178, "span_ids": ["impl:3", "TestContour", "TestContour.test_contour"], "tokens": 329}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestContour(unittest.TestCase):\n def test_contour(self):\n input_param = {\"kernel_type\": \"Laplace\"}\n\n for p in TEST_NDARRAYS:\n # check 5-dim input data\n test_cube, expected_output = gen_fixed_cube(p)\n for cube in test_cube:\n test_result_cube = LabelToContour(**input_param)(cube)\n self.assertEqual(test_result_cube.shape, cube.shape)\n\n channels = cube.shape[0]\n for channel in range(channels):\n assert_allclose(test_result_cube[channel, ...], expected_output)\n\n # check 4-dim input data\n test_img, expected_output = gen_fixed_img(p)\n for img in test_img:\n channels = img.shape[0]\n test_result_img = LabelToContour(**input_param)(img)\n self.assertEqual(test_result_img.shape, img.shape)\n\n for channel in range(channels):\n assert_allclose(test_result_img[channel, ...], expected_output)\n\n # check invalid input data\n error_input = torch.rand(1, 2)\n self.assertRaises(ValueError, LabelToContour(**input_param), error_input)\n error_input = torch.rand(1, 2, 3, 4, 5)\n self.assertRaises(ValueError, LabelToContour(**input_param), error_input)\n error_input = np.random.rand(1, 2, 3, 4, 5)\n self.assertRaises(ValueError, LabelToContour(**input_param), error_input)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_unittest_expected_output_for_cube": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_unittest_expected_output_for_cube", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contourd.py", "file_name": "test_label_to_contourd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 101, "span_ids": ["docstring"], "tokens": 44}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.transforms import LabelToContourd\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nexpected_output_for_cube =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_gen_fixed_img_gen_fixed_img.return.img_expected_output_for_", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contourd.py", "file_name": "test_label_to_contourd.py", "file_type": "text/x-python", "category": "test", "start_line": 117, "end_line": 140, "span_ids": ["gen_fixed_img"], "tokens": 306}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def gen_fixed_img(array_type):\n img = np.array(\n [\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 1, 1, 1, 1, 1],\n [0, 1, 1, 1, 1, 1, 1],\n [1, 1, 1, 1, 1, 1, 1],\n ],\n dtype=np.float32,\n )\n batch_size, channels = 10, 6\n img = np.tile(img, (batch_size, channels, 1, 1))\n img = array_type(img)\n expected_output_for_img = array_type(\n [\n [0, 0, 0, 1, 1, 1, 1],\n [0, 0, 0, 1, 0, 0, 1],\n [0, 0, 1, 1, 0, 0, 1],\n [0, 1, 1, 0, 0, 0, 1],\n [1, 1, 1, 1, 1, 1, 1],\n ]\n )\n return img, expected_output_for_img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_TestContourd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_contourd.py_TestContourd_", "embedding": null, "metadata": {"file_path": "tests/test_label_to_contourd.py", "file_name": "test_label_to_contourd.py", "file_type": "text/x-python", "category": "test", "start_line": 143, "end_line": 181, "span_ids": ["impl:3", "TestContourd", "TestContourd.test_contour"], "tokens": 369}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestContourd(unittest.TestCase):\n def test_contour(self):\n input_param = {\"keys\": \"img\", \"kernel_type\": \"Laplace\"}\n\n for p in TEST_NDARRAYS:\n # check 5-dim input data\n test_cube, expected_output = gen_fixed_cube(p)\n for cube in test_cube:\n test_result_cube = LabelToContourd(**input_param)({\"img\": cube})\n self.assertEqual(test_result_cube[\"img\"].shape, cube.shape)\n\n test_result_np = test_result_cube[\"img\"]\n channels = cube.shape[0]\n for channel in range(channels):\n assert_allclose(test_result_np[channel, ...], expected_output)\n\n # check 4-dim input data\n test_img, expected_output = gen_fixed_img(p)\n for img in test_img:\n channels = img.shape[0]\n test_result_img = LabelToContourd(**input_param)({\"img\": img})\n self.assertEqual(test_result_img[\"img\"].shape, img.shape)\n\n test_result_np = test_result_img[\"img\"]\n for channel in range(channels):\n assert_allclose(test_result_np[channel, ...], expected_output)\n\n # check invalid input data\n error_input = {\"img\": torch.rand(1, 2)}\n self.assertRaises(ValueError, LabelToContourd(**input_param), error_input)\n error_input = {\"img\": np.random.rand(1, 2)}\n self.assertRaises(ValueError, LabelToContourd(**input_param), error_input)\n error_input = {\"img\": torch.rand(1, 2, 3, 4, 5)}\n self.assertRaises(ValueError, LabelToContourd(**input_param), error_input)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_mask.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_label_to_mask.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_label_to_mask.py", "file_name": "test_label_to_mask.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 72, "span_ids": ["TestLabelToMask.test_value", "impl:9", "TestLabelToMask", "docstring"], "tokens": 786}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.transforms import LabelToMask\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\"select_labels\": [2, 3], \"merge_channels\": False},\n p(np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [5, 5, 5], [6, 6, 6]]])),\n np.array([[[0, 0, 0], [1, 1, 1], [1, 1, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]),\n ]\n )\n TESTS.append(\n [\n {\"select_labels\": 2, \"merge_channels\": False},\n p(np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [5, 5, 5], [6, 6, 6]]])),\n np.array([[[0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]),\n ]\n )\n TESTS.append(\n [\n {\"select_labels\": [1, 2], \"merge_channels\": False},\n p(np.array([[[0, 0, 1], [0, 1, 0]], [[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]])),\n np.array([[[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]]),\n ]\n )\n TESTS.append(\n [\n {\"select_labels\": 2, \"merge_channels\": False},\n p(np.array([[[0, 0, 1], [0, 1, 0]], [[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]])),\n np.array([[[1, 0, 1], [1, 1, 0]]]),\n ]\n )\n TESTS.append(\n [\n {\"select_labels\": [1, 2], \"merge_channels\": True},\n p(np.array([[[0, 0, 1], [0, 1, 0]], [[1, 0, 0], [0, 1, 1]], [[1, 0, 1], [1, 1, 0]]])),\n np.array([[[1, 0, 1], [1, 1, 1]]]),\n ]\n )\n\n\nclass TestLabelToMask(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, argments, image, expected_data):\n result = LabelToMask(**argments)(image)\n self.assertEqual(type(result), type(image))\n if isinstance(result, torch.Tensor):\n self.assertEqual(result.device, image.device)\n assert_allclose(result, expected_data, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambda.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambda.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_lambda.py", "file_name": "test_lambda.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 42, "span_ids": ["impl", "TestLambda.test_lambda_identity", "docstring", "TestLambda", "TestLambda.test_lambda_slicing"], "tokens": 177}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom monai.transforms.utility.array import Lambda\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\n\nclass TestLambda(NumpyImageTestCase2D):\n def test_lambda_identity(self):\n for p in TEST_NDARRAYS:\n img = p(self.imt)\n\n def identity_func(x):\n return x\n\n lambd = Lambda(func=identity_func)\n assert_allclose(identity_func(img), lambd(img))\n\n def test_lambda_slicing(self):\n for p in TEST_NDARRAYS:\n img = p(self.imt)\n\n def slice_func(x):\n return x[:, :, :6, ::2]\n\n lambd = Lambda(func=slice_func)\n assert_allclose(slice_func(img), lambd(img))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambdad.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lambdad.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_lambdad.py", "file_name": "test_lambdad.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 48, "span_ids": ["impl", "TestLambdad", "docstring", "TestLambdad.test_lambdad_identity", "TestLambdad.test_lambdad_slicing"], "tokens": 284}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom monai.transforms.utility.dictionary import Lambdad\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\n\nclass TestLambdad(NumpyImageTestCase2D):\n def test_lambdad_identity(self):\n for p in TEST_NDARRAYS:\n img = p(self.imt)\n data = {\"img\": img, \"prop\": 1.0}\n\n def noise_func(x):\n return x + 1.0\n\n expected = {\"img\": noise_func(data[\"img\"]), \"prop\": 1.0}\n ret = Lambdad(keys=[\"img\", \"prop\"], func=noise_func, overwrite=[True, False])(data)\n assert_allclose(expected[\"img\"], ret[\"img\"])\n assert_allclose(expected[\"prop\"], ret[\"prop\"])\n\n def test_lambdad_slicing(self):\n for p in TEST_NDARRAYS:\n img = p(self.imt)\n data = {\"img\": img}\n\n def slice_func(x):\n return x[:, :, :6, ::2]\n\n lambd = Lambdad(keys=data.keys(), func=slice_func)\n expected = {}\n expected[\"img\"] = slice_func(data[\"img\"])\n assert_allclose(expected[\"img\"], lambd(data)[\"img\"])\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_data_collate.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_data_collate.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_list_data_collate.py", "file_name": "test_list_data_collate.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 47, "span_ids": ["impl:21", "TestListDataCollate.test_type_shape", "TestListDataCollate", "docstring"], "tokens": 426}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.data import list_data_collate\n\na = {\"image\": np.array([1, 2, 3]), \"label\": np.array([4, 5, 6])}\nb = {\"image\": np.array([7, 8, 9]), \"label\": np.array([10, 11, 12])}\nc = {\"image\": np.array([13, 14, 15]), \"label\": np.array([16, 7, 18])}\nd = {\"image\": np.array([19, 20, 21]), \"label\": np.array([22, 23, 24])}\nTEST_CASE_1 = [[[a, b], [c, d]], dict, torch.Size([4, 3])] # dataset returns a list of dictionary data\n\ne = (np.array([1, 2, 3]), np.array([4, 5, 6]))\nf = (np.array([7, 8, 9]), np.array([10, 11, 12]))\ng = (np.array([13, 14, 15]), np.array([16, 7, 18]))\nh = (np.array([19, 20, 21]), np.array([22, 23, 24]))\nTEST_CASE_2 = [[[e, f], [g, h]], list, torch.Size([4, 3])] # dataset returns a list of tuple data\n\n\nclass TestListDataCollate(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2])\n def test_type_shape(self, input_data, expected_type, expected_shape):\n result = list_data_collate(input_data)\n self.assertIsInstance(result, expected_type)\n if isinstance(result, dict):\n data = result[\"image\"]\n else:\n data = result[0]\n self.assertEqual(data.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_os_TestLoadSpacingOrientation.test_load_spacingd.None_5": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_os_TestLoadSpacingOrientation.test_load_spacingd.None_5", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 47, "span_ids": ["TestLoadSpacingOrientation.test_load_spacingd", "TestLoadSpacingOrientation", "docstring"], "tokens": 381}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport time\nimport unittest\n\nimport nibabel\nimport numpy as np\nfrom nibabel.processing import resample_to_output\nfrom parameterized import parameterized\n\nfrom monai.transforms import AddChanneld, LoadImaged, Orientationd, Spacingd\nfrom monai.utils.enums import PostFix\n\nFILES = tuple(\n os.path.join(os.path.dirname(__file__), \"testing_data\", filename)\n for filename in (\"anatomical.nii\", \"reoriented_anat_moved.nii\")\n)\n\n\nclass TestLoadSpacingOrientation(unittest.TestCase):\n @parameterized.expand(FILES)\n def test_load_spacingd(self, filename):\n data = {\"image\": filename}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n t = time.time()\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 0.2, 1), diagonal=True, padding_mode=\"zeros\")(data_dict)\n t1 = time.time()\n print(f\"time monai: {t1 - t}\")\n anat = nibabel.Nifti1Image(data_dict[\"image\"][0], data_dict[PostFix.meta(\"image\")][\"original_affine\"])\n ref = resample_to_output(anat, (1, 0.2, 1), order=1)\n t2 = time.time()\n print(f\"time scipy: {t2 - t1}\")\n self.assertTrue(t2 >= t1)\n np.testing.assert_allclose(res_dict[PostFix.meta(\"image\")][\"affine\"], ref.affine)\n np.testing.assert_allclose(res_dict[\"image\"].shape[1:], ref.shape)\n np.testing.assert_allclose(ref.get_fdata(), res_dict[\"image\"][0], atol=0.05)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_TestLoadSpacingOrientation.test_load_spacingd_rotate.if_anatomical_not_in_fi.else_.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_TestLoadSpacingOrientation.test_load_spacingd_rotate.if_anatomical_not_in_fi.else_.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 49, "end_line": 74, "span_ids": ["TestLoadSpacingOrientation.test_load_spacingd_rotate"], "tokens": 436}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadSpacingOrientation(unittest.TestCase):\n\n @parameterized.expand(FILES)\n def test_load_spacingd_rotate(self, filename):\n data = {\"image\": filename}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n affine = data_dict[PostFix.meta(\"image\")][\"affine\"]\n data_dict[PostFix.meta(\"image\")][\"original_affine\"] = data_dict[PostFix.meta(\"image\")][\"affine\"] = (\n np.array([[0, 0, 1, 0], [0, 1, 0, 0], [-1, 0, 0, 0], [0, 0, 0, 1]]) @ affine\n )\n t = time.time()\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 2, 3), diagonal=True, padding_mode=\"zeros\")(data_dict)\n t1 = time.time()\n print(f\"time monai: {t1 - t}\")\n anat = nibabel.Nifti1Image(data_dict[\"image\"][0], data_dict[PostFix.meta(\"image\")][\"original_affine\"])\n ref = resample_to_output(anat, (1, 2, 3), order=1)\n t2 = time.time()\n print(f\"time scipy: {t2 - t1}\")\n self.assertTrue(t2 >= t1)\n np.testing.assert_allclose(res_dict[PostFix.meta(\"image\")][\"affine\"], ref.affine)\n if \"anatomical\" not in filename:\n np.testing.assert_allclose(res_dict[\"image\"].shape[1:], ref.shape)\n np.testing.assert_allclose(ref.get_fdata(), res_dict[\"image\"][0], atol=0.05)\n else:\n # different from the ref implementation (shape computed by round\n # instead of ceil)\n np.testing.assert_allclose(ref.get_fdata()[..., :-1], res_dict[\"image\"][0], atol=0.05)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_TestLoadSpacingOrientation.test_load_spacingd_non_diag.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_TestLoadSpacingOrientation.test_load_spacingd_non_diag.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 76, "end_line": 95, "span_ids": ["TestLoadSpacingOrientation.test_load_spacingd_non_diag"], "tokens": 312}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadSpacingOrientation(unittest.TestCase):\n\n def test_load_spacingd_non_diag(self):\n data = {\"image\": FILES[1]}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n affine = data_dict[PostFix.meta(\"image\")][\"affine\"]\n data_dict[PostFix.meta(\"image\")][\"original_affine\"] = data_dict[PostFix.meta(\"image\")][\"affine\"] = (\n np.array([[0, 0, 1, 0], [0, 1, 0, 0], [-1, 0, 0, 0], [0, 0, 0, 1]]) @ affine\n )\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 2, 3), diagonal=False, padding_mode=\"zeros\")(data_dict)\n np.testing.assert_allclose(\n res_dict[PostFix.meta(\"image\")][\"affine\"],\n np.array(\n [\n [0.0, 0.0, 3.0, -27.599409],\n [0.0, 2.0, 0.0, -47.977585],\n [-1.0, 0.0, 0.0, 35.297897],\n [0.0, 0.0, 0.0, 1.0],\n ]\n ),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 97, "end_line": 105, "span_ids": ["TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag"], "tokens": 198}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadSpacingOrientation(unittest.TestCase):\n\n def test_load_spacingd_rotate_non_diag(self):\n data = {\"image\": FILES[0]}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 2, 3), diagonal=False, padding_mode=\"border\")(data_dict)\n np.testing.assert_allclose(\n res_dict[PostFix.meta(\"image\")][\"affine\"],\n np.array([[-1.0, 0.0, 0.0, 32.0], [0.0, 2.0, 0.0, -40.0], [0.0, 0.0, 3.0, -16.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt_TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 107, "end_line": 116, "span_ids": ["TestLoadSpacingOrientation.test_load_spacingd_rotate_non_diag_ornt"], "tokens": 219}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadSpacingOrientation(unittest.TestCase):\n\n def test_load_spacingd_rotate_non_diag_ornt(self):\n data = {\"image\": FILES[0]}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 2, 3), diagonal=False, padding_mode=\"border\")(data_dict)\n res_dict = Orientationd(keys=\"image\", axcodes=\"LPI\")(res_dict)\n np.testing.assert_allclose(\n res_dict[PostFix.meta(\"image\")][\"affine\"],\n np.array([[-1.0, 0.0, 0.0, 32.0], [0.0, -2.0, 0.0, 40.0], [0.0, 0.0, -3.0, 32.0], [0.0, 0.0, 0.0, 1.0]]),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_ornt_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_spacing_orientation.py_TestLoadSpacingOrientation.test_load_spacingd_non_diag_ornt_", "embedding": null, "metadata": {"file_path": "tests/test_load_spacing_orientation.py", "file_name": "test_load_spacing_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 118, "end_line": 143, "span_ids": ["impl:3", "TestLoadSpacingOrientation.test_load_spacingd_non_diag_ornt"], "tokens": 348}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadSpacingOrientation(unittest.TestCase):\n\n def test_load_spacingd_non_diag_ornt(self):\n data = {\"image\": FILES[1]}\n data_dict = LoadImaged(keys=\"image\")(data)\n data_dict = AddChanneld(keys=\"image\")(data_dict)\n affine = data_dict[PostFix.meta(\"image\")][\"affine\"]\n data_dict[PostFix.meta(\"image\")][\"original_affine\"] = data_dict[PostFix.meta(\"image\")][\"affine\"] = (\n np.array([[0, 0, 1, 0], [0, 1, 0, 0], [-1, 0, 0, 0], [0, 0, 0, 1]]) @ affine\n )\n res_dict = Spacingd(keys=\"image\", pixdim=(1, 2, 3), diagonal=False, padding_mode=\"border\")(data_dict)\n res_dict = Orientationd(keys=\"image\", axcodes=\"LPI\")(res_dict)\n np.testing.assert_allclose(\n res_dict[PostFix.meta(\"image\")][\"affine\"],\n np.array(\n [\n [-3.0, 0.0, 0.0, 56.4005909],\n [0.0, -2.0, 0.0, 52.02241516],\n [0.0, 0.0, -1.0, 35.29789734],\n [0.0, 0.0, 0.0, 1.0],\n ]\n ),\n )\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_transform.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_transform.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_map_transform.py", "file_name": "test_map_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 42, "span_ids": ["TestRandomizable.test_wrong_keys", "MapTest", "MapTest.__call__", "TestRandomizable.test_keys", "impl:5", "docstring", "TestRandomizable"], "tokens": 188}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom parameterized import parameterized\n\nfrom monai.transforms import MapTransform\n\nTEST_CASES = [[\"item\", (\"item\",)], [None, (None,)], [[\"item1\", \"item2\"], (\"item1\", \"item2\")]]\n\nTEST_ILL_CASES = [[ValueError, []], [ValueError, ()], [TypeError, [[]]]]\n\n\nclass MapTest(MapTransform):\n def __call__(self, data):\n pass\n\n\nclass TestRandomizable(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_keys(self, keys, expected):\n transform = MapTest(keys=keys)\n self.assertEqual(transform.keys, expected)\n\n @parameterized.expand(TEST_ILL_CASES)\n def test_wrong_keys(self, exception, keys):\n with self.assertRaisesRegex(exception, \"\"):\n MapTest(keys=keys)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_unittest_TEST_CASES": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_unittest_TEST_CASES", "embedding": null, "metadata": {"file_path": "tests/test_masked_dice_loss.py", "file_name": "test_masked_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 115, "span_ids": ["docstring"], "tokens": 37}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.losses import MaskedDiceLoss\n\nTEST_CASES =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss_TestDiceLoss.test_ill_shape.with_self_assertRaisesReg.loss_forward_torch_ones_", "embedding": null, "metadata": {"file_path": "tests/test_masked_dice_loss.py", "file_name": "test_masked_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 118, "end_line": 127, "span_ids": ["TestDiceLoss.test_shape", "TestDiceLoss.test_ill_shape", "TestDiceLoss"], "tokens": 125}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDiceLoss(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_data, expected_val):\n result = MaskedDiceLoss(**input_param).forward(**input_data)\n np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, rtol=1e-5)\n\n def test_ill_shape(self):\n loss = MaskedDiceLoss()\n with self.assertRaisesRegex(AssertionError, \"\"):\n loss.forward(torch.ones((1, 2, 3)), torch.ones((4, 5, 6)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_ill_opts_TestDiceLoss.test_ill_opts.None_2.MaskedDiceLoss_reduction_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_ill_opts_TestDiceLoss.test_ill_opts.None_2.MaskedDiceLoss_reduction_", "embedding": null, "metadata": {"file_path": "tests/test_masked_dice_loss.py", "file_name": "test_masked_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 129, "end_line": 137, "span_ids": ["TestDiceLoss.test_ill_opts"], "tokens": 119}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDiceLoss(unittest.TestCase):\n\n def test_ill_opts(self):\n with self.assertRaisesRegex(ValueError, \"\"):\n MaskedDiceLoss(sigmoid=True, softmax=True)\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertRaisesRegex(ValueError, \"\"):\n MaskedDiceLoss(reduction=\"unknown\")(chn_input, chn_target)\n with self.assertRaisesRegex(ValueError, \"\"):\n MaskedDiceLoss(reduction=None)(chn_input, chn_target)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_input_warnings_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_masked_dice_loss.py_TestDiceLoss.test_input_warnings_", "embedding": null, "metadata": {"file_path": "tests/test_masked_dice_loss.py", "file_name": "test_masked_dice_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 139, "end_line": 155, "span_ids": ["impl:3", "TestDiceLoss.test_input_warnings"], "tokens": 153}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestDiceLoss(unittest.TestCase):\n\n def test_input_warnings(self):\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertWarns(Warning):\n loss = MaskedDiceLoss(include_background=False)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = MaskedDiceLoss(softmax=True)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = MaskedDiceLoss(to_onehot_y=True)\n loss.forward(chn_input, chn_target)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensemble.py_TestMeanEnsemble_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensemble.py_TestMeanEnsemble_", "embedding": null, "metadata": {"file_path": "tests/test_mean_ensemble.py", "file_name": "test_mean_ensemble.py", "file_type": "text/x-python", "category": "test", "start_line": 58, "end_line": 76, "span_ids": ["TestMeanEnsemble.test_cuda_value", "TestMeanEnsemble", "TestMeanEnsemble.test_value", "impl:10"], "tokens": 221}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestMeanEnsemble(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, input_param, img, expected_value):\n result = MeanEnsemble(**input_param)(img)\n assert_allclose(result, expected_value)\n\n def test_cuda_value(self):\n img = torch.stack([torch.ones(2, 2, 2, 2), torch.ones(2, 2, 2, 2) + 2])\n expected_value = torch.ones(2, 2, 2, 2) * torch.tensor([2.5, 1.5]).reshape(1, 2, 1, 1)\n if torch.cuda.is_available():\n img = img.to(torch.device(\"cuda:0\"))\n expected_value = expected_value.to(torch.device(\"cuda:0\"))\n result = MeanEnsemble(torch.tensor([[[1, 3]], [[3, 1]]]))(img)\n torch.testing.assert_allclose(result, expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensembled.py_TestMeanEnsembled_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mean_ensembled.py_TestMeanEnsembled_", "embedding": null, "metadata": {"file_path": "tests/test_mean_ensembled.py", "file_name": "test_mean_ensembled.py", "file_type": "text/x-python", "category": "test", "start_line": 72, "end_line": 90, "span_ids": ["TestMeanEnsembled.test_value", "impl:10", "TestMeanEnsembled", "TestMeanEnsembled.test_cuda_value"], "tokens": 232}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestMeanEnsembled(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, input_param, data, expected_value):\n result = MeanEnsembled(**input_param)(data)\n torch.testing.assert_allclose(result[\"output\"], expected_value)\n\n def test_cuda_value(self):\n img = torch.stack([torch.ones(2, 2, 2, 2), torch.ones(2, 2, 2, 2) + 2])\n expected_value = torch.ones(2, 2, 2, 2) * torch.tensor([2.5, 1.5]).reshape(1, 2, 1, 1)\n if torch.cuda.is_available():\n img = img.to(torch.device(\"cuda:0\"))\n expected_value = expected_value.to(torch.device(\"cuda:0\"))\n result = MeanEnsembled(keys=\"output\", weights=torch.tensor([[[1, 3]], [[3, 1]]]))({\"output\": img})\n assert_allclose(result[\"output\"], expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_header_revise.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_header_revise.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_nifti_header_revise.py", "file_name": "test_nifti_header_revise.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 40, "span_ids": ["impl", "TestRectifyHeaderSformQform", "TestRectifyHeaderSformQform.test_revise_q", "TestRectifyHeaderSformQform.test_revise_both", "docstring"], "tokens": 299}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport nibabel as nib\nimport numpy as np\n\nfrom monai.data import rectify_header_sform_qform\n\n\nclass TestRectifyHeaderSformQform(unittest.TestCase):\n def test_revise_q(self):\n img = nib.Nifti1Image(np.zeros((10, 10, 10)), np.eye(4))\n img.header.set_zooms((0.1, 0.2, 0.3))\n output = rectify_header_sform_qform(img)\n expected = np.diag([0.1, 0.2, 0.3, 1.0])\n np.testing.assert_allclose(output.affine, expected)\n\n def test_revise_both(self):\n img = nib.Nifti1Image(np.zeros((10, 10, 10)), np.eye(4))\n img.header.set_sform(np.diag([5, 3, 4, 1]))\n img.header.set_qform(np.diag([2, 3, 4, 1]))\n img.header.set_zooms((0.1, 0.2, 0.3))\n output = rectify_header_sform_qform(img)\n expected = np.diag([0.1, 0.2, 0.3, 1.0])\n np.testing.assert_allclose(output.affine, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_5d_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_rw.py_TestNiftiLoadRead.test_write_5d_", "embedding": null, "metadata": {"file_path": "tests/test_nifti_rw.py", "file_name": "test_nifti_rw.py", "file_type": "text/x-python", "category": "test", "start_line": 209, "end_line": 234, "span_ids": ["TestNiftiLoadRead.test_write_5d", "impl:14"], "tokens": 415}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNiftiLoadRead(unittest.TestCase):\n\n def test_write_5d(self):\n with tempfile.TemporaryDirectory() as out_dir:\n image_name = os.path.join(out_dir, \"test.nii.gz\")\n for p in TEST_NDARRAYS:\n img = p(np.arange(12).reshape((1, 1, 3, 2, 2)))\n write_nifti(img, image_name, affine=np.diag([1]), target_affine=np.diag([1.4]))\n out = nib.load(image_name)\n np.testing.assert_allclose(\n out.get_fdata(),\n np.array([[[[[0.0, 1.0], [2.0, 3.0]], [[4.0, 5.0], [6.0, 7.0]], [[8.0, 9.0], [10.0, 11.0]]]]]),\n )\n np.testing.assert_allclose(out.affine, np.diag([1.4, 1, 1, 1]))\n\n image_name = os.path.join(out_dir, \"test1.nii.gz\")\n img = p(np.arange(10).reshape((1, 1, 5, 1, 2)))\n write_nifti(\n img, image_name, affine=np.diag([1, 1, 1, 3, 3]), target_affine=np.diag([1.4, 2.0, 2, 3, 5])\n )\n out = nib.load(image_name)\n np.testing.assert_allclose(out.get_fdata(), np.array([[[[[0.0, 1.0]], [[4.0, 5.0]], [[8.0, 9.0]]]]]))\n np.testing.assert_allclose(out.affine, np.diag([1.4, 2, 2, 1]))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_TestNormalizeIntensityd.test_channel_wise_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensityd.py_TestNormalizeIntensityd.test_channel_wise_", "embedding": null, "metadata": {"file_path": "tests/test_normalize_intensityd.py", "file_name": "test_normalize_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 75, "end_line": 90, "span_ids": ["TestNormalizeIntensityd.test_channel_wise", "impl:8"], "tokens": 227}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNormalizeIntensityd(NumpyImageTestCase2D):\n\n @parameterized.expand([[p] for p in TEST_NDARRAYS])\n def test_channel_wise(self, im_type):\n key = \"img\"\n normalizer = NormalizeIntensityd(keys=key, nonzero=True, channel_wise=True)\n input_data = {key: im_type(np.array([[0.0, 3.0, 0.0, 4.0], [0.0, 4.0, 0.0, 5.0]]))}\n normalized = normalizer(input_data)[key]\n self.assertEqual(type(input_data[key]), type(normalized))\n if isinstance(normalized, torch.Tensor):\n self.assertEqual(input_data[key].device, normalized.device)\n expected = np.array([[0.0, -1.0, 0.0, 1.0], [0.0, -1.0, 0.0, 1.0]])\n assert_allclose(normalized, im_type(expected))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_unittest_TestOptionalImport.test_import_wrong_number.None_2.print_my_module_randint_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_unittest_TestOptionalImport.test_import_wrong_number.None_2.print_my_module_randint_1", "embedding": null, "metadata": {"file_path": "tests/test_optional_import.py", "file_name": "test_optional_import.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 45, "span_ids": ["TestOptionalImport", "TestOptionalImport.test_import_valid", "TestOptionalImport.test_import_wrong_number", "docstring", "TestOptionalImport.test_default"], "tokens": 265}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom monai.utils import OptionalImportError, exact_version, optional_import\n\n\nclass TestOptionalImport(unittest.TestCase):\n def test_default(self):\n my_module, flag = optional_import(\"not_a_module\")\n self.assertFalse(flag)\n with self.assertRaises(OptionalImportError):\n my_module.test\n\n my_module, flag = optional_import(\"torch.randint\")\n with self.assertRaises(OptionalImportError):\n self.assertFalse(flag)\n print(my_module.test)\n\n def test_import_valid(self):\n my_module, flag = optional_import(\"torch\")\n self.assertTrue(flag)\n print(my_module.randint(1, 2, (1, 2)))\n\n def test_import_wrong_number(self):\n my_module, flag = optional_import(\"torch\", \"42\")\n with self.assertRaisesRegex(OptionalImportError, \"version\"):\n my_module.nn\n self.assertFalse(flag)\n with self.assertRaisesRegex(OptionalImportError, \"version\"):\n my_module.randint(1, 2, (1, 2))\n with self.assertRaisesRegex(ValueError, \"invalid literal\"):\n my_module, flag = optional_import(\"torch\", \"test\") # version should be number.number\n my_module.nn\n self.assertTrue(flag)\n print(my_module.randint(1, 2, (1, 2)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_good_number_TestOptionalImport.test_import_good_number.None_5": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_good_number_TestOptionalImport.test_import_good_number.None_5", "embedding": null, "metadata": {"file_path": "tests/test_optional_import.py", "file_name": "test_optional_import.py", "file_type": "text/x-python", "category": "test", "start_line": 47, "end_line": 61, "span_ids": ["TestOptionalImport.test_import_good_number"], "tokens": 148}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestOptionalImport(unittest.TestCase):\n\n def test_import_good_number(self):\n my_module, flag = optional_import(\"torch\", \"0\")\n my_module.nn\n self.assertTrue(flag)\n print(my_module.randint(1, 2, (1, 2)))\n\n my_module, flag = optional_import(\"torch\", \"0.0.0.1\")\n my_module.nn\n self.assertTrue(flag)\n print(my_module.randint(1, 2, (1, 2)))\n\n my_module, flag = optional_import(\"torch\", \"1.1.0\")\n my_module.nn\n self.assertTrue(flag)\n print(my_module.randint(1, 2, (1, 2)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_exact_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optional_import.py_TestOptionalImport.test_import_exact_", "embedding": null, "metadata": {"file_path": "tests/test_optional_import.py", "file_name": "test_optional_import.py", "file_type": "text/x-python", "category": "test", "start_line": 63, "end_line": 89, "span_ids": ["TestOptionalImport.test_import_exact", "TestOptionalImport.test_additional", "impl", "TestOptionalImport.test_import_method"], "tokens": 210}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestOptionalImport(unittest.TestCase):\n\n def test_import_exact(self):\n my_module, flag = optional_import(\"torch\", \"0\", exact_version)\n with self.assertRaisesRegex(OptionalImportError, \"exact_version\"):\n my_module.nn\n self.assertFalse(flag)\n with self.assertRaisesRegex(OptionalImportError, \"exact_version\"):\n my_module.randint(1, 2, (1, 2))\n\n def test_import_method(self):\n nn, flag = optional_import(\"torch\", \"1.1\", name=\"nn\")\n self.assertTrue(flag)\n print(nn.functional)\n\n def test_additional(self):\n test_args = {\"a\": \"test\", \"b\": \"test\"}\n\n def versioning(module, ver, a):\n self.assertEqual(a, test_args)\n return True\n\n nn, flag = optional_import(\"torch\", \"1.1\", version_checker=versioning, name=\"nn\", version_args=test_args)\n self.assertTrue(flag)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientation.py_ILL_CASES_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientation.py_ILL_CASES_", "embedding": null, "metadata": {"file_path": "tests/test_orientation.py", "file_name": "test_orientation.py", "file_type": "text/x-python", "category": "test", "start_line": 163, "end_line": 194, "span_ids": ["TestOrientationCase", "TestOrientationCase.test_bad_params", "TestOrientationCase.test_ornt", "impl:17", "impl:19"], "tokens": 296}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "ILL_CASES = [\n # no axcodes or as_cloest_canonical\n [{}, np.arange(6).reshape((2, 3)), \"L\"],\n # too short axcodes\n [{\"axcodes\": \"RA\"}, np.arange(12).reshape((2, 1, 2, 3)), {\"affine\": np.eye(4)}],\n]\n\n\nclass TestOrientationCase(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_ornt(self, in_type, init_param, img, data_param, expected_data, expected_code):\n img = in_type(img)\n ornt = Orientation(**init_param)\n res = ornt(img, **data_param)\n if not isinstance(res, tuple):\n assert_allclose(res, in_type(expected_data))\n return\n assert_allclose(res[0], in_type(expected_data))\n original_affine = data_param[\"affine\"]\n np.testing.assert_allclose(original_affine, res[1])\n new_code = nib.orientations.aff2axcodes(res[2], labels=ornt.labels)\n self.assertEqual(\"\".join(new_code), expected_code)\n\n @parameterized.expand(ILL_CASES)\n def test_bad_params(self, init_param, img, data_param):\n with self.assertRaises(ValueError):\n Orientation(**init_param)(img, **data_param)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_unittest_TestOrientationdCase.test_orntd.self_assertEqual_code_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_unittest_TestOrientationdCase.test_orntd.self_assertEqual_code_", "embedding": null, "metadata": {"file_path": "tests/test_orientationd.py", "file_name": "test_orientationd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 29, "span_ids": ["TestOrientationdCase.test_orntd", "TestOrientationdCase", "docstring"], "tokens": 182}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport nibabel as nib\nimport numpy as np\n\nfrom monai.transforms import Orientationd\nfrom monai.utils.enums import PostFix\nfrom tests.utils import TEST_NDARRAYS\n\n\nclass TestOrientationdCase(unittest.TestCase):\n def test_orntd(self):\n data = {\"seg\": np.ones((2, 1, 2, 3)), PostFix.meta(\"seg\"): {\"affine\": np.eye(4)}}\n ornt = Orientationd(keys=\"seg\", axcodes=\"RAS\")\n res = ornt(data)\n np.testing.assert_allclose(res[\"seg\"].shape, (2, 1, 2, 3))\n code = nib.aff2axcodes(res[PostFix.meta(\"seg\")][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"R\", \"A\", \"S\"))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_2d_TestOrientationdCase.test_orntd_2d.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_2d_TestOrientationdCase.test_orntd_2d.None_2", "embedding": null, "metadata": {"file_path": "tests/test_orientationd.py", "file_name": "test_orientationd.py", "file_type": "text/x-python", "category": "test", "start_line": 46, "end_line": 59, "span_ids": ["TestOrientationdCase.test_orntd_2d"], "tokens": 218}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestOrientationdCase(unittest.TestCase):\n\n def test_orntd_2d(self):\n data = {\n \"seg\": np.ones((2, 1, 3)),\n \"img\": np.ones((2, 1, 3)),\n PostFix.meta(\"seg\"): {\"affine\": np.eye(4)},\n PostFix.meta(\"img\"): {\"affine\": np.eye(4)},\n }\n ornt = Orientationd(keys=(\"img\", \"seg\"), axcodes=\"PLI\")\n res = ornt(data)\n np.testing.assert_allclose(res[\"img\"].shape, (2, 3, 1))\n code = nib.aff2axcodes(res[PostFix.meta(\"seg\")][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"P\", \"L\", \"S\"))\n code = nib.aff2axcodes(res[PostFix.meta(\"img\")][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"P\", \"L\", \"S\"))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_1d_TestOrientationdCase.test_orntd_1d.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_orientationd.py_TestOrientationdCase.test_orntd_1d_TestOrientationdCase.test_orntd_1d.None_2", "embedding": null, "metadata": {"file_path": "tests/test_orientationd.py", "file_name": "test_orientationd.py", "file_type": "text/x-python", "category": "test", "start_line": 61, "end_line": 74, "span_ids": ["TestOrientationdCase.test_orntd_1d"], "tokens": 208}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestOrientationdCase(unittest.TestCase):\n\n def test_orntd_1d(self):\n data = {\n \"seg\": np.ones((2, 3)),\n \"img\": np.ones((2, 3)),\n PostFix.meta(\"seg\"): {\"affine\": np.eye(4)},\n PostFix.meta(\"img\"): {\"affine\": np.eye(4)},\n }\n ornt = Orientationd(keys=(\"img\", \"seg\"), axcodes=\"L\")\n res = ornt(data)\n np.testing.assert_allclose(res[\"img\"].shape, (2, 3))\n code = nib.aff2axcodes(res[PostFix.meta(\"seg\")][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"L\", \"A\", \"S\"))\n code = nib.aff2axcodes(res[PostFix.meta(\"img\")][\"affine\"], ornt.ornt_transform.labels)\n self.assertEqual(code, (\"L\", \"A\", \"S\"))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_plot_2d_or_3d_image.py_glob_TEST_CASE_5._1_3_10_10_10_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_plot_2d_or_3d_image.py_glob_TEST_CASE_5._1_3_10_10_10_", "embedding": null, "metadata": {"file_path": "tests/test_plot_2d_or_3d_image.py", "file_name": "test_plot_2d_or_3d_image.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 34, "span_ids": ["docstring"], "tokens": 170}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import glob\nimport tempfile\nimport unittest\n\nimport torch\nfrom parameterized import parameterized\nfrom torch.utils.tensorboard import SummaryWriter\n\nfrom monai.utils import optional_import\nfrom monai.visualize import plot_2d_or_3d_image\nfrom tests.utils import SkipIfNoModule\n\nSummaryWriterX, _ = optional_import(\"tensorboardX\", name=\"SummaryWriter\")\n\nTEST_CASE_1 = [(1, 1, 10, 10)]\n\nTEST_CASE_2 = [(1, 3, 10, 10)]\n\nTEST_CASE_3 = [(1, 4, 10, 10)]\n\nTEST_CASE_4 = [(1, 1, 10, 10, 10)]\n\nTEST_CASE_5 = [(1, 3, 10, 10, 10)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_query_memory.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_query_memory.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_query_memory.py", "file_name": "test_query_memory.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 27, "span_ids": ["impl", "TestQueryMemory", "TestQueryMemory.test_output_str", "docstring"], "tokens": 75}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom tests.utils import query_memory\n\n\nclass TestQueryMemory(unittest.TestCase):\n def test_output_str(self):\n self.assertTrue(isinstance(query_memory(2), str))\n all_device = query_memory(-1)\n self.assertTrue(isinstance(all_device, str))\n self.assertEqual(query_memory(\"test\"), \"\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrast.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrast.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_adjust_contrast.py", "file_name": "test_rand_adjust_contrast.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 43, "span_ids": ["TestRandAdjustContrast", "TestRandAdjustContrast.test_correct_results", "impl:5", "docstring"], "tokens": 248}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandAdjustContrast\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\nTEST_CASE_1 = [(0.5, 4.5)]\n\nTEST_CASE_2 = [1.5]\n\n\nclass TestRandAdjustContrast(NumpyImageTestCase2D):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2])\n def test_correct_results(self, gamma):\n adjuster = RandAdjustContrast(prob=1.0, gamma=gamma)\n for p in TEST_NDARRAYS:\n result = adjuster(p(self.imt))\n epsilon = 1e-7\n img_min = self.imt.min()\n img_range = self.imt.max() - img_min\n expected = (\n np.power(((self.imt - img_min) / float(img_range + epsilon)), adjuster.gamma_value) * img_range\n + img_min\n )\n assert_allclose(expected, result, rtol=1e-05, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrastd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_adjust_contrastd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_adjust_contrastd.py", "file_name": "test_rand_adjust_contrastd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 43, "span_ids": ["impl:5", "TestRandAdjustContrastd.test_correct_results", "TestRandAdjustContrastd", "docstring"], "tokens": 261}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandAdjustContrastd\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\nTEST_CASE_1 = [(0.5, 4.5)]\n\nTEST_CASE_2 = [1.5]\n\n\nclass TestRandAdjustContrastd(NumpyImageTestCase2D):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2])\n def test_correct_results(self, gamma):\n adjuster = RandAdjustContrastd(\"img\", prob=1.0, gamma=gamma)\n for p in TEST_NDARRAYS:\n result = adjuster({\"img\": p(self.imt)})\n epsilon = 1e-7\n img_min = self.imt.min()\n img_range = self.imt.max() - img_min\n expected = (\n np.power(((self.imt - img_min) / float(img_range + epsilon)), adjuster.adjuster.gamma_value) * img_range\n + img_min\n )\n assert_allclose(expected, result[\"img\"], rtol=1e-05, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine_grid.py_TestRandAffineGrid_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_affine_grid.py_TestRandAffineGrid_", "embedding": null, "metadata": {"file_path": "tests/test_rand_affine_grid.py", "file_name": "test_rand_affine_grid.py", "file_type": "text/x-python", "category": "test", "start_line": 198, "end_line": 211, "span_ids": ["impl:11", "TestRandAffineGrid.test_rand_affine_grid", "TestRandAffineGrid"], "tokens": 120}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandAffineGrid(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_rand_affine_grid(self, input_param, input_data, expected_val):\n g = RandAffineGrid(**input_param)\n g.set_random_state(123)\n result = g(**input_data)\n if \"device\" in input_data:\n self.assertEqual(result.device, input_data[device])\n assert_allclose(result, expected_val, type_test=False, rtol=_rtol, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_labeld.py_TestRandCropByPosNegLabeld_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_crop_by_pos_neg_labeld.py_TestRandCropByPosNegLabeld_", "embedding": null, "metadata": {"file_path": "tests/test_rand_crop_by_pos_neg_labeld.py", "file_name": "test_rand_crop_by_pos_neg_labeld.py", "file_type": "text/x-python", "category": "test", "start_line": 123, "end_line": 153, "span_ids": ["TestRandCropByPosNegLabeld.convert_data_type", "impl:3", "TestRandCropByPosNegLabeld", "TestRandCropByPosNegLabeld.test_type_shape"], "tokens": 277}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandCropByPosNegLabeld(unittest.TestCase):\n @staticmethod\n def convert_data_type(im_type, d, keys=(\"img\", \"image\", \"label\")):\n out = deepcopy(d)\n for k, v in out.items():\n if k in keys and isinstance(v, np.ndarray):\n out[k] = im_type(v)\n return out\n\n @parameterized.expand(TESTS)\n def test_type_shape(self, input_param, input_data, expected_shape):\n for p in TEST_NDARRAYS:\n input_param_mod = self.convert_data_type(p, input_param)\n input_data_mod = self.convert_data_type(p, input_data)\n cropper = RandCropByPosNegLabeld(**input_param_mod)\n cropper.set_random_state(0)\n result = cropper(input_data_mod)\n\n self.assertIsInstance(result, list)\n\n _len = len(tuple(input_data.keys()))\n self.assertTupleEqual(tuple(result[0].keys())[:_len], tuple(input_data.keys()))\n for k in (\"image\", \"extra\", \"label\"):\n self.assertTupleEqual(result[0][k].shape, expected_shape)\n for i, item in enumerate(result):\n self.assertEqual(item[PostFix.meta(k)][\"patch_index\"], i)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_2d.py_TestRand2DElasticd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_2d.py_TestRand2DElasticd_", "embedding": null, "metadata": {"file_path": "tests/test_rand_elasticd_2d.py", "file_name": "test_rand_elasticd_2d.py", "file_type": "text/x-python", "category": "test", "start_line": 160, "end_line": 174, "span_ids": ["TestRand2DElasticd.test_rand_2d_elasticd", "impl:13", "TestRand2DElasticd"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRand2DElasticd(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_rand_2d_elasticd(self, input_param, input_data, expected_val):\n g = Rand2DElasticd(**input_param)\n g.set_random_state(123)\n res = g(input_data)\n for key in res:\n result = res[key]\n expected = expected_val[key] if isinstance(expected_val, dict) else expected_val\n assert_allclose(result, expected, rtol=_rtol, atol=5e-3)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_3d.py_TestRand3DElasticd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_elasticd_3d.py_TestRand3DElasticd_", "embedding": null, "metadata": {"file_path": "tests/test_rand_elasticd_3d.py", "file_name": "test_rand_elasticd_3d.py", "file_type": "text/x-python", "category": "test", "start_line": 139, "end_line": 153, "span_ids": ["impl:11", "TestRand3DElasticd.test_rand_3d_elasticd", "TestRand3DElasticd"], "tokens": 131}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRand3DElasticd(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_rand_3d_elasticd(self, input_param, input_data, expected_val):\n g = Rand3DElasticd(**input_param)\n g.set_random_state(123)\n res = g(input_data)\n for key in res:\n result = res[key]\n expected = expected_val[key] if isinstance(expected_val, dict) else expected_val\n assert_allclose(result, expected, rtol=1e-4, atol=1e-4)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flip.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flip.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_flip.py", "file_name": "test_rand_flip.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 45, "span_ids": ["TestRandFlip.test_correct_results", "TestRandFlip", "TestRandFlip.test_invalid_inputs", "impl:5", "docstring"], "tokens": 277}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandFlip\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\nINVALID_CASES = [(\"wrong_axis\", [\"s\", 1], TypeError), (\"not_numbers\", \"s\", TypeError)]\n\nVALID_CASES = [(\"no_axis\", None), (\"one_axis\", 1), (\"many_axis\", [0, 1])]\n\n\nclass TestRandFlip(NumpyImageTestCase2D):\n @parameterized.expand(INVALID_CASES)\n def test_invalid_inputs(self, _, spatial_axis, raises):\n with self.assertRaises(raises):\n flip = RandFlip(prob=1.0, spatial_axis=spatial_axis)\n flip(self.imt[0])\n\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, _, spatial_axis):\n for p in TEST_NDARRAYS:\n im = p(self.imt[0])\n flip = RandFlip(prob=1.0, spatial_axis=spatial_axis)\n expected = [np.flip(channel, spatial_axis) for channel in self.imt[0]]\n expected = np.stack(expected)\n result = flip(im)\n assert_allclose(result, p(expected))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flipd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_flipd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_flipd.py", "file_name": "test_rand_flipd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 36, "span_ids": ["TestRandFlipd.test_correct_results", "impl:3", "TestRandFlipd", "docstring"], "tokens": 205}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandFlipd\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\nVALID_CASES = [(\"no_axis\", None), (\"one_axis\", 1), (\"many_axis\", [0, 1])]\n\n\nclass TestRandFlipd(NumpyImageTestCase2D):\n @parameterized.expand(VALID_CASES)\n def test_correct_results(self, _, spatial_axis):\n for p in TEST_NDARRAYS:\n flip = RandFlipd(keys=\"img\", prob=1.0, spatial_axis=spatial_axis)\n result = flip({\"img\": p(self.imt[0])})[\"img\"]\n expected = [np.flip(channel, spatial_axis) for channel in self.imt[0]]\n expected = np.stack(expected)\n assert_allclose(result, p(expected))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate.py_TestRandRotate3D_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate.py_TestRandRotate3D_", "embedding": null, "metadata": {"file_path": "tests/test_rand_rotate.py", "file_name": "test_rand_rotate.py", "file_type": "text/x-python", "category": "test", "start_line": 95, "end_line": 115, "span_ids": ["TestRandRotate3D", "TestRandRotate3D.test_correct_results", "impl:15"], "tokens": 169}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandRotate3D(NumpyImageTestCase3D):\n @parameterized.expand(TEST_CASES_3D)\n def test_correct_results(self, im_type, x, y, z, keep_size, mode, padding_mode, align_corners, expected):\n rotate_fn = RandRotate(\n range_x=x,\n range_y=y,\n range_z=z,\n prob=1.0,\n keep_size=keep_size,\n mode=mode,\n padding_mode=padding_mode,\n align_corners=align_corners,\n )\n rotate_fn.set_random_state(243)\n rotated = rotate_fn(im_type(self.imt[0]))\n torch.testing.assert_allclose(rotated.shape, expected, rtol=1e-7, atol=0)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90d.py_TestRandRotate90d.test_prob_k_spatial_axes_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotate90d.py_TestRandRotate90d.test_prob_k_spatial_axes_", "embedding": null, "metadata": {"file_path": "tests/test_rand_rotate90d.py", "file_name": "test_rand_rotate90d.py", "file_type": "text/x-python", "category": "test", "start_line": 51, "end_line": 70, "span_ids": ["TestRandRotate90d.test_prob_k_spatial_axes", "TestRandRotate90d.test_no_key", "impl"], "tokens": 212}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandRotate90d(NumpyImageTestCase2D):\n\n def test_prob_k_spatial_axes(self):\n key = \"test\"\n rotate = RandRotate90d(keys=key, prob=1.0, max_k=2, spatial_axes=(0, 1))\n for p in TEST_NDARRAYS:\n rotate.set_random_state(234)\n rotated = rotate({key: p(self.imt[0])})\n expected = [np.rot90(channel, 1, (0, 1)) for channel in self.imt[0]]\n expected = np.stack(expected)\n assert_allclose(rotated[key], p(expected))\n\n def test_no_key(self):\n key = \"unknown\"\n rotate = RandRotate90d(keys=key, prob=1.0, max_k=2, spatial_axes=(0, 1))\n with self.assertRaisesRegex(KeyError, \"\"):\n rotate({\"test\": self.imt[0]})\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotated.py_TestRandRotated3D_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_rotated.py_TestRandRotated3D_", "embedding": null, "metadata": {"file_path": "tests/test_rand_rotated.py", "file_name": "test_rand_rotated.py", "file_type": "text/x-python", "category": "test", "start_line": 141, "end_line": 162, "span_ids": ["TestRandRotated3D", "TestRandRotated3D.test_correct_shapes", "impl:19"], "tokens": 181}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandRotated3D(NumpyImageTestCase3D):\n @parameterized.expand(TEST_CASES_3D)\n def test_correct_shapes(self, im_type, x, y, z, keep_size, mode, padding_mode, align_corners, expected):\n rotate_fn = RandRotated(\n \"img\",\n range_x=x,\n range_y=y,\n range_z=z,\n prob=1.0,\n keep_size=keep_size,\n mode=mode,\n padding_mode=padding_mode,\n align_corners=align_corners,\n )\n rotate_fn.set_random_state(243)\n rotated = rotate_fn({\"img\": im_type(self.imt[0]), \"seg\": im_type(self.segn[0])})\n np.testing.assert_allclose(rotated[\"img\"].shape, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_scale_intensity.py", "file_name": "test_rand_scale_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 35, "span_ids": ["TestRandScaleIntensity", "TestRandScaleIntensity.test_value", "impl", "docstring"], "tokens": 190}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import RandScaleIntensity\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\n\nclass TestRandScaleIntensity(NumpyImageTestCase2D):\n def test_value(self):\n for p in TEST_NDARRAYS:\n scaler = RandScaleIntensity(factors=0.5, prob=1.0)\n scaler.set_random_state(seed=0)\n result = scaler(p(self.imt))\n np.random.seed(0)\n # simulate the randomize() of transform\n np.random.random()\n expected = p((self.imt * (1 + np.random.uniform(low=-0.5, high=0.5))).astype(np.float32))\n assert_allclose(result, p(expected), rtol=1e-7, atol=0)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensityd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_scale_intensityd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_scale_intensityd.py", "file_name": "test_rand_scale_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 36, "span_ids": ["TestRandScaleIntensityd", "TestRandScaleIntensityd.test_value", "impl", "docstring"], "tokens": 193}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import RandScaleIntensityd\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\n\nclass TestRandScaleIntensityd(NumpyImageTestCase2D):\n def test_value(self):\n key = \"img\"\n for p in TEST_NDARRAYS:\n scaler = RandScaleIntensityd(keys=[key], factors=0.5, prob=1.0)\n scaler.set_random_state(seed=0)\n result = scaler({key: p(self.imt)})\n np.random.seed(0)\n # simulate the randomize function of transform\n np.random.random()\n expected = (self.imt * (1 + np.random.uniform(low=-0.5, high=0.5))).astype(np.float32)\n assert_allclose(result[key], p(expected))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_shift_intensity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_shift_intensity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_shift_intensity.py", "file_name": "test_rand_shift_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 34, "span_ids": ["impl", "TestRandShiftIntensity", "TestRandShiftIntensity.test_value", "docstring"], "tokens": 157}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import RandShiftIntensity\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestRandShiftIntensity(NumpyImageTestCase2D):\n def test_value(self):\n shifter = RandShiftIntensity(offsets=1.0, prob=1.0)\n shifter.set_random_state(seed=0)\n result = shifter(self.imt, factor=1.0)\n np.random.seed(0)\n # simulate the randomize() of transform\n np.random.random()\n expected = self.imt + np.random.uniform(low=-1.0, high=1.0)\n np.testing.assert_allclose(result, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop.py_TestRandSpatialCrop_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop.py_TestRandSpatialCrop_", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_crop.py", "file_name": "test_rand_spatial_crop.py", "file_type": "text/x-python", "category": "test", "start_line": 52, "end_line": 76, "span_ids": ["TestRandSpatialCrop", "TestRandSpatialCrop.test_value", "TestRandSpatialCrop.test_random_shape", "TestRandSpatialCrop.test_shape", "impl:13"], "tokens": 273}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandSpatialCrop(unittest.TestCase):\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1, TEST_CASE_2])\n def test_shape(self, input_param, input_data, expected_shape):\n result = RandSpatialCrop(**input_param)(input_data)\n self.assertTupleEqual(result.shape, expected_shape)\n\n @parameterized.expand([TEST_CASE_3])\n def test_value(self, input_param, input_data):\n for p in TEST_NDARRAYS:\n cropper = RandSpatialCrop(**input_param)\n result = cropper(p(input_data))\n roi = [(2 - i // 2, 2 + i - i // 2) for i in cropper._size]\n assert_allclose(result, input_data[:, roi[0][0] : roi[0][1], roi[1][0] : roi[1][1]], type_test=False)\n\n @parameterized.expand([TEST_CASE_4, TEST_CASE_5])\n def test_random_shape(self, input_param, input_data, expected_shape):\n cropper = RandSpatialCrop(**input_param)\n cropper.set_random_state(seed=123)\n result = cropper(input_data)\n self.assertTupleEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_cropd.py_TestRandSpatialCropd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_cropd.py_TestRandSpatialCropd_", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_cropd.py", "file_name": "test_rand_spatial_cropd.py", "file_type": "text/x-python", "category": "test", "start_line": 56, "end_line": 81, "span_ids": ["TestRandSpatialCropd.test_shape", "TestRandSpatialCropd.test_value", "TestRandSpatialCropd", "TestRandSpatialCropd.test_random_shape", "impl:13"], "tokens": 298}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandSpatialCropd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1, TEST_CASE_2])\n def test_shape(self, input_param, input_data, expected_shape):\n result = RandSpatialCropd(**input_param)(input_data)\n self.assertTupleEqual(result[\"img\"].shape, expected_shape)\n\n @parameterized.expand([TEST_CASE_3])\n def test_value(self, input_param, input_data):\n cropper = RandSpatialCropd(**input_param)\n result = cropper(input_data)\n roi = [(2 - i // 2, 2 + i - i // 2) for i in cropper._size]\n np.testing.assert_allclose(result[\"img\"], input_data[\"img\"][:, roi[0][0] : roi[0][1], roi[1][0] : roi[1][1]])\n\n @parameterized.expand([TEST_CASE_4, TEST_CASE_5])\n def test_random_shape(self, input_param, input_data, expected_shape):\n for p in TEST_NDARRAYS:\n cropper = RandSpatialCropd(**input_param)\n cropper.set_random_state(seed=123)\n input_data[\"img\"] = p(input_data[\"img\"])\n result = cropper(input_data)\n self.assertTupleEqual(result[\"img\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randomizable.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_randomizable.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_randomizable.py", "file_name": "test_randomizable.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 49, "span_ids": ["TestRandomizable.test_state", "impl", "TestRandomizable.test_default", "RandTest.randomize", "docstring", "RandTest", "TestRandomizable", "TestRandomizable.test_seed"], "tokens": 214}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms.transform import Randomizable\n\n\nclass RandTest(Randomizable):\n def randomize(self, data=None):\n pass\n\n\nclass TestRandomizable(unittest.TestCase):\n def test_default(self):\n inst = RandTest()\n r1 = inst.R.rand()\n self.assertTrue(isinstance(inst.R, np.random.RandomState))\n inst.set_random_state()\n r2 = inst.R.rand()\n self.assertNotAlmostEqual(r1, r2)\n\n def test_seed(self):\n inst = RandTest()\n inst.set_random_state(seed=123)\n self.assertAlmostEqual(inst.R.rand(), 0.69646918)\n inst.set_random_state(123)\n self.assertAlmostEqual(inst.R.rand(), 0.69646918)\n\n def test_state(self):\n inst = RandTest()\n inst_r = np.random.RandomState(123)\n inst.set_random_state(state=inst_r)\n self.assertAlmostEqual(inst.R.rand(), 0.69646918)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channel.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channel.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_repeat_channel.py", "file_name": "test_repeat_channel.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 33, "span_ids": ["TestRepeatChannel", "TestRepeatChannel.test_shape", "impl:5", "docstring"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom parameterized import parameterized\n\nfrom monai.transforms import RepeatChannel\nfrom tests.utils import TEST_NDARRAYS\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append([{\"repeats\": 3}, p([[[0, 1], [1, 2]]]), (3, 2, 2)])\n\n\nclass TestRepeatChannel(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_shape(self, input_param, input_data, expected_shape):\n result = RepeatChannel(**input_param)(input_data)\n self.assertEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channeld.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_repeat_channeld.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_repeat_channeld.py", "file_name": "test_repeat_channeld.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 40, "span_ids": ["TestRepeatChanneld.test_shape", "impl:5", "TestRepeatChanneld", "docstring"], "tokens": 195}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RepeatChanneld\nfrom tests.utils import TEST_NDARRAYS\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\"keys\": [\"img\"], \"repeats\": 3},\n {\"img\": p(np.array([[[0, 1], [1, 2]]])), \"seg\": p(np.array([[[0, 1], [1, 2]]]))},\n (3, 2, 2),\n ]\n )\n\n\nclass TestRepeatChanneld(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_shape(self, input_param, input_data, expected_shape):\n result = RepeatChanneld(**input_param)(input_data)\n self.assertEqual(result[\"img\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_TestRotate3D.test_correct_shape_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate.py_TestRotate3D.test_correct_shape_", "embedding": null, "metadata": {"file_path": "tests/test_rotate.py", "file_name": "test_rotate.py", "file_type": "text/x-python", "category": "test", "start_line": 101, "end_line": 120, "span_ids": ["impl:23", "TestRotate3D.test_correct_shape", "TestRotate3D.test_ill_case"], "tokens": 197}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRotate3D(NumpyImageTestCase3D):\n\n @parameterized.expand(TEST_CASES_SHAPE_3D)\n def test_correct_shape(self, im_type, angle, mode, padding_mode, align_corners):\n rotate_fn = Rotate(angle, True, align_corners=align_corners)\n rotated = rotate_fn(im_type(self.imt[0]), mode=mode, padding_mode=padding_mode)\n np.testing.assert_allclose(self.imt[0].shape, rotated.shape)\n\n def test_ill_case(self):\n for p in TEST_NDARRAYS:\n rotate_fn = Rotate(10, True)\n with self.assertRaises(ValueError): # wrong shape\n rotate_fn(p(self.imt))\n\n rotate_fn = Rotate(10, keep_size=False)\n with self.assertRaises(ValueError): # wrong mode\n rotate_fn(p(self.imt[0]), mode=\"trilinear\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate90d.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotate90d.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rotate90d.py", "file_name": "test_rotate90d.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 66, "span_ids": ["impl", "TestRotate90d.test_prob_k_spatial_axes", "TestRotate90d.test_rotate90_default", "TestRotate90d", "docstring", "TestRotate90d.test_spatial_axes", "TestRotate90d.test_k", "TestRotate90d.test_no_key"], "tokens": 501}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import Rotate90d\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\n\nclass TestRotate90d(NumpyImageTestCase2D):\n def test_rotate90_default(self):\n key = \"test\"\n rotate = Rotate90d(keys=key)\n for p in TEST_NDARRAYS:\n rotated = rotate({key: p(self.imt[0])})\n expected = [np.rot90(channel, 1, (0, 1)) for channel in self.imt[0]]\n expected = np.stack(expected)\n assert_allclose(rotated[key], p(expected))\n\n def test_k(self):\n key = None\n rotate = Rotate90d(keys=key, k=2)\n for p in TEST_NDARRAYS:\n rotated = rotate({key: p(self.imt[0])})\n expected = [np.rot90(channel, 2, (0, 1)) for channel in self.imt[0]]\n expected = np.stack(expected)\n assert_allclose(rotated[key], p(expected))\n\n def test_spatial_axes(self):\n key = \"test\"\n rotate = Rotate90d(keys=key, spatial_axes=(0, 1))\n for p in TEST_NDARRAYS:\n rotated = rotate({key: p(self.imt[0])})\n expected = [np.rot90(channel, 1, (0, 1)) for channel in self.imt[0]]\n expected = np.stack(expected)\n assert_allclose(rotated[key], p(expected))\n\n def test_prob_k_spatial_axes(self):\n key = \"test\"\n rotate = Rotate90d(keys=key, k=2, spatial_axes=(0, 1))\n for p in TEST_NDARRAYS:\n rotated = rotate({key: p(self.imt[0])})\n expected = [np.rot90(channel, 2, (0, 1)) for channel in self.imt[0]]\n expected = np.stack(expected)\n assert_allclose(rotated[key], p(expected))\n\n def test_no_key(self):\n key = \"unknown\"\n rotate = Rotate90d(keys=key)\n with self.assertRaisesRegex(KeyError, \"\"):\n rotate({\"test\": self.imt[0]})\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated2D_TestRotated2D.test_correct_results.self_assertLessEqual_np_c": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated2D_TestRotated2D.test_correct_results.self_assertLessEqual_np_c", "embedding": null, "metadata": {"file_path": "tests/test_rotated.py", "file_name": "test_rotated.py", "file_type": "text/x-python", "category": "test", "start_line": 40, "end_line": 66, "span_ids": ["TestRotated2D.test_correct_results", "TestRotated2D"], "tokens": 388}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRotated2D(NumpyImageTestCase2D):\n @parameterized.expand(TEST_CASES_2D)\n def test_correct_results(self, im_type, angle, keep_size, mode, padding_mode, align_corners):\n rotate_fn = Rotated((\"img\", \"seg\"), angle, keep_size, (mode, \"nearest\"), padding_mode, align_corners)\n rotated = rotate_fn({\"img\": im_type(self.imt[0]), \"seg\": im_type(self.segn[0])})\n if keep_size:\n np.testing.assert_allclose(self.imt[0].shape, rotated[\"img\"].shape)\n _order = 0 if mode == \"nearest\" else 1\n if padding_mode == \"border\":\n _mode = \"nearest\"\n elif padding_mode == \"reflection\":\n _mode = \"reflect\"\n else:\n _mode = \"constant\"\n expected = scipy.ndimage.rotate(\n self.imt[0, 0], -np.rad2deg(angle), (0, 1), not keep_size, order=_order, mode=_mode, prefilter=False\n )\n for k, v in rotated.items():\n rotated[k] = v.cpu() if isinstance(v, torch.Tensor) else v\n good = np.sum(np.isclose(expected, rotated[\"img\"][0], atol=1e-3))\n self.assertLessEqual(np.abs(good - expected.size), 5, \"diff at most 5 pixels\")\n\n expected = scipy.ndimage.rotate(\n self.segn[0, 0], -np.rad2deg(angle), (0, 1), not keep_size, order=0, mode=_mode, prefilter=False\n )\n expected = np.stack(expected).astype(int)\n self.assertLessEqual(np.count_nonzero(expected != rotated[\"seg\"][0]), 30)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3D_TestRotated3D.test_correct_results.self_assertLessEqual_np_c": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3D_TestRotated3D.test_correct_results.self_assertLessEqual_np_c", "embedding": null, "metadata": {"file_path": "tests/test_rotated.py", "file_name": "test_rotated.py", "file_type": "text/x-python", "category": "test", "start_line": 69, "end_line": 95, "span_ids": ["TestRotated3D", "TestRotated3D.test_correct_results"], "tokens": 397}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRotated3D(NumpyImageTestCase3D):\n @parameterized.expand(TEST_CASES_3D)\n def test_correct_results(self, im_type, angle, keep_size, mode, padding_mode, align_corners):\n rotate_fn = Rotated((\"img\", \"seg\"), [0, angle, 0], keep_size, (mode, \"nearest\"), padding_mode, align_corners)\n rotated = rotate_fn({\"img\": im_type(self.imt[0]), \"seg\": im_type(self.segn[0])})\n if keep_size:\n np.testing.assert_allclose(self.imt[0].shape, rotated[\"img\"].shape)\n _order = 0 if mode == \"nearest\" else 1\n if padding_mode == \"border\":\n _mode = \"nearest\"\n elif padding_mode == \"reflection\":\n _mode = \"reflect\"\n else:\n _mode = \"constant\"\n expected = scipy.ndimage.rotate(\n self.imt[0, 0], np.rad2deg(angle), (0, 2), not keep_size, order=_order, mode=_mode, prefilter=False\n )\n for k, v in rotated.items():\n rotated[k] = v.cpu() if isinstance(v, torch.Tensor) else v\n good = np.sum(np.isclose(expected.astype(np.float32), rotated[\"img\"][0], atol=1e-3))\n self.assertLessEqual(np.abs(good - expected.size), 5, \"diff at most 5 voxels.\")\n\n expected = scipy.ndimage.rotate(\n self.segn[0, 0], np.rad2deg(angle), (0, 2), not keep_size, order=0, mode=_mode, prefilter=False\n )\n expected = np.stack(expected).astype(int)\n self.assertLessEqual(np.count_nonzero(expected != rotated[\"seg\"][0]), 160)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3DXY_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rotated.py_TestRotated3DXY_", "embedding": null, "metadata": {"file_path": "tests/test_rotated.py", "file_name": "test_rotated.py", "file_type": "text/x-python", "category": "test", "start_line": 98, "end_line": 129, "span_ids": ["TestRotated3DXY.test_correct_results", "impl:17", "TestRotated3DXY"], "tokens": 408}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRotated3DXY(NumpyImageTestCase3D):\n @parameterized.expand(TEST_CASES_3D)\n def test_correct_results(self, im_type, angle, keep_size, mode, padding_mode, align_corners):\n rotate_fn = Rotated((\"img\", \"seg\"), [0, 0, angle], keep_size, (mode, \"nearest\"), padding_mode, align_corners)\n rotated = rotate_fn({\"img\": im_type(self.imt[0]), \"seg\": im_type(self.segn[0])})\n if keep_size:\n np.testing.assert_allclose(self.imt[0].shape, rotated[\"img\"].shape)\n _order = 0 if mode == \"nearest\" else 1\n if padding_mode == \"border\":\n _mode = \"nearest\"\n elif padding_mode == \"reflection\":\n _mode = \"reflect\"\n else:\n _mode = \"constant\"\n expected = scipy.ndimage.rotate(\n self.imt[0, 0], -np.rad2deg(angle), (0, 1), not keep_size, order=_order, mode=_mode, prefilter=False\n )\n for k, v in rotated.items():\n rotated[k] = v.cpu() if isinstance(v, torch.Tensor) else v\n good = np.sum(np.isclose(expected, rotated[\"img\"][0], atol=1e-3))\n self.assertLessEqual(np.abs(good - expected.size), 5, \"diff at most 5 voxels\")\n\n expected = scipy.ndimage.rotate(\n self.segn[0, 0], -np.rad2deg(angle), (0, 1), not keep_size, order=0, mode=_mode, prefilter=False\n )\n expected = np.stack(expected).astype(int)\n self.assertLessEqual(np.count_nonzero(expected != rotated[\"seg\"][0]), 160)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_ranged.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_scale_intensity_ranged.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_scale_intensity_ranged.py", "file_name": "test_scale_intensity_ranged.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 39, "span_ids": ["impl", "IntensityScaleIntensityRanged.test_image_scale_intensity_ranged_none", "IntensityScaleIntensityRanged", "IntensityScaleIntensityRanged.test_image_scale_intensity_ranged", "docstring"], "tokens": 258}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom monai.transforms import ScaleIntensityRanged\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\n\nclass IntensityScaleIntensityRanged(NumpyImageTestCase2D):\n def test_image_scale_intensity_ranged(self):\n key = \"img\"\n scaler = ScaleIntensityRanged(keys=key, a_min=20, a_max=108, b_min=50, b_max=80)\n for p in TEST_NDARRAYS:\n scaled = scaler({key: p(self.imt)})\n expected = (self.imt - 20) / 88\n expected = expected * 30 + 50\n assert_allclose(scaled[key], p(expected))\n\n def test_image_scale_intensity_ranged_none(self):\n key = \"img\"\n scaler = ScaleIntensityRanged(keys=key, a_min=20, a_max=108, b_min=None, b_max=None)\n for p in TEST_NDARRAYS:\n scaled = scaler({key: p(self.imt)})\n expected = (self.imt - 20) / 88\n assert_allclose(scaled[key], p(expected))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_unittest_for_type_1_in_.for_type_2_in_.TEST_CASES_3D_append_test": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_unittest_for_type_1_in_.for_type_2_in_.TEST_CASES_3D_append_test", "embedding": null, "metadata": {"file_path": "tests/test_se_block.py", "file_name": "test_se_block.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 60, "span_ids": ["docstring"], "tokens": 519}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.blocks import SEBlock\nfrom monai.networks.layers.factories import Act, Norm\nfrom tests.utils import test_script_save\n\ndevice = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n\nTEST_CASES = [\n [\n {\"spatial_dims\": 2, \"in_channels\": 4, \"n_chns_1\": 20, \"n_chns_2\": 30, \"n_chns_3\": 4, \"r\": 2},\n (7, 4, 64, 48), # 4-channel 2D, batch 7\n (7, 4, 64, 48),\n ],\n [\n {\"spatial_dims\": 1, \"in_channels\": 3, \"n_chns_1\": 20, \"n_chns_2\": 30, \"n_chns_3\": 40, \"r\": 5},\n (16, 3, 63), # 3-channel 1D, batch 16\n (16, 40, 63),\n ],\n]\n\nTEST_CASES_3D = []\nfor type_1 in (\n {\"kernel_size\": 3, \"act\": Act.PRELU, \"norm\": Norm.INSTANCE},\n {\"kernel_size\": 1, \"act\": None, \"norm\": Norm.INSTANCE},\n):\n for type_2 in (\n {\"kernel_size\": 3, \"act\": Act.PRELU, \"norm\": Norm.INSTANCE},\n {\"kernel_size\": 1, \"act\": None, \"norm\": Norm.INSTANCE},\n ):\n test_case = [\n {\n \"spatial_dims\": 3,\n \"in_channels\": 10,\n \"r\": 3,\n \"n_chns_1\": 3,\n \"n_chns_2\": 5,\n \"n_chns_3\": 11,\n \"conv_param_1\": type_1,\n \"conv_param_3\": type_2,\n },\n (16, 10, 32, 24, 48), # 10-channel 3D, batch 16\n (16, 11, 32, 24, 48),\n ]\n TEST_CASES_3D.append(test_case)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_TestSEBlockLayer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_se_block.py_TestSEBlockLayer_", "embedding": null, "metadata": {"file_path": "tests/test_se_block.py", "file_name": "test_se_block.py", "file_type": "text/x-python", "category": "test", "start_line": 63, "end_line": 84, "span_ids": ["TestSEBlockLayer.test_script", "TestSEBlockLayer", "impl:12", "TestSEBlockLayer.test_shape", "TestSEBlockLayer.test_ill_arg"], "tokens": 197}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSEBlockLayer(unittest.TestCase):\n @parameterized.expand(TEST_CASES + TEST_CASES_3D)\n def test_shape(self, input_param, input_shape, expected_shape):\n net = SEBlock(**input_param).to(device)\n with eval_mode(net):\n result = net(torch.randn(input_shape).to(device))\n self.assertEqual(result.shape, expected_shape)\n\n def test_script(self):\n input_param, input_shape, _ = TEST_CASES[0]\n net = SEBlock(**input_param)\n test_data = torch.randn(input_shape)\n test_script_save(net, test_data)\n\n def test_ill_arg(self):\n with self.assertRaises(ValueError):\n SEBlock(spatial_dims=1, in_channels=4, n_chns_1=2, n_chns_2=3, n_chns_3=4, r=100)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_seg_loss_integration.py", "file_name": "test_seg_loss_integration.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["docstring"], "tokens": 707}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nimport torch.nn as nn\nimport torch.optim as optim\nfrom parameterized import parameterized\n\nfrom monai.losses import DiceLoss, FocalLoss, GeneralizedDiceLoss, TverskyLoss\nfrom monai.networks import one_hot\n\nTEST_CASES = [\n [DiceLoss, {\"to_onehot_y\": True, \"squared_pred\": True, \"smooth_nr\": 1e-4, \"smooth_dr\": 1e-4}, {}],\n [DiceLoss, {\"to_onehot_y\": True, \"squared_pred\": True, \"smooth_nr\": 0, \"smooth_dr\": 1e-3}, {}],\n [DiceLoss, {\"to_onehot_y\": False, \"squared_pred\": True, \"smooth_nr\": 0, \"smooth_dr\": 1e-3}, {}],\n [DiceLoss, {\"to_onehot_y\": True, \"squared_pred\": True, \"batch\": True}, {}],\n [DiceLoss, {\"to_onehot_y\": True, \"sigmoid\": True}, {}],\n [DiceLoss, {\"to_onehot_y\": True, \"softmax\": True}, {}],\n [FocalLoss, {\"to_onehot_y\": True, \"gamma\": 1.5, \"weight\": torch.tensor([1, 2])}, {}],\n [FocalLoss, {\"to_onehot_y\": False, \"gamma\": 1.5, \"weight\": [1, 2]}, {}],\n [FocalLoss, {\"to_onehot_y\": False, \"gamma\": 1.5, \"weight\": 1.0}, {}],\n [FocalLoss, {\"to_onehot_y\": True, \"gamma\": 1.5}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": True, \"softmax\": True}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": True, \"sigmoid\": True}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": True, \"sigmoid\": True, \"w_type\": \"simple\"}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": True, \"sigmoid\": True, \"w_type\": \"uniform\"}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": True, \"sigmoid\": True, \"w_type\": \"uniform\", \"batch\": True}, {}],\n [GeneralizedDiceLoss, {\"to_onehot_y\": False, \"sigmoid\": True, \"w_type\": \"uniform\", \"batch\": True}, {}],\n [TverskyLoss, {\"to_onehot_y\": True, \"softmax\": True, \"alpha\": 0.8, \"beta\": 0.2}, {}],\n [TverskyLoss, {\"to_onehot_y\": True, \"softmax\": True, \"alpha\": 0.8, \"beta\": 0.2, \"batch\": True}, {}],\n [TverskyLoss, {\"to_onehot_y\": True, \"softmax\": True, \"alpha\": 1.0, \"beta\": 0.0}, {}],\n [TverskyLoss, {\"to_onehot_y\": False, \"softmax\": True, \"alpha\": 1.0, \"beta\": 0.0}, {}],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration_TestSegLossIntegration.test_convergence._define_a_one_layer_mode": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration_TestSegLossIntegration.test_convergence._define_a_one_layer_mode", "embedding": null, "metadata": {"file_path": "tests/test_seg_loss_integration.py", "file_name": "test_seg_loss_integration.py", "file_type": "text/x-python", "category": "test", "start_line": 47, "end_line": 91, "span_ids": ["TestSegLossIntegration.setUp", "TestSegLossIntegration.test_convergence", "TestSegLossIntegration", "TestSegLossIntegration.tearDown"], "tokens": 473}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSegLossIntegration(unittest.TestCase):\n def setUp(self):\n torch.backends.cudnn.deterministic = True\n torch.backends.cudnn.benchmark = False\n torch.manual_seed(0)\n self.device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu:0\")\n\n def tearDown(self):\n torch.backends.cudnn.deterministic = False\n torch.backends.cudnn.benchmark = True\n\n @parameterized.expand(TEST_CASES)\n def test_convergence(self, loss_type, loss_args, forward_args):\n \"\"\"\n The goal of this test is to assess if the gradient of the loss function\n is correct by testing if we can train a one layer neural network\n to segment one image.\n We verify that the loss is decreasing in almost all SGD steps.\n \"\"\"\n learning_rate = 0.001\n max_iter = 40\n\n # define a simple 3d example\n target_seg = torch.tensor(\n [\n [\n # raw 0\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n # raw 1\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n # raw 2\n [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],\n ]\n ],\n device=self.device,\n )\n target_seg = torch.unsqueeze(target_seg, dim=0)\n image = 12 * target_seg + 27\n image = image.float().to(self.device)\n num_classes = 2\n num_voxels = 3 * 4 * 4\n\n target_onehot = one_hot(target_seg, num_classes=num_classes)\n\n # define a one layer model\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence.OnelayerNet_TestSegLossIntegration.test_convergence.OnelayerNet.forward.return.x": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence.OnelayerNet_TestSegLossIntegration.test_convergence.OnelayerNet.forward.return.x", "embedding": null, "metadata": {"file_path": "tests/test_seg_loss_integration.py", "file_name": "test_seg_loss_integration.py", "file_type": "text/x-python", "category": "test", "start_line": 92, "end_line": 105, "span_ids": ["TestSegLossIntegration.test_convergence"], "tokens": 178}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSegLossIntegration(unittest.TestCase):\n\n @parameterized.expand(TEST_CASES)\n def test_convergence(self, loss_type, loss_args, forward_args):\n # ... other code\n class OnelayerNet(nn.Module):\n def __init__(self):\n super().__init__()\n self.layer_1 = nn.Linear(num_voxels, 200)\n self.acti = nn.ReLU()\n self.layer_2 = nn.Linear(200, num_voxels * num_classes)\n\n def forward(self, x):\n x = x.view(-1, num_voxels)\n x = self.layer_1(x)\n x = self.acti(x)\n x = self.layer_2(x)\n x = x.view(-1, num_classes, 3, 4, 4)\n return x\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence._initialise_the_network_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_seg_loss_integration.py_TestSegLossIntegration.test_convergence._initialise_the_network_", "embedding": null, "metadata": {"file_path": "tests/test_seg_loss_integration.py", "file_name": "test_seg_loss_integration.py", "file_type": "text/x-python", "category": "test", "start_line": 107, "end_line": 156, "span_ids": ["impl:3", "TestSegLossIntegration.test_convergence"], "tokens": 384}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSegLossIntegration(unittest.TestCase):\n\n @parameterized.expand(TEST_CASES)\n def test_convergence(self, loss_type, loss_args, forward_args):\n\n # initialise the network\n net = OnelayerNet().to(self.device)\n\n # initialize the loss\n loss = loss_type(**loss_args)\n\n # initialize a SGD optimizer\n optimizer = optim.Adam(net.parameters(), lr=learning_rate)\n\n loss_history = []\n init_output = None\n\n # train the network\n for iter_i in range(max_iter):\n # set the gradient to zero\n optimizer.zero_grad()\n\n # forward pass\n output = net(image)\n if init_output is None:\n init_output = torch.argmax(output, 1).detach().cpu().numpy()\n\n if loss_args[\"to_onehot_y\"] is False:\n loss_val = loss(output, target_onehot, **forward_args)\n else:\n loss_val = loss(output, target_seg, **forward_args)\n\n if iter_i % 10 == 0:\n pred = torch.argmax(output, 1).detach().cpu().numpy()\n gt = target_seg.detach().cpu().numpy()[:, 0]\n print(f\"{loss_type.__name__} iter: {iter_i}, acc: {np.sum(pred == gt) / np.prod(pred.shape)}\")\n\n # backward pass\n loss_val.backward()\n optimizer.step()\n\n # stats\n loss_history.append(loss_val.item())\n\n pred = torch.argmax(output, 1).detach().cpu().numpy()\n target = target_seg.detach().cpu().numpy()[:, 0]\n # initial predictions are bad\n self.assertTrue(not np.allclose(init_output, target))\n # final predictions are good\n np.testing.assert_allclose(pred, target)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_shift_intensity.py", "file_name": "test_shift_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 30, "span_ids": ["TestShiftIntensity.test_value", "TestShiftIntensity", "impl", "docstring"], "tokens": 99}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import ShiftIntensity\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestShiftIntensity(NumpyImageTestCase2D):\n def test_value(self):\n shifter = ShiftIntensity(offset=1.0)\n result = shifter(self.imt)\n expected = self.imt + 1.0\n np.testing.assert_allclose(result, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensityd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_shift_intensityd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_shift_intensityd.py", "file_name": "test_shift_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 43, "span_ids": ["impl", "TestShiftIntensityd.test_factor", "TestShiftIntensityd", "docstring", "TestShiftIntensityd.test_value"], "tokens": 263}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\n\nfrom monai.transforms import IntensityStatsd, ShiftIntensityd\nfrom monai.utils.enums import PostFix\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\n\nclass TestShiftIntensityd(NumpyImageTestCase2D):\n def test_value(self):\n key = \"img\"\n for p in TEST_NDARRAYS:\n shifter = ShiftIntensityd(keys=[key], offset=1.0)\n result = shifter({key: p(self.imt)})\n expected = self.imt + 1.0\n assert_allclose(result[key], p(expected))\n\n def test_factor(self):\n key = \"img\"\n stats = IntensityStatsd(keys=key, ops=\"max\", key_prefix=\"orig\")\n shifter = ShiftIntensityd(keys=[key], offset=1.0, factor_key=[\"orig_max\"])\n data = {key: self.imt, PostFix.meta(key): {\"affine\": None}}\n\n result = shifter(stats(data))\n expected = self.imt + 1.0 * np.nanmax(self.imt)\n np.testing.assert_allclose(result[key], expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_unittest_TEST_ILL_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_unittest_TEST_ILL_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_simple_aspp.py", "file_name": "test_simple_aspp.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 66, "span_ids": ["impl:3", "docstring"], "tokens": 590}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.blocks import SimpleASPP\n\nTEST_CASES = [\n [ # 32-channel 2D, batch 7\n {\"spatial_dims\": 2, \"in_channels\": 32, \"conv_out_channels\": 3, \"norm_type\": (\"batch\", {\"affine\": False})},\n (7, 32, 18, 20),\n (7, 12, 18, 20),\n ],\n [ # 4-channel 1D, batch 16\n {\"spatial_dims\": 1, \"in_channels\": 4, \"conv_out_channels\": 8, \"acti_type\": (\"PRELU\", {\"num_parameters\": 32})},\n (16, 4, 17),\n (16, 32, 17),\n ],\n [ # 3-channel 3D, batch 16\n {\"spatial_dims\": 3, \"in_channels\": 3, \"conv_out_channels\": 2},\n (16, 3, 17, 18, 19),\n (16, 8, 17, 18, 19),\n ],\n [ # 3-channel 3D, batch 16\n {\n \"spatial_dims\": 3,\n \"in_channels\": 3,\n \"conv_out_channels\": 2,\n \"kernel_sizes\": (1, 3, 3),\n \"dilations\": (1, 2, 4),\n },\n (16, 3, 17, 18, 19),\n (16, 6, 17, 18, 19),\n ],\n]\n\nTEST_ILL_CASES = [\n [ # 3-channel 3D, batch 16, wrong k and d sizes.\n {\"spatial_dims\": 3, \"in_channels\": 3, \"conv_out_channels\": 2, \"kernel_sizes\": (1, 3, 3), \"dilations\": (1, 2)},\n (16, 3, 17, 18, 19),\n ValueError,\n ],\n [ # 3-channel 3D, batch 16, wrong k and d sizes.\n {\n \"spatial_dims\": 3,\n \"in_channels\": 3,\n \"conv_out_channels\": 2,\n \"kernel_sizes\": (1, 3, 4),\n \"dilations\": (1, 2, 3),\n },\n (16, 3, 17, 18, 19),\n NotImplementedError, # unknown padding k=4, d=3\n ],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_TestChannelSELayer_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simple_aspp.py_TestChannelSELayer_", "embedding": null, "metadata": {"file_path": "tests/test_simple_aspp.py", "file_name": "test_simple_aspp.py", "file_type": "text/x-python", "category": "test", "start_line": 69, "end_line": 85, "span_ids": ["TestChannelSELayer.test_shape", "impl:5", "TestChannelSELayer", "TestChannelSELayer.test_ill_args"], "tokens": 121}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestChannelSELayer(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_shape, expected_shape):\n net = SimpleASPP(**input_param)\n with eval_mode(net):\n result = net(torch.randn(input_shape))\n self.assertEqual(result.shape, expected_shape)\n\n @parameterized.expand(TEST_ILL_CASES)\n def test_ill_args(self, input_param, input_shape, error_type):\n with self.assertRaises(error_type):\n SimpleASPP(**input_param)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacing.py_TestSpacingCase_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spacing.py_TestSpacingCase_", "embedding": null, "metadata": {"file_path": "tests/test_spacing.py", "file_name": "test_spacing.py", "file_type": "text/x-python", "category": "test", "start_line": 197, "end_line": 218, "span_ids": ["TestSpacingCase.test_spacing", "TestSpacingCase", "impl:19"], "tokens": 237}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSpacingCase(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_spacing(self, in_type, init_param, img, data_param, expected_output):\n _img = in_type(img)\n output_data, _, new_affine = Spacing(**init_param)(_img, **data_param)\n if isinstance(_img, torch.Tensor):\n self.assertEqual(_img.device, output_data.device)\n output_data = output_data.cpu()\n\n np.testing.assert_allclose(output_data, expected_output, atol=1e-3, rtol=1e-3)\n sr = len(output_data.shape) - 1\n if isinstance(init_param[\"pixdim\"], float):\n init_param[\"pixdim\"] = [init_param[\"pixdim\"]] * sr\n init_pixdim = ensure_tuple(init_param[\"pixdim\"])\n init_pixdim = init_param[\"pixdim\"][:sr]\n norm = np.sqrt(np.sum(np.square(new_affine), axis=0))[:sr]\n np.testing.assert_allclose(fall_back_tuple(init_pixdim, norm), norm)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_cropd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_cropd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_spatial_cropd.py", "file_name": "test_spatial_cropd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 68, "span_ids": ["TestSpatialCropd.test_shape", "impl:9", "TestSpatialCropd", "docstring"], "tokens": 556}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import SpatialCropd\nfrom tests.utils import TEST_NDARRAYS\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\"keys\": [\"img\"], \"roi_center\": [1, 1, 1], \"roi_size\": [2, 2, 2]},\n {\"img\": p(np.random.randint(0, 2, size=[3, 3, 3, 3]))},\n (3, 2, 2, 2),\n ]\n )\n TESTS.append(\n [\n {\"keys\": [\"img\"], \"roi_start\": [0, 0, 0], \"roi_end\": [2, 2, 2]},\n {\"img\": p(np.random.randint(0, 2, size=[3, 3, 3, 3]))},\n (3, 2, 2, 2),\n ]\n )\n TESTS.append(\n [\n {\"keys\": [\"img\"], \"roi_start\": [0, 0], \"roi_end\": [2, 2]},\n {\"img\": p(np.random.randint(0, 2, size=[3, 3, 3, 3]))},\n (3, 2, 2, 3),\n ]\n )\n TESTS.append(\n [\n {\"keys\": [\"img\"], \"roi_start\": [0, 0, 0, 0, 0], \"roi_end\": [2, 2, 2, 2, 2]},\n {\"img\": p(np.random.randint(0, 2, size=[3, 3, 3, 3]))},\n (3, 2, 2, 2),\n ]\n )\n TESTS.append(\n [\n {\"keys\": [\"img\"], \"roi_slices\": [slice(s, e) for s, e in zip([-1, -2, 0], [None, None, 2])]},\n {\"img\": p(np.random.randint(0, 2, size=[3, 3, 3, 3]))},\n (3, 1, 2, 2),\n ]\n )\n\n\nclass TestSpatialCropd(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_shape(self, input_param, input_data, expected_shape):\n result = SpatialCropd(**input_param)(input_data)\n self.assertTupleEqual(result[\"img\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_padd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_spatial_padd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_spatial_padd.py", "file_name": "test_spatial_padd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 54, "span_ids": ["impl:9", "TestSpatialPadd.test_pad_shape", "TestSpatialPadd", "docstring"], "tokens": 418}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import SpatialPadd\n\nTEST_CASE_1 = [\n {\"keys\": [\"img\"], \"spatial_size\": [15, 8, 8], \"method\": \"symmetric\", \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 15, 8, 8)),\n]\n\nTEST_CASE_2 = [\n {\"keys\": [\"img\"], \"spatial_size\": [15, 8, 8], \"method\": \"end\", \"mode\": \"constant\"},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 15, 8, 8)),\n]\n\nTEST_CASE_3 = [\n {\"keys\": [\"img\"], \"spatial_size\": [15, 8, 8], \"method\": \"end\", \"mode\": {\"constant\"}},\n {\"img\": np.zeros((3, 8, 8, 4))},\n np.zeros((3, 15, 8, 8)),\n]\n\nTEST_CASE_4 = [\n {\"keys\": [\"img\"], \"spatial_size\": [15, 8, -1], \"method\": \"end\", \"mode\": {\"constant\"}},\n {\"img\": np.zeros((3, 8, 4, 4))},\n np.zeros((3, 15, 8, 4)),\n]\n\n\nclass TestSpatialPadd(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4])\n def test_pad_shape(self, input_param, input_data, expected_val):\n padder = SpatialPadd(**input_param)\n result = padder(input_data)\n np.testing.assert_allclose(result[\"img\"].shape, expected_val.shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channel.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channel.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_split_channel.py", "file_name": "test_split_channel.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 38, "span_ids": ["TestSplitChannel", "TestSplitChannel.test_shape", "impl:8", "docstring"], "tokens": 276}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import SplitChannel\nfrom tests.utils import TEST_NDARRAYS\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append([{\"channel_dim\": 1}, p(np.random.randint(2, size=(4, 3, 3, 4))), (4, 1, 3, 4)])\n TESTS.append([{\"channel_dim\": 0}, p(np.random.randint(2, size=(3, 3, 4))), (1, 3, 4)])\n TESTS.append([{\"channel_dim\": 2}, p(np.random.randint(2, size=(3, 2, 4))), (3, 2, 1)])\n TESTS.append([{\"channel_dim\": -1}, p(np.random.randint(2, size=(3, 2, 4))), (3, 2, 1)])\n\n\nclass TestSplitChannel(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_shape(self, input_param, test_data, expected_shape):\n result = SplitChannel(**input_param)(test_data)\n for data in result:\n self.assertTupleEqual(data.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channeld.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_split_channeld.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_split_channeld.py", "file_name": "test_split_channeld.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 68, "span_ids": ["impl:9", "TestSplitChanneld.test_shape", "TestSplitChanneld", "docstring"], "tokens": 495}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import SplitChanneld\nfrom tests.utils import TEST_NDARRAYS\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\"keys\": \"pred\", \"output_postfixes\": [\"cls1\", \"cls2\", \"cls3\"], \"channel_dim\": 1},\n {\"pred\": p(np.random.randint(2, size=(4, 3, 3, 4)))},\n (4, 1, 3, 4),\n ]\n )\n\n TESTS.append(\n [\n {\"keys\": \"pred\", \"output_postfixes\": [\"cls1\", \"cls2\", \"cls3\"], \"channel_dim\": 0},\n {\"pred\": p(np.random.randint(2, size=(3, 3, 4)))},\n (1, 3, 4),\n ]\n )\n\n TESTS.append(\n [\n {\"keys\": \"pred\", \"output_postfixes\": [\"cls1\", \"cls2\", \"cls3\", \"cls4\"], \"channel_dim\": 2},\n {\"pred\": p(np.random.randint(2, size=(3, 2, 4)))},\n (3, 2, 1),\n ]\n )\n\n TESTS.append(\n [\n {\"keys\": \"pred\", \"output_postfixes\": [\"cls1\", \"cls2\", \"cls3\", \"cls4\"], \"channel_dim\": -1},\n {\"pred\": p(np.random.randint(2, size=(3, 2, 4)))},\n (3, 2, 1),\n ]\n )\n\n TESTS.append([{\"keys\": \"pred\", \"channel_dim\": 1}, {\"pred\": p(np.random.randint(2, size=(3, 2, 4)))}, (3, 1, 4)])\n\n\nclass TestSplitChanneld(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_shape(self, input_param, test_data, expected_shape):\n result = SplitChanneld(**input_param)(test_data)\n for k, v in result.items():\n if \"_\" in k:\n self.assertTupleEqual(v.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedimd.py_TestSqueezeDim_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_squeezedimd.py_TestSqueezeDim_", "embedding": null, "metadata": {"file_path": "tests/test_squeezedimd.py", "file_name": "test_squeezedimd.py", "file_type": "text/x-python", "category": "test", "start_line": 79, "end_line": 94, "span_ids": ["TestSqueezeDim.test_invalid_inputs", "TestSqueezeDim.test_shape", "TestSqueezeDim", "impl:10"], "tokens": 127}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSqueezeDim(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_shape(self, input_param, test_data, expected_shape):\n result = SqueezeDimd(**input_param)(test_data)\n self.assertTupleEqual(result[\"img\"].shape, expected_shape)\n self.assertTupleEqual(result[\"seg\"].shape, expected_shape)\n\n @parameterized.expand(TESTS_FAIL)\n def test_invalid_inputs(self, exception, input_param, test_data):\n with self.assertRaises(exception):\n SqueezeDimd(**input_param)(test_data)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensity.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensity.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_threshold_intensity.py", "file_name": "test_threshold_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 37, "span_ids": ["TestThresholdIntensity.test_value", "TestThresholdIntensity", "impl:7", "docstring"], "tokens": 292}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import ThresholdIntensity\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append([p, {\"threshold\": 5, \"above\": True, \"cval\": 0}, (0, 0, 0, 0, 0, 0, 6, 7, 8, 9)])\n TESTS.append([p, {\"threshold\": 5, \"above\": False, \"cval\": 0}, (0, 1, 2, 3, 4, 0, 0, 0, 0, 0)])\n TESTS.append([p, {\"threshold\": 5, \"above\": True, \"cval\": 5}, (5, 5, 5, 5, 5, 5, 6, 7, 8, 9)])\n\n\nclass TestThresholdIntensity(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, in_type, input_param, expected_value):\n test_data = in_type(np.arange(10))\n result = ThresholdIntensity(**input_param)(test_data)\n assert_allclose(result, in_type(expected_value))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensityd.py_TestThresholdIntensityd_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_threshold_intensityd.py_TestThresholdIntensityd_", "embedding": null, "metadata": {"file_path": "tests/test_threshold_intensityd.py", "file_name": "test_threshold_intensityd.py", "file_type": "text/x-python", "category": "test", "start_line": 45, "end_line": 57, "span_ids": ["TestThresholdIntensityd", "TestThresholdIntensityd.test_value", "impl:7"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestThresholdIntensityd(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, in_type, input_param, expected_value):\n test_data = {\"image\": in_type(np.arange(10)), \"label\": in_type(np.arange(10)), \"extra\": in_type(np.arange(10))}\n result = ThresholdIntensityd(**input_param)(test_data)\n assert_allclose(result[\"image\"], in_type(expected_value))\n assert_allclose(result[\"label\"], in_type(expected_value))\n assert_allclose(result[\"extra\"], in_type(expected_value))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_unittest_TEST_CASE_4._no_channel_0D_batch": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_unittest_TEST_CASE_4._no_channel_0D_batch", "embedding": null, "metadata": {"file_path": "tests/test_to_onehot.py", "file_name": "test_to_onehot.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["docstring"], "tokens": 437}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import one_hot\n\nTEST_CASE_1 = [ # single channel 2D, batch 3, shape (2, 1, 2, 2)\n {\"labels\": torch.tensor([[[[0, 1], [1, 2]]], [[[2, 1], [1, 0]]]]), \"num_classes\": 3},\n (2, 3, 2, 2),\n]\n\nTEST_CASE_2 = [ # single channel 1D, batch 2, shape (2, 1, 4)\n {\"labels\": torch.tensor([[[1, 2, 2, 0]], [[2, 1, 0, 1]]]), \"num_classes\": 3},\n (2, 3, 4),\n np.array([[[0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 1, 0]], [[0, 0, 1, 0], [0, 1, 0, 1], [1, 0, 0, 0]]]),\n]\n\nTEST_CASE_3 = [ # single channel 0D, batch 2, shape (2, 1)\n {\"labels\": torch.tensor([[1.0], [2.0]]), \"num_classes\": 3},\n (2, 3),\n np.array([[0, 1, 0], [0, 0, 1]]),\n]\n\nTEST_CASE_4 = [ # no channel 0D, batch 3, shape (3)\n {\"labels\": torch.tensor([1, 2, 0]), \"num_classes\": 3, \"dtype\": torch.long},\n (3, 3),\n np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_TestToOneHot_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_to_onehot.py_TestToOneHot_", "embedding": null, "metadata": {"file_path": "tests/test_to_onehot.py", "file_name": "test_to_onehot.py", "file_type": "text/x-python", "category": "test", "start_line": 44, "end_line": 61, "span_ids": ["impl:9", "TestToOneHot.test_shape", "TestToOneHot"], "tokens": 140}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestToOneHot(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4])\n def test_shape(self, input_data, expected_shape, expected_result=None):\n result = one_hot(**input_data)\n self.assertEqual(result.shape, expected_shape)\n if expected_result is not None:\n self.assertTrue(np.allclose(expected_result, result.numpy()))\n\n if \"dtype\" in input_data:\n self.assertEqual(result.dtype, input_data[\"dtype\"])\n else:\n # by default, expecting float type\n self.assertEqual(result.dtype, torch.float)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss_TestTverskyLoss.test_ill_shape.None_2.TverskyLoss_reduction_Non": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss_TestTverskyLoss.test_ill_shape.None_2.TverskyLoss_reduction_Non", "embedding": null, "metadata": {"file_path": "tests/test_tversky_loss.py", "file_name": "test_tversky_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 105, "end_line": 120, "span_ids": ["TestTverskyLoss.test_ill_shape", "TestTverskyLoss", "TestTverskyLoss.test_shape"], "tokens": 210}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestTverskyLoss(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_shape(self, input_param, input_data, expected_val):\n result = TverskyLoss(**input_param).forward(**input_data)\n np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, rtol=1e-4)\n\n def test_ill_shape(self):\n loss = TverskyLoss()\n with self.assertRaisesRegex(AssertionError, \"\"):\n loss.forward(torch.ones((2, 2, 3)), torch.ones((4, 5, 6)))\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertRaisesRegex(ValueError, \"\"):\n TverskyLoss(reduction=\"unknown\")(chn_input, chn_target)\n with self.assertRaisesRegex(ValueError, \"\"):\n TverskyLoss(reduction=None)(chn_input, chn_target)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss.test_input_warnings_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_TestTverskyLoss.test_input_warnings_", "embedding": null, "metadata": {"file_path": "tests/test_tversky_loss.py", "file_name": "test_tversky_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 174, "end_line": 196, "span_ids": ["impl:3", "TestTverskyLoss.test_input_warnings", "TestTverskyLoss.test_script"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestTverskyLoss(unittest.TestCase):\n\n def test_input_warnings(self):\n chn_input = torch.ones((1, 1, 3))\n chn_target = torch.ones((1, 1, 3))\n with self.assertWarns(Warning):\n loss = TverskyLoss(include_background=False)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = TverskyLoss(softmax=True)\n loss.forward(chn_input, chn_target)\n with self.assertWarns(Warning):\n loss = TverskyLoss(to_onehot_y=True)\n loss.forward(chn_input, chn_target)\n\n @SkipIfBeforePyTorchVersion((1, 7, 0))\n def test_script(self):\n loss = TverskyLoss()\n test_input = torch.ones(2, 1, 8, 8)\n test_script_save(loss, test_input, test_input)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_unittest_INVALID_CASES._None_None_bilinear": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_unittest_INVALID_CASES._None_None_bilinear", "embedding": null, "metadata": {"file_path": "tests/test_zoom.py", "file_name": "test_zoom.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 24, "span_ids": ["docstring"], "tokens": 125}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\nfrom scipy.ndimage import zoom as zoom_scipy\n\nfrom monai.transforms import Zoom\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\nVALID_CASES = [(1.5, \"nearest\"), (1.5, \"nearest\"), (0.8, \"bilinear\"), (0.8, \"area\")]\n\nINVALID_CASES = [((None, None), \"bilinear\", TypeError), ((0.9, 0.9), \"s\", ValueError)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_unittest_VALID_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_unittest_VALID_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_zoom_affine.py", "file_name": "test_zoom_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 47, "span_ids": ["docstring"], "tokens": 643}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport nibabel as nib\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.data.utils import zoom_affine\n\nVALID_CASES = [\n (\n np.array([[2, 1, 4], [-1, -3, 5], [0, 0, 1]]),\n (10, 20, 30),\n np.array([[8.94427191, -8.94427191, 0], [-4.47213595, -17.88854382, 0], [0.0, 0.0, 1.0]]),\n ),\n (\n np.array([[1, 0, 0, 4], [0, 2, 0, 5], [0, 0, 3, 6], [0, 0, 0, 1]]),\n (10, 20, 30),\n np.array([[10, 0, 0, 0], [0, 20, 0, 0], [0, 0, 30, 0], [0, 0, 0, 1]]),\n ),\n (\n np.array([[1, 0, 0, 4], [0, 2, 0, 5], [0, 0, 3, 6], [0, 0, 0, 1]]),\n (10, 20),\n np.array([[10, 0, 0, 0], [0, 20, 0, 0], [0, 0, 3, 0], [0, 0, 0, 1]]),\n ),\n (\n np.array([[1, 0, 0, 4], [0, 2, 0, 5], [0, 0, 3, 6], [0, 0, 0, 1]]),\n (10,),\n np.array([[10, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 1]]),\n ),\n (\n [[1, 0, 10], [0, 1, 20], [0, 0, 1]]\n @ ([[0, -1, 0], [1, 0, 0], [0, 0, 1]] @ np.array([[2, 0.3, 0], [0, 3, 0], [0, 0, 1]])),\n (4, 5, 6),\n ([[0, -1, 0], [1, 0, 0], [0, 0, 1]] @ np.array([[4, 0, 0], [0, 5, 0], [0, 0, 1]])),\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_DIAGONAL_CASES_DIAGONAL_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_DIAGONAL_CASES_DIAGONAL_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_zoom_affine.py", "file_name": "test_zoom_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 49, "end_line": 61, "span_ids": ["impl:3"], "tokens": 291}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "DIAGONAL_CASES = [\n (\n np.array([[-1, 0, 0, 4], [0, 2, 0, 5], [0, 0, 3, 6], [0, 0, 0, 1]]),\n (10, 20, 30),\n np.array([[10, 0, 0, 0], [0, 20, 0, 0], [0, 0, 30, 0], [0, 0, 0, 1]]),\n ),\n (np.array([[2, 1, 4], [-1, -3, 5], [0, 0, 1]]), (10, 20, 30), np.array([[10, 0, 0], [0, 20, 0], [0.0, 0.0, 1.0]])),\n ( # test default scale from affine\n np.array([[2, 1, 4], [-1, -3, 5], [0, 0, 1]]),\n (10,),\n np.array([[10, 0, 0], [0, 3.162278, 0], [0.0, 0.0, 1.0]]),\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_TestZoomAffine_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom_affine.py_TestZoomAffine_", "embedding": null, "metadata": {"file_path": "tests/test_zoom_affine.py", "file_name": "test_zoom_affine.py", "file_type": "text/x-python", "category": "test", "start_line": 64, "end_line": 81, "span_ids": ["TestZoomAffine.test_diagonal", "TestZoomAffine.test_correct", "impl:5", "TestZoomAffine"], "tokens": 211}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestZoomAffine(unittest.TestCase):\n @parameterized.expand(VALID_CASES)\n def test_correct(self, affine, scale, expected):\n output = zoom_affine(affine, scale, diagonal=False)\n ornt_affine = nib.orientations.ornt2axcodes(nib.orientations.io_orientation(output))\n ornt_output = nib.orientations.ornt2axcodes(nib.orientations.io_orientation(affine))\n np.testing.assert_array_equal(ornt_affine, ornt_output)\n np.testing.assert_allclose(output, expected, rtol=1e-6, atol=1e-6)\n\n @parameterized.expand(DIAGONAL_CASES)\n def test_diagonal(self, affine, scale, expected):\n output = zoom_affine(affine, scale, diagonal=True)\n np.testing.assert_allclose(output, expected, rtol=1e-6, atol=1e-6)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_unittest_INVALID_CASES._no_zoom_None_bilin": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_unittest_INVALID_CASES._no_zoom_None_bilin", "embedding": null, "metadata": {"file_path": "tests/test_zoomd.py", "file_name": "test_zoomd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 23, "span_ids": ["docstring"], "tokens": 121}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\nfrom scipy.ndimage import zoom as zoom_scipy\n\nfrom monai.transforms import Zoomd\nfrom tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose\n\nVALID_CASES = [(1.5, \"nearest\", False), (0.3, \"bilinear\", False), (0.8, \"bilinear\", False)]\n\nINVALID_CASES = [(\"no_zoom\", None, \"bilinear\", TypeError), (\"invalid_order\", 0.9, \"s\", ValueError)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_TestZoomd.test_keep_size_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoomd.py_TestZoomd.test_keep_size_", "embedding": null, "metadata": {"file_path": "tests/test_zoomd.py", "file_name": "test_zoomd.py", "file_type": "text/x-python", "category": "test", "start_line": 43, "end_line": 65, "span_ids": ["TestZoomd.test_keep_size", "impl:5", "TestZoomd.test_invalid_inputs"], "tokens": 243}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestZoomd(NumpyImageTestCase2D):\n\n def test_keep_size(self):\n key = \"img\"\n zoom_fn = Zoomd(key, zoom=0.6, keep_size=True, padding_mode=\"constant\", constant_values=2)\n for p in TEST_NDARRAYS:\n zoomed = zoom_fn({key: p(self.imt[0])})\n np.testing.assert_array_equal(zoomed[key].shape, self.imt.shape[1:])\n\n zoom_fn = Zoomd(key, zoom=1.3, keep_size=True)\n zoomed = zoom_fn({key: self.imt[0]})\n self.assertTrue(np.array_equal(zoomed[key].shape, self.imt.shape[1:]))\n\n @parameterized.expand(INVALID_CASES)\n def test_invalid_inputs(self, _, zoom, mode, raises):\n key = \"img\"\n for p in TEST_NDARRAYS:\n with self.assertRaises(raises):\n zoom_fn = Zoomd(key, zoom=zoom, mode=mode)\n zoom_fn({key: p(self.imt[0])})\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_NumpyImageTestCase2D_TorchImageTestCase2D.setUp.self.segn.torch_tensor_self_segn_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_NumpyImageTestCase2D_TorchImageTestCase2D.setUp.self.segn.torch_tensor_self_segn_", "embedding": null, "metadata": {"file_path": "tests/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 527, "end_line": 548, "span_ids": ["NumpyImageTestCase2D", "TorchImageTestCase2D.setUp", "TorchImageTestCase2D", "NumpyImageTestCase2D.setUp"], "tokens": 207}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NumpyImageTestCase2D(unittest.TestCase):\n im_shape = (128, 64)\n input_channels = 1\n output_channels = 4\n num_classes = 3\n\n def setUp(self):\n im, msk = create_test_image_2d(\n self.im_shape[0], self.im_shape[1], num_objs=4, rad_max=20, noise_max=0.0, num_seg_classes=self.num_classes\n )\n\n self.imt = im[None, None]\n self.seg1 = (msk[None, None] > 0).astype(np.float32)\n self.segn = msk[None, None]\n\n\nclass TorchImageTestCase2D(NumpyImageTestCase2D):\n def setUp(self):\n NumpyImageTestCase2D.setUp(self)\n self.imt = torch.tensor(self.imt)\n self.seg1 = torch.tensor(self.seg1)\n self.segn = torch.tensor(self.segn)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_query_memory_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/utils.py_query_memory_", "embedding": null, "metadata": {"file_path": "tests/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 632, "end_line": 658, "span_ids": ["query_memory", "impl:10"], "tokens": 290}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def query_memory(n=2):\n \"\"\"\n Find best n idle devices and return a string of device ids using the `nvidia-smi` command.\n \"\"\"\n bash_string = \"nvidia-smi --query-gpu=power.draw,temperature.gpu,memory.used --format=csv,noheader,nounits\"\n\n try:\n p1 = Popen(bash_string.split(), stdout=PIPE)\n output, error = p1.communicate()\n free_memory = [x.split(\",\") for x in output.decode(\"utf-8\").split(\"\\n\")[:-1]]\n free_memory = np.asarray(free_memory, dtype=float).T\n free_memory[1] += free_memory[0] # combine 0/1 column measures\n ids = np.lexsort(free_memory)[:n]\n except (TypeError, IndexError, OSError):\n ids = range(n) if isinstance(n, int) else []\n return \",\".join(f\"{int(x)}\" for x in ids)\n\n\nTEST_NDARRAYS: Tuple[Callable] = (np.array, torch.as_tensor) # type: ignore\nif torch.cuda.is_available():\n gpu_tensor: Callable = partial(torch.as_tensor, device=\"cuda\")\n TEST_NDARRAYS = TEST_NDARRAYS + (gpu_tensor,) # type: ignore\n\n\nif __name__ == \"__main__\":\n print(query_memory())", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_config_from_root_get_config_from_root.return.cfg": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_config_from_root_get_config_from_root.return.cfg", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 328, "end_line": 355, "span_ids": ["get_config_from_root"], "tokens": 293}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_config_from_root(root):\n \"\"\"Read the project setup.cfg file to determine Versioneer config.\"\"\"\n # This might raise EnvironmentError (if setup.cfg is missing), or\n # configparser.NoSectionError (if it lacks a [versioneer] section), or\n # configparser.NoOptionError (if it lacks \"VCS=\"). See the docstring at\n # the top of versioneer.py for instructions on writing your setup.cfg .\n setup_cfg = os.path.join(root, \"setup.cfg\")\n parser = configparser.ConfigParser()\n with open(setup_cfg, \"r\") as f:\n parser.read_file(f)\n VCS = parser.get(\"versioneer\", \"VCS\") # mandatory\n\n def get(parser, name):\n if parser.has_option(\"versioneer\", name):\n return parser.get(\"versioneer\", name)\n return None\n\n cfg = VersioneerConfig()\n cfg.VCS = VCS\n cfg.style = get(parser, \"style\") or \"\"\n cfg.versionfile_source = get(parser, \"versionfile_source\")\n cfg.versionfile_build = get(parser, \"versionfile_build\")\n cfg.tag_prefix = get(parser, \"tag_prefix\")\n if cfg.tag_prefix in (\"''\", '\"\"'):\n cfg.tag_prefix = \"\"\n cfg.parentdir_prefix = get(parser, \"parentdir_prefix\")\n cfg.verbose = get(parser, \"verbose\")\n return cfg", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_NotThisMethod_register_vcs_handler.return.decorate": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_NotThisMethod_register_vcs_handler.return.decorate", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 358, "end_line": 377, "span_ids": ["register_vcs_handler", "NotThisMethod", "impl"], "tokens": 128}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NotThisMethod(Exception):\n \"\"\"Exception raised if a method is not valid for the current scenario.\"\"\"\n\n\n# these dictionaries contain VCS-specific tools\nLONG_VERSION_PY = {}\nHANDLERS = {}\n\n\ndef register_vcs_handler(vcs, method): # decorator\n \"\"\"Create decorator to mark a method as the handler of a VCS.\"\"\"\n\n def decorate(f):\n \"\"\"Store f in HANDLERS[vcs][method].\"\"\"\n if vcs not in HANDLERS:\n HANDLERS[vcs] = {}\n HANDLERS[vcs][method] = f\n return f\n\n return decorate", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_run_command_run_command.return.stdout_p_returncode": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_run_command_run_command.return.stdout_p_returncode", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 380, "end_line": 410, "span_ids": ["run_command"], "tokens": 273}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None):\n \"\"\"Call the given command(s).\"\"\"\n assert isinstance(commands, list)\n p = None\n for c in commands:\n try:\n dispcmd = str([c] + args)\n # remember shell=False, so use git.cmd on windows, not just git\n p = subprocess.Popen(\n [c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)\n )\n break\n except EnvironmentError:\n e = sys.exc_info()[1]\n if e.errno == errno.ENOENT:\n continue\n if verbose:\n print(\"unable to run %s\" % dispcmd)\n print(e)\n return None, None\n else:\n if verbose:\n print(\"unable to find command, tried %s\" % (commands,))\n return None, None\n stdout = p.communicate()[0].strip().decode()\n if p.returncode != 0:\n if verbose:\n print(\"unable to run %s (error)\" % dispcmd)\n print(\"stdout was %s\" % stdout)\n return None, p.returncode\n return stdout, p.returncode", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_get_keywords_git_get_keywords.return.keywords": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_get_keywords_git_get_keywords.return.keywords", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 948, "end_line": 974, "span_ids": ["git_get_keywords"], "tokens": 255}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"get_keywords\")\ndef git_get_keywords(versionfile_abs):\n \"\"\"Extract version information from the given file.\"\"\"\n # the code embedded in _version.py can just fetch the value of these\n # keywords. When used from setup.py, we don't want to import _version.py,\n # so we do it with a regexp instead. This function is not used from\n # _version.py.\n keywords = {}\n try:\n f = open(versionfile_abs, \"r\")\n for line in f.readlines():\n if line.strip().startswith(\"git_refnames =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"refnames\"] = mo.group(1)\n if line.strip().startswith(\"git_full =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"full\"] = mo.group(1)\n if line.strip().startswith(\"git_date =\"):\n mo = re.search(r'=\\s*\"(.*)\"', line)\n if mo:\n keywords[\"date\"] = mo.group(1)\n f.close()\n except EnvironmentError:\n pass\n return keywords", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_versions_from_keywords_git_versions_from_keywords.return._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_versions_from_keywords_git_versions_from_keywords.return._", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 972, "end_line": 1035, "span_ids": ["git_versions_from_keywords"], "tokens": 756}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"keywords\")\ndef git_versions_from_keywords(keywords, tag_prefix, verbose):\n \"\"\"Get version information from git keywords.\"\"\"\n if not keywords:\n raise NotThisMethod(\"no keywords at all, weird\")\n date = keywords.get(\"date\")\n if date is not None:\n # Use only the last line. Previous lines may contain GPG signature\n # information.\n date = date.splitlines()[-1]\n\n # git-2.2.0 added \"%cI\", which expands to an ISO-8601 -compliant\n # datestamp. However we prefer \"%ci\" (which expands to an \"ISO-8601\n # -like\" string, which we must then edit to make compliant), because\n # it's been around since git-1.5.3, and it's too difficult to\n # discover which version we're using, or to work around using an\n # older one.\n date = date.strip().replace(\" \", \"T\", 1).replace(\" \", \"\", 1)\n refnames = keywords[\"refnames\"].strip()\n if refnames.startswith(\"$Format\"):\n if verbose:\n print(\"keywords are unexpanded, not using\")\n raise NotThisMethod(\"unexpanded keywords, not a git-archive tarball\")\n refs = set([r.strip() for r in refnames.strip(\"()\").split(\",\")])\n # starting in git-1.8.3, tags are listed as \"tag: foo-1.0\" instead of\n # just \"foo-1.0\". If we see a \"tag: \" prefix, prefer those.\n TAG = \"tag: \"\n tags = set([r[len(TAG) :] for r in refs if r.startswith(TAG)])\n if not tags:\n # Either we're using git < 1.8.3, or there really are no tags. We use\n # a heuristic: assume all version tags have a digit. The old git %d\n # expansion behaves like git log --decorate=short and strips out the\n # refs/heads/ and refs/tags/ prefixes that would let us distinguish\n # between branches and tags. By ignoring refnames without digits, we\n # filter out many common branch names like \"release\" and\n # \"stabilization\", as well as \"HEAD\" and \"master\".\n tags = set([r for r in refs if re.search(r\"\\d\", r)])\n if verbose:\n print(\"discarding '%s', no digits\" % \",\".join(refs - tags))\n if verbose:\n print(\"likely tags: %s\" % \",\".join(sorted(tags)))\n for ref in sorted(tags):\n # sorting will prefer e.g. \"2.0\" over \"2.0rc1\"\n if ref.startswith(tag_prefix):\n r = ref[len(tag_prefix) :]\n if verbose:\n print(\"picking %s\" % r)\n return {\n \"version\": r,\n \"full-revisionid\": keywords[\"full\"].strip(),\n \"dirty\": False,\n \"error\": None,\n \"date\": date,\n }\n # no suitable tags, so version is \"0+unknown\", but full hex is still there\n if verbose:\n print(\"no suitable tags, using unknown + full revision id\")\n return {\n \"version\": \"0+unknown\",\n \"full-revisionid\": keywords[\"full\"].strip(),\n \"dirty\": False,\n \"error\": \"no suitable tags\",\n \"date\": None,\n }", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_git_pieces_from_vcs_git_pieces_from_vcs.return.pieces", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1038, "end_line": 1124, "span_ids": ["git_pieces_from_vcs"], "tokens": 902}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@register_vcs_handler(\"git\", \"pieces_from_vcs\")\ndef git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command):\n \"\"\"Get version from 'git describe' in the root of the source tree.\n\n This only gets called if the git-archive 'subst' keywords were *not*\n expanded, and _version.py hasn't already been rewritten with a short\n version string, meaning we're inside a checked out source tree.\n \"\"\"\n GITS = [\"git\"]\n if sys.platform == \"win32\":\n GITS = [\"git.cmd\", \"git.exe\"]\n\n out, rc = run_command(GITS, [\"rev-parse\", \"--git-dir\"], cwd=root, hide_stderr=True)\n if rc != 0:\n if verbose:\n print(\"Directory %s not under git control\" % root)\n raise NotThisMethod(\"'git rev-parse --git-dir' returned error\")\n\n # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty]\n # if there isn't one, this yields HEX[-dirty] (no NUM)\n describe_out, rc = run_command(\n GITS, [\"describe\", \"--tags\", \"--dirty\", \"--always\", \"--long\", \"--match\", \"%s*\" % tag_prefix], cwd=root\n )\n # --long was added in git-1.5.5\n if describe_out is None:\n raise NotThisMethod(\"'git describe' failed\")\n describe_out = describe_out.strip()\n full_out, rc = run_command(GITS, [\"rev-parse\", \"HEAD\"], cwd=root)\n if full_out is None:\n raise NotThisMethod(\"'git rev-parse' failed\")\n full_out = full_out.strip()\n\n pieces = {}\n pieces[\"long\"] = full_out\n pieces[\"short\"] = full_out[:7] # maybe improved later\n pieces[\"error\"] = None\n\n # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty]\n # TAG might have hyphens.\n git_describe = describe_out\n\n # look for -dirty suffix\n dirty = git_describe.endswith(\"-dirty\")\n pieces[\"dirty\"] = dirty\n if dirty:\n git_describe = git_describe[: git_describe.rindex(\"-dirty\")]\n\n # now we have TAG-NUM-gHEX or HEX\n\n if \"-\" in git_describe:\n # TAG-NUM-gHEX\n mo = re.search(r\"^(.+)-(\\d+)-g([0-9a-f]+)$\", git_describe)\n if not mo:\n # unparseable. Maybe git-describe is misbehaving?\n pieces[\"error\"] = \"unable to parse git-describe output: '%s'\" % describe_out\n return pieces\n\n # tag\n full_tag = mo.group(1)\n if not full_tag.startswith(tag_prefix):\n if verbose:\n fmt = \"tag '%s' doesn't start with prefix '%s'\"\n print(fmt % (full_tag, tag_prefix))\n pieces[\"error\"] = \"tag '%s' doesn't start with prefix '%s'\" % (full_tag, tag_prefix)\n return pieces\n pieces[\"closest-tag\"] = full_tag[len(tag_prefix) :]\n\n # distance: number of commits since tag\n pieces[\"distance\"] = int(mo.group(2))\n\n # commit: short hex revision ID\n pieces[\"short\"] = mo.group(3)\n\n else:\n # HEX: no tags\n pieces[\"closest-tag\"] = None\n count_out, rc = run_command(GITS, [\"rev-list\", \"HEAD\", \"--count\"], cwd=root)\n pieces[\"distance\"] = int(count_out) # total number of commits\n\n # commit date: see ISO-8601 comment in git_versions_from_keywords()\n date = run_command(GITS, [\"show\", \"-s\", \"--format=%ci\", \"HEAD\"], cwd=root)[0].strip()\n # Use only the last line. Previous lines may contain GPG signature\n # information.\n date = date.splitlines()[-1]\n pieces[\"date\"] = date.strip().replace(\" \", \"T\", 1).replace(\" \", \"\", 1)\n\n return pieces", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_vcs_install_do_vcs_install.run_command_GITS_add_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_vcs_install_do_vcs_install.run_command_GITS_add_", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1125, "end_line": 1160, "span_ids": ["do_vcs_install"], "tokens": 300}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def do_vcs_install(manifest_in, versionfile_source, ipy):\n \"\"\"Git-specific installation logic for Versioneer.\n\n For Git, this means creating/changing .gitattributes to mark _version.py\n for export-subst keyword substitution.\n \"\"\"\n GITS = [\"git\"]\n if sys.platform == \"win32\":\n GITS = [\"git.cmd\", \"git.exe\"]\n files = [manifest_in, versionfile_source]\n if ipy:\n files.append(ipy)\n try:\n me = __file__\n if me.endswith(\".pyc\") or me.endswith(\".pyo\"):\n me = os.path.splitext(me)[0] + \".py\"\n versioneer_file = os.path.relpath(me)\n except NameError:\n versioneer_file = \"versioneer.py\"\n files.append(versioneer_file)\n present = False\n try:\n f = open(\".gitattributes\", \"r\")\n for line in f.readlines():\n if line.strip().startswith(versionfile_source):\n if \"export-subst\" in line.strip().split()[1:]:\n present = True\n f.close()\n except EnvironmentError:\n pass\n if not present:\n f = open(\".gitattributes\", \"a+\")\n f.write(\"%s export-subst\\n\" % versionfile_source)\n f.close()\n files.append(\".gitattributes\")\n run_command(GITS, [\"add\", \"--\"] + files)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_versions_from_parentdir_versions_from_parentdir.raise_NotThisMethod_root", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1163, "end_line": 1188, "span_ids": ["versions_from_parentdir"], "tokens": 211}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def versions_from_parentdir(parentdir_prefix, root, verbose):\n \"\"\"Try to determine the version from the parent directory name.\n\n Source tarballs conventionally unpack into a directory that includes both\n the project name and a version string. We will also support searching up\n two directory levels for an appropriately named parent directory\n \"\"\"\n rootdirs = []\n\n for i in range(3):\n dirname = os.path.basename(root)\n if dirname.startswith(parentdir_prefix):\n return {\n \"version\": dirname[len(parentdir_prefix) :],\n \"full-revisionid\": None,\n \"dirty\": False,\n \"error\": None,\n \"date\": None,\n }\n else:\n rootdirs.append(root)\n root = os.path.dirname(root) # up a level\n\n if verbose:\n print(\"Tried directories %s but none started with prefix %s\" % (str(rootdirs), parentdir_prefix))\n raise NotThisMethod(\"rootdir doesn't start with parentdir_prefix\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_SHORT_VERSION_PY_versions_from_file.return.json_loads_mo_group_1_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_SHORT_VERSION_PY_versions_from_file.return.json_loads_mo_group_1_", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1193, "end_line": 1223, "span_ids": ["versions_from_file", "impl:6"], "tokens": 236}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "SHORT_VERSION_PY = \"\"\"\n# This file was generated by 'versioneer.py' (0.19) from\n# revision-control system data, or from the parent directory name of an\n# unpacked source archive. Distribution tarballs contain a pre-generated copy\n# of this file.\n\nimport json\n\nversion_json = '''\n%s\n''' # END VERSION_JSON\n\n\ndef get_versions():\n return json.loads(version_json)\n\"\"\"\n\n\ndef versions_from_file(filename):\n \"\"\"Try to determine the version from _version.py if present.\"\"\"\n try:\n with open(filename) as f:\n contents = f.read()\n except EnvironmentError:\n raise NotThisMethod(\"unable to read _version.py\")\n mo = re.search(r\"version_json = '''\\n(.*)''' # END VERSION_JSON\", contents, re.M | re.S)\n if not mo:\n mo = re.search(r\"version_json = '''\\r\\n(.*)''' # END VERSION_JSON\", contents, re.M | re.S)\n if not mo:\n raise NotThisMethod(\"no version_json in _version.py\")\n return json.loads(mo.group(1))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_write_to_version_file_plus_or_dot.return._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_write_to_version_file_plus_or_dot.return._", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1224, "end_line": 1238, "span_ids": ["plus_or_dot", "write_to_version_file"], "tokens": 134}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def write_to_version_file(filename, versions):\n \"\"\"Write the given version number to the given _version.py file.\"\"\"\n os.unlink(filename)\n contents = json.dumps(versions, sort_keys=True, indent=1, separators=(\",\", \": \"))\n with open(filename, \"w\") as f:\n f.write(SHORT_VERSION_PY % contents)\n\n print(\"set %s to '%s'\" % (filename, versions[\"version\"]))\n\n\ndef plus_or_dot(pieces):\n \"\"\"Return a + if we don't already have one, else return a .\"\"\"\n if \"+\" in pieces.get(\"closest-tag\", \"\"):\n return \".\"\n return \"+\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_post_render_pep440_post.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_post_render_pep440_post.return.rendered", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1281, "end_line": 1305, "span_ids": ["render_pep440_post"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_pep440_post(pieces):\n \"\"\"TAG[.postDISTANCE[.dev0]+gHEX] .\n\n The \".dev0\" means dirty. Note that .dev0 sorts backwards\n (a dirty tree will appear \"older\" than the corresponding clean one),\n but you shouldn't be releasing software with -dirty anyways.\n\n Exceptions:\n 1: no tags. 0.postDISTANCE[.dev0]\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"] or pieces[\"dirty\"]:\n rendered += \".post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n rendered += plus_or_dot(pieces)\n rendered += \"g%s\" % pieces[\"short\"]\n else:\n # exception #1\n rendered = \"0.post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n rendered += \"+g%s\" % pieces[\"short\"]\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_old_render_pep440_old.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_pep440_old_render_pep440_old.return.rendered", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1310, "end_line": 1329, "span_ids": ["render_pep440_old"], "tokens": 143}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_pep440_old(pieces):\n \"\"\"TAG[.postDISTANCE[.dev0]] .\n\n The \".dev0\" means dirty.\n\n Exceptions:\n 1: no tags. 0.postDISTANCE[.dev0]\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"] or pieces[\"dirty\"]:\n rendered += \".post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n else:\n # exception #1\n rendered = \"0.post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_render_git_describe.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_render_git_describe.return.rendered", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1330, "end_line": 1347, "span_ids": ["render_git_describe"], "tokens": 129}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_git_describe(pieces):\n \"\"\"TAG[-DISTANCE-gHEX][-dirty].\n\n Like 'git describe --tags --dirty --always'.\n\n Exceptions:\n 1: no tags. HEX[-dirty] (note: no 'g' prefix)\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"]:\n rendered += \"-%d-g%s\" % (pieces[\"distance\"], pieces[\"short\"])\n else:\n # exception #1\n rendered = pieces[\"short\"]\n if pieces[\"dirty\"]:\n rendered += \"-dirty\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_long_render_git_describe_long.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_git_describe_long_render_git_describe_long.return.rendered", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1350, "end_line": 1367, "span_ids": ["render_git_describe_long"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_git_describe_long(pieces):\n \"\"\"TAG-DISTANCE-gHEX[-dirty].\n\n Like 'git describe --tags --dirty --always -long'.\n The distance/hash is unconditional.\n\n Exceptions:\n 1: no tags. HEX[-dirty] (note: no 'g' prefix)\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n rendered += \"-%d-g%s\" % (pieces[\"distance\"], pieces[\"short\"])\n else:\n # exception #1\n rendered = pieces[\"short\"]\n if pieces[\"dirty\"]:\n rendered += \"-dirty\"\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_VersioneerBadRootError._The_project_root_direc": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_render_VersioneerBadRootError._The_project_root_direc", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1370, "end_line": 1409, "span_ids": ["VersioneerBadRootError", "render"], "tokens": 295}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render(pieces, style):\n \"\"\"Render the given version pieces into the requested style.\"\"\"\n if pieces[\"error\"]:\n return {\n \"version\": \"unknown\",\n \"full-revisionid\": pieces.get(\"long\"),\n \"dirty\": None,\n \"error\": pieces[\"error\"],\n \"date\": None,\n }\n\n if not style or style == \"default\":\n style = \"pep440\" # the default\n\n if style == \"pep440\":\n rendered = render_pep440(pieces)\n elif style == \"pep440-pre\":\n rendered = render_pep440_pre(pieces)\n elif style == \"pep440-post\":\n rendered = render_pep440_post(pieces)\n elif style == \"pep440-old\":\n rendered = render_pep440_old(pieces)\n elif style == \"git-describe\":\n rendered = render_git_describe(pieces)\n elif style == \"git-describe-long\":\n rendered = render_git_describe_long(pieces)\n else:\n raise ValueError(\"unknown style '%s'\" % style)\n\n return {\n \"version\": rendered,\n \"full-revisionid\": pieces[\"long\"],\n \"dirty\": pieces[\"dirty\"],\n \"error\": None,\n \"date\": pieces.get(\"date\"),\n }\n\n\nclass VersioneerBadRootError(Exception):\n \"\"\"The project root directory is unknown or missing key files.\"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_versions_get_versions.return._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_versions_get_versions.return._", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1412, "end_line": 1488, "span_ids": ["get_versions"], "tokens": 619}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_versions(verbose=False):\n \"\"\"Get the project version from whatever source is available.\n\n Returns dict with two keys: 'version' and 'full'.\n \"\"\"\n if \"versioneer\" in sys.modules:\n # see the discussion in cmdclass.py:get_cmdclass()\n del sys.modules[\"versioneer\"]\n\n root = get_root()\n cfg = get_config_from_root(root)\n\n assert cfg.VCS is not None, \"please set [versioneer]VCS= in setup.cfg\"\n handlers = HANDLERS.get(cfg.VCS)\n assert handlers, \"unrecognized VCS '%s'\" % cfg.VCS\n verbose = verbose or cfg.verbose\n assert cfg.versionfile_source is not None, \"please set versioneer.versionfile_source\"\n assert cfg.tag_prefix is not None, \"please set versioneer.tag_prefix\"\n\n versionfile_abs = os.path.join(root, cfg.versionfile_source)\n\n # extract version from first of: _version.py, VCS command (e.g. 'git\n # describe'), parentdir. This is meant to work for developers using a\n # source checkout, for users of a tarball created by 'setup.py sdist',\n # and for users of a tarball/zipball created by 'git archive' or github's\n # download-from-tag feature or the equivalent in other VCSes.\n\n get_keywords_f = handlers.get(\"get_keywords\")\n from_keywords_f = handlers.get(\"keywords\")\n if get_keywords_f and from_keywords_f:\n try:\n keywords = get_keywords_f(versionfile_abs)\n ver = from_keywords_f(keywords, cfg.tag_prefix, verbose)\n if verbose:\n print(\"got version from expanded keyword %s\" % ver)\n return ver\n except NotThisMethod:\n pass\n\n try:\n ver = versions_from_file(versionfile_abs)\n if verbose:\n print(\"got version from file %s %s\" % (versionfile_abs, ver))\n return ver\n except NotThisMethod:\n pass\n\n from_vcs_f = handlers.get(\"pieces_from_vcs\")\n if from_vcs_f:\n try:\n pieces = from_vcs_f(cfg.tag_prefix, root, verbose)\n ver = render(pieces, cfg.style)\n if verbose:\n print(\"got version from VCS %s\" % ver)\n return ver\n except NotThisMethod:\n pass\n\n try:\n if cfg.parentdir_prefix:\n ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose)\n if verbose:\n print(\"got version from parentdir %s\" % ver)\n return ver\n except NotThisMethod:\n pass\n\n if verbose:\n print(\"unable to compute version\")\n\n return {\n \"version\": \"0+unknown\",\n \"full-revisionid\": None,\n \"dirty\": None,\n \"error\": \"unable to compute version\",\n \"date\": None,\n }", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_version_get_cmdclass.from_distutils_core_impor": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_version_get_cmdclass.from_distutils_core_impor", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1493, "end_line": 1522, "span_ids": ["get_cmdclass", "get_version"], "tokens": 344}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_version():\n \"\"\"Get the short version string for this project.\"\"\"\n return get_versions()[\"version\"]\n\n\ndef get_cmdclass(cmdclass=None):\n \"\"\"Get the custom setuptools/distutils subclasses used by Versioneer.\n\n If the package uses a different cmdclass (e.g. one from numpy), it\n should be provide as an argument.\n \"\"\"\n if \"versioneer\" in sys.modules:\n del sys.modules[\"versioneer\"]\n # this fixes the \"python setup.py develop\" case (also 'install' and\n # 'easy_install .'), in which subdependencies of the main project are\n # built (using setup.py bdist_egg) in the same python process. Assume\n # a main project A and a dependency B, which use different versions\n # of Versioneer. A's setup.py imports A's Versioneer, leaving it in\n # sys.modules by the time B's setup.py is executed, causing B to run\n # with the wrong versioneer. Setuptools wraps the sub-dep builds in a\n # sandbox that restores sys.modules to it's pre-build state, so the\n # parent is protected against the child's \"import versioneer\". By\n # removing ourselves from sys.modules here, before the child build\n # happens, we protect the child from the parent's versioneer too.\n # Also see https://github.com/python-versioneer/python-versioneer/issues/52\n\n cmds = {} if cmdclass is None else cmdclass.copy()\n\n # we add \"version\" to both distutils and setuptools\n from distutils.core import Command\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_version_get_cmdclass.cmd_version.run.if_vers_error_.print_error_s_vers": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_version_get_cmdclass.cmd_version.run.if_vers_error_.print_error_s_vers", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1524, "end_line": 1542, "span_ids": ["get_cmdclass"], "tokens": 155}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_cmdclass(cmdclass=None):\n # ... other code\n\n class cmd_version(Command):\n description = \"report generated version string\"\n user_options = []\n boolean_options = []\n\n def initialize_options(self):\n pass\n\n def finalize_options(self):\n pass\n\n def run(self):\n vers = get_versions(verbose=True)\n print(\"Version: %s\" % vers[\"version\"])\n print(\" full-revisionid: %s\" % vers.get(\"full-revisionid\"))\n print(\" dirty: %s\" % vers.get(\"dirty\"))\n print(\" date: %s\" % vers.get(\"date\"))\n if vers[\"error\"]:\n print(\" error: %s\" % vers[\"error\"])\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_sdist_get_cmdclass.return.cmds": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_get_cmdclass.cmd_sdist_get_cmdclass.return.cmds", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1683, "end_line": 1705, "span_ids": ["get_cmdclass"], "tokens": 221}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_cmdclass(cmdclass=None):\n # ... other code\n\n class cmd_sdist(_sdist):\n def run(self):\n versions = get_versions()\n self._versioneer_generated_versions = versions\n # unless we update this, the command will keep using the old\n # version\n self.distribution.metadata.version = versions[\"version\"]\n return _sdist.run(self)\n\n def make_release_tree(self, base_dir, files):\n root = get_root()\n cfg = get_config_from_root(root)\n _sdist.make_release_tree(self, base_dir, files)\n # now locate _version.py in the new base_dir directory\n # (remembering that it may be a hardlink) and replace it with an\n # updated value\n target_versionfile = os.path.join(base_dir, cfg.versionfile_source)\n print(\"UPDATING %s\" % target_versionfile)\n write_to_version_file(target_versionfile, self._versioneer_generated_versions)\n\n cmds[\"sdist\"] = cmd_sdist\n\n return cmds", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_CONFIG_ERROR_INIT_PY_SNIPPET._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_CONFIG_ERROR_INIT_PY_SNIPPET._", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1708, "end_line": 1749, "span_ids": ["impl:8"], "tokens": 243}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "CONFIG_ERROR = \"\"\"\nsetup.cfg is missing the necessary Versioneer configuration. You need\na section like:\n\n [versioneer]\n VCS = git\n style = pep440\n versionfile_source = src/myproject/_version.py\n versionfile_build = myproject/_version.py\n tag_prefix =\n parentdir_prefix = myproject-\n\nYou will also need to edit your setup.py to use the results:\n\n import versioneer\n setup(version=versioneer.get_version(),\n cmdclass=versioneer.get_cmdclass(), ...)\n\nPlease read the docstring in ./versioneer.py for configuration instructions,\nedit setup.cfg, and re-run the installer or 'python versioneer.py setup'.\n\"\"\"\n\nSAMPLE_CONFIG = \"\"\"\n# See the docstring in versioneer.py for instructions. Note that you must\n# re-run 'versioneer.py setup' after changing this section, and commit the\n# resulting files.\n\n[versioneer]\n#VCS = git\n#style = pep440\n#versionfile_source =\n#versionfile_build =\n#tag_prefix =\n#parentdir_prefix =\n\n\"\"\"\n\nINIT_PY_SNIPPET = \"\"\"\nfrom ._version import get_versions\n__version__ = get_versions()['version']\ndel get_versions\n\"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_setup_do_setup.return.0": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_do_setup_do_setup.return.0", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1752, "end_line": 1831, "span_ids": ["do_setup"], "tokens": 763}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def do_setup():\n \"\"\"Do main VCS-independent setup function for installing Versioneer.\"\"\"\n root = get_root()\n try:\n cfg = get_config_from_root(root)\n except (EnvironmentError, configparser.NoSectionError, configparser.NoOptionError) as e:\n if isinstance(e, (EnvironmentError, configparser.NoSectionError)):\n print(\"Adding sample versioneer config to setup.cfg\", file=sys.stderr)\n with open(os.path.join(root, \"setup.cfg\"), \"a\") as f:\n f.write(SAMPLE_CONFIG)\n print(CONFIG_ERROR, file=sys.stderr)\n return 1\n\n print(\" creating %s\" % cfg.versionfile_source)\n with open(cfg.versionfile_source, \"w\") as f:\n LONG = LONG_VERSION_PY[cfg.VCS]\n f.write(\n LONG\n % {\n \"DOLLAR\": \"$\",\n \"STYLE\": cfg.style,\n \"TAG_PREFIX\": cfg.tag_prefix,\n \"PARENTDIR_PREFIX\": cfg.parentdir_prefix,\n \"VERSIONFILE_SOURCE\": cfg.versionfile_source,\n }\n )\n\n ipy = os.path.join(os.path.dirname(cfg.versionfile_source), \"__init__.py\")\n if os.path.exists(ipy):\n try:\n with open(ipy, \"r\") as f:\n old = f.read()\n except EnvironmentError:\n old = \"\"\n if INIT_PY_SNIPPET not in old:\n print(\" appending to %s\" % ipy)\n with open(ipy, \"a\") as f:\n f.write(INIT_PY_SNIPPET)\n else:\n print(\" %s unmodified\" % ipy)\n else:\n print(\" %s doesn't exist, ok\" % ipy)\n ipy = None\n\n # Make sure both the top-level \"versioneer.py\" and versionfile_source\n # (PKG/_version.py, used by runtime code) are in MANIFEST.in, so\n # they'll be copied into source distributions. Pip won't be able to\n # install the package without this.\n manifest_in = os.path.join(root, \"MANIFEST.in\")\n simple_includes = set()\n try:\n with open(manifest_in, \"r\") as f:\n for line in f:\n if line.startswith(\"include \"):\n for include in line.split()[1:]:\n simple_includes.add(include)\n except EnvironmentError:\n pass\n # That doesn't cover everything MANIFEST.in can do\n # (http://docs.python.org/2/distutils/sourcedist.html#commands), so\n # it might give some false negatives. Appending redundant 'include'\n # lines is safe, though.\n if \"versioneer.py\" not in simple_includes:\n print(\" appending 'versioneer.py' to MANIFEST.in\")\n with open(manifest_in, \"a\") as f:\n f.write(\"include versioneer.py\\n\")\n else:\n print(\" 'versioneer.py' already in MANIFEST.in\")\n if cfg.versionfile_source not in simple_includes:\n print(\" appending versionfile_source ('%s') to MANIFEST.in\" % cfg.versionfile_source)\n with open(manifest_in, \"a\") as f:\n f.write(\"include %s\\n\" % cfg.versionfile_source)\n else:\n print(\" versionfile_source already in MANIFEST.in\")\n\n # Make VCS-specific changes. For git, this means creating/changing\n # .gitattributes to mark _version.py for export-subst keyword\n # substitution.\n do_vcs_install(manifest_in, cfg.versionfile_source, ipy)\n return 0", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_scan_setup_py_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/versioneer.py_scan_setup_py_", "embedding": null, "metadata": {"file_path": "versioneer.py", "file_name": "versioneer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1834, "end_line": 1878, "span_ids": ["scan_setup_py", "impl:14"], "tokens": 351}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def scan_setup_py():\n \"\"\"Validate the contents of setup.py against Versioneer's expectations.\"\"\"\n found = set()\n setters = False\n errors = 0\n with open(\"setup.py\", \"r\") as f:\n for line in f.readlines():\n if \"import versioneer\" in line:\n found.add(\"import\")\n if \"versioneer.get_cmdclass()\" in line:\n found.add(\"cmdclass\")\n if \"versioneer.get_version()\" in line:\n found.add(\"get_version\")\n if \"versioneer.VCS\" in line:\n setters = True\n if \"versioneer.versionfile_source\" in line:\n setters = True\n if len(found) != 3:\n print(\"\")\n print(\"Your setup.py appears to be missing some important items\")\n print(\"(but I might be wrong). Please make sure it has something\")\n print(\"roughly like the following:\")\n print(\"\")\n print(\" import versioneer\")\n print(\" setup( version=versioneer.get_version(),\")\n print(\" cmdclass=versioneer.get_cmdclass(), ...)\")\n print(\"\")\n errors += 1\n if setters:\n print(\"You should remove lines like 'versioneer.VCS = ' and\")\n print(\"'versioneer.versionfile_source = ' . This configuration\")\n print(\"now lives in setup.cfg, and should be removed from setup.py\")\n print(\"\")\n errors += 1\n return errors\n\n\nif __name__ == \"__main__\":\n cmd = sys.argv[1]\n if cmd == \"setup\":\n errors = do_setup()\n errors += scan_setup_py()\n if errors:\n sys.exit(1)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_from_typing_import_TYPE_C__default_eval_transform.return.y_pred_y": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/multi_gpu_supervised_trainer.py_from_typing_import_TYPE_C__default_eval_transform.return.y_pred_y", "embedding": null, "metadata": {"file_path": "monai/engines/multi_gpu_supervised_trainer.py", "file_name": "multi_gpu_supervised_trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 47, "span_ids": ["_default_eval_transform", "_default_transform", "docstring"], "tokens": 342}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import TYPE_CHECKING, Callable, Dict, Optional, Sequence, Tuple\n\nimport torch\nimport torch.nn\nfrom torch.nn.parallel import DataParallel, DistributedDataParallel\nfrom torch.optim.optimizer import Optimizer\n\nfrom monai.config import IgniteInfo\nfrom monai.engines.utils import get_devices_spec\nfrom monai.utils import min_version, optional_import\n\ncreate_supervised_trainer, _ = optional_import(\n \"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"create_supervised_trainer\"\n)\ncreate_supervised_evaluator, _ = optional_import(\n \"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"create_supervised_evaluator\"\n)\n_prepare_batch, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"_prepare_batch\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\n from ignite.metrics import Metric\nelse:\n Engine, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Engine\")\n Metric, _ = optional_import(\"ignite.metrics\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Metric\")\n\n__all__ = [\"create_multigpu_supervised_trainer\", \"create_multigpu_supervised_evaluator\"]\n\n\ndef _default_transform(_x: torch.Tensor, _y: torch.Tensor, _y_pred: torch.Tensor, loss: torch.Tensor) -> float:\n return loss.item()\n\n\ndef _default_eval_transform(\n x: torch.Tensor, y: torch.Tensor, y_pred: torch.Tensor\n) -> Tuple[torch.Tensor, torch.Tensor]:\n return y_pred, y", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer_GanTrainer._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer_GanTrainer._", "embedding": null, "metadata": {"file_path": "monai/engines/trainer.py", "file_name": "trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 219, "end_line": 275, "span_ids": ["GanTrainer"], "tokens": 891}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GanTrainer(Trainer):\n \"\"\"\n Generative adversarial network training based on Goodfellow et al. 2014 https://arxiv.org/abs/1406.266,\n inherits from ``Trainer`` and ``Workflow``.\n\n Training Loop: for each batch of data size `m`\n 1. Generate `m` fakes from random latent codes.\n 2. Update discriminator with these fakes and current batch reals, repeated d_train_steps times.\n 3. If g_update_latents, generate `m` fakes from new random latent codes.\n 4. Update generator with these fakes using discriminator feedback.\n\n Args:\n device: an object representing the device on which to run.\n max_epochs: the total epoch number for engine to run.\n train_data_loader: Core ignite engines uses `DataLoader` for training loop batchdata.\n g_network: generator (G) network architecture.\n g_optimizer: G optimizer function.\n g_loss_function: G loss function for optimizer.\n d_network: discriminator (D) network architecture.\n d_optimizer: D optimizer function.\n d_loss_function: D loss function for optimizer.\n epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`.\n g_inferer: inference method to execute G model forward. Defaults to ``SimpleInferer()``.\n d_inferer: inference method to execute D model forward. Defaults to ``SimpleInferer()``.\n d_train_steps: number of times to update D with real data minibatch. Defaults to ``1``.\n latent_shape: size of G input latent code. Defaults to ``64``.\n non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously\n with respect to the host. For other cases, this argument has no effect.\n d_prepare_batch: callback function to prepare batchdata for D inferer.\n Defaults to return ``GanKeys.REALS`` in batchdata dict. for more details please refer to:\n https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html.\n g_prepare_batch: callback function to create batch of latent input for G inferer.\n Defaults to return random latents. for more details please refer to:\n https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html.\n g_update_latents: Calculate G loss with new latent codes. Defaults to ``True``.\n iteration_update: the callable function for every iteration, expect to accept `engine`\n and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`.\n if not provided, use `self._iteration()` instead. for more details please refer to:\n https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html.\n postprocessing: execute additional transformation for the model output data.\n Typically, several Tensor based transforms composed by `Compose`.\n key_train_metric: compute metric when every iteration completed, and save average value to\n engine.state.metrics when epoch completed. key_train_metric is the main metric to compare and save the\n checkpoint into files.\n additional_metrics: more Ignite metrics that also attach to Ignite Engine.\n metric_cmp_fn: function to compare current key metric with previous best key metric value,\n it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update\n `best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`.\n train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like:\n CheckpointHandler, StatsHandler, SegmentationSaver, etc.\n decollate: whether to decollate the batch-first data to a list of data after model computation,\n recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.\n default to `True`.\n optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None.\n more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer._iteration_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/engines/trainer.py_GanTrainer._iteration_", "embedding": null, "metadata": {"file_path": "monai/engines/trainer.py", "file_name": "trainer.py", "file_type": "text/x-python", "category": "implementation", "start_line": 331, "end_line": 395, "span_ids": ["GanTrainer._iteration"], "tokens": 563}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GanTrainer(Trainer):\n\n def _iteration(\n self, engine: Engine, batchdata: Union[Dict, Sequence]\n ) -> Dict[str, Union[torch.Tensor, int, float, bool]]:\n \"\"\"\n Callback function for Adversarial Training processing logic of 1 iteration in Ignite Engine.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data.\n\n Raises:\n ValueError: must provide batch data for current iteration.\n\n \"\"\"\n if batchdata is None:\n raise ValueError(\"must provide batch data for current iteration.\")\n\n d_input = self.prepare_batch(batchdata, engine.state.device, engine.non_blocking) # type: ignore\n batch_size = self.data_loader.batch_size # type: ignore\n g_input = self.g_prepare_batch(\n num_latents=batch_size,\n latent_size=self.latent_shape,\n device=engine.state.device, # type: ignore\n non_blocking=engine.non_blocking, # type: ignore\n )\n g_output = self.g_inferer(g_input, self.g_network)\n\n # Train Discriminator\n d_total_loss = torch.zeros(1)\n for _ in range(self.d_train_steps):\n # `set_to_none` only work from PyTorch 1.7.0\n if not pytorch_after(1, 7):\n self.d_optimizer.zero_grad()\n else:\n self.d_optimizer.zero_grad(set_to_none=self.optim_set_to_none)\n dloss = self.d_loss_function(g_output, d_input)\n dloss.backward()\n self.d_optimizer.step()\n d_total_loss += dloss.item()\n\n # Train Generator\n if self.g_update_latents:\n g_input = self.g_prepare_batch(\n num_latents=batch_size,\n latent_size=self.latent_shape,\n device=engine.state.device, # type: ignore\n non_blocking=engine.non_blocking, # type: ignore\n )\n g_output = self.g_inferer(g_input, self.g_network)\n if not pytorch_after(1, 7):\n self.g_optimizer.zero_grad()\n else:\n self.g_optimizer.zero_grad(set_to_none=self.optim_set_to_none)\n g_loss = self.g_loss_function(g_output)\n g_loss.backward()\n self.g_optimizer.step()\n\n return {\n GanKeys.REALS: d_input,\n GanKeys.FAKES: g_output,\n GanKeys.LATENTS: g_input,\n GanKeys.GLOSS: g_loss.item(),\n GanKeys.DLOSS: d_total_loss.item(),\n }", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_loader.py", "file_name": "checkpoint_loader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 27, "span_ids": ["docstring"], "tokens": 140}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nimport warnings\nfrom typing import TYPE_CHECKING, Dict, List, Optional\n\nimport torch\n\nfrom monai.config import IgniteInfo\nfrom monai.networks.utils import copy_model_state\nfrom monai.utils import min_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Events\")\nCheckpoint, _ = optional_import(\"ignite.handlers\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Checkpoint\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Engine\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader_CheckpointLoader.attach.engine_add_event_handler_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader_CheckpointLoader.attach.engine_add_event_handler_", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_loader.py", "file_name": "checkpoint_loader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 30, "end_line": 100, "span_ids": ["CheckpointLoader.attach", "CheckpointLoader", "CheckpointLoader.__init__"], "tokens": 760}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointLoader:\n \"\"\"\n CheckpointLoader acts as an Ignite handler to load checkpoint data from file.\n It can load variables for network, optimizer, lr_scheduler, etc.\n If saving checkpoint after `torch.nn.DataParallel`, need to save `model.module` instead\n as PyTorch recommended and then use this loader to load the model.\n\n Args:\n load_path: the file path of checkpoint, it should be a PyTorch `pth` file.\n load_dict: target objects that load checkpoint to. examples::\n\n {'network': net, 'optimizer': optimizer, 'lr_scheduler': lr_scheduler}\n\n name: identifier of logging.logger to use, if None, defaulting to ``engine.logger``.\n map_location: when loading the module for distributed training/evaluation,\n need to provide an appropriate map_location argument to prevent a process\n to step into others\u2019 devices. If map_location is missing, torch.load will\n first load the module to CPU and then copy each parameter to where it was\n saved, which would result in all processes on the same machine using the\n same set of devices.\n strict: whether to strictly enforce that the keys and data shape in the `state_dict` of every item\n of `load_dict` match the `state_dict` of the corresponding items of checkpoint, default to `True`.\n strict_shape: whether to enforce the data shape of the matched layers in the checkpoint,\n `if `False`, it will skip the layers that have different data shape with checkpoint content,\n and ignore the `strict` arg. this can be useful advanced feature for transfer learning.\n users should totally understand which layers will have different shape. default to `True`.\n\n Note: if `strict_shape=False`, will only load checkpoint for `torch.nn.Module` and skip other\n items in the `load_dict`. For example, if the shape of some layers in current model can't\n match the checkpoint, the `parameter_group` of current optimizer may also can't match the\n checkpoint, so skip loading checkpoint for optimizer.\n\n For more details about loading checkpoint, please refer to:\n https://pytorch.org/ignite/v0.4.5/generated/ignite.handlers.checkpoint.Checkpoint.html\n #ignite.handlers.checkpoint.Checkpoint.load_objects.\n https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.load_state_dict.\n\n \"\"\"\n\n def __init__(\n self,\n load_path: str,\n load_dict: Dict,\n name: Optional[str] = None,\n map_location: Optional[Dict] = None,\n strict: bool = True,\n strict_shape: bool = True,\n ) -> None:\n if load_path is None:\n raise AssertionError(\"must provide clear path to load checkpoint.\")\n self.load_path = load_path\n if load_dict is None or len(load_dict) <= 0:\n raise AssertionError(\"must provide target objects to load.\")\n self.logger = logging.getLogger(name)\n self.load_dict = load_dict\n self._name = name\n self.map_location = map_location\n if strict and not strict_shape:\n warnings.warn(\"as `strict_shape` is already False, change `strict` to False.\")\n strict = False\n self.strict = strict\n self.strict_shape = strict_shape\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n engine.add_event_handler(Events.STARTED, self)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader.__call___": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_loader.py_CheckpointLoader.__call___", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_loader.py", "file_name": "checkpoint_loader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 102, "end_line": 139, "span_ids": ["CheckpointLoader.__call__"], "tokens": 397}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointLoader:\n\n def __call__(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n checkpoint = torch.load(self.load_path, map_location=self.map_location)\n\n k, _ = list(self.load_dict.items())[0]\n # single object and checkpoint is directly a state_dict\n if len(self.load_dict) == 1 and k not in checkpoint:\n checkpoint = {k: checkpoint}\n\n if not self.strict_shape:\n pop_items: List[str] = []\n for k, obj in self.load_dict.items():\n if isinstance(obj, torch.nn.Module):\n # skip items that don't match key name or data shape\n checkpoint[k] = copy_model_state(obj, checkpoint, inplace=False)[0]\n else:\n warnings.warn(\"`strict_shape` is False, load checkpoint for model, skip others in `load_dict`.\")\n pop_items.append(k)\n for i in pop_items:\n self.load_dict.pop(i)\n\n # save current max epochs setting in the engine, don't overwrite it if larger than max_epochs in checkpoint\n prior_max_epochs = engine.state.max_epochs\n Checkpoint.load_objects(to_load=self.load_dict, checkpoint=checkpoint, strict=self.strict)\n if prior_max_epochs is not None and engine.state.epoch > prior_max_epochs:\n raise ValueError(\n f\"Epoch count ({engine.state.epoch}) in checkpoint is larger than \"\n f\"the `engine.state.max_epochs` ({prior_max_epochs}) of engine. To further train from checkpoint, \"\n \"construct trainer with `max_epochs` larger than checkpoint's epoch count. \"\n \"To use checkpoint for inference, no need to load state_dict for the engine.\"\n )\n engine.state.max_epochs = prior_max_epochs\n\n self.logger.info(f\"Restored all variables from {self.load_path}\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.exception_raised_CheckpointSaver.exception_raised.raise_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.exception_raised_CheckpointSaver.exception_raised.raise_e", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_saver.py", "file_name": "checkpoint_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 256, "end_line": 275, "span_ids": ["CheckpointSaver.exception_raised"], "tokens": 222}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointSaver:\n\n def exception_raised(self, engine: Engine, e: Exception) -> None:\n \"\"\"Callback for train or validation/evaluation exception raised Event.\n Save current data as final checkpoint if configure save_final is True. This callback may be skipped\n because the logic with Ignite can only trigger the first attached handler for `EXCEPTION_RAISED` event.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n e: the exception caught in Ignite during engine.run().\n \"\"\"\n if not callable(self._final_checkpoint):\n raise AssertionError(\"Error: _final_checkpoint function not specified.\")\n # delete previous saved final checkpoint if existing\n self._delete_previous_final_ckpt()\n self._final_checkpoint(engine)\n if self.logger is None:\n raise AssertionError\n if not hasattr(self.logger, \"info\"):\n raise AssertionError(\"Error, provided logger has not info attribute.\")\n self.logger.info(f\"Exception raised, saved the last checkpoint: {self._final_checkpoint.last_checkpoint}\")\n raise e", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.metrics_completed_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/checkpoint_saver.py_CheckpointSaver.metrics_completed_", "embedding": null, "metadata": {"file_path": "monai/handlers/checkpoint_saver.py", "file_name": "checkpoint_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 277, "end_line": 305, "span_ids": ["CheckpointSaver.metrics_completed", "CheckpointSaver.interval_completed"], "tokens": 251}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CheckpointSaver:\n\n def metrics_completed(self, engine: Engine) -> None:\n \"\"\"Callback to compare metrics and save models in train or validation when epoch completed.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if not callable(self._key_metric_checkpoint):\n raise AssertionError(\"Error: _key_metric_checkpoint function not specified.\")\n self._key_metric_checkpoint(engine)\n\n def interval_completed(self, engine: Engine) -> None:\n \"\"\"Callback for train epoch/iteration completed Event.\n Save checkpoint if configure save_interval = N\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if not callable(self._interval_checkpoint):\n raise AssertionError(\"Error: _interval_checkpoint function not specified.\")\n self._interval_checkpoint(engine)\n if self.logger is None:\n raise AssertionError\n if not hasattr(self.logger, \"info\"):\n raise AssertionError(\"Error, provided logger has not info attribute.\")\n if self.epoch_level:\n self.logger.info(f\"Saved checkpoint at epoch: {engine.state.epoch}\")\n else:\n self.logger.info(f\"Saved checkpoint at iteration: {engine.state.iteration}\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/lr_schedule_handler.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo", "embedding": null, "metadata": {"file_path": "monai/handlers/lr_schedule_handler.py", "file_name": "lr_schedule_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 24, "span_ids": ["docstring"], "tokens": 122}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nfrom typing import TYPE_CHECKING, Any, Callable, Optional, Union\n\nfrom torch.optim.lr_scheduler import ReduceLROnPlateau, _LRScheduler\n\nfrom monai.config import IgniteInfo\nfrom monai.utils import ensure_tuple, min_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Events\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Engine\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/segmentation_saver.py_logging_if_TYPE_CHECKING_.else_.Engine___optional_impo", "embedding": null, "metadata": {"file_path": "monai/handlers/segmentation_saver.py", "file_name": "segmentation_saver.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 26, "span_ids": ["docstring"], "tokens": 140}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nfrom typing import TYPE_CHECKING, Callable, Optional, Union\n\nimport numpy as np\n\nfrom monai.config import DtypeLike, IgniteInfo\nfrom monai.data import decollate_batch\nfrom monai.transforms import SaveImage\nfrom monai.utils import GridSampleMode, GridSamplePadMode, InterpolateMode, deprecated, min_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Events\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Engine\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_logging_DEFAULT_TAG._Loss_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_logging_DEFAULT_TAG._Loss_", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 28, "span_ids": ["docstring"], "tokens": 128}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nimport warnings\nfrom typing import TYPE_CHECKING, Any, Callable, Optional, Sequence\n\nimport torch\n\nfrom monai.config import IgniteInfo\nfrom monai.utils import is_scalar, min_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Events\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Engine\")\n\nDEFAULT_KEY_VAL_FORMAT = \"{}: {:.4f} \"\nDEFAULT_TAG = \"Loss\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.epoch_completed_StatsHandler.iteration_completed.if_self_iteration_print_l.else_.self__default_iteration_p": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.epoch_completed_StatsHandler.iteration_completed.if_self_iteration_print_l.else_.self__default_iteration_p", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 118, "end_line": 144, "span_ids": ["StatsHandler.epoch_completed", "StatsHandler.iteration_completed"], "tokens": 196}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class StatsHandler:\n\n def epoch_completed(self, engine: Engine) -> None:\n \"\"\"\n Handler for train or validation/evaluation epoch completed Event.\n Print epoch level log, default values are from Ignite `engine.state.metrics` dict.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if self.epoch_print_logger is not None:\n self.epoch_print_logger(engine)\n else:\n self._default_epoch_print(engine)\n\n def iteration_completed(self, engine: Engine) -> None:\n \"\"\"\n Handler for train or validation/evaluation iteration completed Event.\n Print iteration level log, default values are from Ignite `engine.state.output`.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n\n \"\"\"\n if self.iteration_print_logger is not None:\n self.iteration_print_logger(engine)\n else:\n self._default_iteration_print(engine)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.exception_raised_StatsHandler.exception_raised.raise_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/stats_handler.py_StatsHandler.exception_raised_StatsHandler.exception_raised.raise_e", "embedding": null, "metadata": {"file_path": "monai/handlers/stats_handler.py", "file_name": "stats_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 146, "end_line": 158, "span_ids": ["StatsHandler.exception_raised"], "tokens": 118}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class StatsHandler:\n\n def exception_raised(self, _engine: Engine, e: Exception) -> None:\n \"\"\"\n Handler for train or validation/evaluation exception raised Event.\n Print the exception information and traceback. This callback may be skipped because the logic\n with Ignite can only trigger the first attached handler for `EXCEPTION_RAISED` event.\n\n Args:\n _engine: Ignite Engine, unused argument.\n e: the exception caught in Ignite during engine.run().\n\n \"\"\"\n self.logger.exception(f\"Exception: {e}\")\n raise e", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_warnings_DEFAULT_TAG._Loss_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/tensorboard_handlers.py_warnings_DEFAULT_TAG._Loss_", "embedding": null, "metadata": {"file_path": "monai/handlers/tensorboard_handlers.py", "file_name": "tensorboard_handlers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 31, "span_ids": ["docstring"], "tokens": 163}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import warnings\nfrom typing import TYPE_CHECKING, Any, Callable, Optional, Sequence\n\nimport numpy as np\nimport torch\n\nfrom monai.config import IgniteInfo\nfrom monai.utils import is_scalar, min_version, optional_import\nfrom monai.visualize import plot_2d_or_3d_image\n\nEvents, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Events\")\n\nif TYPE_CHECKING:\n from ignite.engine import Engine\n from torch.utils.tensorboard import SummaryWriter\nelse:\n Engine, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Engine\")\n SummaryWriter, _ = optional_import(\"torch.utils.tensorboard\", name=\"SummaryWriter\")\n\nDEFAULT_TAG = \"Loss\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_warnings_DiceLoss._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_warnings_DiceLoss._", "embedding": null, "metadata": {"file_path": "monai/losses/dice.py", "file_name": "dice.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 42, "span_ids": ["DiceLoss", "docstring"], "tokens": 312}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import warnings\nfrom typing import Callable, List, Optional, Sequence, Union\n\nimport numpy as np\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\nfrom torch.nn.modules.loss import _Loss\n\nfrom monai.losses.focal_loss import FocalLoss\nfrom monai.losses.spatial_mask import MaskedLoss\nfrom monai.networks import one_hot\nfrom monai.utils import LossReduction, Weight, look_up_option\n\n\nclass DiceLoss(_Loss):\n \"\"\"\n Compute average Dice loss between two tensors. It can support both multi-classes and multi-labels tasks.\n The data `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]).\n\n Note that axis N of `input` is expected to be logits or probabilities for each class, if passing logits as input,\n must set `sigmoid=True` or `softmax=True`, or specifying `other_act`. And the same axis of `target`\n can be 1 or N (one-hot format).\n\n The `smooth_nr` and `smooth_dr` parameters are values added to the intersection and union components of\n the inter-over-union calculation to smooth results respectively, these values should be small.\n\n The original paper: Milletari, F. et. al. (2016) V-Net: Fully Convolutional Neural Networks forVolumetric\n Medical Image Segmentation, 3DV, 2016.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedDiceLoss.forward_GeneralizedDiceLoss.forward.return.f": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedDiceLoss.forward_GeneralizedDiceLoss.forward.return.f", "embedding": null, "metadata": {"file_path": "monai/losses/dice.py", "file_name": "dice.py", "file_type": "text/x-python", "category": "implementation", "start_line": 300, "end_line": 377, "span_ids": ["GeneralizedDiceLoss.forward"], "tokens": 732}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GeneralizedDiceLoss(_Loss):\n\n def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n input: the shape should be BNH[WD].\n target: the shape should be BNH[WD].\n\n Raises:\n ValueError: When ``self.reduction`` is not one of [\"mean\", \"sum\", \"none\"].\n\n \"\"\"\n if self.sigmoid:\n input = torch.sigmoid(input)\n n_pred_ch = input.shape[1]\n if self.softmax:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `softmax=True` ignored.\")\n else:\n input = torch.softmax(input, 1)\n\n if self.other_act is not None:\n input = self.other_act(input)\n\n if self.to_onehot_y:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `to_onehot_y=True` ignored.\")\n else:\n target = one_hot(target, num_classes=n_pred_ch)\n\n if not self.include_background:\n if n_pred_ch == 1:\n warnings.warn(\"single channel prediction, `include_background=False` ignored.\")\n else:\n # if skipping background, removing first channel\n target = target[:, 1:]\n input = input[:, 1:]\n\n if target.shape != input.shape:\n raise AssertionError(f\"ground truth has differing shape ({target.shape}) from input ({input.shape})\")\n\n # reducing only spatial dimensions (not batch nor channels)\n reduce_axis: List[int] = torch.arange(2, len(input.shape)).tolist()\n if self.batch:\n reduce_axis = [0] + reduce_axis\n intersection = torch.sum(target * input, reduce_axis)\n\n ground_o = torch.sum(target, reduce_axis)\n pred_o = torch.sum(input, reduce_axis)\n\n denominator = ground_o + pred_o\n\n w = self.w_func(ground_o.float())\n infs = torch.isinf(w)\n if self.batch:\n w[infs] = 0.0\n w = w + infs * torch.max(w)\n else:\n w[infs] = 0.0\n max_values = torch.max(w, dim=1)[0].unsqueeze(dim=1)\n w = w + infs * max_values\n\n final_reduce_dim = 0 if self.batch else 1\n numer = 2.0 * (intersection * w).sum(final_reduce_dim, keepdim=True) + self.smooth_nr\n denom = (denominator * w).sum(final_reduce_dim, keepdim=True) + self.smooth_dr\n f: torch.Tensor = 1.0 - (numer / denom)\n\n if self.reduction == LossReduction.MEAN.value:\n f = torch.mean(f) # the batch and channel average\n elif self.reduction == LossReduction.SUM.value:\n f = torch.sum(f) # sum over the batch and channel dims\n elif self.reduction == LossReduction.NONE.value:\n # If we are not computing voxelwise loss components at least\n # make sure a none reduction maintains a broadcastable shape\n broadcast_shape = list(f.shape[0:2]) + [1] * (len(input.shape) - 2)\n f = f.view(broadcast_shape)\n else:\n raise ValueError(f'Unsupported reduction: {self.reduction}, available options are [\"mean\", \"sum\", \"none\"].')\n\n return f", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss.wasserstein_distance_map_GeneralizedWassersteinDiceLoss.wasserstein_distance_map.return.wasserstein_map": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/losses/dice.py_GeneralizedWassersteinDiceLoss.wasserstein_distance_map_GeneralizedWassersteinDiceLoss.wasserstein_distance_map.return.wasserstein_map", "embedding": null, "metadata": {"file_path": "monai/losses/dice.py", "file_name": "dice.py", "file_type": "text/x-python", "category": "implementation", "start_line": 502, "end_line": 538, "span_ids": ["GeneralizedWassersteinDiceLoss.wasserstein_distance_map"], "tokens": 414}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GeneralizedWassersteinDiceLoss(_Loss):\n\n def wasserstein_distance_map(self, flat_proba: torch.Tensor, flat_target: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Compute the voxel-wise Wasserstein distance between the\n flattened prediction and the flattened labels (ground_truth) with respect\n to the distance matrix on the label space M.\n This corresponds to eq. 6 in:\n\n Fidon L. et al. (2017) Generalised Wasserstein Dice Score for Imbalanced Multi-class\n Segmentation using Holistic Convolutional Networks. BrainLes 2017.\n\n Args:\n flat_proba: the probabilities of input(predicted) tensor.\n flat_target: the target tensor.\n \"\"\"\n # Turn the distance matrix to a map of identical matrix\n m = torch.clone(torch.as_tensor(self.m)).to(flat_proba.device)\n m_extended = torch.unsqueeze(m, dim=0)\n m_extended = torch.unsqueeze(m_extended, dim=3)\n m_extended = m_extended.expand((flat_proba.size(0), m_extended.size(1), m_extended.size(2), flat_proba.size(2)))\n\n # Expand the feature dimensions of the target\n flat_target_extended = torch.unsqueeze(flat_target, dim=1)\n flat_target_extended = flat_target_extended.expand(\n (flat_target.size(0), m_extended.size(1), flat_target.size(1))\n )\n flat_target_extended = torch.unsqueeze(flat_target_extended, dim=1)\n\n # Extract the vector of class distances for the ground-truth label at each voxel\n m_extended = torch.gather(m_extended, dim=1, index=flat_target_extended)\n m_extended = torch.squeeze(m_extended, dim=1)\n\n # Compute the wasserstein distance map\n wasserstein_map = m_extended * flat_proba\n\n # Sum over the classes\n wasserstein_map = torch.sum(wasserstein_map, dim=1)\n return wasserstein_map", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_from_typing_import_Option_Convolution._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_from_typing_import_Option_Convolution._", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/convolutions.py", "file_name": "convolutions.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 98, "span_ids": ["Convolution", "docstring"], "tokens": 763}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Tuple, Union\n\nimport numpy as np\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.blocks import ADN\nfrom monai.networks.layers.convutils import same_padding, stride_minus_kernel_padding\nfrom monai.networks.layers.factories import Conv\nfrom monai.utils.deprecate_utils import deprecated_arg\n\n\nclass Convolution(nn.Sequential):\n \"\"\"\n Constructs a convolution with normalization, optional dropout, and optional activation layers::\n\n -- (Conv|ConvTrans) -- (Norm -- Dropout -- Acti) --\n\n if ``conv_only`` set to ``True``::\n\n -- (Conv|ConvTrans) --\n\n For example:\n\n .. code-block:: python\n\n from monai.networks.blocks import Convolution\n\n conv = Convolution(\n dimensions=3,\n in_channels=1,\n out_channels=1,\n adn_ordering=\"ADN\",\n act=(\"prelu\", {\"init\": 0.2}),\n dropout=0.1,\n norm=(\"layer\", {\"normalized_shape\": (10, 10, 10)}),\n )\n print(conv)\n\n output::\n\n Convolution(\n (conv): Conv3d(1, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n (adn): ADN(\n (A): PReLU(num_parameters=1)\n (D): Dropout(p=0.1, inplace=False)\n (N): LayerNorm((10, 10, 10), eps=1e-05, elementwise_affine=True)\n )\n )\n\n Args:\n spatial_dims: number of spatial dimensions.\n in_channels: number of input channels.\n out_channels: number of output channels.\n strides: convolution stride. Defaults to 1.\n kernel_size: convolution kernel size. Defaults to 3.\n adn_ordering: a string representing the ordering of activation, normalization, and dropout.\n Defaults to \"NDA\".\n act: activation type and arguments. Defaults to PReLU.\n norm: feature normalization type and arguments. Defaults to instance norm.\n dropout: dropout ratio. Defaults to no dropout.\n dropout_dim: determine the spatial dimensions of dropout. Defaults to 1.\n\n - When dropout_dim = 1, randomly zeroes some of the elements for each channel.\n - When dropout_dim = 2, Randomly zeroes out entire channels (a channel is a 2D feature map).\n - When dropout_dim = 3, Randomly zeroes out entire channels (a channel is a 3D feature map).\n\n The value of dropout_dim should be no no larger than the value of `spatial_dims`.\n dilation: dilation rate. Defaults to 1.\n groups: controls the connections between inputs and outputs. Defaults to 1.\n bias: whether to have a bias term. Defaults to True.\n conv_only: whether to use the convolutional layer only. Defaults to False.\n is_transposed: if True uses ConvTrans instead of Conv. Defaults to False.\n padding: controls the amount of implicit zero-paddings on both sides for padding number of points\n for each dimension. Defaults to None.\n output_padding: controls the additional size added to one side of the output shape.\n Defaults to None.\n\n .. deprecated:: 0.6.0\n ``dimensions`` is deprecated, use ``spatial_dims`` instead.\n\n See also:\n\n :py:class:`monai.networks.layers.Conv`\n :py:class:`monai.networks.blocks.ADN`\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit_ResidualUnit._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit_ResidualUnit._", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/convolutions.py", "file_name": "convolutions.py", "file_type": "text/x-python", "category": "implementation", "start_line": 177, "end_line": 252, "span_ids": ["ResidualUnit"], "tokens": 711}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ResidualUnit(nn.Module):\n \"\"\"\n Residual module with multiple convolutions and a residual connection.\n\n For example:\n\n .. code-block:: python\n\n from monai.networks.blocks import ResidualUnit\n\n convs = ResidualUnit(\n spatial_dims=3,\n in_channels=1,\n out_channels=1,\n adn_ordering=\"AN\",\n act=(\"prelu\", {\"init\": 0.2}),\n norm=(\"layer\", {\"normalized_shape\": (10, 10, 10)}),\n )\n print(convs)\n\n output::\n\n ResidualUnit(\n (conv): Sequential(\n (unit0): Convolution(\n (conv): Conv3d(1, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n (adn): ADN(\n (A): PReLU(num_parameters=1)\n (N): LayerNorm((10, 10, 10), eps=1e-05, elementwise_affine=True)\n )\n )\n (unit1): Convolution(\n (conv): Conv3d(1, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n (adn): ADN(\n (A): PReLU(num_parameters=1)\n (N): LayerNorm((10, 10, 10), eps=1e-05, elementwise_affine=True)\n )\n )\n )\n (residual): Identity()\n )\n\n Args:\n spatial_dims: number of spatial dimensions.\n in_channels: number of input channels.\n out_channels: number of output channels.\n strides: convolution stride. Defaults to 1.\n kernel_size: convolution kernel size. Defaults to 3.\n subunits: number of convolutions. Defaults to 2.\n adn_ordering: a string representing the ordering of activation, normalization, and dropout.\n Defaults to \"NDA\".\n act: activation type and arguments. Defaults to PReLU.\n norm: feature normalization type and arguments. Defaults to instance norm.\n dropout: dropout ratio. Defaults to no dropout.\n dropout_dim: determine the dimensions of dropout. Defaults to 1.\n\n - When dropout_dim = 1, randomly zeroes some of the elements for each channel.\n - When dropout_dim = 2, Randomly zero out entire channels (a channel is a 2D feature map).\n - When dropout_dim = 3, Randomly zero out entire channels (a channel is a 3D feature map).\n\n The value of dropout_dim should be no no larger than the value of `dimensions`.\n dilation: dilation rate. Defaults to 1.\n bias: whether to have a bias term. Defaults to True.\n last_conv_only: for the last subunit, whether to use the convolutional layer only.\n Defaults to False.\n padding: controls the amount of implicit zero-paddings on both sides for padding number of points\n for each dimension. Defaults to None.\n\n .. deprecated:: 0.6.0\n ``dimensions`` is deprecated, use ``spatial_dims`` instead.\n\n See also:\n\n :py:class:`monai.networks.blocks.Convolution`\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit.__init___": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/convolutions.py_ResidualUnit.__init___", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/convolutions.py", "file_name": "convolutions.py", "file_type": "text/x-python", "category": "implementation", "start_line": 254, "end_line": 327, "span_ids": ["ResidualUnit.forward", "ResidualUnit.__init__"], "tokens": 679}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ResidualUnit(nn.Module):\n\n @deprecated_arg(name=\"dimensions\", since=\"0.6\", msg_suffix=\"Please use `spatial_dims` instead.\")\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n strides: Union[Sequence[int], int] = 1,\n kernel_size: Union[Sequence[int], int] = 3,\n subunits: int = 2,\n adn_ordering: str = \"NDA\",\n act: Optional[Union[Tuple, str]] = \"PRELU\",\n norm: Optional[Union[Tuple, str]] = \"INSTANCE\",\n dropout: Optional[Union[Tuple, str, float]] = None,\n dropout_dim: Optional[int] = 1,\n dilation: Union[Sequence[int], int] = 1,\n bias: bool = True,\n last_conv_only: bool = False,\n padding: Optional[Union[Sequence[int], int]] = None,\n dimensions: Optional[int] = None,\n ) -> None:\n super().__init__()\n self.dimensions = spatial_dims if dimensions is None else dimensions\n self.in_channels = in_channels\n self.out_channels = out_channels\n self.conv = nn.Sequential()\n self.residual = nn.Identity()\n if not padding:\n padding = same_padding(kernel_size, dilation)\n schannels = in_channels\n sstrides = strides\n subunits = max(1, subunits)\n\n for su in range(subunits):\n conv_only = last_conv_only and su == (subunits - 1)\n unit = Convolution(\n self.dimensions,\n schannels,\n out_channels,\n strides=sstrides,\n kernel_size=kernel_size,\n adn_ordering=adn_ordering,\n act=act,\n norm=norm,\n dropout=dropout,\n dropout_dim=dropout_dim,\n dilation=dilation,\n bias=bias,\n conv_only=conv_only,\n padding=padding,\n )\n\n self.conv.add_module(f\"unit{su:d}\", unit)\n\n # after first loop set channels and strides to what they should be for subsequent units\n schannels = out_channels\n sstrides = 1\n\n # apply convolution to input to change number of output channels and size to match that coming from self.conv\n if np.prod(strides) != 1 or in_channels != out_channels:\n rkernel_size = kernel_size\n rpadding = padding\n\n if np.prod(strides) == 1: # if only adapting number of channels a 1x1 kernel is used with no padding\n rkernel_size = 1\n rpadding = 0\n\n conv_type = Conv[Conv.CONV, self.dimensions]\n self.residual = conv_type(in_channels, out_channels, rkernel_size, strides, rpadding, bias=bias)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n res: torch.Tensor = self.residual(x) # create the additive residual from x\n cx: torch.Tensor = self.conv(x) # apply x to sequence of operations\n return cx + res # add the residual to the output", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_from_typing_import_Type_GCN.forward.return.x": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_from_typing_import_Type_GCN.forward.return.x", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/fcn.py", "file_name": "fcn.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 57, "span_ids": ["GCN", "GCN.forward", "GCN.__init__", "docstring"], "tokens": 456}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Type\n\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\n\nfrom monai.networks.blocks.convolutions import Convolution\nfrom monai.networks.blocks.upsample import UpSample\nfrom monai.networks.layers.factories import Act, Conv, Norm\nfrom monai.utils import optional_import\n\nmodels, _ = optional_import(\"torchvision\", name=\"models\")\n\n\nclass GCN(nn.Module):\n \"\"\"\n The Global Convolutional Network module using large 1D\n Kx1 and 1xK kernels to represent 2D kernels.\n \"\"\"\n\n def __init__(self, inplanes: int, planes: int, ks: int = 7):\n \"\"\"\n Args:\n inplanes: number of input channels.\n planes: number of output channels.\n ks: kernel size for one dimension. Defaults to 7.\n \"\"\"\n super().__init__()\n\n conv2d_type: Type[nn.Conv2d] = Conv[Conv.CONV, 2]\n self.conv_l1 = conv2d_type(in_channels=inplanes, out_channels=planes, kernel_size=(ks, 1), padding=(ks // 2, 0))\n self.conv_l2 = conv2d_type(in_channels=planes, out_channels=planes, kernel_size=(1, ks), padding=(0, ks // 2))\n self.conv_r1 = conv2d_type(in_channels=inplanes, out_channels=planes, kernel_size=(1, ks), padding=(0, ks // 2))\n self.conv_r2 = conv2d_type(in_channels=planes, out_channels=planes, kernel_size=(ks, 1), padding=(ks // 2, 0))\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n x: in shape (batch, inplanes, spatial_1, spatial_2).\n \"\"\"\n x_l = self.conv_l1(x)\n x_l = self.conv_l2(x_l)\n x_r = self.conv_r1(x)\n x_r = self.conv_r2(x_r)\n x = x_l + x_r\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_MCFCN_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/fcn.py_MCFCN_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/fcn.py", "file_name": "fcn.py", "file_type": "text/x-python", "category": "implementation", "start_line": 196, "end_line": 243, "span_ids": ["MCFCN.forward", "MCFCN.__init__", "MCFCN"], "tokens": 360}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MCFCN(FCN):\n \"\"\"\n The multi-channel version of the 2D FCN module.\n Adds a projection layer to take arbitrary number of inputs.\n\n Args:\n in_channels: number of input channels. Defaults to 3.\n out_channels: number of output channels. Defaults to 1.\n upsample_mode: [``\"transpose\"``, ``\"bilinear\"``]\n The mode of upsampling manipulations.\n Using the second mode cannot guarantee the model's reproducibility. Defaults to ``bilinear``.\n\n - ``transpose``, uses transposed convolution layers.\n - ``bilinear``, uses bilinear interpolate.\n pretrained: If True, returns a model pre-trained on ImageNet\n progress: If True, displays a progress bar of the download to stderr.\n \"\"\"\n\n def __init__(\n self,\n in_channels: int = 3,\n out_channels: int = 1,\n upsample_mode: str = \"bilinear\",\n pretrained: bool = True,\n progress: bool = True,\n ):\n super().__init__(\n out_channels=out_channels, upsample_mode=upsample_mode, pretrained=pretrained, progress=progress\n )\n\n self.init_proj = Convolution(\n spatial_dims=2,\n in_channels=in_channels,\n out_channels=3,\n kernel_size=1,\n act=(\"relu\", {\"inplace\": True}),\n norm=Norm.BATCH,\n bias=False,\n )\n\n def forward(self, x: torch.Tensor):\n \"\"\"\n Args:\n x: in shape (batch, in_channels, spatial_1, spatial_2).\n \"\"\"\n x = self.init_proj(x)\n return super().forward(x)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/segresnet_block.py_ResBlock_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/segresnet_block.py_ResBlock_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/segresnet_block.py", "file_name": "segresnet_block.py", "file_type": "text/x-python", "category": "implementation", "start_line": 45, "end_line": 95, "span_ids": ["ResBlock.__init__", "ResBlock.forward", "ResBlock"], "tokens": 398}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ResBlock(nn.Module):\n \"\"\"\n ResBlock employs skip connection and two convolution blocks and is used\n in SegResNet based on `3D MRI brain tumor segmentation using autoencoder regularization\n `_.\n \"\"\"\n\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n norm: Union[Tuple, str],\n kernel_size: int = 3,\n act: Union[Tuple, str] = (\"RELU\", {\"inplace\": True}),\n ) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions, could be 1, 2 or 3.\n in_channels: number of input channels.\n norm: feature normalization type and arguments.\n kernel_size: convolution kernel size, the value should be an odd number. Defaults to 3.\n act: activation type and arguments. Defaults to ``RELU``.\n \"\"\"\n\n super().__init__()\n\n if kernel_size % 2 != 1:\n raise AssertionError(\"kernel_size should be an odd number.\")\n\n self.norm1 = get_norm_layer(name=norm, spatial_dims=spatial_dims, channels=in_channels)\n self.norm2 = get_norm_layer(name=norm, spatial_dims=spatial_dims, channels=in_channels)\n self.act = get_act_layer(act)\n self.conv1 = get_conv_layer(spatial_dims, in_channels=in_channels, out_channels=in_channels)\n self.conv2 = get_conv_layer(spatial_dims, in_channels=in_channels, out_channels=in_channels)\n\n def forward(self, x):\n\n identity = x\n\n x = self.norm1(x)\n x = self.act(x)\n x = self.conv1(x)\n\n x = self.norm2(x)\n x = self.act(x)\n x = self.conv2(x)\n\n x += identity\n\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEResNeXtBottleneck_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/squeeze_and_excitation.py_SEResNeXtBottleneck_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/squeeze_and_excitation.py", "file_name": "squeeze_and_excitation.py", "file_type": "text/x-python", "category": "implementation", "start_line": 332, "end_line": 381, "span_ids": ["SEResNeXtBottleneck.__init__", "SEResNeXtBottleneck"], "tokens": 371}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SEResNeXtBottleneck(SEBlock):\n \"\"\"\n ResNeXt bottleneck type C with a Squeeze-and-Excitation module.\n \"\"\"\n\n expansion = 4\n\n def __init__(\n self,\n spatial_dims: int,\n inplanes: int,\n planes: int,\n groups: int,\n reduction: int,\n stride: int = 1,\n downsample: Optional[Convolution] = None,\n base_width: int = 4,\n ) -> None:\n\n conv_param_1 = {\n \"strides\": 1,\n \"kernel_size\": 1,\n \"act\": (\"relu\", {\"inplace\": True}),\n \"norm\": Norm.BATCH,\n \"bias\": False,\n }\n conv_param_2 = {\n \"strides\": stride,\n \"kernel_size\": 3,\n \"act\": (\"relu\", {\"inplace\": True}),\n \"norm\": Norm.BATCH,\n \"groups\": groups,\n \"bias\": False,\n }\n conv_param_3 = {\"strides\": 1, \"kernel_size\": 1, \"act\": None, \"norm\": Norm.BATCH, \"bias\": False}\n width = math.floor(planes * (base_width / 64)) * groups\n\n super().__init__(\n spatial_dims=spatial_dims,\n in_channels=inplanes,\n n_chns_1=width,\n n_chns_2=width,\n n_chns_3=planes * 4,\n conv_param_1=conv_param_1,\n conv_param_2=conv_param_2,\n conv_param_3=conv_param_3,\n project=downsample,\n r=reduction,\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_calculate_out_shape_calculate_out_shape.return.out_shape_if_len_out_shap": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_calculate_out_shape_calculate_out_shape.return.out_shape_if_len_out_shap", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 59, "end_line": 78, "span_ids": ["calculate_out_shape"], "tokens": 243}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def calculate_out_shape(\n in_shape: Union[Sequence[int], int, np.ndarray],\n kernel_size: Union[Sequence[int], int],\n stride: Union[Sequence[int], int],\n padding: Union[Sequence[int], int],\n) -> Union[Tuple[int, ...], int]:\n \"\"\"\n Calculate the output tensor shape when applying a convolution to a tensor of shape `inShape` with kernel size\n `kernel_size`, stride value `stride`, and input padding value `padding`. All arguments can be scalars or multiple\n values, return value is a scalar if all inputs are scalars.\n \"\"\"\n in_shape_np = np.atleast_1d(in_shape)\n kernel_size_np = np.atleast_1d(kernel_size)\n stride_np = np.atleast_1d(stride)\n padding_np = np.atleast_1d(padding)\n\n out_shape_np = ((in_shape_np - kernel_size_np + padding_np + padding_np) // stride_np) + 1\n out_shape = tuple(int(s) for s in out_shape_np)\n\n return out_shape if len(out_shape) > 1 else out_shape[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTMFunction_LLTMFunction.backward.return.d_input_d_weights_d_bia": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTMFunction_LLTMFunction.backward.return.d_input_d_weights_d_bia", "embedding": null, "metadata": {"file_path": "monai/networks/layers/simplelayers.py", "file_name": "simplelayers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 161, "end_line": 176, "span_ids": ["LLTMFunction.forward", "LLTMFunction", "LLTMFunction.backward"], "tokens": 163}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LLTMFunction(Function):\n @staticmethod\n def forward(ctx, input, weights, bias, old_h, old_cell):\n outputs = _C.lltm_forward(input, weights, bias, old_h, old_cell)\n new_h, new_cell = outputs[:2]\n variables = outputs[1:] + [weights]\n ctx.save_for_backward(*variables)\n\n return new_h, new_cell\n\n @staticmethod\n def backward(ctx, grad_h, grad_cell):\n outputs = _C.lltm_backward(grad_h.contiguous(), grad_cell.contiguous(), *ctx.saved_tensors)\n d_old_h, d_input, d_weights, d_bias, d_old_cell = outputs[:5]\n\n return d_input, d_weights, d_bias, d_old_h, d_old_cell", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTM_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_LLTM_", "embedding": null, "metadata": {"file_path": "monai/networks/layers/simplelayers.py", "file_name": "simplelayers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 442, "end_line": 472, "span_ids": ["LLTM.forward", "LLTM", "LLTM.__init__", "LLTM.reset_parameters"], "tokens": 286}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LLTM(nn.Module):\n \"\"\"\n This recurrent unit is similar to an LSTM, but differs in that it lacks a forget\n gate and uses an Exponential Linear Unit (ELU) as its internal activation function.\n Because this unit never forgets, call it LLTM, or Long-Long-Term-Memory unit.\n It has both C++ and CUDA implementation, automatically switch according to the\n target device where put this module to.\n\n Args:\n input_features: size of input feature data\n state_size: size of the state of recurrent unit\n\n Referring to: https://pytorch.org/tutorials/advanced/cpp_extension.html\n \"\"\"\n\n def __init__(self, input_features: int, state_size: int):\n super().__init__()\n self.input_features = input_features\n self.state_size = state_size\n self.weights = nn.Parameter(torch.empty(3 * state_size, input_features + state_size))\n self.bias = nn.Parameter(torch.empty(1, 3 * state_size))\n self.reset_parameters()\n\n def reset_parameters(self):\n stdv = 1.0 / math.sqrt(self.state_size)\n for weight in self.parameters():\n weight.data.uniform_(-stdv, +stdv)\n\n def forward(self, input, state):\n return LLTMFunction.apply(input, self.weights, self.bias, *state)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_math_Bottleneck3x3x1.__init__.self.pool.pool_type_kernel_size_1_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_math_Bottleneck3x3x1.__init__.self.pool.pool_type_kernel_size_1_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 61, "span_ids": ["Bottleneck3x3x1.__init__", "Bottleneck3x3x1", "docstring"], "tokens": 432}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import math\nfrom typing import Optional, Sequence, Type, Union\n\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\n\nfrom monai.networks.blocks.fcn import FCN\nfrom monai.networks.layers.factories import Act, Conv, Norm, Pool\n\n__all__ = [\"AHnet\", \"Ahnet\", \"AHNet\"]\n\n\nclass Bottleneck3x3x1(nn.Module):\n\n expansion = 4\n\n def __init__(\n self,\n spatial_dims: int,\n inplanes: int,\n planes: int,\n stride: Union[Sequence[int], int] = 1,\n downsample: Optional[nn.Sequential] = None,\n ) -> None:\n\n super().__init__()\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n pool_type: Type[Union[nn.MaxPool2d, nn.MaxPool3d]] = Pool[Pool.MAX, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n\n self.conv1 = conv_type(inplanes, planes, kernel_size=1, bias=False)\n self.bn1 = norm_type(planes)\n self.conv2 = conv_type(\n planes,\n planes,\n kernel_size=(3, 3, 1)[-spatial_dims:],\n stride=stride,\n padding=(1, 1, 0)[-spatial_dims:],\n bias=False,\n )\n self.bn2 = norm_type(planes)\n self.conv3 = conv_type(planes, planes * 4, kernel_size=1, bias=False)\n self.bn3 = norm_type(planes * 4)\n self.relu = relu_type(inplace=True)\n self.downsample = downsample\n self.stride = stride\n self.pool = pool_type(kernel_size=(1, 1, 2)[-spatial_dims:], stride=(1, 1, 2)[-spatial_dims:])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Bottleneck3x3x1.forward_Bottleneck3x3x1.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Bottleneck3x3x1.forward_Bottleneck3x3x1.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 60, "end_line": 82, "span_ids": ["Bottleneck3x3x1.forward"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Bottleneck3x3x1(nn.Module):\n\n def forward(self, x):\n residual = x\n\n out = self.conv1(x)\n out = self.bn1(out)\n out = self.relu(out)\n\n out = self.conv2(out)\n out = self.bn2(out)\n out = self.relu(out)\n\n out = self.conv3(out)\n out = self.bn3(out)\n\n if self.downsample is not None:\n residual = self.downsample(x)\n if out.size() != residual.size():\n out = self.pool(out)\n\n out += residual\n out = self.relu(out)\n\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Projection_Projection.__init__.self_add_module_conv_c": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Projection_Projection.__init__.self_add_module_conv_c", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 88, "end_line": 98, "span_ids": ["Projection.__init__", "Projection"], "tokens": 145}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Projection(nn.Sequential):\n def __init__(self, spatial_dims: int, num_input_features: int, num_output_features: int):\n super().__init__()\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n\n self.add_module(\"norm\", norm_type(num_input_features))\n self.add_module(\"relu\", relu_type(inplace=True))\n self.add_module(\"conv\", conv_type(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_DenseBlock_DenseBlock.__init__.for_i_in_range_num_layers.self_add_module_denselay": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_DenseBlock_DenseBlock.__init__.for_i_in_range_num_layers.self_add_module_denselay", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 101, "end_line": 116, "span_ids": ["DenseBlock.__init__", "DenseBlock"], "tokens": 118}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DenseBlock(nn.Sequential):\n def __init__(\n self,\n spatial_dims: int,\n num_layers: int,\n num_input_features: int,\n bn_size: int,\n growth_rate: int,\n dropout_prob: float,\n ):\n super().__init__()\n for i in range(num_layers):\n layer = Pseudo3DLayer(\n spatial_dims, num_input_features + i * growth_rate, growth_rate, bn_size, dropout_prob\n )\n self.add_module(\"denselayer%d\" % (i + 1), layer)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_UpTransition_UpTransition.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_UpTransition_UpTransition.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 119, "end_line": 141, "span_ids": ["UpTransition.__init__", "UpTransition"], "tokens": 278}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class UpTransition(nn.Sequential):\n def __init__(\n self, spatial_dims: int, num_input_features: int, num_output_features: int, upsample_mode: str = \"transpose\"\n ):\n super().__init__()\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n\n self.add_module(\"norm\", norm_type(num_input_features))\n self.add_module(\"relu\", relu_type(inplace=True))\n self.add_module(\"conv\", conv_type(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))\n if upsample_mode == \"transpose\":\n conv_trans_type = Conv[Conv.CONVTRANS, spatial_dims]\n self.add_module(\n \"up\", conv_trans_type(num_output_features, num_output_features, kernel_size=2, stride=2, bias=False)\n )\n else:\n align_corners: Optional[bool] = None\n if upsample_mode in [\"trilinear\", \"bilinear\"]:\n align_corners = True\n self.add_module(\"up\", nn.Upsample(scale_factor=2, mode=upsample_mode, align_corners=align_corners))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Final_Final.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Final_Final.__init__.if_upsample_mode_tran.else_.self_add_module_up_nn_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 144, "end_line": 176, "span_ids": ["Final.__init__", "Final"], "tokens": 317}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Final(nn.Sequential):\n def __init__(\n self, spatial_dims: int, num_input_features: int, num_output_features: int, upsample_mode: str = \"transpose\"\n ):\n super().__init__()\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n\n self.add_module(\"norm\", norm_type(num_input_features))\n self.add_module(\"relu\", relu_type(inplace=True))\n self.add_module(\n \"conv\",\n conv_type(\n num_input_features,\n num_output_features,\n kernel_size=(3, 3, 1)[-spatial_dims:],\n stride=1,\n padding=(1, 1, 0)[-spatial_dims:],\n bias=False,\n ),\n )\n if upsample_mode == \"transpose\":\n conv_trans_type = Conv[Conv.CONVTRANS, spatial_dims]\n self.add_module(\n \"up\", conv_trans_type(num_output_features, num_output_features, kernel_size=2, stride=2, bias=False)\n )\n else:\n align_corners: Optional[bool] = None\n if upsample_mode in [\"trilinear\", \"bilinear\"]:\n align_corners = True\n self.add_module(\"up\", nn.Upsample(scale_factor=2, mode=upsample_mode, align_corners=align_corners))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer_Pseudo3DLayer.__init__.self.dropout_prob.dropout_prob": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer_Pseudo3DLayer.__init__.self.dropout_prob.dropout_prob", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 179, "end_line": 217, "span_ids": ["Pseudo3DLayer.__init__", "Pseudo3DLayer"], "tokens": 412}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Pseudo3DLayer(nn.Module):\n def __init__(self, spatial_dims: int, num_input_features: int, growth_rate: int, bn_size: int, dropout_prob: float):\n super().__init__()\n # 1x1x1\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n\n self.bn1 = norm_type(num_input_features)\n self.relu1 = relu_type(inplace=True)\n self.conv1 = conv_type(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)\n # 3x3x1\n self.bn2 = norm_type(bn_size * growth_rate)\n self.relu2 = relu_type(inplace=True)\n self.conv2 = conv_type(\n bn_size * growth_rate,\n growth_rate,\n kernel_size=(3, 3, 1)[-spatial_dims:],\n stride=1,\n padding=(1, 1, 0)[-spatial_dims:],\n bias=False,\n )\n # 1x1x3\n self.bn3 = norm_type(growth_rate)\n self.relu3 = relu_type(inplace=True)\n self.conv3 = conv_type(\n growth_rate,\n growth_rate,\n kernel_size=(1, 1, 3)[-spatial_dims:],\n stride=1,\n padding=(0, 0, 1)[-spatial_dims:],\n bias=False,\n )\n # 1x1x1\n self.bn4 = norm_type(growth_rate)\n self.relu4 = relu_type(inplace=True)\n self.conv4 = conv_type(growth_rate, growth_rate, kernel_size=1, stride=1, bias=False)\n self.dropout_prob = dropout_prob", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer.forward_Pseudo3DLayer.forward.return.torch_cat_inx_new_featu": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_Pseudo3DLayer.forward_Pseudo3DLayer.forward.return.torch_cat_inx_new_featu", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 217, "end_line": 240, "span_ids": ["Pseudo3DLayer.forward"], "tokens": 220}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Pseudo3DLayer(nn.Module):\n\n def forward(self, x):\n inx = x\n x = self.bn1(x)\n x = self.relu1(x)\n x = self.conv1(x)\n\n x = self.bn2(x)\n x = self.relu2(x)\n x3x3x1 = self.conv2(x)\n\n x = self.bn3(x3x3x1)\n x = self.relu3(x)\n x1x1x3 = self.conv3(x)\n\n x = x3x3x1 + x1x1x3\n x = self.bn4(x)\n x = self.relu4(x)\n new_features = self.conv4(x)\n\n self.dropout_prob = 0.0 # Dropout will make trouble!\n # since we use the train mode for inference\n if self.dropout_prob > 0.0:\n new_features = F.dropout(new_features, p=self.dropout_prob, training=self.training)\n return torch.cat([inx, new_features], 1)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_PSP.forward_PSP.forward.return.x": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_PSP.forward_PSP.forward.return.x", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 285, "end_line": 307, "span_ids": ["PSP.forward"], "tokens": 193}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class PSP(nn.Module):\n\n def forward(self, x):\n outputs = []\n if self.upsample_mode == \"transpose\":\n for (project_module, pool_module, up_module) in zip(\n self.project_modules, self.pool_modules, self.up_modules\n ):\n output = up_module(project_module(pool_module(x)))\n outputs.append(output)\n else:\n for (project_module, pool_module) in zip(self.project_modules, self.pool_modules):\n interpolate_size = x.shape[2:]\n align_corners: Optional[bool] = None\n if self.upsample_mode in [\"trilinear\", \"bilinear\"]:\n align_corners = True\n output = F.interpolate(\n project_module(pool_module(x)),\n size=interpolate_size,\n mode=self.upsample_mode,\n align_corners=align_corners,\n )\n outputs.append(output)\n x = torch.cat(outputs, dim=1)\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet_AHNet._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet_AHNet._", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 298, "end_line": 331, "span_ids": ["AHNet"], "tokens": 566}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AHNet(nn.Module):\n \"\"\"\n AHNet based on `Anisotropic Hybrid Network `_.\n Adapted from `lsqshr's official code `_.\n Except from the original network that supports 3D inputs, this implementation also supports 2D inputs.\n According to the `tests for deconvolutions `_, using\n ``\"transpose\"`` rather than linear interpolations is faster. Therefore, this implementation sets ``\"transpose\"``\n as the default upsampling method.\n\n To meet the requirements of the structure, the input size for each spatial dimension\n (except the last one) should be: divisible by 2 ** (psp_block_num + 3) and no less than 32 in ``transpose`` mode,\n and should be divisible by 32 and no less than 2 ** (psp_block_num + 3) in other upsample modes.\n In addition, the input size for the last spatial dimension should be divisible by 32, and at least one spatial size\n should be no less than 64.\n\n Args:\n layers: number of residual blocks for 4 layers of the network (layer1...layer4). Defaults to ``(3, 4, 6, 3)``.\n spatial_dims: spatial dimension of the input data. Defaults to 3.\n in_channels: number of input channels for the network. Default to 1.\n out_channels: number of output channels for the network. Defaults to 1.\n psp_block_num: the number of pyramid volumetric pooling modules used at the end of the network before the final\n output layer for extracting multiscale features. The number should be an integer that belongs to [0,4]. Defaults\n to 4.\n upsample_mode: [``\"transpose\"``, ``\"bilinear\"``, ``\"trilinear\"``, ``nearest``]\n The mode of upsampling manipulations.\n Using the last two modes cannot guarantee the model's reproducibility. Defaults to ``transpose``.\n\n - ``\"transpose\"``, uses transposed convolution layers.\n - ``\"bilinear\"``, uses bilinear interpolate.\n - ``\"trilinear\"``, uses trilinear interpolate.\n - ``\"nearest\"``, uses nearest interpolate.\n pretrained: whether to load pretrained weights from ResNet50 to initialize convolution layers, default to False.\n progress: If True, displays a progress bar of the download of pretrained weights to stderr.\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet._make_layer_AHNet._make_layer.return.nn_Sequential_layers_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet._make_layer_AHNet._make_layer.return.nn_Sequential_layers_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 440, "end_line": 464, "span_ids": ["AHNet._make_layer"], "tokens": 244}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AHNet(nn.Module):\n\n def _make_layer(self, block: Type[Bottleneck3x3x1], planes: int, blocks: int, stride: int = 1) -> nn.Sequential:\n downsample = None\n if stride != 1 or self.inplanes != planes * block.expansion:\n downsample = nn.Sequential(\n self.conv_type(\n self.inplanes,\n planes * block.expansion,\n kernel_size=1,\n stride=(stride, stride, 1)[: self.spatial_dims],\n bias=False,\n ),\n self.pool_type(\n kernel_size=(1, 1, stride)[: self.spatial_dims], stride=(1, 1, stride)[: self.spatial_dims]\n ),\n self.norm_type(planes * block.expansion),\n )\n\n layers = []\n layers.append(\n block(self.spatial_dims, self.inplanes, planes, (stride, stride, 1)[: self.spatial_dims], downsample)\n )\n self.inplanes = planes * block.expansion\n for _ in range(1, blocks):\n layers.append(block(self.spatial_dims, self.inplanes, planes))\n return nn.Sequential(*layers)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.forward_AHNet.forward.return.self_final_x_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.forward_AHNet.forward.return.self_final_x_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 485, "end_line": 518, "span_ids": ["AHNet.forward"], "tokens": 275}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AHNet(nn.Module):\n\n def forward(self, x):\n x = self.conv1(x)\n x = self.pool1(x)\n x = self.bn0(x)\n x = self.relu(x)\n conv_x = x\n x = self.maxpool(x)\n pool_x = x\n\n fm1 = self.layer1(x)\n fm2 = self.layer2(fm1)\n fm3 = self.layer3(fm2)\n fm4 = self.layer4(fm3)\n\n sum0 = self.up0(fm4) + fm3\n d0 = self.dense0(sum0)\n\n sum1 = self.up1(d0) + fm2\n d1 = self.dense1(sum1)\n\n sum2 = self.up2(d1) + fm1\n d2 = self.dense2(sum2)\n\n sum3 = self.trans1(d2) + pool_x\n d3 = self.dense3(sum3)\n\n sum4 = self.up3(d3) + conv_x\n d4 = self.dense4(sum4)\n if self.psp_block_num > 0:\n psp = self.psp(d4)\n x = torch.cat((psp, d4), dim=1)\n else:\n x = d4\n return self.final(x)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_from_typing_import_Dict__DEFAULT_LAYER_PARAMS_3D._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/highresnet.py_from_typing_import_Dict__DEFAULT_LAYER_PARAMS_3D._", "embedding": null, "metadata": {"file_path": "monai/networks/nets/highresnet.py", "file_name": "highresnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 33, "span_ids": ["docstring"], "tokens": 253}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Dict, Optional, Sequence, Tuple, Union\n\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.blocks import ADN, Convolution\nfrom monai.networks.layers.simplelayers import ChannelPad\nfrom monai.utils import ChannelMatching\n\n__all__ = [\"HighResBlock\", \"HighResNet\"]\n\nDEFAULT_LAYER_PARAMS_3D = (\n # initial conv layer\n {\"name\": \"conv_0\", \"n_features\": 16, \"kernel_size\": 3},\n # residual blocks\n {\"name\": \"res_1\", \"n_features\": 16, \"kernels\": (3, 3), \"repeat\": 3},\n {\"name\": \"res_2\", \"n_features\": 32, \"kernels\": (3, 3), \"repeat\": 3},\n {\"name\": \"res_3\", \"n_features\": 64, \"kernels\": (3, 3), \"repeat\": 3},\n # final conv layers\n {\"name\": \"conv_1\", \"n_features\": 80, \"kernel_size\": 1},\n {\"name\": \"conv_2\", \"kernel_size\": 1},\n)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_from_typing_import_Dict__get_acti_layer.return.act_type_act_args_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_from_typing_import_Dict__get_acti_layer.return.act_type_act_args_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 28, "span_ids": ["get_acti_layer", "docstring"], "tokens": 138}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Dict, Optional, Tuple, Type, Union\n\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.blocks.convolutions import Convolution\nfrom monai.networks.layers.factories import Act, Conv, Dropout, Norm, split_args\n\n__all__ = [\"VNet\"]\n\n\ndef get_acti_layer(act: Union[Tuple[str, Dict], str], nchan: int = 0):\n if act == \"prelu\":\n act = (\"prelu\", {\"num_parameters\": nchan})\n act_name, act_args = split_args(act)\n act_type = Act[act_name]\n return act_type(**act_args)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_LUConv__make_nconv.return.nn_Sequential_layers_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_LUConv__make_nconv.return.nn_Sequential_layers_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 31, "end_line": 56, "span_ids": ["LUConv.__init__", "LUConv.forward", "LUConv", "_make_nconv"], "tokens": 210}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LUConv(nn.Module):\n def __init__(self, spatial_dims: int, nchan: int, act: Union[Tuple[str, Dict], str], bias: bool = False):\n super().__init__()\n\n self.act_function = get_acti_layer(act, nchan)\n self.conv_block = Convolution(\n spatial_dims=spatial_dims,\n in_channels=nchan,\n out_channels=nchan,\n kernel_size=5,\n act=None,\n norm=Norm.BATCH,\n bias=bias,\n )\n\n def forward(self, x):\n out = self.conv_block(x)\n out = self.act_function(out)\n return out\n\n\ndef _make_nconv(spatial_dims: int, nchan: int, depth: int, act: Union[Tuple[str, Dict], str], bias: bool = False):\n layers = []\n for _ in range(depth):\n layers.append(LUConv(spatial_dims, nchan, act, bias))\n return nn.Sequential(*layers)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_InputTransition_InputTransition.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_InputTransition_InputTransition.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 59, "end_line": 91, "span_ids": ["InputTransition.forward", "InputTransition.__init__", "InputTransition"], "tokens": 242}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class InputTransition(nn.Module):\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n act: Union[Tuple[str, Dict], str],\n bias: bool = False,\n ):\n super().__init__()\n\n if 16 % in_channels != 0:\n raise ValueError(f\"16 should be divisible by in_channels, got in_channels={in_channels}.\")\n\n self.spatial_dims = spatial_dims\n self.in_channels = in_channels\n self.act_function = get_acti_layer(act, 16)\n self.conv_block = Convolution(\n spatial_dims=spatial_dims,\n in_channels=in_channels,\n out_channels=16,\n kernel_size=5,\n act=None,\n norm=Norm.BATCH,\n bias=bias,\n )\n\n def forward(self, x):\n out = self.conv_block(x)\n repeat_num = 16 // self.in_channels\n x16 = x.repeat([1, repeat_num, 1, 1, 1][: self.spatial_dims + 2])\n out = self.act_function(torch.add(out, x16))\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_DownTransition_DownTransition.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_DownTransition_DownTransition.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 94, "end_line": 127, "span_ids": ["DownTransition.__init__", "DownTransition", "DownTransition.forward"], "tokens": 354}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DownTransition(nn.Module):\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n nconvs: int,\n act: Union[Tuple[str, Dict], str],\n dropout_prob: Optional[float] = None,\n dropout_dim: int = 3,\n bias: bool = False,\n ):\n super().__init__()\n\n conv_type: Type[Union[nn.Conv2d, nn.Conv3d]] = Conv[Conv.CONV, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n dropout_type: Type[Union[nn.Dropout, nn.Dropout2d, nn.Dropout3d]] = Dropout[Dropout.DROPOUT, dropout_dim]\n\n out_channels = 2 * in_channels\n self.down_conv = conv_type(in_channels, out_channels, kernel_size=2, stride=2, bias=bias)\n self.bn1 = norm_type(out_channels)\n self.act_function1 = get_acti_layer(act, out_channels)\n self.act_function2 = get_acti_layer(act, out_channels)\n self.ops = _make_nconv(spatial_dims, out_channels, nconvs, act, bias)\n self.dropout = dropout_type(dropout_prob) if dropout_prob is not None else None\n\n def forward(self, x):\n down = self.act_function1(self.bn1(self.down_conv(x)))\n if self.dropout is not None:\n out = self.dropout(down)\n else:\n out = down\n out = self.ops(out)\n out = self.act_function2(torch.add(out, down))\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_UpTransition_UpTransition.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_UpTransition_UpTransition.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 130, "end_line": 165, "span_ids": ["UpTransition.__init__", "UpTransition", "UpTransition.forward"], "tokens": 395}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class UpTransition(nn.Module):\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n nconvs: int,\n act: Union[Tuple[str, Dict], str],\n dropout_prob: Optional[float] = None,\n dropout_dim: int = 3,\n ):\n super().__init__()\n\n conv_trans_type: Type[Union[nn.ConvTranspose2d, nn.ConvTranspose3d]] = Conv[Conv.CONVTRANS, spatial_dims]\n norm_type: Type[Union[nn.BatchNorm2d, nn.BatchNorm3d]] = Norm[Norm.BATCH, spatial_dims]\n dropout_type: Type[Union[nn.Dropout, nn.Dropout2d, nn.Dropout3d]] = Dropout[Dropout.DROPOUT, dropout_dim]\n\n self.up_conv = conv_trans_type(in_channels, out_channels // 2, kernel_size=2, stride=2)\n self.bn1 = norm_type(out_channels // 2)\n self.dropout = dropout_type(dropout_prob) if dropout_prob is not None else None\n self.dropout2 = dropout_type(0.5)\n self.act_function1 = get_acti_layer(act, out_channels // 2)\n self.act_function2 = get_acti_layer(act, out_channels)\n self.ops = _make_nconv(spatial_dims, out_channels, nconvs, act)\n\n def forward(self, x, skipx):\n if self.dropout is not None:\n out = self.dropout(x)\n else:\n out = x\n skipxdo = self.dropout2(skipx)\n out = self.act_function1(self.bn1(self.up_conv(out)))\n xcat = torch.cat((out, skipxdo), 1)\n out = self.ops(xcat)\n out = self.act_function2(torch.add(out, xcat))\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_OutputTransition_OutputTransition.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_OutputTransition_OutputTransition.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 168, "end_line": 198, "span_ids": ["OutputTransition.__init__", "OutputTransition.forward", "OutputTransition"], "tokens": 218}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class OutputTransition(nn.Module):\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n act: Union[Tuple[str, Dict], str],\n bias: bool = False,\n ):\n super().__init__()\n\n conv_type: Type[Union[nn.Conv2d, nn.Conv3d]] = Conv[Conv.CONV, spatial_dims]\n\n self.act_function1 = get_acti_layer(act, out_channels)\n self.conv_block = Convolution(\n spatial_dims=spatial_dims,\n in_channels=in_channels,\n out_channels=out_channels,\n kernel_size=5,\n act=None,\n norm=Norm.BATCH,\n bias=bias,\n )\n self.conv2 = conv_type(out_channels, out_channels, kernel_size=1)\n\n def forward(self, x):\n # convolve 32 down to 2 channels\n out = self.conv_block(x)\n out = self.act_function1(out)\n out = self.conv2(out)\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet_VNet.__init__.self.out_tr.OutputTransition_spatial_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet_VNet.__init__.self.out_tr.OutputTransition_spatial_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 201, "end_line": 252, "span_ids": ["VNet", "VNet.__init__"], "tokens": 755}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class VNet(nn.Module):\n \"\"\"\n V-Net based on `Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation\n `_.\n Adapted from `the official Caffe implementation\n `_. and `another pytorch implementation\n `_.\n The model supports 2D or 3D inputs.\n\n Args:\n spatial_dims: spatial dimension of the input data. Defaults to 3.\n in_channels: number of input channels for the network. Defaults to 1.\n The value should meet the condition that ``16 % in_channels == 0``.\n out_channels: number of output channels for the network. Defaults to 1.\n act: activation type in the network. Defaults to ``(\"elu\", {\"inplace\": True})``.\n dropout_prob: dropout ratio. Defaults to 0.5. Defaults to 3.\n dropout_dim: determine the dimensions of dropout. Defaults to 3.\n\n - ``dropout_dim = 1``, randomly zeroes some of the elements for each channel.\n - ``dropout_dim = 2``, Randomly zeroes out entire channels (a channel is a 2D feature map).\n - ``dropout_dim = 3``, Randomly zeroes out entire channels (a channel is a 3D feature map).\n bias: whether to have a bias term in convolution blocks. Defaults to False.\n According to `Performance Tuning Guide `_,\n if a conv layer is directly followed by a batch norm layer, bias should be False.\n\n \"\"\"\n\n def __init__(\n self,\n spatial_dims: int = 3,\n in_channels: int = 1,\n out_channels: int = 1,\n act: Union[Tuple[str, Dict], str] = (\"elu\", {\"inplace\": True}),\n dropout_prob: float = 0.5,\n dropout_dim: int = 3,\n bias: bool = False,\n ):\n super().__init__()\n\n if spatial_dims not in (2, 3):\n raise AssertionError(\"spatial_dims can only be 2 or 3.\")\n\n self.in_tr = InputTransition(spatial_dims, in_channels, 16, act, bias=bias)\n self.down_tr32 = DownTransition(spatial_dims, 16, 1, act, bias=bias)\n self.down_tr64 = DownTransition(spatial_dims, 32, 2, act, bias=bias)\n self.down_tr128 = DownTransition(spatial_dims, 64, 3, act, dropout_prob=dropout_prob, bias=bias)\n self.down_tr256 = DownTransition(spatial_dims, 128, 2, act, dropout_prob=dropout_prob, bias=bias)\n self.up_tr256 = UpTransition(spatial_dims, 256, 256, 2, act, dropout_prob=dropout_prob)\n self.up_tr128 = UpTransition(spatial_dims, 256, 128, 2, act, dropout_prob=dropout_prob)\n self.up_tr64 = UpTransition(spatial_dims, 128, 64, 1, act)\n self.up_tr32 = UpTransition(spatial_dims, 64, 32, 1, act)\n self.out_tr = OutputTransition(spatial_dims, 32, out_channels, act, bias=bias)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet.forward_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/vnet.py_VNet.forward_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/vnet.py", "file_name": "vnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 217, "end_line": 229, "span_ids": ["VNet.forward"], "tokens": 126}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class VNet(nn.Module):\n\n def forward(self, x):\n out16 = self.in_tr(x)\n out32 = self.down_tr32(out16)\n out64 = self.down_tr64(out32)\n out128 = self.down_tr128(out64)\n out256 = self.down_tr256(out128)\n x = self.up_tr256(out256, out128)\n x = self.up_tr128(x, out64)\n x = self.up_tr64(x, out32)\n x = self.up_tr32(x, out16)\n x = self.out_tr(x)\n return x", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normal_init_normal_init.if_getattr_m_weight_N.elif_cname_find_BatchNor.nn_init_constant__m_bias_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_normal_init_normal_init.if_getattr_m_weight_N.elif_cname_find_BatchNor.nn_init_constant__m_bias_", "embedding": null, "metadata": {"file_path": "monai/networks/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 152, "end_line": 170, "span_ids": ["normal_init"], "tokens": 266}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def normal_init(\n m, std: float = 0.02, normal_func: Callable[[torch.Tensor, float, float], Any] = torch.nn.init.normal_\n) -> None:\n \"\"\"\n Initialize the weight and bias tensors of `m' and its submodules to values from a normal distribution with a\n stddev of `std'. Weight tensors of convolution and linear modules are initialized with a mean of 0, batch\n norm modules with a mean of 1. The callable `normal_func', used to assign values, should have the same arguments\n as its default normal_(). This can be used with `nn.Module.apply` to visit submodules of a network.\n \"\"\"\n cname = m.__class__.__name__\n\n if getattr(m, \"weight\", None) is not None and (cname.find(\"Conv\") != -1 or cname.find(\"Linear\") != -1):\n normal_func(m.weight.data, 0.0, std)\n if getattr(m, \"bias\", None) is not None:\n nn.init.constant_(m.bias.data, 0.0)\n\n elif cname.find(\"BatchNorm\") != -1:\n normal_func(m.weight.data, 1.0, std)\n nn.init.constant_(m.bias.data, 0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_icnr_init_icnr_init.conv_weight_data_copy__ke": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/utils.py_icnr_init_icnr_init.conv_weight_data_copy__ke", "embedding": null, "metadata": {"file_path": "monai/networks/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 173, "end_line": 190, "span_ids": ["icnr_init"], "tokens": 191}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def icnr_init(conv, upsample_factor, init=nn.init.kaiming_normal_):\n \"\"\"\n ICNR initialization for 2D/3D kernels adapted from Aitken et al.,2017 , \"Checkerboard artifact free\n sub-pixel convolution\".\n \"\"\"\n out_channels, in_channels, *dims = conv.weight.shape\n scale_factor = upsample_factor ** len(dims)\n\n oc2 = int(out_channels / scale_factor)\n\n kernel = torch.zeros([oc2, in_channels] + dims)\n kernel = init(kernel)\n kernel = kernel.transpose(0, 1)\n kernel = kernel.reshape(oc2, in_channels, -1)\n kernel = kernel.repeat(1, 1, scale_factor)\n kernel = kernel.reshape([in_channels, out_channels] + dims)\n kernel = kernel.transpose(0, 1)\n conv.weight.data.copy_(kernel)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_from_typing_import_Callab_adaptor.map_only_names.return._v_ditems_k_for_k_v_in": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/adaptors.py_from_typing_import_Callab_adaptor.map_only_names.return._v_ditems_k_for_k_v_in", "embedding": null, "metadata": {"file_path": "monai/transforms/adaptors.py", "file_name": "adaptors.py", "file_type": "text/x-python", "category": "implementation", "start_line": 125, "end_line": 147, "span_ids": ["adaptor", "imports"], "tokens": 218}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Callable\n\nfrom monai.utils import export as _monai_export\n\n__all__ = [\"adaptor\", \"apply_alias\", \"to_kwargs\", \"FunctionSignature\"]\n\n\n@_monai_export(\"monai.transforms\")\ndef adaptor(function, outputs, inputs=None):\n def must_be_types_or_none(variable_name, variable, types):\n if variable is not None:\n if not isinstance(variable, types):\n raise TypeError(f\"'{variable_name}' must be None or one of {types} but is {type(variable)}\")\n\n def must_be_types(variable_name, variable, types):\n if not isinstance(variable, types):\n raise TypeError(f\"'{variable_name}' must be one of {types} but is {type(variable)}\")\n\n def map_names(ditems, input_map):\n return {input_map(k, k): v for k, v in ditems.items()}\n\n def map_only_names(ditems, input_map):\n return {v: ditems[k] for k, v in input_map.items()}\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.randomize_RandSpatialCropd.randomize.if_self_random_center_.self._slices._slice_None_get_rand": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.randomize_RandSpatialCropd.randomize.if_self_random_center_.self._slices._slice_None_get_rand", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 562, "end_line": 571, "span_ids": ["RandSpatialCropd.randomize"], "tokens": 200}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandSpatialCropd(Randomizable, MapTransform, InvertibleTransform):\n\n def randomize(self, img_size: Sequence[int]) -> None:\n self._size = fall_back_tuple(self.roi_size, img_size)\n if self.random_size:\n max_size = img_size if self.max_roi_size is None else fall_back_tuple(self.max_roi_size, img_size)\n if any(i > j for i, j in zip(self._size, max_size)):\n raise ValueError(f\"min ROI size: {self._size} is bigger than max ROI size: {max_size}.\")\n self._size = [self.R.randint(low=self._size[i], high=max_size[i] + 1) for i in range(len(img_size))]\n if self.random_center:\n valid_size = get_valid_patch_size(img_size, self._size)\n self._slices = (slice(None),) + get_random_patch(img_size, valid_size, self.R)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.__call___RandSpatialCropd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandSpatialCropd.__call___RandSpatialCropd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 580, "end_line": 597, "span_ids": ["RandSpatialCropd.__call__"], "tokens": 215}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandSpatialCropd(Randomizable, MapTransform, InvertibleTransform):\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n first_key: Union[Hashable, List] = self.first_key(d)\n if first_key == []:\n return d\n\n self.randomize(d[first_key].shape[1:]) # type: ignore\n if self._size is None:\n raise RuntimeError(\"self._size not specified.\")\n for key in self.key_iterator(d):\n if self.random_center:\n self.push_transform(d, key, {\"slices\": [(i.start, i.stop) for i in self._slices[1:]]}) # type: ignore\n d[key] = d[key][self._slices]\n else:\n self.push_transform(d, key)\n cropper = CenterSpatialCrop(self._size)\n d[key] = cropper(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSmooth_RandGaussianSmooth.__call__.return.GaussianSmooth_sigma_sigm": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSmooth_RandGaussianSmooth.__call__.return.GaussianSmooth_sigma_sigm", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1105, "end_line": 1155, "span_ids": ["RandGaussianSmooth.__call__", "RandGaussianSmooth.randomize", "RandGaussianSmooth", "RandGaussianSmooth.__init__"], "tokens": 488}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandGaussianSmooth(RandomizableTransform):\n \"\"\"\n Apply Gaussian smooth to the input data based on randomly selected `sigma` parameters.\n\n Args:\n sigma_x: randomly select sigma value for the first spatial dimension.\n sigma_y: randomly select sigma value for the second spatial dimension if have.\n sigma_z: randomly select sigma value for the third spatial dimension if have.\n prob: probability of Gaussian smooth.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n see also :py:meth:`monai.networks.layers.GaussianFilter`.\n\n \"\"\"\n\n backend = GaussianSmooth.backend\n\n def __init__(\n self,\n sigma_x: Tuple[float, float] = (0.25, 1.5),\n sigma_y: Tuple[float, float] = (0.25, 1.5),\n sigma_z: Tuple[float, float] = (0.25, 1.5),\n prob: float = 0.1,\n approx: str = \"erf\",\n ) -> None:\n RandomizableTransform.__init__(self, prob)\n self.sigma_x = sigma_x\n self.sigma_y = sigma_y\n self.sigma_z = sigma_z\n self.approx = approx\n\n self.x = self.sigma_x[0]\n self.y = self.sigma_y[0]\n self.z = self.sigma_z[0]\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n if not self._do_transform:\n return None\n self.x = self.R.uniform(low=self.sigma_x[0], high=self.sigma_x[1])\n self.y = self.R.uniform(low=self.sigma_y[0], high=self.sigma_y[1])\n self.z = self.R.uniform(low=self.sigma_z[0], high=self.sigma_z[1])\n\n def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor:\n if randomize:\n self.randomize()\n\n if not self._do_transform:\n return img\n\n sigma = ensure_tuple_size(tup=(self.x, self.y, self.z), dim=img.ndim - 1)\n return GaussianSmooth(sigma=sigma, approx=self.approx)(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.randomize_RandGaussianSharpen.randomize.self.a.self_R_uniform_low_self_a": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.randomize_RandGaussianSharpen.randomize.self.a.self_R_uniform_low_self_a", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1267, "end_line": 1280, "span_ids": ["RandGaussianSharpen.randomize"], "tokens": 302}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandGaussianSharpen(RandomizableTransform):\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n if not self._do_transform:\n return None\n self.x1 = self.R.uniform(low=self.sigma1_x[0], high=self.sigma1_x[1])\n self.y1 = self.R.uniform(low=self.sigma1_y[0], high=self.sigma1_y[1])\n self.z1 = self.R.uniform(low=self.sigma1_z[0], high=self.sigma1_z[1])\n sigma2_x = (self.sigma2_x, self.x1) if not isinstance(self.sigma2_x, Iterable) else self.sigma2_x\n sigma2_y = (self.sigma2_y, self.y1) if not isinstance(self.sigma2_y, Iterable) else self.sigma2_y\n sigma2_z = (self.sigma2_z, self.z1) if not isinstance(self.sigma2_z, Iterable) else self.sigma2_z\n self.x2 = self.R.uniform(low=sigma2_x[0], high=sigma2_x[1])\n self.y2 = self.R.uniform(low=sigma2_y[0], high=sigma2_y[1])\n self.z2 = self.R.uniform(low=sigma2_z[0], high=sigma2_z[1])\n self.a = self.R.uniform(low=self.alpha[0], high=self.alpha[1])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSmoothd_GaussianSmoothd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSmoothd_GaussianSmoothd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 895, "end_line": 927, "span_ids": ["GaussianSmoothd", "GaussianSmoothd.__call__", "GaussianSmoothd.__init__"], "tokens": 297}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianSmoothd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.GaussianSmooth`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n sigma: if a list of values, must match the count of spatial dimensions of input data,\n and apply every value in the list to 1 spatial dimension. if only 1 value provided,\n use it for all spatial dimensions.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n see also :py:meth:`monai.networks.layers.GaussianFilter`.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n backend = GaussianSmooth.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n sigma: Union[Sequence[float], float],\n approx: str = \"erf\",\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.converter = GaussianSmooth(sigma, approx=approx)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSmoothd_RandGaussianSmoothd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_RandGaussianSmoothd_RandGaussianSmoothd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 930, "end_line": 982, "span_ids": ["RandGaussianSmoothd.__init__", "RandGaussianSmoothd", "RandGaussianSmoothd.set_random_state", "RandGaussianSmoothd.__call__"], "tokens": 518}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandGaussianSmoothd(RandomizableTransform, MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.GaussianSmooth`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n sigma_x: randomly select sigma value for the first spatial dimension.\n sigma_y: randomly select sigma value for the second spatial dimension if have.\n sigma_z: randomly select sigma value for the third spatial dimension if have.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n see also :py:meth:`monai.networks.layers.GaussianFilter`.\n prob: probability of Gaussian smooth.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n backend = RandGaussianSmooth.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n sigma_x: Tuple[float, float] = (0.25, 1.5),\n sigma_y: Tuple[float, float] = (0.25, 1.5),\n sigma_z: Tuple[float, float] = (0.25, 1.5),\n approx: str = \"erf\",\n prob: float = 0.1,\n allow_missing_keys: bool = False,\n ) -> None:\n MapTransform.__init__(self, keys, allow_missing_keys)\n RandomizableTransform.__init__(self, prob)\n self.rand_smooth = RandGaussianSmooth(\n sigma_x=sigma_x, sigma_y=sigma_y, sigma_z=sigma_z, approx=approx, prob=1.0\n )\n\n def set_random_state(\n self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None\n ) -> \"RandGaussianSmoothd\":\n super().set_random_state(seed, state)\n self.rand_smooth.set_random_state(seed, state)\n return self\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n self.randomize(None)\n if not self._do_transform:\n return d\n\n # all the keys share the same random sigma\n self.rand_smooth.randomize(None)\n for key in self.key_iterator(d):\n d[key] = self.rand_smooth(d[key], randomize=False)\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSharpend_GaussianSharpend.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/dictionary.py_GaussianSharpend_GaussianSharpend.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 985, "end_line": 1023, "span_ids": ["GaussianSharpend.__init__", "GaussianSharpend.__call__", "GaussianSharpend"], "tokens": 420}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianSharpend(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.GaussianSharpen`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n sigma1: sigma parameter for the first gaussian kernel. if a list of values, must match the count\n of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension.\n if only 1 value provided, use it for all spatial dimensions.\n sigma2: sigma parameter for the second gaussian kernel. if a list of values, must match the count\n of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension.\n if only 1 value provided, use it for all spatial dimensions.\n alpha: weight parameter to compute the final result.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n see also :py:meth:`monai.networks.layers.GaussianFilter`.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n backend = GaussianSharpen.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n sigma1: Union[Sequence[float], float] = 3.0,\n sigma2: Union[Sequence[float], float] = 1.0,\n alpha: float = 30.0,\n approx: str = \"erf\",\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.converter = GaussianSharpen(sigma1, sigma2, alpha, approx=approx)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n for key in self.key_iterator(d):\n d[key] = self.converter(d[key])\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_VoteEnsemble_VoteEnsemble.__init__.self.num_classes.num_classes": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/array.py_VoteEnsemble_VoteEnsemble.__init__.self.num_classes.num_classes", "embedding": null, "metadata": {"file_path": "monai/transforms/post/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 577, "end_line": 600, "span_ids": ["VoteEnsemble.__init__", "VoteEnsemble"], "tokens": 245}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class VoteEnsemble(Ensemble, Transform):\n \"\"\"\n Execute vote ensemble on the input data.\n The input data can be a list or tuple of PyTorch Tensor with shape: [C[, H, W, D]],\n Or a single PyTorch Tensor with shape: [E[, C, H, W, D]], the `E` dimension represents\n the output data from different models.\n Typically, the input data is model output of segmentation task or classification task.\n\n Note:\n This vote transform expects the input data is discrete values. It can be multiple channels\n data in One-Hot format or single channel data. It will vote to select the most common data\n between items.\n The output data has the same shape as every item of the input data.\n\n Args:\n num_classes: if the input is single channel data instead of One-Hot, we can't get class number\n from channel, need to explicitly specify the number of classes to vote.\n\n \"\"\"\n\n backend = [TransformBackends.TORCH]\n\n def __init__(self, num_classes: Optional[int] = None) -> None:\n self.num_classes = num_classes", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_MeanEnsembled_MeanEnsembled.__init__.super___init___keys_en": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/post/dictionary.py_MeanEnsembled_MeanEnsembled.__init__.super___init___keys_en", "embedding": null, "metadata": {"file_path": "monai/transforms/post/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 372, "end_line": 404, "span_ids": ["MeanEnsembled", "MeanEnsembled.__init__"], "tokens": 431}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class MeanEnsembled(Ensembled):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.MeanEnsemble`.\n \"\"\"\n\n backend = MeanEnsemble.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n output_key: Optional[str] = None,\n weights: Optional[Union[Sequence[float], NdarrayOrTensor]] = None,\n ) -> None:\n \"\"\"\n Args:\n keys: keys of the corresponding items to be stack and execute ensemble.\n if only 1 key provided, suppose it's a PyTorch Tensor with data stacked on dimension `E`.\n output_key: the key to store ensemble result in the dictionary.\n if only 1 key provided in `keys`, `output_key` can be None and use `keys` as default.\n weights: can be a list or tuple of numbers for input data with shape: [E, C, H, W[, D]].\n or a Numpy ndarray or a PyTorch Tensor data.\n the `weights` will be added to input data from highest dimension, for example:\n 1. if the `weights` only has 1 dimension, it will be added to the `E` dimension of input data.\n 2. if the `weights` has 2 dimensions, it will be added to `E` and `C` dimensions.\n it's a typical practice to add weights for different classes:\n to ensemble 3 segmentation model outputs, every output has 4 channels(classes),\n so the input data shape can be: [3, 4, H, W, D].\n and add different `weights` for different classes, so the `weights` shape can be: [3, 4].\n for example: `weights = [[1, 2, 3, 4], [4, 3, 2, 1], [1, 1, 1, 1]]`.\n\n \"\"\"\n ensemble = MeanEnsemble(weights=weights)\n super().__init__(keys, ensemble, output_key)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate_RandRotate.__init__.self.z.0_0": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/array.py_RandRotate_RandRotate.__init__.self.z.0_0", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 755, "end_line": 816, "span_ids": ["RandRotate", "RandRotate.__init__"], "tokens": 764}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandRotate(RandomizableTransform):\n \"\"\"\n Randomly rotate the input arrays.\n\n Args:\n range_x: Range of rotation angle in radians in the plane defined by the first and second axes.\n If single number, angle is uniformly sampled from (-range_x, range_x).\n range_y: Range of rotation angle in radians in the plane defined by the first and third axes.\n If single number, angle is uniformly sampled from (-range_y, range_y).\n range_z: Range of rotation angle in radians in the plane defined by the second and third axes.\n If single number, angle is uniformly sampled from (-range_z, range_z).\n prob: Probability of rotation.\n keep_size: If it is False, the output shape is adapted so that the\n input array is contained completely in the output.\n If it is True, the output shape is the same as the input. Default is True.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"border\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n align_corners: Defaults to False.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n dtype: data type for resampling computation. Defaults to ``np.float64`` for best precision.\n If None, use the data type of input data. To be compatible with other modules,\n the output data type is always ``np.float32``.\n \"\"\"\n\n backend = Rotate.backend\n\n def __init__(\n self,\n range_x: Union[Tuple[float, float], float] = 0.0,\n range_y: Union[Tuple[float, float], float] = 0.0,\n range_z: Union[Tuple[float, float], float] = 0.0,\n prob: float = 0.1,\n keep_size: bool = True,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.BORDER,\n align_corners: bool = False,\n dtype: Union[DtypeLike, torch.dtype] = np.float64,\n ) -> None:\n RandomizableTransform.__init__(self, prob)\n self.range_x = ensure_tuple(range_x)\n if len(self.range_x) == 1:\n self.range_x = tuple(sorted([-self.range_x[0], self.range_x[0]]))\n self.range_y = ensure_tuple(range_y)\n if len(self.range_y) == 1:\n self.range_y = tuple(sorted([-self.range_y[0], self.range_y[0]]))\n self.range_z = ensure_tuple(range_z)\n if len(self.range_z) == 1:\n self.range_z = tuple(sorted([-self.range_z[0], self.range_z[0]]))\n\n self.keep_size = keep_size\n self.mode: GridSampleMode = look_up_option(mode, GridSampleMode)\n self.padding_mode: GridSamplePadMode = look_up_option(padding_mode, GridSamplePadMode)\n self.align_corners = align_corners\n self.dtype = dtype\n\n self.x = 0.0\n self.y = 0.0\n self.z = 0.0", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Orientationd.__call___Orientationd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/spatial/dictionary.py_Orientationd.__call___Orientationd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/spatial/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 362, "end_line": 375, "span_ids": ["Orientationd.__call__"], "tokens": 209}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Orientationd(MapTransform, InvertibleTransform):\n\n def __call__(\n self, data: Mapping[Union[Hashable, str], Dict[str, NdarrayOrTensor]]\n ) -> Dict[Hashable, NdarrayOrTensor]:\n d: Dict = dict(data)\n for key, meta_key, meta_key_postfix in self.key_iterator(d, self.meta_keys, self.meta_key_postfix):\n meta_key = meta_key or f\"{key}_{meta_key_postfix}\"\n # create metadata if necessary\n if meta_key not in d:\n d[meta_key] = {\"affine\": None}\n meta_data = d[meta_key]\n d[key], old_affine, new_affine = self.ornt_transform(d[key], affine=meta_data[\"affine\"])\n self.push_transform(d, key, extra_info={\"meta_key\": meta_key, \"old_affine\": old_affine})\n d[meta_key][\"affine\"] = new_affine\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_Lambda_Lambda.__init__.self.func.func": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_Lambda_Lambda.__init__.self.func.func", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 633, "end_line": 660, "span_ids": ["Lambda", "Lambda.__init__"], "tokens": 194}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Lambda(Transform):\n \"\"\"\n Apply a user-defined lambda as a transform.\n\n For example:\n\n .. code-block:: python\n :emphasize-lines: 2\n\n image = np.ones((10, 2, 2))\n lambd = Lambda(func=lambda x: x[:4, :, :])\n print(lambd(image).shape)\n (4, 2, 2)\n\n Args:\n func: Lambda/function to be applied.\n\n Raises:\n TypeError: When ``func`` is not an ``Optional[Callable]``.\n\n \"\"\"\n\n backend = [TransformBackends.TORCH, TransformBackends.NUMPY]\n\n def __init__(self, func: Optional[Callable] = None) -> None:\n if func is not None and not callable(func):\n raise TypeError(f\"func must be None or callable but is {type(func).__name__}.\")\n self.func = func", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_importlib_alias.return._outer": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/aliases.py_importlib_alias.return._outer", "embedding": null, "metadata": {"file_path": "monai/utils/aliases.py", "file_name": "aliases.py", "file_type": "text/x-python", "category": "implementation", "start_line": 16, "end_line": 43, "span_ids": ["alias", "docstring"], "tokens": 162}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import importlib\nimport inspect\nimport sys\nimport threading\n\nalias_lock = threading.RLock()\nGlobalAliases = {}\n\n__all__ = [\"alias\", \"resolve_name\"]\n\n\ndef alias(*names):\n \"\"\"\n Stores the decorated function or class in the global aliases table under the given names and as the `__aliases__`\n member of the decorated object. This new member will contain all alias names declared for that object.\n \"\"\"\n\n def _outer(obj):\n for n in names:\n with alias_lock:\n GlobalAliases[n] = obj\n\n # set the member list __aliases__ to contain the alias names defined by the decorator for `obj`\n obj.__aliases__ = getattr(obj, \"__aliases__\", ()) + tuple(names)\n\n return obj\n\n return _outer", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_ensure_tuple_rep_ensure_tuple_rep.raise_ValueError_f_Sequen": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/misc.py_ensure_tuple_rep_ensure_tuple_rep.raise_ValueError_f_Sequen", "embedding": null, "metadata": {"file_path": "monai/utils/misc.py", "file_name": "misc.py", "file_type": "text/x-python", "category": "implementation", "start_line": 104, "end_line": 136, "span_ids": ["ensure_tuple_rep"], "tokens": 298}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def ensure_tuple_rep(tup: Any, dim: int) -> Tuple[Any, ...]:\n \"\"\"\n Returns a copy of `tup` with `dim` values by either shortened or duplicated input.\n\n Raises:\n ValueError: When ``tup`` is a sequence and ``tup`` length is not ``dim``.\n\n Examples::\n\n >>> ensure_tuple_rep(1, 3)\n (1, 1, 1)\n >>> ensure_tuple_rep(None, 3)\n (None, None, None)\n >>> ensure_tuple_rep('test', 3)\n ('test', 'test', 'test')\n >>> ensure_tuple_rep([1, 2, 3], 3)\n (1, 2, 3)\n >>> ensure_tuple_rep(range(3), 3)\n (0, 1, 2)\n >>> ensure_tuple_rep([1, 2], 3)\n ValueError: Sequence must have length 3, got length 2.\n\n \"\"\"\n if isinstance(tup, torch.Tensor):\n tup = tup.detach().cpu().numpy()\n if isinstance(tup, np.ndarray):\n tup = tup.tolist()\n if not issequenceiterable(tup):\n return (tup,) * dim\n if len(tup) == dim:\n return tuple(tup)\n\n raise ValueError(f\"Sequence must have length {dim}, got {len(tup)}.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_itertools_TestAdaptors.test_single_in_single_out.None_4": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_adaptors.py_itertools_TestAdaptors.test_single_in_single_out.None_4", "embedding": null, "metadata": {"file_path": "tests/test_adaptors.py", "file_name": "test_adaptors.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 53, "span_ids": ["TestAdaptors.test_function_signature", "TestAdaptors.test_single_in_single_out", "TestAdaptors", "docstring"], "tokens": 338}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import itertools\nimport unittest\n\nfrom monai.transforms.adaptors import FunctionSignature, adaptor, apply_alias, to_kwargs\n\n\nclass TestAdaptors(unittest.TestCase):\n def test_function_signature(self):\n def foo(image, label=None, *a, **kw):\n pass\n\n _ = FunctionSignature(foo)\n\n def test_single_in_single_out(self):\n def foo(image):\n return image * 2\n\n it = itertools.product([\"image\", [\"image\"]], [None, \"image\", [\"image\"], {\"image\": \"image\"}])\n for i in it:\n d = {\"image\": 2}\n dres = adaptor(foo, i[0], i[1])(d)\n self.assertEqual(dres[\"image\"], 4)\n\n d = {\"image\": 2}\n dres = adaptor(foo, \"image\")(d)\n self.assertEqual(dres[\"image\"], 4)\n\n d = {\"image\": 2}\n dres = adaptor(foo, \"image\", \"image\")(d)\n self.assertEqual(dres[\"image\"], 4)\n\n d = {\"image\": 2}\n dres = adaptor(foo, \"image\", {\"image\": \"image\"})(d)\n self.assertEqual(dres[\"image\"], 4)\n\n d = {\"img\": 2}\n dres = adaptor(foo, \"img\", {\"img\": \"image\"})(d)\n self.assertEqual(dres[\"img\"], 4)\n\n d = {\"img\": 2}\n dres = adaptor(foo, [\"img\"], {\"img\": \"image\"})(d)\n self.assertEqual(dres[\"img\"], 4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine.test_to_norm_affine_ill_TestToNormAffine.test_to_norm_affine_ill.with_self_assertRaises_Va.to_norm_affine_affine_sr": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_affine_transform.py_TestToNormAffine.test_to_norm_affine_ill_TestToNormAffine.test_to_norm_affine_ill.with_self_assertRaises_Va.to_norm_affine_affine_sr", "embedding": null, "metadata": {"file_path": "tests/test_affine_transform.py", "file_name": "test_affine_transform.py", "file_type": "text/x-python", "category": "test", "start_line": 100, "end_line": 106, "span_ids": ["TestToNormAffine.test_to_norm_affine_ill"], "tokens": 119}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestToNormAffine(unittest.TestCase):\n\n @parameterized.expand(TEST_ILL_TO_NORM_AFFINE_CASES)\n def test_to_norm_affine_ill(self, affine, src_size, dst_size, align_corners):\n with self.assertRaises(TypeError):\n to_norm_affine(affine, src_size, dst_size, align_corners)\n with self.assertRaises(ValueError):\n affine = torch.as_tensor(affine, device=torch.device(\"cpu:0\"), dtype=torch.float32)\n to_norm_affine(affine, src_size, dst_size, align_corners)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset_TestArrayDataset.test_shape.with_tempfile_TemporaryDi.None_13": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset_TestArrayDataset.test_shape.with_tempfile_TemporaryDi.None_13", "embedding": null, "metadata": {"file_path": "tests/test_arraydataset.py", "file_name": "test_arraydataset.py", "file_type": "text/x-python", "category": "test", "start_line": 57, "end_line": 90, "span_ids": ["TestArrayDataset", "TestArrayDataset.test_shape"], "tokens": 480}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestArrayDataset(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3])\n def test_shape(self, img_transform, label_transform, indices, expected_shape):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=(128, 128, 128)), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n test_image1 = os.path.join(tempdir, \"test_image1.nii.gz\")\n test_seg1 = os.path.join(tempdir, \"test_seg1.nii.gz\")\n test_image2 = os.path.join(tempdir, \"test_image2.nii.gz\")\n test_seg2 = os.path.join(tempdir, \"test_seg2.nii.gz\")\n nib.save(test_image, test_image1)\n nib.save(test_image, test_seg1)\n nib.save(test_image, test_image2)\n nib.save(test_image, test_seg2)\n test_images = [test_image1, test_image2]\n test_segs = [test_seg1, test_seg2]\n test_labels = [1, 1]\n dataset = ArrayDataset(test_images, img_transform, test_segs, label_transform, test_labels, None)\n self.assertEqual(len(dataset), 2)\n dataset.set_random_state(1234)\n data1 = dataset[0]\n data2 = dataset[1]\n\n self.assertTupleEqual(data1[indices[0]].shape, expected_shape)\n self.assertTupleEqual(data1[indices[1]].shape, expected_shape)\n np.testing.assert_allclose(data1[indices[0]], data1[indices[1]])\n self.assertTupleEqual(data2[indices[0]].shape, expected_shape)\n self.assertTupleEqual(data2[indices[1]].shape, expected_shape)\n np.testing.assert_allclose(data2[indices[0]], data2[indices[0]])\n\n dataset = ArrayDataset(test_images, img_transform, test_segs, label_transform, test_labels, None)\n dataset.set_random_state(1234)\n _ = dataset[0]\n data2_new = dataset[1]\n np.testing.assert_allclose(data2[indices[0]], data2_new[indices[0]], atol=1e-3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_default_none_TestArrayDataset.test_default_none.with_tempfile_TemporaryDi.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_default_none_TestArrayDataset.test_default_none.with_tempfile_TemporaryDi.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_arraydataset.py", "file_name": "test_arraydataset.py", "file_type": "text/x-python", "category": "test", "start_line": 92, "end_line": 113, "span_ids": ["TestArrayDataset.test_default_none"], "tokens": 270}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestArrayDataset(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_4])\n def test_default_none(self, img_transform, expected_shape):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=(128, 128, 128)), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n test_image1 = os.path.join(tempdir, \"test_image1.nii.gz\")\n test_image2 = os.path.join(tempdir, \"test_image2.nii.gz\")\n nib.save(test_image, test_image1)\n nib.save(test_image, test_image2)\n test_images = [test_image1, test_image2]\n dataset = ArrayDataset(test_images, img_transform)\n self.assertEqual(len(dataset), 2)\n dataset.set_random_state(1234)\n data1 = dataset[0]\n data2 = dataset[1]\n self.assertTupleEqual(data1.shape, expected_shape)\n self.assertTupleEqual(data2.shape, expected_shape)\n\n dataset = ArrayDataset(test_images, img_transform)\n dataset.set_random_state(1234)\n _ = dataset[0]\n data2_new = dataset[1]\n np.testing.assert_allclose(data2, data2_new, atol=1e-3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_TestArrayDataset.test_dataloading_img.with_tempfile_TemporaryDi.None_6": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_TestArrayDataset.test_dataloading_img.with_tempfile_TemporaryDi.None_6", "embedding": null, "metadata": {"file_path": "tests/test_arraydataset.py", "file_name": "test_arraydataset.py", "file_type": "text/x-python", "category": "test", "start_line": 116, "end_line": 135, "span_ids": ["TestArrayDataset.test_dataloading_img"], "tokens": 282}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestArrayDataset(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_4])\n def test_dataloading_img(self, img_transform, expected_shape):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=(128, 128, 128)), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n test_image1 = os.path.join(tempdir, \"test_image1.nii.gz\")\n test_image2 = os.path.join(tempdir, \"test_image2.nii.gz\")\n nib.save(test_image, test_image1)\n nib.save(test_image, test_image2)\n test_images = [test_image1, test_image2]\n dataset = ArrayDataset(test_images, img_transform)\n self.assertEqual(len(dataset), 2)\n dataset.set_random_state(1234)\n n_workers = 0 if sys.platform == \"win32\" else 2\n loader = DataLoader(dataset, batch_size=10, num_workers=n_workers)\n imgs = next(iter(loader)) # test batching\n np.testing.assert_allclose(imgs.shape, [2] + list(expected_shape))\n\n dataset.set_random_state(1234)\n new_imgs = next(iter(loader)) # test batching\n np.testing.assert_allclose(imgs, new_imgs, atol=1e-3)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_label_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_arraydataset.py_TestArrayDataset.test_dataloading_img_label_", "embedding": null, "metadata": {"file_path": "tests/test_arraydataset.py", "file_name": "test_arraydataset.py", "file_type": "text/x-python", "category": "test", "start_line": 137, "end_line": 166, "span_ids": ["impl:9", "TestArrayDataset.test_dataloading_img_label"], "tokens": 375}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestArrayDataset(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_4])\n def test_dataloading_img_label(self, img_transform, expected_shape):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=(128, 128, 128)), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n test_image1 = os.path.join(tempdir, \"test_image1.nii.gz\")\n test_image2 = os.path.join(tempdir, \"test_image2.nii.gz\")\n test_label1 = os.path.join(tempdir, \"test_label1.nii.gz\")\n test_label2 = os.path.join(tempdir, \"test_label2.nii.gz\")\n nib.save(test_image, test_image1)\n nib.save(test_image, test_image2)\n nib.save(test_image, test_label1)\n nib.save(test_image, test_label2)\n test_images = [test_image1, test_image2]\n test_labels = [test_label1, test_label2]\n dataset = ArrayDataset(test_images, img_transform, test_labels, img_transform)\n self.assertEqual(len(dataset), 2)\n dataset.set_random_state(1234)\n n_workers = 0 if sys.platform == \"win32\" else 2\n loader = DataLoader(dataset, batch_size=10, num_workers=n_workers)\n data = next(iter(loader)) # test batching\n np.testing.assert_allclose(data[0].shape, [2] + list(expected_shape))\n\n dataset.set_random_state(1234)\n new_data = next(iter(loader)) # test batching\n np.testing.assert_allclose(data[0], new_data[0], atol=1e-3)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_saver.py_csv_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_csv_saver.py_csv_", "embedding": null, "metadata": {"file_path": "tests/test_csv_saver.py", "file_name": "test_csv_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestCSVSaver.test_saved_content", "TestCSVSaver", "impl", "docstring"], "tokens": 230}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import csv\nimport os\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport torch\n\nfrom monai.data import CSVSaver\n\n\nclass TestCSVSaver(unittest.TestCase):\n def test_saved_content(self):\n with tempfile.TemporaryDirectory() as tempdir:\n saver = CSVSaver(output_dir=tempdir, filename=\"predictions.csv\", delimiter=\"\\t\")\n meta_data = {\"filename_or_obj\": [\"testfile\" + str(i) for i in range(8)]}\n saver.save_batch(torch.zeros(8), meta_data)\n saver.finalize()\n filepath = os.path.join(tempdir, \"predictions.csv\")\n self.assertTrue(os.path.exists(filepath))\n with open(filepath) as f:\n reader = csv.reader(f, delimiter=\"\\t\")\n i = 0\n for row in reader:\n self.assertEqual(row[0], \"testfile\" + str(i))\n self.assertEqual(np.array(row[1:]).astype(np.float32), 0.0)\n i += 1\n self.assertEqual(i, 8)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataset.py_os_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dataset.py_os_", "embedding": null, "metadata": {"file_path": "tests/test_dataset.py", "file_name": "test_dataset.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 93, "span_ids": ["TestDataset.test_shape", "impl:3", "TestDataset", "docstring"], "tokens": 864}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport nibabel as nib\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.data import Dataset\nfrom monai.transforms import Compose, LoadImaged, SimulateDelayd\n\nTEST_CASE_1 = [(128, 128, 128)]\n\n\nclass TestDataset(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1])\n def test_shape(self, expected_shape):\n test_image = nib.Nifti1Image(np.random.randint(0, 2, size=[128, 128, 128]), np.eye(4))\n with tempfile.TemporaryDirectory() as tempdir:\n nib.save(test_image, os.path.join(tempdir, \"test_image1.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_label1.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_extra1.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_image2.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_label2.nii.gz\"))\n nib.save(test_image, os.path.join(tempdir, \"test_extra2.nii.gz\"))\n test_data = [\n {\n \"image\": os.path.join(tempdir, \"test_image1.nii.gz\"),\n \"label\": os.path.join(tempdir, \"test_label1.nii.gz\"),\n \"extra\": os.path.join(tempdir, \"test_extra1.nii.gz\"),\n },\n {\n \"image\": os.path.join(tempdir, \"test_image2.nii.gz\"),\n \"label\": os.path.join(tempdir, \"test_label2.nii.gz\"),\n \"extra\": os.path.join(tempdir, \"test_extra2.nii.gz\"),\n },\n ]\n test_transform = Compose(\n [\n LoadImaged(keys=[\"image\", \"label\", \"extra\"]),\n SimulateDelayd(keys=[\"image\", \"label\", \"extra\"], delay_time=[1e-7, 1e-6, 1e-5]),\n ]\n )\n dataset = Dataset(data=test_data, transform=test_transform)\n data1 = dataset[0]\n data2 = dataset[1]\n\n self.assertTupleEqual(data1[\"image\"].shape, expected_shape)\n self.assertTupleEqual(data1[\"label\"].shape, expected_shape)\n self.assertTupleEqual(data1[\"extra\"].shape, expected_shape)\n self.assertTupleEqual(data2[\"image\"].shape, expected_shape)\n self.assertTupleEqual(data2[\"label\"].shape, expected_shape)\n self.assertTupleEqual(data2[\"extra\"].shape, expected_shape)\n\n dataset = Dataset(data=test_data, transform=LoadImaged(keys=[\"image\", \"label\", \"extra\"]))\n data1_simple = dataset[0]\n data2_simple = dataset[1]\n data3_simple = dataset[-1]\n data4_simple = dataset[[0, 1]]\n\n self.assertTupleEqual(data1_simple[\"image\"].shape, expected_shape)\n self.assertTupleEqual(data1_simple[\"label\"].shape, expected_shape)\n self.assertTupleEqual(data1_simple[\"extra\"].shape, expected_shape)\n self.assertTupleEqual(data2_simple[\"image\"].shape, expected_shape)\n self.assertTupleEqual(data2_simple[\"label\"].shape, expected_shape)\n self.assertTupleEqual(data2_simple[\"extra\"].shape, expected_shape)\n self.assertTupleEqual(data3_simple[\"image\"].shape, expected_shape)\n self.assertTupleEqual(data3_simple[\"label\"].shape, expected_shape)\n self.assertTupleEqual(data3_simple[\"extra\"].shape, expected_shape)\n self.assertTupleEqual(data4_simple[0][\"image\"].shape, expected_shape)\n self.assertTupleEqual(data4_simple[1][\"label\"].shape, expected_shape)\n self.assertTupleEqual(data4_simple[-1][\"extra\"].shape, expected_shape)\n\n data4_list = dataset[0:1]\n self.assertEqual(len(data4_list), 1)\n for d in data4_list:\n self.assertTupleEqual(d[\"image\"].shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decathlondataset.py_os_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_decathlondataset.py_os_", "embedding": null, "metadata": {"file_path": "tests/test_decathlondataset.py", "file_name": "test_decathlondataset.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 98, "span_ids": ["TestDecathlonDataset", "TestDecathlonDataset.test_values", "impl", "docstring"], "tokens": 792}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport shutil\nimport unittest\nfrom pathlib import Path\nfrom urllib.error import ContentTooShortError, HTTPError\n\nfrom monai.apps import DecathlonDataset\nfrom monai.transforms import AddChanneld, Compose, LoadImaged, ScaleIntensityd, ToTensord\nfrom monai.utils.enums import PostFix\nfrom tests.utils import skip_if_quick\n\n\nclass TestDecathlonDataset(unittest.TestCase):\n @skip_if_quick\n def test_values(self):\n testing_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), \"testing_data\")\n transform = Compose(\n [\n LoadImaged(keys=[\"image\", \"label\"]),\n AddChanneld(keys=[\"image\", \"label\"]),\n ScaleIntensityd(keys=\"image\"),\n ToTensord(keys=[\"image\", \"label\"]),\n ]\n )\n\n def _test_dataset(dataset):\n self.assertEqual(len(dataset), 52)\n self.assertTrue(\"image\" in dataset[0])\n self.assertTrue(\"label\" in dataset[0])\n self.assertTrue(PostFix.meta(\"image\") in dataset[0])\n self.assertTupleEqual(dataset[0][\"image\"].shape, (1, 36, 47, 44))\n\n try: # will start downloading if testing_dir doesn't have the Decathlon files\n data = DecathlonDataset(\n root_dir=testing_dir,\n task=\"Task04_Hippocampus\",\n transform=transform,\n section=\"validation\",\n download=True,\n copy_cache=False,\n )\n except (ContentTooShortError, HTTPError, RuntimeError) as e:\n print(str(e))\n if isinstance(e, RuntimeError):\n # FIXME: skip MD5 check as current downloading method may fail\n self.assertTrue(str(e).startswith(\"md5 check\"))\n return # skipping this test due the network connection errors\n\n _test_dataset(data)\n data = DecathlonDataset(\n root_dir=testing_dir, task=\"Task04_Hippocampus\", transform=transform, section=\"validation\", download=False\n )\n _test_dataset(data)\n self.assertTrue(data[0][PostFix.meta(\"image\")][\"filename_or_obj\"].endswith(\"hippocampus_163.nii.gz\"))\n self.assertTrue(data[0][PostFix.meta(\"label\")][\"filename_or_obj\"].endswith(\"hippocampus_163.nii.gz\"))\n # test validation without transforms\n data = DecathlonDataset(root_dir=testing_dir, task=\"Task04_Hippocampus\", section=\"validation\", download=False)\n self.assertTupleEqual(data[0][\"image\"].shape, (36, 47, 44))\n self.assertEqual(len(data), 52)\n data = DecathlonDataset(root_dir=testing_dir, task=\"Task04_Hippocampus\", section=\"training\", download=False)\n self.assertTupleEqual(data[0][\"image\"].shape, (34, 56, 31))\n self.assertEqual(len(data), 208)\n\n # test dataset properties\n data = DecathlonDataset(\n root_dir=Path(testing_dir), task=\"Task04_Hippocampus\", section=\"validation\", download=False\n )\n properties = data.get_properties(keys=\"labels\")\n self.assertDictEqual(properties[\"labels\"], {\"0\": \"background\", \"1\": \"Anterior\", \"2\": \"Posterior\"})\n\n shutil.rmtree(os.path.join(testing_dir, \"Task04_Hippocampus\"))\n try:\n DecathlonDataset(\n root_dir=testing_dir,\n task=\"Task04_Hippocampus\",\n transform=transform,\n section=\"validation\",\n download=False,\n )\n except RuntimeError as e:\n print(str(e))\n self.assertTrue(str(e).startswith(\"Cannot find dataset directory\"))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensemble_evaluator.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_ensemble_evaluator.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_ensemble_evaluator.py", "file_name": "test_ensemble_evaluator.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 86, "span_ids": ["TestEnsembleEvaluator", "TestEnsembleEvaluator.test_content", "impl", "docstring"], "tokens": 533}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom ignite.engine import EventEnum, Events\n\nfrom monai.engines import EnsembleEvaluator\n\n\nclass TestEnsembleEvaluator(unittest.TestCase):\n def test_content(self):\n device = torch.device(\"cpu:0\")\n\n class TestDataset(torch.utils.data.Dataset):\n def __len__(self):\n return 8\n\n def __getitem__(self, index):\n return {\"image\": torch.tensor([index]), \"label\": torch.zeros(1)}\n\n val_loader = torch.utils.data.DataLoader(TestDataset())\n\n class TestNet(torch.nn.Module):\n def __init__(self, func):\n super().__init__()\n self.func = func\n\n def forward(self, x):\n return self.func(x)\n\n net0 = TestNet(lambda x: x + 1)\n net1 = TestNet(lambda x: x + 2)\n net2 = TestNet(lambda x: x + 3)\n net3 = TestNet(lambda x: x + 4)\n net4 = TestNet(lambda x: x + 5)\n\n class CustomEvents(EventEnum):\n FOO_EVENT = \"foo_event\"\n BAR_EVENT = \"bar_event\"\n\n val_engine = EnsembleEvaluator(\n device=device,\n val_data_loader=val_loader,\n networks=[net0, net1, net2, net3, net4],\n pred_keys=[\"pred0\", \"pred1\", \"pred2\", \"pred3\", \"pred4\"],\n event_names=[\"bwd_event\", \"opt_event\", CustomEvents],\n event_to_attr={CustomEvents.FOO_EVENT: \"foo\", \"opt_event\": \"opt\"},\n )\n\n @val_engine.on(Events.ITERATION_COMPLETED)\n def run_transform(engine):\n for i in range(5):\n expected_value = engine.state.iteration + i\n torch.testing.assert_allclose(engine.state.output[0][f\"pred{i}\"].item(), expected_value)\n\n @val_engine.on(Events.EPOCH_COMPLETED)\n def trigger_custom_event():\n val_engine.fire_event(CustomEvents.FOO_EVENT)\n val_engine.fire_event(CustomEvents.BAR_EVENT)\n val_engine.fire_event(\"bwd_event\")\n val_engine.fire_event(\"opt_event\")\n\n @val_engine.on(CustomEvents.FOO_EVENT)\n def do_foo_op():\n self.assertEqual(val_engine.state.foo, 0)\n\n @val_engine.on(\"opt_event\")\n def do_bar_op():\n self.assertEqual(val_engine.state.opt, 0)\n\n val_engine.run()\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpen.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpen.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_sharpen.py", "file_name": "test_gaussian_sharpen.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 91, "span_ids": ["TestGaussianSharpen.test_value", "TestGaussianSharpen", "impl:7", "docstring"], "tokens": 796}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom parameterized import parameterized\n\nfrom monai.transforms import GaussianSharpen\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nTESTS = []\n\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {},\n p([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n p(\n [\n [\n [4.1081963, 3.4950666, 4.1081963],\n [3.7239995, 2.8491793, 3.7239995],\n [4.569839, 3.9529324, 4.569839],\n ],\n [[10.616725, 9.081067, 10.616725], [9.309998, 7.12295, 9.309998], [11.078365, 9.538931, 11.078365]],\n ]\n ),\n ]\n )\n\n TESTS.append(\n [\n {\"sigma1\": 1.0, \"sigma2\": 0.75, \"alpha\": 20},\n p([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n p(\n [\n [\n [4.513644, 4.869134, 4.513644],\n [8.467242, 9.4004135, 8.467242],\n [10.416813, 12.0653515, 10.416813],\n ],\n [\n [15.711488, 17.569994, 15.711488],\n [21.16811, 23.501041, 21.16811],\n [21.614658, 24.766209, 21.614658],\n ],\n ]\n ),\n ]\n )\n\n TESTS.append(\n [\n {\"sigma1\": (0.5, 1.0), \"sigma2\": (0.5, 0.75), \"alpha\": 20},\n p([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n p(\n [\n [\n [3.3324685, 3.335536, 3.3324673],\n [7.7666636, 8.16056, 7.7666636],\n [12.662973, 14.317837, 12.6629715],\n ],\n [\n [15.329051, 16.57557, 15.329051],\n [19.41665, 20.40139, 19.416655],\n [24.659554, 27.557873, 24.659554],\n ],\n ]\n ),\n ]\n )\n\n\nclass TestGaussianSharpen(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, argments, image, expected_data):\n result = GaussianSharpen(**argments)(image)\n assert_allclose(result, expected_data, atol=0, rtol=1e-4, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpend.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_sharpend.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_sharpend.py", "file_name": "test_gaussian_sharpend.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 91, "span_ids": ["TestGaussianSharpend.test_value", "TestGaussianSharpend", "impl:7", "docstring"], "tokens": 837}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import GaussianSharpend\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\"keys\": \"img\"},\n {\"img\": p(np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]))},\n np.array(\n [\n [\n [4.1081963, 3.4950666, 4.1081963],\n [3.7239995, 2.8491793, 3.7239995],\n [4.569839, 3.9529324, 4.569839],\n ],\n [[10.616725, 9.081067, 10.616725], [9.309998, 7.12295, 9.309998], [11.078365, 9.538931, 11.078365]],\n ]\n ),\n ]\n )\n\n TESTS.append(\n [\n {\"keys\": \"img\", \"sigma1\": 1.0, \"sigma2\": 0.75, \"alpha\": 20},\n {\"img\": p(np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]))},\n np.array(\n [\n [\n [4.513644, 4.869134, 4.513644],\n [8.467242, 9.4004135, 8.467242],\n [10.416813, 12.0653515, 10.416813],\n ],\n [\n [15.711488, 17.569994, 15.711488],\n [21.16811, 23.501041, 21.16811],\n [21.614658, 24.766209, 21.614658],\n ],\n ]\n ),\n ]\n )\n\n TESTS.append(\n [\n {\"keys\": \"img\", \"sigma1\": (0.5, 1.0), \"sigma2\": (0.5, 0.75), \"alpha\": 20},\n {\"img\": p(np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]))},\n np.array(\n [\n [\n [3.3324685, 3.335536, 3.3324673],\n [7.7666636, 8.16056, 7.7666636],\n [12.662973, 14.317837, 12.6629715],\n ],\n [\n [15.329051, 16.57557, 15.329051],\n [19.41665, 20.40139, 19.416655],\n [24.659554, 27.557873, 24.659554],\n ],\n ]\n ),\n ]\n )\n\n\nclass TestGaussianSharpend(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, argments, image, expected_data):\n result = GaussianSharpend(**argments)(image)\n assert_allclose(result[\"img\"], expected_data, rtol=1e-4, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smooth.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smooth.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_smooth.py", "file_name": "test_gaussian_smooth.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 95, "span_ids": ["TestGaussianSmooth", "impl:7", "TestGaussianSmooth.test_value", "docstring"], "tokens": 801}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom parameterized import parameterized\n\nfrom monai.transforms import GaussianSmooth\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nTESTS = []\n\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\"sigma\": 1.5},\n p([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n p(\n [\n [\n [0.59167546, 0.69312394, 0.59167546],\n [0.7956997, 0.93213004, 0.7956997],\n [0.7668002, 0.8982755, 0.7668002],\n ],\n [\n [1.6105323, 1.8866735, 1.6105323],\n [1.9892492, 2.3303251, 1.9892492],\n [1.7856569, 2.091825, 1.7856569],\n ],\n ]\n ),\n ]\n )\n\n TESTS.append(\n [\n {\"sigma\": 0.5},\n p([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n p(\n [\n [\n [0.8424794, 0.99864554, 0.8424794],\n [1.678146, 1.9892154, 1.678146],\n [1.9889624, 2.3576462, 1.9889624],\n ],\n [\n [2.966061, 3.5158648, 2.966061],\n [4.1953645, 4.973038, 4.1953645],\n [4.112544, 4.8748655, 4.1125436],\n ],\n ]\n ),\n ]\n )\n\n TESTS.append(\n [\n {\"sigma\": [1.5, 0.5]},\n p([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]),\n p(\n [\n [\n [0.8542037, 1.0125432, 0.8542037],\n [1.1487541, 1.3616928, 1.1487541],\n [1.1070318, 1.3122368, 1.1070318],\n ],\n [\n [2.3251305, 2.756128, 2.3251305],\n [2.8718853, 3.4042323, 2.8718853],\n [2.5779586, 3.0558217, 2.5779586],\n ],\n ]\n ),\n ]\n )\n\n\nclass TestGaussianSmooth(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, argments, image, expected_data):\n result = GaussianSmooth(**argments)(image)\n assert_allclose(result, expected_data, atol=0, rtol=1e-4, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smoothd.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_smoothd.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_smoothd.py", "file_name": "test_gaussian_smoothd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 95, "span_ids": ["TestGaussianSmoothd", "impl:7", "TestGaussianSmoothd.test_value", "docstring"], "tokens": 846}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import GaussianSmoothd\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\"keys\": \"img\", \"sigma\": 1.5},\n {\"img\": p(np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]))},\n np.array(\n [\n [\n [0.59167546, 0.69312394, 0.59167546],\n [0.7956997, 0.93213004, 0.7956997],\n [0.7668002, 0.8982755, 0.7668002],\n ],\n [\n [1.6105323, 1.8866735, 1.6105323],\n [1.9892492, 2.3303251, 1.9892492],\n [1.7856569, 2.091825, 1.7856569],\n ],\n ]\n ),\n ]\n )\n\n TESTS.append(\n [\n {\"keys\": \"img\", \"sigma\": 0.5},\n {\"img\": p(np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]))},\n np.array(\n [\n [\n [0.8424794, 0.99864554, 0.8424794],\n [1.678146, 1.9892154, 1.678146],\n [1.9889624, 2.3576462, 1.9889624],\n ],\n [\n [2.966061, 3.5158648, 2.966061],\n [4.1953645, 4.973038, 4.1953645],\n [4.112544, 4.8748655, 4.1125436],\n ],\n ]\n ),\n ]\n )\n\n TESTS.append(\n [\n {\"keys\": \"img\", \"sigma\": [1.5, 0.5]},\n {\"img\": p(np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]))},\n np.array(\n [\n [\n [0.8542037, 1.0125432, 0.8542037],\n [1.1487541, 1.3616928, 1.1487541],\n [1.1070318, 1.3122368, 1.1070318],\n ],\n [\n [2.3251305, 2.756128, 2.3251305],\n [2.8718853, 3.4042323, 2.8718853],\n [2.5779586, 3.0558217, 2.5779586],\n ],\n ]\n ),\n ]\n )\n\n\nclass TestGaussianSmoothd(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, argments, image, expected_data):\n result = GaussianSmoothd(**argments)(image)\n assert_allclose(result[\"img\"], expected_data, rtol=1e-4, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_two_save_one_load_TestHandlerCheckpointLoader.test_two_save_one_load.with_tempfile_TemporaryDi.torch_testing_assert_allc": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_loader.py_TestHandlerCheckpointLoader.test_two_save_one_load_TestHandlerCheckpointLoader.test_two_save_one_load.with_tempfile_TemporaryDi.torch_testing_assert_allc", "embedding": null, "metadata": {"file_path": "tests/test_handler_checkpoint_loader.py", "file_name": "test_handler_checkpoint_loader.py", "file_type": "text/x-python", "category": "test", "start_line": 60, "end_line": 80, "span_ids": ["TestHandlerCheckpointLoader.test_two_save_one_load"], "tokens": 283}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerCheckpointLoader(unittest.TestCase):\n\n def test_two_save_one_load(self):\n logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n net1 = torch.nn.PReLU()\n optimizer = optim.SGD(net1.parameters(), lr=0.02)\n data1 = net1.state_dict()\n data1[\"weight\"] = torch.tensor([0.1])\n net1.load_state_dict(data1)\n net2 = torch.nn.PReLU()\n data2 = net2.state_dict()\n data2[\"weight\"] = torch.tensor([0.2])\n net2.load_state_dict(data2)\n with tempfile.TemporaryDirectory() as tempdir:\n engine = Engine(lambda e, b: None)\n save_dict = {\"net\": net1, \"opt\": optimizer}\n CheckpointSaver(save_dir=tempdir, save_dict=save_dict, save_final=True).attach(engine)\n engine.run([0] * 8, max_epochs=5)\n path = tempdir + \"/checkpoint_final_iteration=40.pt\"\n engine = Engine(lambda e, b: None)\n CheckpointLoader(load_path=path, load_dict={\"net\": net2}, strict=True).attach(engine)\n engine.run([0] * 8, max_epochs=1)\n torch.testing.assert_allclose(net2.state_dict()[\"weight\"], torch.tensor([0.1]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_TestHandlerCheckpointSaver_TestHandlerCheckpointSaver.test_file.with_tempfile_TemporaryDi.for_filename_in_filenames.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_checkpoint_saver.py_TestHandlerCheckpointSaver_TestHandlerCheckpointSaver.test_file.with_tempfile_TemporaryDi.for_filename_in_filenames.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_handler_checkpoint_saver.py", "file_name": "test_handler_checkpoint_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 113, "end_line": 171, "span_ids": ["TestHandlerCheckpointSaver", "TestHandlerCheckpointSaver.test_file"], "tokens": 390}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestHandlerCheckpointSaver(unittest.TestCase):\n @parameterized.expand(\n [TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6, TEST_CASE_7, TEST_CASE_8]\n )\n def test_file(\n self,\n save_final,\n final_filename,\n save_key_metric,\n key_metric_name,\n key_metric_n_saved,\n key_metric_filename,\n key_metric_save_state,\n key_metric_greater_or_equal,\n key_metric_negative_sign,\n epoch_level,\n save_interval,\n n_saved,\n filenames,\n multi_devices=False,\n ):\n logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n data = [0] * 8\n\n # set up engine\n def _train_func(engine, batch):\n engine.state.metrics[\"val_loss\"] = engine.state.iteration\n\n engine = Engine(_train_func)\n\n # set up testing handler\n net = torch.nn.PReLU()\n if multi_devices:\n net = torch.nn.DataParallel(net)\n optimizer = optim.SGD(net.parameters(), lr=0.02)\n with tempfile.TemporaryDirectory() as tempdir:\n handler = CheckpointSaver(\n tempdir,\n {\"net\": net, \"opt\": optimizer},\n \"CheckpointSaver\",\n \"test\",\n save_final,\n final_filename,\n save_key_metric,\n key_metric_name,\n key_metric_n_saved,\n key_metric_filename,\n key_metric_save_state,\n key_metric_greater_or_equal,\n key_metric_negative_sign,\n epoch_level,\n save_interval,\n n_saved,\n )\n handler.attach(engine)\n engine.run(data, max_epochs=2)\n engine.run(data, max_epochs=5)\n for filename in filenames:\n self.assertTrue(os.path.exists(os.path.join(tempdir, filename)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_classification_saver.py_csv_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_classification_saver.py_csv_", "embedding": null, "metadata": {"file_path": "tests/test_handler_classification_saver.py", "file_name": "test_handler_classification_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 63, "span_ids": ["TestHandlerClassificationSaver", "TestHandlerClassificationSaver.test_saved_content", "impl", "docstring"], "tokens": 365}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import csv\nimport os\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport torch\nfrom ignite.engine import Engine\n\nfrom monai.data import decollate_batch\nfrom monai.data.csv_saver import CSVSaver\nfrom monai.handlers import ClassificationSaver\n\n\nclass TestHandlerClassificationSaver(unittest.TestCase):\n def test_saved_content(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n engine.state.batch = decollate_batch(batch)\n return [torch.zeros(1) for _ in range(8)]\n\n engine = Engine(_train_func)\n\n # set up testing handler\n saver = CSVSaver(output_dir=tempdir, filename=\"predictions2.csv\", delimiter=\"\\t\")\n ClassificationSaver(output_dir=tempdir, filename=\"predictions1.csv\", delimiter=\"\\t\").attach(engine)\n ClassificationSaver(saver=saver).attach(engine)\n\n data = [{\"filename_or_obj\": [\"testfile\" + str(i) for i in range(8)]}]\n engine.run(data, max_epochs=1)\n\n def _test_file(filename):\n filepath = os.path.join(tempdir, filename)\n self.assertTrue(os.path.exists(filepath))\n with open(filepath) as f:\n reader = csv.reader(f, delimiter=\"\\t\")\n i = 0\n for row in reader:\n self.assertEqual(row[0], \"testfile\" + str(i))\n self.assertEqual(np.array(row[1:]).astype(np.float32), 0.0)\n i += 1\n self.assertEqual(i, 8)\n\n _test_file(\"predictions1.csv\")\n _test_file(\"predictions2.csv\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_lr_scheduler.py_logging_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_lr_scheduler.py_logging_", "embedding": null, "metadata": {"file_path": "tests/test_handler_lr_scheduler.py", "file_name": "test_handler_lr_scheduler.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 92, "span_ids": ["TestHandlerLrSchedule", "TestHandlerLrSchedule.test_content", "impl", "docstring"], "tokens": 573}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nimport os\nimport re\nimport sys\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport torch\nfrom ignite.engine import Engine, Events\n\nfrom monai.handlers import LrScheduleHandler\n\n\nclass TestHandlerLrSchedule(unittest.TestCase):\n def test_content(self):\n logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n data = [0] * 8\n test_lr = 0.1\n gamma = 0.1\n\n # set up engine\n def _train_func(engine, batch):\n pass\n\n val_engine = Engine(_train_func)\n train_engine = Engine(_train_func)\n\n @train_engine.on(Events.EPOCH_COMPLETED)\n def run_validation(engine):\n val_engine.run(data)\n val_engine.state.metrics[\"val_loss\"] = 1\n\n # set up testing handler\n net = torch.nn.PReLU()\n\n def _reduce_lr_on_plateau():\n optimizer = torch.optim.SGD(net.parameters(), test_lr)\n lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=1)\n handler = LrScheduleHandler(lr_scheduler, step_transform=lambda x: val_engine.state.metrics[\"val_loss\"])\n handler.attach(train_engine)\n return handler\n\n with tempfile.TemporaryDirectory() as tempdir:\n key_to_handler = \"test_log_lr\"\n key_to_print = \"Current learning rate\"\n filename = os.path.join(tempdir, \"test_lr.log\")\n # test with additional logging handler\n file_saver = logging.FileHandler(filename, mode=\"w\")\n file_saver.setLevel(logging.INFO)\n\n def _reduce_on_step():\n optimizer = torch.optim.SGD(net.parameters(), test_lr)\n lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=gamma)\n handler = LrScheduleHandler(lr_scheduler, name=key_to_handler, logger_handler=file_saver)\n handler.attach(train_engine)\n handler.logger.setLevel(logging.INFO)\n return handler\n\n schedulers = _reduce_lr_on_plateau(), _reduce_on_step()\n\n train_engine.run(data, max_epochs=5)\n file_saver.close()\n schedulers[1].logger.removeHandler(file_saver)\n\n with open(filename) as f:\n output_str = f.read()\n has_key_word = re.compile(f\".*{key_to_print}.*\")\n content_count = 0\n for line in output_str.split(\"\\n\"):\n if has_key_word.match(line):\n content_count += 1\n self.assertTrue(content_count > 0)\n\n for scheduler in schedulers:\n np.testing.assert_allclose(scheduler.lr_scheduler._last_lr[0], 0.001)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_os_TestHandlerSegmentationSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_segmentation_saver.py_os_TestHandlerSegmentationSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_handler_segmentation_saver.py", "file_name": "test_handler_segmentation_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 54, "span_ids": ["TestHandlerSegmentationSaver.test_saved_content", "TestHandlerSegmentationSaver", "docstring"], "tokens": 337}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport numpy as np\nimport torch\nfrom ignite.engine import Engine\nfrom parameterized import parameterized\n\nfrom monai.data import decollate_batch\nfrom monai.handlers import SegmentationSaver\n\nTEST_CASE_0 = [\".nii.gz\"]\n\nTEST_CASE_1 = [\".png\"]\n\n\nclass TestHandlerSegmentationSaver(unittest.TestCase):\n @parameterized.expand([TEST_CASE_0, TEST_CASE_1])\n def test_saved_content(self, output_ext):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n engine.state.batch = decollate_batch(batch)\n return [torch.randint(0, 255, (1, 2, 2)).float() for _ in range(8)]\n\n engine = Engine(_train_func)\n\n # set up testing handler\n saver = SegmentationSaver(output_dir=tempdir, output_postfix=\"seg\", output_ext=output_ext, scale=255)\n saver.attach(engine)\n\n data = [\n {\n \"filename_or_obj\": [\"testfile\" + str(i) + \".nii.gz\" for i in range(8)],\n \"patch_index\": torch.tensor(list(range(8))),\n }\n ]\n engine.run(data, max_epochs=1)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg\" + f\"_{i}\" + output_ext)\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_glob_TestHandlerTBStats.test_metrics_print.with_tempfile_TemporaryDi.self_assertTrue_len_glob_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_handler_tb_stats.py_glob_TestHandlerTBStats.test_metrics_print.with_tempfile_TemporaryDi.self_assertTrue_len_glob_", "embedding": null, "metadata": {"file_path": "tests/test_handler_tb_stats.py", "file_name": "test_handler_tb_stats.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestHandlerTBStats.test_metrics_print", "TestHandlerTBStats", "docstring"], "tokens": 214}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import glob\nimport tempfile\nimport unittest\n\nfrom ignite.engine import Engine, Events\nfrom torch.utils.tensorboard import SummaryWriter\n\nfrom monai.handlers import TensorBoardStatsHandler\n\n\nclass TestHandlerTBStats(unittest.TestCase):\n def test_metrics_print(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n # set up engine\n def _train_func(engine, batch):\n return [batch + 1.0]\n\n engine = Engine(_train_func)\n\n # set up dummy metric\n @engine.on(Events.EPOCH_COMPLETED)\n def _update_metric(engine):\n current_metric = engine.state.metrics.get(\"acc\", 0.1)\n engine.state.metrics[\"acc\"] = current_metric + 0.1\n\n # set up testing handler\n stats_handler = TensorBoardStatsHandler(log_dir=tempdir)\n stats_handler.attach(engine)\n engine.run(range(3), max_epochs=2)\n stats_handler.close()\n # check logging output\n self.assertTrue(len(glob.glob(tempdir)) > 0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_img2tensorboard.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_img2tensorboard.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_img2tensorboard.py", "file_name": "test_img2tensorboard.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 44, "span_ids": ["TestImg2Tensorboard.test_write_gray", "TestImg2Tensorboard", "impl", "docstring"], "tokens": 261}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport tensorboard\nimport torch\n\nfrom monai.visualize import make_animated_gif_summary\n\n\nclass TestImg2Tensorboard(unittest.TestCase):\n def test_write_gray(self):\n nparr = np.ones(shape=(1, 32, 32, 32), dtype=np.float32)\n summary_object_np = make_animated_gif_summary(\n tag=\"test_summary_nparr.png\", image=nparr, max_out=1, scale_factor=253.0\n )\n for s in summary_object_np:\n assert isinstance(\n s, tensorboard.compat.proto.summary_pb2.Summary\n ), \"make_animated_gif_summary must return a tensorboard.summary object from numpy array\"\n\n tensorarr = torch.tensor(nparr)\n summary_object_tensor = make_animated_gif_summary(\n tag=\"test_summary_tensorarr.png\", image=tensorarr, max_out=1, frame_dim=-1, scale_factor=253.0\n )\n for s in summary_object_tensor:\n assert isinstance(\n s, tensorboard.compat.proto.summary_pb2.Summary\n ), \"make_animated_gif_summary must return a tensorboard.summary object from tensor input\"\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_run_training_test_run_training_test.return.trainer_state": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_run_training_test_run_training_test.return.trainer_state", "embedding": null, "metadata": {"file_path": "tests/test_integration_workflows_gan.py", "file_name": "test_integration_workflows_gan.py", "file_type": "text/x-python", "category": "test", "start_line": 36, "end_line": 125, "span_ids": ["run_training_test"], "tokens": 819}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def run_training_test(root_dir, device=\"cuda:0\"):\n real_images = sorted(glob(os.path.join(root_dir, \"img*.nii.gz\")))\n train_files = [{\"reals\": img} for img in zip(real_images)]\n\n # prepare real data\n train_transforms = Compose(\n [\n LoadImaged(keys=[\"reals\"]),\n AsChannelFirstd(keys=[\"reals\"]),\n ScaleIntensityd(keys=[\"reals\"]),\n RandFlipd(keys=[\"reals\"], prob=0.5),\n ToTensord(keys=[\"reals\"]),\n ]\n )\n train_ds = monai.data.CacheDataset(data=train_files, transform=train_transforms, cache_rate=0.5)\n train_loader = monai.data.DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=4)\n\n learning_rate = 2e-4\n betas = (0.5, 0.999)\n real_label = 1\n fake_label = 0\n\n # create discriminator\n disc_net = Discriminator(\n in_shape=(1, 64, 64), channels=(8, 16, 32, 64, 1), strides=(2, 2, 2, 2, 1), num_res_units=1, kernel_size=5\n ).to(device)\n disc_net.apply(normal_init)\n disc_opt = torch.optim.Adam(disc_net.parameters(), learning_rate, betas=betas)\n disc_loss_criterion = torch.nn.BCELoss()\n\n def discriminator_loss(gen_images, real_images):\n real = real_images.new_full((real_images.shape[0], 1), real_label)\n gen = gen_images.new_full((gen_images.shape[0], 1), fake_label)\n realloss = disc_loss_criterion(disc_net(real_images), real)\n genloss = disc_loss_criterion(disc_net(gen_images.detach()), gen)\n return torch.div(torch.add(realloss, genloss), 2)\n\n # create generator\n latent_size = 64\n gen_net = Generator(\n latent_shape=latent_size, start_shape=(latent_size, 8, 8), channels=[32, 16, 8, 1], strides=[2, 2, 2, 1]\n )\n gen_net.apply(normal_init)\n gen_net.conv.add_module(\"activation\", torch.nn.Sigmoid())\n gen_net = gen_net.to(device)\n gen_opt = torch.optim.Adam(gen_net.parameters(), learning_rate, betas=betas)\n gen_loss_criterion = torch.nn.BCELoss()\n\n def generator_loss(gen_images):\n output = disc_net(gen_images)\n cats = output.new_full(output.shape, real_label)\n return gen_loss_criterion(output, cats)\n\n key_train_metric = None\n\n train_handlers = [\n StatsHandler(\n name=\"training_loss\", output_transform=lambda x: {Keys.GLOSS: x[Keys.GLOSS], Keys.DLOSS: x[Keys.DLOSS]}\n ),\n TensorBoardStatsHandler(\n log_dir=root_dir,\n tag_name=\"training_loss\",\n output_transform=lambda x: {Keys.GLOSS: x[Keys.GLOSS], Keys.DLOSS: x[Keys.DLOSS]},\n ),\n CheckpointSaver(\n save_dir=root_dir, save_dict={\"g_net\": gen_net, \"d_net\": disc_net}, save_interval=2, epoch_level=True\n ),\n ]\n\n disc_train_steps = 2\n num_epochs = 5\n\n trainer = GanTrainer(\n device,\n num_epochs,\n train_loader,\n gen_net,\n gen_opt,\n generator_loss,\n disc_net,\n disc_opt,\n discriminator_loss,\n d_train_steps=disc_train_steps,\n latent_shape=latent_size,\n key_train_metric=key_train_metric,\n train_handlers=train_handlers,\n )\n trainer.run()\n\n return trainer.state", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_IntegrationWorkflowsGAN_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_integration_workflows_gan.py_IntegrationWorkflowsGAN_", "embedding": null, "metadata": {"file_path": "tests/test_integration_workflows_gan.py", "file_name": "test_integration_workflows_gan.py", "file_type": "text/x-python", "category": "test", "start_line": 129, "end_line": 161, "span_ids": ["impl", "IntegrationWorkflowsGAN", "IntegrationWorkflowsGAN.tearDown", "IntegrationWorkflowsGAN.test_training", "IntegrationWorkflowsGAN.setUp"], "tokens": 266}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@skip_if_quick\nclass IntegrationWorkflowsGAN(DistTestCase):\n def setUp(self):\n set_determinism(seed=0)\n\n self.data_dir = tempfile.mkdtemp()\n for i in range(40):\n im, _ = create_test_image_2d(64, 64, num_objs=3, rad_max=14, num_seg_classes=1, channel_dim=-1)\n n = nib.Nifti1Image(im, np.eye(4))\n nib.save(n, os.path.join(self.data_dir, f\"img{i:d}.nii.gz\"))\n\n self.device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu:0\")\n monai.config.print_config()\n logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n\n def tearDown(self):\n set_determinism(seed=None)\n shutil.rmtree(self.data_dir)\n\n @TimedCall(seconds=200, daemon=False)\n def test_training(self):\n torch.manual_seed(0)\n\n finish_state = run_training_test(self.data_dir, device=self.device)\n\n # assert GAN training finished\n self.assertEqual(finish_state.iteration, 100)\n self.assertEqual(finish_state.epoch, 5)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_to_dict.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_list_to_dict.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_list_to_dict.py", "file_name": "test_list_to_dict.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["impl:11", "TestListToDict.test_value_shape", "TestListToDict", "docstring"], "tokens": 386}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom parameterized import parameterized\n\nfrom monai.utils import list_to_dict\n\nTEST_CASE_1 = [[\"a=1\", \"b=2\", \"c=3\", \"d=4\"], {\"a\": 1, \"b\": 2, \"c\": 3, \"d\": 4}]\n\nTEST_CASE_2 = [[\"a=a\", \"b=b\", \"c=c\", \"d=d\"], {\"a\": \"a\", \"b\": \"b\", \"c\": \"c\", \"d\": \"d\"}]\n\nTEST_CASE_3 = [[\"a=0.1\", \"b=0.2\", \"c=0.3\", \"d=0.4\"], {\"a\": 0.1, \"b\": 0.2, \"c\": 0.3, \"d\": 0.4}]\n\nTEST_CASE_4 = [[\"a=True\", \"b=TRUE\", \"c=false\", \"d=FALSE\"], {\"a\": True, \"b\": True, \"c\": False, \"d\": False}]\n\nTEST_CASE_5 = [\n [\"a='1'\", \"b=2 \", \" c = 3\", \"d='test'\", \"'e'=0\", \"f\", \"g=None\"],\n {\"a\": 1, \"b\": 2, \"c\": 3, \"d\": \"test\", \"e\": 0, \"f\": None, \"g\": None},\n]\n\n\nclass TestListToDict(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_value_shape(self, input, output):\n result = list_to_dict(input)\n self.assertDictEqual(result, output)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_unittest_TEST_CASE_1._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_unittest_TEST_CASE_1._", "embedding": null, "metadata": {"file_path": "tests/test_lltm.py", "file_name": "test_lltm.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 26, "span_ids": ["docstring"], "tokens": 185}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks.layers import LLTM\nfrom tests.utils import SkipIfNoModule, is_tf32_env\n\n_rtol = 0.001 if is_tf32_env() else 0.0001\n\nTEST_CASE_1 = [\n {\"input_features\": 32, \"state_size\": 2},\n torch.tensor([[-0.1622, 0.1663], [0.5465, 0.0459], [-0.1436, 0.6171], [0.3632, -0.0111]]),\n torch.tensor([[-1.3773, 0.3348], [0.8353, 1.3064], [-0.2179, 4.1739], [1.3045, -0.1444]]),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM_TestLLTM.test_value.None_3": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM_TestLLTM.test_value.None_3", "embedding": null, "metadata": {"file_path": "tests/test_lltm.py", "file_name": "test_lltm.py", "file_type": "text/x-python", "category": "test", "start_line": 27, "end_line": 39, "span_ids": ["TestLLTM", "TestLLTM.test_value"], "tokens": 172}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLLTM(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1])\n @SkipIfNoModule(\"monai._C\")\n def test_value(self, input_param, expected_h, expected_c):\n torch.manual_seed(0)\n x = torch.randn(4, 32)\n h = torch.randn(4, 2)\n c = torch.randn(4, 2)\n new_h, new_c = LLTM(**input_param)(x, (h, c))\n (new_h.sum() + new_c.sum()).backward()\n\n torch.testing.assert_allclose(new_h, expected_h, rtol=0.0001, atol=1e-04)\n torch.testing.assert_allclose(new_c, expected_c, rtol=0.0001, atol=1e-04)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM.test_value_cuda_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_lltm.py_TestLLTM.test_value_cuda_", "embedding": null, "metadata": {"file_path": "tests/test_lltm.py", "file_name": "test_lltm.py", "file_type": "text/x-python", "category": "test", "start_line": 43, "end_line": 61, "span_ids": ["TestLLTM.test_value_cuda", "impl:5"], "tokens": 227}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLLTM(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_1])\n @SkipIfNoModule(\"monai._C\")\n def test_value_cuda(self, input_param, expected_h, expected_c):\n device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu:0\")\n torch.manual_seed(0)\n x = torch.randn(4, 32).to(device)\n h = torch.randn(4, 2).to(device)\n c = torch.randn(4, 2).to(device)\n lltm = LLTM(**input_param).to(device)\n new_h, new_c = lltm(x, (h, c))\n (new_h.sum() + new_c.sum()).backward()\n\n torch.testing.assert_allclose(new_h, expected_h.to(device), rtol=_rtol, atol=0.001)\n torch.testing.assert_allclose(new_c, expected_c.to(device), rtol=_rtol, atol=0.001)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mednistdataset.py_os_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_mednistdataset.py_os_", "embedding": null, "metadata": {"file_path": "tests/test_mednistdataset.py", "file_name": "test_mednistdataset.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 80, "span_ids": ["TestMedNISTDataset", "impl:3", "TestMedNISTDataset.test_values", "docstring"], "tokens": 634}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport shutil\nimport unittest\nfrom pathlib import Path\nfrom urllib.error import ContentTooShortError, HTTPError\n\nfrom monai.apps import MedNISTDataset\nfrom monai.transforms import AddChanneld, Compose, LoadImaged, ScaleIntensityd, ToTensord\nfrom monai.utils.enums import PostFix\nfrom tests.utils import skip_if_quick\n\nMEDNIST_FULL_DATASET_LENGTH = 58954\n\n\nclass TestMedNISTDataset(unittest.TestCase):\n @skip_if_quick\n def test_values(self):\n testing_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), \"testing_data\")\n transform = Compose(\n [\n LoadImaged(keys=\"image\"),\n AddChanneld(keys=\"image\"),\n ScaleIntensityd(keys=\"image\"),\n ToTensord(keys=[\"image\", \"label\"]),\n ]\n )\n\n def _test_dataset(dataset):\n self.assertEqual(len(dataset), int(MEDNIST_FULL_DATASET_LENGTH * dataset.test_frac))\n self.assertTrue(\"image\" in dataset[0])\n self.assertTrue(\"label\" in dataset[0])\n self.assertTrue(PostFix.meta(\"image\") in dataset[0])\n self.assertTupleEqual(dataset[0][\"image\"].shape, (1, 64, 64))\n\n try: # will start downloading if testing_dir doesn't have the MedNIST files\n data = MedNISTDataset(\n root_dir=testing_dir, transform=transform, section=\"test\", download=True, copy_cache=False\n )\n except (ContentTooShortError, HTTPError, RuntimeError) as e:\n print(str(e))\n if isinstance(e, RuntimeError):\n # FIXME: skip MD5 check as current downloading method may fail\n self.assertTrue(str(e).startswith(\"md5 check\"))\n return # skipping this test due the network connection errors\n\n _test_dataset(data)\n\n # testing from\n data = MedNISTDataset(root_dir=Path(testing_dir), transform=transform, section=\"test\", download=False)\n self.assertEqual(data.get_num_classes(), 6)\n _test_dataset(data)\n data = MedNISTDataset(root_dir=testing_dir, section=\"test\", download=False)\n self.assertTupleEqual(data[0][\"image\"].shape, (64, 64))\n # test same dataset length with different random seed\n data = MedNISTDataset(root_dir=testing_dir, transform=transform, section=\"test\", download=False, seed=42)\n _test_dataset(data)\n self.assertEqual(data[0][\"class_name\"], \"AbdomenCT\")\n self.assertEqual(data[0][\"label\"].cpu().item(), 0)\n shutil.rmtree(os.path.join(testing_dir, \"MedNIST\"))\n try:\n MedNISTDataset(root_dir=testing_dir, transform=transform, section=\"test\", download=False)\n except RuntimeError as e:\n print(str(e))\n self.assertTrue(str(e).startswith(\"Cannot find dataset directory\"))\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_os_TestNiftiSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_os_TestNiftiSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_nifti_saver.py", "file_name": "test_nifti_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 34, "span_ids": ["TestNiftiSaver.test_saved_content", "TestNiftiSaver", "docstring"], "tokens": 198}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\nfrom pathlib import Path\n\nimport numpy as np\nimport torch\n\nfrom monai.data import NiftiSaver\nfrom monai.transforms import LoadImage\n\n\nclass TestNiftiSaver(unittest.TestCase):\n def test_saved_content(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n saver = NiftiSaver(output_dir=Path(tempdir), output_postfix=\"seg\", output_ext=\".nii.gz\")\n\n meta_data = {\"filename_or_obj\": [\"testfile\" + str(i) + \".nii\" for i in range(8)]}\n saver.save_batch(torch.zeros(8, 1, 2, 2), meta_data)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg.nii.gz\")\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_TestNiftiSaver.test_saved_resize_content_TestNiftiSaver.test_saved_resize_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_nifti_saver.py_TestNiftiSaver.test_saved_resize_content_TestNiftiSaver.test_saved_resize_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_nifti_saver.py", "file_name": "test_nifti_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 36, "end_line": 49, "span_ids": ["TestNiftiSaver.test_saved_resize_content"], "tokens": 215}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNiftiSaver(unittest.TestCase):\n\n def test_saved_resize_content(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n saver = NiftiSaver(output_dir=tempdir, output_postfix=\"seg\", output_ext=\".nii.gz\", dtype=np.float32)\n\n meta_data = {\n \"filename_or_obj\": [\"testfile\" + str(i) + \".nii\" for i in range(8)],\n \"affine\": [np.diag(np.ones(4)) * 5] * 8,\n \"original_affine\": [np.diag(np.ones(4)) * 1.0] * 8,\n }\n saver.save_batch(torch.randint(0, 255, (8, 8, 2, 2)), meta_data)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg.nii.gz\")\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_os_TestPNGSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_os_TestPNGSaver.test_saved_content.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_png_saver.py", "file_name": "test_png_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 32, "span_ids": ["TestPNGSaver.test_saved_content", "TestPNGSaver", "docstring"], "tokens": 183}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\nfrom pathlib import Path\n\nimport torch\n\nfrom monai.data import PNGSaver\n\n\nclass TestPNGSaver(unittest.TestCase):\n def test_saved_content(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n saver = PNGSaver(output_dir=tempdir, output_postfix=\"seg\", output_ext=\".png\", scale=255)\n\n meta_data = {\"filename_or_obj\": [\"testfile\" + str(i) + \".jpg\" for i in range(8)]}\n saver.save_batch(torch.randint(1, 200, (8, 1, 2, 2)), meta_data)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg.png\")\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_TestPNGSaver.test_saved_content_three_channel_TestPNGSaver.test_saved_content_three_channel.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_png_saver.py_TestPNGSaver.test_saved_content_three_channel_TestPNGSaver.test_saved_content_three_channel.with_tempfile_TemporaryDi.for_i_in_range_8_.self_assertTrue_os_path_e", "embedding": null, "metadata": {"file_path": "tests/test_png_saver.py", "file_name": "test_png_saver.py", "file_type": "text/x-python", "category": "test", "start_line": 34, "end_line": 43, "span_ids": ["TestPNGSaver.test_saved_content_three_channel"], "tokens": 161}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPNGSaver(unittest.TestCase):\n\n def test_saved_content_three_channel(self):\n with tempfile.TemporaryDirectory() as tempdir:\n\n saver = PNGSaver(output_dir=Path(tempdir), output_postfix=\"seg\", output_ext=\".png\", scale=255)\n\n meta_data = {\"filename_or_obj\": [\"testfile\" + str(i) + \".jpg\" for i in range(8)]}\n saver.save_batch(torch.randint(1, 200, (8, 3, 2, 2)), meta_data)\n for i in range(8):\n filepath = os.path.join(\"testfile\" + str(i), \"testfile\" + str(i) + \"_seg.png\")\n self.assertTrue(os.path.exists(os.path.join(tempdir, filepath)))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smooth.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_gaussian_smooth.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_gaussian_smooth.py", "file_name": "test_rand_gaussian_smooth.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 97, "span_ids": ["TestRandGaussianSmooth.test_value", "TestRandGaussianSmooth", "impl:7", "docstring"], "tokens": 907}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandGaussianSmooth\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\"sigma_x\": (0.5, 1.5), \"prob\": 1.0},\n p(np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])),\n np.array(\n [\n [\n [0.71806467, 0.9074683, 0.71806467],\n [1.0718315, 1.3545481, 1.0718315],\n [1.0337002, 1.306359, 1.0337002],\n ],\n [\n [2.0318885, 2.5678391, 2.0318885],\n [2.6795788, 3.3863702, 2.6795788],\n [2.3475242, 2.9667296, 2.3475242],\n ],\n ]\n ),\n ]\n )\n\n TESTS.append(\n [\n {\"sigma_x\": (0.5, 1.5), \"sigma_y\": (0.5, 1.0), \"prob\": 1.0},\n p(np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])),\n np.array(\n [\n [\n [0.7686928, 0.9848021, 0.7686928],\n [1.1474025, 1.4699818, 1.1474024],\n [1.1065826, 1.4176859, 1.1065826],\n ],\n [\n [2.1751494, 2.7866683, 2.1751497],\n [2.8685062, 3.6749542, 2.8685062],\n [2.5130394, 3.219552, 2.5130394],\n ],\n ]\n ),\n ]\n )\n\n TESTS.append(\n [\n {\"sigma_x\": (0.5, 1.5), \"sigma_y\": (0.5, 1.0), \"approx\": \"scalespace\", \"prob\": 1.0},\n p(np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]])),\n np.array(\n [\n [\n [0.8128456, 0.96736777, 0.8128456],\n [1.2742369, 1.5164697, 1.2742369],\n [1.2800367, 1.5233722, 1.2800368],\n ],\n [\n [2.3825073, 2.8354228, 2.3825073],\n [3.1855922, 3.7911744, 3.1855922],\n [2.8496985, 3.391427, 2.8496985],\n ],\n ]\n ),\n ]\n )\n\n\nclass TestRandGaussianSmooth(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, argments, image, expected_data):\n converter = RandGaussianSmooth(**argments)\n converter.set_random_state(seed=0)\n result = converter(image)\n assert_allclose(result, expected_data, rtol=1e-4, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_unittest_for_spatial_dims_in_range.for_in_channels_in_range_.for_kernel_size_in_1_3_.TEST_CASE_RESBLOCK_append": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_unittest_for_spatial_dims_in_range.for_in_channels_in_range_.for_kernel_size_in_1_3_.TEST_CASE_RESBLOCK_append", "embedding": null, "metadata": {"file_path": "tests/test_segresnet_block.py", "file_name": "test_segresnet_block.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 35, "span_ids": ["docstring"], "tokens": 170}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.blocks.segresnet_block import ResBlock\n\nTEST_CASE_RESBLOCK = []\nfor spatial_dims in range(2, 4):\n for in_channels in range(1, 4):\n for kernel_size in [1, 3]:\n for norm in [\"group\", \"batch\", \"instance\"]:\n test_case = [\n {\n \"spatial_dims\": spatial_dims,\n \"in_channels\": in_channels,\n \"kernel_size\": kernel_size,\n \"norm\": norm,\n },\n (2, in_channels, *([16] * spatial_dims)),\n (2, in_channels, *([16] * spatial_dims)),\n ]\n TEST_CASE_RESBLOCK.append(test_case)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_TestResBlock_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_segresnet_block.py_TestResBlock_", "embedding": null, "metadata": {"file_path": "tests/test_segresnet_block.py", "file_name": "test_segresnet_block.py", "file_type": "text/x-python", "category": "test", "start_line": 38, "end_line": 55, "span_ids": ["impl:10", "TestResBlock.test_ill_arg", "TestResBlock", "TestResBlock.test_shape"], "tokens": 142}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestResBlock(unittest.TestCase):\n @parameterized.expand(TEST_CASE_RESBLOCK)\n def test_shape(self, input_param, input_shape, expected_shape):\n net = ResBlock(**input_param)\n with eval_mode(net):\n result = net(torch.randn(input_shape))\n self.assertEqual(result.shape, expected_shape)\n\n def test_ill_arg(self):\n with self.assertRaises(AssertionError):\n ResBlock(spatial_dims=3, in_channels=8, norm=\"group\", kernel_size=2)\n with self.assertRaises(ValueError):\n ResBlock(spatial_dims=3, in_channels=8, norm=\"norm\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelay.py_time_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelay.py_time_", "embedding": null, "metadata": {"file_path": "tests/test_simulatedelay.py", "file_name": "test_simulatedelay.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 35, "span_ids": ["TestSimulateDelay.test_value", "TestSimulateDelay", "impl", "docstring"], "tokens": 161}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import time\nimport unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms.utility.array import SimulateDelay\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestSimulateDelay(NumpyImageTestCase2D):\n @parameterized.expand([(0.45,), (1,)])\n def test_value(self, delay_test_time: float):\n resize = SimulateDelay(delay_time=delay_test_time)\n start: float = time.time()\n _ = resize(self.imt[0])\n stop: float = time.time()\n measured_approximate: float = stop - start\n np.testing.assert_allclose(delay_test_time, measured_approximate, rtol=0.5)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelayd.py_time_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_simulatedelayd.py_time_", "embedding": null, "metadata": {"file_path": "tests/test_simulatedelayd.py", "file_name": "test_simulatedelayd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 35, "span_ids": ["TestSimulateDelay.test_value", "TestSimulateDelay", "impl", "docstring"], "tokens": 172}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import time\nimport unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms.utility.dictionary import SimulateDelayd\nfrom tests.utils import NumpyImageTestCase2D\n\n\nclass TestSimulateDelay(NumpyImageTestCase2D):\n @parameterized.expand([(0.45,), (1,)])\n def test_value(self, delay_test_time: float):\n resize = SimulateDelayd(keys=\"imgd\", delay_time=delay_test_time)\n start: float = time.time()\n _ = resize({\"imgd\": self.imt[0]})\n stop: float = time.time()\n measured_approximate: float = stop - start\n np.testing.assert_allclose(delay_test_time, measured_approximate, rtol=0.5)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_subpixel_upsample.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_subpixel_upsample.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_subpixel_upsample.py", "file_name": "test_subpixel_upsample.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 79, "span_ids": ["impl:27", "impl:17", "TestSUBPIXEL.test_subpixel_shape", "TestSUBPIXEL", "docstring"], "tokens": 646}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nimport torch.nn as nn\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.blocks import SubpixelUpsample\nfrom monai.networks.layers.factories import Conv\n\nTEST_CASE_SUBPIXEL = []\nfor inch in range(1, 5):\n for dim in range(1, 4):\n for factor in range(1, 3):\n test_case = [\n {\"spatial_dims\": dim, \"in_channels\": inch, \"scale_factor\": factor},\n (2, inch, *([8] * dim)),\n (2, inch, *([8 * factor] * dim)),\n ]\n TEST_CASE_SUBPIXEL.append(test_case)\n\nTEST_CASE_SUBPIXEL_2D_EXTRA = [\n {\"spatial_dims\": 2, \"in_channels\": 2, \"scale_factor\": 3},\n (2, 2, 8, 4), # different size for H and W\n (2, 2, 24, 12),\n]\n\nTEST_CASE_SUBPIXEL_3D_EXTRA = [\n {\"spatial_dims\": 3, \"in_channels\": 1, \"scale_factor\": 2},\n (2, 1, 16, 8, 4), # different size for H, W and D\n (2, 1, 32, 16, 8),\n]\n\nconv_block = nn.Sequential(\n Conv[Conv.CONV, 3](1, 4, kernel_size=1), Conv[Conv.CONV, 3](4, 8, kernel_size=3, stride=1, padding=1)\n)\n\nTEST_CASE_SUBPIXEL_CONV_BLOCK_EXTRA = [\n {\"spatial_dims\": 3, \"in_channels\": 1, \"scale_factor\": 2, \"conv_block\": conv_block},\n (2, 1, 16, 8, 4), # different size for H, W and D\n (2, 1, 32, 16, 8),\n]\n\nTEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_2D_EXTRA)\nTEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_3D_EXTRA)\nTEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_CONV_BLOCK_EXTRA)\n\n\n# add every test back with the pad/pool sequential component omitted\nfor tests in list(TEST_CASE_SUBPIXEL):\n args: dict = tests[0] # type: ignore\n args = dict(args)\n args[\"apply_pad_pool\"] = False\n TEST_CASE_SUBPIXEL.append([args, tests[1], tests[2]])\n\n\nclass TestSUBPIXEL(unittest.TestCase):\n @parameterized.expand(TEST_CASE_SUBPIXEL)\n def test_subpixel_shape(self, input_param, input_shape, expected_shape):\n net = SubpixelUpsample(**input_param)\n with eval_mode(net):\n result = net.forward(torch.randn(input_shape))\n self.assertEqual(result.shape, expected_shape)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_unittest_TEST_CASES": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_tversky_loss.py_unittest_TEST_CASES", "embedding": null, "metadata": {"file_path": "tests/test_tversky_loss.py", "file_name": "test_tversky_loss.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 154, "span_ids": ["docstring"], "tokens": 53}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.losses import TverskyLoss\nfrom tests.utils import SkipIfBeforePyTorchVersion, test_script_save\n\nTEST_CASES =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_unittest_TEST_CASE_VNET_3D_3._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_unittest_TEST_CASE_VNET_3D_3._", "embedding": null, "metadata": {"file_path": "tests/test_vnet.py", "file_name": "test_vnet.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 52, "span_ids": ["impl:13", "docstring"], "tokens": 508}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.nets import VNet\nfrom tests.utils import test_script_save\n\ndevice = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n\nTEST_CASE_VNET_2D_1 = [\n {\"spatial_dims\": 2, \"in_channels\": 4, \"out_channels\": 1, \"act\": \"elu\", \"dropout_dim\": 1},\n (1, 4, 32, 32),\n (1, 1, 32, 32),\n]\nTEST_CASE_VNET_2D_2 = [\n {\"spatial_dims\": 2, \"in_channels\": 2, \"out_channels\": 2, \"act\": \"prelu\", \"dropout_dim\": 2},\n (1, 2, 32, 32),\n (1, 2, 32, 32),\n]\nTEST_CASE_VNET_2D_3 = [\n {\"spatial_dims\": 2, \"in_channels\": 1, \"out_channels\": 3, \"dropout_dim\": 3},\n (1, 1, 32, 32),\n (1, 3, 32, 32),\n]\nTEST_CASE_VNET_3D_1 = [\n {\"spatial_dims\": 3, \"in_channels\": 4, \"out_channels\": 1, \"act\": \"elu\", \"dropout_dim\": 1},\n (1, 4, 32, 32, 32),\n (1, 1, 32, 32, 32),\n]\nTEST_CASE_VNET_3D_2 = [\n {\"spatial_dims\": 3, \"in_channels\": 2, \"out_channels\": 2, \"act\": \"prelu\", \"dropout_dim\": 2},\n (1, 2, 32, 32, 32),\n (1, 2, 32, 32, 32),\n]\nTEST_CASE_VNET_3D_3 = [\n {\"spatial_dims\": 3, \"in_channels\": 1, \"out_channels\": 3, \"dropout_dim\": 3},\n (1, 1, 32, 32, 32),\n (1, 3, 32, 32, 32),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_TestVNet_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vnet.py_TestVNet_", "embedding": null, "metadata": {"file_path": "tests/test_vnet.py", "file_name": "test_vnet.py", "file_type": "text/x-python", "category": "test", "start_line": 55, "end_line": 80, "span_ids": ["impl:15", "TestVNet", "TestVNet.test_vnet_shape", "TestVNet.test_script"], "tokens": 216}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestVNet(unittest.TestCase):\n @parameterized.expand(\n [\n TEST_CASE_VNET_2D_1,\n TEST_CASE_VNET_2D_2,\n TEST_CASE_VNET_2D_3,\n TEST_CASE_VNET_3D_1,\n TEST_CASE_VNET_3D_2,\n TEST_CASE_VNET_3D_3,\n ]\n )\n def test_vnet_shape(self, input_param, input_shape, expected_shape):\n net = VNet(**input_param).to(device)\n with eval_mode(net):\n result = net.forward(torch.randn(input_shape).to(device))\n self.assertEqual(result.shape, expected_shape)\n\n def test_script(self):\n net = VNet(spatial_dims=3, in_channels=1, out_channels=3, dropout_dim=3)\n test_data = torch.randn(1, 1, 32, 32, 32)\n test_script_save(net, test_data)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensembled.py_TestVoteEnsembled_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_vote_ensembled.py_TestVoteEnsembled_", "embedding": null, "metadata": {"file_path": "tests/test_vote_ensembled.py", "file_name": "test_vote_ensembled.py", "file_type": "text/x-python", "category": "test", "start_line": 86, "end_line": 106, "span_ids": ["TestVoteEnsembled.test_cuda_value", "TestVoteEnsembled", "impl:9", "TestVoteEnsembled.test_value"], "tokens": 200}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestVoteEnsembled(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_value(self, input_param, img, expected_value):\n result = VoteEnsembled(**input_param)(img)\n assert_allclose(result[\"output\"], expected_value)\n\n def test_cuda_value(self):\n img = torch.stack(\n [torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[1]], [[0]]]]), torch.tensor([[[[0]], [[1]]]])]\n )\n expected_value = torch.tensor([[[[1.0]], [[0.0]]]])\n if torch.cuda.is_available():\n img = img.to(torch.device(\"cuda:0\"))\n expected_value = expected_value.to(torch.device(\"cuda:0\"))\n result = VoteEnsembled(keys=\"output\", num_classes=None)({\"output\": img})\n assert_allclose(result[\"output\"], expected_value)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_check_hash_check_hash.return.True": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/utils.py_check_hash_check_hash.return.True", "embedding": null, "metadata": {"file_path": "monai/apps/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 116, "end_line": 145, "span_ids": ["check_hash"], "tokens": 301}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def check_hash(filepath: PathLike, val: Optional[str] = None, hash_type: str = \"md5\") -> bool:\n \"\"\"\n Verify hash signature of specified file.\n\n Args:\n filepath: path of source file to verify hash value.\n val: expected hash value of the file.\n hash_type: type of hash algorithm to use, default is `\"md5\"`.\n The supported hash types are `\"md5\"`, `\"sha1\"`, `\"sha256\"`, `\"sha512\"`.\n See also: :py:data:`monai.apps.utils.SUPPORTED_HASH_TYPES`.\n\n \"\"\"\n if val is None:\n logger.info(f\"Expected {hash_type} is None, skip {hash_type} check for file {filepath}.\")\n return True\n actual_hash_func = look_up_option(hash_type.lower(), SUPPORTED_HASH_TYPES)\n actual_hash = actual_hash_func()\n try:\n with open(filepath, \"rb\") as f:\n for chunk in iter(lambda: f.read(1024 * 1024), b\"\"):\n actual_hash.update(chunk)\n except Exception as e:\n logger.error(f\"Exception in check_hash: {e}\")\n return False\n if val != actual_hash.hexdigest():\n logger.error(f\"check_hash failed {actual_hash.hexdigest()}.\")\n return False\n\n logger.info(f\"Verified '{_basename(filepath)}', {hash_type}: {val}.\")\n return True", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_os_get_config_values.return.output": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_os_get_config_values.return.output", "embedding": null, "metadata": {"file_path": "monai/config/deviceconfig.py", "file_name": "deviceconfig.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 55, "span_ids": ["get_config_values", "docstring"], "tokens": 255}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport platform\nimport re\nimport sys\nfrom collections import OrderedDict\n\nimport numpy as np\nimport torch\n\nimport monai\nfrom monai.utils.module import OptionalImportError, get_package_version, optional_import\n\ntry:\n _, HAS_EXT = optional_import(\"monai._C\")\n USE_COMPILED = HAS_EXT and os.getenv(\"BUILD_MONAI\", \"0\") == \"1\"\nexcept (OptionalImportError, ImportError, AttributeError):\n HAS_EXT = USE_COMPILED = False\n\npsutil, has_psutil = optional_import(\"psutil\")\npsutil_version = psutil.__version__ if has_psutil else \"NOT INSTALLED or UNKNOWN VERSION.\"\n\n__all__ = [\n \"print_config\",\n \"get_system_info\",\n \"print_system_info\",\n \"get_gpu_info\",\n \"print_gpu_info\",\n \"print_debug_info\",\n \"USE_COMPILED\",\n \"IgniteInfo\",\n]\n\n\ndef get_config_values():\n \"\"\"\n Read the package versions into a dictionary.\n \"\"\"\n output = OrderedDict()\n\n output[\"MONAI\"] = monai.__version__\n output[\"Numpy\"] = np.version.full_version\n output[\"Pytorch\"] = torch.__version__\n\n return output", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_get_optional_config_values_get_optional_config_values.return.output": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/config/deviceconfig.py_get_optional_config_values_get_optional_config_values.return.output", "embedding": null, "metadata": {"file_path": "monai/config/deviceconfig.py", "file_name": "deviceconfig.py", "file_type": "text/x-python", "category": "implementation", "start_line": 58, "end_line": 79, "span_ids": ["get_optional_config_values"], "tokens": 227}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_optional_config_values():\n \"\"\"\n Read the optional package versions into a dictionary.\n \"\"\"\n output = OrderedDict()\n\n output[\"Pytorch Ignite\"] = get_package_version(\"ignite\")\n output[\"Nibabel\"] = get_package_version(\"nibabel\")\n output[\"scikit-image\"] = get_package_version(\"skimage\")\n output[\"Pillow\"] = get_package_version(\"PIL\")\n output[\"Tensorboard\"] = get_package_version(\"tensorboard\")\n output[\"gdown\"] = get_package_version(\"gdown\")\n output[\"TorchVision\"] = get_package_version(\"torchvision\")\n output[\"tqdm\"] = get_package_version(\"tqdm\")\n output[\"lmdb\"] = get_package_version(\"lmdb\")\n output[\"psutil\"] = psutil_version\n output[\"pandas\"] = get_package_version(\"pandas\")\n output[\"einops\"] = get_package_version(\"einops\")\n output[\"transformers\"] = get_package_version(\"transformers\")\n output[\"mlflow\"] = get_package_version(\"mlflow\")\n\n return output", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset_SmartCacheDataset._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset_SmartCacheDataset._", "embedding": null, "metadata": {"file_path": "monai/data/dataset.py", "file_name": "dataset.py", "file_type": "text/x-python", "category": "implementation", "start_line": 778, "end_line": 846, "span_ids": ["SmartCacheDataset"], "tokens": 1050}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SmartCacheDataset(Randomizable, CacheDataset):\n \"\"\"\n Re-implementation of the SmartCache mechanism in NVIDIA Clara-train SDK.\n At any time, the cache pool only keeps a subset of the whole dataset. In each epoch, only the items\n in the cache are used for training. This ensures that data needed for training is readily available,\n keeping GPU resources busy. Note that cached items may still have to go through a non-deterministic\n transform sequence before being fed to GPU. At the same time, another thread is preparing replacement\n items by applying the transform sequence to items not in cache. Once one epoch is completed, Smart\n Cache replaces the same number of items with replacement items.\n Smart Cache uses a simple `running window` algorithm to determine the cache content and replacement items.\n Let N be the configured number of objects in cache; and R be the number of replacement objects (R = ceil(N * r),\n where r is the configured replace rate).\n For more details, please refer to:\n https://docs.nvidia.com/clara/tlt-mi/clara-train-sdk-v3.0/nvmidl/additional_features/smart_cache.html#smart-cache\n If passing slicing indices, will return a PyTorch Subset, for example: `data: Subset = dataset[1:4]`,\n for more details, please check: https://pytorch.org/docs/stable/data.html#torch.utils.data.Subset\n\n For example, if we have 5 images: `[image1, image2, image3, image4, image5]`, and `cache_num=4`, `replace_rate=0.25`.\n so the actual training images cached and replaced for every epoch are as below::\n\n epoch 1: [image1, image2, image3, image4]\n epoch 2: [image2, image3, image4, image5]\n epoch 3: [image3, image4, image5, image1]\n epoch 3: [image4, image5, image1, image2]\n epoch N: [image[N % 5] ...]\n\n The usage of `SmartCacheDataset` contains 4 steps:\n\n 1. Initialize `SmartCacheDataset` object and cache for the first epoch.\n 2. Call `start()` to run replacement thread in background.\n 3. Call `update_cache()` before every epoch to replace training items.\n 4. Call `shutdown()` when training ends.\n\n During training call `set_data()` to update input data and recompute cache content, note to call\n `shutdown()` to stop first, then update data and call `start()` to restart.\n\n Note:\n This replacement will not work for below cases:\n 1. Set the `multiprocessing_context` of DataLoader to `spawn`.\n 2. Run on windows(the default multiprocessing method is `spawn`) with `num_workers` greater than 0.\n 3. Set the `persistent_workers` of DataLoader to `True` with `num_workers` greater than 0.\n\n If using MONAI workflows, please add `SmartCacheHandler` to the handler list of trainer,\n otherwise, please make sure to call `start()`, `update_cache()`, `shutdown()` during training.\n\n Args:\n data: input data to load and transform to generate dataset for model.\n transform: transforms to execute operations on input data.\n replace_rate: percentage of the cached items to be replaced in every epoch.\n cache_num: number of items to be cached. Default is `sys.maxsize`.\n will take the minimum of (cache_num, data_length x cache_rate, data_length).\n cache_rate: percentage of cached data in total, default is 1.0 (cache all).\n will take the minimum of (cache_num, data_length x cache_rate, data_length).\n num_init_workers: the number of worker threads to initialize the cache for first epoch.\n If num_init_workers is None then the number returned by os.cpu_count() is used.\n num_replace_workers: the number of worker threads to prepare the replacement cache for every epoch.\n If num_replace_workers is None then the number returned by os.cpu_count() is used.\n progress: whether to display a progress bar when caching for the first epoch.\n shuffle: whether to shuffle the whole data list before preparing the cache content for first epoch.\n it will not modify the original input data sequence in-place.\n seed: random seed if shuffle is `True`, default to `0`.\n copy_cache: whether to `deepcopy` the cache content before applying the random transforms,\n default to `True`. if the random transforms don't modify the cache content\n or every cache item is only used once in a `multi-processing` environment,\n may set `copy=False` for better performance.\n as_contiguous: whether to convert the cached NumPy array or PyTorch tensor to be contiguous.\n it may help improve the performance of following logic.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.__init___SmartCacheDataset._restart.self__replace_mgr_start_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.__init___SmartCacheDataset._restart.self__replace_mgr_start_", "embedding": null, "metadata": {"file_path": "monai/data/dataset.py", "file_name": "dataset.py", "file_type": "text/x-python", "category": "implementation", "start_line": 848, "end_line": 953, "span_ids": ["SmartCacheDataset.set_data", "SmartCacheDataset._compute_data_idx", "SmartCacheDataset.__init__", "SmartCacheDataset.randomize", "SmartCacheDataset.is_started", "SmartCacheDataset._restart", "SmartCacheDataset.start"], "tokens": 807}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SmartCacheDataset(Randomizable, CacheDataset):\n\n def __init__(\n self,\n data: Sequence,\n transform: Union[Sequence[Callable], Callable],\n replace_rate: float,\n cache_num: int = sys.maxsize,\n cache_rate: float = 1.0,\n num_init_workers: Optional[int] = None,\n num_replace_workers: Optional[int] = None,\n progress: bool = True,\n shuffle: bool = True,\n seed: int = 0,\n copy_cache: bool = True,\n as_contiguous: bool = True,\n ) -> None:\n if shuffle:\n self.set_random_state(seed=seed)\n data = copy(data)\n self.randomize(data)\n self.shuffle = shuffle\n\n super().__init__(data, transform, cache_num, cache_rate, num_init_workers, progress, copy_cache, as_contiguous)\n if self._cache is None:\n self._cache = self._fill_cache()\n if self.cache_num >= len(data):\n warnings.warn(\n \"cache_num is greater or equal than dataset length, fall back to regular monai.data.CacheDataset.\"\n )\n if replace_rate <= 0:\n raise ValueError(\"replace_rate must be greater than 0, otherwise, please use monai.data.CacheDataset.\")\n\n self.num_replace_workers: Optional[int] = num_replace_workers\n if self.num_replace_workers is not None:\n self.num_replace_workers = max(int(self.num_replace_workers), 1)\n\n self._total_num: int = len(data)\n self._replace_num: int = min(math.ceil(self.cache_num * replace_rate), len(data) - self.cache_num)\n self._replacements: List[Any] = [None for _ in range(self._replace_num)]\n self._replace_data_idx: List[int] = list(range(self._replace_num))\n\n self._start_pos: int = 0\n self._update_lock: threading.Lock = threading.Lock()\n self._round: int = 1\n self._replace_done: bool = False\n self._replace_mgr: Optional[threading.Thread] = None\n\n self._compute_data_idx()\n\n def set_data(self, data: Sequence):\n \"\"\"\n Set the input data and run deterministic transforms to generate cache content.\n\n Note: should call `shutdown()` before calling this func.\n\n \"\"\"\n if self.is_started():\n warnings.warn(\"SmartCacheDataset is not shutdown yet, shutdown it directly.\")\n self.shutdown()\n\n if self.shuffle:\n data = copy(data)\n self.randomize(data)\n super().set_data(data)\n\n def randomize(self, data: Sequence) -> None:\n try:\n self.R.shuffle(data)\n except TypeError as e:\n warnings.warn(f\"input data can't be shuffled in SmartCacheDataset with numpy.random.shuffle(): {e}.\")\n\n def _compute_data_idx(self):\n \"\"\"\n Update the replacement data position in the total data.\n\n \"\"\"\n for i in range(self._replace_num):\n pos: int = self._start_pos + self.cache_num + i\n if pos >= self._total_num:\n pos -= self._total_num\n self._replace_data_idx[i] = pos\n\n def is_started(self):\n \"\"\"\n Check whether the replacement thread is already started.\n\n \"\"\"\n if self._replace_mgr is None:\n return False\n return self._replace_mgr.is_alive()\n\n def start(self):\n \"\"\"\n Start the background thread to replace training items for every epoch.\n\n \"\"\"\n if self._replace_mgr is None or not self.is_started():\n self._restart()\n\n def _restart(self):\n \"\"\"\n Restart background thread if killed for some reason.\n\n \"\"\"\n self._round = 1\n self._replace_mgr = threading.Thread(target=self.manage_replacement, daemon=True)\n self._replace_mgr.start()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.update_cache_SmartCacheDataset.__len__.return.self_cache_num": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/dataset.py_SmartCacheDataset.update_cache_SmartCacheDataset.__len__.return.self_cache_num", "embedding": null, "metadata": {"file_path": "monai/data/dataset.py", "file_name": "dataset.py", "file_type": "text/x-python", "category": "implementation", "start_line": 868, "end_line": 958, "span_ids": ["SmartCacheDataset._replace_cache_thread", "SmartCacheDataset._compute_replacements", "SmartCacheDataset._try_shutdown", "SmartCacheDataset._try_manage_replacement", "SmartCacheDataset.shutdown", "SmartCacheDataset.__len__", "SmartCacheDataset.manage_replacement", "SmartCacheDataset.update_cache"], "tokens": 543}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SmartCacheDataset(Randomizable, CacheDataset):\n\n def update_cache(self):\n \"\"\"\n Update cache items for current epoch, need to call this function before every epoch.\n If the cache has been shutdown before, need to restart the `_replace_mgr` thread.\n\n \"\"\"\n if not self._replace_mgr.is_alive():\n self._restart()\n\n # make sure update is done\n while not self._try_update_cache():\n time.sleep(0.01)\n\n def _try_shutdown(self):\n \"\"\"\n Wait for thread lock to shut down the background thread.\n\n \"\"\"\n with self._update_lock:\n if self._replace_done:\n self._round = 0\n self._start_pos = 0\n self._compute_data_idx()\n self._replace_done = False\n return True\n return False\n\n def shutdown(self):\n \"\"\"\n Shut down the background thread for replacement.\n\n \"\"\"\n if not self.is_started():\n return\n\n # wait until replace mgr is done the current round\n while not self._try_shutdown():\n time.sleep(0.01)\n self._replace_mgr.join()\n\n def _replace_cache_thread(self, index: int):\n \"\"\"\n Execute deterministic transforms on the new data for replacement.\n\n \"\"\"\n pos: int = self._replace_data_idx[index]\n self._replacements[index] = self._load_cache_item(pos)\n\n def _compute_replacements(self):\n \"\"\"\n Compute expected items for the replacement of next epoch, execute deterministic transforms.\n It can support multi-threads to accelerate the computation progress.\n\n \"\"\"\n with ThreadPool(self.num_replace_workers) as p:\n p.map(self._replace_cache_thread, list(range(self._replace_num)))\n\n self._replace_done = True\n\n def _try_manage_replacement(self, check_round):\n \"\"\"\n Wait thread lock and replace training items in the background thread.\n\n \"\"\"\n with self._update_lock:\n if self._round <= 0:\n # shutdown replacement\n self._replace_done = True\n return True, -1\n\n if self._round != check_round:\n self._compute_replacements()\n return False, self._round\n\n def manage_replacement(self):\n \"\"\"\n Background thread for replacement.\n\n \"\"\"\n check_round: int = -1\n done = False\n while not done:\n done, check_round = self._try_manage_replacement(check_round)\n time.sleep(0.01)\n\n def __len__(self):\n \"\"\"\n The dataset length is given by cache_num instead of len(data).\n\n \"\"\"\n return self.cache_num", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py__append_paths__append_paths.return.items": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py__append_paths__append_paths.return.items", "embedding": null, "metadata": {"file_path": "monai/data/decathlon_datalist.py", "file_name": "decathlon_datalist.py", "file_type": "text/x-python", "category": "implementation", "start_line": 63, "end_line": 83, "span_ids": ["_append_paths"], "tokens": 213}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def _append_paths(base_dir: PathLike, is_segmentation: bool, items: List[Dict]) -> List[Dict]:\n \"\"\"\n Args:\n base_dir: the base directory of the dataset.\n is_segmentation: whether the datalist is for segmentation task.\n items: list of data items, each of which is a dict keyed by element names.\n\n Raises:\n TypeError: When ``items`` contains a non ``dict``.\n\n \"\"\"\n for item in items:\n if not isinstance(item, dict):\n raise TypeError(f\"Every item in items must be a dict but got {type(item).__name__}.\")\n for k, v in item.items():\n if k == \"image\" or is_segmentation and k == \"label\":\n item[k] = _compute_path(base_dir, v, check_path=False)\n else:\n # for other items, auto detect whether it's a valid path\n item[k] = _compute_path(base_dir, v, check_path=True)\n return items", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_load_decathlon_datalist_load_decathlon_datalist.return._append_paths_base_dir_i": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/decathlon_datalist.py_load_decathlon_datalist_load_decathlon_datalist.return._append_paths_base_dir_i", "embedding": null, "metadata": {"file_path": "monai/data/decathlon_datalist.py", "file_name": "decathlon_datalist.py", "file_type": "text/x-python", "category": "implementation", "start_line": 86, "end_line": 131, "span_ids": ["load_decathlon_datalist"], "tokens": 443}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def load_decathlon_datalist(\n data_list_file_path: PathLike,\n is_segmentation: bool = True,\n data_list_key: str = \"training\",\n base_dir: Optional[PathLike] = None,\n) -> List[Dict]:\n \"\"\"Load image/label paths of decathlon challenge from JSON file\n\n Json file is similar to what you get from http://medicaldecathlon.com/\n Those dataset.json files\n\n Args:\n data_list_file_path: the path to the json file of datalist.\n is_segmentation: whether the datalist is for segmentation task, default is True.\n data_list_key: the key to get a list of dictionary to be used, default is \"training\".\n base_dir: the base directory of the dataset, if None, use the datalist directory.\n\n Raises:\n ValueError: When ``data_list_file_path`` does not point to a file.\n ValueError: When ``data_list_key`` is not specified in the data list file.\n\n Returns a list of data items, each of which is a dict keyed by element names, for example:\n\n .. code-block::\n\n [\n {'image': '/workspace/data/chest_19.nii.gz', 'label': 0},\n {'image': '/workspace/data/chest_31.nii.gz', 'label': 1}\n ]\n\n \"\"\"\n data_list_file_path = Path(data_list_file_path)\n if not data_list_file_path.is_file():\n raise ValueError(f\"Data list file {data_list_file_path} does not exist.\")\n with open(data_list_file_path) as json_file:\n json_data = json.load(json_file)\n if data_list_key not in json_data:\n raise ValueError(f'Data list {data_list_key} not specified in \"{data_list_file_path}\".')\n expected_data = json_data[data_list_key]\n if data_list_key == \"test\":\n expected_data = [{\"image\": i} for i in expected_data]\n\n if base_dir is None:\n base_dir = data_list_file_path.parent\n\n return _append_paths(base_dir, is_segmentation, expected_data)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_PatchDataset_PatchDataset.__len__.return.len_self_data_self_sam": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/grid_dataset.py_PatchDataset_PatchDataset.__len__.return.len_self_data_self_sam", "embedding": null, "metadata": {"file_path": "monai/data/grid_dataset.py", "file_name": "grid_dataset.py", "file_type": "text/x-python", "category": "implementation", "start_line": 150, "end_line": 214, "span_ids": ["PatchDataset.__init__", "PatchDataset.__len__", "PatchDataset"], "tokens": 574}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class PatchDataset(Dataset):\n \"\"\"\n returns a patch from an image dataset.\n The patches are generated by a user-specified callable `patch_func`,\n and are optionally post-processed by `transform`.\n For example, to generate random patch samples from an image dataset:\n\n .. code-block:: python\n\n import numpy as np\n\n from monai.data import PatchDataset, DataLoader\n from monai.transforms import RandSpatialCropSamples, RandShiftIntensity\n\n # image dataset\n images = [np.arange(16, dtype=float).reshape(1, 4, 4),\n np.arange(16, dtype=float).reshape(1, 4, 4)]\n # image patch sampler\n n_samples = 5\n sampler = RandSpatialCropSamples(roi_size=(3, 3), num_samples=n_samples,\n random_center=True, random_size=False)\n # patch-level intensity shifts\n patch_intensity = RandShiftIntensity(offsets=1.0, prob=1.0)\n # construct the patch dataset\n ds = PatchDataset(dataset=images,\n patch_func=sampler,\n samples_per_image=n_samples,\n transform=patch_intensity)\n\n # use the patch dataset, length: len(images) x samplers_per_image\n print(len(ds))\n\n >>> 10\n\n for item in DataLoader(ds, batch_size=2, shuffle=True, num_workers=2):\n print(item.shape)\n\n >>> torch.Size([2, 1, 3, 3])\n\n .. deprecated:: 0.8.0\n ``dataset`` is deprecated, use ``data`` instead.\n\n \"\"\"\n\n @deprecated_arg(name=\"dataset\", new_name=\"data\", since=\"0.8\", msg_suffix=\"please use `data` instead.\")\n def __init__(\n self, data: Sequence, patch_func: Callable, samples_per_image: int = 1, transform: Optional[Callable] = None\n ) -> None:\n \"\"\"\n Args:\n data: an image dataset to extract patches from.\n patch_func: converts an input image (item from dataset) into a sequence of image patches.\n patch_func(dataset[idx]) must return a sequence of patches (length `samples_per_image`).\n samples_per_image: `patch_func` should return a sequence of `samples_per_image` elements.\n transform: transform applied to each patch.\n \"\"\"\n super().__init__(data=data, transform=transform)\n\n self.patch_func = patch_func\n if samples_per_image <= 0:\n raise ValueError(\"sampler_per_image must be a positive integer.\")\n self.samples_per_image = int(samples_per_image)\n\n def __len__(self) -> int:\n return len(self.data) * self.samples_per_image", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader.read_ITKReader.read.return.img__if_len_filenames_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader.read_ITKReader.read.return.img__if_len_filenames_", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 197, "end_line": 245, "span_ids": ["ITKReader.read"], "tokens": 549}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@require_pkg(pkg_name=\"itk\")\nclass ITKReader(ImageReader):\n\n def read(self, data: Union[Sequence[PathLike], PathLike], **kwargs):\n \"\"\"\n Read image data from specified file or files, it can read a list of images\n and stack them together as multi-channel data in `get_data()`.\n If passing directory path instead of file path, will treat it as DICOM images series and read.\n Note that the returned object is ITK image object or list of ITK image objects.\n\n Args:\n data: file name or a list of file names to read,\n kwargs: additional args for `itk.imread` API, will override `self.kwargs` for existing keys.\n More details about available args:\n https://github.com/InsightSoftwareConsortium/ITK/blob/master/Wrapping/Generators/Python/itkExtras.py\n\n \"\"\"\n img_ = []\n\n filenames: Sequence[PathLike] = ensure_tuple(data)\n kwargs_ = self.kwargs.copy()\n kwargs_.update(kwargs)\n for name in filenames:\n name = f\"{name}\"\n if Path(name).is_dir():\n # read DICOM series\n # https://itk.org/ITKExamples/src/IO/GDCM/ReadDICOMSeriesAndWrite3DImage\n names_generator = itk.GDCMSeriesFileNames.New()\n names_generator.SetUseSeriesDetails(True)\n names_generator.AddSeriesRestriction(\"0008|0021\") # Series Date\n names_generator.SetDirectory(name)\n series_uid = names_generator.GetSeriesUIDs()\n\n if len(series_uid) < 1:\n raise FileNotFoundError(f\"no DICOMs in: {name}.\")\n if len(series_uid) > 1:\n warnings.warn(f\"the directory: {name} contains more than one DICOM series.\")\n series_identifier = series_uid[0] if not self.series_name else self.series_name\n name = names_generator.GetFileNames(series_identifier)\n\n _obj = itk.imread(name, **kwargs_)\n if self.series_meta:\n _reader = itk.ImageSeriesReader.New(FileNames=name)\n _reader.Update()\n _meta = _reader.GetMetaDataDictionaryArray()\n if len(_meta) > 0:\n # TODO: using the first slice's meta. this could be improved to filter unnecessary tags.\n _obj.SetMetaDataDictionary(_meta[0])\n img_.append(_obj)\n else:\n img_.append(itk.imread(name, **kwargs_))\n return img_ if len(filenames) > 1 else img_[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader._get_meta_dict_ITKReader._get_meta_dict.return.meta_dict": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_ITKReader._get_meta_dict_ITKReader._get_meta_dict.return.meta_dict", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 249, "end_line": 261, "span_ids": ["ITKReader._get_meta_dict"], "tokens": 123}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@require_pkg(pkg_name=\"itk\")\nclass ITKReader(ImageReader):\n\n def _get_meta_dict(self, img) -> Dict:\n \"\"\"\n Get all the meta data of the image and convert to dict type.\n\n Args:\n img: an ITK image object loaded from an image file.\n\n \"\"\"\n img_meta_dict = img.GetMetaDataDictionary()\n meta_dict = {key: img_meta_dict[key] for key in img_meta_dict.GetKeys() if not key.startswith(\"ITK_\")}\n\n meta_dict[\"spacing\"] = np.asarray(img.GetSpacing())\n return meta_dict", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader.read_NibabelReader.read.return.img__if_len_filenames_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NibabelReader.read_NibabelReader.read.return.img__if_len_filenames_", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 396, "end_line": 418, "span_ids": ["NibabelReader.read"], "tokens": 254}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@require_pkg(pkg_name=\"nibabel\")\nclass NibabelReader(ImageReader):\n\n def read(self, data: Union[Sequence[PathLike], PathLike], **kwargs):\n \"\"\"\n Read image data from specified file or files, it can read a list of images\n and stack them together as multi-channel data in `get_data()`.\n Note that the returned object is Nibabel image object or list of Nibabel image objects.\n\n Args:\n data: file name or a list of file names to read.\n kwargs: additional args for `nibabel.load` API, will override `self.kwargs` for existing keys.\n More details about available args:\n https://github.com/nipy/nibabel/blob/master/nibabel/loadsave.py\n\n \"\"\"\n img_: List[Nifti1Image] = []\n\n filenames: Sequence[PathLike] = ensure_tuple(data)\n kwargs_ = self.kwargs.copy()\n kwargs_.update(kwargs)\n for name in filenames:\n img = nib.load(name, **kwargs_)\n img = correct_nifti_header_if_necessary(img)\n img_.append(img)\n return img_ if len(filenames) > 1 else img_[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader_NumpyReader.verify_suffix.return.is_supported_format_filen": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader_NumpyReader.verify_suffix.return.is_supported_format_filen", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 484, "end_line": 516, "span_ids": ["NumpyReader.__init__", "NumpyReader.verify_suffix", "NumpyReader"], "tokens": 346}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NumpyReader(ImageReader):\n \"\"\"\n Load NPY or NPZ format data based on Numpy library, they can be arrays or pickled objects.\n A typical usage is to load the `mask` data for classification task.\n It can load part of the npz file with specified `npz_keys`.\n\n Args:\n npz_keys: if loading npz file, only load the specified keys, if None, load all the items.\n stack the loaded items together to construct a new first dimension.\n channel_dim: if not None, explicitly specify the channel dim, otherwise, treat the array as no channel.\n kwargs: additional args for `numpy.load` API except `allow_pickle`. more details about available args:\n https://numpy.org/doc/stable/reference/generated/numpy.load.html\n\n \"\"\"\n\n def __init__(self, npz_keys: Optional[KeysCollection] = None, channel_dim: Optional[int] = None, **kwargs):\n super().__init__()\n if npz_keys is not None:\n npz_keys = ensure_tuple(npz_keys)\n self.npz_keys = npz_keys\n self.channel_dim = channel_dim\n self.kwargs = kwargs\n\n def verify_suffix(self, filename: Union[Sequence[PathLike], PathLike]) -> bool:\n \"\"\"\n Verify whether the specified file or files format is supported by Numpy reader.\n\n Args:\n filename: file name or a list of file names to read.\n if a list of files, verify all the suffixes.\n \"\"\"\n suffixes: Sequence[str] = [\"npz\", \"npy\"]\n return is_supported_format(filename, suffixes)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader.read_NumpyReader.read.return.img__if_len_img__1_els": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_NumpyReader.read_NumpyReader.read.return.img__if_len_img__1_els", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 555, "end_line": 583, "span_ids": ["NumpyReader.read"], "tokens": 299}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NumpyReader(ImageReader):\n\n def read(self, data: Union[Sequence[PathLike], PathLike], **kwargs):\n \"\"\"\n Read image data from specified file or files, it can read a list of data files\n and stack them together as multi-channel data in `get_data()`.\n Note that the returned object is Numpy array or list of Numpy arrays.\n\n Args:\n data: file name or a list of file names to read.\n kwargs: additional args for `numpy.load` API except `allow_pickle`, will override `self.kwargs` for existing keys.\n More details about available args:\n https://numpy.org/doc/stable/reference/generated/numpy.load.html\n\n \"\"\"\n img_: List[Nifti1Image] = []\n\n filenames: Sequence[PathLike] = ensure_tuple(data)\n kwargs_ = self.kwargs.copy()\n kwargs_.update(kwargs)\n for name in filenames:\n img = np.load(name, allow_pickle=True, **kwargs_)\n if Path(name).name.endswith(\".npz\"):\n # load expected items from NPZ file\n npz_keys = [f\"arr_{i}\" for i in range(len(img))] if self.npz_keys is None else self.npz_keys\n for k in npz_keys:\n img_.append(img[k])\n else:\n img_.append(img)\n\n return img_ if len(img_) > 1 else img_[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader.read_PILReader.read.return.img__if_len_filenames_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/image_reader.py_PILReader.read_PILReader.read.return.img__if_len_filenames_", "embedding": null, "metadata": {"file_path": "monai/data/image_reader.py", "file_name": "image_reader.py", "file_type": "text/x-python", "category": "implementation", "start_line": 645, "end_line": 669, "span_ids": ["PILReader.read"], "tokens": 252}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "@require_pkg(pkg_name=\"PIL\")\nclass PILReader(ImageReader):\n\n def read(self, data: Union[Sequence[PathLike], PathLike, np.ndarray], **kwargs):\n \"\"\"\n Read image data from specified file or files, it can read a list of images\n and stack them together as multi-channel data in `get_data()`.\n Note that the returned object is PIL image or list of PIL image.\n\n Args:\n data: file name or a list of file names to read.\n kwargs: additional args for `Image.open` API in `read()`, will override `self.kwargs` for existing keys.\n Mode details about available args:\n https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.open\n\n \"\"\"\n img_: List[PILImage.Image] = []\n\n filenames: Sequence[PathLike] = ensure_tuple(data)\n kwargs_ = self.kwargs.copy()\n kwargs_.update(kwargs)\n for name in filenames:\n img = PILImage.open(name, **kwargs_)\n if callable(self.converter):\n img = self.converter(img)\n img_.append(img)\n\n return img_ if len(filenames) > 1 else img_[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_random_patch_get_random_patch.return.tuple_slice_mc_mc_ps_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_get_random_patch_get_random_patch.return.tuple_slice_mc_mc_ps_", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 38, "end_line": 60, "span_ids": ["get_random_patch"], "tokens": 268}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_random_patch(\n dims: Sequence[int], patch_size: Sequence[int], rand_state: Optional[np.random.RandomState] = None\n) -> Tuple[slice, ...]:\n \"\"\"\n Returns a tuple of slices to define a random patch in an array of shape `dims` with size `patch_size` or the as\n close to it as possible within the given dimension. It is expected that `patch_size` is a valid patch for a source\n of shape `dims` as returned by `get_valid_patch_size`.\n\n Args:\n dims: shape of source array\n patch_size: shape of patch size to generate\n rand_state: a random state object to generate random numbers from\n\n Returns:\n (tuple of slice): a tuple of slice objects defining the patch\n \"\"\"\n\n # choose the minimal corner of the patch\n rand_int = np.random.randint if rand_state is None else rand_state.randint\n min_corner = tuple(rand_int(0, ms - ps + 1) if ms > ps else 0 for ms, ps in zip(dims, patch_size))\n\n # create the slices for each dimension which define the patch in the source array\n return tuple(slice(mc, mc + ps) for mc, ps in zip(min_corner, patch_size))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_compute_importance_map_compute_importance_map.return.importance_map": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/data/utils.py_compute_importance_map_compute_importance_map.return.importance_map", "embedding": null, "metadata": {"file_path": "monai/data/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 742, "end_line": 794, "span_ids": ["compute_importance_map"], "tokens": 547}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def compute_importance_map(\n patch_size: Tuple[int, ...],\n mode: Union[BlendMode, str] = BlendMode.CONSTANT,\n sigma_scale: Union[Sequence[float], float] = 0.125,\n device: Union[torch.device, int, str] = \"cpu\",\n) -> torch.Tensor:\n \"\"\"Get importance map for different weight modes.\n\n Args:\n patch_size: Size of the required importance map. This should be either H, W [,D].\n mode: {``\"constant\"``, ``\"gaussian\"``}\n How to blend output of overlapping windows. Defaults to ``\"constant\"``.\n\n - ``\"constant``\": gives equal weight to all predictions.\n - ``\"gaussian``\": gives less weight to predictions on edges of windows.\n\n sigma_scale: Sigma_scale to calculate sigma for each dimension\n (sigma = sigma_scale * dim_size). Used for gaussian mode only.\n device: Device to put importance map on.\n\n Raises:\n ValueError: When ``mode`` is not one of [\"constant\", \"gaussian\"].\n\n Returns:\n Tensor of size patch_size.\n\n \"\"\"\n mode = look_up_option(mode, BlendMode)\n device = torch.device(device) # type: ignore[arg-type]\n if mode == BlendMode.CONSTANT:\n importance_map = torch.ones(patch_size, device=device).float()\n elif mode == BlendMode.GAUSSIAN:\n center_coords = [i // 2 for i in patch_size]\n sigma_scale = ensure_tuple_rep(sigma_scale, len(patch_size))\n sigmas = [i * sigma_s for i, sigma_s in zip(patch_size, sigma_scale)]\n\n importance_map = torch.zeros(patch_size, device=device)\n importance_map[tuple(center_coords)] = 1\n pt_gaussian = GaussianFilter(len(patch_size), sigmas).to(device=device, dtype=torch.float)\n importance_map = pt_gaussian(importance_map.unsqueeze(0).unsqueeze(0))\n importance_map = importance_map.squeeze(0).squeeze(0)\n importance_map = importance_map / torch.max(importance_map)\n importance_map = importance_map.float()\n\n # importance_map cannot be 0, otherwise we may end up with nans!\n min_non_zero = importance_map[importance_map != 0].min().item()\n importance_map = torch.clamp(importance_map, min=min_non_zero)\n else:\n raise ValueError(\n f\"Unsupported mode: {mode}, available options are [{BlendMode.CONSTANT}, {BlendMode.CONSTANT}].\"\n )\n\n return importance_map", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/smartcache_handler.py_from_typing_import_TYPE_C_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/handlers/smartcache_handler.py_from_typing_import_TYPE_C_", "embedding": null, "metadata": {"file_path": "monai/handlers/smartcache_handler.py", "file_name": "smartcache_handler.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 80, "span_ids": ["SmartCacheHandler.__init__", "SmartCacheHandler.completed", "SmartCacheHandler.started", "SmartCacheHandler.epoch_completed", "SmartCacheHandler.attach", "docstring", "SmartCacheHandler"], "tokens": 517}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import TYPE_CHECKING\n\nfrom monai.config import IgniteInfo\nfrom monai.data import SmartCacheDataset\nfrom monai.utils import min_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Events\")\nif TYPE_CHECKING:\n from ignite.engine import Engine\nelse:\n Engine, _ = optional_import(\"ignite.engine\", IgniteInfo.OPT_IMPORT_VERSION, min_version, \"Engine\")\n\n\nclass SmartCacheHandler:\n \"\"\"\n Attach SmartCache logic to the engine in Ignite.\n Mainly include the `start`, `update_cache`, and `shutdown` functions of SmartCacheDataset.\n\n \"\"\"\n\n def __init__(self, smartcacher: SmartCacheDataset) -> None:\n \"\"\"\n Args:\n smartcacher: predefined SmartCacheDataset, will attach it to the engine.\n\n Raises:\n TypeError: When ``smartcacher`` is not a ``monai.data.SmartCacheDataset``.\n\n \"\"\"\n if not isinstance(smartcacher, SmartCacheDataset):\n raise TypeError(\"smartcacher must be a monai.data.SmartCacheDataset.\")\n self.smartcacher = smartcacher\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n engine.add_event_handler(Events.STARTED, self.started)\n engine.add_event_handler(Events.EPOCH_COMPLETED, self.epoch_completed)\n engine.add_event_handler(Events.COMPLETED, self.completed)\n\n def started(self, engine: Engine) -> None:\n \"\"\"Callback for train or validation/evaluation started Event.\n Start the replacement thread of SmartCacheDataset.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n self.smartcacher.start()\n\n def epoch_completed(self, engine: Engine) -> None:\n \"\"\"Callback for train or validation/evaluation epoch completed Event.\n Update cache content with replacement data.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n self.smartcacher.update_cache()\n\n def completed(self, engine: Engine) -> None:\n \"\"\"Callback for train or validation/evaluation completed Event.\n Stop the replacement thread of SmartCacheDataset.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n self.smartcacher.shutdown()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_compute_percent_hausdorff_distance_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/hausdorff_distance.py_compute_percent_hausdorff_distance_", "embedding": null, "metadata": {"file_path": "monai/metrics/hausdorff_distance.py", "file_name": "hausdorff_distance.py", "file_type": "text/x-python", "category": "implementation", "start_line": 171, "end_line": 190, "span_ids": ["compute_percent_hausdorff_distance"], "tokens": 161}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def compute_percent_hausdorff_distance(\n edges_pred: np.ndarray, edges_gt: np.ndarray, distance_metric: str = \"euclidean\", percentile: Optional[float] = None\n):\n \"\"\"\n This function is used to compute the directed Hausdorff distance.\n \"\"\"\n\n surface_distance = get_surface_distance(edges_pred, edges_gt, distance_metric=distance_metric)\n\n # for both pred and gt do not have foreground\n if surface_distance.shape == (0,):\n return np.nan\n\n if not percentile:\n return surface_distance.max()\n\n if 0 <= percentile <= 100:\n return np.percentile(surface_distance, percentile)\n raise ValueError(f\"percentile should be a value between 0 and 100, get {percentile}.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_get_surface_distance_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/metrics/utils.py_get_surface_distance_", "embedding": null, "metadata": {"file_path": "monai/metrics/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 167, "end_line": 200, "span_ids": ["get_surface_distance"], "tokens": 337}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_surface_distance(seg_pred: np.ndarray, seg_gt: np.ndarray, distance_metric: str = \"euclidean\") -> np.ndarray:\n \"\"\"\n This function is used to compute the surface distances from `seg_pred` to `seg_gt`.\n\n Args:\n seg_pred: the edge of the predictions.\n seg_gt: the edge of the ground truth.\n distance_metric: : [``\"euclidean\"``, ``\"chessboard\"``, ``\"taxicab\"``]\n the metric used to compute surface distance. Defaults to ``\"euclidean\"``.\n\n - ``\"euclidean\"``, uses Exact Euclidean distance transform.\n - ``\"chessboard\"``, uses `chessboard` metric in chamfer type of transform.\n - ``\"taxicab\"``, uses `taxicab` metric in chamfer type of transform.\n\n Note:\n If seg_pred or seg_gt is all 0, may result in nan/inf distance.\n\n \"\"\"\n\n if not np.any(seg_gt):\n dis = np.inf * np.ones_like(seg_gt)\n else:\n if not np.any(seg_pred):\n dis = np.inf * np.ones_like(seg_gt)\n return np.asarray(dis[seg_gt])\n if distance_metric == \"euclidean\":\n dis = distance_transform_edt(~seg_gt)\n elif distance_metric in {\"chessboard\", \"taxicab\"}:\n dis = distance_transform_cdt(~seg_gt, metric=distance_metric)\n else:\n raise ValueError(f\"distance_metric {distance_metric} is not implemented.\")\n\n return np.asarray(dis[seg_pred])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetBasicBlock_UnetBasicBlock.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetBasicBlock_UnetBasicBlock.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/dynunet_block.py", "file_name": "dynunet_block.py", "file_type": "text/x-python", "category": "implementation", "start_line": 92, "end_line": 145, "span_ids": ["UnetBasicBlock", "UnetBasicBlock.forward", "UnetBasicBlock.__init__"], "tokens": 483}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class UnetBasicBlock(nn.Module):\n \"\"\"\n A CNN module module that can be used for DynUNet, based on:\n `Automated Design of Deep Learning Methods for Biomedical Image Segmentation `_.\n `nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation `_.\n\n Args:\n spatial_dims: number of spatial dimensions.\n in_channels: number of input channels.\n out_channels: number of output channels.\n kernel_size: convolution kernel size.\n stride: convolution stride.\n norm_name: feature normalization type and arguments.\n act_name: activation layer type and arguments.\n dropout: dropout probability.\n\n \"\"\"\n\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n kernel_size: Union[Sequence[int], int],\n stride: Union[Sequence[int], int],\n norm_name: Union[Tuple, str],\n act_name: Union[Tuple, str] = (\"leakyrelu\", {\"inplace\": True, \"negative_slope\": 0.01}),\n dropout: Optional[Union[Tuple, str, float]] = None,\n ):\n super().__init__()\n self.conv1 = get_conv_layer(\n spatial_dims,\n in_channels,\n out_channels,\n kernel_size=kernel_size,\n stride=stride,\n dropout=dropout,\n conv_only=True,\n )\n self.conv2 = get_conv_layer(\n spatial_dims, out_channels, out_channels, kernel_size=kernel_size, stride=1, dropout=dropout, conv_only=True\n )\n self.lrelu = get_act_layer(name=act_name)\n self.norm1 = get_norm_layer(name=norm_name, spatial_dims=spatial_dims, channels=out_channels)\n self.norm2 = get_norm_layer(name=norm_name, spatial_dims=spatial_dims, channels=out_channels)\n\n def forward(self, inp):\n out = self.conv1(inp)\n out = self.norm1(out)\n out = self.lrelu(out)\n out = self.conv2(out)\n out = self.norm2(out)\n out = self.lrelu(out)\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetUpBlock_UnetUpBlock.forward.return.out": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_UnetUpBlock_UnetUpBlock.forward.return.out", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/dynunet_block.py", "file_name": "dynunet_block.py", "file_type": "text/x-python", "category": "implementation", "start_line": 148, "end_line": 210, "span_ids": ["UnetUpBlock.__init__", "UnetUpBlock.forward", "UnetUpBlock"], "tokens": 511}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class UnetUpBlock(nn.Module):\n \"\"\"\n An upsampling module that can be used for DynUNet, based on:\n `Automated Design of Deep Learning Methods for Biomedical Image Segmentation `_.\n `nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation `_.\n\n Args:\n spatial_dims: number of spatial dimensions.\n in_channels: number of input channels.\n out_channels: number of output channels.\n kernel_size: convolution kernel size.\n stride: convolution stride.\n upsample_kernel_size: convolution kernel size for transposed convolution layers.\n norm_name: feature normalization type and arguments.\n act_name: activation layer type and arguments.\n dropout: dropout probability.\n trans_bias: transposed convolution bias.\n\n \"\"\"\n\n def __init__(\n self,\n spatial_dims: int,\n in_channels: int,\n out_channels: int,\n kernel_size: Union[Sequence[int], int],\n stride: Union[Sequence[int], int],\n upsample_kernel_size: Union[Sequence[int], int],\n norm_name: Union[Tuple, str],\n act_name: Union[Tuple, str] = (\"leakyrelu\", {\"inplace\": True, \"negative_slope\": 0.01}),\n dropout: Optional[Union[Tuple, str, float]] = None,\n trans_bias: bool = False,\n ):\n super().__init__()\n upsample_stride = upsample_kernel_size\n self.transp_conv = get_conv_layer(\n spatial_dims,\n in_channels,\n out_channels,\n kernel_size=upsample_kernel_size,\n stride=upsample_stride,\n dropout=dropout,\n bias=trans_bias,\n conv_only=True,\n is_transposed=True,\n )\n self.conv_block = UnetBasicBlock(\n spatial_dims,\n out_channels + out_channels,\n out_channels,\n kernel_size=kernel_size,\n stride=1,\n dropout=dropout,\n norm_name=norm_name,\n act_name=act_name,\n )\n\n def forward(self, inp, skip):\n # number of channels for skip should equals to out_channels\n out = self.transp_conv(inp)\n out = torch.cat((out, skip), dim=1)\n out = self.conv_block(out)\n return out", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_padding_get_padding.return.padding_if_len_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_padding_get_padding.return.padding_if_len_padding_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/dynunet_block.py", "file_name": "dynunet_block.py", "file_type": "text/x-python", "category": "implementation", "start_line": 250, "end_line": 261, "span_ids": ["get_padding"], "tokens": 140}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_padding(\n kernel_size: Union[Sequence[int], int], stride: Union[Sequence[int], int]\n) -> Union[Tuple[int, ...], int]:\n\n kernel_size_np = np.atleast_1d(kernel_size)\n stride_np = np.atleast_1d(stride)\n padding_np = (kernel_size_np - stride_np + 1) / 2\n if np.min(padding_np) < 0:\n raise AssertionError(\"padding value should not be negative, please change the kernel size and/or stride.\")\n padding = tuple(int(p) for p in padding_np)\n\n return padding if len(padding) > 1 else padding[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_output_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/dynunet_block.py_get_output_padding_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/dynunet_block.py", "file_name": "dynunet_block.py", "file_type": "text/x-python", "category": "implementation", "start_line": 264, "end_line": 277, "span_ids": ["get_output_padding"], "tokens": 168}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_output_padding(\n kernel_size: Union[Sequence[int], int], stride: Union[Sequence[int], int], padding: Union[Sequence[int], int]\n) -> Union[Tuple[int, ...], int]:\n kernel_size_np = np.atleast_1d(kernel_size)\n stride_np = np.atleast_1d(stride)\n padding_np = np.atleast_1d(padding)\n\n out_padding_np = 2 * padding_np + stride_np - kernel_size_np\n if np.min(out_padding_np) < 0:\n raise AssertionError(\"out_padding value should not be negative, please change the kernel size and/or stride.\")\n out_padding = tuple(int(p) for p in out_padding_np)\n\n return out_padding if len(out_padding) > 1 else out_padding[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_from_typing_import_Option_UpSample._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_from_typing_import_Option_UpSample._", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/upsample.py", "file_name": "upsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 35, "span_ids": ["UpSample", "docstring"], "tokens": 212}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Optional, Sequence, Tuple, Union\n\nimport torch\nimport torch.nn as nn\n\nfrom monai.networks.layers.factories import Conv, Pad, Pool\nfrom monai.networks.utils import icnr_init, pixelshuffle\nfrom monai.utils import InterpolateMode, UpsampleMode, deprecated_arg, ensure_tuple_rep, look_up_option\n\n__all__ = [\"Upsample\", \"UpSample\", \"SubpixelUpsample\", \"Subpixelupsample\", \"SubpixelUpSample\"]\n\n\nclass UpSample(nn.Sequential):\n \"\"\"\n Upsamples data by `scale_factor`.\n Supported modes are:\n\n - \"deconv\": uses a transposed convolution.\n - \"nontrainable\": uses :py:class:`torch.nn.Upsample`.\n - \"pixelshuffle\": uses :py:class:`monai.networks.blocks.SubpixelUpsample`.\n\n This module can optionally take a pre-convolution\n (often used to map the number of features from `in_channels` to `out_channels`).\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_UpSample.__init___UpSample.__init__.if_up_mode_UpsampleMod.else_.raise_NotImplementedError": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_UpSample.__init___UpSample.__init__.if_up_mode_UpsampleMod.else_.raise_NotImplementedError", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/upsample.py", "file_name": "upsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 37, "end_line": 148, "span_ids": ["UpSample.__init__"], "tokens": 1260}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class UpSample(nn.Sequential):\n\n @deprecated_arg(\n name=\"dimensions\", new_name=\"spatial_dims\", since=\"0.6\", msg_suffix=\"Please use `spatial_dims` instead.\"\n )\n def __init__(\n self,\n spatial_dims: int,\n in_channels: Optional[int] = None,\n out_channels: Optional[int] = None,\n scale_factor: Union[Sequence[float], float] = 2,\n size: Optional[Union[Tuple[int], int]] = None,\n mode: Union[UpsampleMode, str] = UpsampleMode.DECONV,\n pre_conv: Optional[Union[nn.Module, str]] = \"default\",\n interp_mode: Union[InterpolateMode, str] = InterpolateMode.LINEAR,\n align_corners: Optional[bool] = True,\n bias: bool = True,\n apply_pad_pool: bool = True,\n dimensions: Optional[int] = None,\n ) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n in_channels: number of channels of the input image.\n out_channels: number of channels of the output image. Defaults to `in_channels`.\n scale_factor: multiplier for spatial size. Has to match input size if it is a tuple. Defaults to 2.\n size: spatial size of the output image.\n Only used when ``mode`` is ``UpsampleMode.NONTRAINABLE``.\n In torch.nn.functional.interpolate, only one of `size` or `scale_factor` should be defined,\n thus if size is defined, `scale_factor` will not be used.\n Defaults to None.\n mode: {``\"deconv\"``, ``\"nontrainable\"``, ``\"pixelshuffle\"``}. Defaults to ``\"deconv\"``.\n pre_conv: a conv block applied before upsampling. Defaults to \"default\".\n When ``conv_block`` is ``\"default\"``, one reserved conv layer will be utilized when\n Only used in the \"nontrainable\" or \"pixelshuffle\" mode.\n interp_mode: {``\"nearest\"``, ``\"linear\"``, ``\"bilinear\"``, ``\"bicubic\"``, ``\"trilinear\"``}\n Only used in the \"nontrainable\" mode.\n If ends with ``\"linear\"`` will use ``spatial dims`` to determine the correct interpolation.\n This corresponds to linear, bilinear, trilinear for 1D, 2D, and 3D respectively.\n The interpolation mode. Defaults to ``\"linear\"``.\n See also: https://pytorch.org/docs/stable/nn.html#upsample\n align_corners: set the align_corners parameter of `torch.nn.Upsample`. Defaults to True.\n Only used in the \"nontrainable\" mode.\n bias: whether to have a bias term in the default preconv and deconv layers. Defaults to True.\n apply_pad_pool: if True the upsampled tensor is padded then average pooling is applied with a kernel the\n size of `scale_factor` with a stride of 1. See also: :py:class:`monai.networks.blocks.SubpixelUpsample`.\n Only used in the \"pixelshuffle\" mode.\n\n .. deprecated:: 0.6.0\n ``dimensions`` is deprecated, use ``spatial_dims`` instead.\n \"\"\"\n super().__init__()\n if dimensions is not None:\n spatial_dims = dimensions\n scale_factor_ = ensure_tuple_rep(scale_factor, spatial_dims)\n up_mode = look_up_option(mode, UpsampleMode)\n if up_mode == UpsampleMode.DECONV:\n if not in_channels:\n raise ValueError(f\"in_channels needs to be specified in the '{mode}' mode.\")\n self.add_module(\n \"deconv\",\n Conv[Conv.CONVTRANS, spatial_dims](\n in_channels=in_channels,\n out_channels=out_channels or in_channels,\n kernel_size=scale_factor_,\n stride=scale_factor_,\n bias=bias,\n ),\n )\n elif up_mode == UpsampleMode.NONTRAINABLE:\n if pre_conv == \"default\" and (out_channels != in_channels): # defaults to no conv if out_chns==in_chns\n if not in_channels:\n raise ValueError(f\"in_channels needs to be specified in the '{mode}' mode.\")\n self.add_module(\n \"preconv\",\n Conv[Conv.CONV, spatial_dims](\n in_channels=in_channels, out_channels=out_channels or in_channels, kernel_size=1, bias=bias\n ),\n )\n elif pre_conv is not None and pre_conv != \"default\":\n self.add_module(\"preconv\", pre_conv) # type: ignore\n elif pre_conv is None and (out_channels != in_channels):\n raise ValueError(\n \"in the nontrainable mode, if not setting pre_conv, out_channels should equal to in_channels.\"\n )\n\n interp_mode = InterpolateMode(interp_mode)\n linear_mode = [InterpolateMode.LINEAR, InterpolateMode.BILINEAR, InterpolateMode.TRILINEAR]\n if interp_mode in linear_mode: # choose mode based on dimensions\n interp_mode = linear_mode[spatial_dims - 1]\n self.add_module(\n \"upsample_non_trainable\",\n nn.Upsample(\n size=size,\n scale_factor=None if size else scale_factor_,\n mode=interp_mode.value,\n align_corners=align_corners,\n ),\n )\n elif up_mode == UpsampleMode.PIXELSHUFFLE:\n self.add_module(\n \"pixelshuffle\",\n SubpixelUpsample(\n spatial_dims=spatial_dims,\n in_channels=in_channels,\n out_channels=out_channels,\n scale_factor=scale_factor_[0], # isotropic\n conv_block=pre_conv,\n apply_pad_pool=apply_pad_pool,\n bias=bias,\n ),\n )\n else:\n raise NotImplementedError(f\"Unsupported upsampling mode {mode}.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample_SubpixelUpsample._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample_SubpixelUpsample._", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/upsample.py", "file_name": "upsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 151, "end_line": 174, "span_ids": ["SubpixelUpsample"], "tokens": 264}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SubpixelUpsample(nn.Module):\n \"\"\"\n Upsample via using a subpixel CNN. This module supports 1D, 2D and 3D input images.\n The module is consisted with two parts. First of all, a convolutional layer is employed\n to increase the number of channels into: ``in_channels * (scale_factor ** dimensions)``.\n Secondly, a pixel shuffle manipulation is utilized to aggregates the feature maps from\n low resolution space and build the super resolution space.\n The first part of the module is not fixed, a sequential layers can be used to replace the\n default single layer.\n\n See: Shi et al., 2016, \"Real-Time Single Image and Video Super-Resolution\n Using a nEfficient Sub-Pixel Convolutional Neural Network.\"\n\n See: Aitken et al., 2017, \"Checkerboard artifact free sub-pixel convolution\".\n\n The idea comes from:\n https://arxiv.org/abs/1609.05158\n\n The pixel shuffle mechanism refers to:\n https://pytorch.org/docs/stable/generated/torch.nn.PixelShuffle.html#torch.nn.PixelShuffle.\n and:\n https://github.com/pytorch/pytorch/pull/6340.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.__init___SubpixelUpsample.__init__.if_apply_pad_pool_.self.pad_pool.nn_Sequential_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.__init___SubpixelUpsample.__init__.if_apply_pad_pool_.self.pad_pool.nn_Sequential_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/upsample.py", "file_name": "upsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 176, "end_line": 242, "span_ids": ["SubpixelUpsample.__init__"], "tokens": 655}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SubpixelUpsample(nn.Module):\n\n @deprecated_arg(\n name=\"dimensions\", new_name=\"spatial_dims\", since=\"0.6\", msg_suffix=\"Please use `spatial_dims` instead.\"\n )\n def __init__(\n self,\n spatial_dims: int,\n in_channels: Optional[int],\n out_channels: Optional[int] = None,\n scale_factor: int = 2,\n conv_block: Optional[Union[nn.Module, str]] = \"default\",\n apply_pad_pool: bool = True,\n bias: bool = True,\n dimensions: Optional[int] = None,\n ) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n in_channels: number of channels of the input image.\n out_channels: optional number of channels of the output image.\n scale_factor: multiplier for spatial size. Defaults to 2.\n conv_block: a conv block to extract feature maps before upsampling. Defaults to None.\n\n - When ``conv_block`` is ``\"default\"``, one reserved conv layer will be utilized.\n - When ``conv_block`` is an ``nn.module``,\n please ensure the output number of channels is divisible ``(scale_factor ** dimensions)``.\n\n apply_pad_pool: if True the upsampled tensor is padded then average pooling is applied with a kernel the\n size of `scale_factor` with a stride of 1. This implements the nearest neighbour resize convolution\n component of subpixel convolutions described in Aitken et al.\n bias: whether to have a bias term in the default conv_block. Defaults to True.\n\n .. deprecated:: 0.6.0\n ``dimensions`` is deprecated, use ``spatial_dims`` instead.\n \"\"\"\n super().__init__()\n\n if scale_factor <= 0:\n raise ValueError(f\"The `scale_factor` multiplier must be an integer greater than 0, got {scale_factor}.\")\n\n self.dimensions = spatial_dims if dimensions is None else dimensions\n self.scale_factor = scale_factor\n\n if conv_block == \"default\":\n out_channels = out_channels or in_channels\n if not out_channels:\n raise ValueError(\"in_channels need to be specified.\")\n conv_out_channels = out_channels * (scale_factor ** self.dimensions)\n self.conv_block = Conv[Conv.CONV, self.dimensions](\n in_channels=in_channels, out_channels=conv_out_channels, kernel_size=3, stride=1, padding=1, bias=bias\n )\n\n icnr_init(self.conv_block, self.scale_factor)\n elif conv_block is None:\n self.conv_block = nn.Identity()\n else:\n self.conv_block = conv_block\n\n self.pad_pool: nn.Module = nn.Identity()\n\n if apply_pad_pool:\n pool_type = Pool[Pool.AVG, self.dimensions]\n pad_type = Pad[Pad.CONSTANTPAD, self.dimensions]\n\n self.pad_pool = nn.Sequential(\n pad_type(padding=(self.scale_factor - 1, 0) * self.dimensions, value=0.0),\n pool_type(kernel_size=self.scale_factor, stride=1),\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.forward_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/blocks/upsample.py_SubpixelUpsample.forward_", "embedding": null, "metadata": {"file_path": "monai/networks/blocks/upsample.py", "file_name": "upsample.py", "file_type": "text/x-python", "category": "implementation", "start_line": 213, "end_line": 232, "span_ids": ["SubpixelUpsample.forward", "impl:3"], "tokens": 183}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class SubpixelUpsample(nn.Module):\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n x: Tensor in shape (batch, channel, spatial_1[, spatial_2, ...).\n \"\"\"\n x = self.conv_block(x)\n if x.shape[1] % (self.scale_factor ** self.dimensions) != 0:\n raise ValueError(\n f\"Number of channels after `conv_block` ({x.shape[1]}) must be evenly \"\n \"divisible by scale_factor ** dimensions \"\n f\"({self.scale_factor}^{self.dimensions}={self.scale_factor**self.dimensions}).\"\n )\n x = pixelshuffle(x, self.dimensions, self.scale_factor)\n x = self.pad_pool(x)\n return x\n\n\nUpsample = UpSample\nSubpixelupsample = SubpixelUpSample = SubpixelUpsample", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_from_typing_import_List__same_padding.return.padding_if_len_padding_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_from_typing_import_List__same_padding.return.padding_if_len_padding_", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 43, "span_ids": ["same_padding", "docstring"], "tokens": 295}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import List, Optional, Sequence, Tuple, Union\n\nimport numpy as np\nimport torch\n\n__all__ = [\"same_padding\", \"stride_minus_kernel_padding\", \"calculate_out_shape\", \"gaussian_1d\", \"polyval\"]\n\n\ndef same_padding(\n kernel_size: Union[Sequence[int], int], dilation: Union[Sequence[int], int] = 1\n) -> Union[Tuple[int, ...], int]:\n \"\"\"\n Return the padding value needed to ensure a convolution using the given kernel size produces an output of the same\n shape as the input for a stride of 1, otherwise ensure a shape of the input divided by the stride rounded down.\n\n Raises:\n NotImplementedError: When ``np.any((kernel_size - 1) * dilation % 2 == 1)``.\n\n \"\"\"\n\n kernel_size_np = np.atleast_1d(kernel_size)\n dilation_np = np.atleast_1d(dilation)\n\n if np.any((kernel_size_np - 1) * dilation % 2 == 1):\n raise NotImplementedError(\n f\"Same padding not available for kernel_size={kernel_size_np} and dilation={dilation_np}.\"\n )\n\n padding_np = (kernel_size_np - 1) / 2 * dilation_np\n padding = tuple(int(p) for p in padding_np)\n\n return padding if len(padding) > 1 else padding[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_stride_minus_kernel_padding_stride_minus_kernel_padding.return.out_padding_if_len_out_pa": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_stride_minus_kernel_padding_stride_minus_kernel_padding.return.out_padding_if_len_out_pa", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 46, "end_line": 55, "span_ids": ["stride_minus_kernel_padding"], "tokens": 109}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def stride_minus_kernel_padding(\n kernel_size: Union[Sequence[int], int], stride: Union[Sequence[int], int]\n) -> Union[Tuple[int, ...], int]:\n kernel_size_np = np.atleast_1d(kernel_size)\n stride_np = np.atleast_1d(stride)\n\n out_padding_np = stride_np - kernel_size_np\n out_padding = tuple(int(p) for p in out_padding_np)\n\n return out_padding if len(out_padding) > 1 else out_padding[0]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_gaussian_1d_gaussian_1d._type_ignore": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_gaussian_1d_gaussian_1d._type_ignore", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 81, "end_line": 134, "span_ids": ["gaussian_1d"], "tokens": 608}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def gaussian_1d(\n sigma: torch.Tensor, truncated: float = 4.0, approx: str = \"erf\", normalize: bool = False\n) -> torch.Tensor:\n \"\"\"\n one dimensional Gaussian kernel.\n\n Args:\n sigma: std of the kernel\n truncated: tail length\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n\n - ``erf`` approximation interpolates the error function;\n - ``sampled`` uses a sampled Gaussian kernel;\n - ``scalespace`` corresponds to\n https://en.wikipedia.org/wiki/Scale_space_implementation#The_discrete_Gaussian_kernel\n based on the modified Bessel functions.\n\n normalize: whether to normalize the kernel with `kernel.sum()`.\n\n Raises:\n ValueError: When ``truncated`` is non-positive.\n\n Returns:\n 1D torch tensor\n\n \"\"\"\n sigma = torch.as_tensor(sigma, dtype=torch.float, device=sigma.device if isinstance(sigma, torch.Tensor) else None)\n device = sigma.device\n if truncated <= 0.0:\n raise ValueError(f\"truncated must be positive, got {truncated}.\")\n tail = int(max(float(sigma) * truncated, 0.5) + 0.5)\n if approx.lower() == \"erf\":\n x = torch.arange(-tail, tail + 1, dtype=torch.float, device=device)\n t = 0.70710678 / torch.abs(sigma)\n out = 0.5 * ((t * (x + 0.5)).erf() - (t * (x - 0.5)).erf())\n out = out.clamp(min=0)\n elif approx.lower() == \"sampled\":\n x = torch.arange(-tail, tail + 1, dtype=torch.float, device=sigma.device)\n out = torch.exp(-0.5 / (sigma * sigma) * x ** 2)\n if not normalize: # compute the normalizer\n out = out / (2.5066282 * sigma)\n elif approx.lower() == \"scalespace\":\n sigma2 = sigma * sigma\n out_pos: List[Optional[torch.Tensor]] = [None] * (tail + 1)\n out_pos[0] = _modified_bessel_0(sigma2)\n out_pos[1] = _modified_bessel_1(sigma2)\n for k in range(2, len(out_pos)):\n out_pos[k] = _modified_bessel_i(k, sigma2)\n out = out_pos[:0:-1]\n out.extend(out_pos)\n out = torch.stack(out) * torch.exp(-sigma2)\n else:\n raise NotImplementedError(f\"Unsupported option: approx='{approx}'.\")\n return out / out.sum() if normalize else out # type: ignore", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_polyval_polyval._type_ignore": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py_polyval_polyval._type_ignore", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 137, "end_line": 160, "span_ids": ["polyval"], "tokens": 224}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def polyval(coef, x) -> torch.Tensor:\n \"\"\"\n Evaluates the polynomial defined by `coef` at `x`.\n\n For a 1D sequence of coef (length n), evaluate::\n\n y = coef[n-1] + x * (coef[n-2] + ... + x * (coef[1] + x * coef[0]))\n\n Args:\n coef: a sequence of floats representing the coefficients of the polynomial\n x: float or a sequence of floats representing the variable of the polynomial\n\n Returns:\n 1D torch tensor\n \"\"\"\n device = x.device if isinstance(x, torch.Tensor) else None\n coef = torch.as_tensor(coef, dtype=torch.float, device=device)\n if coef.ndim == 0 or (len(coef) < 1):\n return torch.zeros(x.shape)\n x = torch.as_tensor(x, dtype=torch.float, device=device)\n ans = coef[0]\n for c in coef[1:]:\n ans = ans * x + c\n return ans # type: ignore", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_0__modified_bessel_0.return.polyval__coef_y_torch": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_0__modified_bessel_0.return.polyval__coef_y_torch", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 163, "end_line": 181, "span_ids": ["_modified_bessel_0"], "tokens": 258}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def _modified_bessel_0(x: torch.Tensor) -> torch.Tensor:\n x = torch.as_tensor(x, dtype=torch.float, device=x.device if isinstance(x, torch.Tensor) else None)\n if torch.abs(x) < 3.75:\n y = x * x / 14.0625\n return polyval([0.45813e-2, 0.360768e-1, 0.2659732, 1.2067492, 3.0899424, 3.5156229, 1.0], y)\n ax = torch.abs(x)\n y = 3.75 / ax\n _coef = [\n 0.392377e-2,\n -0.1647633e-1,\n 0.2635537e-1,\n -0.2057706e-1,\n 0.916281e-2,\n -0.157565e-2,\n 0.225319e-2,\n 0.1328592e-1,\n 0.39894228,\n ]\n return polyval(_coef, y) * torch.exp(ax) / torch.sqrt(ax)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_1__modified_bessel_1.return._ans_if_x_0_0_else_ans": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_1__modified_bessel_1.return._ans_if_x_0_0_else_ans", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 184, "end_line": 204, "span_ids": ["_modified_bessel_1"], "tokens": 288}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def _modified_bessel_1(x: torch.Tensor) -> torch.Tensor:\n x = torch.as_tensor(x, dtype=torch.float, device=x.device if isinstance(x, torch.Tensor) else None)\n if torch.abs(x) < 3.75:\n y = x * x / 14.0625\n _coef = [0.32411e-3, 0.301532e-2, 0.2658733e-1, 0.15084934, 0.51498869, 0.87890594, 0.5]\n return torch.abs(x) * polyval(_coef, y)\n ax = torch.abs(x)\n y = 3.75 / ax\n _coef = [\n -0.420059e-2,\n 0.1787654e-1,\n -0.2895312e-1,\n 0.2282967e-1,\n -0.1031555e-1,\n 0.163801e-2,\n -0.362018e-2,\n -0.3988024e-1,\n 0.39894228,\n ]\n ans = polyval(_coef, y) * torch.exp(ax) / torch.sqrt(ax)\n return -ans if x < 0.0 else ans", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_i_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/convutils.py__modified_bessel_i_", "embedding": null, "metadata": {"file_path": "monai/networks/layers/convutils.py", "file_name": "convutils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 207, "end_line": 229, "span_ids": ["_modified_bessel_i"], "tokens": 300}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def _modified_bessel_i(n: int, x: torch.Tensor) -> torch.Tensor:\n if n < 2:\n raise ValueError(f\"n must be greater than 1, got n={n}.\")\n x = torch.as_tensor(x, dtype=torch.float, device=x.device if isinstance(x, torch.Tensor) else None)\n if x == 0.0:\n return x\n device = x.device\n tox = 2.0 / torch.abs(x)\n ans, bip, bi = torch.tensor(0.0, device=device), torch.tensor(0.0, device=device), torch.tensor(1.0, device=device)\n m = int(2 * (n + np.floor(np.sqrt(40.0 * n))))\n for j in range(m, 0, -1):\n bim = bip + float(j) * tox * bi\n bip = bi\n bi = bim\n if abs(bi) > 1.0e10:\n ans = ans * 1.0e-10\n bi = bi * 1.0e-10\n bip = bip * 1.0e-10\n if j == n:\n ans = bip\n ans = ans * _modified_bessel_0(x) / bi\n return -ans if x < 0.0 and (n % 2) == 1 else ans", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_GaussianFilter_GaussianFilter.forward.return.separable_filtering_x_x_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/simplelayers.py_GaussianFilter_GaussianFilter.forward.return.separable_filtering_x_x_", "embedding": null, "metadata": {"file_path": "monai/networks/layers/simplelayers.py", "file_name": "simplelayers.py", "file_type": "text/x-python", "category": "implementation", "start_line": 369, "end_line": 421, "span_ids": ["GaussianFilter", "GaussianFilter.__init__", "GaussianFilter.forward"], "tokens": 515}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianFilter(nn.Module):\n def __init__(\n self,\n spatial_dims: int,\n sigma: Union[Sequence[float], float, Sequence[torch.Tensor], torch.Tensor],\n truncated: float = 4.0,\n approx: str = \"erf\",\n requires_grad: bool = False,\n ) -> None:\n \"\"\"\n Args:\n spatial_dims: number of spatial dimensions of the input image.\n must have shape (Batch, channels, H[, W, ...]).\n sigma: std. could be a single value, or `spatial_dims` number of values.\n truncated: spreads how many stds.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n\n - ``erf`` approximation interpolates the error function;\n - ``sampled`` uses a sampled Gaussian kernel;\n - ``scalespace`` corresponds to\n https://en.wikipedia.org/wiki/Scale_space_implementation#The_discrete_Gaussian_kernel\n based on the modified Bessel functions.\n\n requires_grad: whether to store the gradients for sigma.\n if True, `sigma` will be the initial value of the parameters of this module\n (for example `parameters()` iterator could be used to get the parameters);\n otherwise this module will fix the kernels using `sigma` as the std.\n \"\"\"\n if issequenceiterable(sigma):\n if len(sigma) != spatial_dims: # type: ignore\n raise ValueError\n else:\n sigma = [deepcopy(sigma) for _ in range(spatial_dims)] # type: ignore\n super().__init__()\n self.sigma = [\n torch.nn.Parameter(\n torch.as_tensor(s, dtype=torch.float, device=s.device if isinstance(s, torch.Tensor) else None),\n requires_grad=requires_grad,\n )\n for s in sigma # type: ignore\n ]\n self.truncated = truncated\n self.approx = approx\n for idx, param in enumerate(self.sigma):\n self.register_parameter(f\"kernel_sigma_{idx}\", param)\n\n def forward(self, x: torch.Tensor) -> torch.Tensor:\n \"\"\"\n Args:\n x: in shape [Batch, chns, H, W, D].\n \"\"\"\n _kernel = [gaussian_1d(s, truncated=self.truncated, approx=self.approx) for s in self.sigma]\n return separable_filtering(x=x, kernels=_kernel)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_count_grid_count.return._GridCount_apply_grid_sh": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_count_grid_count.return._GridCount_apply_grid_sh", "embedding": null, "metadata": {"file_path": "monai/networks/layers/spatial_transforms.py", "file_name": "spatial_transforms.py", "file_type": "text/x-python", "category": "implementation", "start_line": 240, "end_line": 313, "span_ids": ["grid_count"], "tokens": 822}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def grid_count(grid: torch.Tensor, shape=None, interpolation=\"linear\", bound=\"zero\", extrapolate: bool = True):\n \"\"\"\n Splatting weights with respect to a deformation field (pull adjoint).\n\n This function is equivalent to applying grid_push to an image of ones.\n\n `interpolation` can be an int, a string or an InterpolationType.\n Possible values are::\n\n - 0 or 'nearest' or InterpolationType.nearest\n - 1 or 'linear' or InterpolationType.linear\n - 2 or 'quadratic' or InterpolationType.quadratic\n - 3 or 'cubic' or InterpolationType.cubic\n - 4 or 'fourth' or InterpolationType.fourth\n - 5 or 'fifth' or InterpolationType.fifth\n - 6 or 'sixth' or InterpolationType.sixth\n - 7 or 'seventh' or InterpolationType.seventh\n\n A list of values can be provided, in the order [W, H, D],\n to specify dimension-specific interpolation orders.\n\n `bound` can be an int, a string or a BoundType.\n Possible values are::\n\n - 0 or 'replicate' or 'nearest' or BoundType.replicate\n - 1 or 'dct1' or 'mirror' or BoundType.dct1\n - 2 or 'dct2' or 'reflect' or BoundType.dct2\n - 3 or 'dst1' or 'antimirror' or BoundType.dst1\n - 4 or 'dst2' or 'antireflect' or BoundType.dst2\n - 5 or 'dft' or 'wrap' or BoundType.dft\n - 7 or 'zero' or BoundType.zero\n\n A list of values can be provided, in the order [W, H, D],\n to specify dimension-specific boundary conditions.\n `sliding` is a specific condition than only applies to flow fields\n (with as many channels as dimensions). It cannot be dimension-specific.\n Note that:\n\n - `dft` corresponds to circular padding\n - `dct2` corresponds to Neumann boundary conditions (symmetric)\n - `dst2` corresponds to Dirichlet boundary conditions (antisymmetric)\n\n See Also:\n\n - https://en.wikipedia.org/wiki/Discrete_cosine_transform\n - https://en.wikipedia.org/wiki/Discrete_sine_transform\n - ``help(monai._C.BoundType)``\n - ``help(monai._C.InterpolationType)``\n\n Args:\n grid: Deformation field `(B, Wi, Hi, Di, 2|3)`.\n shape: shape of the source image.\n interpolation (int or list[int] , optional): Interpolation order.\n Defaults to `'linear'`.\n bound (BoundType, or list[BoundType], optional): Boundary conditions.\n Defaults to `'zero'`.\n extrapolate (bool, optional): Extrapolate out-of-bound data.\n Defaults to `True`.\n\n Returns:\n output (torch.Tensor): Splat weights `(B, 1, Wo, Ho, Do)`.\n\n \"\"\"\n # Convert parameters\n bound = [_C.BoundType.__members__[b] if isinstance(b, str) else _C.BoundType(b) for b in ensure_tuple(bound)]\n interpolation = [\n _C.InterpolationType.__members__[i] if isinstance(i, str) else _C.InterpolationType(i)\n for i in ensure_tuple(interpolation)\n ]\n\n if shape is None:\n shape = tuple(grid.shape[2:])\n\n return _GridCount.apply(grid, shape, interpolation, bound, extrapolate)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_grad_grid_grad.return._GridGrad_apply_input_gr": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_grid_grad_grid_grad.return._GridGrad_apply_input_gr", "embedding": null, "metadata": {"file_path": "monai/networks/layers/spatial_transforms.py", "file_name": "spatial_transforms.py", "file_type": "text/x-python", "category": "implementation", "start_line": 340, "end_line": 408, "span_ids": ["grid_grad"], "tokens": 798}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def grid_grad(input: torch.Tensor, grid: torch.Tensor, interpolation=\"linear\", bound=\"zero\", extrapolate: bool = True):\n \"\"\"\n Sample an image with respect to a deformation field.\n\n `interpolation` can be an int, a string or an InterpolationType.\n Possible values are::\n\n - 0 or 'nearest' or InterpolationType.nearest\n - 1 or 'linear' or InterpolationType.linear\n - 2 or 'quadratic' or InterpolationType.quadratic\n - 3 or 'cubic' or InterpolationType.cubic\n - 4 or 'fourth' or InterpolationType.fourth\n - 5 or 'fifth' or InterpolationType.fifth\n - 6 or 'sixth' or InterpolationType.sixth\n - 7 or 'seventh' or InterpolationType.seventh\n\n A list of values can be provided, in the order [W, H, D],\n to specify dimension-specific interpolation orders.\n\n `bound` can be an int, a string or a BoundType.\n Possible values are::\n\n - 0 or 'replicate' or 'nearest' or BoundType.replicate\n - 1 or 'dct1' or 'mirror' or BoundType.dct1\n - 2 or 'dct2' or 'reflect' or BoundType.dct2\n - 3 or 'dst1' or 'antimirror' or BoundType.dst1\n - 4 or 'dst2' or 'antireflect' or BoundType.dst2\n - 5 or 'dft' or 'wrap' or BoundType.dft\n - 7 or 'zero' or BoundType.zero\n\n A list of values can be provided, in the order [W, H, D],\n to specify dimension-specific boundary conditions.\n `sliding` is a specific condition than only applies to flow fields\n (with as many channels as dimensions). It cannot be dimension-specific.\n Note that:\n\n - `dft` corresponds to circular padding\n - `dct2` corresponds to Neumann boundary conditions (symmetric)\n - `dst2` corresponds to Dirichlet boundary conditions (antisymmetric)\n\n See Also:\n\n - https://en.wikipedia.org/wiki/Discrete_cosine_transform\n - https://en.wikipedia.org/wiki/Discrete_sine_transform\n - ``help(monai._C.BoundType)``\n - ``help(monai._C.InterpolationType)``\n\n\n Args:\n input: Input image. `(B, C, Wi, Hi, Di)`.\n grid: Deformation field. `(B, Wo, Ho, Do, 2|3)`.\n interpolation (int or list[int] , optional): Interpolation order.\n Defaults to `'linear'`.\n bound (BoundType, or list[BoundType], optional): Boundary conditions.\n Defaults to `'zero'`.\n extrapolate: Extrapolate out-of-bound data. Defaults to `True`.\n\n Returns:\n output (torch.Tensor): Sampled gradients (B, C, Wo, Ho, Do, 1|2|3).\n\n \"\"\"\n # Convert parameters\n bound = [_C.BoundType.__members__[b] if isinstance(b, str) else _C.BoundType(b) for b in ensure_tuple(bound)]\n interpolation = [\n _C.InterpolationType.__members__[i] if isinstance(i, str) else _C.InterpolationType(i)\n for i in ensure_tuple(interpolation)\n ]\n\n return _GridGrad.apply(input, grid, interpolation, bound, extrapolate)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_AffineTransform_AffineTransform.__init__.self.reverse_indexing.reverse_indexing": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/layers/spatial_transforms.py_AffineTransform_AffineTransform.__init__.self.reverse_indexing.reverse_indexing", "embedding": null, "metadata": {"file_path": "monai/networks/layers/spatial_transforms.py", "file_name": "spatial_transforms.py", "file_type": "text/x-python", "category": "implementation", "start_line": 414, "end_line": 464, "span_ids": ["AffineTransform.__init__", "AffineTransform"], "tokens": 706}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AffineTransform(nn.Module):\n def __init__(\n self,\n spatial_size: Optional[Union[Sequence[int], int]] = None,\n normalized: bool = False,\n mode: Union[GridSampleMode, str] = GridSampleMode.BILINEAR,\n padding_mode: Union[GridSamplePadMode, str] = GridSamplePadMode.ZEROS,\n align_corners: bool = False,\n reverse_indexing: bool = True,\n ) -> None:\n \"\"\"\n Apply affine transformations with a batch of affine matrices.\n\n When `normalized=False` and `reverse_indexing=True`,\n it does the commonly used resampling in the 'pull' direction\n following the ``scipy.ndimage.affine_transform`` convention.\n In this case `theta` is equivalent to (ndim+1, ndim+1) input ``matrix`` of ``scipy.ndimage.affine_transform``,\n operates on homogeneous coordinates.\n See also: https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.affine_transform.html\n\n When `normalized=True` and `reverse_indexing=False`,\n it applies `theta` to the normalized coordinates (coords. in the range of [-1, 1]) directly.\n This is often used with `align_corners=False` to achieve resolution-agnostic resampling,\n thus useful as a part of trainable modules such as the spatial transformer networks.\n See also: https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html\n\n Args:\n spatial_size: output spatial shape, the full output shape will be\n `[N, C, *spatial_size]` where N and C are inferred from the `src` input of `self.forward`.\n normalized: indicating whether the provided affine matrix `theta` is defined\n for the normalized coordinates. If `normalized=False`, `theta` will be converted\n to operate on normalized coordinates as pytorch affine_grid works with the normalized\n coordinates.\n mode: {``\"bilinear\"``, ``\"nearest\"``}\n Interpolation mode to calculate output values. Defaults to ``\"bilinear\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n padding_mode: {``\"zeros\"``, ``\"border\"``, ``\"reflection\"``}\n Padding mode for outside grid values. Defaults to ``\"zeros\"``.\n See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample\n align_corners: see also https://pytorch.org/docs/stable/nn.functional.html#grid-sample.\n reverse_indexing: whether to reverse the spatial indexing of image and coordinates.\n set to `False` if `theta` follows pytorch's default \"D, H, W\" convention.\n set to `True` if `theta` follows `scipy.ndimage` default \"i, j, k\" convention.\n \"\"\"\n super().__init__()\n self.spatial_size = ensure_tuple(spatial_size) if spatial_size is not None else None\n self.normalized = normalized\n self.mode: GridSampleMode = look_up_option(mode, GridSampleMode)\n self.padding_mode: GridSamplePadMode = look_up_option(padding_mode, GridSamplePadMode)\n self.align_corners = align_corners\n self.reverse_indexing = reverse_indexing", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.__init___AHNet.__init__.if_pretrained_.self_copy_from_net2d_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/ahnet.py_AHNet.__init___AHNet.__init__.if_pretrained_.self_copy_from_net2d_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/ahnet.py", "file_name": "ahnet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 333, "end_line": 438, "span_ids": ["AHNet.__init__"], "tokens": 1367}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class AHNet(nn.Module):\n\n def __init__(\n self,\n layers: tuple = (3, 4, 6, 3),\n spatial_dims: int = 3,\n in_channels: int = 1,\n out_channels: int = 1,\n psp_block_num: int = 4,\n upsample_mode: str = \"transpose\",\n pretrained: bool = False,\n progress: bool = True,\n ):\n self.inplanes = 64\n super().__init__()\n\n conv_type = Conv[Conv.CONV, spatial_dims]\n conv_trans_type = Conv[Conv.CONVTRANS, spatial_dims]\n norm_type = Norm[Norm.BATCH, spatial_dims]\n pool_type: Type[Union[nn.MaxPool2d, nn.MaxPool3d]] = Pool[Pool.MAX, spatial_dims]\n relu_type: Type[nn.ReLU] = Act[Act.RELU]\n conv2d_type: Type[nn.Conv2d] = Conv[Conv.CONV, 2]\n norm2d_type: Type[nn.BatchNorm2d] = Norm[Norm.BATCH, 2]\n\n self.conv2d_type = conv2d_type\n self.norm2d_type = norm2d_type\n self.conv_type = conv_type\n self.norm_type = norm_type\n self.relu_type = relu_type\n self.pool_type = pool_type\n self.spatial_dims = spatial_dims\n self.psp_block_num = psp_block_num\n self.psp = None\n\n if spatial_dims not in [2, 3]:\n raise AssertionError(\"spatial_dims can only be 2 or 3.\")\n if psp_block_num not in [0, 1, 2, 3, 4]:\n raise AssertionError(\"psp_block_num should be an integer that belongs to [0, 4].\")\n\n self.conv1 = conv_type(\n in_channels,\n 64,\n kernel_size=(7, 7, 3)[-spatial_dims:],\n stride=(2, 2, 1)[-spatial_dims:],\n padding=(3, 3, 1)[-spatial_dims:],\n bias=False,\n )\n self.pool1 = pool_type(kernel_size=(1, 1, 2)[-spatial_dims:], stride=(1, 1, 2)[-spatial_dims:])\n self.bn0 = norm_type(64)\n self.relu = relu_type(inplace=True)\n if upsample_mode in [\"transpose\", \"nearest\"]:\n # To maintain the determinism, the value of kernel_size and stride should be the same.\n # (you can check this link for reference: https://github.com/Project-MONAI/MONAI/pull/815 )\n self.maxpool = pool_type(kernel_size=(2, 2, 2)[-spatial_dims:], stride=2)\n else:\n self.maxpool = pool_type(kernel_size=(3, 3, 3)[-spatial_dims:], stride=2, padding=1)\n\n self.layer1 = self._make_layer(Bottleneck3x3x1, 64, layers[0], stride=1)\n self.layer2 = self._make_layer(Bottleneck3x3x1, 128, layers[1], stride=2)\n self.layer3 = self._make_layer(Bottleneck3x3x1, 256, layers[2], stride=2)\n self.layer4 = self._make_layer(Bottleneck3x3x1, 512, layers[3], stride=2)\n\n # Make the 3D dense decoder layers\n densegrowth = 20\n densebn = 4\n ndenselayer = 3\n\n num_init_features = 64\n noutres1 = 256\n noutres2 = 512\n noutres3 = 1024\n noutres4 = 2048\n\n self.up0 = UpTransition(spatial_dims, noutres4, noutres3, upsample_mode)\n self.dense0 = DenseBlock(spatial_dims, ndenselayer, noutres3, densebn, densegrowth, 0.0)\n noutdense = noutres3 + ndenselayer * densegrowth\n\n self.up1 = UpTransition(spatial_dims, noutdense, noutres2, upsample_mode)\n self.dense1 = DenseBlock(spatial_dims, ndenselayer, noutres2, densebn, densegrowth, 0.0)\n noutdense1 = noutres2 + ndenselayer * densegrowth\n\n self.up2 = UpTransition(spatial_dims, noutdense1, noutres1, upsample_mode)\n self.dense2 = DenseBlock(spatial_dims, ndenselayer, noutres1, densebn, densegrowth, 0.0)\n noutdense2 = noutres1 + ndenselayer * densegrowth\n\n self.trans1 = Projection(spatial_dims, noutdense2, num_init_features)\n self.dense3 = DenseBlock(spatial_dims, ndenselayer, num_init_features, densebn, densegrowth, 0.0)\n noutdense3 = num_init_features + densegrowth * ndenselayer\n\n self.up3 = UpTransition(spatial_dims, noutdense3, num_init_features, upsample_mode)\n self.dense4 = DenseBlock(spatial_dims, ndenselayer, num_init_features, densebn, densegrowth, 0.0)\n noutdense4 = num_init_features + densegrowth * ndenselayer\n\n self.psp = PSP(spatial_dims, psp_block_num, noutdense4, upsample_mode)\n self.final = Final(spatial_dims, psp_block_num + noutdense4, out_channels, upsample_mode)\n\n # Initialise parameters\n for m in self.modules():\n if isinstance(m, (conv_type, conv_trans_type)):\n n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels\n m.weight.data.normal_(0, math.sqrt(2.0 / n))\n elif isinstance(m, norm_type):\n m.weight.data.fill_(1)\n m.bias.data.zero_()\n\n if pretrained:\n net2d = FCN(pretrained=True, progress=progress)\n self.copy_from(net2d)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_module_list_DynUNet.get_module_list.return.nn_ModuleList_layers_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_module_list_DynUNet.get_module_list.return.nn_ModuleList_layers_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/dynunet.py", "file_name": "dynunet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 291, "end_line": 334, "span_ids": ["DynUNet.get_module_list"], "tokens": 361}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DynUNet(nn.Module):\n\n def get_module_list(\n self,\n in_channels: List[int],\n out_channels: List[int],\n kernel_size: Sequence[Union[Sequence[int], int]],\n strides: Sequence[Union[Sequence[int], int]],\n conv_block: nn.Module,\n upsample_kernel_size: Optional[Sequence[Union[Sequence[int], int]]] = None,\n trans_bias: bool = False,\n ):\n layers = []\n if upsample_kernel_size is not None:\n for in_c, out_c, kernel, stride, up_kernel in zip(\n in_channels, out_channels, kernel_size, strides, upsample_kernel_size\n ):\n params = {\n \"spatial_dims\": self.spatial_dims,\n \"in_channels\": in_c,\n \"out_channels\": out_c,\n \"kernel_size\": kernel,\n \"stride\": stride,\n \"norm_name\": self.norm_name,\n \"act_name\": self.act_name,\n \"dropout\": self.dropout,\n \"upsample_kernel_size\": up_kernel,\n \"trans_bias\": trans_bias,\n }\n layer = conv_block(**params)\n layers.append(layer)\n else:\n for in_c, out_c, kernel, stride in zip(in_channels, out_channels, kernel_size, strides):\n params = {\n \"spatial_dims\": self.spatial_dims,\n \"in_channels\": in_c,\n \"out_channels\": out_c,\n \"kernel_size\": kernel,\n \"stride\": stride,\n \"norm_name\": self.norm_name,\n \"act_name\": self.act_name,\n \"dropout\": self.dropout,\n }\n layer = conv_block(**params)\n layers.append(layer)\n return nn.ModuleList(layers)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_deep_supervision_heads_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/networks/nets/dynunet.py_DynUNet.get_deep_supervision_heads_", "embedding": null, "metadata": {"file_path": "monai/networks/nets/dynunet.py", "file_name": "dynunet.py", "file_type": "text/x-python", "category": "implementation", "start_line": 356, "end_line": 368, "span_ids": ["DynUNet.get_deep_supervision_heads", "DynUNet.initialize_weights", "impl:3"], "tokens": 133}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DynUNet(nn.Module):\n\n def get_deep_supervision_heads(self):\n return nn.ModuleList([self.get_output_block(i + 1) for i in range(self.deep_supr_num)])\n\n @staticmethod\n def initialize_weights(module):\n if isinstance(module, (nn.Conv3d, nn.Conv2d, nn.ConvTranspose3d, nn.ConvTranspose2d)):\n module.weight = nn.init.kaiming_normal_(module.weight, a=0.01)\n if module.bias is not None:\n module.bias = nn.init.constant_(module.bias, 0)\n\n\nDynUnet = Dynunet = DynUNet", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_from_typing_import_Callab_Novograd.__setstate__.for_group_in_self_param_g.group_setdefault_amsgrad": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_from_typing_import_Callab_Novograd.__setstate__.for_group_in_self_param_g.group_setdefault_amsgrad", "embedding": null, "metadata": {"file_path": "monai/optimizers/novograd.py", "file_name": "novograd.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 66, "span_ids": ["Novograd", "Novograd.__setstate__", "Novograd.__init__", "docstring"], "tokens": 631}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from typing import Callable, Iterable, Optional, Tuple\n\nimport torch\nfrom torch.optim import Optimizer\n\n\nclass Novograd(Optimizer):\n \"\"\"\n Novograd based on `Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks\n `_.\n The code is adapted from the implementations in `Jasper for PyTorch\n `_,\n and `OpenSeq2Seq `_.\n\n Args:\n params: iterable of parameters to optimize or dicts defining parameter groups.\n lr: learning rate. Defaults to 1e-3.\n betas: coefficients used for computing running averages of gradient and its square. Defaults to (0.9, 0.98).\n eps: term added to the denominator to improve numerical stability. Defaults to 1e-8.\n weight_decay: weight decay (L2 penalty). Defaults to 0.\n grad_averaging: gradient averaging. Defaults to ``False``.\n amsgrad: whether to use the AMSGrad variant of this algorithm from the paper\n `On the Convergence of Adam and Beyond `_. Defaults to ``False``.\n \"\"\"\n\n def __init__(\n self,\n params: Iterable,\n lr: float = 1e-3,\n betas: Tuple[float, float] = (0.9, 0.98),\n eps: float = 1e-8,\n weight_decay: float = 0,\n grad_averaging: bool = False,\n amsgrad: bool = False,\n ):\n if 0.0 > lr:\n raise ValueError(f\"Invalid learning rate: {lr}\")\n if 0.0 > eps:\n raise ValueError(f\"Invalid epsilon value: {eps}\")\n if not 0.0 <= betas[0] < 1.0:\n raise ValueError(f\"Invalid beta parameter at index 0: {betas[0]}\")\n if not 0.0 <= betas[1] < 1.0:\n raise ValueError(f\"Invalid beta parameter at index 1: {betas[1]}\")\n if 0.0 > weight_decay:\n raise ValueError(f\"Invalid weight_decay value: {weight_decay}\")\n defaults = dict(\n lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, amsgrad=amsgrad\n )\n\n super().__init__(params, defaults)\n\n def __setstate__(self, state):\n super().__setstate__(state)\n for group in self.param_groups:\n group.setdefault(\"amsgrad\", False)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_Novograd.step_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/optimizers/novograd.py_Novograd.step_", "embedding": null, "metadata": {"file_path": "monai/optimizers/novograd.py", "file_name": "novograd.py", "file_type": "text/x-python", "category": "implementation", "start_line": 73, "end_line": 137, "span_ids": ["Novograd.step"], "tokens": 542}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class Novograd(Optimizer):\n\n def step(self, closure: Optional[Callable] = None):\n \"\"\"Performs a single optimization step.\n\n Arguments:\n closure: A closure that reevaluates the model and returns the loss. Defaults to ``None``.\n \"\"\"\n loss = None\n if closure is not None:\n loss = closure()\n\n for group in self.param_groups:\n for p in group[\"params\"]:\n if p.grad is None:\n continue\n grad = p.grad.data\n if grad.is_sparse:\n raise RuntimeError(\"Sparse gradients are not supported.\")\n amsgrad = group[\"amsgrad\"]\n\n state = self.state[p]\n\n # State initialization\n if len(state) == 0:\n state[\"step\"] = 0\n # Exponential moving average of gradient values\n state[\"exp_avg\"] = torch.zeros_like(p.data)\n # Exponential moving average of squared gradient values\n state[\"exp_avg_sq\"] = torch.zeros([]).to(state[\"exp_avg\"].device)\n if amsgrad:\n # Maintains max of all exp. moving avg. of sq. grad. values\n state[\"max_exp_avg_sq\"] = torch.zeros([]).to(state[\"exp_avg\"].device)\n\n exp_avg, exp_avg_sq = state[\"exp_avg\"], state[\"exp_avg_sq\"]\n if amsgrad:\n max_exp_avg_sq = state[\"max_exp_avg_sq\"]\n beta1, beta2 = group[\"betas\"]\n\n state[\"step\"] += 1\n\n norm = torch.sum(torch.pow(grad, 2))\n\n if exp_avg_sq == 0:\n exp_avg_sq.copy_(norm)\n else:\n exp_avg_sq.mul_(beta2).add_(norm, alpha=1 - beta2)\n\n if amsgrad:\n # Maintains the maximum of all 2nd moment running avg. till now\n torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)\n # Use the max. for normalizing running avg. of gradient\n denom = max_exp_avg_sq.sqrt().add_(group[\"eps\"])\n else:\n denom = exp_avg_sq.sqrt().add_(group[\"eps\"])\n\n grad.div_(denom)\n if group[\"weight_decay\"] != 0:\n grad.add_(p.data, alpha=group[\"weight_decay\"])\n if group[\"grad_averaging\"]:\n grad.mul_(1 - beta1)\n exp_avg.mul_(beta1).add_(grad)\n\n p.data.add_(exp_avg, alpha=-group[\"lr\"])\n\n return loss", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel_RandCropByPosNegLabel._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel_RandCropByPosNegLabel._", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 835, "end_line": 886, "span_ids": ["RandCropByPosNegLabel"], "tokens": 894}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabel(Randomizable, Transform):\n \"\"\"\n Crop random fixed sized regions with the center being a foreground or background voxel\n based on the Pos Neg Ratio.\n And will return a list of arrays for all the cropped images.\n For example, crop two (3 x 3) arrays from (5 x 5) array with pos/neg=1::\n\n [[[0, 0, 0, 0, 0],\n [0, 1, 2, 1, 0], [[0, 1, 2], [[2, 1, 0],\n [0, 1, 3, 0, 0], --> [0, 1, 3], [3, 0, 0],\n [0, 0, 0, 0, 0], [0, 0, 0]] [0, 0, 0]]\n [0, 0, 0, 0, 0]]]\n\n If a dimension of the expected spatial size is bigger than the input image size,\n will not crop that dimension. So the cropped result may be smaller than expected size, and the cropped\n results of several images may not have exactly same shape.\n\n Args:\n spatial_size: the spatial size of the crop region e.g. [224, 224, 128].\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n if its components have non-positive values, the corresponding size of `label` will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `spatial_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n label: the label image that is used for finding foreground/background, if None, must set at\n `self.__call__`. Non-zero indicates foreground, zero indicates background.\n pos: used with `neg` together to calculate the ratio ``pos / (pos + neg)`` for the probability\n to pick a foreground voxel as a center rather than a background voxel.\n neg: used with `pos` together to calculate the ratio ``pos / (pos + neg)`` for the probability\n to pick a foreground voxel as a center rather than a background voxel.\n num_samples: number of samples (crop regions) to take in each list.\n image: optional image data to help select valid area, can be same as `img` or another image array.\n if not None, use ``label == 0 & image > image_threshold`` to select the negative\n sample (background) center. So the crop center will only come from the valid image areas.\n image_threshold: if enabled `image`, use ``image > image_threshold`` to determine\n the valid image content areas.\n fg_indices: if provided pre-computed foreground indices of `label`, will ignore above `image` and\n `image_threshold`, and randomly select crop centers based on them, need to provide `fg_indices`\n and `bg_indices` together, expect to be 1 dim array of spatial indices after flattening.\n a typical usage is to call `FgBgToIndices` transform first and cache the results.\n bg_indices: if provided pre-computed background indices of `label`, will ignore above `image` and\n `image_threshold`, and randomly select crop centers based on them, need to provide `fg_indices`\n and `bg_indices` together, expect to be 1 dim array of spatial indices after flattening.\n a typical usage is to call `FgBgToIndices` transform first and cache the results.\n allow_smaller: if `False`, an exception will be raised if the image is smaller than\n the requested ROI in any dimension. If `True`, any smaller dimensions will be set to\n match the cropped size (i.e., no cropping in that dimension).\n\n Raises:\n ValueError: When ``pos`` or ``neg`` are negative.\n ValueError: When ``pos=0`` and ``neg=0``. Incompatible values.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.randomize_RandCropByPosNegLabel.randomize.self.centers.generate_pos_neg_label_cr": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.randomize_RandCropByPosNegLabel.randomize.self.centers.generate_pos_neg_label_cr", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 918, "end_line": 944, "span_ids": ["RandCropByPosNegLabel.randomize"], "tokens": 236}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabel(Randomizable, Transform):\n\n def randomize(\n self,\n label: NdarrayOrTensor,\n fg_indices: Optional[NdarrayOrTensor] = None,\n bg_indices: Optional[NdarrayOrTensor] = None,\n image: Optional[NdarrayOrTensor] = None,\n ) -> None:\n self.spatial_size = fall_back_tuple(self.spatial_size, default=label.shape[1:])\n if fg_indices is None or bg_indices is None:\n if self.fg_indices is not None and self.bg_indices is not None:\n fg_indices_ = self.fg_indices\n bg_indices_ = self.bg_indices\n else:\n fg_indices_, bg_indices_ = map_binary_to_indices(label, image, self.image_threshold)\n else:\n fg_indices_ = fg_indices\n bg_indices_ = bg_indices\n self.centers = generate_pos_neg_label_crop_centers(\n self.spatial_size,\n self.num_samples,\n self.pos_ratio,\n label.shape[1:],\n fg_indices_,\n bg_indices_,\n self.R,\n self.allow_smaller,\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.__call___RandCropByPosNegLabel.__call__.return.results": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_RandCropByPosNegLabel.__call___RandCropByPosNegLabel.__call__.return.results", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 946, "end_line": 982, "span_ids": ["RandCropByPosNegLabel.__call__"], "tokens": 387}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabel(Randomizable, Transform):\n\n def __call__(\n self,\n img: NdarrayOrTensor,\n label: Optional[NdarrayOrTensor] = None,\n image: Optional[NdarrayOrTensor] = None,\n fg_indices: Optional[NdarrayOrTensor] = None,\n bg_indices: Optional[NdarrayOrTensor] = None,\n ) -> List[NdarrayOrTensor]:\n \"\"\"\n Args:\n img: input data to crop samples from based on the pos/neg ratio of `label` and `image`.\n Assumes `img` is a channel-first array.\n label: the label image that is used for finding foreground/background, if None, use `self.label`.\n image: optional image data to help select valid area, can be same as `img` or another image array.\n use ``label == 0 & image > image_threshold`` to select the negative sample(background) center.\n so the crop center will only exist on valid image area. if None, use `self.image`.\n fg_indices: foreground indices to randomly select crop centers,\n need to provide `fg_indices` and `bg_indices` together.\n bg_indices: background indices to randomly select crop centers,\n need to provide `fg_indices` and `bg_indices` together.\n\n \"\"\"\n if label is None:\n label = self.label\n if label is None:\n raise ValueError(\"label should be provided.\")\n if image is None:\n image = self.image\n\n self.randomize(label, fg_indices, bg_indices, image)\n results: List[NdarrayOrTensor] = []\n if self.centers is not None:\n for center in self.centers:\n cropper = SpatialCrop(roi_center=center, roi_size=self.spatial_size)\n results.append(cropper(img))\n\n return results", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_ResizeWithPadOrCrop_ResizeWithPadOrCrop.__init__.self.cropper.CenterSpatialCrop_roi_siz": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/array.py_ResizeWithPadOrCrop_ResizeWithPadOrCrop.__init__.self.cropper.CenterSpatialCrop_roi_siz", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1125, "end_line": 1156, "span_ids": ["ResizeWithPadOrCrop", "ResizeWithPadOrCrop.__init__"], "tokens": 434}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class ResizeWithPadOrCrop(Transform):\n \"\"\"\n Resize an image to a target spatial size by either centrally cropping the image or\n padding it evenly with a user-specified mode.\n When the dimension is smaller than the target size, do symmetric padding along that dim.\n When the dimension is larger than the target size, do central cropping along that dim.\n\n Args:\n spatial_size: the spatial size of output data after padding or crop.\n If has non-positive values, the corresponding size of input image will be used (no padding).\n mode: {``\"constant\"``, ``\"edge\"``, ``\"linear_ramp\"``, ``\"maximum\"``, ``\"mean\"``,\n ``\"median\"``, ``\"minimum\"``, ``\"reflect\"``, ``\"symmetric\"``, ``\"wrap\"``, ``\"empty\"``}\n One of the listed string values or a user supplied function for padding. Defaults to ``\"constant\"``.\n See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n method: {``\"symmetric\"``, ``\"end\"``}\n Pad image symmetrically on every side or only pad at the end sides. Defaults to ``\"symmetric\"``.\n np_kwargs: other args for `np.pad` API, note that `np.pad` treats channel dimension as the first dimension.\n more details: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html\n\n \"\"\"\n\n backend = list(set(SpatialPad.backend) & set(CenterSpatialCrop.backend))\n\n def __init__(\n self,\n spatial_size: Union[Sequence[int], int],\n mode: Union[NumpyPadMode, str] = NumpyPadMode.CONSTANT,\n method: Union[Method, str] = Method.SYMMETRIC,\n **np_kwargs,\n ):\n self.padder = SpatialPad(spatial_size=spatial_size, method=method, mode=mode, **np_kwargs)\n self.cropper = CenterSpatialCrop(roi_size=spatial_size)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld_RandCropByPosNegLabeld._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld_RandCropByPosNegLabeld._", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1017, "end_line": 1074, "span_ids": ["RandCropByPosNegLabeld"], "tokens": 957}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabeld(Randomizable, MapTransform, InvertibleTransform):\n \"\"\"\n Dictionary-based version :py:class:`monai.transforms.RandCropByPosNegLabel`.\n Crop random fixed sized regions with the center being a foreground or background voxel\n based on the Pos Neg Ratio.\n Suppose all the expected fields specified by `keys` have same shape,\n and add `patch_index` to the corresponding meta data.\n And will return a list of dictionaries for all the cropped images.\n\n If a dimension of the expected spatial size is bigger than the input image size,\n will not crop that dimension. So the cropped result may be smaller than the expected size,\n and the cropped results of several images may not have exactly the same shape.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n label_key: name of key for label image, this will be used for finding foreground/background.\n spatial_size: the spatial size of the crop region e.g. [224, 224, 128].\n if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.\n if its components have non-positive values, the corresponding size of `data[label_key]` will be used.\n for example: if the spatial size of input data is [40, 40, 40] and `spatial_size=[32, 64, -1]`,\n the spatial size of output data will be [32, 40, 40].\n pos: used with `neg` together to calculate the ratio ``pos / (pos + neg)`` for the probability\n to pick a foreground voxel as a center rather than a background voxel.\n neg: used with `pos` together to calculate the ratio ``pos / (pos + neg)`` for the probability\n to pick a foreground voxel as a center rather than a background voxel.\n num_samples: number of samples (crop regions) to take in each list.\n image_key: if image_key is not None, use ``label == 0 & image > image_threshold`` to select\n the negative sample(background) center. so the crop center will only exist on valid image area.\n image_threshold: if enabled image_key, use ``image > image_threshold`` to determine\n the valid image content area.\n fg_indices_key: if provided pre-computed foreground indices of `label`, will ignore above `image_key` and\n `image_threshold`, and randomly select crop centers based on them, need to provide `fg_indices_key`\n and `bg_indices_key` together, expect to be 1 dim array of spatial indices after flattening.\n a typical usage is to call `FgBgToIndicesd` transform first and cache the results.\n bg_indices_key: if provided pre-computed background indices of `label`, will ignore above `image_key` and\n `image_threshold`, and randomly select crop centers based on them, need to provide `fg_indices_key`\n and `bg_indices_key` together, expect to be 1 dim array of spatial indices after flattening.\n a typical usage is to call `FgBgToIndicesd` transform first and cache the results.\n meta_keys: explicitly indicate the key of the corresponding meta data dictionary.\n used to add `patch_index` to the meta dict.\n for example, for data with key `image`, the metadata by default is in `image_meta_dict`.\n the meta data is a dictionary object which contains: filename, original_shape, etc.\n it can be a sequence of string, map to the `keys`.\n if None, will try to construct meta_keys by `key_{meta_key_postfix}`.\n meta_key_postfix: if meta_keys is None, use `key_{postfix}` to to fetch the meta data according\n to the key data, default is `meta_dict`, the meta data is a dictionary object.\n used to add `patch_index` to the meta dict.\n allow_smaller: if `False`, an exception will be raised if the image is smaller than\n the requested ROI in any dimension. If `True`, any smaller dimensions will be set to\n match the cropped size (i.e., no cropping in that dimension).\n allow_missing_keys: don't raise exception if key is missing.\n\n Raises:\n ValueError: When ``pos`` or ``neg`` are negative.\n ValueError: When ``pos=0`` and ``neg=0``. Incompatible values.\n\n \"\"\"", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.randomize_RandCropByPosNegLabeld.randomize.self.centers.generate_pos_neg_label_cr": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/croppad/dictionary.py_RandCropByPosNegLabeld.randomize_RandCropByPosNegLabeld.randomize.self.centers.generate_pos_neg_label_cr", "embedding": null, "metadata": {"file_path": "monai/transforms/croppad/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1115, "end_line": 1137, "span_ids": ["RandCropByPosNegLabeld.randomize"], "tokens": 204}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandCropByPosNegLabeld(Randomizable, MapTransform, InvertibleTransform):\n\n def randomize(\n self,\n label: NdarrayOrTensor,\n fg_indices: Optional[NdarrayOrTensor] = None,\n bg_indices: Optional[NdarrayOrTensor] = None,\n image: Optional[NdarrayOrTensor] = None,\n ) -> None:\n self.spatial_size = fall_back_tuple(self.spatial_size, default=label.shape[1:])\n if fg_indices is None or bg_indices is None:\n fg_indices_, bg_indices_ = map_binary_to_indices(label, image, self.image_threshold)\n else:\n fg_indices_ = fg_indices\n bg_indices_ = bg_indices\n self.centers = generate_pos_neg_label_crop_centers(\n self.spatial_size,\n self.num_samples,\n self.pos_ratio,\n label.shape[1:],\n fg_indices_,\n bg_indices_,\n self.R,\n self.allow_smaller,\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_NormalizeIntensity._normalize_NormalizeIntensity._normalize.return.img": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_NormalizeIntensity._normalize_NormalizeIntensity._normalize.return.img", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 634, "end_line": 662, "span_ids": ["NormalizeIntensity._normalize"], "tokens": 283}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class NormalizeIntensity(Transform):\n\n def _normalize(self, img: NdarrayOrTensor, sub=None, div=None) -> NdarrayOrTensor:\n img, *_ = convert_data_type(img, dtype=torch.float32)\n\n if self.nonzero:\n slices = img != 0\n else:\n if isinstance(img, np.ndarray):\n slices = np.ones_like(img, dtype=bool)\n else:\n slices = torch.ones_like(img, dtype=torch.bool)\n if not slices.any():\n return img\n\n _sub = sub if sub is not None else self._mean(img[slices])\n if isinstance(_sub, (torch.Tensor, np.ndarray)):\n _sub, *_ = convert_to_dst_type(_sub, img)\n _sub = _sub[slices]\n\n _div = div if div is not None else self._std(img[slices])\n if np.isscalar(_div):\n if _div == 0.0:\n _div = 1.0\n elif isinstance(_div, (torch.Tensor, np.ndarray)):\n _div, *_ = convert_to_dst_type(_div, img)\n _div = _div[slices]\n _div[_div == 0.0] = 1.0\n\n img[slices] = (img[slices] - _sub) / _div\n return img", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSharpen_GaussianSharpen.__init__.self.approx.approx": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_GaussianSharpen_GaussianSharpen.__init__.self.approx.approx", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1158, "end_line": 1197, "span_ids": ["GaussianSharpen", "GaussianSharpen.__init__"], "tokens": 419}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianSharpen(Transform):\n \"\"\"\n Sharpen images using the Gaussian Blur filter.\n Referring to: http://scipy-lectures.org/advanced/image_processing/auto_examples/plot_sharpen.html.\n The algorithm is shown as below\n\n .. code-block:: python\n\n blurred_f = gaussian_filter(img, sigma1)\n filter_blurred_f = gaussian_filter(blurred_f, sigma2)\n img = blurred_f + alpha * (blurred_f - filter_blurred_f)\n\n A set of default values `sigma1=3.0`, `sigma2=1.0` and `alpha=30.0` is provide for reference.\n\n Args:\n sigma1: sigma parameter for the first gaussian kernel. if a list of values, must match the count\n of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension.\n if only 1 value provided, use it for all spatial dimensions.\n sigma2: sigma parameter for the second gaussian kernel. if a list of values, must match the count\n of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension.\n if only 1 value provided, use it for all spatial dimensions.\n alpha: weight parameter to compute the final result.\n approx: discrete Gaussian kernel type, available options are \"erf\", \"sampled\", and \"scalespace\".\n see also :py:meth:`monai.networks.layers.GaussianFilter`.\n\n \"\"\"\n\n backend = [TransformBackends.TORCH]\n\n def __init__(\n self,\n sigma1: Union[Sequence[float], float] = 3.0,\n sigma2: Union[Sequence[float], float] = 1.0,\n alpha: float = 30.0,\n approx: str = \"erf\",\n ) -> None:\n self.sigma1 = sigma1\n self.sigma2 = sigma2\n self.alpha = alpha\n self.approx = approx", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.__call___RandGaussianSharpen.__call__.return.GaussianSharpen_sigma1_si": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandGaussianSharpen.__call___RandGaussianSharpen.__call__.return.GaussianSharpen_sigma1_si", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1282, "end_line": 1293, "span_ids": ["RandGaussianSharpen.__call__"], "tokens": 184}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandGaussianSharpen(RandomizableTransform):\n\n def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor:\n if randomize:\n self.randomize()\n\n if not self._do_transform:\n return img\n\n if self.x2 is None or self.y2 is None or self.z2 is None or self.a is None:\n raise RuntimeError(\"please call the `randomize()` function first.\")\n sigma1 = ensure_tuple_size(tup=(self.x1, self.y1, self.z1), dim=img.ndim - 1)\n sigma2 = ensure_tuple_size(tup=(self.x2, self.y2, self.z2), dim=img.ndim - 1)\n return GaussianSharpen(sigma1=sigma1, sigma2=sigma2, alpha=self.a, approx=self.approx)(img)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandHistogramShift.randomize_RandHistogramShift.randomize.for_i_in_range_1_num_con.self_floating_control_poi": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/intensity/array.py_RandHistogramShift.randomize_RandHistogramShift.randomize.for_i_in_range_1_num_con.self_floating_control_poi", "embedding": null, "metadata": {"file_path": "monai/transforms/intensity/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1325, "end_line": 1335, "span_ids": ["RandHistogramShift.randomize"], "tokens": 153}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class RandHistogramShift(RandomizableTransform):\n\n def randomize(self, data: Optional[Any] = None) -> None:\n super().randomize(None)\n if not self._do_transform:\n return None\n num_control_point = self.R.randint(self.num_control_points[0], self.num_control_points[1] + 1)\n self.reference_control_points = np.linspace(0, 1, num_control_point)\n self.floating_control_points = np.copy(self.reference_control_points)\n for i in range(1, num_control_point - 1):\n self.floating_control_points[i] = self.R.uniform(\n self.floating_control_points[i - 1], self.floating_control_points[i + 1]\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_LoadImage.__call___LoadImage.__call__.return.img_array_meta_data": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/array.py_LoadImage.__call___LoadImage.__call__.return.img_array_meta_data", "embedding": null, "metadata": {"file_path": "monai/transforms/io/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 170, "end_line": 225, "span_ids": ["LoadImage.__call__"], "tokens": 560}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LoadImage(Transform):\n\n def __call__(self, filename: Union[Sequence[PathLike], PathLike], reader: Optional[ImageReader] = None):\n \"\"\"\n Load image file and meta data from the given filename(s).\n If `reader` is not specified, this class automatically chooses readers based on the\n reversed order of registered readers `self.readers`.\n\n Args:\n filename: path file or file-like object or a list of files.\n will save the filename to meta_data with key `filename_or_obj`.\n if provided a list of files, use the filename of first file to save,\n and will stack them together as multi-channels data.\n if provided directory path instead of file path, will treat it as\n DICOM images series and read.\n reader: runtime reader to load image file and meta data.\n\n \"\"\"\n filename = tuple(f\"{Path(s).expanduser()}\" for s in ensure_tuple(filename)) # allow Path objects\n img = None\n if reader is not None:\n img = reader.read(filename) # runtime specified reader\n else:\n for reader in self.readers[::-1]:\n if self.auto_select: # rely on the filename extension to choose the reader\n if reader.verify_suffix(filename):\n img = reader.read(filename)\n break\n else: # try the user designated readers\n try:\n img = reader.read(filename)\n except Exception as e:\n logging.getLogger(self.__class__.__name__).debug(\n f\"{reader.__class__.__name__}: unable to load {filename}.\\n\" f\"Error: {e}\"\n )\n else:\n break\n\n if img is None or reader is None:\n if isinstance(filename, tuple) and len(filename) == 1:\n filename = filename[0]\n raise RuntimeError(\n f\"cannot find a suitable reader for file: {filename}.\\n\"\n \" Please install the reader libraries, see also the installation instructions:\\n\"\n \" https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies.\\n\"\n f\" The current registered: {self.readers}.\\n\"\n )\n\n img_array, meta_data = reader.get_data(img)\n img_array = img_array.astype(self.dtype, copy=False)\n\n if self.image_only:\n return img_array\n meta_data[Key.FILENAME_OR_OBJ] = f\"{ensure_tuple(filename)[0]}\" # Path obj should be strings for data loader\n # make sure all elements in metadata are little endian\n meta_data = switch_endianness(meta_data, \"<\")\n\n return img_array, meta_data", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_LoadImaged.__call___LoadImaged.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/io/dictionary.py_LoadImaged.__call___LoadImaged.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/io/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 105, "end_line": 128, "span_ids": ["LoadImaged.__call__"], "tokens": 264}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class LoadImaged(MapTransform):\n\n def __call__(self, data, reader: Optional[ImageReader] = None):\n \"\"\"\n Raises:\n KeyError: When not ``self.overwriting`` and key already exists in ``data``.\n\n \"\"\"\n d = dict(data)\n for key, meta_key, meta_key_postfix in self.key_iterator(d, self.meta_keys, self.meta_key_postfix):\n data = self._loader(d[key], reader)\n if self._loader.image_only:\n if not isinstance(data, np.ndarray):\n raise ValueError(\"loader must return a numpy array (because image_only=True was used).\")\n d[key] = data\n else:\n if not isinstance(data, (tuple, list)):\n raise ValueError(\"loader must return a tuple or list (because image_only=False was used).\")\n d[key] = data[0]\n if not isinstance(data[1], dict):\n raise ValueError(\"metadata must be a dict.\")\n meta_key = meta_key or f\"{key}_{meta_key_postfix}\"\n if meta_key in d and not self.overwriting:\n raise KeyError(f\"Meta data with key {meta_key} already exists and overwriting=False.\")\n d[meta_key] = data[1]\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_FgBgToIndices_FgBgToIndices.__init__.self.output_shape.output_shape": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/array.py_FgBgToIndices_FgBgToIndices.__init__.self.output_shape.output_shape", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/array.py", "file_name": "array.py", "file_type": "text/x-python", "category": "implementation", "start_line": 773, "end_line": 792, "span_ids": ["FgBgToIndices", "FgBgToIndices.__init__"], "tokens": 219}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class FgBgToIndices(Transform):\n \"\"\"\n Compute foreground and background of the input label data, return the indices.\n If no output_shape specified, output data will be 1 dim indices after flattening.\n This transform can help pre-compute foreground and background regions for other transforms.\n A typical usage is to randomly select foreground and background to crop.\n The main logic is based on :py:class:`monai.transforms.utils.map_binary_to_indices`.\n\n Args:\n image_threshold: if enabled `image` at runtime, use ``image > image_threshold`` to\n determine the valid image content area and select background only in this area.\n output_shape: expected shape of output indices. if not None, unravel indices to specified shape.\n\n \"\"\"\n\n backend = [TransformBackends.NUMPY, TransformBackends.TORCH]\n\n def __init__(self, image_threshold: float = 0.0, output_shape: Optional[Sequence[int]] = None) -> None:\n self.image_threshold = image_threshold\n self.output_shape = output_shape", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_FgBgToIndicesd_FgBgToIndicesd.__call__.return.d": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utility/dictionary.py_FgBgToIndicesd_FgBgToIndicesd.__call__.return.d", "embedding": null, "metadata": {"file_path": "monai/transforms/utility/dictionary.py", "file_name": "dictionary.py", "file_type": "text/x-python", "category": "implementation", "start_line": 1092, "end_line": 1136, "span_ids": ["FgBgToIndicesd", "FgBgToIndicesd.__init__", "FgBgToIndicesd.__call__"], "tokens": 506}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class FgBgToIndicesd(MapTransform):\n \"\"\"\n Dictionary-based wrapper of :py:class:`monai.transforms.FgBgToIndices`.\n\n Args:\n keys: keys of the corresponding items to be transformed.\n See also: :py:class:`monai.transforms.compose.MapTransform`\n fg_postfix: postfix to save the computed foreground indices in dict.\n for example, if computed on `label` and `postfix = \"_fg_indices\"`, the key will be `label_fg_indices`.\n bg_postfix: postfix to save the computed background indices in dict.\n for example, if computed on `label` and `postfix = \"_bg_indices\"`, the key will be `label_bg_indices`.\n image_key: if image_key is not None, use ``label == 0 & image > image_threshold`` to determine\n the negative sample(background). so the output items will not map to all the voxels in the label.\n image_threshold: if enabled image_key, use ``image > image_threshold`` to determine\n the valid image content area and select background only in this area.\n output_shape: expected shape of output indices. if not None, unravel indices to specified shape.\n allow_missing_keys: don't raise exception if key is missing.\n\n \"\"\"\n\n backend = FgBgToIndices.backend\n\n def __init__(\n self,\n keys: KeysCollection,\n fg_postfix: str = \"_fg_indices\",\n bg_postfix: str = \"_bg_indices\",\n image_key: Optional[str] = None,\n image_threshold: float = 0.0,\n output_shape: Optional[Sequence[int]] = None,\n allow_missing_keys: bool = False,\n ) -> None:\n super().__init__(keys, allow_missing_keys)\n self.fg_postfix = fg_postfix\n self.bg_postfix = bg_postfix\n self.image_key = image_key\n self.converter = FgBgToIndices(image_threshold, output_shape)\n\n def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Dict[Hashable, NdarrayOrTensor]:\n d = dict(data)\n image = d[self.image_key] if self.image_key else None\n for key in self.key_iterator(d):\n d[str(key) + self.fg_postfix], d[str(key) + self.bg_postfix] = self.converter(d[key], image)\n\n return d", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_map_binary_to_indices_map_binary_to_indices.return.fg_indices_bg_indices": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_map_binary_to_indices_map_binary_to_indices.return.fg_indices_bg_indices", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 268, "end_line": 300, "span_ids": ["map_binary_to_indices"], "tokens": 456}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def map_binary_to_indices(\n label: NdarrayOrTensor, image: Optional[NdarrayOrTensor] = None, image_threshold: float = 0.0\n) -> Tuple[NdarrayOrTensor, NdarrayOrTensor]:\n \"\"\"\n Compute the foreground and background of input label data, return the indices after fattening.\n For example:\n ``label = np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]])``\n ``foreground indices = np.array([1, 2, 3, 5, 6, 7])`` and ``background indices = np.array([0, 4, 8])``\n\n Args:\n label: use the label data to get the foreground/background information.\n image: if image is not None, use ``label = 0 & image > image_threshold``\n to define background. so the output items will not map to all the voxels in the label.\n image_threshold: if enabled `image`, use ``image > image_threshold`` to\n determine the valid image content area and select background only in this area.\n \"\"\"\n\n # Prepare fg/bg indices\n if label.shape[0] > 1:\n label = label[1:] # for One-Hot format data, remove the background channel\n label_flat = ravel(any_np_pt(label, 0)) # in case label has multiple dimensions\n fg_indices = nonzero(label_flat)\n if image is not None:\n img_flat = ravel(any_np_pt(image > image_threshold, 0))\n img_flat, *_ = convert_to_dst_type(img_flat, label, dtype=img_flat.dtype)\n bg_indices = nonzero(img_flat & ~label_flat)\n else:\n bg_indices = nonzero(~label_flat)\n\n # no need to save the indices in GPU, otherwise, still need to move to CPU at runtime when crop by indices\n fg_indices, *_ = convert_data_type(fg_indices, device=torch.device(\"cpu\"))\n bg_indices, *_ = convert_data_type(bg_indices, device=torch.device(\"cpu\"))\n return fg_indices, bg_indices", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_pos_neg_label_crop_centers_generate_pos_neg_label_crop_centers.return.centers": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/transforms/utils.py_generate_pos_neg_label_crop_centers_generate_pos_neg_label_crop_centers.return.centers", "embedding": null, "metadata": {"file_path": "monai/transforms/utils.py", "file_name": "utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 454, "end_line": 509, "span_ids": ["generate_pos_neg_label_crop_centers"], "tokens": 587}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def generate_pos_neg_label_crop_centers(\n spatial_size: Union[Sequence[int], int],\n num_samples: int,\n pos_ratio: float,\n label_spatial_shape: Sequence[int],\n fg_indices: NdarrayOrTensor,\n bg_indices: NdarrayOrTensor,\n rand_state: Optional[np.random.RandomState] = None,\n allow_smaller: bool = False,\n) -> List[List[int]]:\n \"\"\"\n Generate valid sample locations based on the label with option for specifying foreground ratio\n Valid: samples sitting entirely within image, expected input shape: [C, H, W, D] or [C, H, W]\n\n Args:\n spatial_size: spatial size of the ROIs to be sampled.\n num_samples: total sample centers to be generated.\n pos_ratio: ratio of total locations generated that have center being foreground.\n label_spatial_shape: spatial shape of the original label data to unravel selected centers.\n fg_indices: pre-computed foreground indices in 1 dimension.\n bg_indices: pre-computed background indices in 1 dimension.\n rand_state: numpy randomState object to align with other modules.\n allow_smaller: if `False`, an exception will be raised if the image is smaller than\n the requested ROI in any dimension. If `True`, any smaller dimensions will be set to\n match the cropped size (i.e., no cropping in that dimension).\n\n Raises:\n ValueError: When the proposed roi is larger than the image.\n ValueError: When the foreground and background indices lengths are 0.\n\n \"\"\"\n if rand_state is None:\n rand_state = np.random.random.__self__ # type: ignore\n\n centers = []\n fg_indices = np.asarray(fg_indices) if isinstance(fg_indices, Sequence) else fg_indices\n bg_indices = np.asarray(bg_indices) if isinstance(bg_indices, Sequence) else bg_indices\n if len(fg_indices) == 0 and len(bg_indices) == 0:\n raise ValueError(\"No sampling location available.\")\n\n if len(fg_indices) == 0 or len(bg_indices) == 0:\n warnings.warn(\n f\"N foreground {len(fg_indices)}, N background {len(bg_indices)},\"\n \"unable to generate class balanced samples.\"\n )\n pos_ratio = 0 if fg_indices.size == 0 else 1\n\n for _ in range(num_samples):\n indices_to_use = fg_indices if rand_state.rand() < pos_ratio else bg_indices\n random_int = rand_state.randint(len(indices_to_use))\n idx = indices_to_use[random_int]\n center = unravel_index(idx, label_spatial_shape).tolist()\n # shift center to range of valid centers\n centers.append(correct_crop_centers(center, spatial_size, label_spatial_shape, allow_smaller))\n\n return centers", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_load_submodules_load_submodules.return.submodules_err_mod": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/utils/module.py_load_submodules_load_submodules.return.submodules_err_mod", "embedding": null, "metadata": {"file_path": "monai/utils/module.py", "file_name": "module.py", "file_type": "text/x-python", "category": "implementation", "start_line": 64, "end_line": 82, "span_ids": ["load_submodules"], "tokens": 216}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def load_submodules(basemod, load_all: bool = True, exclude_pattern: str = \"(.*[tT]est.*)|(_.*)\"):\n \"\"\"\n Traverse the source of the module structure starting with module `basemod`, loading all packages plus all files if\n `load_all` is True, excluding anything whose name matches `exclude_pattern`.\n \"\"\"\n submodules = []\n err_mod: List[str] = []\n for importer, name, is_pkg in walk_packages(\n basemod.__path__, prefix=basemod.__name__ + \".\", onerror=err_mod.append\n ):\n if (is_pkg or load_all) and name not in sys.modules and match(exclude_pattern, name) is None:\n try:\n mod = import_module(name)\n importer.find_module(name).load_module(name) # type: ignore\n submodules.append(mod)\n except OptionalImportError:\n pass # could not import the optional deps., they are ignored\n\n return submodules, err_mod", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_glob_try_.finally_.print_f_BUILD_MONAI_CPP_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_glob_try_.finally_.print_f_BUILD_MONAI_CPP_", "embedding": null, "metadata": {"file_path": "setup.py", "file_name": "setup.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 51, "span_ids": ["docstring"], "tokens": 356}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import glob\nimport os\nimport re\nimport sys\nimport warnings\n\nimport pkg_resources\nfrom setuptools import find_packages, setup\n\nimport versioneer\n\n# TODO: debug mode -g -O0, compile test cases\n\nRUN_BUILD = os.getenv(\"BUILD_MONAI\", \"0\") == \"1\"\nFORCE_CUDA = os.getenv(\"FORCE_CUDA\", \"0\") == \"1\" # flag ignored if BUILD_MONAI is False\n\nBUILD_CPP = BUILD_CUDA = False\nTORCH_VERSION = 0\ntry:\n import torch\n\n print(f\"setup.py with torch {torch.__version__}\")\n from torch.utils.cpp_extension import BuildExtension, CppExtension\n\n BUILD_CPP = True\n from torch.utils.cpp_extension import CUDA_HOME, CUDAExtension\n\n BUILD_CUDA = (CUDA_HOME is not None) if torch.cuda.is_available() else FORCE_CUDA\n\n _pt_version = pkg_resources.parse_version(torch.__version__).release # type: ignore[attr-defined]\n if _pt_version is None or len(_pt_version) < 3:\n raise AssertionError(\"unknown torch version\")\n TORCH_VERSION = int(_pt_version[0]) * 10000 + int(_pt_version[1]) * 100 + int(_pt_version[2])\nexcept (ImportError, TypeError, AssertionError, AttributeError) as e:\n warnings.warn(f\"extension build skipped: {e}\")\nfinally:\n if not RUN_BUILD:\n BUILD_CPP = BUILD_CUDA = False\n print(\"Please set environment variable `BUILD_MONAI=1` to enable Cpp/CUDA extension build.\")\n print(f\"BUILD_MONAI_CPP={BUILD_CPP}, BUILD_MONAI_CUDA={BUILD_CUDA}, TORCH_VERSION={TORCH_VERSION}.\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_torch_parallel_backend_omp_flags.return._fopenmp_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/setup.py_torch_parallel_backend_omp_flags.return._fopenmp_", "embedding": null, "metadata": {"file_path": "setup.py", "file_name": "setup.py", "file_type": "text/x-python", "category": "implementation", "start_line": 54, "end_line": 78, "span_ids": ["torch_parallel_backend", "omp_flags"], "tokens": 207}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def torch_parallel_backend():\n try:\n match = re.search(\"^ATen parallel backend: (?P.*)$\", torch._C._parallel_info(), re.MULTILINE)\n if match is None:\n return None\n backend = match.group(\"backend\")\n if backend == \"OpenMP\":\n return \"AT_PARALLEL_OPENMP\"\n if backend == \"native thread pool\":\n return \"AT_PARALLEL_NATIVE\"\n if backend == \"native thread pool and TBB\":\n return \"AT_PARALLEL_NATIVE_TBB\"\n except (NameError, AttributeError): # no torch or no binaries\n warnings.warn(\"Could not determine torch parallel_info.\")\n return None\n\n\ndef omp_flags():\n if sys.platform == \"win32\":\n return [\"/openmp\"]\n if sys.platform == \"darwin\":\n # https://stackoverflow.com/questions/37362414/\n # return [\"-fopenmp=libiomp5\"]\n return []\n return [\"-fopenmp\"]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_os_CLANG_FORMAT_PATH.os_path_join_CLANG_FORMAT": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_os_CLANG_FORMAT_PATH.os_path_join_CLANG_FORMAT", "embedding": null, "metadata": {"file_path": "tests/clang_format_utils.py", "file_name": "clang_format_utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 15, "end_line": 43, "span_ids": ["impl:11", "docstring"], "tokens": 354}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport platform\nimport stat\nimport sys\n\nfrom monai.apps.utils import download_url\n\n# String representing the host platform (e.g. Linux, Darwin).\nHOST_PLATFORM = platform.system()\n\n# MONAI directory root, derived from the location of this file.\nMONAI_ROOT = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))\n\n# This dictionary maps each platform to the S3 object URL for its clang-format binary.\nPLATFORM_TO_CF_URL = {\n \"Darwin\": \"https://oss-clang-format.s3.us-east-2.amazonaws.com/mac/clang-format-mojave\",\n \"Linux\": \"https://oss-clang-format.s3.us-east-2.amazonaws.com/linux64/clang-format-linux64\",\n}\n\n# This dictionary maps each platform to a relative path to a file containing its reference hash.\n# github/pytorch/pytorch/tree/63d62d3e44a0a4ec09d94f30381d49b78cc5b095/tools/clang_format_hash\nPLATFORM_TO_HASH = {\n \"Darwin\": \"1485a242a96c737ba7cdd9f259114f2201accdb46d87ac7a8650b1a814cd4d4d\",\n \"Linux\": \"e1c8b97b919541a99e0a355df5c3f9e8abebc64259dbee6f8c68e1ef90582856\",\n}\n\n# Directory and file paths for the clang-format binary.\nCLANG_FORMAT_DIR = os.path.join(MONAI_ROOT, \".clang-format-bin\")\nCLANG_FORMAT_PATH = os.path.join(CLANG_FORMAT_DIR, \"clang-format\")", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_get_and_check_clang_format_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/clang_format_utils.py_get_and_check_clang_format_", "embedding": null, "metadata": {"file_path": "tests/clang_format_utils.py", "file_name": "clang_format_utils.py", "file_type": "text/x-python", "category": "implementation", "start_line": 46, "end_line": 80, "span_ids": ["get_and_check_clang_format", "impl:13"], "tokens": 283}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def get_and_check_clang_format():\n \"\"\"\n Download a platform-appropriate clang-format binary if one doesn't already exist at the expected location and verify\n that it is the right binary by checking its SHA1 hash against the expected hash.\n \"\"\"\n # If the host platform is not in PLATFORM_TO_HASH, it is unsupported.\n if HOST_PLATFORM not in PLATFORM_TO_HASH:\n print(f\"Unsupported platform: {HOST_PLATFORM}\")\n return False\n if HOST_PLATFORM not in PLATFORM_TO_CF_URL:\n print(f\"Unsupported platform: {HOST_PLATFORM}\")\n return False\n\n try:\n download_url(\n PLATFORM_TO_CF_URL[HOST_PLATFORM], CLANG_FORMAT_PATH, PLATFORM_TO_HASH[HOST_PLATFORM], hash_type=\"sha256\"\n )\n except Exception as e:\n print(f\"Download {CLANG_FORMAT_PATH} failed: {e}\")\n print(f\"Please remove {CLANG_FORMAT_PATH} and retry.\")\n return False\n\n # Make sure the binary is executable.\n mode = os.stat(CLANG_FORMAT_PATH).st_mode\n mode |= stat.S_IXUSR\n os.chmod(CLANG_FORMAT_PATH, mode)\n print(f\"Using clang-format located at {CLANG_FORMAT_PATH}\")\n\n return True\n\n\nif __name__ == \"__main__\":\n ok = get_and_check_clang_format()\n sys.exit(int(not ok))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/min_tests.py_if___name_____main____": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/min_tests.py_if___name_____main____", "embedding": null, "metadata": {"file_path": "tests/min_tests.py", "file_name": "min_tests.py", "file_type": "text/x-python", "category": "implementation", "start_line": 141, "end_line": 156, "span_ids": ["impl"], "tokens": 125}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "if __name__ == \"__main__\":\n\n # testing import submodules\n from monai.utils.module import load_submodules\n\n _, err_mod = load_submodules(sys.modules[\"monai\"], True)\n if err_mod:\n print(err_mod)\n # expecting that only engines and handlers are not imported\n assert sorted(err_mod) == [\"monai.engines\", \"monai.handlers\"]\n\n # testing all modules\n test_runner = unittest.TextTestRunner(stream=sys.stdout, verbosity=2)\n result = test_runner.run(run_testsuit())\n sys.exit(int(not result.wasSuccessful()))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_os_TEST_CASE_5._b4dc3c246b298eae37cefdf": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_os_TEST_CASE_5._b4dc3c246b298eae37cefdf", "embedding": null, "metadata": {"file_path": "tests/test_check_hash.py", "file_name": "test_check_hash.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 29, "span_ids": ["docstring"], "tokens": 139}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.apps import check_hash\n\nTEST_CASE_1 = [\"b94716452086a054208395e8c9d1ae2a\", \"md5\", True]\n\nTEST_CASE_2 = [\"abcdefg\", \"md5\", False]\n\nTEST_CASE_3 = [None, \"md5\", True]\n\nTEST_CASE_4 = [None, \"sha1\", True]\n\nTEST_CASE_5 = [\"b4dc3c246b298eae37cefdfdd2a50b091ffd5e69\", \"sha1\", True]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_TestCheckMD5_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_check_hash.py_TestCheckMD5_", "embedding": null, "metadata": {"file_path": "tests/test_check_hash.py", "file_name": "test_check_hash.py", "file_type": "text/x-python", "category": "test", "start_line": 32, "end_line": 51, "span_ids": ["TestCheckMD5", "impl:11", "TestCheckMD5.test_result", "TestCheckMD5.test_hash_type_error"], "tokens": 175}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCheckMD5(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5])\n def test_result(self, md5_value, t, expected_result):\n test_image = np.ones((5, 5, 3))\n with tempfile.TemporaryDirectory() as tempdir:\n filename = os.path.join(tempdir, \"test_file.png\")\n test_image.tofile(filename)\n\n result = check_hash(filename, md5_value, hash_type=t)\n self.assertTrue(result == expected_result)\n\n def test_hash_type_error(self):\n with self.assertRaises(ValueError):\n with tempfile.TemporaryDirectory() as tempdir:\n check_hash(tempdir, \"test_hash\", \"test_type\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_sys_TestCompose.test_dict_compose.self_assertDictEqual_c_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_sys_TestCompose.test_dict_compose.self_assertDictEqual_c_", "embedding": null, "metadata": {"file_path": "tests/test_compose.py", "file_name": "test_compose.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 58, "span_ids": ["TestCompose", "_RandXform.randomize", "TestCompose.test_empty_compose", "_RandXform", "TestCompose.test_non_dict_compose", "docstring", "TestCompose.test_dict_compose", "_RandXform.__call__"], "tokens": 281}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import sys\nimport unittest\n\nfrom monai.data import DataLoader, Dataset\nfrom monai.transforms import AddChannel, Compose\nfrom monai.transforms.transform import Randomizable\nfrom monai.utils import set_determinism\n\n\nclass _RandXform(Randomizable):\n def randomize(self):\n self.val = self.R.random_sample()\n\n def __call__(self, __unused):\n self.randomize()\n return self.val\n\n\nclass TestCompose(unittest.TestCase):\n def test_empty_compose(self):\n c = Compose()\n i = 1\n self.assertEqual(c(i), 1)\n\n def test_non_dict_compose(self):\n def a(i):\n return i + \"a\"\n\n def b(i):\n return i + \"b\"\n\n c = Compose([a, b, a, b])\n self.assertEqual(c(\"\"), \"abab\")\n\n def test_dict_compose(self):\n def a(d):\n d = dict(d)\n d[\"a\"] += 1\n return d\n\n def b(d):\n d = dict(d)\n d[\"b\"] += 1\n return d\n\n c = Compose([a, b, a, b, a])\n self.assertDictEqual(c({\"a\": 0, \"b\": 0}), {\"a\": 3, \"b\": 2})", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_random_compose_TestCompose.test_err_msg.with_self_assertRaisesReg.transforms_42_1_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_random_compose_TestCompose.test_err_msg.with_self_assertRaisesReg.transforms_42_1_", "embedding": null, "metadata": {"file_path": "tests/test_compose.py", "file_name": "test_compose.py", "file_type": "text/x-python", "category": "test", "start_line": 82, "end_line": 116, "span_ids": ["TestCompose.test_err_msg", "TestCompose.test_randomize_warn", "TestCompose.test_random_compose"], "tokens": 250}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCompose(unittest.TestCase):\n\n def test_random_compose(self):\n class _Acc(Randomizable):\n self.rand = 0.0\n\n def randomize(self, data=None):\n self.rand = self.R.rand()\n\n def __call__(self, data):\n self.randomize()\n return self.rand + data\n\n c = Compose([_Acc(), _Acc()])\n self.assertNotAlmostEqual(c(0), c(0))\n c.set_random_state(123)\n self.assertAlmostEqual(c(1), 1.61381597)\n c.set_random_state(223)\n c.randomize()\n self.assertAlmostEqual(c(1), 1.90734751)\n\n def test_randomize_warn(self):\n class _RandomClass(Randomizable):\n def randomize(self, foo1, foo2):\n pass\n\n def __call__(self, data):\n pass\n\n c = Compose([_RandomClass(), _RandomClass()])\n with self.assertWarns(Warning):\n c.randomize()\n\n def test_err_msg(self):\n transforms = Compose([abs, AddChannel(), round])\n with self.assertRaisesRegex(Exception, \"AddChannel\"):\n transforms(42.1)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_data_loader_TestCompose.test_data_loader.set_determinism_None_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_compose.py_TestCompose.test_data_loader_TestCompose.test_data_loader.set_determinism_None_", "embedding": null, "metadata": {"file_path": "tests/test_compose.py", "file_name": "test_compose.py", "file_type": "text/x-python", "category": "test", "start_line": 114, "end_line": 135, "span_ids": ["TestCompose.test_data_loader"], "tokens": 231}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestCompose(unittest.TestCase):\n\n def test_data_loader(self):\n xform_1 = Compose([_RandXform()])\n train_ds = Dataset([1], transform=xform_1)\n\n xform_1.set_random_state(123)\n out_1 = train_ds[0]\n self.assertAlmostEqual(out_1, 0.2045649)\n\n set_determinism(seed=123)\n train_loader = DataLoader(train_ds, num_workers=0)\n out_1 = next(iter(train_loader))\n self.assertAlmostEqual(out_1.cpu().item(), 0.84291356)\n\n if sys.platform != \"win32\": # skip multi-worker tests on win32\n train_loader = DataLoader(train_ds, num_workers=1)\n out_1 = next(iter(train_loader))\n self.assertAlmostEqual(out_1.cpu().item(), 0.180814653)\n\n train_loader = DataLoader(train_ds, num_workers=2)\n out_1 = next(iter(train_loader))\n self.assertAlmostEqual(out_1.cpu().item(), 0.04293707)\n set_determinism(None)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_unittest_TestConvolution2D.test_transpose2.self_assertEqual_out_shap": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_unittest_TestConvolution2D.test_transpose2.self_assertEqual_out_shap", "embedding": null, "metadata": {"file_path": "tests/test_convolutions.py", "file_name": "test_convolutions.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 66, "span_ids": ["TestConvolution2D.test_conv1", "TestConvolution2D.test_conv_only1", "TestConvolution2D.test_transpose2", "TestConvolution2D.test_dilation1", "TestConvolution2D.test_dropout1", "TestConvolution2D", "TestConvolution2D.test_transpose1", "docstring", "TestConvolution2D.test_stride1", "TestConvolution2D.test_conv1_no_acti"], "tokens": 628}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom monai.networks.blocks import Convolution, ResidualUnit\nfrom tests.utils import TorchImageTestCase2D, TorchImageTestCase3D\n\n\nclass TestConvolution2D(TorchImageTestCase2D):\n def test_conv1(self):\n conv = Convolution(2, self.input_channels, self.output_channels)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_conv1_no_acti(self):\n conv = Convolution(2, self.input_channels, self.output_channels, act=None)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_conv_only1(self):\n conv = Convolution(2, self.input_channels, self.output_channels, conv_only=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_stride1(self):\n for strides in [2, [2, 2], (2, 2)]:\n conv = Convolution(2, self.input_channels, self.output_channels, strides=strides)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0] // 2, self.im_shape[1] // 2)\n self.assertEqual(out.shape, expected_shape)\n\n def test_dilation1(self):\n conv = Convolution(2, self.input_channels, self.output_channels, dilation=3)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_dropout1(self):\n conv = Convolution(2, self.input_channels, self.output_channels, dropout=0.15)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_transpose1(self):\n conv = Convolution(2, self.input_channels, self.output_channels, is_transposed=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0], self.im_shape[1])\n self.assertEqual(out.shape, expected_shape)\n\n def test_transpose2(self):\n conv = Convolution(2, self.input_channels, self.output_channels, strides=2, is_transposed=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[0] * 2, self.im_shape[1] * 2)\n self.assertEqual(out.shape, expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D_TestConvolution3D.test_conv_only1.self_assertEqual_out_shap": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D_TestConvolution3D.test_conv_only1.self_assertEqual_out_shap", "embedding": null, "metadata": {"file_path": "tests/test_convolutions.py", "file_name": "test_convolutions.py", "file_type": "text/x-python", "category": "test", "start_line": 69, "end_line": 86, "span_ids": ["TestConvolution3D", "TestConvolution3D.test_conv1_no_acti", "TestConvolution3D.test_conv1", "TestConvolution3D.test_conv_only1"], "tokens": 252}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestConvolution3D(TorchImageTestCase3D):\n def test_conv1(self):\n conv = Convolution(3, self.input_channels, self.output_channels, dropout=0.1, adn_ordering=\"DAN\")\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)\n\n def test_conv1_no_acti(self):\n conv = Convolution(3, self.input_channels, self.output_channels, act=None, adn_ordering=\"AND\")\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)\n\n def test_conv_only1(self):\n conv = Convolution(3, self.input_channels, self.output_channels, conv_only=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_stride1_TestConvolution3D.test_stride1.for_strides_in_2_2_2_.self_assertEqual_out_shap": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_stride1_TestConvolution3D.test_stride1.for_strides_in_2_2_2_.self_assertEqual_out_shap", "embedding": null, "metadata": {"file_path": "tests/test_convolutions.py", "file_name": "test_convolutions.py", "file_type": "text/x-python", "category": "test", "start_line": 88, "end_line": 99, "span_ids": ["TestConvolution3D.test_stride1"], "tokens": 131}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestConvolution3D(TorchImageTestCase3D):\n\n def test_stride1(self):\n for strides in [2, (2, 2, 2), [2, 2, 2]]:\n conv = Convolution(3, self.input_channels, self.output_channels, strides=strides)\n out = conv(self.imt)\n expected_shape = (\n 1,\n self.output_channels,\n self.im_shape[1] // 2,\n self.im_shape[0] // 2,\n self.im_shape[2] // 2,\n )\n self.assertEqual(out.shape, expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_dilation1_TestConvolution3D.test_transpose2.self_assertEqual_out_shap": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_convolutions.py_TestConvolution3D.test_dilation1_TestConvolution3D.test_transpose2.self_assertEqual_out_shap", "embedding": null, "metadata": {"file_path": "tests/test_convolutions.py", "file_name": "test_convolutions.py", "file_type": "text/x-python", "category": "test", "start_line": 101, "end_line": 123, "span_ids": ["TestConvolution3D.test_transpose1", "TestConvolution3D.test_dropout1", "TestConvolution3D.test_dilation1", "TestConvolution3D.test_transpose2"], "tokens": 328}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestConvolution3D(TorchImageTestCase3D):\n\n def test_dilation1(self):\n conv = Convolution(3, self.input_channels, self.output_channels, dilation=3)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)\n\n def test_dropout1(self):\n conv = Convolution(3, self.input_channels, self.output_channels, dropout=0.15)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)\n\n def test_transpose1(self):\n conv = Convolution(3, self.input_channels, self.output_channels, is_transposed=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1], self.im_shape[0], self.im_shape[2])\n self.assertEqual(out.shape, expected_shape)\n\n def test_transpose2(self):\n conv = Convolution(3, self.input_channels, self.output_channels, strides=2, is_transposed=True)\n out = conv(self.imt)\n expected_shape = (1, self.output_channels, self.im_shape[1] * 2, self.im_shape[0] * 2, self.im_shape[2] * 2)\n self.assertEqual(out.shape, expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet.py_unittest_TEST_CASE_DEEP_SUPERVISION._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_dynunet.py_unittest_TEST_CASE_DEEP_SUPERVISION._", "embedding": null, "metadata": {"file_path": "tests/test_dynunet.py", "file_name": "test_dynunet.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 81, "span_ids": ["docstring:11", "docstring"], "tokens": 661}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\nfrom typing import Any, Sequence, Union\n\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks import eval_mode\nfrom monai.networks.nets import DynUNet\nfrom tests.utils import test_script_save\n\ndevice = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n\nstrides: Sequence[Union[Sequence[int], int]]\nkernel_size: Sequence[Any]\nexpected_shape: Sequence[Any]\n\nTEST_CASE_DYNUNET_2D = []\nout_channels = 2\nin_size = 64\nspatial_dims = 2\nfor kernel_size in [(3, 3, 3, 1), ((3, 1), 1, (3, 3), (1, 1))]:\n for strides in [(1, 1, 1, 1), (2, 2, 2, 1)]:\n expected_shape = (1, out_channels, *[in_size // strides[0]] * spatial_dims)\n for in_channels in [2, 3]:\n for res_block in [True, False]:\n test_case = [\n {\n \"spatial_dims\": spatial_dims,\n \"in_channels\": in_channels,\n \"out_channels\": out_channels,\n \"kernel_size\": kernel_size,\n \"strides\": strides,\n \"upsample_kernel_size\": strides[1:],\n \"norm_name\": \"batch\",\n \"act_name\": (\"leakyrelu\", {\"inplace\": True, \"negative_slope\": 0.2}),\n \"deep_supervision\": False,\n \"res_block\": res_block,\n \"dropout\": None,\n },\n (1, in_channels, in_size, in_size),\n expected_shape,\n ]\n TEST_CASE_DYNUNET_2D.append(test_case)\n\nTEST_CASE_DYNUNET_3D = [] # in 3d cases, also test anisotropic kernel/strides\nin_channels = 1\nin_size = 64\nfor out_channels in [2, 3]:\n expected_shape = (1, out_channels, 64, 32, 64)\n for res_block in [True, False]:\n test_case = [\n {\n \"spatial_dims\": 3,\n \"in_channels\": in_channels,\n \"out_channels\": out_channels,\n \"kernel_size\": (3, (1, 1, 3), 3, 3),\n \"strides\": ((1, 2, 1), 2, 2, 1),\n \"upsample_kernel_size\": (2, 2, 1),\n \"filters\": (64, 96, 128, 192),\n \"norm_name\": (\"INSTANCE\", {\"affine\": True}),\n \"deep_supervision\": True,\n \"res_block\": res_block,\n \"dropout\": (\"alphadropout\", {\"p\": 0.25}),\n },\n (1, in_channels, in_size, in_size, in_size),\n expected_shape,\n ]\n TEST_CASE_DYNUNET_3D.append(test_case)\n\nTEST_CASE_DEEP_SUPERVISION = []", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_unittest_TEST_CASES_NORM_F": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_unittest_TEST_CASES_NORM_F", "embedding": null, "metadata": {"file_path": "tests/test_gaussian.py", "file_name": "test_gaussian.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 221, "span_ids": ["docstring"], "tokens": 43}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks.layers.convutils import gaussian_1d\n\nTEST_CASES_NORM_F =\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d_TestGaussian1d.test_gaussian.None_2": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d_TestGaussian1d.test_gaussian.None_2", "embedding": null, "metadata": {"file_path": "tests/test_gaussian.py", "file_name": "test_gaussian.py", "file_type": "text/x-python", "category": "test", "start_line": 224, "end_line": 245, "span_ids": ["TestGaussian1d.test_gaussian", "TestGaussian1d"], "tokens": 238}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestGaussian1d(unittest.TestCase):\n def test_gaussian(self):\n np.testing.assert_allclose(\n gaussian_1d(0.5, 8),\n torch.tensor(\n [\n 0.0000e00,\n 2.9802e-07,\n 1.3496e-03,\n 1.5731e-01,\n 6.8269e-01,\n 1.5731e-01,\n 1.3496e-03,\n 2.9802e-07,\n 0.0000e00,\n ]\n ),\n rtol=1e-4,\n )\n\n np.testing.assert_allclose(gaussian_1d(1, 1), torch.tensor([0.24173, 0.382925, 0.24173]), rtol=1e-4)\n np.testing.assert_allclose(gaussian_1d(1, 1, normalize=True), torch.tensor([0.2790, 0.4420, 0.2790]), rtol=1e-4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_scalespace_gaussian_TestGaussian1d.test_scalespace_gaussian.None_3": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_scalespace_gaussian_TestGaussian1d.test_scalespace_gaussian.None_3", "embedding": null, "metadata": {"file_path": "tests/test_gaussian.py", "file_name": "test_gaussian.py", "file_type": "text/x-python", "category": "test", "start_line": 247, "end_line": 292, "span_ids": ["TestGaussian1d.test_scalespace_gaussian"], "tokens": 385}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestGaussian1d(unittest.TestCase):\n\n def test_scalespace_gaussian(self):\n np.testing.assert_allclose(\n gaussian_1d(0.5, 8, \"scalespace\"),\n torch.tensor(\n [\n 7.9472e-06,\n 2.5451e-04,\n 6.1161e-03,\n 9.8113e-02,\n 7.9102e-01,\n 9.8113e-02,\n 6.1161e-03,\n 2.5451e-04,\n 7.9472e-06,\n ]\n ),\n rtol=1e-4,\n )\n\n np.testing.assert_allclose(\n gaussian_1d(1, 1, \"scalespace\"), torch.tensor([0.20791, 0.46576, 0.20791]), rtol=1e-3\n )\n\n np.testing.assert_allclose(\n gaussian_1d(1, 1, \"scalespace\", normalize=True), torch.tensor([0.2358, 0.5283, 0.2358]), rtol=1e-3\n )\n\n np.testing.assert_allclose(\n gaussian_1d(5, 1, \"scalespace\"),\n torch.tensor(\n [\n 0.048225,\n 0.057891,\n 0.06675,\n 0.073911,\n 0.078576,\n 0.080197,\n 0.078576,\n 0.073911,\n 0.06675,\n 0.057891,\n 0.048225,\n ]\n ),\n rtol=1e-3,\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_norm_false_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian.py_TestGaussian1d.test_norm_false_", "embedding": null, "metadata": {"file_path": "tests/test_gaussian.py", "file_name": "test_gaussian.py", "file_type": "text/x-python", "category": "test", "start_line": 306, "end_line": 327, "span_ids": ["TestGaussian1d.test_norm_false", "impl:3", "TestGaussian1d.test_wrong_sigma"], "tokens": 250}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestGaussian1d(unittest.TestCase):\n\n @parameterized.expand(TEST_CASES_NORM_F)\n def test_norm_false(self, variance, expected):\n extent = 6\n atol = 1e-4\n sigma = np.sqrt(variance)\n k_erf = gaussian_1d(sigma, truncated=extent / sigma, approx=\"erf\", normalize=False).numpy()\n k_sampled = gaussian_1d(sigma, truncated=extent / sigma, approx=\"sampled\").numpy()\n k_scalespace = gaussian_1d(sigma, truncated=extent / sigma, approx=\"scalespace\").numpy()\n np.testing.assert_allclose(k_erf, expected[0], atol=atol)\n np.testing.assert_allclose(k_sampled, expected[1], atol=atol)\n np.testing.assert_allclose(k_scalespace, expected[2], atol=atol)\n\n def test_wrong_sigma(self):\n with self.assertRaises(ValueError):\n gaussian_1d(1, -10)\n with self.assertRaises(NotImplementedError):\n gaussian_1d(1, 10, \"wrong_arg\")\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase_GaussianFilterTestCase.test_1d.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_gaussian_filter.py_GaussianFilterTestCase_GaussianFilterTestCase.test_1d.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_gaussian_filter.py", "file_name": "test_gaussian_filter.py", "file_type": "text/x-python", "category": "test", "start_line": 86, "end_line": 109, "span_ids": ["GaussianFilterTestCase.test_1d", "GaussianFilterTestCase"], "tokens": 190}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class GaussianFilterTestCase(unittest.TestCase):\n def test_1d(self):\n a = torch.ones(1, 8, 10)\n g = GaussianFilter(1, 3, 3).to(torch.device(\"cpu:0\"))\n expected = np.array(\n [\n [\n [\n 0.5654129,\n 0.68915915,\n 0.79146194,\n 0.8631974,\n 0.8998163,\n 0.8998163,\n 0.8631973,\n 0.79146194,\n 0.6891592,\n 0.5654129,\n ]\n ]\n ]\n )\n expected = np.tile(expected, (1, 8, 1))\n np.testing.assert_allclose(g(a).cpu().numpy(), expected, rtol=1e-5)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_unittest_create_spherical_seg_3d.return.image": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_hausdorff_distance.py_unittest_create_spherical_seg_3d.return.image", "embedding": null, "metadata": {"file_path": "tests/test_hausdorff_distance.py", "file_name": "test_hausdorff_distance.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 46, "span_ids": ["create_spherical_seg_3d", "docstring"], "tokens": 319}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\nfrom typing import Tuple\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.metrics import HausdorffDistanceMetric\n\n\ndef create_spherical_seg_3d(\n radius: float = 20.0, centre: Tuple[int, int, int] = (49, 49, 49), im_shape: Tuple[int, int, int] = (99, 99, 99)\n) -> np.ndarray:\n \"\"\"\n Return a 3D image with a sphere inside. Voxel values will be\n 1 inside the sphere, and 0 elsewhere.\n\n Args:\n radius: radius of sphere (in terms of number of voxels, can be partial)\n centre: location of sphere centre.\n im_shape: shape of image to create\n\n See also:\n :py:meth:`~create_test_image_3d`\n \"\"\"\n # Create image\n image = np.zeros(im_shape, dtype=np.int32)\n spy, spx, spz = np.ogrid[\n -centre[0] : im_shape[0] - centre[0], -centre[1] : im_shape[1] - centre[1], -centre[2] : im_shape[2] - centre[2]\n ]\n circle = (spx * spx + spy * spy + spz * spz) <= radius * radius\n\n image[circle] = 1\n image[~circle] = 0\n return image", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_is_supported_format.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_is_supported_format.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_is_supported_format.py", "file_name": "test_is_supported_format.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 39, "span_ids": ["impl:13", "TestIsSupportedFormat.test_value", "TestIsSupportedFormat", "docstring"], "tokens": 295}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nfrom parameterized import parameterized\n\nfrom monai.data import is_supported_format\n\nTEST_CASE_1 = [{\"filename\": \"testfile.nii.gz\", \"suffixes\": [\"nii\", \"nii.gz\"]}, True]\n\nTEST_CASE_2 = [{\"filename\": \"./testfile.nii.gz\", \"suffixes\": [\"nii\", \"nii.gz\"]}, True]\n\nTEST_CASE_3 = [{\"filename\": \"./test.data/file.nii.gz\", \"suffixes\": [\"nii\", \"nii.gz\"]}, True]\n\nTEST_CASE_4 = [{\"filename\": \"./test.data/file.nii\", \"suffixes\": [\"nii\", \"nii.gz\"]}, True]\n\nTEST_CASE_5 = [{\"filename\": \"C:\\\\documents\\\\testfile.nii.gz\", \"suffixes\": [\"nii\", \"nii.gz\"]}, True]\n\nTEST_CASE_6 = [{\"filename\": \"1.3.12.2.1107.5.4.4.145.nii.gz\", \"suffixes\": [\"nii.gz\"]}, True]\n\n\nclass TestIsSupportedFormat(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6])\n def test_value(self, input_param, result):\n self.assertEqual(is_supported_format(**input_param), result)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_json_TestLoadDecathlonDatalist.test_seg_values.with_tempfile_TemporaryDi.None_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_json_TestLoadDecathlonDatalist.test_seg_values.with_tempfile_TemporaryDi.None_1", "embedding": null, "metadata": {"file_path": "tests/test_load_decathlon_datalist.py", "file_name": "test_load_decathlon_datalist.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 40, "span_ids": ["TestLoadDecathlonDatalist", "TestLoadDecathlonDatalist.test_seg_values", "docstring"], "tokens": 294}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import json\nimport os\nimport tempfile\nimport unittest\nfrom pathlib import Path\n\nfrom monai.data import load_decathlon_datalist\n\n\nclass TestLoadDecathlonDatalist(unittest.TestCase):\n def test_seg_values(self):\n with tempfile.TemporaryDirectory() as tempdir:\n test_data = {\n \"name\": \"Spleen\",\n \"description\": \"Spleen Segmentation\",\n \"labels\": {\"0\": \"background\", \"1\": \"spleen\"},\n \"training\": [\n {\"image\": \"spleen_19.nii.gz\", \"label\": \"spleen_19.nii.gz\"},\n {\"image\": \"spleen_31.nii.gz\", \"label\": \"spleen_31.nii.gz\"},\n ],\n \"test\": [\"spleen_15.nii.gz\", \"spleen_23.nii.gz\"],\n }\n json_str = json.dumps(test_data)\n file_path = os.path.join(tempdir, \"test_data.json\")\n with open(file_path, \"w\") as json_file:\n json_file.write(json_str)\n result = load_decathlon_datalist(file_path, True, \"training\", tempdir)\n self.assertEqual(result[0][\"image\"], os.path.join(tempdir, \"spleen_19.nii.gz\"))\n self.assertEqual(result[0][\"label\"], os.path.join(tempdir, \"spleen_19.nii.gz\"))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_cls_values_TestLoadDecathlonDatalist.test_cls_values.with_tempfile_TemporaryDi.None_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_cls_values_TestLoadDecathlonDatalist.test_cls_values.with_tempfile_TemporaryDi.None_1", "embedding": null, "metadata": {"file_path": "tests/test_load_decathlon_datalist.py", "file_name": "test_load_decathlon_datalist.py", "file_type": "text/x-python", "category": "test", "start_line": 41, "end_line": 56, "span_ids": ["TestLoadDecathlonDatalist.test_cls_values"], "tokens": 225}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadDecathlonDatalist(unittest.TestCase):\n\n def test_cls_values(self):\n with tempfile.TemporaryDirectory() as tempdir:\n test_data = {\n \"name\": \"ChestXRay\",\n \"description\": \"Chest X-ray classification\",\n \"labels\": {\"0\": \"background\", \"1\": \"chest\"},\n \"training\": [{\"image\": \"chest_19.nii.gz\", \"label\": 0}, {\"image\": \"chest_31.nii.gz\", \"label\": 1}],\n \"test\": [\"chest_15.nii.gz\", \"chest_23.nii.gz\"],\n }\n json_str = json.dumps(test_data)\n file_path = os.path.join(tempdir, \"test_data.json\")\n with open(file_path, \"w\") as json_file:\n json_file.write(json_str)\n result = load_decathlon_datalist(file_path, False, \"training\", tempdir)\n self.assertEqual(result[0][\"image\"], os.path.join(tempdir, \"chest_19.nii.gz\"))\n self.assertEqual(result[0][\"label\"], 0)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_seg_no_basedir_TestLoadDecathlonDatalist.test_seg_no_basedir.with_tempfile_TemporaryDi.None_1": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_decathlon_datalist.py_TestLoadDecathlonDatalist.test_seg_no_basedir_TestLoadDecathlonDatalist.test_seg_no_basedir.with_tempfile_TemporaryDi.None_1", "embedding": null, "metadata": {"file_path": "tests/test_load_decathlon_datalist.py", "file_name": "test_load_decathlon_datalist.py", "file_type": "text/x-python", "category": "test", "start_line": 58, "end_line": 82, "span_ids": ["TestLoadDecathlonDatalist.test_seg_no_basedir"], "tokens": 314}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadDecathlonDatalist(unittest.TestCase):\n\n def test_seg_no_basedir(self):\n with tempfile.TemporaryDirectory() as tempdir:\n test_data = {\n \"name\": \"Spleen\",\n \"description\": \"Spleen Segmentation\",\n \"labels\": {\"0\": \"background\", \"1\": \"spleen\"},\n \"training\": [\n {\n \"image\": os.path.join(tempdir, \"spleen_19.nii.gz\"),\n \"label\": os.path.join(tempdir, \"spleen_19.nii.gz\"),\n },\n {\n \"image\": os.path.join(tempdir, \"spleen_31.nii.gz\"),\n \"label\": os.path.join(tempdir, \"spleen_31.nii.gz\"),\n },\n ],\n \"test\": [os.path.join(tempdir, \"spleen_15.nii.gz\"), os.path.join(tempdir, \"spleen_23.nii.gz\")],\n }\n json_str = json.dumps(test_data)\n file_path = os.path.join(tempdir, \"test_data.json\")\n with open(file_path, \"w\") as json_file:\n json_file.write(json_str)\n result = load_decathlon_datalist(file_path, True, \"training\", None)\n self.assertEqual(result[0][\"image\"], os.path.join(tempdir, \"spleen_19.nii.gz\"))\n self.assertEqual(result[0][\"label\"], os.path.join(tempdir, \"spleen_19.nii.gz\"))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_reader_TestLoadImage.test_itk_reader.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_itk_reader_TestLoadImage.test_itk_reader.with_tempfile_TemporaryDi.self_assertTupleEqual_res", "embedding": null, "metadata": {"file_path": "tests/test_load_image.py", "file_name": "test_load_image.py", "file_type": "text/x-python", "category": "test", "start_line": 150, "end_line": 167, "span_ids": ["TestLoadImage.test_itk_reader"], "tokens": 245}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadImage(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_6, TEST_CASE_7, TEST_CASE_8, TEST_CASE_8_1, TEST_CASE_9])\n def test_itk_reader(self, input_param, filenames, expected_shape):\n test_image = np.random.rand(128, 128, 128)\n with tempfile.TemporaryDirectory() as tempdir:\n for i, name in enumerate(filenames):\n filenames[i] = os.path.join(tempdir, name)\n itk_np_view = itk.image_view_from_array(test_image)\n itk.imwrite(itk_np_view, filenames[i])\n result = LoadImage(**input_param)(filenames)\n\n if isinstance(result, tuple):\n result, header = result\n self.assertTrue(\"affine\" in header)\n self.assertEqual(header[\"filename_or_obj\"], os.path.join(tempdir, \"test_image.nii.gz\"))\n np_diag = np.diag([-1, -1, 1, 1])\n np.testing.assert_allclose(header[\"affine\"], np_diag)\n np.testing.assert_allclose(header[\"original_affine\"], np_diag)\n self.assertTupleEqual(result.shape, expected_shape)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_register_TestLoadImage.test_register.with_tempfile_TemporaryDi.self_assertTupleEqual_res": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_load_image.py_TestLoadImage.test_register_TestLoadImage.test_register.with_tempfile_TemporaryDi.self_assertTupleEqual_res", "embedding": null, "metadata": {"file_path": "tests/test_load_image.py", "file_name": "test_load_image.py", "file_type": "text/x-python", "category": "test", "start_line": 199, "end_line": 211, "span_ids": ["TestLoadImage.test_register"], "tokens": 141}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestLoadImage(unittest.TestCase):\n\n def test_register(self):\n spatial_size = (32, 64, 128)\n test_image = np.random.rand(*spatial_size)\n with tempfile.TemporaryDirectory() as tempdir:\n filename = os.path.join(tempdir, \"test_image.nii.gz\")\n itk_np_view = itk.image_view_from_array(test_image)\n itk.imwrite(itk_np_view, filename)\n\n loader = LoadImage(image_only=False)\n loader.register(ITKReader())\n result, header = loader(filename)\n self.assertTupleEqual(tuple(header[\"spatial_shape\"]), spatial_size[::-1])\n self.assertTupleEqual(result.shape, spatial_size[::-1])", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_binary_to_indices.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_map_binary_to_indices.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_map_binary_to_indices.py", "file_name": "test_map_binary_to_indices.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 74, "span_ids": ["impl:8", "TestMapBinaryToIndices.test_type_shape", "TestMapBinaryToIndices", "docstring"], "tokens": 616}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import map_binary_to_indices\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\"label\": p(np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]])), \"image\": None, \"image_threshold\": 0.0},\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 4, 8]),\n ]\n )\n TESTS.append(\n [\n {\n \"label\": p(np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]])),\n \"image\": p(np.array([[[1, 1, 1], [1, 0, 1], [1, 1, 1]]])),\n \"image_threshold\": 0.0,\n },\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n ]\n )\n TESTS.append(\n [\n {\n \"label\": p(np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]])),\n \"image\": p(np.array([[[3, 3, 3], [3, 1, 3], [3, 3, 3]]])),\n \"image_threshold\": 1.0,\n },\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n ]\n )\n TESTS.append(\n [\n {\n \"label\": p(np.array([[[0, 1, 2], [3, 0, 4], [5, 6, 0]]])),\n \"image\": p(np.array([[[3, 3, 3], [3, 1, 3], [3, 3, 3]]])),\n \"image_threshold\": 1.0,\n },\n np.array([1, 2, 3, 5, 6, 7]),\n np.array([0, 8]),\n ]\n )\n\n\nclass TestMapBinaryToIndices(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_type_shape(self, input_data, expected_fg, expected_bg):\n fg_indices, bg_indices = map_binary_to_indices(**input_data)\n assert_allclose(fg_indices, expected_fg, type_test=False)\n assert_allclose(bg_indices, expected_bg, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity.test_value_errors_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_normalize_intensity.py_TestNormalizeIntensity.test_value_errors_", "embedding": null, "metadata": {"file_path": "tests/test_normalize_intensity.py", "file_name": "test_normalize_intensity.py", "file_type": "text/x-python", "category": "test", "start_line": 111, "end_line": 124, "span_ids": ["TestNormalizeIntensity.test_value_errors", "impl:16"], "tokens": 174}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNormalizeIntensity(NumpyImageTestCase2D):\n\n @parameterized.expand([[p] for p in TEST_NDARRAYS])\n def test_value_errors(self, im_type):\n input_data = im_type(np.array([[0.0, 3.0, 0.0, 4.0], [0.0, 4.0, 0.0, 5.0]]))\n normalizer = NormalizeIntensity(nonzero=True, channel_wise=True, subtrahend=[1])\n with self.assertRaises(ValueError):\n normalizer(input_data)\n normalizer = NormalizeIntensity(nonzero=True, channel_wise=True, subtrahend=[1, 2], divisor=[1])\n with self.assertRaises(ValueError):\n normalizer(input_data)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_unittest_build_test_cases.return.test_cases": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_unittest_build_test_cases.return.test_cases", "embedding": null, "metadata": {"file_path": "tests/test_optim_novograd.py", "file_name": "test_optim_novograd.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 38, "span_ids": ["build_test_cases", "docstring"], "tokens": 224}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport torch\nfrom parameterized import parameterized\nfrom torch.autograd import Variable\n\nfrom monai.optimizers import Novograd\n\n\ndef build_test_cases(data):\n [weight, bias, input] = data\n weight = Variable(weight, requires_grad=True)\n bias = Variable(bias, requires_grad=True)\n input = Variable(input)\n\n default_params = {\"lr\": 1e-3, \"amsgrad\": False, \"grad_averaging\": False, \"weight_decay\": 0}\n\n test_case_same_param = [{\"params\": [weight, bias]}]\n test_case_diff_param = [\n {\"params\": [weight]},\n {\"params\": [bias], \"lr\": 1e-2, \"amsgrad\": True, \"grad_averaging\": True, \"weight_decay\": 0.1},\n ]\n\n test_cases = []\n test_cases.append([test_case_same_param, default_params, weight, bias, input])\n test_cases.append([test_case_diff_param, default_params, weight, bias, input])\n return test_cases", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TEST_CASES_ALL_if_torch_cuda_device_coun.TEST_CASES_ALL_build_t": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TEST_CASES_ALL_if_torch_cuda_device_coun.TEST_CASES_ALL_build_t", "embedding": null, "metadata": {"file_path": "tests/test_optim_novograd.py", "file_name": "test_optim_novograd.py", "file_type": "text/x-python", "category": "test", "start_line": 41, "end_line": 54, "span_ids": ["impl"], "tokens": 193}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASES_ALL = build_test_cases([torch.randn(10, 5), torch.randn(10), torch.randn(5)]) # normal parameters\n\nTEST_CASES_ALL += build_test_cases( # non-contiguous parameters\n [torch.randn(10, 5, 2)[..., 0], torch.randn(10, 2)[..., 0], torch.randn(5)]\n)\n\nif torch.cuda.is_available():\n TEST_CASES_ALL += build_test_cases( # gpu parameters\n [torch.randn(10, 5).cuda(), torch.randn(10).cuda(), torch.randn(5).cuda()]\n )\nif torch.cuda.device_count() > 1:\n TEST_CASES_ALL += build_test_cases( # multi-gpu parameters\n [torch.randn(10, 5).cuda(0), torch.randn(10).cuda(1), torch.randn(5).cuda(0)]\n )", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd_TestNovograd.test_step.self_assertLess_fn_item": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd_TestNovograd.test_step.self_assertLess_fn_item", "embedding": null, "metadata": {"file_path": "tests/test_optim_novograd.py", "file_name": "test_optim_novograd.py", "file_type": "text/x-python", "category": "test", "start_line": 57, "end_line": 80, "span_ids": ["TestNovograd.test_step", "TestNovograd"], "tokens": 189}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNovograd(unittest.TestCase):\n \"\"\"\n This class takes `Pytorch's test_optim function:\n https://github.com/pytorch/pytorch/blob/v1.9.0/test/test_optim.py for reference.\n\n \"\"\"\n\n @parameterized.expand(TEST_CASES_ALL)\n def test_step(self, specify_param, default_param, weight, bias, input):\n optimizer = Novograd(specify_param, **default_param)\n\n def fn():\n optimizer.zero_grad()\n y = weight.mv(input)\n if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():\n y = y.cuda(bias.get_device())\n loss = (y + bias).pow(2).sum()\n loss.backward()\n return loss\n\n initial_value = fn().item()\n for _ in range(100):\n optimizer.step(fn)\n self.assertLess(fn().item(), initial_value)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd.test_ill_arg_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_optim_novograd.py_TestNovograd.test_ill_arg_", "embedding": null, "metadata": {"file_path": "tests/test_optim_novograd.py", "file_name": "test_optim_novograd.py", "file_type": "text/x-python", "category": "test", "start_line": 99, "end_line": 115, "span_ids": ["TestNovograd.test_ill_arg", "impl:8"], "tokens": 191}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestNovograd(unittest.TestCase):\n\n def test_ill_arg(self):\n param = {\"params\": [Variable(torch.randn(10), requires_grad=True)]}\n with self.assertRaisesRegex(ValueError, \"Invalid learning rate: -1\"):\n Novograd(param, lr=-1)\n with self.assertRaisesRegex(ValueError, \"Invalid epsilon value: -1\"):\n Novograd(param, eps=-1)\n with self.assertRaisesRegex(ValueError, \"Invalid beta parameter at index 0: 1.0\"):\n Novograd(param, betas=(1.0, 0.98))\n with self.assertRaisesRegex(ValueError, \"Invalid beta parameter at index 1: -1\"):\n Novograd(param, betas=(0.9, -1))\n with self.assertRaisesRegex(ValueError, \"Invalid weight_decay value: -1\"):\n Novograd(param, weight_decay=-1)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_unittest_TestParallelExecution.test_single_gpu.trainer_run_fake_data_str": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_unittest_TestParallelExecution.test_single_gpu.trainer_run_fake_data_str", "embedding": null, "metadata": {"file_path": "tests/test_parallel_execution.py", "file_name": "test_parallel_execution.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 41, "span_ids": ["TestParallelExecution.test_single_gpu", "fake_loss", "TestParallelExecution", "docstring", "fake_data_stream"], "tokens": 219}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\nimport warnings\n\nimport torch\n\nfrom monai.engines import create_multigpu_supervised_trainer\nfrom tests.utils import skip_if_no_cuda\n\n\ndef fake_loss(y_pred, y):\n return (y_pred[0] + y).sum()\n\n\ndef fake_data_stream():\n while True:\n yield torch.rand((10, 1, 64, 64)), torch.rand((10, 1, 64, 64))\n\n\nclass TestParallelExecution(unittest.TestCase):\n \"\"\"\n Tests single GPU, multi GPU, and CPU execution with the Ignite supervised trainer.\n \"\"\"\n\n @skip_if_no_cuda\n def test_single_gpu(self):\n device = torch.device(\"cuda:0\")\n net = torch.nn.Conv2d(1, 1, 3, padding=1).to(device)\n opt = torch.optim.Adam(net.parameters(), 1e-3)\n trainer = create_multigpu_supervised_trainer(net, opt, fake_loss, [device])\n trainer.run(fake_data_stream(), 2, 2)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_TestParallelExecution.test_multi_gpu_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_parallel_execution.py_TestParallelExecution.test_multi_gpu_", "embedding": null, "metadata": {"file_path": "tests/test_parallel_execution.py", "file_name": "test_parallel_execution.py", "file_type": "text/x-python", "category": "test", "start_line": 43, "end_line": 65, "span_ids": ["TestParallelExecution.test_multi_gpu", "TestParallelExecution.test_cpu", "impl"], "tokens": 210}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestParallelExecution(unittest.TestCase):\n\n @skip_if_no_cuda\n def test_multi_gpu(self):\n device = torch.device(\"cuda\")\n net = torch.nn.Conv2d(1, 1, 3, padding=1).to(device)\n opt = torch.optim.Adam(net.parameters(), 1e-3)\n\n with warnings.catch_warnings():\n warnings.simplefilter(\"ignore\") # ignore warnings about imbalanced GPU memory\n\n trainer = create_multigpu_supervised_trainer(net, opt, fake_loss, None)\n\n trainer.run(fake_data_stream(), 2, 2)\n\n def test_cpu(self):\n net = torch.nn.Conv2d(1, 1, 3, padding=1)\n opt = torch.optim.Adam(net.parameters(), 1e-3)\n trainer = create_multigpu_supervised_trainer(net, opt, fake_loss, [])\n trainer.run(fake_data_stream(), 2, 2)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_sys_TestPatchDataset.test_shape.self_assertEqual_output_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_sys_TestPatchDataset.test_shape.self_assertEqual_output_", "embedding": null, "metadata": {"file_path": "tests/test_patch_dataset.py", "file_name": "test_patch_dataset.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 39, "span_ids": ["TestPatchDataset", "TestPatchDataset.test_shape", "identity", "docstring"], "tokens": 199}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import sys\nimport unittest\n\nimport numpy as np\n\nfrom monai.data import DataLoader, Dataset, PatchDataset\nfrom monai.transforms import RandShiftIntensity, RandSpatialCropSamples\nfrom monai.utils import set_determinism\n\n\ndef identity(x):\n # simple transform that returns the input itself\n return x\n\n\nclass TestPatchDataset(unittest.TestCase):\n def test_shape(self):\n test_dataset = [\"vwxyz\", \"hello\", \"world\"]\n n_per_image = len(test_dataset[0])\n\n result = PatchDataset(data=test_dataset, patch_func=identity, samples_per_image=n_per_image)\n\n output = []\n n_workers = 0 if sys.platform == \"win32\" else 2\n for item in DataLoader(result, batch_size=3, num_workers=n_workers):\n output.append(\"\".join(item))\n expected = [\"vwx\", \"yzh\", \"ell\", \"owo\", \"rld\"]\n self.assertEqual(output, expected)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_TestPatchDataset.test_loading_array_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_patch_dataset.py_TestPatchDataset.test_loading_array_", "embedding": null, "metadata": {"file_path": "tests/test_patch_dataset.py", "file_name": "test_patch_dataset.py", "file_type": "text/x-python", "category": "test", "start_line": 41, "end_line": 87, "span_ids": ["TestPatchDataset.test_loading_array", "impl"], "tokens": 500}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPatchDataset(unittest.TestCase):\n\n def test_loading_array(self):\n set_determinism(seed=1234)\n # image dataset\n images = [np.arange(16, dtype=float).reshape(1, 4, 4), np.arange(16, dtype=float).reshape(1, 4, 4)]\n # image patch sampler\n n_samples = 8\n sampler = RandSpatialCropSamples(roi_size=(3, 3), num_samples=n_samples, random_center=True, random_size=False)\n\n # image level\n patch_intensity = RandShiftIntensity(offsets=1.0, prob=1.0)\n image_ds = Dataset(images, transform=patch_intensity)\n # patch level\n ds = PatchDataset(data=image_ds, patch_func=sampler, samples_per_image=n_samples, transform=patch_intensity)\n\n np.testing.assert_equal(len(ds), n_samples * len(images))\n # use the patch dataset, length: len(images) x samplers_per_image\n for item in DataLoader(ds, batch_size=2, shuffle=False, num_workers=0):\n np.testing.assert_equal(tuple(item.shape), (2, 1, 3, 3))\n np.testing.assert_allclose(\n item[0],\n np.array(\n [[[1.338681, 2.338681, 3.338681], [5.338681, 6.338681, 7.338681], [9.338681, 10.338681, 11.338681]]]\n ),\n rtol=1e-5,\n )\n if sys.platform != \"win32\":\n for item in DataLoader(ds, batch_size=2, shuffle=False, num_workers=2):\n np.testing.assert_equal(tuple(item.shape), (2, 1, 3, 3))\n np.testing.assert_allclose(\n item[0],\n np.array(\n [\n [\n [4.957847, 5.957847, 6.957847],\n [8.957847, 9.957847, 10.957847],\n [12.957847, 13.957847, 14.957847],\n ]\n ]\n ),\n rtol=1e-5,\n )\n set_determinism(seed=None)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_os_TEST_CASE_7._128_128_3_test_im": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_os_TEST_CASE_7._128_128_3_test_im", "embedding": null, "metadata": {"file_path": "tests/test_pil_reader.py", "file_name": "test_pil_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 34, "span_ids": ["docstring"], "tokens": 276}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import os\nimport tempfile\nimport unittest\n\nimport numpy as np\nfrom parameterized import parameterized\nfrom PIL import Image\n\nfrom monai.data import PILReader\n\nTEST_CASE_1 = [(128, 128), [\"test_image.png\"], (128, 128), (128, 128)]\n\nTEST_CASE_2 = [(128, 128, 3), [\"test_image.png\"], (128, 128, 3), (128, 128)]\n\nTEST_CASE_3 = [(128, 128, 4), [\"test_image.png\"], (128, 128, 4), (128, 128)]\n\nTEST_CASE_4 = [(128, 128), [\"test_image1.png\", \"test_image2.png\", \"test_image3.png\"], (3, 128, 128), (128, 128)]\n\nTEST_CASE_5 = [(128, 128, 3), [\"test_image.jpg\"], (128, 128, 3), (128, 128)]\n\nTEST_CASE_6 = [(128, 128, 3), [\"test_image.bmp\"], (128, 128, 3), (128, 128)]\n\nTEST_CASE_7 = [(128, 128, 3), [\"test_image.png\"], (128, 128, 2), (128, 128)]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader_TestPNGReader.test_shape_value.if_result_0_shape_tes.else_.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader_TestPNGReader.test_shape_value.if_result_0_shape_tes.else_.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_pil_reader.py", "file_name": "test_pil_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 37, "end_line": 56, "span_ids": ["TestPNGReader", "TestPNGReader.test_shape_value"], "tokens": 277}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPNGReader(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5, TEST_CASE_6])\n def test_shape_value(self, data_shape, filenames, expected_shape, meta_shape):\n test_image = np.random.randint(0, 256, size=data_shape)\n with tempfile.TemporaryDirectory() as tempdir:\n for i, name in enumerate(filenames):\n filenames[i] = os.path.join(tempdir, name)\n Image.fromarray(test_image.astype(\"uint8\")).save(filenames[i])\n reader = PILReader(mode=\"r\")\n result = reader.get_data(reader.read(filenames))\n # load image by PIL and compare the result\n test_image = np.asarray(Image.open(filenames[0]))\n\n self.assertTupleEqual(tuple(result[1][\"spatial_shape\"]), meta_shape)\n self.assertTupleEqual(result[0].shape, expected_shape)\n test_image = np.moveaxis(test_image, 0, 1)\n if result[0].shape == test_image.shape:\n np.testing.assert_allclose(result[0], test_image)\n else:\n np.testing.assert_allclose(result[0], np.tile(test_image, [result[0].shape[0], 1, 1]))", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader.test_converter_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_pil_reader.py_TestPNGReader.test_converter_", "embedding": null, "metadata": {"file_path": "tests/test_pil_reader.py", "file_name": "test_pil_reader.py", "file_type": "text/x-python", "category": "test", "start_line": 58, "end_line": 78, "span_ids": ["TestPNGReader.test_converter", "impl:15"], "tokens": 232}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPNGReader(unittest.TestCase):\n\n @parameterized.expand([TEST_CASE_7])\n def test_converter(self, data_shape, filenames, expected_shape, meta_shape):\n test_image = np.random.randint(0, 256, size=data_shape)\n with tempfile.TemporaryDirectory() as tempdir:\n for i, name in enumerate(filenames):\n filenames[i] = os.path.join(tempdir, name)\n Image.fromarray(test_image.astype(\"uint8\")).save(filenames[i])\n reader = PILReader(converter=lambda image: image.convert(\"LA\"))\n result = reader.get_data(reader.read(filenames, mode=\"r\"))\n # load image by PIL and compare the result\n test_image = np.asarray(Image.open(filenames[0]).convert(\"LA\"))\n\n self.assertTupleEqual(tuple(result[1][\"spatial_shape\"]), meta_shape)\n self.assertTupleEqual(result[0].shape, expected_shape)\n test_image = np.moveaxis(test_image, 0, 1)\n np.testing.assert_allclose(result[0], test_image)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_polyval.py", "file_name": "test_polyval.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 28, "span_ids": ["docstring"], "tokens": 220}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.networks.layers import polyval\n\nTEST_CASES = [\n [[1.0, 2.5, -4.2], 5.0, 33.3],\n [[2, 1, 0], 3.0, 21],\n [[2, 1, 0], [3.0, 3.0], [21, 21]],\n [torch.as_tensor([2, 1, 0]), [3.0, 3.0], [21, 21]],\n [torch.as_tensor([2, 1, 0]), torch.as_tensor([3.0, 3.0]), [21, 21]],\n [torch.as_tensor([2, 1, 0]), np.array([3.0, 3.0]), [21, 21]],\n [[], np.array([3.0, 3.0]), [0, 0]],\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_TestPolyval_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_polyval.py_TestPolyval_", "embedding": null, "metadata": {"file_path": "tests/test_polyval.py", "file_name": "test_polyval.py", "file_type": "text/x-python", "category": "test", "start_line": 31, "end_line": 53, "span_ids": ["impl:3", "TestPolyval", "TestPolyval.test_floats", "TestPolyval.test_gpu"], "tokens": 211}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestPolyval(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_floats(self, coef, x, expected):\n result = polyval(coef, x)\n np.testing.assert_allclose(result.cpu().numpy(), expected)\n\n @parameterized.expand(TEST_CASES)\n def test_gpu(self, coef, x, expected):\n device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n x = torch.as_tensor(x, dtype=torch.float, device=device)\n x.requires_grad = True\n coef = torch.as_tensor(coef, dtype=torch.float, device=device)\n coef.requires_grad = True\n result = polyval(coef, x)\n if coef.shape[0] > 0: # empty coef doesn't have grad\n result.mean().backward()\n np.testing.assert_allclose(coef.grad.shape, coef.shape)\n np.testing.assert_allclose(result.cpu().detach().numpy(), expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shift.py_unittest_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shift.py_unittest_", "embedding": null, "metadata": {"file_path": "tests/test_rand_histogram_shift.py", "file_name": "test_rand_histogram_shift.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 56, "span_ids": ["TestRandHistogramShift", "impl:7", "TestRandHistogramShift.test_rand_histogram_shift", "docstring"], "tokens": 456}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandHistogramShift\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nTESTS = []\nfor p in TEST_NDARRAYS:\n TESTS.append(\n [\n {\"num_control_points\": 5, \"prob\": 0.0},\n {\"img\": p(np.arange(8).reshape((1, 2, 2, 2)))},\n np.arange(8).reshape((1, 2, 2, 2)),\n ]\n )\n TESTS.append(\n [\n {\"num_control_points\": 5, \"prob\": 0.9},\n {\"img\": p(np.arange(8).reshape((1, 2, 2, 2)).astype(np.float32))},\n np.array([[[[0.0, 0.57227867], [1.1391707, 1.68990281]], [[2.75833219, 4.34445884], [5.70913743, 7.0]]]]),\n ]\n )\n TESTS.append(\n [\n {\"num_control_points\": (5, 20), \"prob\": 0.9},\n {\"img\": p(np.arange(8).reshape((1, 2, 2, 2)).astype(np.float32))},\n np.array([[[[0.0, 1.17472492], [2.21553091, 2.88292011]], [[3.98407301, 5.01302123], [6.09275004, 7.0]]]]),\n ]\n )\n\n\nclass TestRandHistogramShift(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_rand_histogram_shift(self, input_param, input_data, expected_val):\n g = RandHistogramShift(**input_param)\n g.set_random_state(123)\n result = g(**input_data)\n assert_allclose(result, expected_val, rtol=1e-4, atol=1e-4, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shiftd.py_TestRandHistogramShiftD_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_histogram_shiftd.py_TestRandHistogramShiftD_", "embedding": null, "metadata": {"file_path": "tests/test_rand_histogram_shiftd.py", "file_name": "test_rand_histogram_shiftd.py", "file_type": "text/x-python", "category": "test", "start_line": 61, "end_line": 75, "span_ids": ["TestRandHistogramShiftD.test_rand_histogram_shiftd", "TestRandHistogramShiftD", "impl:7"], "tokens": 132}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandHistogramShiftD(unittest.TestCase):\n @parameterized.expand(TESTS)\n def test_rand_histogram_shiftd(self, input_param, input_data, expected_val):\n g = RandHistogramShiftd(**input_param)\n g.set_random_state(123)\n res = g(input_data)\n for key in res:\n result = res[key]\n expected = expected_val[key] if isinstance(expected_val, dict) else expected_val\n assert_allclose(result, expected, rtol=1e-4, atol=1e-4, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_unittest_TEST_CASE_1._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_unittest_TEST_CASE_1._", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_crop_samples.py", "file_name": "test_rand_spatial_crop_samples.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 43, "span_ids": ["docstring"], "tokens": 421}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nfrom parameterized import parameterized\n\nfrom monai.transforms import RandSpatialCropSamples\nfrom tests.utils import TEST_NDARRAYS, assert_allclose\n\nTEST_CASE_1 = [\n {\"roi_size\": [3, 3, 3], \"num_samples\": 4, \"random_center\": True, \"random_size\": False},\n np.arange(192).reshape(3, 4, 4, 4),\n [(3, 3, 3, 3), (3, 3, 3, 3), (3, 3, 3, 3), (3, 3, 3, 3)],\n np.array(\n [\n [\n [[21, 22, 23], [25, 26, 27], [29, 30, 31]],\n [[37, 38, 39], [41, 42, 43], [45, 46, 47]],\n [[53, 54, 55], [57, 58, 59], [61, 62, 63]],\n ],\n [\n [[85, 86, 87], [89, 90, 91], [93, 94, 95]],\n [[101, 102, 103], [105, 106, 107], [109, 110, 111]],\n [[117, 118, 119], [121, 122, 123], [125, 126, 127]],\n ],\n [\n [[149, 150, 151], [153, 154, 155], [157, 158, 159]],\n [[165, 166, 167], [169, 170, 171], [173, 174, 175]],\n [[181, 182, 183], [185, 186, 187], [189, 190, 191]],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TEST_CASE_2_TEST_CASE_2._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TEST_CASE_2_TEST_CASE_2._", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_crop_samples.py", "file_name": "test_rand_spatial_crop_samples.py", "file_type": "text/x-python", "category": "test", "start_line": 44, "end_line": 67, "span_ids": ["impl:3"], "tokens": 430}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "TEST_CASE_2 = [\n {\"roi_size\": [3, 3, 3], \"num_samples\": 8, \"random_center\": False, \"random_size\": True},\n np.arange(192).reshape(3, 4, 4, 4),\n [(3, 4, 4, 3), (3, 4, 3, 3), (3, 3, 4, 4), (3, 4, 4, 4), (3, 3, 3, 4), (3, 3, 3, 3), (3, 3, 3, 3), (3, 3, 3, 3)],\n np.array(\n [\n [\n [[21, 22, 23], [25, 26, 27], [29, 30, 31]],\n [[37, 38, 39], [41, 42, 43], [45, 46, 47]],\n [[53, 54, 55], [57, 58, 59], [61, 62, 63]],\n ],\n [\n [[85, 86, 87], [89, 90, 91], [93, 94, 95]],\n [[101, 102, 103], [105, 106, 107], [109, 110, 111]],\n [[117, 118, 119], [121, 122, 123], [125, 126, 127]],\n ],\n [\n [[149, 150, 151], [153, 154, 155], [157, 158, 159]],\n [[165, 166, 167], [169, 170, 171], [173, 174, 175]],\n [[181, 182, 183], [185, 186, 187], [189, 190, 191]],\n ],\n ]\n ),\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TestRandSpatialCropSamples_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_rand_spatial_crop_samples.py_TestRandSpatialCropSamples_", "embedding": null, "metadata": {"file_path": "tests/test_rand_spatial_crop_samples.py", "file_name": "test_rand_spatial_crop_samples.py", "file_type": "text/x-python", "category": "test", "start_line": 71, "end_line": 87, "span_ids": ["impl:5", "TestRandSpatialCropSamples", "TestRandSpatialCropSamples.test_shape"], "tokens": 149}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestRandSpatialCropSamples(unittest.TestCase):\n @parameterized.expand([TEST_CASE_1, TEST_CASE_2])\n def test_shape(self, input_param, input_data, expected_shape, expected_last_item):\n for p in TEST_NDARRAYS:\n xform = RandSpatialCropSamples(**input_param)\n xform.set_random_state(1234)\n result = xform(p(input_data))\n\n np.testing.assert_equal(len(result), input_param[\"num_samples\"])\n for item, expected in zip(result, expected_shape):\n self.assertTupleEqual(item.shape, expected)\n assert_allclose(result[-1], expected_last_item, type_test=False)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_unittest_TEST_CASES._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_unittest_TEST_CASES._", "embedding": null, "metadata": {"file_path": "tests/test_sliding_window_inference.py", "file_name": "test_sliding_window_inference.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 39, "span_ids": ["docstring"], "tokens": 919}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.inferers import SlidingWindowInferer, sliding_window_inference\nfrom tests.utils import skip_if_no_cuda\n\nTEST_CASES = [\n [(2, 3, 16), (4,), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 1D small roi\n [(2, 3, 16, 15, 7, 9), 4, 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 4D small roi\n [(1, 3, 16, 15, 7), (4, -1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(2, 3, 16, 15, 7), (4, -1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(3, 3, 16, 15, 7), (4, -1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(2, 3, 16, 15, 7), (4, -1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(1, 3, 16, 15, 7), (4, 10, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(1, 3, 16, 15, 7), (20, 22, 23), 10, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D large roi\n [(2, 3, 15, 7), (2, 6), 1000, 0.25, \"constant\", torch.device(\"cpu:0\")], # 2D small roi, large batch\n [(1, 3, 16, 7), (80, 50), 7, 0.25, \"constant\", torch.device(\"cpu:0\")], # 2D large roi\n [(1, 3, 16, 15, 7), (20, 22, 23), 10, 0.5, \"constant\", torch.device(\"cpu:0\")], # 3D large overlap\n [(1, 3, 16, 7), (80, 50), 7, 0.5, \"gaussian\", torch.device(\"cpu:0\")], # 2D large overlap, gaussian\n [(1, 3, 16, 15, 7), (4, 10, 7), 3, 0.25, \"gaussian\", torch.device(\"cpu:0\")], # 3D small roi, gaussian\n [(3, 3, 16, 15, 7), (4, 10, 7), 3, 0.25, \"gaussian\", torch.device(\"cpu:0\")], # 3D small roi, gaussian\n [(1, 3, 16, 15, 7), (4, 10, 7), 3, 0.25, \"gaussian\", torch.device(\"cuda:0\")], # test inference on gpu if availabe\n [(1, 3, 16, 15, 7), (4, 1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n [(5, 3, 16, 15, 7), (4, 1, 7), 3, 0.25, \"constant\", torch.device(\"cpu:0\")], # 3D small roi\n]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference_TestSlidingWindowInference.test_sliding_window_default.None_3": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference_TestSlidingWindowInference.test_sliding_window_default.None_3", "embedding": null, "metadata": {"file_path": "tests/test_sliding_window_inference.py", "file_name": "test_sliding_window_inference.py", "file_type": "text/x-python", "category": "test", "start_line": 48, "end_line": 72, "span_ids": ["TestSlidingWindowInference", "TestSlidingWindowInference.test_sliding_window_default"], "tokens": 292}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSlidingWindowInference(unittest.TestCase):\n @parameterized.expand(TEST_CASES)\n def test_sliding_window_default(self, image_shape, roi_shape, sw_batch_size, overlap, mode, device):\n n_total = np.prod(image_shape)\n if mode == \"constant\":\n inputs = torch.arange(n_total, dtype=torch.float).reshape(*image_shape)\n else:\n inputs = torch.ones(*image_shape, dtype=torch.float)\n if device.type == \"cuda\" and not torch.cuda.is_available():\n device = torch.device(\"cpu:0\")\n\n def compute(data):\n return data + 1\n\n if mode == \"constant\":\n expected_val = np.arange(n_total, dtype=np.float32).reshape(*image_shape) + 1.0\n else:\n expected_val = np.ones(image_shape, dtype=np.float32) + 1.0\n result = sliding_window_inference(inputs.to(device), roi_shape, sw_batch_size, compute, overlap, mode=mode)\n np.testing.assert_string_equal(device.type, result.device.type)\n np.testing.assert_allclose(result.cpu().numpy(), expected_val)\n\n result = SlidingWindowInferer(roi_shape, sw_batch_size, overlap, mode)(inputs.to(device), compute)\n np.testing.assert_string_equal(device.type, result.device.type)\n np.testing.assert_allclose(result.cpu().numpy(), expected_val)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_default_device_TestSlidingWindowInference.test_default_device.np_testing_assert_allclos": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_default_device_TestSlidingWindowInference.test_default_device.np_testing_assert_allclos", "embedding": null, "metadata": {"file_path": "tests/test_sliding_window_inference.py", "file_name": "test_sliding_window_inference.py", "file_type": "text/x-python", "category": "test", "start_line": 74, "end_line": 86, "span_ids": ["TestSlidingWindowInference.test_default_device"], "tokens": 168}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSlidingWindowInference(unittest.TestCase):\n\n def test_default_device(self):\n device = \"cuda\" if torch.cuda.is_available() else \"cpu:0\"\n inputs = torch.ones((1, 3, 16, 15, 7)).to(device=device)\n roi_shape = (4, 10, 7)\n sw_batch_size = 10\n\n def compute(data):\n return data + 1\n\n result = sliding_window_inference(inputs, roi_shape, sw_batch_size, compute)\n np.testing.assert_string_equal(inputs.device.type, result.device.type)\n expected_val = np.ones((1, 3, 16, 15, 7), dtype=np.float32) + 1\n np.testing.assert_allclose(result.cpu().numpy(), expected_val)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma_TestSlidingWindowInference.test_sigma.result_6.sliding_window_inference_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma_TestSlidingWindowInference.test_sigma.result_6.sliding_window_inference_", "embedding": null, "metadata": {"file_path": "tests/test_sliding_window_inference.py", "file_name": "test_sliding_window_inference.py", "file_type": "text/x-python", "category": "test", "start_line": 88, "end_line": 139, "span_ids": ["TestSlidingWindowInference.test_sigma"], "tokens": 573}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSlidingWindowInference(unittest.TestCase):\n\n def test_sigma(self):\n device = \"cuda\" if torch.cuda.is_available() else \"cpu:0\"\n inputs = torch.ones((1, 1, 7, 7)).to(device=device)\n roi_shape = (3, 3)\n sw_batch_size = 10\n\n class _Pred:\n add = 1\n\n def compute(self, data):\n self.add += 1\n return data + self.add\n\n result = sliding_window_inference(\n inputs,\n roi_shape,\n sw_batch_size,\n _Pred().compute,\n overlap=0.5,\n padding_mode=\"constant\",\n cval=-1,\n mode=\"constant\",\n sigma_scale=1.0,\n )\n\n expected = np.array(\n [\n [\n [\n [3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000],\n [3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000, 3.0000],\n [3.3333, 3.3333, 3.3333, 3.3333, 3.3333, 3.3333, 3.3333],\n [3.6667, 3.6667, 3.6667, 3.6667, 3.6667, 3.6667, 3.6667],\n [4.3333, 4.3333, 4.3333, 4.3333, 4.3333, 4.3333, 4.3333],\n [4.5000, 4.5000, 4.5000, 4.5000, 4.5000, 4.5000, 4.5000],\n [5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000],\n ]\n ]\n ]\n )\n np.testing.assert_allclose(result.cpu().numpy(), expected, rtol=1e-4)\n result = sliding_window_inference(\n inputs,\n roi_shape,\n sw_batch_size,\n _Pred().compute,\n overlap=0.5,\n padding_mode=\"constant\",\n cval=-1,\n mode=\"gaussian\",\n sigma_scale=1.0,\n )\n # ... other code", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma.expected_7_TestSlidingWindowInference.test_sigma.None_3": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_sliding_window_inference.py_TestSlidingWindowInference.test_sigma.expected_7_TestSlidingWindowInference.test_sigma.None_3", "embedding": null, "metadata": {"file_path": "tests/test_sliding_window_inference.py", "file_name": "test_sliding_window_inference.py", "file_type": "text/x-python", "category": "test", "start_line": 140, "end_line": 165, "span_ids": ["TestSlidingWindowInference.test_sigma"], "tokens": 506}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestSlidingWindowInference(unittest.TestCase):\n\n def test_sigma(self):\n # ... other code\n expected = np.array(\n [\n [\n [\n [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0],\n [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0],\n [3.3271625, 3.3271623, 3.3271623, 3.3271623, 3.3271623, 3.3271623, 3.3271625],\n [3.6728377, 3.6728377, 3.6728377, 3.6728377, 3.6728377, 3.6728377, 3.6728377],\n [4.3271623, 4.3271623, 4.3271627, 4.3271627, 4.3271627, 4.3271623, 4.3271623],\n [4.513757, 4.513757, 4.513757, 4.513757, 4.513757, 4.513757, 4.513757],\n [4.9999995, 5.0, 5.0, 5.0, 5.0, 5.0, 4.9999995],\n ]\n ]\n ]\n )\n np.testing.assert_allclose(result.cpu().numpy(), expected, rtol=1e-4)\n\n result = SlidingWindowInferer(roi_shape, sw_batch_size, overlap=0.5, mode=\"gaussian\", sigma_scale=1.0)(\n inputs, _Pred().compute\n )\n np.testing.assert_allclose(result.cpu().numpy(), expected, rtol=1e-4)\n\n result = SlidingWindowInferer(roi_shape, sw_batch_size, overlap=0.5, mode=\"gaussian\", sigma_scale=[1.0, 1.0])(\n inputs, _Pred().compute\n )\n np.testing.assert_allclose(result.cpu().numpy(), expected, rtol=1e-4)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_unittest_create_spherical_seg_3d.return.image": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_surface_distance.py_unittest_create_spherical_seg_3d.return.image", "embedding": null, "metadata": {"file_path": "tests/test_surface_distance.py", "file_name": "test_surface_distance.py", "file_type": "text/x-python", "category": "test", "start_line": 12, "end_line": 46, "span_ids": ["create_spherical_seg_3d", "docstring"], "tokens": 316}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import unittest\nfrom typing import Tuple\n\nimport numpy as np\nimport torch\nfrom parameterized import parameterized\n\nfrom monai.metrics import SurfaceDistanceMetric\n\n\ndef create_spherical_seg_3d(\n radius: float = 20.0, centre: Tuple[int, int, int] = (49, 49, 49), im_shape: Tuple[int, int, int] = (99, 99, 99)\n) -> np.ndarray:\n \"\"\"\n Return a 3D image with a sphere inside. Voxel values will be\n 1 inside the sphere, and 0 elsewhere.\n\n Args:\n radius: radius of sphere (in terms of number of voxels, can be partial)\n centre: location of sphere centre.\n im_shape: shape of image to create\n\n See also:\n :py:meth:`~create_test_image_3d`\n \"\"\"\n # Create image\n image = np.zeros(im_shape, dtype=np.int32)\n spy, spx, spz = np.ogrid[\n -centre[0] : im_shape[0] - centre[0], -centre[1] : im_shape[1] - centre[1], -centre[2] : im_shape[2] - centre[2]\n ]\n circle = (spx * spx + spy * spy + spz * spz) <= radius * radius\n\n image[circle] = 1\n image[~circle] = 0\n return image", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom.test_padding_mode_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/tests/test_zoom.py_TestZoom.test_padding_mode_", "embedding": null, "metadata": {"file_path": "tests/test_zoom.py", "file_name": "test_zoom.py", "file_type": "text/x-python", "category": "test", "start_line": 59, "end_line": 70, "span_ids": ["TestZoom.test_padding_mode", "impl:5"], "tokens": 258}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class TestZoom(NumpyImageTestCase2D):\n\n def test_padding_mode(self):\n for p in TEST_NDARRAYS:\n zoom_fn = Zoom(zoom=0.5, mode=\"nearest\", padding_mode=\"constant\", keep_size=True)\n test_data = p([[[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]])\n zoomed = zoom_fn(test_data)\n expected = p([[[0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0], [0.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0]]])\n torch.testing.assert_allclose(zoomed, expected)\n\n\nif __name__ == \"__main__\":\n unittest.main()", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_pre_render_pep440_pre.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_pre_render_pep440_pre.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 345, "end_line": 358, "span_ids": ["render_pep440_pre"], "tokens": 107}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_pep440_pre(pieces):\n \"\"\"TAG[.post0.devDISTANCE] -- No -dirty.\n\n Exceptions:\n 1: no tags. 0.post0.devDISTANCE\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"]:\n rendered += \".post0.dev%d\" % pieces[\"distance\"]\n else:\n # exception #1\n rendered = \"0.post0.dev%d\" % pieces[\"distance\"]\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_post_render_pep440_post.return.rendered": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/_version.py_render_pep440_post_render_pep440_post.return.rendered", "embedding": null, "metadata": {"file_path": "monai/_version.py", "file_name": "_version.py", "file_type": "text/x-python", "category": "implementation", "start_line": 361, "end_line": 385, "span_ids": ["render_pep440_post"], "tokens": 217}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "def render_pep440_post(pieces):\n \"\"\"TAG[.postDISTANCE[.dev0]+gHEX] .\n\n The \".dev0\" means dirty. Note that .dev0 sorts backwards\n (a dirty tree will appear \"older\" than the corresponding clean one),\n but you shouldn't be releasing software with -dirty anyways.\n\n Exceptions:\n 1: no tags. 0.postDISTANCE[.dev0]\n \"\"\"\n if pieces[\"closest-tag\"]:\n rendered = pieces[\"closest-tag\"]\n if pieces[\"distance\"] or pieces[\"dirty\"]:\n rendered += \".post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n rendered += plus_or_dot(pieces)\n rendered += \"g%s\" % pieces[\"short\"]\n else:\n # exception #1\n rendered = \"0.post%d\" % pieces[\"distance\"]\n if pieces[\"dirty\"]:\n rendered += \".dev0\"\n rendered += \"+g%s\" % pieces[\"short\"]\n return rendered", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/__init__.py_CrossValidation_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/__init__.py_CrossValidation_", "embedding": null, "metadata": {"file_path": "monai/apps/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 15, "span_ids": ["docstring"], "tokens": 68}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "from .datasets import CrossValidation, DecathlonDataset, MedNISTDataset\nfrom .mmars import MODEL_DESC, RemoteMMARKeys, download_mmar, get_model_spec, load_from_mmar\nfrom .utils import SUPPORTED_HASH_TYPES, check_hash, download_and_extract, download_url, extractall, get_logger, logger", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.__init___DecathlonDataset._split_datalist.return._datalist_i_for_i_in_sel": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_DecathlonDataset.__init___DecathlonDataset._split_datalist.return._datalist_i_for_i_in_sel", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 266, "end_line": 377, "span_ids": ["DecathlonDataset._split_datalist", "DecathlonDataset.get_properties", "DecathlonDataset.__init__", "DecathlonDataset._generate_data_list", "DecathlonDataset.randomize", "DecathlonDataset.get_indices"], "tokens": 852}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class DecathlonDataset(Randomizable, CacheDataset):\n\n def __init__(\n self,\n root_dir: PathLike,\n task: str,\n section: str,\n transform: Union[Sequence[Callable], Callable] = (),\n download: bool = False,\n seed: int = 0,\n val_frac: float = 0.2,\n cache_num: int = sys.maxsize,\n cache_rate: float = 1.0,\n num_workers: int = 0,\n progress: bool = True,\n copy_cache: bool = True,\n as_contiguous: bool = True,\n ) -> None:\n root_dir = Path(root_dir)\n if not root_dir.is_dir():\n raise ValueError(\"Root directory root_dir must be a directory.\")\n self.section = section\n self.val_frac = val_frac\n self.set_random_state(seed=seed)\n if task not in self.resource:\n raise ValueError(f\"Unsupported task: {task}, available options are: {list(self.resource.keys())}.\")\n dataset_dir = root_dir / task\n tarfile_name = f\"{dataset_dir}.tar\"\n if download:\n download_and_extract(\n url=self.resource[task],\n filepath=tarfile_name,\n output_dir=root_dir,\n hash_val=self.md5[task],\n hash_type=\"md5\",\n progress=progress,\n )\n\n if not dataset_dir.exists():\n raise RuntimeError(\n f\"Cannot find dataset directory: {dataset_dir}, please use download=True to download it.\"\n )\n self.indices: np.ndarray = np.array([])\n data = self._generate_data_list(dataset_dir)\n # as `release` key has typo in Task04 config file, ignore it.\n property_keys = [\n \"name\",\n \"description\",\n \"reference\",\n \"licence\",\n \"tensorImageSize\",\n \"modality\",\n \"labels\",\n \"numTraining\",\n \"numTest\",\n ]\n self._properties = load_decathlon_properties(dataset_dir / \"dataset.json\", property_keys)\n if transform == ():\n transform = LoadImaged([\"image\", \"label\"])\n CacheDataset.__init__(\n self,\n data=data,\n transform=transform,\n cache_num=cache_num,\n cache_rate=cache_rate,\n num_workers=num_workers,\n progress=progress,\n copy_cache=copy_cache,\n as_contiguous=as_contiguous,\n )\n\n def get_indices(self) -> np.ndarray:\n \"\"\"\n Get the indices of datalist used in this dataset.\n\n \"\"\"\n return self.indices\n\n def randomize(self, data: np.ndarray) -> None:\n self.R.shuffle(data)\n\n def get_properties(self, keys: Optional[Union[Sequence[str], str]] = None):\n \"\"\"\n Get the loaded properties of dataset with specified keys.\n If no keys specified, return all the loaded properties.\n\n \"\"\"\n if keys is None:\n return self._properties\n if self._properties is not None:\n return {key: self._properties[key] for key in ensure_tuple(keys)}\n return {}\n\n def _generate_data_list(self, dataset_dir: PathLike) -> List[Dict]:\n # the types of the item in data list should be compatible with the dataloader\n dataset_dir = Path(dataset_dir)\n section = \"training\" if self.section in [\"training\", \"validation\"] else \"test\"\n datalist = load_decathlon_datalist(dataset_dir / \"dataset.json\", True, section)\n return self._split_datalist(datalist)\n\n def _split_datalist(self, datalist: List[Dict]) -> List[Dict]:\n if self.section == \"test\":\n return datalist\n length = len(datalist)\n indices = np.arange(length)\n self.randomize(indices)\n\n val_length = int(length * self.val_frac)\n if self.section == \"training\":\n self.indices = indices[val_length:]\n else:\n self.indices = indices[:val_length]\n\n return [datalist[i] for i in self.indices]", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation_CrossValidation.__init__.self.dataset_params.dataset_params": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation_CrossValidation.__init__.self.dataset_params.dataset_params", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 328, "end_line": 372, "span_ids": ["CrossValidation.__init__", "CrossValidation"], "tokens": 395}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CrossValidation:\n \"\"\"\n Cross validation dataset based on the general dataset which must have `_split_datalist` API.\n\n Args:\n dataset_cls: dataset class to be used to create the cross validation partitions.\n It must have `_split_datalist` API.\n nfolds: number of folds to split the data for cross validation.\n seed: random seed to randomly shuffle the datalist before splitting into N folds, default is 0.\n dataset_params: other additional parameters for the dataset_cls base class.\n\n Example of 5 folds cross validation training::\n\n cvdataset = CrossValidation(\n dataset_cls=DecathlonDataset,\n nfolds=5,\n seed=12345,\n root_dir=\"./\",\n task=\"Task09_Spleen\",\n section=\"training\",\n transform=train_transform,\n download=True,\n )\n dataset_fold0_train = cvdataset.get_dataset(folds=[1, 2, 3, 4])\n dataset_fold0_val = cvdataset.get_dataset(folds=0, transform=val_transform, download=False)\n # execute training for fold 0 ...\n\n dataset_fold1_train = cvdataset.get_dataset(folds=[0, 2, 3, 4])\n dataset_fold1_val = cvdataset.get_dataset(folds=1, transform=val_transform, download=False)\n # execute training for fold 1 ...\n\n ...\n\n dataset_fold4_train = ...\n # execute training for fold 4 ...\n\n \"\"\"\n\n def __init__(self, dataset_cls, nfolds: int = 5, seed: int = 0, **dataset_params) -> None:\n if not hasattr(dataset_cls, \"_split_datalist\"):\n raise ValueError(\"dataset class must have _split_datalist API.\")\n self.dataset_cls = dataset_cls\n self.nfolds = nfolds\n self.seed = seed\n self.dataset_params = dataset_params", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation.get_dataset_": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/datasets.py_CrossValidation.get_dataset_", "embedding": null, "metadata": {"file_path": "monai/apps/datasets.py", "file_name": "datasets.py", "file_type": "text/x-python", "category": "implementation", "start_line": 374, "end_line": 395, "span_ids": ["CrossValidation.get_dataset"], "tokens": 211}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "class CrossValidation:\n\n def get_dataset(self, folds: Union[Sequence[int], int], **dataset_params):\n \"\"\"\n Generate dataset based on the specified fold indice in the cross validation group.\n\n Args:\n folds: index of folds for training or validation, if a list of values, concatenate the data.\n dataset_params: other additional parameters for the dataset_cls base class, will override\n the same parameters in `self.dataset_params`.\n\n \"\"\"\n nfolds = self.nfolds\n seed = self.seed\n dataset_params_ = dict(self.dataset_params)\n dataset_params_.update(dataset_params)\n\n class _NsplitsDataset(self.dataset_cls): # type: ignore\n def _split_datalist(self, datalist: List[Dict]) -> List[Dict]:\n data = partition_dataset(data=datalist, num_partitions=nfolds, shuffle=True, seed=seed)\n return select_cross_validation_folds(partitions=data, folds=folds)\n\n return _NsplitsDataset(**dataset_params_)", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/__init__.py__": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/__init__.py__", "embedding": null, "metadata": {"file_path": "monai/apps/deepgrow/__init__.py", "file_name": "__init__.py", "file_type": "text/x-python", "category": "implementation", "start_line": 11, "end_line": 11, "span_ids": [], "tokens": 0}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "", "start_char_idx": null, "end_char_idx": null, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py_logging_create_dataset.new_datalist._": {"__data__": {"id_": "/home/jiayipan/code/24FA/temp/ml-01/moatless-tools/t/repos/swe-train_Project-MONAI__MONAI/monai/apps/deepgrow/dataset.py_logging_create_dataset.new_datalist._", "embedding": null, "metadata": {"file_path": "monai/apps/deepgrow/dataset.py", "file_name": "dataset.py", "file_type": "text/x-python", "category": "implementation", "start_line": 12, "end_line": 86, "span_ids": ["create_dataset", "docstring"], "tokens": 626}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date", "start_line", "end_line", "tokens"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {}, "text": "import logging\nimport os\nfrom typing import Dict, List\n\nimport numpy as np\n\nfrom monai.transforms import AsChannelFirstd, Compose, LoadImaged, Orientationd, Spacingd\nfrom monai.utils import GridSampleMode\n\n\ndef create_dataset(\n datalist,\n output_dir: str,\n dimension: int,\n pixdim,\n image_key: str = \"image\",\n label_key: str = \"label\",\n base_dir=None,\n limit: int = 0,\n relative_path: bool = False,\n transforms=None,\n) -> List[Dict]:\n \"\"\"\n Utility to pre-process and create dataset list for Deepgrow training over on existing one.\n The input data list is normally a list of images and labels (3D volume) that needs pre-processing\n for Deepgrow training pipeline.\n\n Args:\n datalist: A list of data dictionary. Each entry should at least contain 'image_key': .\n For example, typical input data can be a list of dictionaries::\n\n [{'image': , 'label':