# coding=utf-8 import json import os from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @inproceedings{tran2021vivqa, title={ViVQA: Vietnamese visual question answering}, author={Tran, Khanh Quoc and Nguyen, An Trong and Le, An Tran-Hoai and Van Nguyen, Kiet}, booktitle={Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation}, pages={683--691}, year={2021} } """ _DATASETNAME = "vivqa" _DESCRIPTION = """\ Vietnamese Visual Question Answering (ViVQA) consist of 10328 images and 15000 question-answer pairs in Vietnamese for evaluating Vietnamese VQA models. This dataset is built based on 10328 randomly selected images from MS COCO dataset. The question-answer pairs were based on the COCO-QA dataset that was automatically translated from English to Vietnamese. """ _HOMEPAGE = "https://github.com/kh4nh12/ViVQA" _LANGUAGES = ["vie"] _LICENSE = Licenses.UNKNOWN.value _LOCAL = False _URLS = { "viviq": {"train": "https://raw.githubusercontent.com/kh4nh12/ViVQA/main/train.csv", "test": "https://raw.githubusercontent.com/kh4nh12/ViVQA/main/test.csv"}, "cocodata": { "coco2014_train_val_annots": "http://images.cocodataset.org/annotations/annotations_trainval2014.zip", "coco2014_train_images": "http://images.cocodataset.org/zips/train2014.zip", "coco2014_val_images": "http://images.cocodataset.org/zips/val2014.zip", }, } _SUPPORTED_TASKS = [Tasks.VISUAL_QUESTION_ANSWERING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class VivQADataset(datasets.GeneratorBasedBuilder): SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_imqa", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema="seacrowd_imqa", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "img_id": datasets.Value("string"), "question": datasets.Value("string"), "answer": datasets.Value("string"), "type": datasets.Value("string"), "coco_url": datasets.Value("string"), "flickr_url": datasets.Value("string"), "img_name": datasets.Value("string"), "coco_license": datasets.Value("int32"), "coco_width": datasets.Value("int32"), "coco_height": datasets.Value("int32"), "coco_date_captured": datasets.Value("string"), "image_path": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_imqa": features = schemas.imqa_features features["meta"] = { "coco_img_id": datasets.Value("string"), "type": datasets.Value("string"), "flickr_url": datasets.Value("string"), "coco_url": datasets.Value("string"), "img_name": datasets.Value("string"), "coco_license": datasets.Value("int32"), "coco_width": datasets.Value("int32"), "coco_height": datasets.Value("int32"), "coco_date_captured": datasets.Value("string"), "image_path": datasets.Value("string"), } else: raise ValueError(f"No schema matched for {self.config.schema}") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URLS["viviq"] data_dir = dl_manager.download_and_extract(urls) cocodata = dl_manager.download_and_extract(_URLS["cocodata"]) Coco_Dict = self._get_image_detail(cocodata) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir["train"], "split": "train", "coco_dict": Coco_Dict, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_dir["test"], "split": "test", "coco_dict": Coco_Dict, }, ), ] def _get_image_detail(self, coco_dir) -> Dict: coco2014_train_val_annots = os.path.join(coco_dir["coco2014_train_val_annots"], "annotations") train_ann_2014_path = os.path.join(coco2014_train_val_annots, "captions_train2014.json") val_ann_2014_path = os.path.join(coco2014_train_val_annots, "captions_val2014.json") coco_dict_val = {itm["id"]: itm for itm in json.load(open(val_ann_2014_path, "r"))["images"]} coco_dict_train = {itm["id"]: itm for itm in json.load(open(train_ann_2014_path, "r"))["images"]} coco_train_path = os.path.join(coco_dir["coco2014_train_images"], "train2014") coco_val_path = os.path.join(coco_dir["coco2014_val_images"], "val2014") coco_dict = {"train": coco_dict_train, "val": coco_dict_val, "coco_train_path": coco_train_path, "coco_val_path": coco_val_path} return coco_dict def _generate_examples(self, filepath: Path, split: str, coco_dict: Dict = None) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" raw_examples = pd.read_csv(filepath) coco_train_ref = coco_dict["train"] coco_val_ref = coco_dict["val"] coco_ref = {**coco_train_ref, **coco_val_ref} coco_train_path = coco_dict["coco_train_path"] coco_val_path = coco_dict["coco_val_path"] for eid, exam in raw_examples.iterrows(): assert len(exam) == 5 exam_id, exam_quest, exam_answer, exam_img_id, exam_type = exam coco_info = coco_ref[exam_img_id] flickr_url = coco_info["flickr_url"] img_name = coco_info["file_name"] coco_url = coco_info["coco_url"] coco_license = coco_info["license"] coco_width = coco_info["width"] coco_height = coco_info["height"] coco_date_captured = coco_info["date_captured"] coco_path = coco_train_path if exam_img_id in coco_train_ref else coco_val_path image_path = os.path.join(coco_path, img_name) if self.config.schema == "source": yield eid, { "img_id": str(exam_img_id), "question": exam_quest, "answer": exam_answer, "type": exam_type, "coco_url": coco_url, "flickr_url": flickr_url, "img_name": img_name, "coco_license": coco_license, "coco_width": coco_width, "coco_height": coco_height, "coco_date_captured": coco_date_captured, "image_path": image_path, } elif self.config.schema == "seacrowd_imqa": example = { "id": str(eid), "question_id": str(exam_id), "document_id": str(eid), "questions": [exam_quest], "type": None, "choices": None, "context": None, "answer": [exam_answer], "image_paths": [image_path], "meta": { "coco_img_id": str(exam_img_id), "type": exam_type, "flickr_url": flickr_url, "coco_url": coco_url, "img_name": img_name, "coco_license": coco_license, "coco_width": coco_width, "coco_height": coco_height, "coco_date_captured": coco_date_captured, "image_path": image_path, }, } yield eid, example