# coding=utf-8 import json import os from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @inproceedings{tran2021vivqa, title={ViVQA: Vietnamese visual question answering}, author={Tran, Khanh Quoc and Nguyen, An Trong and Le, An Tran-Hoai and Van Nguyen, Kiet}, booktitle={Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation}, pages={683--691}, year={2021} } """ _DATASETNAME = "openvivqa" _DESCRIPTION = """\ OpenViVQA (Open-domain Vietnamese Visual Question Answering) is a dataset for VQA (Visual Question Answering) with open-ended answers in Vietnamese. It consisted of 11199 images associated with 37914 question-answer pairs (QAs). Images in the OpenViVQA dataset are captured in Vietnam and question-answer pairs are created manually by Vietnamese crowd workers. """ _HOMEPAGE = "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset" _LANGUAGES = ["vie"] _LICENSE = Licenses.MIT.value _LOCAL = False _HF_URL = "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset" _URLS = { "dataset": { "train": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_train_data.json", "test": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_test_data.json", "dev": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_dev_data.json", }, "images": { "train": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/train-images.zip?download=true", "test": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/test-images.zip?download=true", "dev": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/dev-images.zip?download=true", }, } _SUPPORTED_TASKS = [Tasks.VISUAL_QUESTION_ANSWERING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class OpenViVQADataset(datasets.GeneratorBasedBuilder): SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_imqa", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema="seacrowd_imqa", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features({"img_path": datasets.Value("string"), "question": datasets.Value("string"), "answer": datasets.Value("string"), "id": datasets.Value("string")}) elif self.config.schema == "seacrowd_imqa": features = schemas.imqa_features # features["meta"] = {"image_path": datasets.Value("string")} else: raise ValueError(f"No schema matched for {self.config.schema}") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_URLS["dataset"]) image_dir = dl_manager.download_and_extract(_URLS["images"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir["train"], "imagepath": os.path.join(image_dir["train"], "training-images"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_dir["test"], "imagepath": os.path.join(image_dir["test"], "test-images"), "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": data_dir["dev"], "imagepath": os.path.join(image_dir["dev"], "dev-images"), "split": "validation", }, ), ] def _generate_examples(self, filepath: Path, imagepath: Path, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" raw_examples = json.load(open(filepath, "r")) images = raw_examples["images"] data_annotations = raw_examples["annotations"] for sample_id, q_key in enumerate(list(data_annotations.keys())): quest_id = q_key sample = data_annotations[q_key] sample_img_id = sample["image_id"] sample_img_name = images[str(sample_img_id)] sample_img_path = os.path.join(imagepath, sample_img_name) sample_question = sample["question"] sample_answer = sample["answer"] if self.config.schema == "source": example = { "img_path": sample_img_path, "question": sample_question, "answer": sample_answer, "id": quest_id, } elif self.config.schema == "seacrowd_imqa": example = { "id": q_key, "question_id": q_key, "document_id": q_key, "questions": [sample_question], "type": None, "choices": None, "context": sample_img_id, "answer": [sample_answer], "image_paths": [sample_img_path], "meta": {}, } yield sample_id, example