Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -12,25 +12,25 @@ tags:
|
|
12 |
Nergrit Corpus is a dataset collection of Indonesian Named Entity Recognition (NER), Statement Extraction,
|
13 |
and Sentiment Analysis developed by PT Gria Inovasi Teknologi (GRIT).
|
14 |
The Named Entity Recognition contains 18 entities as follow:
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
|
36 |
## Languages
|
@@ -40,25 +40,25 @@ ind
|
|
40 |
## Supported Tasks
|
41 |
|
42 |
Named Entity Recognition
|
43 |
-
|
44 |
## Dataset Usage
|
45 |
### Using `datasets` library
|
46 |
```
|
47 |
-
|
48 |
-
|
49 |
```
|
50 |
### Using `seacrowd` library
|
51 |
```import seacrowd as sc
|
52 |
# Load the dataset using the default config
|
53 |
-
|
54 |
# Check all available subsets (config names) of the dataset
|
55 |
-
|
56 |
# Load the dataset using a specific config
|
57 |
-
|
58 |
```
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
|
63 |
## Dataset Homepage
|
64 |
|
|
|
12 |
Nergrit Corpus is a dataset collection of Indonesian Named Entity Recognition (NER), Statement Extraction,
|
13 |
and Sentiment Analysis developed by PT Gria Inovasi Teknologi (GRIT).
|
14 |
The Named Entity Recognition contains 18 entities as follow:
|
15 |
+
'CRD': Cardinal
|
16 |
+
'DAT': Date
|
17 |
+
'EVT': Event
|
18 |
+
'FAC': Facility
|
19 |
+
'GPE': Geopolitical Entity
|
20 |
+
'LAW': Law Entity (such as Undang-Undang)
|
21 |
+
'LOC': Location
|
22 |
+
'MON': Money
|
23 |
+
'NOR': Political Organization
|
24 |
+
'ORD': Ordinal
|
25 |
+
'ORG': Organization
|
26 |
+
'PER': Person
|
27 |
+
'PRC': Percent
|
28 |
+
'PRD': Product
|
29 |
+
'QTY': Quantity
|
30 |
+
'REG': Religion
|
31 |
+
'TIM': Time
|
32 |
+
'WOA': Work of Art
|
33 |
+
'LAN': Language
|
34 |
|
35 |
|
36 |
## Languages
|
|
|
40 |
## Supported Tasks
|
41 |
|
42 |
Named Entity Recognition
|
43 |
+
|
44 |
## Dataset Usage
|
45 |
### Using `datasets` library
|
46 |
```
|
47 |
+
from datasets import load_dataset
|
48 |
+
dset = datasets.load_dataset("SEACrowd/nergrit", trust_remote_code=True)
|
49 |
```
|
50 |
### Using `seacrowd` library
|
51 |
```import seacrowd as sc
|
52 |
# Load the dataset using the default config
|
53 |
+
dset = sc.load_dataset("nergrit", schema="seacrowd")
|
54 |
# Check all available subsets (config names) of the dataset
|
55 |
+
print(sc.available_config_names("nergrit"))
|
56 |
# Load the dataset using a specific config
|
57 |
+
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
|
58 |
```
|
59 |
+
|
60 |
+
More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
|
61 |
+
|
62 |
|
63 |
## Dataset Homepage
|
64 |
|