File size: 6,182 Bytes
43f534b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path
from typing import Dict, List, Tuple

import datasets
from pandas import read_excel

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks

_CITATION = """\
@inproceedings{koto-koto-2020-towards,
    title = "Towards Computational Linguistics in {M}inangkabau Language:
    Studies on Sentiment Analysis and Machine Translation",
    author = "Koto, Fajri  and
        Koto, Ikhwan",
    editor = "Nguyen, Minh Le  and
        Luong, Mai Chi  and
        Song, Sanghoun",
    booktitle = "Proceedings of the 34th Pacific Asia Conference on Language,
    Information and Computation",
    month = oct,
    year = "2020",
    address = "Hanoi, Vietnam",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.paclic-1.17",
    pages = "138--148",
}
"""

_DATASETNAME = "minang_senti"

_DESCRIPTION = """\
We release the Minangkabau corpus for sentiment analysis by manually translating
5,000 sentences of Indonesian sentiment analysis corpora. In this work, we
conduct a binary sentiment classification on positive and negative sentences by
first manually translating the Indonesian sentiment analysis corpus to the
Minangkabau language (Agam-Tanah Datar dialect)
"""

_HOMEPAGE = "https://github.com/fajri91/minangNLP"

_LANGUAGES = ["ind", "min"]

_LICENSE = Licenses.MIT.value

_LOCAL = False

_BASE_URL = "https://github.com/fajri91/minangNLP/raw/master/sentiment/data/folds/{split}{index}.xlsx"

_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}"  # text

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class MinangSentiDataset(datasets.GeneratorBasedBuilder):
    """Binary sentiment classification on manually translated Minangkabau corpus."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = []
    for subset in _LANGUAGES:
        BUILDER_CONFIGS += [
            SEACrowdConfig(
                name=f"{_DATASETNAME}_{subset}_source",
                version=SOURCE_VERSION,
                description=f"{_DATASETNAME} {subset} source schema",
                schema="source",
                subset_id=subset,
            ),
            SEACrowdConfig(
                name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}",
                version=SEACROWD_VERSION,
                description=f"{_DATASETNAME} {subset} SEACrowd schema",
                schema=_SEACROWD_SCHEMA,
                subset_id=subset,
            ),
        ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_LANGUAGES[0]}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "minang": datasets.Value("string"),
                    "indo": datasets.Value("string"),
                    "sentiment": datasets.ClassLabel(names=["positive", "negative"]),
                }
            )
        elif self.config.schema == _SEACROWD_SCHEMA:
            features = schemas.text_features(label_names=["positive", "negative"])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        train_urls = [_BASE_URL.format(split="train", index=i) for i in range(5)]
        test_urls = [_BASE_URL.format(split="test", index=i) for i in range(5)]
        dev_urls = [_BASE_URL.format(split="dev", index=i) for i in range(5)]

        train_paths = [Path(dl_manager.download(url)) for url in train_urls]
        test_paths = [Path(dl_manager.download(url)) for url in test_urls]
        dev_paths = [Path(dl_manager.download(url)) for url in dev_urls]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": train_paths,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": test_paths,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": dev_paths,
                },
            ),
        ]

    def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        key = 0
        for file in filepath:
            data = read_excel(file)
            for _, row in data.iterrows():
                if self.config.schema == "source":
                    yield key, {
                        "minang": row["minang"],
                        "indo": row["indo"],
                        "sentiment": row["sentiment"],
                    }
                elif self.config.schema == _SEACROWD_SCHEMA:
                    yield key, {
                        "id": str(key),
                        "text": row["minang"] if self.config.subset_id == "min" else row["indo"],
                        "label": row["sentiment"],
                    }
                key += 1