# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This template serves as a starting point for contributing a dataset to the Nusantara Dataset repo. When modifying it for your dataset, look for TODO items that offer specific instructions. Full documentation on writing dataset loading scripts can be found here: https://huggingface.co/docs/datasets/add_dataset.html To create a dataset loading script you will create a class and implement 3 methods: * `_info`: Establishes the schema for the dataset, and returns a datasets.DatasetInfo object. * `_split_generators`: Downloads and extracts data for each split (e.g. train/val/test) or associate local data with each split. * `_generate_examples`: Creates examples from data on disk that conform to each schema defined in `_info`. TODO: Before submitting your script, delete this doc string and replace it with a description of your dataset. [seacrowd_schema_name] = (kb, pairs, qa, text, t2t, entailment) """ from base64 import encode import json from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.common_parser import load_conll_data from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks # TODO: Add BibTeX citation _CITATION = """\ @article{DBLP:journals/corr/abs-2011-00677, author = {Fajri Koto and Afshin Rahimi and Jey Han Lau and Timothy Baldwin}, title = {IndoLEM and IndoBERT: {A} Benchmark Dataset and Pre-trained Language Model for Indonesian {NLP}}, journal = {CoRR}, volume = {abs/2011.00677}, year = {2020}, url = {https://arxiv.org/abs/2011.00677}, eprinttype = {arXiv}, eprint = {2011.00677}, timestamp = {Fri, 06 Nov 2020 15:32:47 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2011-00677.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ # TODO: create a module level variable with your dataset name (should match script name) # E.g. Hallmarks of Cancer: [dataset_name] --> hallmarks_of_cancer _LOCAL = False _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _DATASETNAME = "indolem_tweet_ordering" # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ IndoLEM (Indonesian Language Evaluation Montage) is a comprehensive Indonesian benchmark that comprises of seven tasks for the Indonesian language. This benchmark is categorized into three pillars of NLP tasks: morpho-syntax, semantics, and discourse. This task is based on the sentence ordering task of Barzilay and Lapata (2008) to assess text relatedness. We construct the data by shuffling Twitter threads (containing 3 to 5 tweets), and assessing the predicted ordering in terms of rank correlation (p) with the original. The experiment is based on 5-fold cross validation. Train: 4327 threads Development: 760 threads Test: 1521 threads """ # TODO: Add a link to an official homepage for the dataset here (if possible) _HOMEPAGE = "https://indolem.github.io/" # TODO: Add the licence for the dataset here (if possible) # Note that this doesn't have to be a common open source license. # Some datasets have custom licenses. In this case, simply put the full license terms # into `_LICENSE` _LICENSE = "Creative Commons Attribution 4.0" # TODO: Add links to the urls needed to download your dataset files. # For local datasets, this variable can be an empty dictionary. # For publicly available datasets you will most likely end up passing these URLs to dl_manager in _split_generators. # In most cases the URLs will be the same for the source and seacrowd config. # However, if you need to access different files for each config you can have multiple entries in this dict. # This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method) _URLS = { _DATASETNAME: { 'train': 'https://raw.githubusercontent.com/indolem/indolem/main/tweet_ordering/data/train0.json', 'dev': 'https://raw.githubusercontent.com/indolem/indolem/main/tweet_ordering/data/dev0.json', 'test': 'https://raw.githubusercontent.com/indolem/indolem/main/tweet_ordering/data/test0.json' } } # TODO: add supported task by dataset. One dataset may support multiple tasks _SUPPORTED_TASKS = [Tasks.SENTENCE_ORDERING] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] # TODO: set this to a version that is associated with the dataset. if none exists use "1.0.0" # This version doesn't have to be consistent with semantic versioning. Anything that is # provided by the original dataset as a version goes. _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" # TODO: Name the dataset class to match the script name using CamelCase instead of snake_case class IndolemTweetOrderingDataset(datasets.GeneratorBasedBuilder): """This task is based on the sentence ordering task of Barzilay and Lapata (2008) to assess text relatedness. We construct the data by shuffling Twitter threads (containing 3 to 5 tweets), and assessing the predicted ordering in terms of rank correlation (p) with the original.""" label_classes = [0,1,2,3,4] SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) # You will be able to load the "source" or "seacrowd" configurations with # ds_source = datasets.load_dataset('my_dataset', name='source') # ds_seacrowd = datasets.load_dataset('my_dataset', name='seacrowd') # For local datasets you can make use of the `data_dir` and `data_files` kwargs # https://huggingface.co/docs/datasets/add_dataset.html#downloading-data-files-and-organizing-splits # ds_source = datasets.load_dataset('my_dataset', name='source', data_dir="/path/to/data/files") # ds_seacrowd = datasets.load_dataset('my_dataset', name='seacrowd', data_dir="/path/to/data/files") # TODO: For each dataset, implement Config for Source and Nusantara; # If dataset contains more than one subset (see seacrowd/sea_datasets/smsa.py) implement for EACH of them. # Each of them should contain: # - name: should be unique for each dataset config eg. smsa_(source|seacrowd)_[seacrowd_schema_name] # - version: option = (SOURCE_VERSION|SEACROWD_VERSION) # - description: one line description for the dataset # - schema: options = (source|seacrowd_[seacrowd_schema_name]) # - subset_id: subset id is the canonical name for the dataset (eg. smsa) # where [seacrowd_schema_name] = (kb, pairs, qa, text, t2t) BUILDER_CONFIGS = [ SEACrowdConfig( name="indolem_tweet_ordering_source", version=SOURCE_VERSION, description="indolem_tweet_ordering source schema", schema="source", subset_id="indolem_tweet_ordering", ), SEACrowdConfig( name="indolem_tweet_ordering_seacrowd_seq_label", version=SEACROWD_VERSION, description="indolem_tweet_ordering Nusantara schema", schema="seacrowd_seq_label", subset_id="indolem_tweet_ordering", ), ] DEFAULT_CONFIG_NAME = "indolem_tweet_ordering_source" def _info(self) -> datasets.DatasetInfo: # Create the source schema; this schema will keep all keys/information/labels as close to the original dataset as possible. # You can arbitrarily nest lists and dictionaries. # For iterables, use lists over tuples or `datasets.Sequence` if self.config.schema == "source": features = datasets.Features({"tweets":[datasets.Value("string")], "order": [datasets.Value("int32")]}) elif self.config.schema == "seacrowd_seq_label": features = schemas.seq_label_features(self.label_classes) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If you need to access the "source" or "seacrowd" config choice, that will be in self.config.name # LOCAL DATASETS: You do not need the dl_manager; you can ignore this argument. Make sure `gen_kwargs` in the return gets passed the right filepath # PUBLIC DATASETS: Assign your data-dir based on the dl_manager. # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs; many examples use the download_and_extract method; see the DownloadManager docs here: https://huggingface.co/docs/datasets/package_reference/builder_classes.html#datasets.DownloadManager # dl_manager can accept any type of nested list/dict and will give back the same structure with the url replaced with the path to local files. # TODO: KEEP if your dataset is PUBLIC; remove if not urls = _URLS[_DATASETNAME] train_data = Path(dl_manager.download(urls['train'])) test_data = Path(dl_manager.download(urls['test'])) dev_data = Path(dl_manager.download(urls['dev'])) # Not all datasets have predefined canonical train/val/test splits. # If your dataset has no predefined splits, use datasets.Split.TRAIN for all of the data. return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # Whatever you put in gen_kwargs will be passed to _generate_examples gen_kwargs={ "filepath": train_data, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": test_data, "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": dev_data, "split": "dev", }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` # TODO: change the args of this function to match the keys in `gen_kwargs`. You may add any necessary kwargs. def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. # NOTE: For local datasets you will have access to self.config.data_dir and self.config.data_files data = json.loads(filepath.read_text()) for i in range(len(data)): ex = {} if self.config.schema == 'source': ex = {'tweets': data[i]['tweets'], 'order': data[i]['order']} elif self.config.schema == 'seacrowd_seq_label': ex = {"id": str(i), "tokens": data[i]['tweets'], "labels": data[i]['order']} else: raise ValueError(f"Invalid config: {self.config.name}") yield i, ex # This template is based on the following template from the datasets package: # https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py