--- tags: - question-answering language: - ind --- # facqa FacQA: The goal of the FacQA dataset is to find the answer to a question from a provided short passage from a news article. Each row in the FacQA dataset consists of a question, a short passage, and a label phrase, which can be found inside the corresponding short passage. There are six categories of questions: date, location, name, organization, person, and quantitative. ## Dataset Usage Run `pip install nusacrowd` before loading the dataset through HuggingFace's `load_dataset`. ## Citation ``` @inproceedings{purwarianti2007machine, title={A Machine Learning Approach for Indonesian Question Answering System}, author={Ayu Purwarianti, Masatoshi Tsuchiya, and Seiichi Nakagawa}, booktitle={Proceedings of Artificial Intelligence and Applications }, pages={573--578}, year={2007} } ``` ## License CC-BY-SA 4.0 ## Homepage [https://github.com/IndoNLP/indonlu](https://github.com/IndoNLP/indonlu) ### NusaCatalogue For easy indexing and metadata: [https://indonlp.github.io/nusa-catalogue](https://indonlp.github.io/nusa-catalogue)