import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @article{wibowo2023copal, title={COPAL-ID: Indonesian Language Reasoning with Local Culture and Nuances}, author={Wibowo, Haryo Akbarianto and Fuadi, Erland Hilman and Nityasya, Made Nindyatama and Prasojo, Radityo Eko and Aji, Alham Fikri}, journal={arXiv preprint arXiv:2311.01012}, year={2023} } """ _DATASETNAME = "copal" _DESCRIPTION = """\ COPAL is a novel Indonesian language common sense reasoning dataset. Unlike the previous Indonesian COPA dataset (XCOPA-ID), COPAL-ID incorporates Indonesian local and cultural nuances, providing a more natural portrayal of day-to-day causal reasoning within the Indonesian cultural sphere. Professionally written by natives from scratch, COPAL-ID is more fluent and free from awkward phrases, unlike the translated XCOPA-ID. Additionally, COPAL-ID is presented in both standard Indonesian and Jakartan Indonesian–a commonly used dialect. It consists of premise, choice1, choice2, question, and label, similar to the COPA dataset. """ _HOMEPAGE = "https://huggingface.co/datasets/haryoaw/COPAL" _LICENSE = Licenses.CC_BY_SA_4_0.value _URLS = {"test": "https://huggingface.co/datasets/haryoaw/COPAL/resolve/main/test_copal.csv", "test_colloquial": "https://huggingface.co/datasets/haryoaw/COPAL/resolve/main/test_copal_colloquial.csv"} _SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING] _LOCAL = False _LANGUAGES = ["ind"] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class COPAL(datasets.GeneratorBasedBuilder): SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description="COPAL test source schema", schema="source", subset_id="copal", ), SEACrowdConfig( name=f"{_DATASETNAME}_colloquial_source", version=SOURCE_VERSION, description="COPAL test colloquial source schema", schema="source", subset_id="copal", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_qa", version=SEACROWD_VERSION, description="COPAL test seacrowd schema", schema="seacrowd_qa", subset_id="copal", ), SEACrowdConfig( name=f"{_DATASETNAME}_colloquial_seacrowd_qa", version=SEACROWD_VERSION, description="COPAL test colloquial seacrowd schema", schema="seacrowd_qa", subset_id="copal", ), ] DEFAULT_CONFIG_NAME = "copal_source" def _info(self): if self.config.schema == "source": features = datasets.Features( { "premise": datasets.Value("string"), "choice1": datasets.Value("string"), "choice2": datasets.Value("string"), "question": datasets.Value("string"), "idx": datasets.Value("int64"), "label": datasets.Value("int64"), "terminology": datasets.Value("int64"), "culture": datasets.Value("int64"), "language": datasets.Value("int64"), } ) elif self.config.schema == "seacrowd_qa": features = schemas.qa_features features["meta"] = {"terminology": datasets.Value("int64"), "culture": datasets.Value("int64"), "language": datasets.Value("int64")} return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URLS) if "colloquial" in self.config.name: data_url = data_dir["test_colloquial"] else: data_url = data_dir["test"] return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_url}, ), ] def _generate_examples(self, filepath): df = pd.read_csv(filepath, sep=",", header="infer").reset_index() if self.config.schema == "source": for row in df.itertuples(): entry = { "premise": row.premise, "choice1": row.choice1, "choice2": row.choice2, "question": row.question, "idx": row.idx, "label": row.label, "terminology": row.Terminology, "culture": row.Culture, "language": row.Language, } yield row.index, entry elif self.config.schema == "seacrowd_qa": for row in df.itertuples(): entry = { "id": row.idx, "question_id": str(row.idx), "document_id": str(row.idx), "question": row.question, "type": "multiple_choice", "choices": [row.choice1, row.choice2], "context": row.premise, "answer": [row.choice1 if row.label == 0 else row.choice2], "meta": {"terminology": row.Terminology, "culture": row.Culture, "language": row.Language}, } yield row.index, entry else: raise ValueError(f"Invalid config: {self.config.name}")