--- dataset_info: features: - name: depth dtype: image - name: rgb dtype: image - name: gt dtype: image - name: name dtype: string config_name: v1 splits: - name: train num_bytes: 7378488019 num_examples: 8025 - name: validation num_bytes: 4190272788 num_examples: 4600 download_size: 3506288426 dataset_size: 11568760807 --- # RGB-D Salient Object Detection Dataset (RGB-D SOD) RGB-D Salient Object Detection (RGB-D SOD) aims to detect and segment objects that *visually attract the most human interest* from a pair of color and depth images. ## Train - COME-8K [8025 samples] ## Dev - COME-E [4600 samples] ## Test - Coming soon ## How to use ~~~python from datasets import load_dataset dataset = load_dataset( "RGBD-SOD/rgbdsod_datasets", "v1", split="train", cache_dir="data" ) print(dataset[0]) ~~~ ## BibTeX entry and citation info ```bibtex @inproceedings{zhang2021rgb, title={RGB-D saliency detection via cascaded mutual information minimization}, author={Zhang, Jing and Fan, Deng-Ping and Dai, Yuchao and Yu, Xin and Zhong, Yiran and Barnes, Nick and Shao, Ling}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={4338--4347}, year={2021} } ```