# Loading script for the Cantemist NER dataset. import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @inproceedings{miranda2020named, title={Named entity recognition, concept normalization and clinical coding: Overview of the cantemist track for cancer text mining in spanish, corpus, guidelines, methods and results}, author={Miranda-Escalada, A and Farr{\'e}, E and Krallinger, M}, booktitle={Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020), CEUR Workshop Proceedings}, year={2020} }""" _DESCRIPTION = """\ https://temu.bsc.es/cantemist/ """ _URL = "https://huggingface.co/datasets/PlanTL-GOB-ES/pharmaconer/resolve/main/" # _URL = "./" _TRAINING_FILE = "train.conll" _DEV_FILE = "dev.conll" _TEST_FILE = "test.conll" class CantemistNerConfig(datasets.BuilderConfig): """BuilderConfig for Cantemist Ner dataset""" def __init__(self, **kwargs): """BuilderConfig for CantemistNer. Args: **kwargs: keyword arguments forwarded to super. """ super(CantemistNerConfig, self).__init__(**kwargs) class CantemistNer(datasets.GeneratorBasedBuilder): """Cantemist Ner dataset.""" BUILDER_CONFIGS = [ CantemistNerConfig( name="CantemistNer", version=datasets.Version("1.0.0"), description="CantemistNer dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-MORFOLOGIA_NEOPLASIA", "I-MORFOLOGIA_NEOPLASIA", ] ) ), } ), supervised_keys=None, homepage="https://temu.bsc.es/cantemist/", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] pos_tags = [] ner_tags = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, } guid += 1 tokens = [] ner_tags = [] else: # Cantemist tokens are tab separated splits = line.split("\t") tokens.append(splits[0]) ner_tags.append(splits[-1].rstrip()) # last example yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, }