--- license: apache-2.0 task_categories: - question-answering - text2text-generation language: - en tags: - chemistry - biology - legal - medical configs: - config_name: amazon data_files: - split: test path: "amazon.json" - config_name: medicine data_files: - split: test path: "medicine.json" - config_name: physics data_files: - split: test path: "physics.json" - config_name: biology data_files: - split: test path: "biology.json" - config_name: chemistry data_files: - split: test path: "chemistry.json" - config_name: computer_science data_files: - split: test path: "computer_science.json" - config_name: healthcare data_files: - split: test path: "healthcare.json" - config_name: legal data_files: - split: test path: "legal.json" - config_name: literature data_files: - split: test path: "literature.json" - config_name: material_science data_files: - split: test path: "material_science.json" --- # GRBench GRBench is a comprehensive benchmark dataset to support the development of methodology and facilitate the evaluation of the proposed models for Augmenting Large Language Models with External Textual Graphs. ## Dataset Details ### Dataset Description GRBench includes 10 real-world graphs that can serve as external knowledge sources for LLMs from five domains including academic, e-commerce, literature, healthcare, and legal domains. Each sample in GRBench consists of a manually designed question and an answer, which can be directly answered by referring to the graphs or retrieving the information from the graphs as context. To make the dataset comprehensive, we include samples of different difficulty levels: easy questions (which can be answered with single-hop reasoning on graphs), medium questions (which necessitate multi-hop reasoning on graphs), and hard questions (which call for inductive reasoning with information on graphs as context). - **Curated by:** Bowen Jin (https://peterjin.me/), Chulin Xie (https://alphapav.github.io/), Jiawei Zhang (https://javyduck.github.io/) and Kashob Kumar Roy (https://www.linkedin.com/in/forkkr/) - **Language(s) (NLP):** English - **License:** apache-2.0 ### Dataset Sources - **Repository:** https://github.com/PeterGriffinJin/Graph-CoT - **Paper:** https://arxiv.org/pdf/2404.07103.pdf - **Graph files:** https://drive.google.com/drive/folders/1DJIgRZ3G-TOf7h0-Xub5_sE4slBUEqy9 ## Uses ### Direct Use You can first download the processed graph data here: https://drive.google.com/drive/folders/1DJIgRZ3G-TOf7h0-Xub5_sE4slBUEqy9. Then, ``` from datasets import load_dataset domain = 'amazon' dataset = load_dataset("PeterJinGo/GRBench", data_files=f'{domain}.json') ``` ## Dataset Structure Information on how the graph file looks can be found here: https://github.com/PeterGriffinJin/Graph-CoT/tree/main/data. ## Dataset Creation More details of how the dataset is constructed can be found in Section 3 of this paper (https://arxiv.org/pdf/2404.07103.pdf). The raw graph data sources can be found here: https://github.com/PeterGriffinJin/Graph-CoT/tree/main/data/raw_data. ## Citation **BibTeX:** @article{jin2023graph, title={Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs}, author={Jin, Bowen and Xie, Chulin and Zhang, Jiawei and Roy, Kashob and Zhang, Yu and Wang, Suhang and Meng, Yu and Han, Jiawei}, journal={arXiv preprint arXiv:2404.07103}, year={2024} } ## Dataset Card Authors Bowen Jin ## Dataset Card Contact bowenj4@illinois.edu