import json import os import datasets from beir.datasets.data_loader import GenericDataLoader # ---------------------------------------- # This scripts downloads the BEIR compatible deepsetDPR dataset from "Huggingface Datasets" to your local machine. # Please see dataset's description/readme to learn more about how the dataset was created. # If you want to use deepset/germandpr without any changes, use TYPE "original" # If you want to reproduce PM-AI/bi-encoder_msmarco_bert-base_german, use TYPE "processed" # ---------------------------------------- TYPE = "processed" # or "original" SPLIT = "train" # or "train" DOWNLOAD_DIR = "germandpr-beir-dataset" DOWNLOAD_DIR = os.path.join(DOWNLOAD_DIR, f'{TYPE}/{SPLIT}') DOWNLOAD_QREL_DIR = os.path.join(DOWNLOAD_DIR, f'qrels/') os.makedirs(DOWNLOAD_QREL_DIR, exist_ok=True) # for BEIR compatibility we need queries, corpus and qrels all together # ensure to always load these three based on the same type (all "processed" or all "original") for subset_name in ["queries", "corpus", "qrels"]: subset = datasets.load_dataset("PM-AI/germandpr-beir", f'{TYPE}-{subset_name}', split=SPLIT) if subset_name == "qrels": out_path = os.path.join(DOWNLOAD_QREL_DIR, f'{SPLIT}.tsv') subset.to_csv(out_path, sep="\t", index=False) else: if subset_name == "queries": _row_to_json = lambda row: json.dumps({"_id": row["_id"], "text": row["text"]}, ensure_ascii=False) else: _row_to_json = lambda row: json.dumps({"_id": row["_id"], "title": row["title"], "text": row["text"]}, ensure_ascii=False) with open(os.path.join(DOWNLOAD_DIR, f'{subset_name}.jsonl'), "w", encoding="utf-8") as out_file: for row in subset: out_file.write(_row_to_json(row) + "\n") # GenericDataLoader is part of BEIR. If everything is working correctly we can now load the dataset corpus, queries, qrels = GenericDataLoader(data_folder=DOWNLOAD_DIR).load(SPLIT) print(f'{SPLIT} corpus size: {len(corpus)}\n' f'{SPLIT} queries size: {len(queries)}\n' f'{SPLIT} qrels: {len(qrels)}\n') print("--------------------------------------------------------------------------------------------------------------\n" "Now you can use the downloaded files in BEIR framework\n" "Example: https://github.com/beir-cellar/beir/blob/v1.0.1/examples/retrieval/evaluation/dense/evaluate_sbert.py\n" "--------------------------------------------------------------------------------------------------------------")