distilabel: version: 1.2.2 pipeline: name: embedding-queries description: Generate queries to train a sentence embedding model. steps: - step: name: load_data input_mappings: {} output_mappings: chunks: anchor batch_size: 10 repo_id: Nocare3/love2dapi_chunks split: train config: null streaming: false num_examples: null storage_options: null runtime_parameters_info: - name: batch_size optional: true description: The number of rows that will contain the batches generated by the step. - name: repo_id optional: false description: The Hugging Face Hub repository ID of the dataset to load. - name: split optional: true description: The split of the dataset to load. Defaults to 'train'. - name: config optional: true description: The configuration of the dataset to load. This is optional and only needed if the dataset has multiple configurations. - name: streaming optional: true description: Whether to load the dataset in streaming mode or not. Defaults to False. - name: num_examples optional: true description: The number of examples to load from the dataset. By default will load all examples. type_info: module: distilabel.steps.generators.huggingface name: LoadDataFromHub name: load_data - step: name: generate_sentence_pair input_mappings: {} output_mappings: model_name: model_name_query input_batch_size: 10 llm: generation_kwargs: temperature: 0.7 max_new_tokens: 512 model_id: meta-llama/Meta-Llama-3-70B-Instruct endpoint_name: null endpoint_namespace: null base_url: null tokenizer_id: meta-llama/Meta-Llama-3-70B-Instruct model_display_name: null use_openai_client: false structured_output: null type_info: module: distilabel.llms.huggingface.inference_endpoints name: InferenceEndpointsLLM group_generations: false add_raw_output: true num_generations: 1 triplet: true action: query context: The generated sentence has to be related with Love2d, a lua-code game engine used mostly by indie developers. runtime_parameters_info: - name: input_batch_size optional: true description: The number of rows that will contain the batches processed by the step. - name: llm runtime_parameters_info: - name: generation_kwargs description: The kwargs to be propagated to either `generate` or `agenerate` methods within each `LLM`. keys: - name: max_new_tokens optional: true description: the maximum number of new tokens that the model will generate. Defaults to `128`. - name: frequency_penalty optional: true description: the repetition penalty to use for the generation. Defaults to `0.0`. Only applies if `use_openai_client=True`. - name: presence_penalty optional: true description: the presence penalty to use for the generation. Defaults to `0.0`. Only applies if `use_openai_client=True`. - name: repetition_penalty optional: true description: the repetition penalty to use for the generation. Defaults to `None`. Only applies if `use_openai_client=False`. - name: temperature optional: true description: the temperature to use for the generation. Defaults to `1.0`. - name: do_sample optional: true description: whether to use sampling for the generation. Defaults to `False`. Only applies if `use_openai_client=False`. - name: top_k optional: true description: the top-k value to use for the generation. Defaults to `0.8`, since neither `0.0` nor `1.0` are valid values in TGI. - name: top_p optional: true description: the top-p value to use for the generation. Defaults to `1.0`. - name: typical_p optional: true description: the typical-p value to use for the generation. Defaults to `0.5`. - name: stop_sequences optional: true description: either a single string or a list of strings containing the sequences to stop the generation at. Defaults to `None`, but will be set to the `tokenizer.eos_token` if available. - name: return_full_text optional: true description: whether to return the full text of the completion or just the generated text. Defaults to `False`, meaning that only the generated text will be returned. - name: seed optional: true description: the seed to use for the generation. Defaults to `None`. - name: watermark optional: true description: whether to add the watermark to the generated text. Defaults to `None`. - name: endpoint_name optional: true description: The name of the Inference Endpoint to use for the LLM. - name: endpoint_namespace optional: true description: The namespace of the Inference Endpoint to use for the LLM. - name: base_url optional: true description: The base URL to use for the Inference Endpoints API requests. - name: api_key optional: true description: The API key to authenticate the requests to the Inference Endpoints API. - name: structured_output optional: true description: The structured output format to use across all the generations. - name: add_raw_output optional: true description: Whether to include the raw output of the LLM in the key `raw_output_` of the `distilabel_metadata` dictionary output column - name: num_generations optional: true description: The number of generations to be produced per input. type_info: module: distilabel.steps.tasks.sentence_transformers name: GenerateSentencePair name: generate_sentence_pair - step: name: multiply_queries input_mappings: query: positive output_mappings: model_name: model_name_query_multiplied input_batch_size: 10 llm: generation_kwargs: temperature: 0.7 max_new_tokens: 512 model_id: meta-llama/Meta-Llama-3-70B-Instruct endpoint_name: null endpoint_namespace: null base_url: null tokenizer_id: meta-llama/Meta-Llama-3-70B-Instruct model_display_name: null use_openai_client: false structured_output: null type_info: module: distilabel.llms.huggingface.inference_endpoints name: InferenceEndpointsLLM group_generations: false add_raw_output: true num_generations: 1 system_prompt: You are an AI assistant helping to generate diverse examples. Ensure the generated queries are all in separated lines and preceded by a dash. Do not generate anything else or introduce the task. num_queries: 3 runtime_parameters_info: - name: input_batch_size optional: true description: The number of rows that will contain the batches processed by the step. - name: llm runtime_parameters_info: - name: generation_kwargs description: The kwargs to be propagated to either `generate` or `agenerate` methods within each `LLM`. keys: - name: max_new_tokens optional: true description: the maximum number of new tokens that the model will generate. Defaults to `128`. - name: frequency_penalty optional: true description: the repetition penalty to use for the generation. Defaults to `0.0`. Only applies if `use_openai_client=True`. - name: presence_penalty optional: true description: the presence penalty to use for the generation. Defaults to `0.0`. Only applies if `use_openai_client=True`. - name: repetition_penalty optional: true description: the repetition penalty to use for the generation. Defaults to `None`. Only applies if `use_openai_client=False`. - name: temperature optional: true description: the temperature to use for the generation. Defaults to `1.0`. - name: do_sample optional: true description: whether to use sampling for the generation. Defaults to `False`. Only applies if `use_openai_client=False`. - name: top_k optional: true description: the top-k value to use for the generation. Defaults to `0.8`, since neither `0.0` nor `1.0` are valid values in TGI. - name: top_p optional: true description: the top-p value to use for the generation. Defaults to `1.0`. - name: typical_p optional: true description: the typical-p value to use for the generation. Defaults to `0.5`. - name: stop_sequences optional: true description: either a single string or a list of strings containing the sequences to stop the generation at. Defaults to `None`, but will be set to the `tokenizer.eos_token` if available. - name: return_full_text optional: true description: whether to return the full text of the completion or just the generated text. Defaults to `False`, meaning that only the generated text will be returned. - name: seed optional: true description: the seed to use for the generation. Defaults to `None`. - name: watermark optional: true description: whether to add the watermark to the generated text. Defaults to `None`. - name: endpoint_name optional: true description: The name of the Inference Endpoint to use for the LLM. - name: endpoint_namespace optional: true description: The namespace of the Inference Endpoint to use for the LLM. - name: base_url optional: true description: The base URL to use for the Inference Endpoints API requests. - name: api_key optional: true description: The API key to authenticate the requests to the Inference Endpoints API. - name: structured_output optional: true description: The structured output format to use across all the generations. - name: add_raw_output optional: true description: Whether to include the raw output of the LLM in the key `raw_output_` of the `distilabel_metadata` dictionary output column - name: num_generations optional: true description: The number of generations to be produced per input. type_info: module: __main__ name: MultipleQueries name: multiply_queries - step: name: merge_columns input_mappings: {} output_mappings: {} input_batch_size: 50 columns: '0': positive '1': queries output_columns: '0': positive runtime_parameters_info: - name: input_batch_size optional: true description: The number of rows that will contain the batches processed by the step. type_info: module: distilabel.steps.combine name: CombineColumns name: merge_columns - step: name: expand_columns_0 input_mappings: {} output_mappings: {} input_batch_size: 50 columns: positive: positive runtime_parameters_info: - name: input_batch_size optional: true description: The number of rows that will contain the batches processed by the step. type_info: module: distilabel.steps.expand name: ExpandColumns name: expand_columns_0 connections: - from: load_data to: - generate_sentence_pair - from: generate_sentence_pair to: - multiply_queries - from: multiply_queries to: - merge_columns - from: merge_columns to: - expand_columns_0 - from: expand_columns_0 to: [] routing_batch_functions: [] type_info: module: distilabel.pipeline.local name: Pipeline